]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/scsi/hpsa.c
hpsa: use workqueue to resubmit failed ioaccel commands
[karo-tx-linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
59 #define HPSA_DRIVER_VERSION "3.4.4-1"
60 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
61 #define HPSA "hpsa"
62
63 /* How long to wait (in milliseconds) for board to go into simple mode */
64 #define MAX_CONFIG_WAIT 30000
65 #define MAX_IOCTL_CONFIG_WAIT 1000
66
67 /*define how many times we will try a command because of bus resets */
68 #define MAX_CMD_RETRIES 3
69
70 /* Embedded module documentation macros - see modules.h */
71 MODULE_AUTHOR("Hewlett-Packard Company");
72 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
73         HPSA_DRIVER_VERSION);
74 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
75 MODULE_VERSION(HPSA_DRIVER_VERSION);
76 MODULE_LICENSE("GPL");
77
78 static int hpsa_allow_any;
79 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
80 MODULE_PARM_DESC(hpsa_allow_any,
81                 "Allow hpsa driver to access unknown HP Smart Array hardware");
82 static int hpsa_simple_mode;
83 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
84 MODULE_PARM_DESC(hpsa_simple_mode,
85         "Use 'simple mode' rather than 'performant mode'");
86
87 /* define the PCI info for the cards we can control */
88 static const struct pci_device_id hpsa_pci_device_id[] = {
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
129         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
130         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
131         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
132         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
133         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
134         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
135                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
136         {0,}
137 };
138
139 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
140
141 /*  board_id = Subsystem Device ID & Vendor ID
142  *  product = Marketing Name for the board
143  *  access = Address of the struct of function pointers
144  */
145 static struct board_type products[] = {
146         {0x3241103C, "Smart Array P212", &SA5_access},
147         {0x3243103C, "Smart Array P410", &SA5_access},
148         {0x3245103C, "Smart Array P410i", &SA5_access},
149         {0x3247103C, "Smart Array P411", &SA5_access},
150         {0x3249103C, "Smart Array P812", &SA5_access},
151         {0x324A103C, "Smart Array P712m", &SA5_access},
152         {0x324B103C, "Smart Array P711m", &SA5_access},
153         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
154         {0x3350103C, "Smart Array P222", &SA5_access},
155         {0x3351103C, "Smart Array P420", &SA5_access},
156         {0x3352103C, "Smart Array P421", &SA5_access},
157         {0x3353103C, "Smart Array P822", &SA5_access},
158         {0x3354103C, "Smart Array P420i", &SA5_access},
159         {0x3355103C, "Smart Array P220i", &SA5_access},
160         {0x3356103C, "Smart Array P721m", &SA5_access},
161         {0x1921103C, "Smart Array P830i", &SA5_access},
162         {0x1922103C, "Smart Array P430", &SA5_access},
163         {0x1923103C, "Smart Array P431", &SA5_access},
164         {0x1924103C, "Smart Array P830", &SA5_access},
165         {0x1926103C, "Smart Array P731m", &SA5_access},
166         {0x1928103C, "Smart Array P230i", &SA5_access},
167         {0x1929103C, "Smart Array P530", &SA5_access},
168         {0x21BD103C, "Smart Array", &SA5_access},
169         {0x21BE103C, "Smart Array", &SA5_access},
170         {0x21BF103C, "Smart Array", &SA5_access},
171         {0x21C0103C, "Smart Array", &SA5_access},
172         {0x21C1103C, "Smart Array", &SA5_access},
173         {0x21C2103C, "Smart Array", &SA5_access},
174         {0x21C3103C, "Smart Array", &SA5_access},
175         {0x21C4103C, "Smart Array", &SA5_access},
176         {0x21C5103C, "Smart Array", &SA5_access},
177         {0x21C6103C, "Smart Array", &SA5_access},
178         {0x21C7103C, "Smart Array", &SA5_access},
179         {0x21C8103C, "Smart Array", &SA5_access},
180         {0x21C9103C, "Smart Array", &SA5_access},
181         {0x21CA103C, "Smart Array", &SA5_access},
182         {0x21CB103C, "Smart Array", &SA5_access},
183         {0x21CC103C, "Smart Array", &SA5_access},
184         {0x21CD103C, "Smart Array", &SA5_access},
185         {0x21CE103C, "Smart Array", &SA5_access},
186         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
187         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
188         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
189         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
190         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
191         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
192 };
193
194 static int number_of_controllers;
195
196 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
197 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
198 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
199
200 #ifdef CONFIG_COMPAT
201 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
202         void __user *arg);
203 #endif
204
205 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
206 static struct CommandList *cmd_alloc(struct ctlr_info *h);
207 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
208         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
209         int cmd_type);
210 static void hpsa_free_cmd_pool(struct ctlr_info *h);
211 #define VPD_PAGE (1 << 8)
212
213 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
214 static void hpsa_scan_start(struct Scsi_Host *);
215 static int hpsa_scan_finished(struct Scsi_Host *sh,
216         unsigned long elapsed_time);
217 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
218
219 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
220 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
221 static int hpsa_slave_alloc(struct scsi_device *sdev);
222 static void hpsa_slave_destroy(struct scsi_device *sdev);
223
224 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
225 static int check_for_unit_attention(struct ctlr_info *h,
226         struct CommandList *c);
227 static void check_ioctl_unit_attention(struct ctlr_info *h,
228         struct CommandList *c);
229 /* performant mode helper functions */
230 static void calc_bucket_map(int *bucket, int num_buckets,
231         int nsgs, int min_blocks, u32 *bucket_map);
232 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
233 static inline u32 next_command(struct ctlr_info *h, u8 q);
234 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
235                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
236                                u64 *cfg_offset);
237 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
238                                     unsigned long *memory_bar);
239 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
240 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
241                                      int wait_for_ready);
242 static inline void finish_cmd(struct CommandList *c);
243 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
244 #define BOARD_NOT_READY 0
245 #define BOARD_READY 1
246 static void hpsa_drain_accel_commands(struct ctlr_info *h);
247 static void hpsa_flush_cache(struct ctlr_info *h);
248 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
249         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
250         u8 *scsi3addr);
251 static void hpsa_command_resubmit_worker(struct work_struct *work);
252
253 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
254 {
255         unsigned long *priv = shost_priv(sdev->host);
256         return (struct ctlr_info *) *priv;
257 }
258
259 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
260 {
261         unsigned long *priv = shost_priv(sh);
262         return (struct ctlr_info *) *priv;
263 }
264
265 static int check_for_unit_attention(struct ctlr_info *h,
266         struct CommandList *c)
267 {
268         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
269                 return 0;
270
271         switch (c->err_info->SenseInfo[12]) {
272         case STATE_CHANGED:
273                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
274                         "detected, command retried\n", h->ctlr);
275                 break;
276         case LUN_FAILED:
277                 dev_warn(&h->pdev->dev,
278                         HPSA "%d: LUN failure detected\n", h->ctlr);
279                 break;
280         case REPORT_LUNS_CHANGED:
281                 dev_warn(&h->pdev->dev,
282                         HPSA "%d: report LUN data changed\n", h->ctlr);
283         /*
284          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
285          * target (array) devices.
286          */
287                 break;
288         case POWER_OR_RESET:
289                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
290                         "or device reset detected\n", h->ctlr);
291                 break;
292         case UNIT_ATTENTION_CLEARED:
293                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
294                     "cleared by another initiator\n", h->ctlr);
295                 break;
296         default:
297                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
298                         "unit attention detected\n", h->ctlr);
299                 break;
300         }
301         return 1;
302 }
303
304 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
305 {
306         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
307                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
308                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
309                 return 0;
310         dev_warn(&h->pdev->dev, HPSA "device busy");
311         return 1;
312 }
313
314 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
315                                          struct device_attribute *attr,
316                                          const char *buf, size_t count)
317 {
318         int status, len;
319         struct ctlr_info *h;
320         struct Scsi_Host *shost = class_to_shost(dev);
321         char tmpbuf[10];
322
323         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
324                 return -EACCES;
325         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
326         strncpy(tmpbuf, buf, len);
327         tmpbuf[len] = '\0';
328         if (sscanf(tmpbuf, "%d", &status) != 1)
329                 return -EINVAL;
330         h = shost_to_hba(shost);
331         h->acciopath_status = !!status;
332         dev_warn(&h->pdev->dev,
333                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
334                 h->acciopath_status ? "enabled" : "disabled");
335         return count;
336 }
337
338 static ssize_t host_store_raid_offload_debug(struct device *dev,
339                                          struct device_attribute *attr,
340                                          const char *buf, size_t count)
341 {
342         int debug_level, len;
343         struct ctlr_info *h;
344         struct Scsi_Host *shost = class_to_shost(dev);
345         char tmpbuf[10];
346
347         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
348                 return -EACCES;
349         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
350         strncpy(tmpbuf, buf, len);
351         tmpbuf[len] = '\0';
352         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
353                 return -EINVAL;
354         if (debug_level < 0)
355                 debug_level = 0;
356         h = shost_to_hba(shost);
357         h->raid_offload_debug = debug_level;
358         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
359                 h->raid_offload_debug);
360         return count;
361 }
362
363 static ssize_t host_store_rescan(struct device *dev,
364                                  struct device_attribute *attr,
365                                  const char *buf, size_t count)
366 {
367         struct ctlr_info *h;
368         struct Scsi_Host *shost = class_to_shost(dev);
369         h = shost_to_hba(shost);
370         hpsa_scan_start(h->scsi_host);
371         return count;
372 }
373
374 static ssize_t host_show_firmware_revision(struct device *dev,
375              struct device_attribute *attr, char *buf)
376 {
377         struct ctlr_info *h;
378         struct Scsi_Host *shost = class_to_shost(dev);
379         unsigned char *fwrev;
380
381         h = shost_to_hba(shost);
382         if (!h->hba_inquiry_data)
383                 return 0;
384         fwrev = &h->hba_inquiry_data[32];
385         return snprintf(buf, 20, "%c%c%c%c\n",
386                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
387 }
388
389 static ssize_t host_show_commands_outstanding(struct device *dev,
390              struct device_attribute *attr, char *buf)
391 {
392         struct Scsi_Host *shost = class_to_shost(dev);
393         struct ctlr_info *h = shost_to_hba(shost);
394
395         return snprintf(buf, 20, "%d\n",
396                         atomic_read(&h->commands_outstanding));
397 }
398
399 static ssize_t host_show_transport_mode(struct device *dev,
400         struct device_attribute *attr, char *buf)
401 {
402         struct ctlr_info *h;
403         struct Scsi_Host *shost = class_to_shost(dev);
404
405         h = shost_to_hba(shost);
406         return snprintf(buf, 20, "%s\n",
407                 h->transMethod & CFGTBL_Trans_Performant ?
408                         "performant" : "simple");
409 }
410
411 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
412         struct device_attribute *attr, char *buf)
413 {
414         struct ctlr_info *h;
415         struct Scsi_Host *shost = class_to_shost(dev);
416
417         h = shost_to_hba(shost);
418         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
419                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
420 }
421
422 /* List of controllers which cannot be hard reset on kexec with reset_devices */
423 static u32 unresettable_controller[] = {
424         0x324a103C, /* Smart Array P712m */
425         0x324b103C, /* SmartArray P711m */
426         0x3223103C, /* Smart Array P800 */
427         0x3234103C, /* Smart Array P400 */
428         0x3235103C, /* Smart Array P400i */
429         0x3211103C, /* Smart Array E200i */
430         0x3212103C, /* Smart Array E200 */
431         0x3213103C, /* Smart Array E200i */
432         0x3214103C, /* Smart Array E200i */
433         0x3215103C, /* Smart Array E200i */
434         0x3237103C, /* Smart Array E500 */
435         0x323D103C, /* Smart Array P700m */
436         0x40800E11, /* Smart Array 5i */
437         0x409C0E11, /* Smart Array 6400 */
438         0x409D0E11, /* Smart Array 6400 EM */
439         0x40700E11, /* Smart Array 5300 */
440         0x40820E11, /* Smart Array 532 */
441         0x40830E11, /* Smart Array 5312 */
442         0x409A0E11, /* Smart Array 641 */
443         0x409B0E11, /* Smart Array 642 */
444         0x40910E11, /* Smart Array 6i */
445 };
446
447 /* List of controllers which cannot even be soft reset */
448 static u32 soft_unresettable_controller[] = {
449         0x40800E11, /* Smart Array 5i */
450         0x40700E11, /* Smart Array 5300 */
451         0x40820E11, /* Smart Array 532 */
452         0x40830E11, /* Smart Array 5312 */
453         0x409A0E11, /* Smart Array 641 */
454         0x409B0E11, /* Smart Array 642 */
455         0x40910E11, /* Smart Array 6i */
456         /* Exclude 640x boards.  These are two pci devices in one slot
457          * which share a battery backed cache module.  One controls the
458          * cache, the other accesses the cache through the one that controls
459          * it.  If we reset the one controlling the cache, the other will
460          * likely not be happy.  Just forbid resetting this conjoined mess.
461          * The 640x isn't really supported by hpsa anyway.
462          */
463         0x409C0E11, /* Smart Array 6400 */
464         0x409D0E11, /* Smart Array 6400 EM */
465 };
466
467 static int ctlr_is_hard_resettable(u32 board_id)
468 {
469         int i;
470
471         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
472                 if (unresettable_controller[i] == board_id)
473                         return 0;
474         return 1;
475 }
476
477 static int ctlr_is_soft_resettable(u32 board_id)
478 {
479         int i;
480
481         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
482                 if (soft_unresettable_controller[i] == board_id)
483                         return 0;
484         return 1;
485 }
486
487 static int ctlr_is_resettable(u32 board_id)
488 {
489         return ctlr_is_hard_resettable(board_id) ||
490                 ctlr_is_soft_resettable(board_id);
491 }
492
493 static ssize_t host_show_resettable(struct device *dev,
494         struct device_attribute *attr, char *buf)
495 {
496         struct ctlr_info *h;
497         struct Scsi_Host *shost = class_to_shost(dev);
498
499         h = shost_to_hba(shost);
500         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
501 }
502
503 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
504 {
505         return (scsi3addr[3] & 0xC0) == 0x40;
506 }
507
508 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
509         "1(+0)ADM", "UNKNOWN"
510 };
511 #define HPSA_RAID_0     0
512 #define HPSA_RAID_4     1
513 #define HPSA_RAID_1     2       /* also used for RAID 10 */
514 #define HPSA_RAID_5     3       /* also used for RAID 50 */
515 #define HPSA_RAID_51    4
516 #define HPSA_RAID_6     5       /* also used for RAID 60 */
517 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
518 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
519
520 static ssize_t raid_level_show(struct device *dev,
521              struct device_attribute *attr, char *buf)
522 {
523         ssize_t l = 0;
524         unsigned char rlevel;
525         struct ctlr_info *h;
526         struct scsi_device *sdev;
527         struct hpsa_scsi_dev_t *hdev;
528         unsigned long flags;
529
530         sdev = to_scsi_device(dev);
531         h = sdev_to_hba(sdev);
532         spin_lock_irqsave(&h->lock, flags);
533         hdev = sdev->hostdata;
534         if (!hdev) {
535                 spin_unlock_irqrestore(&h->lock, flags);
536                 return -ENODEV;
537         }
538
539         /* Is this even a logical drive? */
540         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
541                 spin_unlock_irqrestore(&h->lock, flags);
542                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
543                 return l;
544         }
545
546         rlevel = hdev->raid_level;
547         spin_unlock_irqrestore(&h->lock, flags);
548         if (rlevel > RAID_UNKNOWN)
549                 rlevel = RAID_UNKNOWN;
550         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
551         return l;
552 }
553
554 static ssize_t lunid_show(struct device *dev,
555              struct device_attribute *attr, char *buf)
556 {
557         struct ctlr_info *h;
558         struct scsi_device *sdev;
559         struct hpsa_scsi_dev_t *hdev;
560         unsigned long flags;
561         unsigned char lunid[8];
562
563         sdev = to_scsi_device(dev);
564         h = sdev_to_hba(sdev);
565         spin_lock_irqsave(&h->lock, flags);
566         hdev = sdev->hostdata;
567         if (!hdev) {
568                 spin_unlock_irqrestore(&h->lock, flags);
569                 return -ENODEV;
570         }
571         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
572         spin_unlock_irqrestore(&h->lock, flags);
573         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
574                 lunid[0], lunid[1], lunid[2], lunid[3],
575                 lunid[4], lunid[5], lunid[6], lunid[7]);
576 }
577
578 static ssize_t unique_id_show(struct device *dev,
579              struct device_attribute *attr, char *buf)
580 {
581         struct ctlr_info *h;
582         struct scsi_device *sdev;
583         struct hpsa_scsi_dev_t *hdev;
584         unsigned long flags;
585         unsigned char sn[16];
586
587         sdev = to_scsi_device(dev);
588         h = sdev_to_hba(sdev);
589         spin_lock_irqsave(&h->lock, flags);
590         hdev = sdev->hostdata;
591         if (!hdev) {
592                 spin_unlock_irqrestore(&h->lock, flags);
593                 return -ENODEV;
594         }
595         memcpy(sn, hdev->device_id, sizeof(sn));
596         spin_unlock_irqrestore(&h->lock, flags);
597         return snprintf(buf, 16 * 2 + 2,
598                         "%02X%02X%02X%02X%02X%02X%02X%02X"
599                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
600                         sn[0], sn[1], sn[2], sn[3],
601                         sn[4], sn[5], sn[6], sn[7],
602                         sn[8], sn[9], sn[10], sn[11],
603                         sn[12], sn[13], sn[14], sn[15]);
604 }
605
606 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
607              struct device_attribute *attr, char *buf)
608 {
609         struct ctlr_info *h;
610         struct scsi_device *sdev;
611         struct hpsa_scsi_dev_t *hdev;
612         unsigned long flags;
613         int offload_enabled;
614
615         sdev = to_scsi_device(dev);
616         h = sdev_to_hba(sdev);
617         spin_lock_irqsave(&h->lock, flags);
618         hdev = sdev->hostdata;
619         if (!hdev) {
620                 spin_unlock_irqrestore(&h->lock, flags);
621                 return -ENODEV;
622         }
623         offload_enabled = hdev->offload_enabled;
624         spin_unlock_irqrestore(&h->lock, flags);
625         return snprintf(buf, 20, "%d\n", offload_enabled);
626 }
627
628 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
629 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
630 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
631 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
632 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
633                         host_show_hp_ssd_smart_path_enabled, NULL);
634 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
635                 host_show_hp_ssd_smart_path_status,
636                 host_store_hp_ssd_smart_path_status);
637 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
638                         host_store_raid_offload_debug);
639 static DEVICE_ATTR(firmware_revision, S_IRUGO,
640         host_show_firmware_revision, NULL);
641 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
642         host_show_commands_outstanding, NULL);
643 static DEVICE_ATTR(transport_mode, S_IRUGO,
644         host_show_transport_mode, NULL);
645 static DEVICE_ATTR(resettable, S_IRUGO,
646         host_show_resettable, NULL);
647
648 static struct device_attribute *hpsa_sdev_attrs[] = {
649         &dev_attr_raid_level,
650         &dev_attr_lunid,
651         &dev_attr_unique_id,
652         &dev_attr_hp_ssd_smart_path_enabled,
653         NULL,
654 };
655
656 static struct device_attribute *hpsa_shost_attrs[] = {
657         &dev_attr_rescan,
658         &dev_attr_firmware_revision,
659         &dev_attr_commands_outstanding,
660         &dev_attr_transport_mode,
661         &dev_attr_resettable,
662         &dev_attr_hp_ssd_smart_path_status,
663         &dev_attr_raid_offload_debug,
664         NULL,
665 };
666
667 static struct scsi_host_template hpsa_driver_template = {
668         .module                 = THIS_MODULE,
669         .name                   = HPSA,
670         .proc_name              = HPSA,
671         .queuecommand           = hpsa_scsi_queue_command,
672         .scan_start             = hpsa_scan_start,
673         .scan_finished          = hpsa_scan_finished,
674         .change_queue_depth     = hpsa_change_queue_depth,
675         .this_id                = -1,
676         .use_clustering         = ENABLE_CLUSTERING,
677         .eh_abort_handler       = hpsa_eh_abort_handler,
678         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
679         .ioctl                  = hpsa_ioctl,
680         .slave_alloc            = hpsa_slave_alloc,
681         .slave_destroy          = hpsa_slave_destroy,
682 #ifdef CONFIG_COMPAT
683         .compat_ioctl           = hpsa_compat_ioctl,
684 #endif
685         .sdev_attrs = hpsa_sdev_attrs,
686         .shost_attrs = hpsa_shost_attrs,
687         .max_sectors = 8192,
688         .no_write_same = 1,
689 };
690
691 static inline u32 next_command(struct ctlr_info *h, u8 q)
692 {
693         u32 a;
694         struct reply_queue_buffer *rq = &h->reply_queue[q];
695
696         if (h->transMethod & CFGTBL_Trans_io_accel1)
697                 return h->access.command_completed(h, q);
698
699         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
700                 return h->access.command_completed(h, q);
701
702         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
703                 a = rq->head[rq->current_entry];
704                 rq->current_entry++;
705                 atomic_dec(&h->commands_outstanding);
706         } else {
707                 a = FIFO_EMPTY;
708         }
709         /* Check for wraparound */
710         if (rq->current_entry == h->max_commands) {
711                 rq->current_entry = 0;
712                 rq->wraparound ^= 1;
713         }
714         return a;
715 }
716
717 /*
718  * There are some special bits in the bus address of the
719  * command that we have to set for the controller to know
720  * how to process the command:
721  *
722  * Normal performant mode:
723  * bit 0: 1 means performant mode, 0 means simple mode.
724  * bits 1-3 = block fetch table entry
725  * bits 4-6 = command type (== 0)
726  *
727  * ioaccel1 mode:
728  * bit 0 = "performant mode" bit.
729  * bits 1-3 = block fetch table entry
730  * bits 4-6 = command type (== 110)
731  * (command type is needed because ioaccel1 mode
732  * commands are submitted through the same register as normal
733  * mode commands, so this is how the controller knows whether
734  * the command is normal mode or ioaccel1 mode.)
735  *
736  * ioaccel2 mode:
737  * bit 0 = "performant mode" bit.
738  * bits 1-4 = block fetch table entry (note extra bit)
739  * bits 4-6 = not needed, because ioaccel2 mode has
740  * a separate special register for submitting commands.
741  */
742
743 /* set_performant_mode: Modify the tag for cciss performant
744  * set bit 0 for pull model, bits 3-1 for block fetch
745  * register number
746  */
747 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
748 {
749         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
750                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
751                 if (likely(h->msix_vector > 0))
752                         c->Header.ReplyQueue =
753                                 raw_smp_processor_id() % h->nreply_queues;
754         }
755 }
756
757 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
758                                                 struct CommandList *c)
759 {
760         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
761
762         /* Tell the controller to post the reply to the queue for this
763          * processor.  This seems to give the best I/O throughput.
764          */
765         cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
766         /* Set the bits in the address sent down to include:
767          *  - performant mode bit (bit 0)
768          *  - pull count (bits 1-3)
769          *  - command type (bits 4-6)
770          */
771         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
772                                         IOACCEL1_BUSADDR_CMDTYPE;
773 }
774
775 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
776                                                 struct CommandList *c)
777 {
778         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
779
780         /* Tell the controller to post the reply to the queue for this
781          * processor.  This seems to give the best I/O throughput.
782          */
783         cp->reply_queue = smp_processor_id() % h->nreply_queues;
784         /* Set the bits in the address sent down to include:
785          *  - performant mode bit not used in ioaccel mode 2
786          *  - pull count (bits 0-3)
787          *  - command type isn't needed for ioaccel2
788          */
789         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
790 }
791
792 static int is_firmware_flash_cmd(u8 *cdb)
793 {
794         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
795 }
796
797 /*
798  * During firmware flash, the heartbeat register may not update as frequently
799  * as it should.  So we dial down lockup detection during firmware flash. and
800  * dial it back up when firmware flash completes.
801  */
802 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
803 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
804 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
805                 struct CommandList *c)
806 {
807         if (!is_firmware_flash_cmd(c->Request.CDB))
808                 return;
809         atomic_inc(&h->firmware_flash_in_progress);
810         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
811 }
812
813 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
814                 struct CommandList *c)
815 {
816         if (is_firmware_flash_cmd(c->Request.CDB) &&
817                 atomic_dec_and_test(&h->firmware_flash_in_progress))
818                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
819 }
820
821 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
822         struct CommandList *c)
823 {
824         switch (c->cmd_type) {
825         case CMD_IOACCEL1:
826                 set_ioaccel1_performant_mode(h, c);
827                 break;
828         case CMD_IOACCEL2:
829                 set_ioaccel2_performant_mode(h, c);
830                 break;
831         default:
832                 set_performant_mode(h, c);
833         }
834         dial_down_lockup_detection_during_fw_flash(h, c);
835         atomic_inc(&h->commands_outstanding);
836         h->access.submit_command(h, c);
837 }
838
839 static inline int is_hba_lunid(unsigned char scsi3addr[])
840 {
841         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
842 }
843
844 static inline int is_scsi_rev_5(struct ctlr_info *h)
845 {
846         if (!h->hba_inquiry_data)
847                 return 0;
848         if ((h->hba_inquiry_data[2] & 0x07) == 5)
849                 return 1;
850         return 0;
851 }
852
853 static int hpsa_find_target_lun(struct ctlr_info *h,
854         unsigned char scsi3addr[], int bus, int *target, int *lun)
855 {
856         /* finds an unused bus, target, lun for a new physical device
857          * assumes h->devlock is held
858          */
859         int i, found = 0;
860         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
861
862         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
863
864         for (i = 0; i < h->ndevices; i++) {
865                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
866                         __set_bit(h->dev[i]->target, lun_taken);
867         }
868
869         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
870         if (i < HPSA_MAX_DEVICES) {
871                 /* *bus = 1; */
872                 *target = i;
873                 *lun = 0;
874                 found = 1;
875         }
876         return !found;
877 }
878
879 /* Add an entry into h->dev[] array. */
880 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
881                 struct hpsa_scsi_dev_t *device,
882                 struct hpsa_scsi_dev_t *added[], int *nadded)
883 {
884         /* assumes h->devlock is held */
885         int n = h->ndevices;
886         int i;
887         unsigned char addr1[8], addr2[8];
888         struct hpsa_scsi_dev_t *sd;
889
890         if (n >= HPSA_MAX_DEVICES) {
891                 dev_err(&h->pdev->dev, "too many devices, some will be "
892                         "inaccessible.\n");
893                 return -1;
894         }
895
896         /* physical devices do not have lun or target assigned until now. */
897         if (device->lun != -1)
898                 /* Logical device, lun is already assigned. */
899                 goto lun_assigned;
900
901         /* If this device a non-zero lun of a multi-lun device
902          * byte 4 of the 8-byte LUN addr will contain the logical
903          * unit no, zero otherwise.
904          */
905         if (device->scsi3addr[4] == 0) {
906                 /* This is not a non-zero lun of a multi-lun device */
907                 if (hpsa_find_target_lun(h, device->scsi3addr,
908                         device->bus, &device->target, &device->lun) != 0)
909                         return -1;
910                 goto lun_assigned;
911         }
912
913         /* This is a non-zero lun of a multi-lun device.
914          * Search through our list and find the device which
915          * has the same 8 byte LUN address, excepting byte 4.
916          * Assign the same bus and target for this new LUN.
917          * Use the logical unit number from the firmware.
918          */
919         memcpy(addr1, device->scsi3addr, 8);
920         addr1[4] = 0;
921         for (i = 0; i < n; i++) {
922                 sd = h->dev[i];
923                 memcpy(addr2, sd->scsi3addr, 8);
924                 addr2[4] = 0;
925                 /* differ only in byte 4? */
926                 if (memcmp(addr1, addr2, 8) == 0) {
927                         device->bus = sd->bus;
928                         device->target = sd->target;
929                         device->lun = device->scsi3addr[4];
930                         break;
931                 }
932         }
933         if (device->lun == -1) {
934                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
935                         " suspect firmware bug or unsupported hardware "
936                         "configuration.\n");
937                         return -1;
938         }
939
940 lun_assigned:
941
942         h->dev[n] = device;
943         h->ndevices++;
944         added[*nadded] = device;
945         (*nadded)++;
946
947         /* initially, (before registering with scsi layer) we don't
948          * know our hostno and we don't want to print anything first
949          * time anyway (the scsi layer's inquiries will show that info)
950          */
951         /* if (hostno != -1) */
952                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
953                         scsi_device_type(device->devtype), hostno,
954                         device->bus, device->target, device->lun);
955         return 0;
956 }
957
958 /* Update an entry in h->dev[] array. */
959 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
960         int entry, struct hpsa_scsi_dev_t *new_entry)
961 {
962         /* assumes h->devlock is held */
963         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
964
965         /* Raid level changed. */
966         h->dev[entry]->raid_level = new_entry->raid_level;
967
968         /* Raid offload parameters changed. */
969         h->dev[entry]->offload_config = new_entry->offload_config;
970         h->dev[entry]->offload_enabled = new_entry->offload_enabled;
971         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
972         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
973         h->dev[entry]->raid_map = new_entry->raid_map;
974
975         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
976                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
977                 new_entry->target, new_entry->lun);
978 }
979
980 /* Replace an entry from h->dev[] array. */
981 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
982         int entry, struct hpsa_scsi_dev_t *new_entry,
983         struct hpsa_scsi_dev_t *added[], int *nadded,
984         struct hpsa_scsi_dev_t *removed[], int *nremoved)
985 {
986         /* assumes h->devlock is held */
987         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
988         removed[*nremoved] = h->dev[entry];
989         (*nremoved)++;
990
991         /*
992          * New physical devices won't have target/lun assigned yet
993          * so we need to preserve the values in the slot we are replacing.
