]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/scsi/hpsa.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[karo-tx-linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88                 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92         "Use 'simple mode' rather than 'performant mode'");
93
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
148                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149         {0,}
150 };
151
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
153
154 /*  board_id = Subsystem Device ID & Vendor ID
155  *  product = Marketing Name for the board
156  *  access = Address of the struct of function pointers
157  */
158 static struct board_type products[] = {
159         {0x3241103C, "Smart Array P212", &SA5_access},
160         {0x3243103C, "Smart Array P410", &SA5_access},
161         {0x3245103C, "Smart Array P410i", &SA5_access},
162         {0x3247103C, "Smart Array P411", &SA5_access},
163         {0x3249103C, "Smart Array P812", &SA5_access},
164         {0x324A103C, "Smart Array P712m", &SA5_access},
165         {0x324B103C, "Smart Array P711m", &SA5_access},
166         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167         {0x3350103C, "Smart Array P222", &SA5_access},
168         {0x3351103C, "Smart Array P420", &SA5_access},
169         {0x3352103C, "Smart Array P421", &SA5_access},
170         {0x3353103C, "Smart Array P822", &SA5_access},
171         {0x3354103C, "Smart Array P420i", &SA5_access},
172         {0x3355103C, "Smart Array P220i", &SA5_access},
173         {0x3356103C, "Smart Array P721m", &SA5_access},
174         {0x1921103C, "Smart Array P830i", &SA5_access},
175         {0x1922103C, "Smart Array P430", &SA5_access},
176         {0x1923103C, "Smart Array P431", &SA5_access},
177         {0x1924103C, "Smart Array P830", &SA5_access},
178         {0x1926103C, "Smart Array P731m", &SA5_access},
179         {0x1928103C, "Smart Array P230i", &SA5_access},
180         {0x1929103C, "Smart Array P530", &SA5_access},
181         {0x21BD103C, "Smart Array P244br", &SA5_access},
182         {0x21BE103C, "Smart Array P741m", &SA5_access},
183         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
184         {0x21C0103C, "Smart Array P440ar", &SA5_access},
185         {0x21C1103C, "Smart Array P840ar", &SA5_access},
186         {0x21C2103C, "Smart Array P440", &SA5_access},
187         {0x21C3103C, "Smart Array P441", &SA5_access},
188         {0x21C4103C, "Smart Array", &SA5_access},
189         {0x21C5103C, "Smart Array P841", &SA5_access},
190         {0x21C6103C, "Smart HBA H244br", &SA5_access},
191         {0x21C7103C, "Smart HBA H240", &SA5_access},
192         {0x21C8103C, "Smart HBA H241", &SA5_access},
193         {0x21C9103C, "Smart Array", &SA5_access},
194         {0x21CA103C, "Smart Array P246br", &SA5_access},
195         {0x21CB103C, "Smart Array P840", &SA5_access},
196         {0x21CC103C, "Smart Array", &SA5_access},
197         {0x21CD103C, "Smart Array", &SA5_access},
198         {0x21CE103C, "Smart HBA", &SA5_access},
199         {0x05809005, "SmartHBA-SA", &SA5_access},
200         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
201         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
203         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
204         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
211 };
212
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217                         struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221                 struct sas_rphy *rphy);
222
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
228
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
232
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235         void __user *arg);
236 #endif
237
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242                                             struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245         int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
249
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253         unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
255
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
261
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264         struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266         struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269         int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275                                u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277                                     unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int wait_for_device_to_become_ready(struct ctlr_info *h,
280                                            unsigned char lunaddr[],
281                                            int reply_queue);
282 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
283                                      int wait_for_ready);
284 static inline void finish_cmd(struct CommandList *c);
285 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
286 #define BOARD_NOT_READY 0
287 #define BOARD_READY 1
288 static void hpsa_drain_accel_commands(struct ctlr_info *h);
289 static void hpsa_flush_cache(struct ctlr_info *h);
290 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
291         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
292         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
293 static void hpsa_command_resubmit_worker(struct work_struct *work);
294 static u32 lockup_detected(struct ctlr_info *h);
295 static int detect_controller_lockup(struct ctlr_info *h);
296 static void hpsa_disable_rld_caching(struct ctlr_info *h);
297 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
298         struct ReportExtendedLUNdata *buf, int bufsize);
299 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
300         unsigned char scsi3addr[], u8 page);
301 static int hpsa_luns_changed(struct ctlr_info *h);
302 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
303                                struct hpsa_scsi_dev_t *dev,
304                                unsigned char *scsi3addr);
305
306 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
307 {
308         unsigned long *priv = shost_priv(sdev->host);
309         return (struct ctlr_info *) *priv;
310 }
311
312 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
313 {
314         unsigned long *priv = shost_priv(sh);
315         return (struct ctlr_info *) *priv;
316 }
317
318 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
319 {
320         return c->scsi_cmd == SCSI_CMD_IDLE;
321 }
322
323 static inline bool hpsa_is_pending_event(struct CommandList *c)
324 {
325         return c->abort_pending || c->reset_pending;
326 }
327
328 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
329 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
330                         u8 *sense_key, u8 *asc, u8 *ascq)
331 {
332         struct scsi_sense_hdr sshdr;
333         bool rc;
334
335         *sense_key = -1;
336         *asc = -1;
337         *ascq = -1;
338
339         if (sense_data_len < 1)
340                 return;
341
342         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
343         if (rc) {
344                 *sense_key = sshdr.sense_key;
345                 *asc = sshdr.asc;
346                 *ascq = sshdr.ascq;
347         }
348 }
349
350 static int check_for_unit_attention(struct ctlr_info *h,
351         struct CommandList *c)
352 {
353         u8 sense_key, asc, ascq;
354         int sense_len;
355
356         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
357                 sense_len = sizeof(c->err_info->SenseInfo);
358         else
359                 sense_len = c->err_info->SenseLen;
360
361         decode_sense_data(c->err_info->SenseInfo, sense_len,
362                                 &sense_key, &asc, &ascq);
363         if (sense_key != UNIT_ATTENTION || asc == 0xff)
364                 return 0;
365
366         switch (asc) {
367         case STATE_CHANGED:
368                 dev_warn(&h->pdev->dev,
369                         "%s: a state change detected, command retried\n",
370                         h->devname);
371                 break;
372         case LUN_FAILED:
373                 dev_warn(&h->pdev->dev,
374                         "%s: LUN failure detected\n", h->devname);
375                 break;
376         case REPORT_LUNS_CHANGED:
377                 dev_warn(&h->pdev->dev,
378                         "%s: report LUN data changed\n", h->devname);
379         /*
380          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
381          * target (array) devices.