994          */
995         if (new_entry->target == -1) {
996                 new_entry->target = h->dev[entry]->target;
997                 new_entry->lun = h->dev[entry]->lun;
998         }
999
1000         h->dev[entry] = new_entry;
1001         added[*nadded] = new_entry;
1002         (*nadded)++;
1003         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1004                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1005                         new_entry->target, new_entry->lun);
1006 }
1007
1008 /* Remove an entry from h->dev[] array. */
1009 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1010         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1011 {
1012         /* assumes h->devlock is held */
1013         int i;
1014         struct hpsa_scsi_dev_t *sd;
1015
1016         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1017
1018         sd = h->dev[entry];
1019         removed[*nremoved] = h->dev[entry];
1020         (*nremoved)++;
1021
1022         for (i = entry; i < h->ndevices-1; i++)
1023                 h->dev[i] = h->dev[i+1];
1024         h->ndevices--;
1025         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1026                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1027                 sd->lun);
1028 }
1029
1030 #define SCSI3ADDR_EQ(a, b) ( \
1031         (a)[7] == (b)[7] && \
1032         (a)[6] == (b)[6] && \
1033         (a)[5] == (b)[5] && \
1034         (a)[4] == (b)[4] && \
1035         (a)[3] == (b)[3] && \
1036         (a)[2] == (b)[2] && \
1037         (a)[1] == (b)[1] && \
1038         (a)[0] == (b)[0])
1039
1040 static void fixup_botched_add(struct ctlr_info *h,
1041         struct hpsa_scsi_dev_t *added)
1042 {
1043         /* called when scsi_add_device fails in order to re-adjust
1044          * h->dev[] to match the mid layer's view.
1045          */
1046         unsigned long flags;
1047         int i, j;
1048
1049         spin_lock_irqsave(&h->lock, flags);
1050         for (i = 0; i < h->ndevices; i++) {
1051                 if (h->dev[i] == added) {
1052                         for (j = i; j < h->ndevices-1; j++)
1053                                 h->dev[j] = h->dev[j+1];
1054                         h->ndevices--;
1055                         break;
1056                 }
1057         }
1058         spin_unlock_irqrestore(&h->lock, flags);
1059         kfree(added);
1060 }
1061
1062 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1063         struct hpsa_scsi_dev_t *dev2)
1064 {
1065         /* we compare everything except lun and target as these
1066          * are not yet assigned.  Compare parts likely
1067          * to differ first
1068          */
1069         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1070                 sizeof(dev1->scsi3addr)) != 0)
1071                 return 0;
1072         if (memcmp(dev1->device_id, dev2->device_id,
1073                 sizeof(dev1->device_id)) != 0)
1074                 return 0;
1075         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1076                 return 0;
1077         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1078                 return 0;
1079         if (dev1->devtype != dev2->devtype)
1080                 return 0;
1081         if (dev1->bus != dev2->bus)
1082                 return 0;
1083         return 1;
1084 }
1085
1086 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1087         struct hpsa_scsi_dev_t *dev2)
1088 {
1089         /* Device attributes that can change, but don't mean
1090          * that the device is a different device, nor that the OS
1091          * needs to be told anything about the change.
1092          */
1093         if (dev1->raid_level != dev2->raid_level)
1094                 return 1;
1095         if (dev1->offload_config != dev2->offload_config)
1096                 return 1;
1097         if (dev1->offload_enabled != dev2->offload_enabled)
1098                 return 1;
1099         return 0;
1100 }
1101
1102 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1103  * and return needle location in *index.  If scsi3addr matches, but not
1104  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1105  * location in *index.
1106  * In the case of a minor device attribute change, such as RAID level, just
1107  * return DEVICE_UPDATED, along with the updated device's location in index.
1108  * If needle not found, return DEVICE_NOT_FOUND.
1109  */
1110 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1111         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1112         int *index)
1113 {
1114         int i;
1115 #define DEVICE_NOT_FOUND 0
1116 #define DEVICE_CHANGED 1
1117 #define DEVICE_SAME 2
1118 #define DEVICE_UPDATED 3
1119         for (i = 0; i < haystack_size; i++) {
1120                 if (haystack[i] == NULL) /* previously removed. */
1121                         continue;
1122                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1123                         *index = i;
1124                         if (device_is_the_same(needle, haystack[i])) {
1125                                 if (device_updated(needle, haystack[i]))
1126                                         return DEVICE_UPDATED;
1127                                 return DEVICE_SAME;
1128                         } else {
1129                                 /* Keep offline devices offline */
1130                                 if (needle->volume_offline)
1131                                         return DEVICE_NOT_FOUND;
1132                                 return DEVICE_CHANGED;
1133                         }
1134                 }
1135         }
1136         *index = -1;
1137         return DEVICE_NOT_FOUND;
1138 }
1139
1140 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1141                                         unsigned char scsi3addr[])
1142 {
1143         struct offline_device_entry *device;
1144         unsigned long flags;
1145
1146         /* Check to see if device is already on the list */
1147         spin_lock_irqsave(&h->offline_device_lock, flags);
1148         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1149                 if (memcmp(device->scsi3addr, scsi3addr,
1150                         sizeof(device->scsi3addr)) == 0) {
1151                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1152                         return;
1153                 }
1154         }
1155         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1156
1157         /* Device is not on the list, add it. */
1158         device = kmalloc(sizeof(*device), GFP_KERNEL);
1159         if (!device) {
1160                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1161                 return;
1162         }
1163         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1164         spin_lock_irqsave(&h->offline_device_lock, flags);
1165         list_add_tail(&device->offline_list, &h->offline_device_list);
1166         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1167 }
1168
1169 /* Print a message explaining various offline volume states */
1170 static void hpsa_show_volume_status(struct ctlr_info *h,
1171         struct hpsa_scsi_dev_t *sd)
1172 {
1173         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1174                 dev_info(&h->pdev->dev,
1175                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1176                         h->scsi_host->host_no,
1177                         sd->bus, sd->target, sd->lun);
1178         switch (sd->volume_offline) {
1179         case HPSA_LV_OK:
1180                 break;
1181         case HPSA_LV_UNDERGOING_ERASE:
1182                 dev_info(&h->pdev->dev,
1183                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1184                         h->scsi_host->host_no,
1185                         sd->bus, sd->target, sd->lun);
1186                 break;
1187         case HPSA_LV_UNDERGOING_RPI:
1188                 dev_info(&h->pdev->dev,
1189                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1190                         h->scsi_host->host_no,
1191                         sd->bus, sd->target, sd->lun);
1192                 break;
1193         case HPSA_LV_PENDING_RPI:
1194                 dev_info(&h->pdev->dev,
1195                                 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1196                                 h->scsi_host->host_no,
1197                                 sd->bus, sd->target, sd->lun);
1198                 break;
1199         case HPSA_LV_ENCRYPTED_NO_KEY:
1200                 dev_info(&h->pdev->dev,
1201                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1202                         h->scsi_host->host_no,
1203                         sd->bus, sd->target, sd->lun);
1204                 break;
1205         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1206                 dev_info(&h->pdev->dev,
1207                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1208                         h->scsi_host->host_no,
1209                         sd->bus, sd->target, sd->lun);
1210                 break;
1211         case HPSA_LV_UNDERGOING_ENCRYPTION:
1212                 dev_info(&h->pdev->dev,
1213                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1214                         h->scsi_host->host_no,
1215                         sd->bus, sd->target, sd->lun);
1216                 break;
1217         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1218                 dev_info(&h->pdev->dev,
1219                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1220                         h->scsi_host->host_no,
1221                         sd->bus, sd->target, sd->lun);
1222                 break;
1223         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1224                 dev_info(&h->pdev->dev,
1225                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1226                         h->scsi_host->host_no,
1227                         sd->bus, sd->target, sd->lun);
1228                 break;
1229         case HPSA_LV_PENDING_ENCRYPTION:
1230                 dev_info(&h->pdev->dev,
1231                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1232                         h->scsi_host->host_no,
1233                         sd->bus, sd->target, sd->lun);
1234                 break;
1235         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1236                 dev_info(&h->pdev->dev,
1237                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1238                         h->scsi_host->host_no,
1239                         sd->bus, sd->target, sd->lun);
1240                 break;
1241         }
1242 }
1243
1244 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1245         struct hpsa_scsi_dev_t *sd[], int nsds)
1246 {
1247         /* sd contains scsi3 addresses and devtypes, and inquiry
1248          * data.  This function takes what's in sd to be the current
1249          * reality and updates h->dev[] to reflect that reality.
1250          */
1251         int i, entry, device_change, changes = 0;
1252         struct hpsa_scsi_dev_t *csd;
1253         unsigned long flags;
1254         struct hpsa_scsi_dev_t **added, **removed;
1255         int nadded, nremoved;
1256         struct Scsi_Host *sh = NULL;
1257
1258         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1259         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1260
1261         if (!added || !removed) {
1262                 dev_warn(&h->pdev->dev, "out of memory in "
1263                         "adjust_hpsa_scsi_table\n");
1264                 goto free_and_out;
1265         }
1266
1267         spin_lock_irqsave(&h->devlock, flags);
1268
1269         /* find any devices in h->dev[] that are not in
1270          * sd[] and remove them from h->dev[], and for any
1271          * devices which have changed, remove the old device
1272          * info and add the new device info.
1273          * If minor device attributes change, just update
1274          * the existing device structure.
1275          */
1276         i = 0;
1277         nremoved = 0;
1278         nadded = 0;
1279         while (i < h->ndevices) {
1280                 csd = h->dev[i];
1281                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1282                 if (device_change == DEVICE_NOT_FOUND) {
1283                         changes++;
1284                         hpsa_scsi_remove_entry(h, hostno, i,
1285                                 removed, &nremoved);
1286                         continue; /* remove ^^^, hence i not incremented */
1287                 } else if (device_change == DEVICE_CHANGED) {
1288                         changes++;
1289                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1290                                 added, &nadded, removed, &nremoved);
1291                         /* Set it to NULL to prevent it from being freed
1292                          * at the bottom of hpsa_update_scsi_devices()
1293                          */
1294                         sd[entry] = NULL;
1295                 } else if (device_change == DEVICE_UPDATED) {
1296                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1297                 }
1298                 i++;
1299         }
1300
1301         /* Now, make sure every device listed in sd[] is also
1302          * listed in h->dev[], adding them if they aren't found
1303          */
1304
1305         for (i = 0; i < nsds; i++) {
1306                 if (!sd[i]) /* if already added above. */
1307                         continue;
1308
1309                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1310                  * as the SCSI mid-layer does not handle such devices well.
1311                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1312                  * at 160Hz, and prevents the system from coming up.
1313                  */
1314                 if (sd[i]->volume_offline) {
1315                         hpsa_show_volume_status(h, sd[i]);
1316                         dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1317                                 h->scsi_host->host_no,
1318                                 sd[i]->bus, sd[i]->target, sd[i]->lun);
1319                         continue;
1320                 }
1321
1322                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1323                                         h->ndevices, &entry);
1324                 if (device_change == DEVICE_NOT_FOUND) {
1325                         changes++;
1326                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
1327                                 added, &nadded) != 0)
1328                                 break;
1329                         sd[i] = NULL; /* prevent from being freed later. */
1330                 } else if (device_change == DEVICE_CHANGED) {
1331                         /* should never happen... */
1332                         changes++;
1333                         dev_warn(&h->pdev->dev,
1334                                 "device unexpectedly changed.\n");
1335                         /* but if it does happen, we just ignore that device */
1336                 }
1337         }
1338         spin_unlock_irqrestore(&h->devlock, flags);
1339
1340         /* Monitor devices which are in one of several NOT READY states to be
1341          * brought online later. This must be done without holding h->devlock,
1342          * so don't touch h->dev[]
1343          */
1344         for (i = 0; i < nsds; i++) {
1345                 if (!sd[i]) /* if already added above. */
1346                         continue;
1347                 if (sd[i]->volume_offline)
1348                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1349         }
1350
1351         /* Don't notify scsi mid layer of any changes the first time through
1352          * (or if there are no changes) scsi_scan_host will do it later the
1353          * first time through.
1354          */
1355         if (hostno == -1 || !changes)
1356                 goto free_and_out;
1357
1358         sh = h->scsi_host;
1359         /* Notify scsi mid layer of any removed devices */
1360         for (i = 0; i < nremoved; i++) {
1361                 struct scsi_device *sdev =
1362                         scsi_device_lookup(sh, removed[i]->bus,
1363                                 removed[i]->target, removed[i]->lun);
1364                 if (sdev != NULL) {
1365                         scsi_remove_device(sdev);
1366                         scsi_device_put(sdev);
1367                 } else {
1368                         /* We don't expect to get here.
1369                          * future cmds to this device will get selection
1370                          * timeout as if the device was gone.
1371                          */
1372                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1373                                 " for removal.", hostno, removed[i]->bus,
1374                                 removed[i]->target, removed[i]->lun);
1375                 }
1376                 kfree(removed[i]);
1377                 removed[i] = NULL;
1378         }
1379
1380         /* Notify scsi mid layer of any added devices */
1381         for (i = 0; i < nadded; i++) {
1382                 if (scsi_add_device(sh, added[i]->bus,
1383                         added[i]->target, added[i]->lun) == 0)
1384                         continue;
1385                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1386                         "device not added.\n", hostno, added[i]->bus,
1387                         added[i]->target, added[i]->lun);
1388                 /* now we have to remove it from h->dev,
1389                  * since it didn't get added to scsi mid layer
1390                  */
1391                 fixup_botched_add(h, added[i]);
1392         }
1393
1394 free_and_out:
1395         kfree(added);
1396         kfree(removed);
1397 }
1398
1399 /*
1400  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1401  * Assume's h->devlock is held.
1402  */
1403 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1404         int bus, int target, int lun)
1405 {
1406         int i;
1407         struct hpsa_scsi_dev_t *sd;
1408
1409         for (i = 0; i < h->ndevices; i++) {
1410                 sd = h->dev[i];
1411                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1412                         return sd;
1413         }
1414         return NULL;
1415 }
1416
1417 /* link sdev->hostdata to our per-device structure. */
1418 static int hpsa_slave_alloc(struct scsi_device *sdev)
1419 {
1420         struct hpsa_scsi_dev_t *sd;
1421         unsigned long flags;
1422         struct ctlr_info *h;
1423
1424         h = sdev_to_hba(sdev);
1425         spin_lock_irqsave(&h->devlock, flags);
1426         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1427                 sdev_id(sdev), sdev->lun);
1428         if (sd != NULL)
1429                 sdev->hostdata = sd;
1430         spin_unlock_irqrestore(&h->devlock, flags);
1431         return 0;
1432 }
1433
1434 static void hpsa_slave_destroy(struct scsi_device *sdev)
1435 {
1436         /* nothing to do. */
1437 }
1438
1439 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1440 {
1441         int i;
1442
1443         if (!h->cmd_sg_list)
1444                 return;
1445         for (i = 0; i < h->nr_cmds; i++) {
1446                 kfree(h->cmd_sg_list[i]);
1447                 h->cmd_sg_list[i] = NULL;
1448         }
1449         kfree(h->cmd_sg_list);
1450         h->cmd_sg_list = NULL;
1451 }
1452
1453 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1454 {
1455         int i;
1456
1457         if (h->chainsize <= 0)
1458                 return 0;
1459
1460         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1461                                 GFP_KERNEL);
1462         if (!h->cmd_sg_list) {
1463                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1464                 return -ENOMEM;
1465         }
1466         for (i = 0; i < h->nr_cmds; i++) {
1467                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1468                                                 h->chainsize, GFP_KERNEL);
1469                 if (!h->cmd_sg_list[i]) {
1470                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1471                         goto clean;
1472                 }
1473         }
1474         return 0;
1475
1476 clean:
1477         hpsa_free_sg_chain_blocks(h);
1478         return -ENOMEM;
1479 }
1480
1481 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1482         struct CommandList *c)
1483 {
1484         struct SGDescriptor *chain_sg, *chain_block;
1485         u64 temp64;
1486         u32 chain_len;
1487
1488         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1489         chain_block = h->cmd_sg_list[c->cmdindex];
1490         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1491         chain_len = sizeof(*chain_sg) *
1492                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1493         chain_sg->Len = cpu_to_le32(chain_len);
1494         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1495                                 PCI_DMA_TODEVICE);
1496         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1497                 /* prevent subsequent unmapping */
1498                 chain_sg->Addr = cpu_to_le64(0);
1499                 return -1;
1500         }
1501         chain_sg->Addr = cpu_to_le64(temp64);
1502         return 0;
1503 }
1504
1505 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1506         struct CommandList *c)
1507 {
1508         struct SGDescriptor *chain_sg;
1509
1510         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1511                 return;
1512
1513         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1514         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1515                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1516 }
1517
1518
1519 /* Decode the various types of errors on ioaccel2 path.
1520  * Return 1 for any error that should generate a RAID path retry.
1521  * Return 0 for errors that don't require a RAID path retry.
1522  */
1523 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1524                                         struct CommandList *c,
1525                                         struct scsi_cmnd *cmd,
1526                                         struct io_accel2_cmd *c2)
1527 {
1528         int data_len;
1529         int retry = 0;
1530
1531         switch (c2->error_data.serv_response) {
1532         case IOACCEL2_SERV_RESPONSE_COMPLETE:
1533                 switch (c2->error_data.status) {
1534                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1535                         break;
1536                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1537                         dev_warn(&h->pdev->dev,
1538                                 "%s: task complete with check condition.\n",
1539                                 "HP SSD Smart Path");
1540                         cmd->result |= SAM_STAT_CHECK_CONDITION;
1541                         if (c2->error_data.data_present !=
1542                                         IOACCEL2_SENSE_DATA_PRESENT) {
1543                                 memset(cmd->sense_buffer, 0,
1544                                         SCSI_SENSE_BUFFERSIZE);
1545                                 break;
1546                         }
1547                         /* copy the sense data */
1548                         data_len = c2->error_data.sense_data_len;
1549                         if (data_len > SCSI_SENSE_BUFFERSIZE)
1550                                 data_len = SCSI_SENSE_BUFFERSIZE;
1551                         if (data_len > sizeof(c2->error_data.sense_data_buff))
1552                                 data_len =
1553                                         sizeof(c2->error_data.sense_data_buff);
1554                         memcpy(cmd->sense_buffer,
1555                                 c2->error_data.sense_data_buff, data_len);
1556                         retry = 1;
1557                         break;
1558                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1559                         dev_warn(&h->pdev->dev,
1560                                 "%s: task complete with BUSY status.\n",
1561                                 "HP SSD Smart Path");
1562                         retry = 1;
1563                         break;
1564                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1565                         dev_warn(&h->pdev->dev,
1566                                 "%s: task complete with reservation conflict.\n",
1567                                 "HP SSD Smart Path");
1568                         retry = 1;
1569                         break;
1570                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1571                         /* Make scsi midlayer do unlimited retries */
1572                         cmd->result = DID_IMM_RETRY << 16;
1573                         break;
1574                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1575                         dev_warn(&h->pdev->dev,
1576                                 "%s: task complete with aborted status.\n",
1577                                 "HP SSD Smart Path");
1578                         retry = 1;
1579                         break;
1580                 default:
1581                         dev_warn(&h->pdev->dev,
1582                                 "%s: task complete with unrecognized status: 0x%02x\n",
1583                                 "HP SSD Smart Path", c2->error_data.status);
1584                         retry = 1;
1585                         break;
1586                 }
1587                 break;
1588         case IOACCEL2_SERV_RESPONSE_FAILURE:
1589                 /* don't expect to get here. */
1590                 dev_warn(&h->pdev->dev,
1591                         "unexpected delivery or target failure, status = 0x%02x\n",
1592                         c2->error_data.status);
1593                 retry = 1;
1594                 break;
1595         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1596                 break;
1597         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1598                 break;
1599         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1600                 dev_warn(&h->pdev->dev, "task management function rejected.\n");
1601                 retry = 1;
1602                 break;
1603         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1604                 dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1605                 break;
1606         default:
1607                 dev_warn(&h->pdev->dev,
1608                         "%s: Unrecognized server response: 0x%02x\n",
1609                         "HP SSD Smart Path",
1610                         c2->error_data.serv_response);
1611                 retry = 1;
1612                 break;
1613         }
1614
1615         return retry;   /* retry on raid path? */
1616 }
1617
1618 static void process_ioaccel2_completion(struct ctlr_info *h,
1619                 struct CommandList *c, struct scsi_cmnd *cmd,
1620                 struct hpsa_scsi_dev_t *dev)
1621 {
1622         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1623
1624         /* check for good status */
1625         if (likely(c2->error_data.serv_response == 0 &&
1626                         c2->error_data.status == 0)) {
1627                 cmd_free(h, c);
1628                 cmd->scsi_done(cmd);
1629                 return;
1630         }
1631
1632         /* Any RAID offload error results in retry which will use
1633          * the normal I/O path so the controller can handle whatever's
1634          * wrong.
1635          */
1636         if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1637                 c2->error_data.serv_response ==
1638                         IOACCEL2_SERV_RESPONSE_FAILURE) {
1639                 if (c2->error_data.status ==
1640                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
1641                         dev->offload_enabled = 0;
1642                 goto retry_cmd;
1643         }
1644
1645         if (handle_ioaccel_mode2_error(h, c, cmd, c2))
1646                 goto retry_cmd;
1647
1648         cmd_free(h, c);
1649         cmd->scsi_done(cmd);
1650         return;
1651
1652 retry_cmd:
1653         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
1654         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
1655 }
1656
1657 static void complete_scsi_command(struct CommandList *cp)
1658 {
1659         struct scsi_cmnd *cmd;
1660         struct ctlr_info *h;
1661         struct ErrorInfo *ei;
1662         struct hpsa_scsi_dev_t *dev;
1663
1664         unsigned char sense_key;
1665         unsigned char asc;      /* additional sense code */
1666         unsigned char ascq;     /* additional sense code qualifier */
1667         unsigned long sense_data_size;
1668
1669         ei = cp->err_info;
1670         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1671         h = cp->h;
1672         dev = cmd->device->hostdata;
1673
1674         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1675         if ((cp->cmd_type == CMD_SCSI) &&
1676                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
1677                 hpsa_unmap_sg_chain_block(h, cp);
1678
1679         cmd->result = (DID_OK << 16);           /* host byte */
1680         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1681
1682         if (cp->cmd_type == CMD_IOACCEL2)
1683                 return process_ioaccel2_completion(h, cp, cmd, dev);
1684
1685         cmd->result |= ei->ScsiStatus;
1686
1687         scsi_set_resid(cmd, ei->ResidualCnt);
1688         if (ei->CommandStatus == 0) {
1689                 cmd_free(h, cp);
1690                 cmd->scsi_done(cmd);
1691                 return;
1692         }
1693
1694         /* copy the sense data */
1695         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1696                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1697         else
1698                 sense_data_size = sizeof(ei->SenseInfo);
1699         if (ei->SenseLen < sense_data_size)
1700                 sense_data_size = ei->SenseLen;
1701
1702         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1703
1704         /* For I/O accelerator commands, copy over some fields to the normal
1705          * CISS header used below for error handling.
1706          */
1707         if (cp->cmd_type == CMD_IOACCEL1) {
1708                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1709                 cp->Header.SGList = scsi_sg_count(cmd);
1710                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
1711                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
1712                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
1713                 cp->Header.tag = c->tag;
1714                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1715                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1716
1717                 /* Any RAID offload error results in retry which will use
1718                  * the normal I/O path so the controller can handle whatever's
1719                  * wrong.
1720                  */
1721                 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1722                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1723                                 dev->offload_enabled = 0;
1724                         INIT_WORK(&cp->work, hpsa_command_resubmit_worker);
1725                         queue_work_on(raw_smp_processor_id(),
1726                                         h->resubmit_wq, &cp->work);
1727                         return;
1728                 }
1729         }
1730
1731         /* an error has occurred */
1732         switch (ei->CommandStatus) {
1733
1734         case CMD_TARGET_STATUS:
1735                 if (ei->ScsiStatus) {
1736                         /* Get sense key */
1737                         sense_key = 0xf & ei->SenseInfo[2];
1738                         /* Get additional sense code */
1739                         asc = ei->SenseInfo[12];
1740                         /* Get addition sense code qualifier */
1741                         ascq = ei->SenseInfo[13];
1742                 }
1743                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1744                         if (sense_key == ABORTED_COMMAND) {
1745                                 cmd->result |= DID_SOFT_ERROR << 16;
1746                                 break;
1747                         }
1748                         break;
1749                 }
1750                 /* Problem was not a check condition
1751                  * Pass it up to the upper layers...
1752                  */
1753                 if (ei->ScsiStatus) {
1754                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1755                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1756                                 "Returning result: 0x%x\n",
1757                                 cp, ei->ScsiStatus,
1758                                 sense_key, asc, ascq,
1759                                 cmd->result);
1760                 } else {  /* scsi status is zero??? How??? */
1761                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1762                                 "Returning no connection.\n", cp),
1763
1764                         /* Ordinarily, this case should never happen,
1765                          * but there is a bug in some released firmware
1766                          * revisions that allows it to happen if, for
1767                          * example, a 4100 backplane loses power and
1768                          * the tape drive is in it.  We assume that
1769                          * it's a fatal error of some kind because we
1770                          * can't show that it wasn't. We will make it
1771                          * look like selection timeout since that is
1772                          * the most common reason for this to occur,
1773                          * and it's severe enough.
1774                          */
1775
1776                         cmd->result = DID_NO_CONNECT << 16;
1777                 }
1778                 break;
1779
1780         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1781                 break;
1782         case CMD_DATA_OVERRUN:
1783                 dev_warn(&h->pdev->dev, "cp %p has"
1784                         " completed with data overrun "
1785                         "reported\n", cp);
1786                 break;
1787         case CMD_INVALID: {
1788                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1789                 print_cmd(cp); */
1790                 /* We get CMD_INVALID if you address a non-existent device
1791                  * instead of a selection timeout (no response).  You will
1792                  * see this if you yank out a drive, then try to access it.
1793                  * This is kind of a shame because it means that any other
1794                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1795                  * missing target. */
1796                 cmd->result = DID_NO_CONNECT << 16;
1797         }
1798                 break;
1799         case CMD_PROTOCOL_ERR:
1800                 cmd->result = DID_ERROR << 16;
1801                 dev_warn(&h->pdev->dev, "cp %p has "
1802                         "protocol error\n", cp);
1803                 break;
1804         case CMD_HARDWARE_ERR:
1805                 cmd->result = DID_ERROR << 16;
1806                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1807                 break;
1808         case CMD_CONNECTION_LOST:
1809                 cmd->result = DID_ERROR << 16;
1810                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1811                 break;
1812         case CMD_ABORTED:
1813                 cmd->result = DID_ABORT << 16;
1814                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1815                                 cp, ei->ScsiStatus);
1816                 break;
1817         case CMD_ABORT_FAILED:
1818                 cmd->result = DID_ERROR << 16;
1819                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1820                 break;
1821         case CMD_UNSOLICITED_ABORT:
1822                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1823                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1824                         "abort\n", cp);
1825                 break;
1826         case CMD_TIMEOUT:
1827                 cmd->result = DID_TIME_OUT << 16;
1828                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1829                 break;
1830         case CMD_UNABORTABLE:
1831                 cmd->result = DID_ERROR << 16;
1832                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1833                 break;
1834         case CMD_IOACCEL_DISABLED:
1835                 /* This only handles the direct pass-through case since RAID
1836                  * offload is handled above.  Just attempt a retry.
1837                  */
1838                 cmd->result = DID_SOFT_ERROR << 16;
1839                 dev_warn(&h->pdev->dev,
1840                                 "cp %p had HP SSD Smart Path error\n", cp);
1841                 break;
1842         default:
1843                 cmd->result = DID_ERROR << 16;
1844                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1845                                 cp, ei->CommandStatus);
1846         }
1847         cmd_free(h, cp);
1848         cmd->scsi_done(cmd);
1849 }
1850
1851 static void hpsa_pci_unmap(struct pci_dev *pdev,
1852         struct CommandList *c, int sg_used, int data_direction)
1853 {
1854         int i;
1855
1856         for (i = 0; i < sg_used; i++)
1857                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
1858                                 le32_to_cpu(c->SG[i].Len),
1859                                 data_direction);
1860 }
1861
1862 static int hpsa_map_one(struct pci_dev *pdev,
1863                 struct CommandList *cp,
1864                 unsigned char *buf,
1865                 size_t buflen,
1866                 int data_direction)
1867 {
1868         u64 addr64;
1869
1870         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1871                 cp->Header.SGList = 0;
1872                 cp->Header.SGTotal = cpu_to_le16(0);
1873                 return 0;
1874         }
1875
1876         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
1877         if (dma_mapping_error(&pdev->dev, addr64)) {
1878                 /* Prevent subsequent unmap of something never mapped */
1879                 cp->Header.SGList = 0;
1880                 cp->Header.SGTotal = cpu_to_le16(0);
1881                 return -1;
1882         }
1883         cp->SG[0].Addr = cpu_to_le64(addr64);
1884         cp->SG[0].Len = cpu_to_le32(buflen);
1885         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
1886         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
1887         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
1888         return 0;
1889 }
1890
1891 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1892         struct CommandList *c)
1893 {
1894         DECLARE_COMPLETION_ONSTACK(wait);
1895
1896         c->waiting = &wait;
1897         enqueue_cmd_and_start_io(h, c);
1898         wait_for_completion(&wait);
1899 }
1900
1901 static u32 lockup_detected(struct ctlr_info *h)
1902 {
1903         int cpu;
1904         u32 rc, *lockup_detected;
1905
1906         cpu = get_cpu();
1907         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
1908         rc = *lockup_detected;
1909         put_cpu();
1910         return rc;
1911 }
1912
1913 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1914         struct CommandList *c)
1915 {
1916         /* If controller lockup detected, fake a hardware error. */
1917         if (unlikely(lockup_detected(h)))
1918                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1919         else
1920                 hpsa_scsi_do_simple_cmd_core(h, c);
1921 }
1922
1923 #define MAX_DRIVER_CMD_RETRIES 25
1924 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1925         struct CommandList *c, int data_direction)
1926 {
1927         int backoff_time = 10, retry_count = 0;
1928
1929         do {
1930                 memset(c->err_info, 0, sizeof(*c->err_info));
1931                 hpsa_scsi_do_simple_cmd_core(h, c);
1932                 retry_count++;
1933                 if (retry_count > 3) {
1934                         msleep(backoff_time);
1935                         if (backoff_time < 1000)
1936                                 backoff_time *= 2;
1937                 }
1938         } while ((check_for_unit_attention(h, c) ||
1939                         check_for_busy(h, c)) &&
1940                         retry_count <= MAX_DRIVER_CMD_RETRIES);
1941         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1942 }
1943
1944 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
1945                                 struct CommandList *c)
1946 {
1947         const u8 *cdb = c->Request.CDB;
1948         const u8 *lun = c->Header.LUN.LunAddrBytes;
1949
1950         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
1951         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1952                 txt, lun[0], lun[1], lun[2], lun[3],
1953                 lun[4], lun[5], lun[6], lun[7],
1954                 cdb[0], cdb[1], cdb[2], cdb[3],
1955                 cdb[4], cdb[5], cdb[6], cdb[7],
1956                 cdb[8], cdb[9], cdb[10], cdb[11],
1957                 cdb[12], cdb[13], cdb[14], cdb[15]);
1958 }
1959
1960 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
1961                         struct CommandList *cp)
1962 {
1963         const struct ErrorInfo *ei = cp->err_info;
1964         struct device *d = &cp->h->pdev->dev;
1965         const u8 *sd = ei->SenseInfo;
1966
1967         switch (ei->CommandStatus) {
1968         case CMD_TARGET_STATUS:
1969                 hpsa_print_cmd(h, "SCSI status", cp);
1970                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
1971                         dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
1972                                 sd[2] & 0x0f, sd[12], sd[13]);
1973                 else
1974                         dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
1975                 if (ei->ScsiStatus == 0)
1976                         dev_warn(d, "SCSI status is abnormally zero.  "
1977                         "(probably indicates selection timeout "
1978                         "reported incorrectly due to a known "
1979                         "firmware bug, circa July, 2001.)\n");
1980                 break;
1981         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1982                 break;
1983         case CMD_DATA_OVERRUN:
1984                 hpsa_print_cmd(h, "overrun condition", cp);
1985                 break;
1986         case CMD_INVALID: {
1987                 /* controller unfortunately reports SCSI passthru's
1988                  * to non-existent targets as invalid commands.