382          */
383                 break;
384         case POWER_OR_RESET:
385                 dev_warn(&h->pdev->dev,
386                         "%s: a power on or device reset detected\n",
387                         h->devname);
388                 break;
389         case UNIT_ATTENTION_CLEARED:
390                 dev_warn(&h->pdev->dev,
391                         "%s: unit attention cleared by another initiator\n",
392                         h->devname);
393                 break;
394         default:
395                 dev_warn(&h->pdev->dev,
396                         "%s: unknown unit attention detected\n",
397                         h->devname);
398                 break;
399         }
400         return 1;
401 }
402
403 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
404 {
405         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
406                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
407                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
408                 return 0;
409         dev_warn(&h->pdev->dev, HPSA "device busy");
410         return 1;
411 }
412
413 static u32 lockup_detected(struct ctlr_info *h);
414 static ssize_t host_show_lockup_detected(struct device *dev,
415                 struct device_attribute *attr, char *buf)
416 {
417         int ld;
418         struct ctlr_info *h;
419         struct Scsi_Host *shost = class_to_shost(dev);
420
421         h = shost_to_hba(shost);
422         ld = lockup_detected(h);
423
424         return sprintf(buf, "ld=%d\n", ld);
425 }
426
427 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
428                                          struct device_attribute *attr,
429                                          const char *buf, size_t count)
430 {
431         int status, len;
432         struct ctlr_info *h;
433         struct Scsi_Host *shost = class_to_shost(dev);
434         char tmpbuf[10];
435
436         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
437                 return -EACCES;
438         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
439         strncpy(tmpbuf, buf, len);
440         tmpbuf[len] = '\0';
441         if (sscanf(tmpbuf, "%d", &status) != 1)
442                 return -EINVAL;
443         h = shost_to_hba(shost);
444         h->acciopath_status = !!status;
445         dev_warn(&h->pdev->dev,
446                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
447                 h->acciopath_status ? "enabled" : "disabled");
448         return count;
449 }
450
451 static ssize_t host_store_raid_offload_debug(struct device *dev,
452                                          struct device_attribute *attr,
453                                          const char *buf, size_t count)
454 {
455         int debug_level, len;
456         struct ctlr_info *h;
457         struct Scsi_Host *shost = class_to_shost(dev);
458         char tmpbuf[10];
459
460         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461                 return -EACCES;
462         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463         strncpy(tmpbuf, buf, len);
464         tmpbuf[len] = '\0';
465         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
466                 return -EINVAL;
467         if (debug_level < 0)
468                 debug_level = 0;
469         h = shost_to_hba(shost);
470         h->raid_offload_debug = debug_level;
471         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
472                 h->raid_offload_debug);
473         return count;
474 }
475
476 static ssize_t host_store_rescan(struct device *dev,
477                                  struct device_attribute *attr,
478                                  const char *buf, size_t count)
479 {
480         struct ctlr_info *h;
481         struct Scsi_Host *shost = class_to_shost(dev);
482         h = shost_to_hba(shost);
483         hpsa_scan_start(h->scsi_host);
484         return count;
485 }
486
487 static ssize_t host_show_firmware_revision(struct device *dev,
488              struct device_attribute *attr, char *buf)
489 {
490         struct ctlr_info *h;
491         struct Scsi_Host *shost = class_to_shost(dev);
492         unsigned char *fwrev;
493
494         h = shost_to_hba(shost);
495         if (!h->hba_inquiry_data)
496                 return 0;
497         fwrev = &h->hba_inquiry_data[32];
498         return snprintf(buf, 20, "%c%c%c%c\n",
499                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
500 }
501
502 static ssize_t host_show_commands_outstanding(struct device *dev,
503              struct device_attribute *attr, char *buf)
504 {
505         struct Scsi_Host *shost = class_to_shost(dev);
506         struct ctlr_info *h = shost_to_hba(shost);
507
508         return snprintf(buf, 20, "%d\n",
509                         atomic_read(&h->commands_outstanding));
510 }
511
512 static ssize_t host_show_transport_mode(struct device *dev,
513         struct device_attribute *attr, char *buf)
514 {
515         struct ctlr_info *h;
516         struct Scsi_Host *shost = class_to_shost(dev);
517
518         h = shost_to_hba(shost);
519         return snprintf(buf, 20, "%s\n",
520                 h->transMethod & CFGTBL_Trans_Performant ?
521                         "performant" : "simple");
522 }
523
524 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
525         struct device_attribute *attr, char *buf)
526 {
527         struct ctlr_info *h;
528         struct Scsi_Host *shost = class_to_shost(dev);
529
530         h = shost_to_hba(shost);
531         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
532                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
533 }
534
535 /* List of controllers which cannot be hard reset on kexec with reset_devices */
536 static u32 unresettable_controller[] = {
537         0x324a103C, /* Smart Array P712m */
538         0x324b103C, /* Smart Array P711m */
539         0x3223103C, /* Smart Array P800 */
540         0x3234103C, /* Smart Array P400 */
541         0x3235103C, /* Smart Array P400i */
542         0x3211103C, /* Smart Array E200i */
543         0x3212103C, /* Smart Array E200 */
544         0x3213103C, /* Smart Array E200i */
545         0x3214103C, /* Smart Array E200i */
546         0x3215103C, /* Smart Array E200i */
547         0x3237103C, /* Smart Array E500 */
548         0x323D103C, /* Smart Array P700m */
549         0x40800E11, /* Smart Array 5i */
550         0x409C0E11, /* Smart Array 6400 */
551         0x409D0E11, /* Smart Array 6400 EM */
552         0x40700E11, /* Smart Array 5300 */
553         0x40820E11, /* Smart Array 532 */
554         0x40830E11, /* Smart Array 5312 */
555         0x409A0E11, /* Smart Array 641 */
556         0x409B0E11, /* Smart Array 642 */
557         0x40910E11, /* Smart Array 6i */
558 };
559
560 /* List of controllers which cannot even be soft reset */
561 static u32 soft_unresettable_controller[] = {
562         0x40800E11, /* Smart Array 5i */
563         0x40700E11, /* Smart Array 5300 */
564         0x40820E11, /* Smart Array 532 */
565         0x40830E11, /* Smart Array 5312 */
566         0x409A0E11, /* Smart Array 641 */
567         0x409B0E11, /* Smart Array 642 */
568         0x40910E11, /* Smart Array 6i */
569         /* Exclude 640x boards.  These are two pci devices in one slot
570          * which share a battery backed cache module.  One controls the
571          * cache, the other accesses the cache through the one that controls
572          * it.  If we reset the one controlling the cache, the other will
573          * likely not be happy.  Just forbid resetting this conjoined mess.
574          * The 640x isn't really supported by hpsa anyway.
575          */
576         0x409C0E11, /* Smart Array 6400 */
577         0x409D0E11, /* Smart Array 6400 EM */
578 };
579
580 static u32 needs_abort_tags_swizzled[] = {
581         0x323D103C, /* Smart Array P700m */
582         0x324a103C, /* Smart Array P712m */
583         0x324b103C, /* SmartArray P711m */
584 };
585
586 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
587 {
588         int i;
589
590         for (i = 0; i < nelems; i++)
591                 if (a[i] == board_id)
592                         return 1;
593         return 0;
594 }
595
596 static int ctlr_is_hard_resettable(u32 board_id)
597 {
598         return !board_id_in_array(unresettable_controller,
599                         ARRAY_SIZE(unresettable_controller), board_id);
600 }
601
602 static int ctlr_is_soft_resettable(u32 board_id)
603 {
604         return !board_id_in_array(soft_unresettable_controller,
605                         ARRAY_SIZE(soft_unresettable_controller), board_id);
606 }
607
608 static int ctlr_is_resettable(u32 board_id)
609 {
610         return ctlr_is_hard_resettable(board_id) ||
611                 ctlr_is_soft_resettable(board_id);
612 }
613
614 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
615 {
616         return board_id_in_array(needs_abort_tags_swizzled,
617                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
618 }
619
620 static ssize_t host_show_resettable(struct device *dev,
621         struct device_attribute *attr, char *buf)
622 {
623         struct ctlr_info *h;
624         struct Scsi_Host *shost = class_to_shost(dev);
625
626         h = shost_to_hba(shost);
627         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
628 }
629
630 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
631 {
632         return (scsi3addr[3] & 0xC0) == 0x40;
633 }
634
635 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
636         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
637 };
638 #define HPSA_RAID_0     0
639 #define HPSA_RAID_4     1
640 #define HPSA_RAID_1     2       /* also used for RAID 10 */
641 #define HPSA_RAID_5     3       /* also used for RAID 50 */
642 #define HPSA_RAID_51    4
643 #define HPSA_RAID_6     5       /* also used for RAID 60 */
644 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
645 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
646 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
647
648 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
649 {
650         return !device->physical_device;
651 }
652
653 static ssize_t raid_level_show(struct device *dev,
654              struct device_attribute *attr, char *buf)
655 {
656         ssize_t l = 0;
657         unsigned char rlevel;
658         struct ctlr_info *h;
659         struct scsi_device *sdev;
660         struct hpsa_scsi_dev_t *hdev;
661         unsigned long flags;
662
663         sdev = to_scsi_device(dev);
664         h = sdev_to_hba(sdev);
665         spin_lock_irqsave(&h->lock, flags);
666         hdev = sdev->hostdata;
667         if (!hdev) {
668                 spin_unlock_irqrestore(&h->lock, flags);
669                 return -ENODEV;
670         }
671
672         /* Is this even a logical drive? */
673         if (!is_logical_device(hdev)) {
674                 spin_unlock_irqrestore(&h->lock, flags);
675                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
676                 return l;
677         }
678
679         rlevel = hdev->raid_level;
680         spin_unlock_irqrestore(&h->lock, flags);
681         if (rlevel > RAID_UNKNOWN)
682                 rlevel = RAID_UNKNOWN;
683         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
684         return l;
685 }
686
687 static ssize_t lunid_show(struct device *dev,
688              struct device_attribute *attr, char *buf)
689 {
690         struct ctlr_info *h;
691         struct scsi_device *sdev;
692         struct hpsa_scsi_dev_t *hdev;
693         unsigned long flags;
694         unsigned char lunid[8];
695
696         sdev = to_scsi_device(dev);
697         h = sdev_to_hba(sdev);
698         spin_lock_irqsave(&h->lock, flags);
699         hdev = sdev->hostdata;
700         if (!hdev) {
701                 spin_unlock_irqrestore(&h->lock, flags);
702                 return -ENODEV;
703         }
704         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
705         spin_unlock_irqrestore(&h->lock, flags);
706         return snprintf(buf, 20, "0x%8phN\n", lunid);
707 }
708
709 static ssize_t unique_id_show(struct device *dev,
710              struct device_attribute *attr, char *buf)
711 {
712         struct ctlr_info *h;
713         struct scsi_device *sdev;
714         struct hpsa_scsi_dev_t *hdev;
715         unsigned long flags;
716         unsigned char sn[16];
717
718         sdev = to_scsi_device(dev);
719         h = sdev_to_hba(sdev);
720         spin_lock_irqsave(&h->lock, flags);
721         hdev = sdev->hostdata;
722         if (!hdev) {
723                 spin_unlock_irqrestore(&h->lock, flags);
724                 return -ENODEV;
725         }
726         memcpy(sn, hdev->device_id, sizeof(sn));
727         spin_unlock_irqrestore(&h->lock, flags);
728         return snprintf(buf, 16 * 2 + 2,
729                         "%02X%02X%02X%02X%02X%02X%02X%02X"
730                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
731                         sn[0], sn[1], sn[2], sn[3],
732                         sn[4], sn[5], sn[6], sn[7],
733                         sn[8], sn[9], sn[10], sn[11],
734                         sn[12], sn[13], sn[14], sn[15]);
735 }
736
737 static ssize_t sas_address_show(struct device *dev,
738               struct device_attribute *attr, char *buf)
739 {
740         struct ctlr_info *h;
741         struct scsi_device *sdev;
742         struct hpsa_scsi_dev_t *hdev;
743         unsigned long flags;
744         u64 sas_address;
745
746         sdev = to_scsi_device(dev);
747         h = sdev_to_hba(sdev);
748         spin_lock_irqsave(&h->lock, flags);
749         hdev = sdev->hostdata;
750         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
751                 spin_unlock_irqrestore(&h->lock, flags);
752                 return -ENODEV;
753         }
754         sas_address = hdev->sas_address;
755         spin_unlock_irqrestore(&h->lock, flags);
756
757         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
758 }
759
760 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
761              struct device_attribute *attr, char *buf)
762 {
763         struct ctlr_info *h;
764         struct scsi_device *sdev;
765         struct hpsa_scsi_dev_t *hdev;
766         unsigned long flags;
767         int offload_enabled;
768
769         sdev = to_scsi_device(dev);
770         h = sdev_to_hba(sdev);
771         spin_lock_irqsave(&h->lock, flags);
772         hdev = sdev->hostdata;
773         if (!hdev) {
774                 spin_unlock_irqrestore(&h->lock, flags);
775                 return -ENODEV;
776         }
777         offload_enabled = hdev->offload_enabled;
778         spin_unlock_irqrestore(&h->lock, flags);
779         return snprintf(buf, 20, "%d\n", offload_enabled);
780 }
781
782 #define MAX_PATHS 8
783 static ssize_t path_info_show(struct device *dev,
784              struct device_attribute *attr, char *buf)
785 {
786         struct ctlr_info *h;
787         struct scsi_device *sdev;
788         struct hpsa_scsi_dev_t *hdev;
789         unsigned long flags;
790         int i;
791         int output_len = 0;
792         u8 box;
793         u8 bay;
794         u8 path_map_index = 0;
795         char *active;
796         unsigned char phys_connector[2];
797
798         sdev = to_scsi_device(dev);
799         h = sdev_to_hba(sdev);
800         spin_lock_irqsave(&h->devlock, flags);
801         hdev = sdev->hostdata;
802         if (!hdev) {
803                 spin_unlock_irqrestore(&h->devlock, flags);
804                 return -ENODEV;
805         }
806
807         bay = hdev->bay;
808         for (i = 0; i < MAX_PATHS; i++) {
809                 path_map_index = 1<<i;
810                 if (i == hdev->active_path_index)
811                         active = "Active";
812                 else if (hdev->path_map & path_map_index)
813                         active = "Inactive";
814                 else
815                         continue;
816
817                 output_len += scnprintf(buf + output_len,
818                                 PAGE_SIZE - output_len,
819                                 "[%d:%d:%d:%d] %20.20s ",
820                                 h->scsi_host->host_no,
821                                 hdev->bus, hdev->target, hdev->lun,
822                                 scsi_device_type(hdev->devtype));
823
824                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
825                         output_len += scnprintf(buf + output_len,
826                                                 PAGE_SIZE - output_len,
827                                                 "%s\n", active);
828                         continue;
829                 }
830
831                 box = hdev->box[i];
832                 memcpy(&phys_connector, &hdev->phys_connector[i],
833                         sizeof(phys_connector));
834                 if (phys_connector[0] < '0')
835                         phys_connector[0] = '0';
836                 if (phys_connector[1] < '0')
837                         phys_connector[1] = '0';
838                 output_len += scnprintf(buf + output_len,
839                                 PAGE_SIZE - output_len,
840                                 "PORT: %.2s ",
841                                 phys_connector);
842                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
843                         hdev->expose_device) {
844                         if (box == 0 || box == 0xFF) {
845                                 output_len += scnprintf(buf + output_len,
846                                         PAGE_SIZE - output_len,
847                                         "BAY: %hhu %s\n",
848                                         bay, active);
849                         } else {
850                                 output_len += scnprintf(buf + output_len,
851                                         PAGE_SIZE - output_len,
852                                         "BOX: %hhu BAY: %hhu %s\n",
853                                         box, bay, active);
854                         }