1989                  */
1990                 hpsa_print_cmd(h, "invalid command", cp);
1991                 dev_warn(d, "probably means device no longer present\n");
1992                 }
1993                 break;
1994         case CMD_PROTOCOL_ERR:
1995                 hpsa_print_cmd(h, "protocol error", cp);
1996                 break;
1997         case CMD_HARDWARE_ERR:
1998                 hpsa_print_cmd(h, "hardware error", cp);
1999                 break;
2000         case CMD_CONNECTION_LOST:
2001                 hpsa_print_cmd(h, "connection lost", cp);
2002                 break;
2003         case CMD_ABORTED:
2004                 hpsa_print_cmd(h, "aborted", cp);
2005                 break;
2006         case CMD_ABORT_FAILED:
2007                 hpsa_print_cmd(h, "abort failed", cp);
2008                 break;
2009         case CMD_UNSOLICITED_ABORT:
2010                 hpsa_print_cmd(h, "unsolicited abort", cp);
2011                 break;
2012         case CMD_TIMEOUT:
2013                 hpsa_print_cmd(h, "timed out", cp);
2014                 break;
2015         case CMD_UNABORTABLE:
2016                 hpsa_print_cmd(h, "unabortable", cp);
2017                 break;
2018         default:
2019                 hpsa_print_cmd(h, "unknown status", cp);
2020                 dev_warn(d, "Unknown command status %x\n",
2021                                 ei->CommandStatus);
2022         }
2023 }
2024
2025 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2026                         u16 page, unsigned char *buf,
2027                         unsigned char bufsize)
2028 {
2029         int rc = IO_OK;
2030         struct CommandList *c;
2031         struct ErrorInfo *ei;
2032
2033         c = cmd_alloc(h);
2034
2035         if (c == NULL) {
2036                 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2037                 return -ENOMEM;
2038         }
2039
2040         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2041                         page, scsi3addr, TYPE_CMD)) {
2042                 rc = -1;
2043                 goto out;
2044         }
2045         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2046         ei = c->err_info;
2047         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2048                 hpsa_scsi_interpret_error(h, c);
2049                 rc = -1;
2050         }
2051 out:
2052         cmd_free(h, c);
2053         return rc;
2054 }
2055
2056 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2057                 unsigned char *scsi3addr, unsigned char page,
2058                 struct bmic_controller_parameters *buf, size_t bufsize)
2059 {
2060         int rc = IO_OK;
2061         struct CommandList *c;
2062         struct ErrorInfo *ei;
2063
2064         c = cmd_alloc(h);
2065         if (c == NULL) {                        /* trouble... */
2066                 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2067                 return -ENOMEM;
2068         }
2069
2070         if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2071                         page, scsi3addr, TYPE_CMD)) {
2072                 rc = -1;
2073                 goto out;
2074         }
2075         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2076         ei = c->err_info;
2077         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2078                 hpsa_scsi_interpret_error(h, c);
2079                 rc = -1;
2080         }
2081 out:
2082         cmd_free(h, c);
2083         return rc;
2084         }
2085
2086 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2087         u8 reset_type)
2088 {
2089         int rc = IO_OK;
2090         struct CommandList *c;
2091         struct ErrorInfo *ei;
2092
2093         c = cmd_alloc(h);
2094
2095         if (c == NULL) {                        /* trouble... */
2096                 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2097                 return -ENOMEM;
2098         }
2099
2100         /* fill_cmd can't fail here, no data buffer to map. */
2101         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2102                         scsi3addr, TYPE_MSG);
2103         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2104         hpsa_scsi_do_simple_cmd_core(h, c);
2105         /* no unmap needed here because no data xfer. */
2106
2107         ei = c->err_info;
2108         if (ei->CommandStatus != 0) {
2109                 hpsa_scsi_interpret_error(h, c);
2110                 rc = -1;
2111         }
2112         cmd_free(h, c);
2113         return rc;
2114 }
2115
2116 static void hpsa_get_raid_level(struct ctlr_info *h,
2117         unsigned char *scsi3addr, unsigned char *raid_level)
2118 {
2119         int rc;
2120         unsigned char *buf;
2121
2122         *raid_level = RAID_UNKNOWN;
2123         buf = kzalloc(64, GFP_KERNEL);
2124         if (!buf)
2125                 return;
2126         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2127         if (rc == 0)
2128                 *raid_level = buf[8];
2129         if (*raid_level > RAID_UNKNOWN)
2130                 *raid_level = RAID_UNKNOWN;
2131         kfree(buf);
2132         return;
2133 }
2134
2135 #define HPSA_MAP_DEBUG
2136 #ifdef HPSA_MAP_DEBUG
2137 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2138                                 struct raid_map_data *map_buff)
2139 {
2140         struct raid_map_disk_data *dd = &map_buff->data[0];
2141         int map, row, col;
2142         u16 map_cnt, row_cnt, disks_per_row;
2143
2144         if (rc != 0)
2145                 return;
2146
2147         /* Show details only if debugging has been activated. */
2148         if (h->raid_offload_debug < 2)
2149                 return;
2150
2151         dev_info(&h->pdev->dev, "structure_size = %u\n",
2152                                 le32_to_cpu(map_buff->structure_size));
2153         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2154                         le32_to_cpu(map_buff->volume_blk_size));
2155         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2156                         le64_to_cpu(map_buff->volume_blk_cnt));
2157         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2158                         map_buff->phys_blk_shift);
2159         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2160                         map_buff->parity_rotation_shift);
2161         dev_info(&h->pdev->dev, "strip_size = %u\n",
2162                         le16_to_cpu(map_buff->strip_size));
2163         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2164                         le64_to_cpu(map_buff->disk_starting_blk));
2165         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2166                         le64_to_cpu(map_buff->disk_blk_cnt));
2167         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2168                         le16_to_cpu(map_buff->data_disks_per_row));
2169         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2170                         le16_to_cpu(map_buff->metadata_disks_per_row));
2171         dev_info(&h->pdev->dev, "row_cnt = %u\n",
2172                         le16_to_cpu(map_buff->row_cnt));
2173         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2174                         le16_to_cpu(map_buff->layout_map_count));
2175         dev_info(&h->pdev->dev, "flags = 0x%x\n",
2176                         le16_to_cpu(map_buff->flags));
2177         dev_info(&h->pdev->dev, "encrypytion = %s\n",
2178                         le16_to_cpu(map_buff->flags) &
2179                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2180         dev_info(&h->pdev->dev, "dekindex = %u\n",
2181                         le16_to_cpu(map_buff->dekindex));
2182         map_cnt = le16_to_cpu(map_buff->layout_map_count);
2183         for (map = 0; map < map_cnt; map++) {
2184                 dev_info(&h->pdev->dev, "Map%u:\n", map);
2185                 row_cnt = le16_to_cpu(map_buff->row_cnt);
2186                 for (row = 0; row < row_cnt; row++) {
2187                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
2188                         disks_per_row =
2189                                 le16_to_cpu(map_buff->data_disks_per_row);
2190                         for (col = 0; col < disks_per_row; col++, dd++)
2191                                 dev_info(&h->pdev->dev,
2192                                         "    D%02u: h=0x%04x xor=%u,%u\n",
2193                                         col, dd->ioaccel_handle,
2194                                         dd->xor_mult[0], dd->xor_mult[1]);
2195                         disks_per_row =
2196                                 le16_to_cpu(map_buff->metadata_disks_per_row);
2197                         for (col = 0; col < disks_per_row; col++, dd++)
2198                                 dev_info(&h->pdev->dev,
2199                                         "    M%02u: h=0x%04x xor=%u,%u\n",
2200                                         col, dd->ioaccel_handle,
2201                                         dd->xor_mult[0], dd->xor_mult[1]);
2202                 }
2203         }
2204 }
2205 #else
2206 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2207                         __attribute__((unused)) int rc,
2208                         __attribute__((unused)) struct raid_map_data *map_buff)
2209 {
2210 }
2211 #endif
2212
2213 static int hpsa_get_raid_map(struct ctlr_info *h,
2214         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2215 {
2216         int rc = 0;
2217         struct CommandList *c;
2218         struct ErrorInfo *ei;
2219
2220         c = cmd_alloc(h);
2221         if (c == NULL) {
2222                 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2223                 return -ENOMEM;
2224         }
2225         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2226                         sizeof(this_device->raid_map), 0,
2227                         scsi3addr, TYPE_CMD)) {
2228                 dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2229                 cmd_free(h, c);
2230                 return -ENOMEM;
2231         }
2232         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2233         ei = c->err_info;
2234         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2235                 hpsa_scsi_interpret_error(h, c);
2236                 cmd_free(h, c);
2237                 return -1;
2238         }
2239         cmd_free(h, c);
2240
2241         /* @todo in the future, dynamically allocate RAID map memory */
2242         if (le32_to_cpu(this_device->raid_map.structure_size) >
2243                                 sizeof(this_device->raid_map)) {
2244                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2245                 rc = -1;
2246         }
2247         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2248         return rc;
2249 }
2250
2251 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2252         unsigned char scsi3addr[], u8 page)
2253 {
2254         int rc;
2255         int i;
2256         int pages;
2257         unsigned char *buf, bufsize;
2258
2259         buf = kzalloc(256, GFP_KERNEL);
2260         if (!buf)
2261                 return 0;
2262
2263         /* Get the size of the page list first */
2264         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2265                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2266                                 buf, HPSA_VPD_HEADER_SZ);
2267         if (rc != 0)
2268                 goto exit_unsupported;
2269         pages = buf[3];
2270         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2271                 bufsize = pages + HPSA_VPD_HEADER_SZ;
2272         else
2273                 bufsize = 255;
2274
2275         /* Get the whole VPD page list */
2276         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2277                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2278                                 buf, bufsize);
2279         if (rc != 0)
2280                 goto exit_unsupported;
2281
2282         pages = buf[3];
2283         for (i = 1; i <= pages; i++)
2284                 if (buf[3 + i] == page)
2285                         goto exit_supported;
2286 exit_unsupported:
2287         kfree(buf);
2288         return 0;
2289 exit_supported:
2290         kfree(buf);
2291         return 1;
2292 }
2293
2294 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2295         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2296 {
2297         int rc;
2298         unsigned char *buf;
2299         u8 ioaccel_status;
2300
2301         this_device->offload_config = 0;
2302         this_device->offload_enabled = 0;
2303
2304         buf = kzalloc(64, GFP_KERNEL);
2305         if (!buf)
2306                 return;
2307         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2308                 goto out;
2309         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2310                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2311         if (rc != 0)
2312                 goto out;
2313
2314 #define IOACCEL_STATUS_BYTE 4
2315 #define OFFLOAD_CONFIGURED_BIT 0x01
2316 #define OFFLOAD_ENABLED_BIT 0x02
2317         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2318         this_device->offload_config =
2319                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2320         if (this_device->offload_config) {
2321                 this_device->offload_enabled =
2322                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2323                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
2324                         this_device->offload_enabled = 0;
2325         }
2326 out:
2327         kfree(buf);
2328         return;
2329 }
2330
2331 /* Get the device id from inquiry page 0x83 */
2332 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2333         unsigned char *device_id, int buflen)
2334 {
2335         int rc;
2336         unsigned char *buf;
2337
2338         if (buflen > 16)
2339                 buflen = 16;
2340         buf = kzalloc(64, GFP_KERNEL);
2341         if (!buf)
2342                 return -ENOMEM;
2343         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2344         if (rc == 0)
2345                 memcpy(device_id, &buf[8], buflen);
2346         kfree(buf);
2347         return rc != 0;
2348 }
2349
2350 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2351                 struct ReportLUNdata *buf, int bufsize,
2352                 int extended_response)
2353 {
2354         int rc = IO_OK;
2355         struct CommandList *c;
2356         unsigned char scsi3addr[8];
2357         struct ErrorInfo *ei;
2358
2359         c = cmd_alloc(h);
2360         if (c == NULL) {                        /* trouble... */
2361                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2362                 return -1;
2363         }
2364         /* address the controller */
2365         memset(scsi3addr, 0, sizeof(scsi3addr));
2366         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2367                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2368                 rc = -1;
2369                 goto out;
2370         }
2371         if (extended_response)
2372                 c->Request.CDB[1] = extended_response;
2373         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2374         ei = c->err_info;
2375         if (ei->CommandStatus != 0 &&
2376             ei->CommandStatus != CMD_DATA_UNDERRUN) {
2377                 hpsa_scsi_interpret_error(h, c);
2378                 rc = -1;
2379         } else {
2380                 if (buf->extended_response_flag != extended_response) {
2381                         dev_err(&h->pdev->dev,
2382                                 "report luns requested format %u, got %u\n",
2383                                 extended_response,
2384                                 buf->extended_response_flag);
2385                         rc = -1;
2386                 }
2387         }
2388 out:
2389         cmd_free(h, c);
2390         return rc;
2391 }
2392
2393 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2394                 struct ReportLUNdata *buf,
2395                 int bufsize, int extended_response)
2396 {
2397         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
2398 }
2399
2400 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2401                 struct ReportLUNdata *buf, int bufsize)
2402 {
2403         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2404 }
2405
2406 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2407         int bus, int target, int lun)
2408 {
2409         device->bus = bus;
2410         device->target = target;
2411         device->lun = lun;
2412 }
2413
2414 /* Use VPD inquiry to get details of volume status */
2415 static int hpsa_get_volume_status(struct ctlr_info *h,
2416                                         unsigned char scsi3addr[])
2417 {
2418         int rc;
2419         int status;
2420         int size;
2421         unsigned char *buf;
2422
2423         buf = kzalloc(64, GFP_KERNEL);
2424         if (!buf)
2425                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2426
2427         /* Does controller have VPD for logical volume status? */
2428         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2429                 goto exit_failed;
2430
2431         /* Get the size of the VPD return buffer */
2432         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2433                                         buf, HPSA_VPD_HEADER_SZ);
2434         if (rc != 0)
2435                 goto exit_failed;
2436         size = buf[3];
2437
2438         /* Now get the whole VPD buffer */
2439         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2440                                         buf, size + HPSA_VPD_HEADER_SZ);
2441         if (rc != 0)
2442                 goto exit_failed;
2443         status = buf[4]; /* status byte */
2444
2445         kfree(buf);
2446         return status;
2447 exit_failed:
2448         kfree(buf);
2449         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2450 }
2451
2452 /* Determine offline status of a volume.
2453  * Return either:
2454  *  0 (not offline)
2455  *  0xff (offline for unknown reasons)
2456  *  # (integer code indicating one of several NOT READY states
2457  *     describing why a volume is to be kept offline)
2458  */
2459 static int hpsa_volume_offline(struct ctlr_info *h,
2460                                         unsigned char scsi3addr[])
2461 {
2462         struct CommandList *c;
2463         unsigned char *sense, sense_key, asc, ascq;
2464         int ldstat = 0;
2465         u16 cmd_status;
2466         u8 scsi_status;
2467 #define ASC_LUN_NOT_READY 0x04
2468 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2469 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2470
2471         c = cmd_alloc(h);
2472         if (!c)
2473                 return 0;
2474         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2475         hpsa_scsi_do_simple_cmd_core(h, c);
2476         sense = c->err_info->SenseInfo;
2477         sense_key = sense[2];
2478         asc = sense[12];
2479         ascq = sense[13];
2480         cmd_status = c->err_info->CommandStatus;
2481         scsi_status = c->err_info->ScsiStatus;
2482         cmd_free(h, c);
2483         /* Is the volume 'not ready'? */
2484         if (cmd_status != CMD_TARGET_STATUS ||
2485                 scsi_status != SAM_STAT_CHECK_CONDITION ||
2486                 sense_key != NOT_READY ||
2487                 asc != ASC_LUN_NOT_READY)  {
2488                 return 0;
2489         }
2490
2491         /* Determine the reason for not ready state */
2492         ldstat = hpsa_get_volume_status(h, scsi3addr);
2493
2494         /* Keep volume offline in certain cases: */
2495         switch (ldstat) {
2496         case HPSA_LV_UNDERGOING_ERASE:
2497         case HPSA_LV_UNDERGOING_RPI:
2498         case HPSA_LV_PENDING_RPI:
2499         case HPSA_LV_ENCRYPTED_NO_KEY:
2500         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2501         case HPSA_LV_UNDERGOING_ENCRYPTION:
2502         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2503         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2504                 return ldstat;
2505         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2506                 /* If VPD status page isn't available,
2507                  * use ASC/ASCQ to determine state
2508                  */
2509                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2510                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2511                         return ldstat;
2512                 break;
2513         default:
2514                 break;
2515         }
2516         return 0;
2517 }
2518
2519 static int hpsa_update_device_info(struct ctlr_info *h,
2520         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2521         unsigned char *is_OBDR_device)
2522 {
2523
2524 #define OBDR_SIG_OFFSET 43
2525 #define OBDR_TAPE_SIG "$DR-10"
2526 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2527 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2528
2529         unsigned char *inq_buff;
2530         unsigned char *obdr_sig;
2531
2532         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2533         if (!inq_buff)
2534                 goto bail_out;
2535
2536         /* Do an inquiry to the device to see what it is. */
2537         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2538                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2539                 /* Inquiry failed (msg printed already) */
2540                 dev_err(&h->pdev->dev,
2541                         "hpsa_update_device_info: inquiry failed\n");
2542                 goto bail_out;
2543         }
2544
2545         this_device->devtype = (inq_buff[0] & 0x1f);
2546         memcpy(this_device->scsi3addr, scsi3addr, 8);
2547         memcpy(this_device->vendor, &inq_buff[8],
2548                 sizeof(this_device->vendor));
2549         memcpy(this_device->model, &inq_buff[16],
2550                 sizeof(this_device->model));
2551         memset(this_device->device_id, 0,
2552                 sizeof(this_device->device_id));
2553         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2554                 sizeof(this_device->device_id));
2555
2556         if (this_device->devtype == TYPE_DISK &&
2557                 is_logical_dev_addr_mode(scsi3addr)) {
2558                 int volume_offline;
2559
2560                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2561                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2562                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2563                 volume_offline = hpsa_volume_offline(h, scsi3addr);
2564                 if (volume_offline < 0 || volume_offline > 0xff)
2565                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
2566                 this_device->volume_offline = volume_offline & 0xff;
2567         } else {
2568                 this_device->raid_level = RAID_UNKNOWN;
2569                 this_device->offload_config = 0;
2570                 this_device->offload_enabled = 0;
2571                 this_device->volume_offline = 0;
2572         }
2573
2574         if (is_OBDR_device) {
2575                 /* See if this is a One-Button-Disaster-Recovery device
2576                  * by looking for "$DR-10" at offset 43 in inquiry data.
2577                  */
2578                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2579                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2580                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
2581                                                 OBDR_SIG_LEN) == 0);
2582         }
2583
2584         kfree(inq_buff);
2585         return 0;
2586
2587 bail_out:
2588         kfree(inq_buff);
2589         return 1;
2590 }
2591
2592 static unsigned char *ext_target_model[] = {
2593         "MSA2012",
2594         "MSA2024",
2595         "MSA2312",
2596         "MSA2324",
2597         "P2000 G3 SAS",
2598         "MSA 2040 SAS",
2599         NULL,
2600 };
2601
2602 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2603 {
2604         int i;
2605
2606         for (i = 0; ext_target_model[i]; i++)
2607                 if (strncmp(device->model, ext_target_model[i],
2608                         strlen(ext_target_model[i])) == 0)
2609                         return 1;
2610         return 0;
2611 }
2612
2613 /* Helper function to assign bus, target, lun mapping of devices.
2614  * Puts non-external target logical volumes on bus 0, external target logical
2615  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2616  * Logical drive target and lun are assigned at this time, but
2617  * physical device lun and target assignment are deferred (assigned
2618  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2619  */
2620 static void figure_bus_target_lun(struct ctlr_info *h,
2621         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2622 {
2623         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2624
2625         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2626                 /* physical device, target and lun filled in later */
2627                 if (is_hba_lunid(lunaddrbytes))
2628                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2629                 else
2630                         /* defer target, lun assignment for physical devices */
2631                         hpsa_set_bus_target_lun(device, 2, -1, -1);
2632                 return;
2633         }
2634         /* It's a logical device */
2635         if (is_ext_target(h, device)) {
2636                 /* external target way, put logicals on bus 1
2637                  * and match target/lun numbers box
2638                  * reports, other smart array, bus 0, target 0, match lunid
2639                  */
2640                 hpsa_set_bus_target_lun(device,
2641                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2642                 return;
2643         }
2644         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2645 }
2646
2647 /*
2648  * If there is no lun 0 on a target, linux won't find any devices.
2649  * For the external targets (arrays), we have to manually detect the enclosure
2650  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2651  * it for some reason.  *tmpdevice is the target we're adding,
2652  * this_device is a pointer into the current element of currentsd[]
2653  * that we're building up in update_scsi_devices(), below.
2654  * lunzerobits is a bitmap that tracks which targets already have a
2655  * lun 0 assigned.
2656  * Returns 1 if an enclosure was added, 0 if not.
2657  */
2658 static int add_ext_target_dev(struct ctlr_info *h,
2659         struct hpsa_scsi_dev_t *tmpdevice,
2660         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2661         unsigned long lunzerobits[], int *n_ext_target_devs)
2662 {
2663         unsigned char scsi3addr[8];
2664
2665         if (test_bit(tmpdevice->target, lunzerobits))
2666                 return 0; /* There is already a lun 0 on this target. */
2667
2668         if (!is_logical_dev_addr_mode(lunaddrbytes))
2669                 return 0; /* It's the logical targets that may lack lun 0. */
2670
2671         if (!is_ext_target(h, tmpdevice))
2672                 return 0; /* Only external target devices have this problem. */
2673
2674         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2675                 return 0;
2676
2677         memset(scsi3addr, 0, 8);
2678         scsi3addr[3] = tmpdevice->target;
2679         if (is_hba_lunid(scsi3addr))
2680                 return 0; /* Don't add the RAID controller here. */
2681
2682         if (is_scsi_rev_5(h))
2683                 return 0; /* p1210m doesn't need to do this. */
2684
2685         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2686                 dev_warn(&h->pdev->dev, "Maximum number of external "
2687                         "target devices exceeded.  Check your hardware "
2688                         "configuration.");
2689                 return 0;
2690         }
2691
2692         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2693                 return 0;
2694         (*n_ext_target_devs)++;
2695         hpsa_set_bus_target_lun(this_device,
2696                                 tmpdevice->bus, tmpdevice->target, 0);
2697         set_bit(tmpdevice->target, lunzerobits);
2698         return 1;
2699 }
2700
2701 /*
2702  * Get address of physical disk used for an ioaccel2 mode command:
2703  *      1. Extract ioaccel2 handle from the command.
2704  *      2. Find a matching ioaccel2 handle from list of physical disks.
2705  *      3. Return:
2706  *              1 and set scsi3addr to address of matching physical
2707  *              0 if no matching physical disk was found.
2708  */
2709 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2710         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2711 {
2712         struct ReportExtendedLUNdata *physicals = NULL;
2713         int responsesize = 24;  /* size of physical extended response */
2714         int extended = 2;       /* flag forces reporting 'other dev info'. */
2715         int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2716         u32 nphysicals = 0;     /* number of reported physical devs */
2717         int found = 0;          /* found match (1) or not (0) */
2718         u32 find;               /* handle we need to match */
2719         int i;
2720         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
2721         struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2722         struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2723         __le32 it_nexus;        /* 4 byte device handle for the ioaccel2 cmd */
2724         __le32 scsi_nexus;      /* 4 byte device handle for the ioaccel2 cmd */
2725
2726         if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2727                 return 0; /* no match */
2728
2729         /* point to the ioaccel2 device handle */
2730         c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2731         if (c2a == NULL)
2732                 return 0; /* no match */
2733
2734         scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2735         if (scmd == NULL)
2736                 return 0; /* no match */
2737
2738         d = scmd->device->hostdata;
2739         if (d == NULL)
2740                 return 0; /* no match */
2741
2742         it_nexus = cpu_to_le32(d->ioaccel_handle);
2743         scsi_nexus = c2a->scsi_nexus;
2744         find = le32_to_cpu(c2a->scsi_nexus);
2745
2746         if (h->raid_offload_debug > 0)
2747                 dev_info(&h->pdev->dev,
2748                         "%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2749                         __func__, scsi_nexus,
2750                         d->device_id[0], d->device_id[1], d->device_id[2],
2751                         d->device_id[3], d->device_id[4], d->device_id[5],
2752                         d->device_id[6], d->device_id[7], d->device_id[8],
2753                         d->device_id[9], d->device_id[10], d->device_id[11],
2754                         d->device_id[12], d->device_id[13], d->device_id[14],
2755                         d->device_id[15]);
2756
2757         /* Get the list of physical devices */
2758         physicals = kzalloc(reportsize, GFP_KERNEL);
2759         if (physicals == NULL)
2760                 return 0;
2761         if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
2762                 reportsize, extended)) {
2763                 dev_err(&h->pdev->dev,
2764                         "Can't lookup %s device handle: report physical LUNs failed.\n",
2765                         "HP SSD Smart Path");
2766                 kfree(physicals);
2767                 return 0;
2768         }
2769         nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2770                                                         responsesize;
2771
2772         /* find ioaccel2 handle in list of physicals: */
2773         for (i = 0; i < nphysicals; i++) {
2774                 struct ext_report_lun_entry *entry = &physicals->LUN[i];
2775
2776                 /* handle is in bytes 28-31 of each lun */
2777                 if (entry->ioaccel_handle != find)
2778                         continue; /* didn't match */
2779                 found = 1;
2780                 memcpy(scsi3addr, entry->lunid, 8);
2781                 if (h->raid_offload_debug > 0)
2782                         dev_info(&h->pdev->dev,
2783                                 "%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2784                                 __func__, find,
2785                                 entry->ioaccel_handle, scsi3addr);
2786                 break; /* found it */
2787         }
2788
2789         kfree(physicals);
2790         if (found)
2791                 return 1;
2792         else
2793                 return 0;
2794
2795 }
2796 /*
2797  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
2798  * logdev.  The number of luns in physdev and logdev are returned in
2799  * *nphysicals and *nlogicals, respectively.
2800  * Returns 0 on success, -1 otherwise.
2801  */
2802 static int hpsa_gather_lun_info(struct ctlr_info *h,
2803         int reportphyslunsize, int reportloglunsize,
2804         struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2805         struct ReportLUNdata *logdev, u32 *nlogicals)
2806 {
2807         int physical_entry_size = 8;
2808
2809         *physical_mode = 0;
2810
2811         /* For I/O accelerator mode we need to read physical device handles */
2812         if (h->transMethod & CFGTBL_Trans_io_accel1 ||
2813                 h->transMethod & CFGTBL_Trans_io_accel2) {
2814                 *physical_mode = HPSA_REPORT_PHYS_EXTENDED;
2815                 physical_entry_size = 24;
2816         }
2817         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportphyslunsize,
2818                                                         *physical_mode)) {
2819                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2820                 return -1;
2821         }
2822         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
2823                                                         physical_entry_size;
2824         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2825                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
2826                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2827                         *nphysicals - HPSA_MAX_PHYS_LUN);
2828                 *nphysicals = HPSA_MAX_PHYS_LUN;
2829         }
2830         if (hpsa_scsi_do_report_log_luns(h, logdev, reportloglunsize)) {
2831                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2832                 return -1;
2833         }
2834         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2835         /* Reject Logicals in excess of our max capability. */
2836         if (*nlogicals > HPSA_MAX_LUN) {
2837                 dev_warn(&h->pdev->dev,
2838                         "maximum logical LUNs (%d) exceeded.  "
2839                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
2840                         *nlogicals - HPSA_MAX_LUN);
2841                         *nlogicals = HPSA_MAX_LUN;
2842         }
2843         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2844                 dev_warn(&h->pdev->dev,
2845                         "maximum logical + physical LUNs (%d) exceeded. "
2846                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2847                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2848                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2849         }
2850         return 0;
2851 }
2852
2853 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
2854         int i, int nphysicals, int nlogicals,
2855         struct ReportExtendedLUNdata *physdev_list,
2856         struct ReportLUNdata *logdev_list)
2857 {
2858         /* Helper function, figure out where the LUN ID info is coming from
2859          * given index i, lists of physical and logical devices, where in
2860          * the list the raid controller is supposed to appear (first or last)
2861          */
2862
2863         int logicals_start = nphysicals + (raid_ctlr_position == 0);
2864         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2865
2866         if (i == raid_ctlr_position)
2867                 return RAID_CTLR_LUNID;
2868
2869         if (i < logicals_start)
2870                 return &physdev_list->LUN[i -
2871                                 (raid_ctlr_position == 0)].lunid[0];
2872
2873         if (i < last_device)
2874                 return &logdev_list->LUN[i - nphysicals -
2875                         (raid_ctlr_position == 0)][0];
2876         BUG();
2877         return NULL;
2878 }
2879
2880 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
2881 {
2882         int rc;
2883         int hba_mode_enabled;
2884         struct bmic_controller_parameters *ctlr_params;
2885         ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
2886                 GFP_KERNEL);
2887
2888         if (!ctlr_params)
2889                 return -ENOMEM;
2890         rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
2891                 sizeof(struct bmic_controller_parameters));
2892         if (rc) {
2893                 kfree(ctlr_params);
2894                 return rc;
2895         }
2896
2897         hba_mode_enabled =
2898                 ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
2899         kfree(ctlr_params);
2900         return hba_mode_enabled;
2901 }
2902
2903 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
2904 {
2905         /* the idea here is we could get notified
2906          * that some devices have changed, so we do a report
2907          * physical luns and report logical luns cmd, and adjust
2908          * our list of devices accordingly.