855                 } else if (box != 0 && box != 0xFF) {
856                         output_len += scnprintf(buf + output_len,
857                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
858                                 box, active);
859                 } else
860                         output_len += scnprintf(buf + output_len,
861                                 PAGE_SIZE - output_len, "%s\n", active);
862         }
863
864         spin_unlock_irqrestore(&h->devlock, flags);
865         return output_len;
866 }
867
868 static ssize_t host_show_ctlr_num(struct device *dev,
869         struct device_attribute *attr, char *buf)
870 {
871         struct ctlr_info *h;
872         struct Scsi_Host *shost = class_to_shost(dev);
873
874         h = shost_to_hba(shost);
875         return snprintf(buf, 20, "%d\n", h->ctlr);
876 }
877
878 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
879 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
880 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
881 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
882 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
883 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
884                         host_show_hp_ssd_smart_path_enabled, NULL);
885 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
886 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
887                 host_show_hp_ssd_smart_path_status,
888                 host_store_hp_ssd_smart_path_status);
889 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
890                         host_store_raid_offload_debug);
891 static DEVICE_ATTR(firmware_revision, S_IRUGO,
892         host_show_firmware_revision, NULL);
893 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
894         host_show_commands_outstanding, NULL);
895 static DEVICE_ATTR(transport_mode, S_IRUGO,
896         host_show_transport_mode, NULL);
897 static DEVICE_ATTR(resettable, S_IRUGO,
898         host_show_resettable, NULL);
899 static DEVICE_ATTR(lockup_detected, S_IRUGO,
900         host_show_lockup_detected, NULL);
901 static DEVICE_ATTR(ctlr_num, S_IRUGO,
902         host_show_ctlr_num, NULL);
903
904 static struct device_attribute *hpsa_sdev_attrs[] = {
905         &dev_attr_raid_level,
906         &dev_attr_lunid,
907         &dev_attr_unique_id,
908         &dev_attr_hp_ssd_smart_path_enabled,
909         &dev_attr_path_info,
910         &dev_attr_sas_address,
911         NULL,
912 };
913
914 static struct device_attribute *hpsa_shost_attrs[] = {
915         &dev_attr_rescan,
916         &dev_attr_firmware_revision,
917         &dev_attr_commands_outstanding,
918         &dev_attr_transport_mode,
919         &dev_attr_resettable,
920         &dev_attr_hp_ssd_smart_path_status,
921         &dev_attr_raid_offload_debug,
922         &dev_attr_lockup_detected,
923         &dev_attr_ctlr_num,
924         NULL,
925 };
926
927 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
928                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
929
930 static struct scsi_host_template hpsa_driver_template = {
931         .module                 = THIS_MODULE,
932         .name                   = HPSA,
933         .proc_name              = HPSA,
934         .queuecommand           = hpsa_scsi_queue_command,
935         .scan_start             = hpsa_scan_start,
936         .scan_finished          = hpsa_scan_finished,
937         .change_queue_depth     = hpsa_change_queue_depth,
938         .this_id                = -1,
939         .use_clustering         = ENABLE_CLUSTERING,
940         .eh_abort_handler       = hpsa_eh_abort_handler,
941         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
942         .ioctl                  = hpsa_ioctl,
943         .slave_alloc            = hpsa_slave_alloc,
944         .slave_configure        = hpsa_slave_configure,
945         .slave_destroy          = hpsa_slave_destroy,
946 #ifdef CONFIG_COMPAT
947         .compat_ioctl           = hpsa_compat_ioctl,
948 #endif
949         .sdev_attrs = hpsa_sdev_attrs,
950         .shost_attrs = hpsa_shost_attrs,
951         .max_sectors = 8192,
952         .no_write_same = 1,
953 };
954
955 static inline u32 next_command(struct ctlr_info *h, u8 q)
956 {
957         u32 a;
958         struct reply_queue_buffer *rq = &h->reply_queue[q];
959
960         if (h->transMethod & CFGTBL_Trans_io_accel1)
961                 return h->access.command_completed(h, q);
962
963         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
964                 return h->access.command_completed(h, q);
965
966         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
967                 a = rq->head[rq->current_entry];
968                 rq->current_entry++;
969                 atomic_dec(&h->commands_outstanding);
970         } else {
971                 a = FIFO_EMPTY;
972         }
973         /* Check for wraparound */
974         if (rq->current_entry == h->max_commands) {
975                 rq->current_entry = 0;
976                 rq->wraparound ^= 1;
977         }
978         return a;
979 }
980
981 /*
982  * There are some special bits in the bus address of the
983  * command that we have to set for the controller to know
984  * how to process the command:
985  *
986  * Normal performant mode:
987  * bit 0: 1 means performant mode, 0 means simple mode.
988  * bits 1-3 = block fetch table entry
989  * bits 4-6 = command type (== 0)
990  *
991  * ioaccel1 mode:
992  * bit 0 = "performant mode" bit.
993  * bits 1-3 = block fetch table entry
994  * bits 4-6 = command type (== 110)
995  * (command type is needed because ioaccel1 mode
996  * commands are submitted through the same register as normal
997  * mode commands, so this is how the controller knows whether
998  * the command is normal mode or ioaccel1 mode.)
999  *
1000  * ioaccel2 mode:
1001  * bit 0 = "performant mode" bit.
1002  * bits 1-4 = block fetch table entry (note extra bit)
1003  * bits 4-6 = not needed, because ioaccel2 mode has
1004  * a separate special register for submitting commands.
1005  */
1006
1007 /*
1008  * set_performant_mode: Modify the tag for cciss performant
1009  * set bit 0 for pull model, bits 3-1 for block fetch
1010  * register number
1011  */
1012 #define DEFAULT_REPLY_QUEUE (-1)
1013 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1014                                         int reply_queue)
1015 {
1016         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1017                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1018                 if (unlikely(!h->msix_vectors))
1019                         return;
1020                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1021                         c->Header.ReplyQueue =
1022                                 raw_smp_processor_id() % h->nreply_queues;
1023                 else
1024                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1025         }
1026 }
1027
1028 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1029                                                 struct CommandList *c,
1030                                                 int reply_queue)
1031 {
1032         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1033
1034         /*
1035          * Tell the controller to post the reply to the queue for this
1036          * processor.  This seems to give the best I/O throughput.
1037          */
1038         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1039                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1040         else
1041                 cp->ReplyQueue = reply_queue % h->nreply_queues;
1042         /*
1043          * Set the bits in the address sent down to include:
1044          *  - performant mode bit (bit 0)
1045          *  - pull count (bits 1-3)
1046          *  - command type (bits 4-6)
1047          */
1048         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1049                                         IOACCEL1_BUSADDR_CMDTYPE;
1050 }
1051
1052 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1053                                                 struct CommandList *c,
1054                                                 int reply_queue)
1055 {
1056         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1057                 &h->ioaccel2_cmd_pool[c->cmdindex];
1058
1059         /* Tell the controller to post the reply to the queue for this
1060          * processor.  This seems to give the best I/O throughput.
1061          */
1062         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1063                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1064         else
1065                 cp->reply_queue = reply_queue % h->nreply_queues;
1066         /* Set the bits in the address sent down to include:
1067          *  - performant mode bit not used in ioaccel mode 2
1068          *  - pull count (bits 0-3)
1069          *  - command type isn't needed for ioaccel2
1070          */
1071         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1072 }
1073
1074 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1075                                                 struct CommandList *c,
1076                                                 int reply_queue)
1077 {
1078         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1079
1080         /*
1081          * Tell the controller to post the reply to the queue for this
1082          * processor.  This seems to give the best I/O throughput.
1083          */
1084         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1085                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1086         else
1087                 cp->reply_queue = reply_queue % h->nreply_queues;
1088         /*
1089          * Set the bits in the address sent down to include:
1090          *  - performant mode bit not used in ioaccel mode 2
1091          *  - pull count (bits 0-3)
1092          *  - command type isn't needed for ioaccel2
1093          */
1094         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1095 }
1096
1097 static int is_firmware_flash_cmd(u8 *cdb)
1098 {
1099         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1100 }
1101
1102 /*
1103  * During firmware flash, the heartbeat register may not update as frequently
1104  * as it should.  So we dial down lockup detection during firmware flash. and
1105  * dial it back up when firmware flash completes.