2909          *
2910          * The scsi3addr's of devices won't change so long as the
2911          * adapter is not reset.  That means we can rescan and
2912          * tell which devices we already know about, vs. new
2913          * devices, vs.  disappearing devices.
2914          */
2915         struct ReportExtendedLUNdata *physdev_list = NULL;
2916         struct ReportLUNdata *logdev_list = NULL;
2917         u32 nphysicals = 0;
2918         u32 nlogicals = 0;
2919         int physical_mode = 0;
2920         u32 ndev_allocated = 0;
2921         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
2922         int ncurrent = 0;
2923         int i, n_ext_target_devs, ndevs_to_allocate;
2924         int raid_ctlr_position;
2925         int rescan_hba_mode;
2926         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
2927
2928         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
2929         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
2930         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
2931         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
2932
2933         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
2934                 dev_err(&h->pdev->dev, "out of memory\n");
2935                 goto out;
2936         }
2937         memset(lunzerobits, 0, sizeof(lunzerobits));
2938
2939         rescan_hba_mode = hpsa_hba_mode_enabled(h);
2940         if (rescan_hba_mode < 0)
2941                 goto out;
2942
2943         if (!h->hba_mode_enabled && rescan_hba_mode)
2944                 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
2945         else if (h->hba_mode_enabled && !rescan_hba_mode)
2946                 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
2947
2948         h->hba_mode_enabled = rescan_hba_mode;
2949
2950         if (hpsa_gather_lun_info(h,
2951                         sizeof(*physdev_list), sizeof(*logdev_list),
2952                         (struct ReportLUNdata *) physdev_list, &nphysicals,
2953                         &physical_mode, logdev_list, &nlogicals))
2954                 goto out;
2955
2956         /* We might see up to the maximum number of logical and physical disks
2957          * plus external target devices, and a device for the local RAID
2958          * controller.
2959          */
2960         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2961
2962         /* Allocate the per device structures */
2963         for (i = 0; i < ndevs_to_allocate; i++) {
2964                 if (i >= HPSA_MAX_DEVICES) {
2965                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
2966                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
2967                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
2968                         break;
2969                 }
2970
2971                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
2972                 if (!currentsd[i]) {
2973                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
2974                                 __FILE__, __LINE__);
2975                         goto out;
2976                 }
2977                 ndev_allocated++;
2978         }
2979
2980         if (is_scsi_rev_5(h))
2981                 raid_ctlr_position = 0;
2982         else
2983                 raid_ctlr_position = nphysicals + nlogicals;
2984
2985         /* adjust our table of devices */
2986         n_ext_target_devs = 0;
2987         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
2988                 u8 *lunaddrbytes, is_OBDR = 0;
2989
2990                 /* Figure out where the LUN ID info is coming from */
2991                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
2992                         i, nphysicals, nlogicals, physdev_list, logdev_list);
2993                 /* skip masked physical devices. */
2994                 if (lunaddrbytes[3] & 0xC0 &&
2995                         i < nphysicals + (raid_ctlr_position == 0))
2996                         continue;
2997
2998                 /* Get device type, vendor, model, device id */
2999                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3000                                                         &is_OBDR))
3001                         continue; /* skip it if we can't talk to it. */
3002                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3003                 this_device = currentsd[ncurrent];
3004
3005                 /*
3006                  * For external target devices, we have to insert a LUN 0 which
3007                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3008                  * is nonetheless an enclosure device there.  We have to
3009                  * present that otherwise linux won't find anything if
3010                  * there is no lun 0.
3011                  */
3012                 if (add_ext_target_dev(h, tmpdevice, this_device,
3013                                 lunaddrbytes, lunzerobits,
3014                                 &n_ext_target_devs)) {
3015                         ncurrent++;
3016                         this_device = currentsd[ncurrent];
3017                 }
3018
3019                 *this_device = *tmpdevice;
3020
3021                 switch (this_device->devtype) {
3022                 case TYPE_ROM:
3023                         /* We don't *really* support actual CD-ROM devices,
3024                          * just "One Button Disaster Recovery" tape drive
3025                          * which temporarily pretends to be a CD-ROM drive.
3026                          * So we check that the device is really an OBDR tape
3027                          * device by checking for "$DR-10" in bytes 43-48 of
3028                          * the inquiry data.
3029                          */
3030                         if (is_OBDR)
3031                                 ncurrent++;
3032                         break;
3033                 case TYPE_DISK:
3034                         if (h->hba_mode_enabled) {
3035                                 /* never use raid mapper in HBA mode */
3036                                 this_device->offload_enabled = 0;
3037                                 ncurrent++;
3038                                 break;
3039                         } else if (h->acciopath_status) {
3040                                 if (i >= nphysicals) {
3041                                         ncurrent++;
3042                                         break;
3043                                 }
3044                         } else {
3045                                 if (i < nphysicals)
3046                                         break;
3047                                 ncurrent++;
3048                                 break;
3049                         }
3050                         if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
3051                                 memcpy(&this_device->ioaccel_handle,
3052                                         &lunaddrbytes[20],
3053                                         sizeof(this_device->ioaccel_handle));
3054                                 ncurrent++;
3055                         }
3056                         break;
3057                 case TYPE_TAPE:
3058                 case TYPE_MEDIUM_CHANGER:
3059                         ncurrent++;
3060                         break;
3061                 case TYPE_RAID:
3062                         /* Only present the Smartarray HBA as a RAID controller.
3063                          * If it's a RAID controller other than the HBA itself
3064                          * (an external RAID controller, MSA500 or similar)
3065                          * don't present it.
3066                          */
3067                         if (!is_hba_lunid(lunaddrbytes))
3068                                 break;
3069                         ncurrent++;
3070                         break;
3071                 default:
3072                         break;
3073                 }
3074                 if (ncurrent >= HPSA_MAX_DEVICES)
3075                         break;
3076         }
3077         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3078 out:
3079         kfree(tmpdevice);
3080         for (i = 0; i < ndev_allocated; i++)
3081                 kfree(currentsd[i]);
3082         kfree(currentsd);
3083         kfree(physdev_list);
3084         kfree(logdev_list);
3085 }
3086
3087 /*
3088  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3089  * dma mapping  and fills in the scatter gather entries of the
3090  * hpsa command, cp.
3091  */
3092 static int hpsa_scatter_gather(struct ctlr_info *h,
3093                 struct CommandList *cp,
3094                 struct scsi_cmnd *cmd)
3095 {
3096         unsigned int len;
3097         struct scatterlist *sg;
3098         u64 addr64;
3099         int use_sg, i, sg_index, chained;
3100         struct SGDescriptor *curr_sg;
3101
3102         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3103
3104         use_sg = scsi_dma_map(cmd);
3105         if (use_sg < 0)
3106                 return use_sg;
3107
3108         if (!use_sg)
3109                 goto sglist_finished;
3110
3111         curr_sg = cp->SG;
3112         chained = 0;
3113         sg_index = 0;
3114         scsi_for_each_sg(cmd, sg, use_sg, i) {
3115                 if (i == h->max_cmd_sg_entries - 1 &&
3116                         use_sg > h->max_cmd_sg_entries) {
3117                         chained = 1;
3118                         curr_sg = h->cmd_sg_list[cp->cmdindex];
3119                         sg_index = 0;
3120                 }
3121                 addr64 = (u64) sg_dma_address(sg);
3122                 len  = sg_dma_len(sg);
3123                 curr_sg->Addr = cpu_to_le64(addr64);
3124                 curr_sg->Len = cpu_to_le32(len);
3125                 curr_sg->Ext = cpu_to_le32(0);
3126                 curr_sg++;
3127         }
3128         (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3129
3130         if (use_sg + chained > h->maxSG)
3131                 h->maxSG = use_sg + chained;
3132
3133         if (chained) {
3134                 cp->Header.SGList = h->max_cmd_sg_entries;
3135                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3136                 if (hpsa_map_sg_chain_block(h, cp)) {
3137                         scsi_dma_unmap(cmd);
3138                         return -1;
3139                 }
3140                 return 0;
3141         }
3142
3143 sglist_finished:
3144
3145         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3146         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3147         return 0;
3148 }
3149
3150 #define IO_ACCEL_INELIGIBLE (1)
3151 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3152 {
3153         int is_write = 0;
3154         u32 block;
3155         u32 block_cnt;
3156
3157         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3158         switch (cdb[0]) {
3159         case WRITE_6:
3160         case WRITE_12:
3161                 is_write = 1;
3162         case READ_6:
3163         case READ_12:
3164                 if (*cdb_len == 6) {
3165                         block = (((u32) cdb[2]) << 8) | cdb[3];
3166                         block_cnt = cdb[4];
3167                 } else {
3168                         BUG_ON(*cdb_len != 12);
3169                         block = (((u32) cdb[2]) << 24) |
3170                                 (((u32) cdb[3]) << 16) |
3171                                 (((u32) cdb[4]) << 8) |
3172                                 cdb[5];
3173                         block_cnt =
3174                                 (((u32) cdb[6]) << 24) |
3175                                 (((u32) cdb[7]) << 16) |
3176                                 (((u32) cdb[8]) << 8) |
3177                                 cdb[9];
3178                 }
3179                 if (block_cnt > 0xffff)
3180                         return IO_ACCEL_INELIGIBLE;
3181
3182                 cdb[0] = is_write ? WRITE_10 : READ_10;
3183                 cdb[1] = 0;
3184                 cdb[2] = (u8) (block >> 24);
3185                 cdb[3] = (u8) (block >> 16);
3186                 cdb[4] = (u8) (block >> 8);
3187                 cdb[5] = (u8) (block);
3188                 cdb[6] = 0;
3189                 cdb[7] = (u8) (block_cnt >> 8);
3190                 cdb[8] = (u8) (block_cnt);
3191                 cdb[9] = 0;
3192                 *cdb_len = 10;
3193                 break;
3194         }
3195         return 0;
3196 }
3197
3198 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3199         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3200         u8 *scsi3addr)
3201 {
3202         struct scsi_cmnd *cmd = c->scsi_cmd;
3203         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3204         unsigned int len;
3205         unsigned int total_len = 0;
3206         struct scatterlist *sg;
3207         u64 addr64;
3208         int use_sg, i;
3209         struct SGDescriptor *curr_sg;
3210         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3211
3212         /* TODO: implement chaining support */
3213         if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3214                 return IO_ACCEL_INELIGIBLE;
3215
3216         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3217
3218         if (fixup_ioaccel_cdb(cdb, &cdb_len))
3219                 return IO_ACCEL_INELIGIBLE;
3220
3221         c->cmd_type = CMD_IOACCEL1;
3222
3223         /* Adjust the DMA address to point to the accelerated command buffer */
3224         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3225                                 (c->cmdindex * sizeof(*cp));
3226         BUG_ON(c->busaddr & 0x0000007F);
3227
3228         use_sg = scsi_dma_map(cmd);
3229         if (use_sg < 0)
3230                 return use_sg;
3231
3232         if (use_sg) {
3233                 curr_sg = cp->SG;
3234                 scsi_for_each_sg(cmd, sg, use_sg, i) {
3235                         addr64 = (u64) sg_dma_address(sg);
3236                         len  = sg_dma_len(sg);
3237                         total_len += len;
3238                         curr_sg->Addr = cpu_to_le64(addr64);
3239                         curr_sg->Len = cpu_to_le32(len);
3240                         curr_sg->Ext = cpu_to_le32(0);
3241                         curr_sg++;
3242                 }
3243                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3244
3245                 switch (cmd->sc_data_direction) {
3246                 case DMA_TO_DEVICE:
3247                         control |= IOACCEL1_CONTROL_DATA_OUT;
3248                         break;
3249                 case DMA_FROM_DEVICE:
3250                         control |= IOACCEL1_CONTROL_DATA_IN;
3251                         break;
3252                 case DMA_NONE:
3253                         control |= IOACCEL1_CONTROL_NODATAXFER;
3254                         break;
3255                 default:
3256                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3257                         cmd->sc_data_direction);
3258                         BUG();
3259                         break;
3260                 }
3261         } else {
3262                 control |= IOACCEL1_CONTROL_NODATAXFER;
3263         }
3264
3265         c->Header.SGList = use_sg;
3266         /* Fill out the command structure to submit */
3267         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
3268         cp->transfer_len = cpu_to_le32(total_len);
3269         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
3270                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
3271         cp->control = cpu_to_le32(control);
3272         memcpy(cp->CDB, cdb, cdb_len);
3273         memcpy(cp->CISS_LUN, scsi3addr, 8);
3274         /* Tag was already set at init time. */
3275         enqueue_cmd_and_start_io(h, c);
3276         return 0;
3277 }
3278
3279 /*
3280  * Queue a command directly to a device behind the controller using the
3281  * I/O accelerator path.
3282  */
3283 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3284         struct CommandList *c)
3285 {
3286         struct scsi_cmnd *cmd = c->scsi_cmd;
3287         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3288
3289         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3290                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
3291 }
3292
3293 /*
3294  * Set encryption parameters for the ioaccel2 request
3295  */
3296 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3297         struct CommandList *c, struct io_accel2_cmd *cp)
3298 {
3299         struct scsi_cmnd *cmd = c->scsi_cmd;
3300         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3301         struct raid_map_data *map = &dev->raid_map;
3302         u64 first_block;
3303
3304         BUG_ON(!(dev->offload_config && dev->offload_enabled));
3305
3306         /* Are we doing encryption on this device */
3307         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3308                 return;
3309         /* Set the data encryption key index. */
3310         cp->dekindex = map->dekindex;
3311
3312         /* Set the encryption enable flag, encoded into direction field. */
3313         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3314
3315         /* Set encryption tweak values based on logical block address
3316          * If block size is 512, tweak value is LBA.
3317          * For other block sizes, tweak is (LBA * block size)/ 512)
3318          */
3319         switch (cmd->cmnd[0]) {
3320         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3321         case WRITE_6:
3322         case READ_6:
3323                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
3324                 break;
3325         case WRITE_10:
3326         case READ_10:
3327         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3328         case WRITE_12:
3329         case READ_12:
3330                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
3331                 break;
3332         case WRITE_16:
3333         case READ_16:
3334                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
3335                 break;
3336         default:
3337                 dev_err(&h->pdev->dev,
3338                         "ERROR: %s: size (0x%x) not supported for encryption\n",
3339                         __func__, cmd->cmnd[0]);
3340                 BUG();
3341                 break;
3342         }
3343
3344         if (le32_to_cpu(map->volume_blk_size) != 512)
3345                 first_block = first_block *
3346                                 le32_to_cpu(map->volume_blk_size)/512;
3347
3348         cp->tweak_lower = cpu_to_le32(first_block);
3349         cp->tweak_upper = cpu_to_le32(first_block >> 32);
3350 }
3351
3352 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3353         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3354         u8 *scsi3addr)
3355 {
3356         struct scsi_cmnd *cmd = c->scsi_cmd;
3357         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3358         struct ioaccel2_sg_element *curr_sg;
3359         int use_sg, i;
3360         struct scatterlist *sg;
3361         u64 addr64;
3362         u32 len;
3363         u32 total_len = 0;
3364
3365         if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3366                 return IO_ACCEL_INELIGIBLE;
3367
3368         if (fixup_ioaccel_cdb(cdb, &cdb_len))
3369                 return IO_ACCEL_INELIGIBLE;
3370         c->cmd_type = CMD_IOACCEL2;
3371         /* Adjust the DMA address to point to the accelerated command buffer */
3372         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3373                                 (c->cmdindex * sizeof(*cp));
3374         BUG_ON(c->busaddr & 0x0000007F);
3375
3376         memset(cp, 0, sizeof(*cp));
3377         cp->IU_type = IOACCEL2_IU_TYPE;
3378
3379         use_sg = scsi_dma_map(cmd);
3380         if (use_sg < 0)
3381                 return use_sg;
3382
3383         if (use_sg) {
3384                 BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3385                 curr_sg = cp->sg;
3386                 scsi_for_each_sg(cmd, sg, use_sg, i) {
3387                         addr64 = (u64) sg_dma_address(sg);
3388                         len  = sg_dma_len(sg);
3389                         total_len += len;
3390                         curr_sg->address = cpu_to_le64(addr64);
3391                         curr_sg->length = cpu_to_le32(len);
3392                         curr_sg->reserved[0] = 0;
3393                         curr_sg->reserved[1] = 0;
3394                         curr_sg->reserved[2] = 0;
3395                         curr_sg->chain_indicator = 0;
3396                         curr_sg++;
3397                 }
3398
3399                 switch (cmd->sc_data_direction) {
3400                 case DMA_TO_DEVICE:
3401                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3402                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
3403                         break;
3404                 case DMA_FROM_DEVICE:
3405                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3406                         cp->direction |= IOACCEL2_DIR_DATA_IN;
3407                         break;
3408                 case DMA_NONE:
3409                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3410                         cp->direction |= IOACCEL2_DIR_NO_DATA;
3411                         break;
3412                 default:
3413                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3414                                 cmd->sc_data_direction);
3415                         BUG();
3416                         break;
3417                 }
3418         } else {
3419                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3420                 cp->direction |= IOACCEL2_DIR_NO_DATA;
3421         }
3422
3423         /* Set encryption parameters, if necessary */
3424         set_encrypt_ioaccel2(h, c, cp);
3425
3426         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
3427         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
3428         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3429
3430         /* fill in sg elements */
3431         cp->sg_count = (u8) use_sg;
3432
3433         cp->data_len = cpu_to_le32(total_len);
3434         cp->err_ptr = cpu_to_le64(c->busaddr +
3435                         offsetof(struct io_accel2_cmd, error_data));
3436         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3437
3438         enqueue_cmd_and_start_io(h, c);
3439         return 0;
3440 }
3441
3442 /*
3443  * Queue a command to the correct I/O accelerator path.
3444  */
3445 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3446         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3447         u8 *scsi3addr)
3448 {
3449         if (h->transMethod & CFGTBL_Trans_io_accel1)
3450                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3451                                                 cdb, cdb_len, scsi3addr);
3452         else
3453                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3454                                                 cdb, cdb_len, scsi3addr);
3455 }
3456
3457 static void raid_map_helper(struct raid_map_data *map,
3458                 int offload_to_mirror, u32 *map_index, u32 *current_group)
3459 {
3460         if (offload_to_mirror == 0)  {
3461                 /* use physical disk in the first mirrored group. */
3462                 *map_index %= le16_to_cpu(map->data_disks_per_row);
3463                 return;
3464         }
3465         do {
3466                 /* determine mirror group that *map_index indicates */
3467                 *current_group = *map_index /
3468                         le16_to_cpu(map->data_disks_per_row);
3469                 if (offload_to_mirror == *current_group)
3470                         continue;
3471                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
3472                         /* select map index from next group */
3473                         *map_index += le16_to_cpu(map->data_disks_per_row);
3474                         (*current_group)++;
3475                 } else {
3476                         /* select map index from first group */
3477                         *map_index %= le16_to_cpu(map->data_disks_per_row);
3478                         *current_group = 0;
3479                 }
3480         } while (offload_to_mirror != *current_group);
3481 }
3482
3483 /*
3484  * Attempt to perform offload RAID mapping for a logical volume I/O.
3485  */
3486 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3487         struct CommandList *c)
3488 {
3489         struct scsi_cmnd *cmd = c->scsi_cmd;
3490         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3491         struct raid_map_data *map = &dev->raid_map;
3492         struct raid_map_disk_data *dd = &map->data[0];
3493         int is_write = 0;
3494         u32 map_index;
3495         u64 first_block, last_block;
3496         u32 block_cnt;
3497         u32 blocks_per_row;
3498         u64 first_row, last_row;
3499         u32 first_row_offset, last_row_offset;
3500         u32 first_column, last_column;
3501         u64 r0_first_row, r0_last_row;
3502         u32 r5or6_blocks_per_row;
3503         u64 r5or6_first_row, r5or6_last_row;
3504         u32 r5or6_first_row_offset, r5or6_last_row_offset;
3505         u32 r5or6_first_column, r5or6_last_column;
3506         u32 total_disks_per_row;
3507         u32 stripesize;
3508         u32 first_group, last_group, current_group;
3509         u32 map_row;
3510         u32 disk_handle;
3511         u64 disk_block;
3512         u32 disk_block_cnt;
3513         u8 cdb[16];
3514         u8 cdb_len;
3515         u16 strip_size;
3516 #if BITS_PER_LONG == 32
3517         u64 tmpdiv;
3518 #endif
3519         int offload_to_mirror;
3520
3521         BUG_ON(!(dev->offload_config && dev->offload_enabled));
3522
3523         /* check for valid opcode, get LBA and block count */
3524         switch (cmd->cmnd[0]) {
3525         case WRITE_6:
3526                 is_write = 1;
3527         case READ_6:
3528                 first_block =
3529                         (((u64) cmd->cmnd[2]) << 8) |
3530                         cmd->cmnd[3];
3531                 block_cnt = cmd->cmnd[4];
3532                 if (block_cnt == 0)
3533                         block_cnt = 256;
3534                 break;
3535         case WRITE_10:
3536                 is_write = 1;
3537         case READ_10:
3538                 first_block =
3539                         (((u64) cmd->cmnd[2]) << 24) |
3540                         (((u64) cmd->cmnd[3]) << 16) |
3541                         (((u64) cmd->cmnd[4]) << 8) |
3542                         cmd->cmnd[5];
3543                 block_cnt =
3544                         (((u32) cmd->cmnd[7]) << 8) |
3545                         cmd->cmnd[8];
3546                 break;
3547         case WRITE_12:
3548                 is_write = 1;
3549         case READ_12:
3550                 first_block =
3551                         (((u64) cmd->cmnd[2]) << 24) |
3552                         (((u64) cmd->cmnd[3]) << 16) |
3553                         (((u64) cmd->cmnd[4]) << 8) |
3554                         cmd->cmnd[5];
3555                 block_cnt =
3556                         (((u32) cmd->cmnd[6]) << 24) |
3557                         (((u32) cmd->cmnd[7]) << 16) |
3558                         (((u32) cmd->cmnd[8]) << 8) |
3559                 cmd->cmnd[9];
3560                 break;
3561         case WRITE_16:
3562                 is_write = 1;
3563         case READ_16:
3564                 first_block =
3565                         (((u64) cmd->cmnd[2]) << 56) |
3566                         (((u64) cmd->cmnd[3]) << 48) |
3567                         (((u64) cmd->cmnd[4]) << 40) |
3568                         (((u64) cmd->cmnd[5]) << 32) |
3569                         (((u64) cmd->cmnd[6]) << 24) |
3570                         (((u64) cmd->cmnd[7]) << 16) |
3571                         (((u64) cmd->cmnd[8]) << 8) |
3572                         cmd->cmnd[9];
3573                 block_cnt =
3574                         (((u32) cmd->cmnd[10]) << 24) |
3575                         (((u32) cmd->cmnd[11]) << 16) |
3576                         (((u32) cmd->cmnd[12]) << 8) |
3577                         cmd->cmnd[13];
3578                 break;
3579         default:
3580                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3581         }
3582         last_block = first_block + block_cnt - 1;
3583
3584         /* check for write to non-RAID-0 */
3585         if (is_write && dev->raid_level != 0)
3586                 return IO_ACCEL_INELIGIBLE;
3587
3588         /* check for invalid block or wraparound */
3589         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
3590                 last_block < first_block)
3591                 return IO_ACCEL_INELIGIBLE;
3592
3593         /* calculate stripe information for the request */
3594         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
3595                                 le16_to_cpu(map->strip_size);
3596         strip_size = le16_to_cpu(map->strip_size);
3597 #if BITS_PER_LONG == 32
3598         tmpdiv = first_block;
3599         (void) do_div(tmpdiv, blocks_per_row);
3600         first_row = tmpdiv;
3601         tmpdiv = last_block;
3602         (void) do_div(tmpdiv, blocks_per_row);
3603         last_row = tmpdiv;
3604         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3605         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3606         tmpdiv = first_row_offset;
3607         (void) do_div(tmpdiv, strip_size);
3608         first_column = tmpdiv;
3609         tmpdiv = last_row_offset;
3610         (void) do_div(tmpdiv, strip_size);
3611         last_column = tmpdiv;
3612 #else
3613         first_row = first_block / blocks_per_row;
3614         last_row = last_block / blocks_per_row;
3615         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3616         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3617         first_column = first_row_offset / strip_size;
3618         last_column = last_row_offset / strip_size;
3619 #endif
3620
3621         /* if this isn't a single row/column then give to the controller */
3622         if ((first_row != last_row) || (first_column != last_column))
3623                 return IO_ACCEL_INELIGIBLE;
3624
3625         /* proceeding with driver mapping */
3626         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
3627                                 le16_to_cpu(map->metadata_disks_per_row);
3628         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3629                                 le16_to_cpu(map->row_cnt);
3630         map_index = (map_row * total_disks_per_row) + first_column;
3631
3632         switch (dev->raid_level) {
3633         case HPSA_RAID_0:
3634                 break; /* nothing special to do */
3635         case HPSA_RAID_1:
3636                 /* Handles load balance across RAID 1 members.
3637                  * (2-drive R1 and R10 with even # of drives.)
3638                  * Appropriate for SSDs, not optimal for HDDs
3639                  */
3640                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
3641                 if (dev->offload_to_mirror)
3642                         map_index += le16_to_cpu(map->data_disks_per_row);
3643                 dev->offload_to_mirror = !dev->offload_to_mirror;
3644                 break;
3645         case HPSA_RAID_ADM:
3646                 /* Handles N-way mirrors  (R1-ADM)
3647                  * and R10 with # of drives divisible by 3.)
3648                  */
3649                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
3650
3651                 offload_to_mirror = dev->offload_to_mirror;
3652                 raid_map_helper(map, offload_to_mirror,
3653                                 &map_index, &current_group);
3654                 /* set mirror group to use next time */
3655                 offload_to_mirror =
3656                         (offload_to_mirror >=
3657                         le16_to_cpu(map->layout_map_count) - 1)
3658                         ? 0 : offload_to_mirror + 1;
3659                 dev->offload_to_mirror = offload_to_mirror;
3660                 /* Avoid direct use of dev->offload_to_mirror within this
3661                  * function since multiple threads might simultaneously
3662                  * increment it beyond the range of dev->layout_map_count -1.