1106  */
1107 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1108 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1109 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1110                 struct CommandList *c)
1111 {
1112         if (!is_firmware_flash_cmd(c->Request.CDB))
1113                 return;
1114         atomic_inc(&h->firmware_flash_in_progress);
1115         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1116 }
1117
1118 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1119                 struct CommandList *c)
1120 {
1121         if (is_firmware_flash_cmd(c->Request.CDB) &&
1122                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1123                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1124 }
1125
1126 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1127         struct CommandList *c, int reply_queue)
1128 {
1129         dial_down_lockup_detection_during_fw_flash(h, c);
1130         atomic_inc(&h->commands_outstanding);
1131         switch (c->cmd_type) {
1132         case CMD_IOACCEL1:
1133                 set_ioaccel1_performant_mode(h, c, reply_queue);
1134                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1135                 break;
1136         case CMD_IOACCEL2:
1137                 set_ioaccel2_performant_mode(h, c, reply_queue);
1138                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1139                 break;
1140         case IOACCEL2_TMF:
1141                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1142                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1143                 break;
1144         default:
1145                 set_performant_mode(h, c, reply_queue);
1146                 h->access.submit_command(h, c);
1147         }
1148 }
1149
1150 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1151 {
1152         if (unlikely(hpsa_is_pending_event(c)))
1153                 return finish_cmd(c);
1154
1155         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1156 }
1157
1158 static inline int is_hba_lunid(unsigned char scsi3addr[])
1159 {
1160         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1161 }
1162
1163 static inline int is_scsi_rev_5(struct ctlr_info *h)
1164 {
1165         if (!h->hba_inquiry_data)
1166                 return 0;
1167         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1168                 return 1;
1169         return 0;
1170 }
1171
1172 static int hpsa_find_target_lun(struct ctlr_info *h,
1173         unsigned char scsi3addr[], int bus, int *target, int *lun)
1174 {
1175         /* finds an unused bus, target, lun for a new physical device
1176          * assumes h->devlock is held
1177          */
1178         int i, found = 0;
1179         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1180
1181         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1182
1183         for (i = 0; i < h->ndevices; i++) {
1184                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1185                         __set_bit(h->dev[i]->target, lun_taken);
1186         }
1187
1188         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1189         if (i < HPSA_MAX_DEVICES) {
1190                 /* *bus = 1; */
1191                 *target = i;
1192                 *lun = 0;
1193                 found = 1;
1194         }
1195         return !found;
1196 }
1197
1198 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1199         struct hpsa_scsi_dev_t *dev, char *description)
1200 {
1201 #define LABEL_SIZE 25
1202         char label[LABEL_SIZE];
1203
1204         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1205                 return;
1206
1207         switch (dev->devtype) {
1208         case TYPE_RAID:
1209                 snprintf(label, LABEL_SIZE, "controller");
1210                 break;
1211         case TYPE_ENCLOSURE:
1212                 snprintf(label, LABEL_SIZE, "enclosure");
1213                 break;
1214         case TYPE_DISK:
1215         case TYPE_ZBC:
1216                 if (dev->external)
1217                         snprintf(label, LABEL_SIZE, "external");
1218                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1219                         snprintf(label, LABEL_SIZE, "%s",
1220                                 raid_label[PHYSICAL_DRIVE]);
1221                 else
1222                         snprintf(label, LABEL_SIZE, "RAID-%s",
1223                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1224                                 raid_label[dev->raid_level]);
1225                 break;
1226         case TYPE_ROM:
1227                 snprintf(label, LABEL_SIZE, "rom");
1228                 break;
1229         case TYPE_TAPE:
1230                 snprintf(label, LABEL_SIZE, "tape");
1231                 break;
1232         case TYPE_MEDIUM_CHANGER:
1233                 snprintf(label, LABEL_SIZE, "changer");
1234                 break;
1235         default:
1236                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1237                 break;
1238         }
1239
1240         dev_printk(level, &h->pdev->dev,
1241                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1242                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1243                         description,
1244                         scsi_device_type(dev->devtype),
1245                         dev->vendor,
1246                         dev->model,
1247                         label,
1248                         dev->offload_config ? '+' : '-',
1249                         dev->offload_enabled ? '+' : '-',
1250                         dev->expose_device);
1251 }
1252
1253 /* Add an entry into h->dev[] array. */
1254 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1255                 struct hpsa_scsi_dev_t *device,
1256                 struct hpsa_scsi_dev_t *added[], int *nadded)
1257 {
1258         /* assumes h->devlock is held */
1259         int n = h->ndevices;
1260         int i;
1261         unsigned char addr1[8], addr2[8];
1262         struct hpsa_scsi_dev_t *sd;
1263
1264         if (n >= HPSA_MAX_DEVICES) {
1265                 dev_err(&h->pdev->dev, "too many devices, some will be "
1266                         "inaccessible.\n");
1267                 return -1;
1268         }
1269
1270         /* physical devices do not have lun or target assigned until now. */
1271         if (device->lun != -1)
1272                 /* Logical device, lun is already assigned. */
1273                 goto lun_assigned;
1274
1275         /* If this device a non-zero lun of a multi-lun device
1276          * byte 4 of the 8-byte LUN addr will contain the logical
1277          * unit no, zero otherwise.
1278          */
1279         if (device->scsi3addr[4] == 0) {
1280                 /* This is not a non-zero lun of a multi-lun device */
1281                 if (hpsa_find_target_lun(h, device->scsi3addr,
1282                         device->bus, &device->target, &device->lun) != 0)
1283                         return -1;
1284                 goto lun_assigned;
1285         }
1286
1287         /* This is a non-zero lun of a multi-lun device.
1288          * Search through our list and find the device which
1289          * has the same 8 byte LUN address, excepting byte 4 and 5.
1290          * Assign the same bus and target for this new LUN.
1291          * Use the logical unit number from the firmware.
1292          */
1293         memcpy(addr1, device->scsi3addr, 8);
1294         addr1[4] = 0;
1295         addr1[5] = 0;
1296         for (i = 0; i < n; i++) {
1297                 sd = h->dev[i];
1298                 memcpy(addr2, sd->scsi3addr, 8);
1299                 addr2[4] = 0;
1300                 addr2[5] = 0;
1301                 /* differ only in byte 4 and 5? */
1302                 if (memcmp(addr1, addr2, 8) == 0) {
1303                         device->bus = sd->bus;
1304                         device->target = sd->target;
1305                         device->lun = device->scsi3addr[4];
1306                         break;
1307                 }
1308         }
1309         if (device->lun == -1) {
1310                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1311                         " suspect firmware bug or unsupported hardware "
1312                         "configuration.\n");
1313                         return -1;
1314         }
1315
1316 lun_assigned:
1317
1318         h->dev[n] = device;
1319         h->ndevices++;
1320         added[*nadded] = device;
1321         (*nadded)++;
1322         hpsa_show_dev_msg(KERN_INFO, h, device,
1323                 device->expose_device ? "added" : "masked");
1324         device->offload_to_be_enabled = device->offload_enabled;
1325         device->offload_enabled = 0;
1326         return 0;
1327 }
1328
1329 /* Update an entry in h->dev[] array. */
1330 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1331         int entry, struct hpsa_scsi_dev_t *new_entry)
1332 {
1333         int offload_enabled;
1334         /* assumes h->devlock is held */
1335         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1336
1337         /* Raid level changed. */
1338         h->dev[entry]->raid_level = new_entry->raid_level;
1339
1340         /* Raid offload parameters changed.  Careful about the ordering. */
1341         if (new_entry->offload_config && new_entry->offload_enabled) {
1342                 /*
1343                  * if drive is newly offload_enabled, we want to copy the
1344                  * raid map data first.  If previously offload_enabled and
1345                  * offload_config were set, raid map data had better be
1346                  * the same as it was before.  if raid map data is changed
1347                  * then it had better be the case that
1348                  * h->dev[entry]->offload_enabled is currently 0.
1349                  */
1350                 h->dev[entry]->raid_map = new_entry->raid_map;
1351                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1352         }
1353         if (new_entry->hba_ioaccel_enabled) {
1354                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1355                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1356         }
1357         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1358         h->dev[entry]->offload_config = new_entry->offload_config;
1359         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1360         h->dev[entry]->queue_depth = new_entry->queue_depth;
1361
1362         /*
1363          * We can turn off ioaccel offload now, but need to delay turning
1364          * it on until we can update h->dev[entry]->phys_disk[], but we
1365          * can't do that until all the devices are updated.
1366          */
1367         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1368         if (!new_entry->offload_enabled)
1369                 h->dev[entry]->offload_enabled = 0;
1370
1371         offload_enabled = h->dev[entry]->offload_enabled;
1372         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1373         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1374         h->dev[entry]->offload_enabled = offload_enabled;
1375 }
1376
1377 /* Replace an entry from h->dev[] array. */
1378 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1379         int entry, struct hpsa_scsi_dev_t *new_entry,
1380         struct hpsa_scsi_dev_t *added[], int *nadded,
1381         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1382 {
1383         /* assumes h->devlock is held */
1384         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1385         removed[*nremoved] = h->dev[entry];
1386         (*nremoved)++;
1387
1388         /*
1389          * New physical devices won't have target/lun assigned yet
1390          * so we need to preserve the values in the slot we are replacing.
1391          */
1392         if (new_entry->target == -1) {
1393                 new_entry->target = h->dev[entry]->target;
1394                 new_entry->lun = h->dev[entry]->lun;
1395         }
1396
1397         h->dev[entry] = new_entry;
1398         added[*nadded] = new_entry;
1399         (*nadded)++;
1400         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1401         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1402         new_entry->offload_enabled = 0;
1403 }
1404
1405 /* Remove an entry from h->dev[] array. */
1406 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1407         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1408 {
1409         /* assumes h->devlock is held */
1410         int i;
1411         struct hpsa_scsi_dev_t *sd;
1412
1413         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1414
1415         sd = h->dev[entry];
1416         removed[*nremoved] = h->dev[entry];
1417         (*nremoved)++;
1418
1419         for (i = entry; i < h->ndevices-1; i++)
1420                 h->dev[i] = h->dev[i+1];
1421         h->ndevices--;
1422         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1423 }
1424
1425 #define SCSI3ADDR_EQ(a, b) ( \
1426         (a)[7] == (b)[7] && \
1427         (a)[6] == (b)[6] && \
1428         (a)[5] == (b)[5] && \
1429         (a)[4] == (b)[4] && \
1430         (a)[3] == (b)[3] && \
1431         (a)[2] == (b)[2] && \
1432         (a)[1] == (b)[1] && \
1433         (a)[0] == (b)[0])
1434
1435 static void fixup_botched_add(struct ctlr_info *h,
1436         struct hpsa_scsi_dev_t *added)
1437 {
1438         /* called when scsi_add_device fails in order to re-adjust
1439          * h->dev[] to match the mid layer's view.
1440          */
1441         unsigned long flags;
1442         int i, j;
1443
1444         spin_lock_irqsave(&h->lock, flags);
1445         for (i = 0; i < h->ndevices; i++) {
1446                 if (h->dev[i] == added) {
1447                         for (j = i; j < h->ndevices-1; j++)
1448                                 h->dev[j] = h->dev[j+1];
1449                         h->ndevices--;
1450                         break;
1451                 }
1452         }
1453         spin_unlock_irqrestore(&h->lock, flags);
1454         kfree(added);
1455 }
1456
1457 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1458         struct hpsa_scsi_dev_t *dev2)
1459 {
1460         /* we compare everything except lun and target as these
1461          * are not yet assigned.  Compare parts likely
1462          * to differ first
1463          */
1464         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1465                 sizeof(dev1->scsi3addr)) != 0)
1466                 return 0;
1467         if (memcmp(dev1->device_id, dev2->device_id,
1468                 sizeof(dev1->device_id)) != 0)
1469                 return 0;
1470         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1471                 return 0;
1472         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1473                 return 0;
1474         if (dev1->devtype != dev2->devtype)
1475                 return 0;
1476         if (dev1->bus != dev2->bus)
1477                 return 0;
1478         return 1;
1479 }
1480
1481 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1482         struct hpsa_scsi_dev_t *dev2)
1483 {
1484         /* Device attributes that can change, but don't mean
1485          * that the device is a different device, nor that the OS
1486          * needs to be told anything about the change.
1487          */
1488         if (dev1->raid_level != dev2->raid_level)
1489                 return 1;
1490         if (dev1->offload_config != dev2->offload_config)
1491                 return 1;
1492         if (dev1->offload_enabled != dev2->offload_enabled)
1493                 return 1;
1494         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1495                 if (dev1->queue_depth != dev2->queue_depth)
1496                         return 1;
1497         return 0;
1498 }
1499
1500 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1501  * and return needle location in *index.  If scsi3addr matches, but not
1502  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1503  * location in *index.
1504  * In the case of a minor device attribute change, such as RAID level, just
1505  * return DEVICE_UPDATED, along with the updated device's location in index.
1506  * If needle not found, return DEVICE_NOT_FOUND.