3663                  */
3664                 break;
3665         case HPSA_RAID_5:
3666         case HPSA_RAID_6:
3667                 if (le16_to_cpu(map->layout_map_count) <= 1)
3668                         break;
3669
3670                 /* Verify first and last block are in same RAID group */
3671                 r5or6_blocks_per_row =
3672                         le16_to_cpu(map->strip_size) *
3673                         le16_to_cpu(map->data_disks_per_row);
3674                 BUG_ON(r5or6_blocks_per_row == 0);
3675                 stripesize = r5or6_blocks_per_row *
3676                         le16_to_cpu(map->layout_map_count);
3677 #if BITS_PER_LONG == 32
3678                 tmpdiv = first_block;
3679                 first_group = do_div(tmpdiv, stripesize);
3680                 tmpdiv = first_group;
3681                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3682                 first_group = tmpdiv;
3683                 tmpdiv = last_block;
3684                 last_group = do_div(tmpdiv, stripesize);
3685                 tmpdiv = last_group;
3686                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3687                 last_group = tmpdiv;
3688 #else
3689                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3690                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3691 #endif
3692                 if (first_group != last_group)
3693                         return IO_ACCEL_INELIGIBLE;
3694
3695                 /* Verify request is in a single row of RAID 5/6 */
3696 #if BITS_PER_LONG == 32
3697                 tmpdiv = first_block;
3698                 (void) do_div(tmpdiv, stripesize);
3699                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
3700                 tmpdiv = last_block;
3701                 (void) do_div(tmpdiv, stripesize);
3702                 r5or6_last_row = r0_last_row = tmpdiv;
3703 #else
3704                 first_row = r5or6_first_row = r0_first_row =
3705                                                 first_block / stripesize;
3706                 r5or6_last_row = r0_last_row = last_block / stripesize;
3707 #endif
3708                 if (r5or6_first_row != r5or6_last_row)
3709                         return IO_ACCEL_INELIGIBLE;
3710
3711
3712                 /* Verify request is in a single column */
3713 #if BITS_PER_LONG == 32
3714                 tmpdiv = first_block;
3715                 first_row_offset = do_div(tmpdiv, stripesize);
3716                 tmpdiv = first_row_offset;
3717                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3718                 r5or6_first_row_offset = first_row_offset;
3719                 tmpdiv = last_block;
3720                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3721                 tmpdiv = r5or6_last_row_offset;
3722                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3723                 tmpdiv = r5or6_first_row_offset;
3724                 (void) do_div(tmpdiv, map->strip_size);
3725                 first_column = r5or6_first_column = tmpdiv;
3726                 tmpdiv = r5or6_last_row_offset;
3727                 (void) do_div(tmpdiv, map->strip_size);
3728                 r5or6_last_column = tmpdiv;
3729 #else
3730                 first_row_offset = r5or6_first_row_offset =
3731                         (u32)((first_block % stripesize) %
3732                                                 r5or6_blocks_per_row);
3733
3734                 r5or6_last_row_offset =
3735                         (u32)((last_block % stripesize) %
3736                                                 r5or6_blocks_per_row);
3737
3738                 first_column = r5or6_first_column =
3739                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
3740                 r5or6_last_column =
3741                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
3742 #endif
3743                 if (r5or6_first_column != r5or6_last_column)
3744                         return IO_ACCEL_INELIGIBLE;
3745
3746                 /* Request is eligible */
3747                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3748                         le16_to_cpu(map->row_cnt);
3749
3750                 map_index = (first_group *
3751                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
3752                         (map_row * total_disks_per_row) + first_column;
3753                 break;
3754         default:
3755                 return IO_ACCEL_INELIGIBLE;
3756         }
3757
3758         disk_handle = dd[map_index].ioaccel_handle;
3759         disk_block = le64_to_cpu(map->disk_starting_blk) +
3760                         first_row * le16_to_cpu(map->strip_size) +
3761                         (first_row_offset - first_column *
3762                         le16_to_cpu(map->strip_size));
3763         disk_block_cnt = block_cnt;
3764
3765         /* handle differing logical/physical block sizes */
3766         if (map->phys_blk_shift) {
3767                 disk_block <<= map->phys_blk_shift;
3768                 disk_block_cnt <<= map->phys_blk_shift;
3769         }
3770         BUG_ON(disk_block_cnt > 0xffff);
3771
3772         /* build the new CDB for the physical disk I/O */
3773         if (disk_block > 0xffffffff) {
3774                 cdb[0] = is_write ? WRITE_16 : READ_16;
3775                 cdb[1] = 0;
3776                 cdb[2] = (u8) (disk_block >> 56);
3777                 cdb[3] = (u8) (disk_block >> 48);
3778                 cdb[4] = (u8) (disk_block >> 40);
3779                 cdb[5] = (u8) (disk_block >> 32);
3780                 cdb[6] = (u8) (disk_block >> 24);
3781                 cdb[7] = (u8) (disk_block >> 16);
3782                 cdb[8] = (u8) (disk_block >> 8);
3783                 cdb[9] = (u8) (disk_block);
3784                 cdb[10] = (u8) (disk_block_cnt >> 24);
3785                 cdb[11] = (u8) (disk_block_cnt >> 16);
3786                 cdb[12] = (u8) (disk_block_cnt >> 8);
3787                 cdb[13] = (u8) (disk_block_cnt);
3788                 cdb[14] = 0;
3789                 cdb[15] = 0;
3790                 cdb_len = 16;
3791         } else {
3792                 cdb[0] = is_write ? WRITE_10 : READ_10;
3793                 cdb[1] = 0;
3794                 cdb[2] = (u8) (disk_block >> 24);
3795                 cdb[3] = (u8) (disk_block >> 16);
3796                 cdb[4] = (u8) (disk_block >> 8);
3797                 cdb[5] = (u8) (disk_block);
3798                 cdb[6] = 0;
3799                 cdb[7] = (u8) (disk_block_cnt >> 8);
3800                 cdb[8] = (u8) (disk_block_cnt);
3801                 cdb[9] = 0;
3802                 cdb_len = 10;
3803         }
3804         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3805                                                 dev->scsi3addr);
3806 }
3807
3808 /* Submit commands down the "normal" RAID stack path */
3809 static int hpsa_ciss_submit(struct ctlr_info *h,
3810         struct CommandList *c, struct scsi_cmnd *cmd,
3811         unsigned char scsi3addr[])
3812 {
3813         cmd->host_scribble = (unsigned char *) c;
3814         c->cmd_type = CMD_SCSI;
3815         c->scsi_cmd = cmd;
3816         c->Header.ReplyQueue = 0;  /* unused in simple mode */
3817         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
3818         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
3819
3820         /* Fill in the request block... */
3821
3822         c->Request.Timeout = 0;
3823         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
3824         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
3825         c->Request.CDBLen = cmd->cmd_len;
3826         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
3827         switch (cmd->sc_data_direction) {
3828         case DMA_TO_DEVICE:
3829                 c->Request.type_attr_dir =
3830                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
3831                 break;
3832         case DMA_FROM_DEVICE:
3833                 c->Request.type_attr_dir =
3834                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
3835                 break;
3836         case DMA_NONE:
3837                 c->Request.type_attr_dir =
3838                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
3839                 break;
3840         case DMA_BIDIRECTIONAL:
3841                 /* This can happen if a buggy application does a scsi passthru
3842                  * and sets both inlen and outlen to non-zero. ( see
3843                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
3844                  */
3845
3846                 c->Request.type_attr_dir =
3847                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
3848                 /* This is technically wrong, and hpsa controllers should
3849                  * reject it with CMD_INVALID, which is the most correct
3850                  * response, but non-fibre backends appear to let it
3851                  * slide by, and give the same results as if this field
3852                  * were set correctly.  Either way is acceptable for
3853                  * our purposes here.
3854                  */
3855
3856                 break;
3857
3858         default:
3859                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3860                         cmd->sc_data_direction);
3861                 BUG();
3862                 break;
3863         }
3864
3865         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
3866                 cmd_free(h, c);
3867                 return SCSI_MLQUEUE_HOST_BUSY;
3868         }
3869         enqueue_cmd_and_start_io(h, c);
3870         /* the cmd'll come back via intr handler in complete_scsi_command()  */
3871         return 0;
3872 }
3873
3874 static void hpsa_command_resubmit_worker(struct work_struct *work)
3875 {
3876         struct scsi_cmnd *cmd;
3877         struct hpsa_scsi_dev_t *dev;
3878         struct CommandList *c =
3879                         container_of(work, struct CommandList, work);
3880
3881         cmd = c->scsi_cmd;
3882         dev = cmd->device->hostdata;
3883         if (!dev) {
3884                 cmd->result = DID_NO_CONNECT << 16;
3885                 cmd->scsi_done(cmd);
3886                 return;
3887         }
3888         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
3889                 /*
3890                  * If we get here, it means dma mapping failed. Try
3891                  * again via scsi mid layer, which will then get
3892                  * SCSI_MLQUEUE_HOST_BUSY.
3893                  */
3894                 cmd->result = DID_IMM_RETRY << 16;
3895                 cmd->scsi_done(cmd);
3896         }
3897 }
3898
3899 /* Running in struct Scsi_Host->host_lock less mode */
3900 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
3901 {
3902         struct ctlr_info *h;
3903         struct hpsa_scsi_dev_t *dev;
3904         unsigned char scsi3addr[8];
3905         struct CommandList *c;
3906         int rc = 0;
3907
3908         /* Get the ptr to our adapter structure out of cmd->host. */
3909         h = sdev_to_hba(cmd->device);
3910         dev = cmd->device->hostdata;
3911         if (!dev) {
3912                 cmd->result = DID_NO_CONNECT << 16;
3913                 cmd->scsi_done(cmd);
3914                 return 0;
3915         }
3916         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
3917
3918         if (unlikely(lockup_detected(h))) {
3919                 cmd->result = DID_ERROR << 16;
3920                 cmd->scsi_done(cmd);
3921                 return 0;
3922         }
3923         c = cmd_alloc(h);
3924         if (c == NULL) {                        /* trouble... */
3925                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
3926                 return SCSI_MLQUEUE_HOST_BUSY;
3927         }
3928
3929         /* Call alternate submit routine for I/O accelerated commands.
3930          * Retries always go down the normal I/O path.
3931          */
3932         if (likely(cmd->retries == 0 &&
3933                 cmd->request->cmd_type == REQ_TYPE_FS &&
3934                 h->acciopath_status)) {
3935
3936                 cmd->host_scribble = (unsigned char *) c;
3937                 c->cmd_type = CMD_SCSI;
3938                 c->scsi_cmd = cmd;
3939
3940                 if (dev->offload_enabled) {
3941                         rc = hpsa_scsi_ioaccel_raid_map(h, c);
3942                         if (rc == 0)
3943                                 return 0; /* Sent on ioaccel path */
3944                         if (rc < 0) {   /* scsi_dma_map failed. */
3945                                 cmd_free(h, c);
3946                                 return SCSI_MLQUEUE_HOST_BUSY;
3947                         }
3948                 } else if (dev->ioaccel_handle) {
3949                         rc = hpsa_scsi_ioaccel_direct_map(h, c);
3950                         if (rc == 0)
3951                                 return 0; /* Sent on direct map path */
3952                         if (rc < 0) {   /* scsi_dma_map failed. */
3953                                 cmd_free(h, c);
3954                                 return SCSI_MLQUEUE_HOST_BUSY;
3955                         }
3956                 }
3957         }
3958         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
3959 }
3960
3961 static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
3962 {
3963         unsigned long flags;
3964
3965         /*
3966          * Don't let rescans be initiated on a controller known
3967          * to be locked up.  If the controller locks up *during*
3968          * a rescan, that thread is probably hosed, but at least
3969          * we can prevent new rescan threads from piling up on a
3970          * locked up controller.
3971          */
3972         if (unlikely(lockup_detected(h))) {
3973                 spin_lock_irqsave(&h->scan_lock, flags);
3974                 h->scan_finished = 1;
3975                 wake_up_all(&h->scan_wait_queue);
3976                 spin_unlock_irqrestore(&h->scan_lock, flags);
3977                 return 1;
3978         }
3979         return 0;
3980 }
3981
3982 static void hpsa_scan_start(struct Scsi_Host *sh)
3983 {
3984         struct ctlr_info *h = shost_to_hba(sh);
3985         unsigned long flags;
3986
3987         if (do_not_scan_if_controller_locked_up(h))
3988                 return;
3989
3990         /* wait until any scan already in progress is finished. */
3991         while (1) {
3992                 spin_lock_irqsave(&h->scan_lock, flags);
3993                 if (h->scan_finished)
3994                         break;
3995                 spin_unlock_irqrestore(&h->scan_lock, flags);
3996                 wait_event(h->scan_wait_queue, h->scan_finished);
3997                 /* Note: We don't need to worry about a race between this
3998                  * thread and driver unload because the midlayer will
3999                  * have incremented the reference count, so unload won't
4000                  * happen if we're in here.
4001                  */
4002         }
4003         h->scan_finished = 0; /* mark scan as in progress */
4004         spin_unlock_irqrestore(&h->scan_lock, flags);
4005
4006         if (do_not_scan_if_controller_locked_up(h))
4007                 return;
4008
4009         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4010
4011         spin_lock_irqsave(&h->scan_lock, flags);
4012         h->scan_finished = 1; /* mark scan as finished. */
4013         wake_up_all(&h->scan_wait_queue);
4014         spin_unlock_irqrestore(&h->scan_lock, flags);
4015 }
4016
4017 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4018 {
4019         struct ctlr_info *h = sdev_to_hba(sdev);
4020
4021         if (qdepth < 1)
4022                 qdepth = 1;
4023         else
4024                 if (qdepth > h->nr_cmds)
4025                         qdepth = h->nr_cmds;
4026         scsi_change_queue_depth(sdev, qdepth);
4027         return sdev->queue_depth;
4028 }
4029
4030 static int hpsa_scan_finished(struct Scsi_Host *sh,
4031         unsigned long elapsed_time)
4032 {
4033         struct ctlr_info *h = shost_to_hba(sh);
4034         unsigned long flags;
4035         int finished;
4036
4037         spin_lock_irqsave(&h->scan_lock, flags);
4038         finished = h->scan_finished;
4039         spin_unlock_irqrestore(&h->scan_lock, flags);
4040         return finished;
4041 }
4042
4043 static void hpsa_unregister_scsi(struct ctlr_info *h)
4044 {
4045         /* we are being forcibly unloaded, and may not refuse. */
4046         scsi_remove_host(h->scsi_host);
4047         scsi_host_put(h->scsi_host);
4048         h->scsi_host = NULL;
4049 }
4050
4051 static int hpsa_register_scsi(struct ctlr_info *h)
4052 {
4053         struct Scsi_Host *sh;
4054         int error;
4055
4056         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4057         if (sh == NULL)
4058                 goto fail;
4059
4060         sh->io_port = 0;
4061         sh->n_io_port = 0;
4062         sh->this_id = -1;
4063         sh->max_channel = 3;
4064         sh->max_cmd_len = MAX_COMMAND_SIZE;
4065         sh->max_lun = HPSA_MAX_LUN;
4066         sh->max_id = HPSA_MAX_LUN;
4067         sh->can_queue = h->nr_cmds -
4068                         HPSA_CMDS_RESERVED_FOR_ABORTS -
4069                         HPSA_CMDS_RESERVED_FOR_DRIVER -
4070                         HPSA_MAX_CONCURRENT_PASSTHRUS;
4071         if (h->hba_mode_enabled)
4072                 sh->cmd_per_lun = 7;
4073         else
4074                 sh->cmd_per_lun = sh->can_queue;
4075         sh->sg_tablesize = h->maxsgentries;
4076         h->scsi_host = sh;
4077         sh->hostdata[0] = (unsigned long) h;
4078         sh->irq = h->intr[h->intr_mode];
4079         sh->unique_id = sh->irq;
4080         error = scsi_add_host(sh, &h->pdev->dev);
4081         if (error)
4082                 goto fail_host_put;
4083         scsi_scan_host(sh);
4084         return 0;
4085
4086  fail_host_put:
4087         dev_err(&h->pdev->dev, "%s: scsi_add_host"
4088                 " failed for controller %d\n", __func__, h->ctlr);
4089         scsi_host_put(sh);
4090         return error;
4091  fail:
4092         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4093                 " failed for controller %d\n", __func__, h->ctlr);
4094         return -ENOMEM;
4095 }
4096
4097 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4098         unsigned char lunaddr[])
4099 {
4100         int rc;
4101         int count = 0;
4102         int waittime = 1; /* seconds */
4103         struct CommandList *c;
4104
4105         c = cmd_alloc(h);
4106         if (!c) {
4107                 dev_warn(&h->pdev->dev, "out of memory in "
4108                         "wait_for_device_to_become_ready.\n");
4109                 return IO_ERROR;
4110         }
4111
4112         /* Send test unit ready until device ready, or give up. */
4113         while (count < HPSA_TUR_RETRY_LIMIT) {
4114
4115                 /* Wait for a bit.  do this first, because if we send
4116                  * the TUR right away, the reset will just abort it.
4117                  */
4118                 msleep(1000 * waittime);
4119                 count++;
4120                 rc = 0; /* Device ready. */
4121
4122                 /* Increase wait time with each try, up to a point. */
4123                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4124                         waittime = waittime * 2;
4125
4126                 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4127                 (void) fill_cmd(c, TEST_UNIT_READY, h,
4128                                 NULL, 0, 0, lunaddr, TYPE_CMD);
4129                 hpsa_scsi_do_simple_cmd_core(h, c);
4130                 /* no unmap needed here because no data xfer. */
4131
4132                 if (c->err_info->CommandStatus == CMD_SUCCESS)
4133                         break;
4134
4135                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4136                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4137                         (c->err_info->SenseInfo[2] == NO_SENSE ||
4138                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4139                         break;
4140
4141                 dev_warn(&h->pdev->dev, "waiting %d secs "
4142                         "for device to become ready.\n", waittime);
4143                 rc = 1; /* device not ready. */
4144         }
4145
4146         if (rc)
4147                 dev_warn(&h->pdev->dev, "giving up on device.\n");
4148         else
4149                 dev_warn(&h->pdev->dev, "device is ready.\n");
4150
4151         cmd_free(h, c);
4152         return rc;
4153 }
4154
4155 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4156  * complaining.  Doing a host- or bus-reset can't do anything good here.
4157  */
4158 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4159 {
4160         int rc;
4161         struct ctlr_info *h;
4162         struct hpsa_scsi_dev_t *dev;
4163
4164         /* find the controller to which the command to be aborted was sent */
4165         h = sdev_to_hba(scsicmd->device);
4166         if (h == NULL) /* paranoia */
4167                 return FAILED;
4168         dev = scsicmd->device->hostdata;
4169         if (!dev) {
4170                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4171                         "device lookup failed.\n");
4172                 return FAILED;
4173         }
4174         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4175                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4176         /* send a reset to the SCSI LUN which the command was sent to */
4177         rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4178         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4179                 return SUCCESS;
4180
4181         dev_warn(&h->pdev->dev, "resetting device failed.\n");
4182         return FAILED;
4183 }
4184
4185 static void swizzle_abort_tag(u8 *tag)
4186 {
4187         u8 original_tag[8];
4188
4189         memcpy(original_tag, tag, 8);
4190         tag[0] = original_tag[3];
4191         tag[1] = original_tag[2];
4192         tag[2] = original_tag[1];
4193         tag[3] = original_tag[0];
4194         tag[4] = original_tag[7];
4195         tag[5] = original_tag[6];
4196         tag[6] = original_tag[5];
4197         tag[7] = original_tag[4];
4198 }
4199
4200 static void hpsa_get_tag(struct ctlr_info *h,
4201         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
4202 {
4203         u64 tag;
4204         if (c->cmd_type == CMD_IOACCEL1) {
4205                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4206                         &h->ioaccel_cmd_pool[c->cmdindex];
4207                 tag = le64_to_cpu(cm1->tag);
4208                 *tagupper = cpu_to_le32(tag >> 32);
4209                 *taglower = cpu_to_le32(tag);
4210                 return;
4211         }
4212         if (c->cmd_type == CMD_IOACCEL2) {
4213                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4214                         &h->ioaccel2_cmd_pool[c->cmdindex];
4215                 /* upper tag not used in ioaccel2 mode */
4216                 memset(tagupper, 0, sizeof(*tagupper));
4217                 *taglower = cm2->Tag;
4218                 return;
4219         }
4220         tag = le64_to_cpu(c->Header.tag);
4221         *tagupper = cpu_to_le32(tag >> 32);
4222         *taglower = cpu_to_le32(tag);
4223 }
4224
4225 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4226         struct CommandList *abort, int swizzle)
4227 {
4228         int rc = IO_OK;
4229         struct CommandList *c;
4230         struct ErrorInfo *ei;
4231         __le32 tagupper, taglower;
4232
4233         c = cmd_alloc(h);
4234         if (c == NULL) {        /* trouble... */
4235                 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
4236                 return -ENOMEM;
4237         }
4238
4239         /* fill_cmd can't fail here, no buffer to map */
4240         (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4241                 0, 0, scsi3addr, TYPE_MSG);
4242         if (swizzle)
4243                 swizzle_abort_tag(&c->Request.CDB[4]);
4244         hpsa_scsi_do_simple_cmd_core(h, c);
4245         hpsa_get_tag(h, abort, &taglower, &tagupper);
4246         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4247                 __func__, tagupper, taglower);
4248         /* no unmap needed here because no data xfer. */
4249
4250         ei = c->err_info;
4251         switch (ei->CommandStatus) {
4252         case CMD_SUCCESS:
4253                 break;
4254         case CMD_UNABORTABLE: /* Very common, don't make noise. */
4255                 rc = -1;
4256                 break;
4257         default:
4258                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4259                         __func__, tagupper, taglower);
4260                 hpsa_scsi_interpret_error(h, c);
4261                 rc = -1;
4262                 break;
4263         }
4264         cmd_free(h, c);
4265         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4266                 __func__, tagupper, taglower);
4267         return rc;
4268 }
4269
4270 /* ioaccel2 path firmware cannot handle abort task requests.
4271  * Change abort requests to physical target reset, and send to the
4272  * address of the physical disk used for the ioaccel 2 command.
4273  * Return 0 on success (IO_OK)
4274  *       -1 on failure
4275  */
4276
4277 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4278         unsigned char *scsi3addr, struct CommandList *abort)
4279 {
4280         int rc = IO_OK;
4281         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4282         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4283         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4284         unsigned char *psa = &phys_scsi3addr[0];
4285
4286         /* Get a pointer to the hpsa logical device. */
4287         scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4288         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4289         if (dev == NULL) {
4290                 dev_warn(&h->pdev->dev,
4291                         "Cannot abort: no device pointer for command.\n");
4292                         return -1; /* not abortable */
4293         }
4294
4295         if (h->raid_offload_debug > 0)
4296                 dev_info(&h->pdev->dev,
4297                         "Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4298                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4299                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4300                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4301
4302         if (!dev->offload_enabled) {
4303                 dev_warn(&h->pdev->dev,
4304                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4305                 return -1; /* not abortable */
4306         }
4307
4308         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
4309         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4310                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4311                 return -1; /* not abortable */
4312         }
4313
4314         /* send the reset */
4315         if (h->raid_offload_debug > 0)
4316                 dev_info(&h->pdev->dev,
4317                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4318                         psa[0], psa[1], psa[2], psa[3],
4319                         psa[4], psa[5], psa[6], psa[7]);
4320         rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4321         if (rc != 0) {
4322                 dev_warn(&h->pdev->dev,
4323                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4324                         psa[0], psa[1], psa[2], psa[3],
4325                         psa[4], psa[5], psa[6], psa[7]);
4326                 return rc; /* failed to reset */
4327         }
4328
4329         /* wait for device to recover */
4330         if (wait_for_device_to_become_ready(h, psa) != 0) {
4331                 dev_warn(&h->pdev->dev,
4332                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4333                         psa[0], psa[1], psa[2], psa[3],
4334                         psa[4], psa[5], psa[6], psa[7]);
4335                 return -1;  /* failed to recover */
4336         }
4337
4338         /* device recovered */
4339         dev_info(&h->pdev->dev,
4340                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4341                 psa[0], psa[1], psa[2], psa[3],
4342                 psa[4], psa[5], psa[6], psa[7]);
4343
4344         return rc; /* success */
4345 }
4346
4347 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
4348  * tell which kind we're dealing with, so we send the abort both ways.  There
4349  * shouldn't be any collisions between swizzled and unswizzled tags due to the
4350  * way we construct our tags but we check anyway in case the assumptions which
4351  * make this true someday become false.
4352  */
4353 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4354         unsigned char *scsi3addr, struct CommandList *abort)
4355 {
4356         /* ioccelerator mode 2 commands should be aborted via the
4357          * accelerated path, since RAID path is unaware of these commands,
4358          * but underlying firmware can't handle abort TMF.
4359          * Change abort to physical device reset.
4360          */
4361         if (abort->cmd_type == CMD_IOACCEL2)
4362                 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4363
4364         return hpsa_send_abort(h, scsi3addr, abort, 0) &&
4365                         hpsa_send_abort(h, scsi3addr, abort, 1);
4366 }
4367
4368 /* Send an abort for the specified command.
4369  *      If the device and controller support it,
4370  *              send a task abort request.
4371  */
4372 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4373 {
4374
4375         int i, rc;
4376         struct ctlr_info *h;
4377         struct hpsa_scsi_dev_t *dev;
4378         struct CommandList *abort; /* pointer to command to be aborted */
4379         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
4380         char msg[256];          /* For debug messaging. */
4381         int ml = 0;
4382         __le32 tagupper, taglower;
4383
4384         /* Find the controller of the command to be aborted */
4385         h = sdev_to_hba(sc->device);
4386         if (WARN(h == NULL,
4387                         "ABORT REQUEST FAILED, Controller lookup failed.\n"))
4388                 return FAILED;
4389
4390         /* Check that controller supports some kind of task abort */
4391         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4392                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4393                 return FAILED;
4394
4395         memset(msg, 0, sizeof(msg));
4396         ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
4397                 h->scsi_host->host_no, sc->device->channel,
4398                 sc->device->id, sc->device->lun);
4399
4400         /* Find the device of the command to be aborted */
4401         dev = sc->device->hostdata;
4402         if (!dev) {
4403                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4404                                 msg);
4405                 return FAILED;
4406         }
4407
4408         /* Get SCSI command to be aborted */
4409         abort = (struct CommandList *) sc->host_scribble;
4410         if (abort == NULL) {
4411                 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
4412                                 msg);
4413                 return FAILED;
4414         }
4415         hpsa_get_tag(h, abort, &taglower, &tagupper);
4416         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4417         as  = (struct scsi_cmnd *) abort->scsi_cmd;
4418         if (as != NULL)
4419                 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4420                         as->cmnd[0], as->serial_number);
4421         dev_dbg(&h->pdev->dev, "%s\n", msg);
4422         dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4423                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4424         /*
4425          * Command is in flight, or possibly already completed
4426          * by the firmware (but not to the scsi mid layer) but we can't
4427          * distinguish which.  Send the abort down.
4428          */
4429         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4430         if (rc != 0) {
4431                 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4432                 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4433                         h->scsi_host->host_no,
4434                         dev->bus, dev->target, dev->lun);
4435                 return FAILED;
4436         }
4437         dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4438
4439         /* If the abort(s) above completed and actually aborted the
4440          * command, then the command to be aborted should already be
4441          * completed.  If not, wait around a bit more to see if they
4442          * manage to complete normally.
4443          */
4444 #define ABORT_COMPLETE_WAIT_SECS 30
4445         for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4446                 if (test_bit(abort->cmdindex & (BITS_PER_LONG - 1),
4447                                 h->cmd_pool_bits +
4448                                 (abort->cmdindex / BITS_PER_LONG)))
4449                         msleep(100);
4450                 else
4451                         return SUCCESS;
4452         }
4453         dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4454                 msg, ABORT_COMPLETE_WAIT_SECS);
4455         return FAILED;
4456 }
4457
4458
4459 /*
4460  * For operations that cannot sleep, a command block is allocated at init,
4461  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4462  * which ones are free or in use.  Lock must be held when calling this.
4463  * cmd_free() is the complement.
4464  */
4465 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4466 {
4467         struct CommandList *c;
4468         int i;
4469         union u64bit temp64;
4470         dma_addr_t cmd_dma_handle, err_dma_handle;
4471         int loopcount;
4472
4473         /* There is some *extremely* small but non-zero chance that that
4474          * multiple threads could get in here, and one thread could
4475          * be scanning through the list of bits looking for a free
4476          * one, but the free ones are always behind him, and other
4477          * threads sneak in behind him and eat them before he can
4478          * get to them, so that while there is always a free one, a
4479          * very unlucky thread might be starved anyway, never able to
4480          * beat the other threads.  In reality, this happens so
4481          * infrequently as to be indistinguishable from never.
4482          */
4483
4484         loopcount = 0;
4485         do {
4486                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4487                 if (i == h->nr_cmds)
4488                         i = 0;
4489                 loopcount++;
4490         } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
4491                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0 &&
4492                 loopcount < 10);
4493
4494         /* Thread got starved?  We do not expect this to ever happen. */
4495         if (loopcount >= 10)
4496                 return NULL;
4497
4498         c = h->cmd_pool + i;
4499         memset(c, 0, sizeof(*c));
4500         c->Header.tag = cpu_to_le64((u64) i << DIRECT_LOOKUP_SHIFT);
4501         cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(*c);
4502         c->err_info = h->errinfo_pool + i;
4503         memset(c->err_info, 0, sizeof(*c->err_info));
4504         err_dma_handle = h->errinfo_pool_dhandle
4505             + i * sizeof(*c->err_info);
4506
4507         c->cmdindex = i;
4508
4509         c->busaddr = (u32) cmd_dma_handle;
4510         temp64.val = (u64) err_dma_handle;
4511         c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4512         c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
4513
4514         c->h = h;
4515         return c;
4516 }
4517
4518 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4519 {
4520         int i;
4521
4522         i = c - h->cmd_pool;
4523         clear_bit(i & (BITS_PER_LONG - 1),
4524                   h->cmd_pool_bits + (i / BITS_PER_LONG));
4525 }
4526
4527 #ifdef CONFIG_COMPAT
4528
4529 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
4530         void __user *arg)
4531 {
4532         IOCTL32_Command_struct __user *arg32 =
4533             (IOCTL32_Command_struct __user *) arg;
4534         IOCTL_Command_struct arg64;
4535         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4536         int err;
4537         u32 cp;
4538
4539         memset(&arg64, 0, sizeof(arg64));
4540         err = 0;
4541         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4542                            sizeof(arg64.LUN_info));
4543         err |= copy_from_user(&arg64.Request, &arg32->Request,
4544                            sizeof(arg64.Request));
4545         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4546                            sizeof(arg64.error_info));
4547         err |= get_user(arg64.buf_size, &arg32->buf_size);
4548         err |= get_user(cp, &arg32->buf);
4549         arg64.buf = compat_ptr(cp);
4550         err |= copy_to_user(p, &arg64, sizeof(arg64));
4551
4552         if (err)
4553                 return -EFAULT;
4554
4555         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
4556         if (err)
4557                 return err;
4558         err |= copy_in_user(&arg32->error_info, &p->error_info,
4559                          sizeof(arg32->error_info));
4560         if (err)
4561                 return -EFAULT;
4562         return err;
4563 }
4564
4565 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4566         int cmd, void __user *arg)
4567 {
4568         BIG_IOCTL32_Command_struct __user *arg32 =
4569             (BIG_IOCTL32_Command_struct __user *) arg;
4570         BIG_IOCTL_Command_struct arg64;
4571         BIG_IOCTL_Command_struct __user *p =
4572             compat_alloc_user_space(sizeof(arg64));
4573         int err;
4574         u32 cp;
4575
4576         memset(&arg64, 0, sizeof(arg64));
4577         err = 0;
4578         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4579                            sizeof(arg64.LUN_info));
4580         err |= copy_from_user(&arg64.Request, &arg32->Request,
4581                            sizeof(arg64.Request));
4582         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4583                            sizeof(arg64.error_info));
4584         err |= get_user(arg64.buf_size, &arg32->buf_size);
4585         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4586         err |= get_user(cp, &arg32->buf);
4587         arg64.buf = compat_ptr(cp);
4588         err |= copy_to_user(p, &arg64, sizeof(arg64));
4589
4590         if (err)
4591                 return -EFAULT;
4592
4593         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
4594         if (err)
4595                 return err;
4596         err |= copy_in_user(&arg32->error_info, &p->error_info,
4597                          sizeof(arg32->error_info));
4598         if (err)
4599                 return -EFAULT;
4600         return err;
4601 }
4602
4603 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4604 {
4605         switch (cmd) {
4606         case CCISS_GETPCIINFO:
4607         case CCISS_GETINTINFO:
4608         case CCISS_SETINTINFO:
4609         case CCISS_GETNODENAME:
4610         case CCISS_SETNODENAME:
4611         case CCISS_GETHEARTBEAT:
4612         case CCISS_GETBUSTYPES:
4613         case CCISS_GETFIRMVER:
4614         case CCISS_GETDRIVVER:
4615         case CCISS_REVALIDVOLS:
4616         case CCISS_DEREGDISK:
4617         case CCISS_REGNEWDISK:
4618         case CCISS_REGNEWD:
4619         case CCISS_RESCANDISK:
4620         case CCISS_GETLUNINFO:
4621                 return hpsa_ioctl(dev, cmd, arg);
4622
4623         case CCISS_PASSTHRU32:
4624                 return hpsa_ioctl32_passthru(dev, cmd, arg);
4625         case CCISS_BIG_PASSTHRU32:
4626                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4627
4628         default:
4629                 return -ENOIOCTLCMD;
4630         }
4631 }
4632 #endif
4633
4634 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4635 {
4636         struct hpsa_pci_info pciinfo;
4637
4638         if (!argp)
4639                 return -EINVAL;
4640         pciinfo.domain = pci_domain_nr(h->pdev->bus);
4641         pciinfo.bus = h->pdev->bus->number;
4642         pciinfo.dev_fn = h->pdev->devfn;
4643         pciinfo.board_id = h->board_id;
4644         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4645                 return -EFAULT;
4646         return 0;
4647 }
4648
4649 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4650 {
4651         DriverVer_type DriverVer;
4652         unsigned char vmaj, vmin, vsubmin;
4653         int rc;
4654
4655         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4656                 &vmaj, &vmin, &vsubmin);
4657         if (rc != 3) {
4658                 dev_info(&h->pdev->dev, "driver version string '%s' "
4659                         "unrecognized.", HPSA_DRIVER_VERSION);
4660                 vmaj = 0;
4661                 vmin = 0;
4662                 vsubmin = 0;
4663         }
4664         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4665         if (!argp)
4666                 return -EINVAL;
4667         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4668                 return -EFAULT;
4669         return 0;
4670 }
4671
4672 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4673 {
4674         IOCTL_Command_struct iocommand;
4675         struct CommandList *c;
4676         char *buff = NULL;
4677         u64 temp64;
4678         int rc = 0;
4679
4680         if (!argp)
4681                 return -EINVAL;
4682         if (!capable(CAP_SYS_RAWIO))
4683                 return -EPERM;
4684         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4685                 return -EFAULT;
4686         if ((iocommand.buf_size < 1) &&
4687             (iocommand.Request.Type.Direction != XFER_NONE)) {
4688                 return -EINVAL;
4689         }
4690         if (iocommand.buf_size > 0) {
4691                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4692                 if (buff == NULL)
4693                         return -EFAULT;
4694                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
4695                         /* Copy the data into the buffer we created */
4696                         if (copy_from_user(buff, iocommand.buf,
4697                                 iocommand.buf_size)) {
4698                                 rc = -EFAULT;
4699                                 goto out_kfree;
4700                         }
4701                 } else {
4702                         memset(buff, 0, iocommand.buf_size);
4703                 }
4704         }
4705         c = cmd_alloc(h);
4706         if (c == NULL) {
4707                 rc = -ENOMEM;
4708                 goto out_kfree;
4709         }
4710         /* Fill in the command type */
4711         c->cmd_type = CMD_IOCTL_PEND;
4712         /* Fill in Command Header */
4713         c->Header.ReplyQueue = 0; /* unused in simple mode */
4714         if (iocommand.buf_size > 0) {   /* buffer to fill */
4715                 c->Header.SGList = 1;
4716                 c->Header.SGTotal = cpu_to_le16(1);
4717         } else  { /* no buffers to fill */
4718                 c->Header.SGList = 0;
4719                 c->Header.SGTotal = cpu_to_le16(0);
4720         }
4721         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4722
4723         /* Fill in Request block */
4724         memcpy(&c->Request, &iocommand.Request,
4725                 sizeof(c->Request));
4726
4727         /* Fill in the scatter gather information */
4728         if (iocommand.buf_size > 0) {
4729                 temp64 = pci_map_single(h->pdev, buff,
4730                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4731                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
4732                         c->SG[0].Addr = cpu_to_le64(0);
4733                         c->SG[0].Len = cpu_to_le32(0);
4734                         rc = -ENOMEM;
4735                         goto out;
4736                 }
4737                 c->SG[0].Addr = cpu_to_le64(temp64);
4738                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
4739                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
4740         }
4741         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4742         if (iocommand.buf_size > 0)
4743                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4744         check_ioctl_unit_attention(h, c);
4745
4746         /* Copy the error information out */
4747         memcpy(&iocommand.error_info, c->err_info,
4748                 sizeof(iocommand.error_info));
4749         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
4750                 rc = -EFAULT;
4751                 goto out;
4752         }
4753         if ((iocommand.Request.Type.Direction & XFER_READ) &&
4754                 iocommand.buf_size > 0) {
4755                 /* Copy the data out of the buffer we created */
4756                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
4757                         rc = -EFAULT;
4758                         goto out;
4759                 }
4760         }
4761 out:
4762         cmd_free(h, c);
4763 out_kfree:
4764         kfree(buff);
4765         return rc;
4766 }
4767
4768 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4769 {
4770         BIG_IOCTL_Command_struct *ioc;
4771         struct CommandList *c;
4772         unsigned char **buff = NULL;
4773         int *buff_size = NULL;
4774         u64 temp64;
4775         BYTE sg_used = 0;
4776         int status = 0;
4777         u32 left;
4778         u32 sz;
4779         BYTE __user *data_ptr;
4780
4781         if (!argp)
4782                 return -EINVAL;
4783         if (!capable(CAP_SYS_RAWIO))
4784                 return -EPERM;
4785         ioc = (BIG_IOCTL_Command_struct *)
4786             kmalloc(sizeof(*ioc), GFP_KERNEL);
4787         if (!ioc) {
4788                 status = -ENOMEM;
4789                 goto cleanup1;
4790         }
4791         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
4792                 status = -EFAULT;
4793                 goto cleanup1;
4794         }
4795         if ((ioc->buf_size < 1) &&
4796             (ioc->Request.Type.Direction != XFER_NONE)) {
4797                 status = -EINVAL;
4798                 goto cleanup1;
4799         }
4800         /* Check kmalloc limits  using all SGs */
4801         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
4802                 status = -EINVAL;
4803                 goto cleanup1;
4804         }
4805         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
4806                 status = -EINVAL;
4807                 goto cleanup1;
4808         }
4809         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
4810         if (!buff) {
4811                 status = -ENOMEM;
4812                 goto cleanup1;
4813         }
4814         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
4815         if (!buff_size) {
4816                 status = -ENOMEM;
4817                 goto cleanup1;
4818         }
4819         left = ioc->buf_size;
4820         data_ptr = ioc->buf;
4821         while (left) {
4822                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
4823                 buff_size[sg_used] = sz;
4824                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
4825                 if (buff[sg_used] == NULL) {
4826                         status = -ENOMEM;
4827                         goto cleanup1;
4828                 }
4829                 if (ioc->Request.Type.Direction & XFER_WRITE) {
4830                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
4831                                 status = -EFAULT;
4832                                 goto cleanup1;
4833                         }
4834                 } else
4835                         memset(buff[sg_used], 0, sz);
4836                 left -= sz;
4837                 data_ptr += sz;
4838                 sg_used++;
4839         }
4840         c = cmd_alloc(h);
4841         if (c == NULL) {
4842                 status = -ENOMEM;
4843                 goto cleanup1;
4844         }
4845         c->cmd_type = CMD_IOCTL_PEND;
4846         c->Header.ReplyQueue = 0;
4847         c->Header.SGList = (u8) sg_used;
4848         c->Header.SGTotal = cpu_to_le16(sg_used);
4849         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
4850         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
4851         if (ioc->buf_size > 0) {
4852                 int i;
4853                 for (i = 0; i < sg_used; i++) {
4854                         temp64 = pci_map_single(h->pdev, buff[i],
4855                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
4856                         if (dma_mapping_error(&h->pdev->dev,
4857                                                         (dma_addr_t) temp64)) {
4858                                 c->SG[i].Addr = cpu_to_le64(0);
4859                                 c->SG[i].Len = cpu_to_le32(0);
4860                                 hpsa_pci_unmap(h->pdev, c, i,
4861                                         PCI_DMA_BIDIRECTIONAL);
4862                                 status = -ENOMEM;
4863                                 goto cleanup0;
4864                         }
4865                         c->SG[i].Addr = cpu_to_le64(temp64);
4866                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
4867                         c->SG[i].Ext = cpu_to_le32(0);
4868                 }
4869                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
4870         }
4871         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4872         if (sg_used)
4873                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
4874         check_ioctl_unit_attention(h, c);
4875         /* Copy the error information out */
4876         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
4877         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
4878                 status = -EFAULT;
4879                 goto cleanup0;
4880         }
4881         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
4882                 int i;
4883
4884                 /* Copy the data out of the buffer we created */
4885                 BYTE __user *ptr = ioc->buf;
4886                 for (i = 0; i < sg_used; i++) {
4887                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
4888                                 status = -EFAULT;
4889                                 goto cleanup0;
4890                         }
4891                         ptr += buff_size[i];
4892                 }
4893         }
4894         status = 0;
4895 cleanup0:
4896         cmd_free(h, c);
4897 cleanup1:
4898         if (buff) {
4899                 int i;
4900
4901                 for (i = 0; i < sg_used; i++)
4902                         kfree(buff[i]);
4903                 kfree(buff);
4904         }
4905         kfree(buff_size);
4906         kfree(ioc);
4907         return status;
4908 }
4909
4910 static void check_ioctl_unit_attention(struct ctlr_info *h,
4911         struct CommandList *c)
4912 {
4913         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4914                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
4915                 (void) check_for_unit_attention(h, c);
4916 }
4917
4918 static int increment_passthru_count(struct ctlr_info *h)
4919 {
4920         unsigned long flags;
4921
4922         spin_lock_irqsave(&h->passthru_count_lock, flags);
4923         if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
4924                 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
4925                 return -1;
4926         }
4927         h->passthru_count++;
4928         spin_unlock_irqrestore(&h->passthru_count_lock, flags);
4929         return 0;
4930 }
4931
4932 static void decrement_passthru_count(struct ctlr_info *h)
4933 {
4934         unsigned long flags;
4935
4936         spin_lock_irqsave(&h->passthru_count_lock, flags);
4937         if (h->passthru_count <= 0) {
4938                 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
4939                 /* not expecting to get here. */
4940                 dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
4941                 return;
4942         }
4943         h->passthru_count--;
4944         spin_unlock_irqrestore(&h->passthru_count_lock, flags);
4945 }
4946
4947 /*
4948  * ioctl
4949  */
4950 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4951 {
4952         struct ctlr_info *h;
4953         void __user *argp = (void __user *)arg;
4954         int rc;
4955
4956         h = sdev_to_hba(dev);
4957
4958         switch (cmd) {
4959         case CCISS_DEREGDISK:
4960         case CCISS_REGNEWDISK:
4961         case CCISS_REGNEWD:
4962                 hpsa_scan_start(h->scsi_host);
4963                 return 0;
4964         case CCISS_GETPCIINFO:
4965                 return hpsa_getpciinfo_ioctl(h, argp);
4966         case CCISS_GETDRIVVER:
4967                 return hpsa_getdrivver_ioctl(h, argp);
4968         case CCISS_PASSTHRU:
4969                 if (increment_passthru_count(h))
4970                         return -EAGAIN;
4971                 rc = hpsa_passthru_ioctl(h, argp);
4972                 decrement_passthru_count(h);
4973                 return rc;
4974         case CCISS_BIG_PASSTHRU:
4975                 if (increment_passthru_count(h))
4976                         return -EAGAIN;
4977                 rc = hpsa_big_passthru_ioctl(h, argp);
4978                 decrement_passthru_count(h);
4979                 return rc;
4980         default:
4981                 return -ENOTTY;
4982         }
4983 }
4984
4985 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
4986                                 u8 reset_type)
4987 {
4988         struct CommandList *c;
4989
4990         c = cmd_alloc(h);
4991         if (!c)
4992                 return -ENOMEM;
4993         /* fill_cmd can't fail here, no data buffer to map */
4994         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
4995                 RAID_CTLR_LUNID, TYPE_MSG);
4996         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
4997         c->waiting = NULL;
4998         enqueue_cmd_and_start_io(h, c);
4999         /* Don't wait for completion, the reset won't complete.  Don't free
5000          * the command either.  This is the last command we will send before
5001          * re-initializing everything, so it doesn't matter and won't leak.
5002          */
5003         return 0;
5004 }
5005
5006 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5007         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5008         int cmd_type)
5009 {
5010         int pci_dir = XFER_NONE;
5011         struct CommandList *a; /* for commands to be aborted */
5012
5013         c->cmd_type = CMD_IOCTL_PEND;
5014         c->Header.ReplyQueue = 0;
5015         if (buff != NULL && size > 0) {
5016                 c->Header.SGList = 1;
5017                 c->Header.SGTotal = cpu_to_le16(1);
5018         } else {
5019                 c->Header.SGList = 0;
5020                 c->Header.SGTotal = cpu_to_le16(0);
5021         }
5022         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5023
5024         if (cmd_type == TYPE_CMD) {
5025                 switch (cmd) {
5026                 case HPSA_INQUIRY:
5027                         /* are we trying to read a vital product page */
5028                         if (page_code & VPD_PAGE) {
5029                                 c->Request.CDB[1] = 0x01;
5030                                 c->Request.CDB[2] = (page_code & 0xff);
5031                         }
5032                         c->Request.CDBLen = 6;
5033                         c->Request.type_attr_dir =
5034                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5035                         c->Request.Timeout = 0;
5036                         c->Request.CDB[0] = HPSA_INQUIRY;
5037                         c->Request.CDB[4] = size & 0xFF;
5038                         break;
5039                 case HPSA_REPORT_LOG:
5040                 case HPSA_REPORT_PHYS:
5041                         /* Talking to controller so It's a physical command
5042                            mode = 00 target = 0.  Nothing to write.
5043                          */
5044                         c->Request.CDBLen = 12;
5045                         c->Request.type_attr_dir =
5046                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5047                         c->Request.Timeout = 0;
5048                         c->Request.CDB[0] = cmd;
5049                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5050                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5051                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5052                         c->Request.CDB[9] = size & 0xFF;
5053                         break;
5054                 case HPSA_CACHE_FLUSH:
5055                         c->Request.CDBLen = 12;
5056                         c->Request.type_attr_dir =
5057                                         TYPE_ATTR_DIR(cmd_type,
5058                                                 ATTR_SIMPLE, XFER_WRITE);
5059                         c->Request.Timeout = 0;
5060                         c->Request.CDB[0] = BMIC_WRITE;
5061                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5062                         c->Request.CDB[7] = (size >> 8) & 0xFF;
5063                         c->Request.CDB[8] = size & 0xFF;
5064                         break;
5065                 case TEST_UNIT_READY:
5066                         c->Request.CDBLen = 6;
5067                         c->Request.type_attr_dir =
5068                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5069                         c->Request.Timeout = 0;
5070                         break;
5071                 case HPSA_GET_RAID_MAP:
5072                         c->Request.CDBLen = 12;
5073                         c->Request.type_attr_dir =
5074                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5075                         c->Request.Timeout = 0;
5076                         c->Request.CDB[0] = HPSA_CISS_READ;
5077                         c->Request.CDB[1] = cmd;
5078                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5079                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5080                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5081                         c->Request.CDB[9] = size & 0xFF;
5082                         break;
5083                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
5084                         c->Request.CDBLen = 10;
5085                         c->Request.type_attr_dir =
5086                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5087                         c->Request.Timeout = 0;
5088                         c->Request.CDB[0] = BMIC_READ;
5089                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5090                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5091                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5092                         break;
5093                 default:
5094                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5095                         BUG();
5096                         return -1;
5097                 }
5098         } else if (cmd_type == TYPE_MSG) {
5099                 switch (cmd) {
5100
5101                 case  HPSA_DEVICE_RESET_MSG:
5102                         c->Request.CDBLen = 16;
5103                         c->Request.type_attr_dir =
5104                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5105                         c->Request.Timeout = 0; /* Don't time out */
5106                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5107                         c->Request.CDB[0] =  cmd;
5108                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5109                         /* If bytes 4-7 are zero, it means reset the */
5110                         /* LunID device */
5111                         c->Request.CDB[4] = 0x00;
5112                         c->Request.CDB[5] = 0x00;
5113                         c->Request.CDB[6] = 0x00;
5114                         c->Request.CDB[7] = 0x00;
5115                         break;
5116                 case  HPSA_ABORT_MSG:
5117                         a = buff;       /* point to command to be aborted */
5118                         dev_dbg(&h->pdev->dev,
5119                                 "Abort Tag:0x%016llx request Tag:0x%016llx",
5120                                 a->Header.tag, c->Header.tag);
5121                         c->Request.CDBLen = 16;
5122                         c->Request.type_attr_dir =
5123                                         TYPE_ATTR_DIR(cmd_type,
5124                                                 ATTR_SIMPLE, XFER_WRITE);
5125                         c->Request.Timeout = 0; /* Don't time out */
5126                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5127                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5128                         c->Request.CDB[2] = 0x00; /* reserved */
5129                         c->Request.CDB[3] = 0x00; /* reserved */
5130                         /* Tag to abort goes in CDB[4]-CDB[11] */
5131                         memcpy(&c->Request.CDB[4], &a->Header.tag,
5132                                 sizeof(a->Header.tag));
5133                         c->Request.CDB[12] = 0x00; /* reserved */
5134                         c->Request.CDB[13] = 0x00; /* reserved */
5135                         c->Request.CDB[14] = 0x00; /* reserved */
5136                         c->Request.CDB[15] = 0x00; /* reserved */
5137                 break;
5138                 default:
5139                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
5140                                 cmd);
5141                         BUG();
5142                 }
5143         } else {
5144                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5145                 BUG();
5146         }
5147
5148         switch (GET_DIR(c->Request.type_attr_dir)) {
5149         case XFER_READ:
5150                 pci_dir = PCI_DMA_FROMDEVICE;
5151                 break;
5152         case XFER_WRITE:
5153                 pci_dir = PCI_DMA_TODEVICE;
5154                 break;
5155         case XFER_NONE:
5156                 pci_dir = PCI_DMA_NONE;
5157                 break;
5158         default:
5159                 pci_dir = PCI_DMA_BIDIRECTIONAL;
5160         }
5161         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5162                 return -1;
5163         return 0;
5164 }
5165
5166 /*
5167  * Map (physical) PCI mem into (virtual) kernel space
5168  */
5169 static void __iomem *remap_pci_mem(ulong base, ulong size)
5170 {
5171         ulong page_base = ((ulong) base) & PAGE_MASK;
5172         ulong page_offs = ((ulong) base) - page_base;
5173         void __iomem *page_remapped = ioremap_nocache(page_base,
5174                 page_offs + size);
5175
5176         return page_remapped ? (page_remapped + page_offs) : NULL;
5177 }
5178
5179 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5180 {
5181         return h->access.command_completed(h, q);
5182 }
5183
5184 static inline bool interrupt_pending(struct ctlr_info *h)
5185 {
5186         return h->access.intr_pending(h);
5187 }
5188
5189 static inline long interrupt_not_for_us(struct ctlr_info *h)
5190 {
5191         return (h->access.intr_pending(h) == 0) ||
5192                 (h->interrupts_enabled == 0);
5193 }
5194
5195 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5196         u32 raw_tag)
5197 {
5198         if (unlikely(tag_index >= h->nr_cmds)) {
5199                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5200                 return 1;
5201         }
5202         return 0;
5203 }
5204
5205 static inline void finish_cmd(struct CommandList *c)
5206 {
5207         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5208         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5209                         || c->cmd_type == CMD_IOACCEL2))
5210                 complete_scsi_command(c);
5211         else if (c->cmd_type == CMD_IOCTL_PEND)
5212                 complete(c->waiting);
5213 }
5214
5215
5216 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5217 {
5218 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5219 #define HPSA_SIMPLE_ERROR_BITS 0x03
5220         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5221                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
5222         return tag & ~HPSA_PERF_ERROR_BITS;
5223 }
5224
5225 /* process completion of an indexed ("direct lookup") command */
5226 static inline void process_indexed_cmd(struct ctlr_info *h,
5227         u32 raw_tag)
5228 {
5229         u32 tag_index;
5230         struct CommandList *c;
5231
5232         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
5233         if (!bad_tag(h, tag_index, raw_tag)) {
5234                 c = h->cmd_pool + tag_index;
5235                 finish_cmd(c);
5236         }
5237 }
5238
5239 /* Some controllers, like p400, will give us one interrupt
5240  * after a soft reset, even if we turned interrupts off.
5241  * Only need to check for this in the hpsa_xxx_discard_completions
5242  * functions.
5243  */
5244 static int ignore_bogus_interrupt(struct ctlr_info *h)
5245 {
5246         if (likely(!reset_devices))
5247                 return 0;
5248
5249         if (likely(h->interrupts_enabled))
5250                 return 0;
5251
5252         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5253                 "(known firmware bug.)  Ignoring.\n");
5254
5255         return 1;
5256 }
5257
5258 /*
5259  * Convert &h->q[x] (passed to interrupt handlers) back to h.
5260  * Relies on (h-q[x] == x) being true for x such that
5261  * 0 <= x < MAX_REPLY_QUEUES.
5262  */
5263 static struct ctlr_info *queue_to_hba(u8 *queue)
5264 {
5265         return container_of((queue - *queue), struct ctlr_info, q[0]);
5266 }
5267
5268 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5269 {
5270         struct ctlr_info *h = queue_to_hba(queue);
5271         u8 q = *(u8 *) queue;
5272         u32 raw_tag;
5273
5274         if (ignore_bogus_interrupt(h))
5275                 return IRQ_NONE;
5276
5277         if (interrupt_not_for_us(h))
5278                 return IRQ_NONE;
5279         h->last_intr_timestamp = get_jiffies_64();
5280         while (interrupt_pending(h)) {
5281                 raw_tag = get_next_completion(h, q);
5282                 while (raw_tag != FIFO_EMPTY)
5283                         raw_tag = next_command(h, q);
5284         }
5285         return IRQ_HANDLED;
5286 }
5287
5288 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5289 {
5290         struct ctlr_info *h = queue_to_hba(queue);
5291         u32 raw_tag;
5292         u8 q = *(u8 *) queue;
5293
5294         if (ignore_bogus_interrupt(h))
5295                 return IRQ_NONE;
5296
5297         h->last_intr_timestamp = get_jiffies_64();
5298         raw_tag = get_next_completion(h, q);
5299         while (raw_tag != FIFO_EMPTY)
5300                 raw_tag = next_command(h, q);
5301         return IRQ_HANDLED;
5302 }
5303
5304 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5305 {
5306         struct ctlr_info *h = queue_to_hba((u8 *) queue);
5307         u32 raw_tag;
5308         u8 q = *(u8 *) queue;
5309
5310         if (interrupt_not_for_us(h))
5311                 return IRQ_NONE;
5312         h->last_intr_timestamp = get_jiffies_64();
5313         while (interrupt_pending(h)) {
5314                 raw_tag = get_next_completion(h, q);
5315                 while (raw_tag != FIFO_EMPTY) {
5316                         process_indexed_cmd(h, raw_tag);
5317                         raw_tag = next_command(h, q);
5318                 }
5319         }
5320         return IRQ_HANDLED;
5321 }
5322
5323 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5324 {
5325         struct ctlr_info *h = queue_to_hba(queue);
5326         u32 raw_tag;
5327         u8 q = *(u8 *) queue;
5328
5329         h->last_intr_timestamp = get_jiffies_64();
5330         raw_tag = get_next_completion(h, q);
5331         while (raw_tag != FIFO_EMPTY) {
5332                 process_indexed_cmd(h, raw_tag);
5333                 raw_tag = next_command(h, q);
5334         }
5335         return IRQ_HANDLED;
5336 }
5337
5338 /* Send a message CDB to the firmware. Careful, this only works
5339  * in simple mode, not performant mode due to the tag lookup.
5340  * We only ever use this immediately after a controller reset.
5341  */
5342 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5343                         unsigned char type)
5344 {
5345         struct Command {
5346                 struct CommandListHeader CommandHeader;
5347                 struct RequestBlock Request;
5348                 struct ErrDescriptor ErrorDescriptor;
5349         };
5350         struct Command *cmd;
5351         static const size_t cmd_sz = sizeof(*cmd) +
5352                                         sizeof(cmd->ErrorDescriptor);
5353         dma_addr_t paddr64;
5354         __le32 paddr32;
5355         u32 tag;
5356         void __iomem *vaddr;
5357         int i, err;
5358
5359         vaddr = pci_ioremap_bar(pdev, 0);
5360         if (vaddr == NULL)
5361                 return -ENOMEM;
5362
5363         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
5364          * CCISS commands, so they must be allocated from the lower 4GiB of
5365          * memory.
5366          */
5367         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5368         if (err) {
5369                 iounmap(vaddr);
5370                 return err;
5371         }
5372
5373         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5374         if (cmd == NULL) {
5375                 iounmap(vaddr);
5376                 return -ENOMEM;
5377         }
5378
5379         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
5380          * although there's no guarantee, we assume that the address is at
5381          * least 4-byte aligned (most likely, it's page-aligned).
5382          */
5383         paddr32 = cpu_to_le32(paddr64);
5384
5385         cmd->CommandHeader.ReplyQueue = 0;
5386         cmd->CommandHeader.SGList = 0;
5387         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
5388         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
5389         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5390
5391         cmd->Request.CDBLen = 16;
5392         cmd->Request.type_attr_dir =
5393                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
5394         cmd->Request.Timeout = 0; /* Don't time out */
5395         cmd->Request.CDB[0] = opcode;
5396         cmd->Request.CDB[1] = type;
5397         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5398         cmd->ErrorDescriptor.Addr =
5399                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
5400         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
5401
5402         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
5403
5404         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5405                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5406                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
5407                         break;
5408                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5409         }
5410
5411         iounmap(vaddr);
5412
5413         /* we leak the DMA buffer here ... no choice since the controller could
5414          *  still complete the command.
5415          */
5416         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5417                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5418                         opcode, type);
5419                 return -ETIMEDOUT;
5420         }
5421
5422         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5423
5424         if (tag & HPSA_ERROR_BIT) {
5425                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5426                         opcode, type);
5427                 return -EIO;
5428         }
5429
5430         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5431                 opcode, type);
5432         return 0;
5433 }
5434
5435 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5436
5437 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5438         void __iomem *vaddr, u32 use_doorbell)
5439 {
5440
5441         if (use_doorbell) {
5442                 /* For everything after the P600, the PCI power state method
5443                  * of resetting the controller doesn't work, so we have this
5444                  * other way using the doorbell register.
5445                  */
5446                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
5447                 writel(use_doorbell, vaddr + SA5_DOORBELL);
5448
5449                 /* PMC hardware guys tell us we need a 10 second delay after
5450                  * doorbell reset and before any attempt to talk to the board
5451                  * at all to ensure that this actually works and doesn't fall
5452                  * over in some weird corner cases.
5453                  */
5454                 msleep(10000);
5455         } else { /* Try to do it the PCI power state way */
5456
5457                 /* Quoting from the Open CISS Specification: "The Power
5458                  * Management Control/Status Register (CSR) controls the power
5459                  * state of the device.  The normal operating state is D0,
5460                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
5461                  * the controller, place the interface device in D3 then to D0,
5462                  * this causes a secondary PCI reset which will reset the
5463                  * controller." */
5464
5465                 int rc = 0;
5466
5467                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5468
5469                 /* enter the D3hot power management state */
5470                 rc = pci_set_power_state(pdev, PCI_D3hot);
5471                 if (rc)
5472                         return rc;
5473
5474                 msleep(500);
5475
5476                 /* enter the D0 power management state */
5477                 rc = pci_set_power_state(pdev, PCI_D0);
5478                 if (rc)
5479                         return rc;
5480
5481                 /*
5482                  * The P600 requires a small delay when changing states.
5483                  * Otherwise we may think the board did not reset and we bail.
5484                  * This for kdump only and is particular to the P600.
5485                  */
5486                 msleep(500);
5487         }
5488         return 0;
5489 }
5490
5491 static void init_driver_version(char *driver_version, int len)
5492 {
5493         memset(driver_version, 0, len);
5494         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5495 }
5496
5497 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5498 {
5499         char *driver_version;
5500         int i, size = sizeof(cfgtable->driver_version);
5501
5502         driver_version = kmalloc(size, GFP_KERNEL);
5503         if (!driver_version)
5504                 return -ENOMEM;
5505
5506         init_driver_version(driver_version, size);
5507         for (i = 0; i < size; i++)
5508                 writeb(driver_version[i], &cfgtable->driver_version[i]);
5509         kfree(driver_version);
5510         return 0;
5511 }
5512
5513 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5514                                           unsigned char *driver_ver)
5515 {
5516         int i;
5517
5518         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5519                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
5520 }
5521
5522 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5523 {
5524
5525         char *driver_ver, *old_driver_ver;
5526         int rc, size = sizeof(cfgtable->driver_version);
5527
5528         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5529         if (!old_driver_ver)
5530                 return -ENOMEM;
5531         driver_ver = old_driver_ver + size;
5532
5533         /* After a reset, the 32 bytes of "driver version" in the cfgtable
5534          * should have been changed, otherwise we know the reset failed.
5535          */
5536         init_driver_version(old_driver_ver, size);
5537         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5538         rc = !memcmp(driver_ver, old_driver_ver, size);
5539         kfree(old_driver_ver);
5540         return rc;
5541 }
5542 /* This does a hard reset of the controller using PCI power management
5543  * states or the using the doorbell register.
5544  */
5545 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5546 {
5547         u64 cfg_offset;
5548         u32 cfg_base_addr;
5549         u64 cfg_base_addr_index;
5550         void __iomem *vaddr;
5551         unsigned long paddr;
5552         u32 misc_fw_support;
5553         int rc;
5554         struct CfgTable __iomem *cfgtable;
5555         u32 use_doorbell;
5556         u32 board_id;
5557         u16 command_register;
5558
5559         /* For controllers as old as the P600, this is very nearly
5560          * the same thing as
5561          *
5562          * pci_save_state(pci_dev);
5563          * pci_set_power_state(pci_dev, PCI_D3hot);
5564          * pci_set_power_state(pci_dev, PCI_D0);
5565          * pci_restore_state(pci_dev);
5566          *
5567          * For controllers newer than the P600, the pci power state
5568          * method of resetting doesn't work so we have another way
5569          * using the doorbell register.
5570          */
5571
5572         rc = hpsa_lookup_board_id(pdev, &board_id);
5573         if (rc < 0) {
5574                 dev_warn(&pdev->dev, "Board ID not found\n");
5575                 return rc;
5576         }
5577         if (!ctlr_is_resettable(board_id)) {
5578                 dev_warn(&pdev->dev, "Controller not resettable\n");
5579                 return -ENODEV;
5580         }
5581
5582         /* if controller is soft- but not hard resettable... */
5583         if (!ctlr_is_hard_resettable(board_id))
5584                 return -ENOTSUPP; /* try soft reset later. */
5585
5586         /* Save the PCI command register */
5587         pci_read_config_word(pdev, 4, &command_register);
5588         pci_save_state(pdev);
5589
5590         /* find the first memory BAR, so we can find the cfg table */
5591         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5592         if (rc)
5593                 return rc;
5594         vaddr = remap_pci_mem(paddr, 0x250);
5595         if (!vaddr)
5596                 return -ENOMEM;
5597
5598         /* find cfgtable in order to check if reset via doorbell is supported */
5599         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5600                                         &cfg_base_addr_index, &cfg_offset);
5601         if (rc)
5602                 goto unmap_vaddr;
5603         cfgtable = remap_pci_mem(pci_resource_start(pdev,
5604                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5605         if (!cfgtable) {
5606                 rc = -ENOMEM;
5607                 goto unmap_vaddr;
5608         }
5609         rc = write_driver_ver_to_cfgtable(cfgtable);
5610         if (rc)
5611                 goto unmap_cfgtable;
5612
5613         /* If reset via doorbell register is supported, use that.