1507  */
1508 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1509         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1510         int *index)
1511 {
1512         int i;
1513 #define DEVICE_NOT_FOUND 0
1514 #define DEVICE_CHANGED 1
1515 #define DEVICE_SAME 2
1516 #define DEVICE_UPDATED 3
1517         if (needle == NULL)
1518                 return DEVICE_NOT_FOUND;
1519
1520         for (i = 0; i < haystack_size; i++) {
1521                 if (haystack[i] == NULL) /* previously removed. */
1522                         continue;
1523                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1524                         *index = i;
1525                         if (device_is_the_same(needle, haystack[i])) {
1526                                 if (device_updated(needle, haystack[i]))
1527                                         return DEVICE_UPDATED;
1528                                 return DEVICE_SAME;
1529                         } else {
1530                                 /* Keep offline devices offline */
1531                                 if (needle->volume_offline)
1532                                         return DEVICE_NOT_FOUND;
1533                                 return DEVICE_CHANGED;
1534                         }
1535                 }
1536         }
1537         *index = -1;
1538         return DEVICE_NOT_FOUND;
1539 }
1540
1541 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1542                                         unsigned char scsi3addr[])
1543 {
1544         struct offline_device_entry *device;
1545         unsigned long flags;
1546
1547         /* Check to see if device is already on the list */
1548         spin_lock_irqsave(&h->offline_device_lock, flags);
1549         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1550                 if (memcmp(device->scsi3addr, scsi3addr,
1551                         sizeof(device->scsi3addr)) == 0) {
1552                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1553                         return;
1554                 }
1555         }
1556         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1557
1558         /* Device is not on the list, add it. */
1559         device = kmalloc(sizeof(*device), GFP_KERNEL);
1560         if (!device)
1561                 return;
1562
1563         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1564         spin_lock_irqsave(&h->offline_device_lock, flags);
1565         list_add_tail(&device->offline_list, &h->offline_device_list);
1566         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1567 }
1568
1569 /* Print a message explaining various offline volume states */
1570 static void hpsa_show_volume_status(struct ctlr_info *h,
1571         struct hpsa_scsi_dev_t *sd)
1572 {
1573         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1574                 dev_info(&h->pdev->dev,
1575                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1576                         h->scsi_host->host_no,
1577                         sd->bus, sd->target, sd->lun);
1578         switch (sd->volume_offline) {
1579         case HPSA_LV_OK:
1580                 break;
1581         case HPSA_LV_UNDERGOING_ERASE:
1582                 dev_info(&h->pdev->dev,
1583                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1584                         h->scsi_host->host_no,
1585                         sd->bus, sd->target, sd->lun);
1586                 break;
1587         case HPSA_LV_NOT_AVAILABLE:
1588                 dev_info(&h->pdev->dev,
1589                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1590                         h->scsi_host->host_no,
1591                         sd->bus, sd->target, sd->lun);
1592                 break;
1593         case HPSA_LV_UNDERGOING_RPI:
1594                 dev_info(&h->pdev->dev,
1595                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1596                         h->scsi_host->host_no,
1597                         sd->bus, sd->target, sd->lun);
1598                 break;
1599         case HPSA_LV_PENDING_RPI:
1600                 dev_info(&h->pdev->dev,
1601                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1602                         h->scsi_host->host_no,
1603                         sd->bus, sd->target, sd->lun);
1604                 break;
1605         case HPSA_LV_ENCRYPTED_NO_KEY:
1606                 dev_info(&h->pdev->dev,
1607                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1608                         h->scsi_host->host_no,
1609                         sd->bus, sd->target, sd->lun);
1610                 break;
1611         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1612                 dev_info(&h->pdev->dev,
1613                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1614                         h->scsi_host->host_no,
1615                         sd->bus, sd->target, sd->lun);
1616                 break;
1617         case HPSA_LV_UNDERGOING_ENCRYPTION:
1618                 dev_info(&h->pdev->dev,
1619                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1620                         h->scsi_host->host_no,
1621                         sd->bus, sd->target, sd->lun);
1622                 break;
1623         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1624                 dev_info(&h->pdev->dev,
1625                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1626                         h->scsi_host->host_no,
1627                         sd->bus, sd->target, sd->lun);
1628                 break;
1629         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1630                 dev_info(&h->pdev->dev,
1631                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1632                         h->scsi_host->host_no,
1633                         sd->bus, sd->target, sd->lun);
1634                 break;
1635         case HPSA_LV_PENDING_ENCRYPTION:
1636                 dev_info(&h->pdev->dev,
1637                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1638                         h->scsi_host->host_no,
1639                         sd->bus, sd->target, sd->lun);
1640                 break;
1641         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1642                 dev_info(&h->pdev->dev,
1643                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1644                         h->scsi_host->host_no,
1645                         sd->bus, sd->target, sd->lun);
1646                 break;
1647         }
1648 }
1649
1650 /*
1651  * Figure the list of physical drive pointers for a logical drive with
1652  * raid offload configured.
1653  */
1654 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1655                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1656                                 struct hpsa_scsi_dev_t *logical_drive)
1657 {
1658         struct raid_map_data *map = &logical_drive->raid_map;
1659         struct raid_map_disk_data *dd = &map->data[0];
1660         int i, j;
1661         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1662                                 le16_to_cpu(map->metadata_disks_per_row);
1663         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1664                                 le16_to_cpu(map->layout_map_count) *
1665                                 total_disks_per_row;
1666         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1667                                 total_disks_per_row;
1668         int qdepth;
1669
1670         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1671                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1672
1673         logical_drive->nphysical_disks = nraid_map_entries;
1674
1675         qdepth = 0;
1676         for (i = 0; i < nraid_map_entries; i++) {
1677                 logical_drive->phys_disk[i] = NULL;
1678                 if (!logical_drive->offload_config)
1679                         continue;
1680                 for (j = 0; j < ndevices; j++) {
1681                         if (dev[j] == NULL)
1682                                 continue;
1683                         if (dev[j]->devtype != TYPE_DISK &&
1684                             dev[j]->devtype != TYPE_ZBC)
1685                                 continue;
1686                         if (is_logical_device(dev[j]))
1687                                 continue;
1688                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1689                                 continue;
1690
1691                         logical_drive->phys_disk[i] = dev[j];
1692                         if (i < nphys_disk)
1693                                 qdepth = min(h->nr_cmds, qdepth +
1694                                     logical_drive->phys_disk[i]->queue_depth);
1695                         break;
1696                 }
1697
1698                 /*
1699                  * This can happen if a physical drive is removed and
1700                  * the logical drive is degraded.  In that case, the RAID
1701                  * map data will refer to a physical disk which isn't actually
1702                  * present.  And in that case offload_enabled should already
1703                  * be 0, but we'll turn it off here just in case
1704                  */
1705                 if (!logical_drive->phys_disk[i]) {
1706                         logical_drive->offload_enabled = 0;
1707                         logical_drive->offload_to_be_enabled = 0;
1708                         logical_drive->queue_depth = 8;
1709                 }
1710         }
1711         if (nraid_map_entries)
1712                 /*
1713                  * This is correct for reads, too high for full stripe writes,
1714                  * way too high for partial stripe writes
1715                  */
1716                 logical_drive->queue_depth = qdepth;
1717         else
1718                 logical_drive->queue_depth = h->nr_cmds;
1719 }
1720
1721 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1722                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1723 {
1724         int i;
1725
1726         for (i = 0; i < ndevices; i++) {
1727                 if (dev[i] == NULL)
1728                         continue;
1729                 if (dev[i]->devtype != TYPE_DISK &&
1730                     dev[i]->devtype != TYPE_ZBC)
1731                         continue;
1732                 if (!is_logical_device(dev[i]))
1733                         continue;
1734
1735                 /*
1736                  * If offload is currently enabled, the RAID map and
1737                  * phys_disk[] assignment *better* not be changing
1738                  * and since it isn't changing, we do not need to
1739                  * update it.
1740                  */
1741                 if (dev[i]->offload_enabled)
1742                         continue;
1743
1744                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1745         }
1746 }
1747
1748 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1749 {
1750         int rc = 0;
1751
1752         if (!h->scsi_host)
1753                 return 1;
1754
1755         if (is_logical_device(device)) /* RAID */
1756                 rc = scsi_add_device(h->scsi_host, device->bus,
1757                                         device->target, device->lun);
1758         else /* HBA */
1759                 rc = hpsa_add_sas_device(h->sas_host, device);
1760
1761         return rc;
1762 }
1763
1764 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1765                                                 struct hpsa_scsi_dev_t *dev)
1766 {
1767         int i;
1768         int count = 0;
1769
1770         for (i = 0; i < h->nr_cmds; i++) {
1771                 struct CommandList *c = h->cmd_pool + i;
1772                 int refcount = atomic_inc_return(&c->refcount);
1773
1774                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1775                                 dev->scsi3addr)) {
1776                         unsigned long flags;
1777
1778                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1779                         if (!hpsa_is_cmd_idle(c))
1780                                 ++count;
1781                         spin_unlock_irqrestore(&h->lock, flags);
1782                 }
1783
1784                 cmd_free(h, c);
1785         }
1786
1787         return count;
1788 }
1789
1790 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1791                                                 struct hpsa_scsi_dev_t *device)
1792 {
1793         int cmds = 0;
1794         int waits = 0;
1795
1796         while (1) {
1797                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1798                 if (cmds == 0)
1799                         break;
1800                 if (++waits > 20)
1801                         break;
1802                 dev_warn(&h->pdev->dev,
1803                         "%s: removing device with %d outstanding commands!\n",
1804                         __func__, cmds);
1805                 msleep(1000);
1806         }
1807 }
1808
1809 static void hpsa_remove_device(struct ctlr_info *h,
1810                         struct hpsa_scsi_dev_t *device)
1811 {
1812         struct scsi_device *sdev = NULL;
1813
1814         if (!h->scsi_host)
1815                 return;
1816
1817         if (is_logical_device(device)) { /* RAID */
1818                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1819                                                 device->target, device->lun);
1820                 if (sdev) {
1821                         scsi_remove_device(sdev);
1822                         scsi_device_put(sdev);
1823                 } else {
1824                         /*
1825                          * We don't expect to get here.  Future commands
1826                          * to this device will get a selection timeout as
1827                          * if the device were gone.