5614          * There are two such methods.  Favor the newest method.
5615          */
5616         misc_fw_support = readl(&cfgtable->misc_fw_support);
5617         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5618         if (use_doorbell) {
5619                 use_doorbell = DOORBELL_CTLR_RESET2;
5620         } else {
5621                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
5622                 if (use_doorbell) {
5623                         dev_warn(&pdev->dev,
5624                                 "Soft reset not supported. Firmware update is required.\n");
5625                         rc = -ENOTSUPP; /* try soft reset */
5626                         goto unmap_cfgtable;
5627                 }
5628         }
5629
5630         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
5631         if (rc)
5632                 goto unmap_cfgtable;
5633
5634         pci_restore_state(pdev);
5635         pci_write_config_word(pdev, 4, command_register);
5636
5637         /* Some devices (notably the HP Smart Array 5i Controller)
5638            need a little pause here */
5639         msleep(HPSA_POST_RESET_PAUSE_MSECS);
5640
5641         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
5642         if (rc) {
5643                 dev_warn(&pdev->dev,
5644                         "Failed waiting for board to become ready after hard reset\n");
5645                 goto unmap_cfgtable;
5646         }
5647
5648         rc = controller_reset_failed(vaddr);
5649         if (rc < 0)
5650                 goto unmap_cfgtable;
5651         if (rc) {
5652                 dev_warn(&pdev->dev, "Unable to successfully reset "
5653                         "controller. Will try soft reset.\n");
5654                 rc = -ENOTSUPP;
5655         } else {
5656                 dev_info(&pdev->dev, "board ready after hard reset.\n");
5657         }
5658
5659 unmap_cfgtable:
5660         iounmap(cfgtable);
5661
5662 unmap_vaddr:
5663         iounmap(vaddr);
5664         return rc;
5665 }
5666
5667 /*
5668  *  We cannot read the structure directly, for portability we must use
5669  *   the io functions.
5670  *   This is for debug only.
5671  */
5672 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
5673 {
5674 #ifdef HPSA_DEBUG
5675         int i;
5676         char temp_name[17];
5677
5678         dev_info(dev, "Controller Configuration information\n");
5679         dev_info(dev, "------------------------------------\n");
5680         for (i = 0; i < 4; i++)
5681                 temp_name[i] = readb(&(tb->Signature[i]));
5682         temp_name[4] = '\0';
5683         dev_info(dev, "   Signature = %s\n", temp_name);
5684         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
5685         dev_info(dev, "   Transport methods supported = 0x%x\n",
5686                readl(&(tb->TransportSupport)));
5687         dev_info(dev, "   Transport methods active = 0x%x\n",
5688                readl(&(tb->TransportActive)));
5689         dev_info(dev, "   Requested transport Method = 0x%x\n",
5690                readl(&(tb->HostWrite.TransportRequest)));
5691         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
5692                readl(&(tb->HostWrite.CoalIntDelay)));
5693         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
5694                readl(&(tb->HostWrite.CoalIntCount)));
5695         dev_info(dev, "   Max outstanding commands = %d\n",
5696                readl(&(tb->CmdsOutMax)));
5697         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
5698         for (i = 0; i < 16; i++)
5699                 temp_name[i] = readb(&(tb->ServerName[i]));
5700         temp_name[16] = '\0';
5701         dev_info(dev, "   Server Name = %s\n", temp_name);
5702         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
5703                 readl(&(tb->HeartBeat)));
5704 #endif                          /* HPSA_DEBUG */
5705 }
5706
5707 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
5708 {
5709         int i, offset, mem_type, bar_type;
5710
5711         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
5712                 return 0;
5713         offset = 0;
5714         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5715                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
5716                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
5717                         offset += 4;
5718                 else {
5719                         mem_type = pci_resource_flags(pdev, i) &
5720                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
5721                         switch (mem_type) {
5722                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
5723                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
5724                                 offset += 4;    /* 32 bit */
5725                                 break;
5726                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
5727                                 offset += 8;
5728                                 break;
5729                         default:        /* reserved in PCI 2.2 */
5730                                 dev_warn(&pdev->dev,
5731                                        "base address is invalid\n");
5732                                 return -1;
5733                                 break;
5734                         }
5735                 }
5736                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
5737                         return i + 1;
5738         }
5739         return -1;
5740 }
5741
5742 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
5743  * controllers that are capable. If not, we use legacy INTx mode.
5744  */
5745
5746 static void hpsa_interrupt_mode(struct ctlr_info *h)
5747 {
5748 #ifdef CONFIG_PCI_MSI
5749         int err, i;
5750         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
5751
5752         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
5753                 hpsa_msix_entries[i].vector = 0;
5754                 hpsa_msix_entries[i].entry = i;
5755         }
5756
5757         /* Some boards advertise MSI but don't really support it */
5758         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
5759             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
5760                 goto default_int_mode;
5761         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
5762                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
5763                 h->msix_vector = MAX_REPLY_QUEUES;
5764                 if (h->msix_vector > num_online_cpus())
5765                         h->msix_vector = num_online_cpus();
5766                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
5767                                             1, h->msix_vector);
5768                 if (err < 0) {
5769                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
5770                         h->msix_vector = 0;
5771                         goto single_msi_mode;
5772                 } else if (err < h->msix_vector) {
5773                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
5774                                "available\n", err);
5775                 }
5776                 h->msix_vector = err;
5777                 for (i = 0; i < h->msix_vector; i++)
5778                         h->intr[i] = hpsa_msix_entries[i].vector;
5779                 return;
5780         }
5781 single_msi_mode:
5782         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
5783                 dev_info(&h->pdev->dev, "MSI capable controller\n");
5784                 if (!pci_enable_msi(h->pdev))
5785                         h->msi_vector = 1;
5786                 else
5787                         dev_warn(&h->pdev->dev, "MSI init failed\n");
5788         }
5789 default_int_mode:
5790 #endif                          /* CONFIG_PCI_MSI */
5791         /* if we get here we're going to use the default interrupt mode */
5792         h->intr[h->intr_mode] = h->pdev->irq;
5793 }
5794
5795 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
5796 {
5797         int i;
5798         u32 subsystem_vendor_id, subsystem_device_id;
5799
5800         subsystem_vendor_id = pdev->subsystem_vendor;
5801         subsystem_device_id = pdev->subsystem_device;
5802         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
5803                     subsystem_vendor_id;
5804
5805         for (i = 0; i < ARRAY_SIZE(products); i++)
5806                 if (*board_id == products[i].board_id)
5807                         return i;
5808
5809         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
5810                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
5811                 !hpsa_allow_any) {
5812                 dev_warn(&pdev->dev, "unrecognized board ID: "
5813                         "0x%08x, ignoring.\n", *board_id);
5814                         return -ENODEV;
5815         }
5816         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
5817 }
5818
5819 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
5820                                     unsigned long *memory_bar)
5821 {
5822         int i;
5823
5824         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
5825                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
5826                         /* addressing mode bits already removed */
5827                         *memory_bar = pci_resource_start(pdev, i);
5828                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
5829                                 *memory_bar);
5830                         return 0;
5831                 }
5832         dev_warn(&pdev->dev, "no memory BAR found\n");
5833         return -ENODEV;
5834 }
5835
5836 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
5837                                      int wait_for_ready)
5838 {
5839         int i, iterations;
5840         u32 scratchpad;
5841         if (wait_for_ready)
5842                 iterations = HPSA_BOARD_READY_ITERATIONS;
5843         else
5844                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
5845
5846         for (i = 0; i < iterations; i++) {
5847                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
5848                 if (wait_for_ready) {
5849                         if (scratchpad == HPSA_FIRMWARE_READY)
5850                                 return 0;
5851                 } else {
5852                         if (scratchpad != HPSA_FIRMWARE_READY)
5853                                 return 0;
5854                 }
5855                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
5856         }
5857         dev_warn(&pdev->dev, "board not ready, timed out.\n");
5858         return -ENODEV;
5859 }
5860
5861 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
5862                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
5863                                u64 *cfg_offset)
5864 {
5865         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
5866         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
5867         *cfg_base_addr &= (u32) 0x0000ffff;
5868         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
5869         if (*cfg_base_addr_index == -1) {
5870                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
5871                 return -ENODEV;
5872         }
5873         return 0;
5874 }
5875
5876 static int hpsa_find_cfgtables(struct ctlr_info *h)
5877 {
5878         u64 cfg_offset;
5879         u32 cfg_base_addr;
5880         u64 cfg_base_addr_index;
5881         u32 trans_offset;
5882         int rc;
5883
5884         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
5885                 &cfg_base_addr_index, &cfg_offset);
5886         if (rc)
5887                 return rc;
5888         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
5889                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
5890         if (!h->cfgtable) {
5891                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
5892                 return -ENOMEM;
5893         }
5894         rc = write_driver_ver_to_cfgtable(h->cfgtable);
5895         if (rc)
5896                 return rc;
5897         /* Find performant mode table. */
5898         trans_offset = readl(&h->cfgtable->TransMethodOffset);
5899         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
5900                                 cfg_base_addr_index)+cfg_offset+trans_offset,
5901                                 sizeof(*h->transtable));
5902         if (!h->transtable)
5903                 return -ENOMEM;
5904         return 0;
5905 }
5906
5907 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
5908 {
5909         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
5910
5911         /* Limit commands in memory limited kdump scenario. */
5912         if (reset_devices && h->max_commands > 32)
5913                 h->max_commands = 32;
5914
5915         if (h->max_commands < 16) {
5916                 dev_warn(&h->pdev->dev, "Controller reports "
5917                         "max supported commands of %d, an obvious lie. "
5918                         "Using 16.  Ensure that firmware is up to date.\n",
5919                         h->max_commands);
5920                 h->max_commands = 16;
5921         }
5922 }
5923
5924 /* If the controller reports that the total max sg entries is greater than 512,
5925  * then we know that chained SG blocks work.  (Original smart arrays did not
5926  * support chained SG blocks and would return zero for max sg entries.)
5927  */
5928 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
5929 {
5930         return h->maxsgentries > 512;
5931 }
5932
5933 /* Interrogate the hardware for some limits:
5934  * max commands, max SG elements without chaining, and with chaining,
5935  * SG chain block size, etc.
5936  */
5937 static void hpsa_find_board_params(struct ctlr_info *h)
5938 {
5939         hpsa_get_max_perf_mode_cmds(h);
5940         h->nr_cmds = h->max_commands;
5941         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
5942         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
5943         if (hpsa_supports_chained_sg_blocks(h)) {
5944                 /* Limit in-command s/g elements to 32 save dma'able memory. */
5945                 h->max_cmd_sg_entries = 32;
5946                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
5947                 h->maxsgentries--; /* save one for chain pointer */
5948         } else {
5949                 /*
5950                  * Original smart arrays supported at most 31 s/g entries
5951                  * embedded inline in the command (trying to use more
5952                  * would lock up the controller)
5953                  */
5954                 h->max_cmd_sg_entries = 31;
5955                 h->maxsgentries = 31; /* default to traditional values */
5956                 h->chainsize = 0;
5957         }
5958
5959         /* Find out what task management functions are supported and cache */
5960         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
5961         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
5962                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
5963         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5964                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
5965 }
5966
5967 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
5968 {
5969         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
5970                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
5971                 return false;
5972         }
5973         return true;
5974 }
5975
5976 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
5977 {
5978         u32 driver_support;
5979
5980         driver_support = readl(&(h->cfgtable->driver_support));
5981         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
5982 #ifdef CONFIG_X86
5983         driver_support |= ENABLE_SCSI_PREFETCH;
5984 #endif
5985         driver_support |= ENABLE_UNIT_ATTN;
5986         writel(driver_support, &(h->cfgtable->driver_support));
5987 }
5988
5989 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
5990  * in a prefetch beyond physical memory.
5991  */
5992 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
5993 {
5994         u32 dma_prefetch;
5995
5996         if (h->board_id != 0x3225103C)
5997                 return;
5998         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
5999         dma_prefetch |= 0x8000;
6000         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6001 }
6002
6003 static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6004 {
6005         int i;
6006         u32 doorbell_value;
6007         unsigned long flags;
6008         /* wait until the clear_event_notify bit 6 is cleared by controller. */
6009         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6010                 spin_lock_irqsave(&h->lock, flags);
6011                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6012                 spin_unlock_irqrestore(&h->lock, flags);
6013                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6014                         break;
6015                 /* delay and try again */
6016                 msleep(20);
6017         }
6018 }
6019
6020 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6021 {
6022         int i;
6023         u32 doorbell_value;
6024         unsigned long flags;
6025
6026         /* under certain very rare conditions, this can take awhile.
6027          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6028          * as we enter this code.)
6029          */
6030         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6031                 spin_lock_irqsave(&h->lock, flags);
6032                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6033                 spin_unlock_irqrestore(&h->lock, flags);
6034                 if (!(doorbell_value & CFGTBL_ChangeReq))
6035                         break;
6036                 /* delay and try again */
6037                 usleep_range(10000, 20000);
6038         }
6039 }
6040
6041 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6042 {
6043         u32 trans_support;
6044
6045         trans_support = readl(&(h->cfgtable->TransportSupport));
6046         if (!(trans_support & SIMPLE_MODE))
6047                 return -ENOTSUPP;
6048
6049         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6050
6051         /* Update the field, and then ring the doorbell */
6052         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6053         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6054         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6055         hpsa_wait_for_mode_change_ack(h);
6056         print_cfg_table(&h->pdev->dev, h->cfgtable);
6057         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6058                 goto error;
6059         h->transMethod = CFGTBL_Trans_Simple;
6060         return 0;
6061 error:
6062         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
6063         return -ENODEV;
6064 }
6065
6066 static int hpsa_pci_init(struct ctlr_info *h)
6067 {
6068         int prod_index, err;
6069
6070         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6071         if (prod_index < 0)
6072                 return prod_index;
6073         h->product_name = products[prod_index].product_name;
6074         h->access = *(products[prod_index].access);
6075
6076         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6077                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6078
6079         err = pci_enable_device(h->pdev);
6080         if (err) {
6081                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6082                 return err;
6083         }
6084
6085         err = pci_request_regions(h->pdev, HPSA);
6086         if (err) {
6087                 dev_err(&h->pdev->dev,
6088                         "cannot obtain PCI resources, aborting\n");
6089                 return err;
6090         }
6091
6092         pci_set_master(h->pdev);
6093
6094         hpsa_interrupt_mode(h);
6095         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6096         if (err)
6097                 goto err_out_free_res;
6098         h->vaddr = remap_pci_mem(h->paddr, 0x250);
6099         if (!h->vaddr) {
6100                 err = -ENOMEM;
6101                 goto err_out_free_res;
6102         }
6103         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6104         if (err)
6105                 goto err_out_free_res;
6106         err = hpsa_find_cfgtables(h);
6107         if (err)
6108                 goto err_out_free_res;
6109         hpsa_find_board_params(h);
6110
6111         if (!hpsa_CISS_signature_present(h)) {
6112                 err = -ENODEV;
6113                 goto err_out_free_res;
6114         }
6115         hpsa_set_driver_support_bits(h);
6116         hpsa_p600_dma_prefetch_quirk(h);
6117         err = hpsa_enter_simple_mode(h);
6118         if (err)
6119                 goto err_out_free_res;
6120         return 0;
6121
6122 err_out_free_res:
6123         if (h->transtable)
6124                 iounmap(h->transtable);
6125         if (h->cfgtable)
6126                 iounmap(h->cfgtable);
6127         if (h->vaddr)
6128                 iounmap(h->vaddr);
6129         pci_disable_device(h->pdev);
6130         pci_release_regions(h->pdev);
6131         return err;
6132 }
6133
6134 static void hpsa_hba_inquiry(struct ctlr_info *h)
6135 {
6136         int rc;
6137
6138 #define HBA_INQUIRY_BYTE_COUNT 64
6139         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6140         if (!h->hba_inquiry_data)
6141                 return;
6142         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6143                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6144         if (rc != 0) {
6145                 kfree(h->hba_inquiry_data);
6146                 h->hba_inquiry_data = NULL;
6147         }
6148 }
6149
6150 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6151 {
6152         int rc, i;
6153         void __iomem *vaddr;
6154
6155         if (!reset_devices)
6156                 return 0;
6157
6158         /* kdump kernel is loading, we don't know in which state is
6159          * the pci interface. The dev->enable_cnt is equal zero
6160          * so we call enable+disable, wait a while and switch it on.
6161          */
6162         rc = pci_enable_device(pdev);
6163         if (rc) {
6164                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
6165                 return -ENODEV;
6166         }
6167         pci_disable_device(pdev);
6168         msleep(260);                    /* a randomly chosen number */
6169         rc = pci_enable_device(pdev);
6170         if (rc) {
6171                 dev_warn(&pdev->dev, "failed to enable device.\n");
6172                 return -ENODEV;
6173         }
6174
6175         pci_set_master(pdev);
6176
6177         vaddr = pci_ioremap_bar(pdev, 0);
6178         if (vaddr == NULL) {
6179                 rc = -ENOMEM;
6180                 goto out_disable;
6181         }
6182         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
6183         iounmap(vaddr);
6184
6185         /* Reset the controller with a PCI power-cycle or via doorbell */
6186         rc = hpsa_kdump_hard_reset_controller(pdev);
6187
6188         /* -ENOTSUPP here means we cannot reset the controller
6189          * but it's already (and still) up and running in
6190          * "performant mode".  Or, it might be 640x, which can't reset
6191          * due to concerns about shared bbwc between 6402/6404 pair.
6192          */
6193         if (rc)
6194                 goto out_disable;
6195
6196         /* Now try to get the controller to respond to a no-op */
6197         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
6198         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6199                 if (hpsa_noop(pdev) == 0)
6200                         break;
6201                 else
6202                         dev_warn(&pdev->dev, "no-op failed%s\n",
6203                                         (i < 11 ? "; re-trying" : ""));
6204         }
6205
6206 out_disable:
6207
6208         pci_disable_device(pdev);
6209         return rc;
6210 }
6211
6212 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6213 {
6214         h->cmd_pool_bits = kzalloc(
6215                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6216                 sizeof(unsigned long), GFP_KERNEL);
6217         h->cmd_pool = pci_alloc_consistent(h->pdev,
6218                     h->nr_cmds * sizeof(*h->cmd_pool),
6219                     &(h->cmd_pool_dhandle));
6220         h->errinfo_pool = pci_alloc_consistent(h->pdev,
6221                     h->nr_cmds * sizeof(*h->errinfo_pool),
6222                     &(h->errinfo_pool_dhandle));
6223         if ((h->cmd_pool_bits == NULL)
6224             || (h->cmd_pool == NULL)
6225             || (h->errinfo_pool == NULL)) {
6226                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6227                 goto clean_up;
6228         }
6229         return 0;
6230 clean_up:
6231         hpsa_free_cmd_pool(h);
6232         return -ENOMEM;
6233 }
6234
6235 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6236 {
6237         kfree(h->cmd_pool_bits);
6238         if (h->cmd_pool)
6239                 pci_free_consistent(h->pdev,
6240                             h->nr_cmds * sizeof(struct CommandList),
6241                             h->cmd_pool, h->cmd_pool_dhandle);
6242         if (h->ioaccel2_cmd_pool)
6243                 pci_free_consistent(h->pdev,
6244                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6245                         h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6246         if (h->errinfo_pool)
6247                 pci_free_consistent(h->pdev,
6248                             h->nr_cmds * sizeof(struct ErrorInfo),
6249                             h->errinfo_pool,
6250                             h->errinfo_pool_dhandle);
6251         if (h->ioaccel_cmd_pool)
6252                 pci_free_consistent(h->pdev,
6253                         h->nr_cmds * sizeof(struct io_accel1_cmd),
6254                         h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6255 }
6256
6257 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6258 {
6259         int i, cpu;
6260
6261         cpu = cpumask_first(cpu_online_mask);
6262         for (i = 0; i < h->msix_vector; i++) {
6263                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6264                 cpu = cpumask_next(cpu, cpu_online_mask);
6265         }
6266 }
6267
6268 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
6269 static void hpsa_free_irqs(struct ctlr_info *h)
6270 {
6271         int i;
6272
6273         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6274                 /* Single reply queue, only one irq to free */
6275                 i = h->intr_mode;
6276                 irq_set_affinity_hint(h->intr[i], NULL);
6277                 free_irq(h->intr[i], &h->q[i]);
6278                 return;
6279         }
6280
6281         for (i = 0; i < h->msix_vector; i++) {
6282                 irq_set_affinity_hint(h->intr[i], NULL);
6283                 free_irq(h->intr[i], &h->q[i]);
6284         }
6285         for (; i < MAX_REPLY_QUEUES; i++)
6286                 h->q[i] = 0;
6287 }
6288
6289 /* returns 0 on success; cleans up and returns -Enn on error */
6290 static int hpsa_request_irqs(struct ctlr_info *h,
6291         irqreturn_t (*msixhandler)(int, void *),
6292         irqreturn_t (*intxhandler)(int, void *))
6293 {
6294         int rc, i;
6295
6296         /*
6297          * initialize h->q[x] = x so that interrupt handlers know which
6298          * queue to process.
6299          */
6300         for (i = 0; i < MAX_REPLY_QUEUES; i++)
6301                 h->q[i] = (u8) i;
6302
6303         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6304                 /* If performant mode and MSI-X, use multiple reply queues */
6305                 for (i = 0; i < h->msix_vector; i++) {
6306                         rc = request_irq(h->intr[i], msixhandler,
6307                                         0, h->devname,
6308                                         &h->q[i]);
6309                         if (rc) {
6310                                 int j;
6311
6312                                 dev_err(&h->pdev->dev,
6313                                         "failed to get irq %d for %s\n",
6314                                        h->intr[i], h->devname);
6315                                 for (j = 0; j < i; j++) {
6316                                         free_irq(h->intr[j], &h->q[j]);
6317                                         h->q[j] = 0;
6318                                 }
6319                                 for (; j < MAX_REPLY_QUEUES; j++)
6320                                         h->q[j] = 0;
6321                                 return rc;
6322                         }
6323                 }
6324                 hpsa_irq_affinity_hints(h);
6325         } else {
6326                 /* Use single reply pool */
6327                 if (h->msix_vector > 0 || h->msi_vector) {
6328                         rc = request_irq(h->intr[h->intr_mode],
6329                                 msixhandler, 0, h->devname,
6330                                 &h->q[h->intr_mode]);
6331                 } else {
6332                         rc = request_irq(h->intr[h->intr_mode],
6333                                 intxhandler, IRQF_SHARED, h->devname,
6334                                 &h->q[h->intr_mode]);
6335                 }
6336         }
6337         if (rc) {
6338                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6339                        h->intr[h->intr_mode], h->devname);
6340                 return -ENODEV;
6341         }
6342         return 0;
6343 }
6344
6345 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6346 {
6347         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6348                 HPSA_RESET_TYPE_CONTROLLER)) {
6349                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6350                 return -EIO;
6351         }
6352
6353         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6354         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6355                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6356                 return -1;
6357         }
6358
6359         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6360         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6361                 dev_warn(&h->pdev->dev, "Board failed to become ready "
6362                         "after soft reset.\n");
6363                 return -1;
6364         }
6365
6366         return 0;
6367 }
6368
6369 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6370 {
6371         hpsa_free_irqs(h);
6372 #ifdef CONFIG_PCI_MSI
6373         if (h->msix_vector) {
6374                 if (h->pdev->msix_enabled)
6375                         pci_disable_msix(h->pdev);
6376         } else if (h->msi_vector) {
6377                 if (h->pdev->msi_enabled)
6378                         pci_disable_msi(h->pdev);
6379         }
6380 #endif /* CONFIG_PCI_MSI */
6381 }
6382
6383 static void hpsa_free_reply_queues(struct ctlr_info *h)
6384 {
6385         int i;
6386
6387         for (i = 0; i < h->nreply_queues; i++) {
6388                 if (!h->reply_queue[i].head)
6389                         continue;
6390                 pci_free_consistent(h->pdev, h->reply_queue_size,
6391                         h->reply_queue[i].head, h->reply_queue[i].busaddr);
6392                 h->reply_queue[i].head = NULL;
6393                 h->reply_queue[i].busaddr = 0;
6394         }
6395 }
6396
6397 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6398 {
6399         hpsa_free_irqs_and_disable_msix(h);
6400         hpsa_free_sg_chain_blocks(h);
6401         hpsa_free_cmd_pool(h);
6402         kfree(h->ioaccel1_blockFetchTable);
6403         kfree(h->blockFetchTable);
6404         hpsa_free_reply_queues(h);
6405         if (h->vaddr)
6406                 iounmap(h->vaddr);
6407         if (h->transtable)
6408                 iounmap(h->transtable);
6409         if (h->cfgtable)
6410                 iounmap(h->cfgtable);
6411         pci_disable_device(h->pdev);
6412         pci_release_regions(h->pdev);
6413         kfree(h);
6414 }
6415
6416 /* Called when controller lockup detected. */
6417 static void fail_all_outstanding_cmds(struct ctlr_info *h)
6418 {
6419         int i;
6420         struct CommandList *c = NULL;
6421
6422         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
6423         for (i = 0; i < h->nr_cmds; i++) {
6424                 if (!test_bit(i & (BITS_PER_LONG - 1),
6425                                 h->cmd_pool_bits + (i / BITS_PER_LONG)))
6426                         continue;
6427                 c = h->cmd_pool + i;
6428                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6429                 finish_cmd(c);
6430         }
6431 }
6432
6433 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
6434 {
6435         int i, cpu;
6436
6437         cpu = cpumask_first(cpu_online_mask);
6438         for (i = 0; i < num_online_cpus(); i++) {
6439                 u32 *lockup_detected;
6440                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
6441                 *lockup_detected = value;
6442                 cpu = cpumask_next(cpu, cpu_online_mask);
6443         }
6444         wmb(); /* be sure the per-cpu variables are out to memory */
6445 }
6446
6447 static void controller_lockup_detected(struct ctlr_info *h)
6448 {
6449         unsigned long flags;
6450         u32 lockup_detected;
6451
6452         h->access.set_intr_mask(h, HPSA_INTR_OFF);
6453         spin_lock_irqsave(&h->lock, flags);
6454         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6455         if (!lockup_detected) {
6456                 /* no heartbeat, but controller gave us a zero. */
6457                 dev_warn(&h->pdev->dev,
6458                         "lockup detected but scratchpad register is zero\n");
6459                 lockup_detected = 0xffffffff;
6460         }
6461         set_lockup_detected_for_all_cpus(h, lockup_detected);
6462         spin_unlock_irqrestore(&h->lock, flags);
6463         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6464                         lockup_detected);
6465         pci_disable_device(h->pdev);
6466         spin_lock_irqsave(&h->lock, flags);
6467         fail_all_outstanding_cmds(h);
6468         spin_unlock_irqrestore(&h->lock, flags);
6469 }
6470
6471 static void detect_controller_lockup(struct ctlr_info *h)
6472 {
6473         u64 now;
6474         u32 heartbeat;
6475         unsigned long flags;
6476
6477         now = get_jiffies_64();
6478         /* If we've received an interrupt recently, we're ok. */
6479         if (time_after64(h->last_intr_timestamp +
6480                                 (h->heartbeat_sample_interval), now))
6481                 return;
6482
6483         /*
6484          * If we've already checked the heartbeat recently, we're ok.
6485          * This could happen if someone sends us a signal. We
6486          * otherwise don't care about signals in this thread.
6487          */
6488         if (time_after64(h->last_heartbeat_timestamp +
6489                                 (h->heartbeat_sample_interval), now))
6490                 return;
6491
6492         /* If heartbeat has not changed since we last looked, we're not ok. */
6493         spin_lock_irqsave(&h->lock, flags);
6494         heartbeat = readl(&h->cfgtable->HeartBeat);
6495         spin_unlock_irqrestore(&h->lock, flags);
6496         if (h->last_heartbeat == heartbeat) {
6497                 controller_lockup_detected(h);
6498                 return;
6499         }
6500
6501         /* We're ok. */
6502         h->last_heartbeat = heartbeat;
6503         h->last_heartbeat_timestamp = now;
6504 }
6505
6506 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6507 {
6508         int i;
6509         char *event_type;
6510
6511         /* Ask the controller to clear the events we're handling. */
6512         if ((h->transMethod & (CFGTBL_Trans_io_accel1
6513                         | CFGTBL_Trans_io_accel2)) &&
6514                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6515                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6516
6517                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6518                         event_type = "state change";
6519                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6520                         event_type = "configuration change";
6521                 /* Stop sending new RAID offload reqs via the IO accelerator */
6522                 scsi_block_requests(h->scsi_host);
6523                 for (i = 0; i < h->ndevices; i++)
6524                         h->dev[i]->offload_enabled = 0;
6525                 hpsa_drain_accel_commands(h);
6526                 /* Set 'accelerator path config change' bit */
6527                 dev_warn(&h->pdev->dev,
6528                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6529                         h->events, event_type);
6530                 writel(h->events, &(h->cfgtable->clear_event_notify));
6531                 /* Set the "clear event notify field update" bit 6 */
6532                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6533                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
6534                 hpsa_wait_for_clear_event_notify_ack(h);
6535                 scsi_unblock_requests(h->scsi_host);
6536         } else {
6537                 /* Acknowledge controller notification events. */
6538                 writel(h->events, &(h->cfgtable->clear_event_notify));
6539                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6540                 hpsa_wait_for_clear_event_notify_ack(h);
6541 #if 0
6542                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6543                 hpsa_wait_for_mode_change_ack(h);
6544 #endif
6545         }
6546         return;
6547 }
6548
6549 /* Check a register on the controller to see if there are configuration
6550  * changes (added/changed/removed logical drives, etc.) which mean that
6551  * we should rescan the controller for devices.
6552  * Also check flag for driver-initiated rescan.
6553  */
6554 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6555 {
6556         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6557                 return 0;
6558
6559         h->events = readl(&(h->cfgtable->event_notify));
6560         return h->events & RESCAN_REQUIRED_EVENT_BITS;
6561 }
6562
6563 /*
6564  * Check if any of the offline devices have become ready
6565  */
6566 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6567 {
6568         unsigned long flags;
6569         struct offline_device_entry *d;
6570         struct list_head *this, *tmp;
6571
6572         spin_lock_irqsave(&h->offline_device_lock, flags);
6573         list_for_each_safe(this, tmp, &h->offline_device_list) {
6574                 d = list_entry(this, struct offline_device_entry,
6575                                 offline_list);
6576                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6577                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
6578                         spin_lock_irqsave(&h->offline_device_lock, flags);
6579                         list_del(&d->offline_list);
6580                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
6581                         return 1;
6582                 }
6583                 spin_lock_irqsave(&h->offline_device_lock, flags);
6584         }
6585         spin_unlock_irqrestore(&h->offline_device_lock, flags);
6586         return 0;
6587 }
6588
6589
6590 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6591 {
6592         unsigned long flags;
6593         struct ctlr_info *h = container_of(to_delayed_work(work),
6594                                         struct ctlr_info, monitor_ctlr_work);
6595         detect_controller_lockup(h);
6596         if (lockup_detected(h))
6597                 return;
6598
6599         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6600                 scsi_host_get(h->scsi_host);
6601                 hpsa_ack_ctlr_events(h);
6602                 hpsa_scan_start(h->scsi_host);
6603                 scsi_host_put(h->scsi_host);
6604         }
6605
6606         spin_lock_irqsave(&h->lock, flags);
6607         if (h->remove_in_progress) {
6608                 spin_unlock_irqrestore(&h->lock, flags);
6609                 return;
6610         }
6611         schedule_delayed_work(&h->monitor_ctlr_work,
6612                                 h->heartbeat_sample_interval);
6613         spin_unlock_irqrestore(&h->lock, flags);
6614 }
6615
6616 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6617 {
6618         int dac, rc;
6619         struct ctlr_info *h;
6620         int try_soft_reset = 0;
6621         unsigned long flags;
6622
6623         if (number_of_controllers == 0)
6624                 printk(KERN_INFO DRIVER_NAME "\n");
6625
6626         rc = hpsa_init_reset_devices(pdev);
6627         if (rc) {
6628                 if (rc != -ENOTSUPP)
6629                         return rc;
6630                 /* If the reset fails in a particular way (it has no way to do
6631                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
6632                  * a soft reset once we get the controller configured up to the
6633                  * point that it can accept a command.
6634                  */
6635                 try_soft_reset = 1;
6636                 rc = 0;
6637         }
6638
6639 reinit_after_soft_reset:
6640
6641         /* Command structures must be aligned on a 32-byte boundary because
6642          * the 5 lower bits of the address are used by the hardware. and by
6643          * the driver.  See comments in hpsa.h for more info.
6644          */
6645         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6646         h = kzalloc(sizeof(*h), GFP_KERNEL);
6647         if (!h)
6648                 return -ENOMEM;
6649
6650         h->pdev = pdev;
6651         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6652         INIT_LIST_HEAD(&h->offline_device_list);
6653         spin_lock_init(&h->lock);
6654         spin_lock_init(&h->offline_device_lock);
6655         spin_lock_init(&h->scan_lock);
6656         spin_lock_init(&h->passthru_count_lock);
6657
6658         h->resubmit_wq = alloc_workqueue("hpsa", WQ_MEM_RECLAIM, 0);
6659         if (!h->resubmit_wq) {
6660                 dev_err(&h->pdev->dev, "Failed to allocate work queue\n");
6661                 rc = -ENOMEM;
6662                 goto clean1;
6663         }
6664         /* Allocate and clear per-cpu variable lockup_detected */
6665         h->lockup_detected = alloc_percpu(u32);
6666         if (!h->lockup_detected) {
6667                 rc = -ENOMEM;
6668                 goto clean1;
6669         }
6670         set_lockup_detected_for_all_cpus(h, 0);
6671
6672         rc = hpsa_pci_init(h);
6673         if (rc != 0)
6674                 goto clean1;
6675
6676         sprintf(h->devname, HPSA "%d", number_of_controllers);
6677         h->ctlr = number_of_controllers;
6678         number_of_controllers++;
6679
6680         /* configure PCI DMA stuff */
6681         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
6682         if (rc == 0) {
6683                 dac = 1;
6684         } else {
6685                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6686                 if (rc == 0) {
6687                         dac = 0;
6688                 } else {
6689                         dev_err(&pdev->dev, "no suitable DMA available\n");
6690                         goto clean1;
6691                 }
6692         }
6693
6694         /* make sure the board interrupts are off */
6695         h->access.set_intr_mask(h, HPSA_INTR_OFF);
6696
6697         if (hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6698                 goto clean2;
6699         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
6700                h->devname, pdev->device,
6701                h->intr[h->intr_mode], dac ? "" : " not");
6702         rc = hpsa_allocate_cmd_pool(h);
6703         if (rc)
6704                 goto clean2_and_free_irqs;
6705         if (hpsa_allocate_sg_chain_blocks(h))
6706                 goto clean4;
6707         init_waitqueue_head(&h->scan_wait_queue);
6708         h->scan_finished = 1; /* no scan currently in progress */
6709
6710         pci_set_drvdata(pdev, h);
6711         h->ndevices = 0;
6712         h->hba_mode_enabled = 0;
6713         h->scsi_host = NULL;
6714         spin_lock_init(&h->devlock);
6715         hpsa_put_ctlr_into_performant_mode(h);
6716
6717         /* At this point, the controller is ready to take commands.
6718          * Now, if reset_devices and the hard reset didn't work, try
6719          * the soft reset and see if that works.
6720          */
6721         if (try_soft_reset) {
6722
6723                 /* This is kind of gross.  We may or may not get a completion
6724                  * from the soft reset command, and if we do, then the value
6725                  * from the fifo may or may not be valid.  So, we wait 10 secs
6726                  * after the reset throwing away any completions we get during
6727                  * that time.  Unregister the interrupt handler and register
6728                  * fake ones to scoop up any residual completions.
6729                  */
6730                 spin_lock_irqsave(&h->lock, flags);
6731                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6732                 spin_unlock_irqrestore(&h->lock, flags);
6733                 hpsa_free_irqs(h);
6734                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
6735                                         hpsa_intx_discard_completions);
6736                 if (rc) {
6737                         dev_warn(&h->pdev->dev,
6738                                 "Failed to request_irq after soft reset.\n");
6739                         goto clean4;
6740                 }
6741
6742                 rc = hpsa_kdump_soft_reset(h);
6743                 if (rc)
6744                         /* Neither hard nor soft reset worked, we're hosed. */
6745                         goto clean4;
6746
6747                 dev_info(&h->pdev->dev, "Board READY.\n");
6748                 dev_info(&h->pdev->dev,
6749                         "Waiting for stale completions to drain.\n");
6750                 h->access.set_intr_mask(h, HPSA_INTR_ON);
6751                 msleep(10000);
6752                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6753
6754                 rc = controller_reset_failed(h->cfgtable);
6755                 if (rc)
6756                         dev_info(&h->pdev->dev,
6757                                 "Soft reset appears to have failed.\n");
6758
6759                 /* since the controller's reset, we have to go back and re-init
6760                  * everything.  Easiest to just forget what we've done and do it
6761                  * all over again.
6762                  */
6763                 hpsa_undo_allocations_after_kdump_soft_reset(h);
6764                 try_soft_reset = 0;
6765                 if (rc)
6766                         /* don't go to clean4, we already unallocated */
6767                         return -ENODEV;
6768
6769                 goto reinit_after_soft_reset;
6770         }
6771
6772                 /* Enable Accelerated IO path at driver layer */
6773                 h->acciopath_status = 1;
6774
6775
6776         /* Turn the interrupts on so we can service requests */
6777         h->access.set_intr_mask(h, HPSA_INTR_ON);
6778
6779         hpsa_hba_inquiry(h);
6780         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
6781
6782         /* Monitor the controller for firmware lockups */
6783         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
6784         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
6785         schedule_delayed_work(&h->monitor_ctlr_work,
6786                                 h->heartbeat_sample_interval);
6787         return 0;
6788
6789 clean4:
6790         hpsa_free_sg_chain_blocks(h);
6791         hpsa_free_cmd_pool(h);
6792 clean2_and_free_irqs:
6793         hpsa_free_irqs(h);
6794 clean2:
6795 clean1:
6796         if (h->resubmit_wq)
6797                 destroy_workqueue(h->resubmit_wq);
6798         if (h->lockup_detected)
6799                 free_percpu(h->lockup_detected);
6800         kfree(h);
6801         return rc;
6802 }
6803
6804 static void hpsa_flush_cache(struct ctlr_info *h)
6805 {
6806         char *flush_buf;
6807         struct CommandList *c;
6808
6809         /* Don't bother trying to flush the cache if locked up */
6810         if (unlikely(lockup_detected(h)))
6811                 return;
6812         flush_buf = kzalloc(4, GFP_KERNEL);
6813         if (!flush_buf)
6814                 return;
6815
6816         c = cmd_alloc(h);
6817         if (!c) {
6818                 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
6819                 goto out_of_memory;
6820         }
6821         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
6822                 RAID_CTLR_LUNID, TYPE_CMD)) {
6823                 goto out;
6824         }
6825         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
6826         if (c->err_info->CommandStatus != 0)
6827 out:
6828                 dev_warn(&h->pdev->dev,
6829                         "error flushing cache on controller\n");
6830         cmd_free(h, c);
6831 out_of_memory:
6832         kfree(flush_buf);
6833 }
6834
6835 static void hpsa_shutdown(struct pci_dev *pdev)
6836 {
6837         struct ctlr_info *h;
6838
6839         h = pci_get_drvdata(pdev);
6840         /* Turn board interrupts off  and send the flush cache command
6841          * sendcmd will turn off interrupt, and send the flush...
6842          * To write all data in the battery backed cache to disks
6843          */
6844         hpsa_flush_cache(h);
6845         h->access.set_intr_mask(h, HPSA_INTR_OFF);
6846         hpsa_free_irqs_and_disable_msix(h);
6847 }
6848
6849 static void hpsa_free_device_info(struct ctlr_info *h)
6850 {
6851         int i;
6852
6853         for (i = 0; i < h->ndevices; i++)
6854                 kfree(h->dev[i]);
6855 }
6856
6857 static void hpsa_remove_one(struct pci_dev *pdev)
6858 {
6859         struct ctlr_info *h;
6860         unsigned long flags;
6861
6862         if (pci_get_drvdata(pdev) == NULL) {
6863                 dev_err(&pdev->dev, "unable to remove device\n");
6864                 return;
6865         }
6866         h = pci_get_drvdata(pdev);
6867
6868         /* Get rid of any controller monitoring work items */
6869         spin_lock_irqsave(&h->lock, flags);
6870         h->remove_in_progress = 1;
6871         cancel_delayed_work(&h->monitor_ctlr_work);
6872         spin_unlock_irqrestore(&h->lock, flags);
6873         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
6874         hpsa_shutdown(pdev);
6875         destroy_workqueue(h->resubmit_wq);
6876         iounmap(h->vaddr);
6877         iounmap(h->transtable);
6878         iounmap(h->cfgtable);
6879         hpsa_free_device_info(h);
6880         hpsa_free_sg_chain_blocks(h);
6881         pci_free_consistent(h->pdev,
6882                 h->nr_cmds * sizeof(struct CommandList),
6883                 h->cmd_pool, h->cmd_pool_dhandle);
6884         pci_free_consistent(h->pdev,
6885                 h->nr_cmds * sizeof(struct ErrorInfo),
6886                 h->errinfo_pool, h->errinfo_pool_dhandle);
6887         hpsa_free_reply_queues(h);
6888         kfree(h->cmd_pool_bits);
6889         kfree(h->blockFetchTable);
6890         kfree(h->ioaccel1_blockFetchTable);
6891         kfree(h->ioaccel2_blockFetchTable);
6892         kfree(h->hba_inquiry_data);
6893         pci_disable_device(pdev);
6894         pci_release_regions(pdev);
6895         free_percpu(h->lockup_detected);
6896         kfree(h);
6897 }
6898
6899 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
6900         __attribute__((unused)) pm_message_t state)
6901 {
6902         return -ENOSYS;
6903 }
6904
6905 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
6906 {
6907         return -ENOSYS;
6908 }
6909
6910 static struct pci_driver hpsa_pci_driver = {
6911         .name = HPSA,
6912         .probe = hpsa_init_one,
6913         .remove = hpsa_remove_one,
6914         .id_table = hpsa_pci_device_id, /* id_table */
6915         .shutdown = hpsa_shutdown,
6916         .suspend = hpsa_suspend,
6917         .resume = hpsa_resume,
6918 };
6919
6920 /* Fill in bucket_map[], given nsgs (the max number of
6921  * scatter gather elements supported) and bucket[],
6922  * which is an array of 8 integers.  The bucket[] array
6923  * contains 8 different DMA transfer sizes (in 16
6924  * byte increments) which the controller uses to fetch
6925  * commands.  This function fills in bucket_map[], which
6926  * maps a given number of scatter gather elements to one of
6927  * the 8 DMA transfer sizes.  The point of it is to allow the
6928  * controller to only do as much DMA as needed to fetch the
6929  * command, with the DMA transfer size encoded in the lower
6930  * bits of the command address.
6931  */
6932 static void  calc_bucket_map(int bucket[], int num_buckets,
6933         int nsgs, int min_blocks, u32 *bucket_map)
6934 {
6935         int i, j, b, size;
6936
6937         /* Note, bucket_map must have nsgs+1 entries. */
6938         for (i = 0; i <= nsgs; i++) {
6939                 /* Compute size of a command with i SG entries */
6940                 size = i + min_blocks;
6941                 b = num_buckets; /* Assume the biggest bucket */
6942                 /* Find the bucket that is just big enough */
6943                 for (j = 0; j < num_buckets; j++) {
6944                         if (bucket[j] >= size) {
6945                                 b = j;
6946                                 break;
6947                         }
6948                 }
6949                 /* for a command with i SG entries, use bucket b. */
6950                 bucket_map[i] = b;
6951         }
6952 }
6953
6954 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
6955 {
6956         int i;
6957         unsigned long register_value;
6958         unsigned long transMethod = CFGTBL_Trans_Performant |
6959                         (trans_support & CFGTBL_Trans_use_short_tags) |
6960                                 CFGTBL_Trans_enable_directed_msix |
6961                         (trans_support & (CFGTBL_Trans_io_accel1 |
6962                                 CFGTBL_Trans_io_accel2));
6963         struct access_method access = SA5_performant_access;
6964
6965         /* This is a bit complicated.  There are 8 registers on
6966          * the controller which we write to to tell it 8 different
6967          * sizes of commands which there may be.  It's a way of
6968          * reducing the DMA done to fetch each command.  Encoded into
6969          * each command's tag are 3 bits which communicate to the controller
6970          * which of the eight sizes that command fits within.  The size of
6971          * each command depends on how many scatter gather entries there are.
6972          * Each SG entry requires 16 bytes.  The eight registers are programmed
6973          * with the number of 16-byte blocks a command of that size requires.
6974          * The smallest command possible requires 5 such 16 byte blocks.
6975          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
6976          * blocks.  Note, this only extends to the SG entries contained
6977          * within the command block, and does not extend to chained blocks
6978          * of SG elements.   bft[] contains the eight values we write to
6979          * the registers.  They are not evenly distributed, but have more
6980          * sizes for small commands, and fewer sizes for larger commands.
6981          */
6982         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
6983 #define MIN_IOACCEL2_BFT_ENTRY 5
6984 #define HPSA_IOACCEL2_HEADER_SZ 4
6985         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
6986                         13, 14, 15, 16, 17, 18, 19,
6987                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
6988         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
6989         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
6990         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
6991                                  16 * MIN_IOACCEL2_BFT_ENTRY);
6992         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
6993         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
6994         /*  5 = 1 s/g entry or 4k
6995          *  6 = 2 s/g entry or 8k
6996          *  8 = 4 s/g entry or 16k
6997          * 10 = 6 s/g entry or 24k
6998          */
6999
7000         /* If the controller supports either ioaccel method then
7001          * we can also use the RAID stack submit path that does not
7002          * perform the superfluous readl() after each command submission.
7003          */
7004         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7005                 access = SA5_performant_access_no_read;
7006
7007         /* Controller spec: zero out this buffer. */
7008         for (i = 0; i < h->nreply_queues; i++)
7009                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7010
7011         bft[7] = SG_ENTRIES_IN_CMD + 4;
7012         calc_bucket_map(bft, ARRAY_SIZE(bft),
7013                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7014         for (i = 0; i < 8; i++)
7015                 writel(bft[i], &h->transtable->BlockFetch[i]);
7016
7017         /* size of controller ring buffer */
7018         writel(h->max_commands, &h->transtable->RepQSize);
7019         writel(h->nreply_queues, &h->transtable->RepQCount);
7020         writel(0, &h->transtable->RepQCtrAddrLow32);
7021         writel(0, &h->transtable->RepQCtrAddrHigh32);
7022
7023         for (i = 0; i < h->nreply_queues; i++) {
7024                 writel(0, &h->transtable->RepQAddr[i].upper);
7025                 writel(h->reply_queue[i].busaddr,
7026                         &h->transtable->RepQAddr[i].lower);
7027         }
7028
7029         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7030         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7031         /*
7032          * enable outbound interrupt coalescing in accelerator mode;
7033          */
7034         if (trans_support & CFGTBL_Trans_io_accel1) {
7035                 access = SA5_ioaccel_mode1_access;
7036                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7037                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7038         } else {
7039                 if (trans_support & CFGTBL_Trans_io_accel2) {
7040                         access = SA5_ioaccel_mode2_access;
7041                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7042                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7043                 }
7044         }
7045         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7046         hpsa_wait_for_mode_change_ack(h);
7047         register_value = readl(&(h->cfgtable->TransportActive));
7048         if (!(register_value & CFGTBL_Trans_Performant)) {
7049                 dev_err(&h->pdev->dev,
7050                         "performant mode problem - transport not active\n");
7051                 return;
7052         }
7053         /* Change the access methods to the performant access methods */
7054         h->access = access;
7055         h->transMethod = transMethod;
7056
7057         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7058                 (trans_support & CFGTBL_Trans_io_accel2)))
7059                 return;
7060
7061         if (trans_support & CFGTBL_Trans_io_accel1) {
7062                 /* Set up I/O accelerator mode */
7063                 for (i = 0; i < h->nreply_queues; i++) {
7064                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7065                         h->reply_queue[i].current_entry =
7066                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7067                 }
7068                 bft[7] = h->ioaccel_maxsg + 8;
7069                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7070                                 h->ioaccel1_blockFetchTable);
7071
7072                 /* initialize all reply queue entries to unused */
7073                 for (i = 0; i < h->nreply_queues; i++)
7074                         memset(h->reply_queue[i].head,
7075                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
7076                                 h->reply_queue_size);
7077
7078                 /* set all the constant fields in the accelerator command
7079                  * frames once at init time to save CPU cycles later.
7080                  */
7081                 for (i = 0; i < h->nr_cmds; i++) {
7082                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7083
7084                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
7085                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
7086                                         (i * sizeof(struct ErrorInfo)));
7087                         cp->err_info_len = sizeof(struct ErrorInfo);
7088                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
7089                         cp->host_context_flags =
7090                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
7091                         cp->timeout_sec = 0;
7092                         cp->ReplyQueue = 0;
7093                         cp->tag =
7094                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
7095                         cp->host_addr =
7096                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7097                                         (i * sizeof(struct io_accel1_cmd)));
7098                 }
7099         } else if (trans_support & CFGTBL_Trans_io_accel2) {
7100                 u64 cfg_offset, cfg_base_addr_index;
7101                 u32 bft2_offset, cfg_base_addr;
7102                 int rc;
7103
7104                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7105                         &cfg_base_addr_index, &cfg_offset);
7106                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7107                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7108                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7109                                 4, h->ioaccel2_blockFetchTable);
7110                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7111                 BUILD_BUG_ON(offsetof(struct CfgTable,
7112                                 io_accel_request_size_offset) != 0xb8);
7113                 h->ioaccel2_bft2_regs =
7114                         remap_pci_mem(pci_resource_start(h->pdev,
7115                                         cfg_base_addr_index) +
7116                                         cfg_offset + bft2_offset,
7117                                         ARRAY_SIZE(bft2) *
7118                                         sizeof(*h->ioaccel2_bft2_regs));
7119                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
7120                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7121         }
7122         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7123         hpsa_wait_for_mode_change_ack(h);
7124 }
7125
7126 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7127 {
7128         h->ioaccel_maxsg =
7129                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7130         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7131                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7132
7133         /* Command structures must be aligned on a 128-byte boundary
7134          * because the 7 lower bits of the address are used by the
7135          * hardware.
7136          */
7137         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7138                         IOACCEL1_COMMANDLIST_ALIGNMENT);
7139         h->ioaccel_cmd_pool =
7140                 pci_alloc_consistent(h->pdev,
7141                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7142                         &(h->ioaccel_cmd_pool_dhandle));
7143
7144         h->ioaccel1_blockFetchTable =
7145                 kmalloc(((h->ioaccel_maxsg + 1) *
7146                                 sizeof(u32)), GFP_KERNEL);
7147
7148         if ((h->ioaccel_cmd_pool == NULL) ||
7149                 (h->ioaccel1_blockFetchTable == NULL))
7150                 goto clean_up;
7151
7152         memset(h->ioaccel_cmd_pool, 0,
7153                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7154         return 0;
7155
7156 clean_up:
7157         if (h->ioaccel_cmd_pool)
7158                 pci_free_consistent(h->pdev,
7159                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7160                         h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7161         kfree(h->ioaccel1_blockFetchTable);
7162         return 1;
7163 }
7164
7165 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7166 {
7167         /* Allocate ioaccel2 mode command blocks and block fetch table */
7168
7169         h->ioaccel_maxsg =
7170                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7171         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7172                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7173
7174         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7175                         IOACCEL2_COMMANDLIST_ALIGNMENT);
7176         h->ioaccel2_cmd_pool =
7177                 pci_alloc_consistent(h->pdev,
7178                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7179                         &(h->ioaccel2_cmd_pool_dhandle));
7180
7181         h->ioaccel2_blockFetchTable =
7182                 kmalloc(((h->ioaccel_maxsg + 1) *
7183                                 sizeof(u32)), GFP_KERNEL);
7184
7185         if ((h->ioaccel2_cmd_pool == NULL) ||
7186                 (h->ioaccel2_blockFetchTable == NULL))
7187                 goto clean_up;
7188
7189         memset(h->ioaccel2_cmd_pool, 0,
7190                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7191         return 0;
7192
7193 clean_up:
7194         if (h->ioaccel2_cmd_pool)
7195                 pci_free_consistent(h->pdev,
7196                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7197                         h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7198         kfree(h->ioaccel2_blockFetchTable);
7199         return 1;
7200 }
7201
7202 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7203 {
7204         u32 trans_support;
7205         unsigned long transMethod = CFGTBL_Trans_Performant |
7206                                         CFGTBL_Trans_use_short_tags;
7207         int i;
7208
7209         if (hpsa_simple_mode)
7210                 return;
7211
7212         trans_support = readl(&(h->cfgtable->TransportSupport));
7213         if (!(trans_support & PERFORMANT_MODE))
7214                 return;
7215
7216         /* Check for I/O accelerator mode support */
7217         if (trans_support & CFGTBL_Trans_io_accel1) {
7218                 transMethod |= CFGTBL_Trans_io_accel1 |
7219                                 CFGTBL_Trans_enable_directed_msix;
7220                 if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7221                         goto clean_up;
7222         } else {
7223                 if (trans_support & CFGTBL_Trans_io_accel2) {
7224                                 transMethod |= CFGTBL_Trans_io_accel2 |
7225                                 CFGTBL_Trans_enable_directed_msix;
7226                 if (ioaccel2_alloc_cmds_and_bft(h))
7227                         goto clean_up;
7228                 }
7229         }
7230
7231         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7232         hpsa_get_max_perf_mode_cmds(h);
7233         /* Performant mode ring buffer and supporting data structures */
7234         h->reply_queue_size = h->max_commands * sizeof(u64);
7235
7236         for (i = 0; i < h->nreply_queues; i++) {
7237                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
7238                                                 h->reply_queue_size,
7239                                                 &(h->reply_queue[i].busaddr));
7240                 if (!h->reply_queue[i].head)
7241                         goto clean_up;
7242                 h->reply_queue[i].size = h->max_commands;
7243                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
7244                 h->reply_queue[i].current_entry = 0;
7245         }
7246
7247         /* Need a block fetch table for performant mode */
7248         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7249                                 sizeof(u32)), GFP_KERNEL);
7250         if (!h->blockFetchTable)
7251                 goto clean_up;
7252
7253         hpsa_enter_performant_mode(h, trans_support);
7254         return;
7255
7256 clean_up:
7257         hpsa_free_reply_queues(h);
7258         kfree(h->blockFetchTable);
7259 }
7260
7261 static int is_accelerated_cmd(struct CommandList *c)
7262 {
7263         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7264 }
7265
7266 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7267 {
7268         struct CommandList *c = NULL;
7269         int i, accel_cmds_out;
7270
7271         do { /* wait for all outstanding ioaccel commands to drain out */
7272                 accel_cmds_out = 0;
7273                 for (i = 0; i < h->nr_cmds; i++) {
7274                         if (!test_bit(i & (BITS_PER_LONG - 1),
7275                                         h->cmd_pool_bits + (i / BITS_PER_LONG)))
7276                                 continue;
7277                         c = h->cmd_pool + i;
7278                         accel_cmds_out += is_accelerated_cmd(c);
7279                 }
7280                 if (accel_cmds_out <= 0)
7281                                 break;
7282                 msleep(100);
7283         } while (1);
7284 }
7285
7286 /*
7287  *  This is it.  Register the PCI driver information for the cards we control
7288  *  the OS will call our registered routines when it finds one of our cards.
7289  */
7290 static int __init hpsa_init(void)
7291 {
7292         return pci_register_driver(&hpsa_pci_driver);
7293 }
7294
7295 static void __exit hpsa_cleanup(void)
7296 {
7297         pci_unregister_driver(&hpsa_pci_driver);
7298 }
7299
7300 static void __attribute__((unused)) verify_offsets(void)
7301 {
7302 #define VERIFY_OFFSET(member, offset) \
7303         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7304
7305         VERIFY_OFFSET(structure_size, 0);
7306         VERIFY_OFFSET(volume_blk_size, 4);
7307         VERIFY_OFFSET(volume_blk_cnt, 8);
7308         VERIFY_OFFSET(phys_blk_shift, 16);
7309         VERIFY_OFFSET(parity_rotation_shift, 17);
7310         VERIFY_OFFSET(strip_size, 18);
7311         VERIFY_OFFSET(disk_starting_blk, 20);
7312         VERIFY_OFFSET(disk_blk_cnt, 28);
7313         VERIFY_OFFSET(data_disks_per_row, 36);
7314         VERIFY_OFFSET(metadata_disks_per_row, 38);
7315         VERIFY_OFFSET(row_cnt, 40);
7316         VERIFY_OFFSET(layout_map_count, 42);
7317         VERIFY_OFFSET(flags, 44);
7318         VERIFY_OFFSET(dekindex, 46);
7319         /* VERIFY_OFFSET(reserved, 48 */
7320         VERIFY_OFFSET(data, 64);
7321
7322 #undef VERIFY_OFFSET
7323
7324 #define VERIFY_OFFSET(member, offset) \
7325         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7326
7327         VERIFY_OFFSET(IU_type, 0);
7328         VERIFY_OFFSET(direction, 1);
7329         VERIFY_OFFSET(reply_queue, 2);
7330         /* VERIFY_OFFSET(reserved1, 3);  */
7331         VERIFY_OFFSET(scsi_nexus, 4);
7332         VERIFY_OFFSET(Tag, 8);
7333         VERIFY_OFFSET(cdb, 16);
7334         VERIFY_OFFSET(cciss_lun, 32);
7335         VERIFY_OFFSET(data_len, 40);
7336         VERIFY_OFFSET(cmd_priority_task_attr, 44);
7337         VERIFY_OFFSET(sg_count, 45);
7338         /* VERIFY_OFFSET(reserved3 */
7339         VERIFY_OFFSET(err_ptr, 48);
7340         VERIFY_OFFSET(err_len, 56);
7341         /* VERIFY_OFFSET(reserved4  */
7342         VERIFY_OFFSET(sg, 64);
7343
7344 #undef VERIFY_OFFSET
7345
7346 #define VERIFY_OFFSET(member, offset) \
7347         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7348
7349         VERIFY_OFFSET(dev_handle, 0x00);
7350         VERIFY_OFFSET(reserved1, 0x02);
7351         VERIFY_OFFSET(function, 0x03);
7352         VERIFY_OFFSET(reserved2, 0x04);
7353         VERIFY_OFFSET(err_info, 0x0C);
7354         VERIFY_OFFSET(reserved3, 0x10);
7355         VERIFY_OFFSET(err_info_len, 0x12);
7356         VERIFY_OFFSET(reserved4, 0x13);
7357         VERIFY_OFFSET(sgl_offset, 0x14);
7358         VERIFY_OFFSET(reserved5, 0x15);
7359         VERIFY_OFFSET(transfer_len, 0x1C);
7360         VERIFY_OFFSET(reserved6, 0x20);
7361         VERIFY_OFFSET(io_flags, 0x24);
7362         VERIFY_OFFSET(reserved7, 0x26);
7363         VERIFY_OFFSET(LUN, 0x34);
7364         VERIFY_OFFSET(control, 0x3C);
7365         VERIFY_OFFSET(CDB, 0x40);
7366         VERIFY_OFFSET(reserved8, 0x50);
7367         VERIFY_OFFSET(host_context_flags, 0x60);
7368         VERIFY_OFFSET(timeout_sec, 0x62);
7369         VERIFY_OFFSET(ReplyQueue, 0x64);
7370         VERIFY_OFFSET(reserved9, 0x65);
7371         VERIFY_OFFSET(tag, 0x68);
7372         VERIFY_OFFSET(host_addr, 0x70);
7373         VERIFY_OFFSET(CISS_LUN, 0x78);
7374         VERIFY_OFFSET(SG, 0x78 + 8);
7375 #undef VERIFY_OFFSET
7376 }
7377
7378 module_init(hpsa_init);
7379 module_exit(hpsa_cleanup);