1828                          */
1829                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1830                                         "didn't find device for removal.");
1831                 }
1832         } else { /* HBA */
1833
1834                 device->removed = 1;
1835                 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1836
1837                 hpsa_remove_sas_device(device);
1838         }
1839 }
1840
1841 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1842         struct hpsa_scsi_dev_t *sd[], int nsds)
1843 {
1844         /* sd contains scsi3 addresses and devtypes, and inquiry
1845          * data.  This function takes what's in sd to be the current
1846          * reality and updates h->dev[] to reflect that reality.
1847          */
1848         int i, entry, device_change, changes = 0;
1849         struct hpsa_scsi_dev_t *csd;
1850         unsigned long flags;
1851         struct hpsa_scsi_dev_t **added, **removed;
1852         int nadded, nremoved;
1853
1854         /*
1855          * A reset can cause a device status to change
1856          * re-schedule the scan to see what happened.
1857          */
1858         if (h->reset_in_progress) {
1859                 h->drv_req_rescan = 1;
1860                 return;
1861         }
1862
1863         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1864         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1865
1866         if (!added || !removed) {
1867                 dev_warn(&h->pdev->dev, "out of memory in "
1868                         "adjust_hpsa_scsi_table\n");
1869                 goto free_and_out;
1870         }
1871
1872         spin_lock_irqsave(&h->devlock, flags);
1873
1874         /* find any devices in h->dev[] that are not in
1875          * sd[] and remove them from h->dev[], and for any
1876          * devices which have changed, remove the old device
1877          * info and add the new device info.
1878          * If minor device attributes change, just update
1879          * the existing device structure.
1880          */
1881         i = 0;
1882         nremoved = 0;
1883         nadded = 0;
1884         while (i < h->ndevices) {
1885                 csd = h->dev[i];
1886                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1887                 if (device_change == DEVICE_NOT_FOUND) {
1888                         changes++;
1889                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1890                         continue; /* remove ^^^, hence i not incremented */
1891                 } else if (device_change == DEVICE_CHANGED) {
1892                         changes++;
1893                         hpsa_scsi_replace_entry(h, i, sd[entry],
1894                                 added, &nadded, removed, &nremoved);
1895                         /* Set it to NULL to prevent it from being freed
1896                          * at the bottom of hpsa_update_scsi_devices()
1897                          */
1898                         sd[entry] = NULL;
1899                 } else if (device_change == DEVICE_UPDATED) {
1900                         hpsa_scsi_update_entry(h, i, sd[entry]);
1901                 }
1902                 i++;
1903         }
1904
1905         /* Now, make sure every device listed in sd[] is also
1906          * listed in h->dev[], adding them if they aren't found
1907          */
1908
1909         for (i = 0; i < nsds; i++) {
1910                 if (!sd[i]) /* if already added above. */
1911                         continue;
1912
1913                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1914                  * as the SCSI mid-layer does not handle such devices well.
1915                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1916                  * at 160Hz, and prevents the system from coming up.
1917                  */
1918                 if (sd[i]->volume_offline) {
1919                         hpsa_show_volume_status(h, sd[i]);
1920                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1921                         continue;
1922                 }
1923
1924                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1925                                         h->ndevices, &entry);
1926                 if (device_change == DEVICE_NOT_FOUND) {
1927                         changes++;
1928                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1929                                 break;
1930                         sd[i] = NULL; /* prevent from being freed later. */
1931                 } else if (device_change == DEVICE_CHANGED) {
1932                         /* should never happen... */
1933                         changes++;
1934                         dev_warn(&h->pdev->dev,
1935                                 "device unexpectedly changed.\n");
1936                         /* but if it does happen, we just ignore that device */
1937                 }
1938         }
1939         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1940
1941         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1942          * any logical drives that need it enabled.
1943          */
1944         for (i = 0; i < h->ndevices; i++) {
1945                 if (h->dev[i] == NULL)
1946                         continue;
1947                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1948         }
1949
1950         spin_unlock_irqrestore(&h->devlock, flags);
1951
1952         /* Monitor devices which are in one of several NOT READY states to be
1953          * brought online later. This must be done without holding h->devlock,
1954          * so don't touch h->dev[]
1955          */
1956         for (i = 0; i < nsds; i++) {
1957                 if (!sd[i]) /* if already added above. */
1958                         continue;
1959                 if (sd[i]->volume_offline)
1960                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1961         }
1962
1963         /* Don't notify scsi mid layer of any changes the first time through
1964          * (or if there are no changes) scsi_scan_host will do it later the
1965          * first time through.
1966          */
1967         if (!changes)
1968                 goto free_and_out;
1969
1970         /* Notify scsi mid layer of any removed devices */
1971         for (i = 0; i < nremoved; i++) {
1972                 if (removed[i] == NULL)
1973                         continue;
1974                 if (removed[i]->expose_device)
1975                         hpsa_remove_device(h, removed[i]);
1976                 kfree(removed[i]);
1977                 removed[i] = NULL;
1978         }
1979
1980         /* Notify scsi mid layer of any added devices */
1981         for (i = 0; i < nadded; i++) {
1982                 int rc = 0;
1983
1984                 if (added[i] == NULL)
1985                         continue;
1986                 if (!(added[i]->expose_device))
1987                         continue;
1988                 rc = hpsa_add_device(h, added[i]);
1989                 if (!rc)
1990                         continue;
1991                 dev_warn(&h->pdev->dev,
1992                         "addition failed %d, device not added.", rc);
1993                 /* now we have to remove it from h->dev,
1994                  * since it didn't get added to scsi mid layer
1995                  */
1996                 fixup_botched_add(h, added[i]);
1997                 h->drv_req_rescan = 1;
1998         }
1999
2000 free_and_out:
2001         kfree(added);
2002         kfree(removed);
2003 }
2004
2005 /*
2006  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2007  * Assume's h->devlock is held.
2008  */
2009 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2010         int bus, int target, int lun)
2011 {
2012         int i;
2013         struct hpsa_scsi_dev_t *sd;
2014
2015         for (i = 0; i < h->ndevices; i++) {
2016                 sd = h->dev[i];
2017                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2018                         return sd;
2019         }
2020         return NULL;
2021 }
2022
2023 static int hpsa_slave_alloc(struct scsi_device *sdev)
2024 {
2025         struct hpsa_scsi_dev_t *sd = NULL;
2026         unsigned long flags;
2027         struct ctlr_info *h;
2028
2029         h = sdev_to_hba(sdev);
2030         spin_lock_irqsave(&h->devlock, flags);
2031         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2032                 struct scsi_target *starget;
2033                 struct sas_rphy *rphy;
2034
2035                 starget = scsi_target(sdev);
2036                 rphy = target_to_rphy(starget);
2037                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2038                 if (sd) {
2039                         sd->target = sdev_id(sdev);
2040                         sd->lun = sdev->lun;
2041                 }
2042         }
2043         if (!sd)
2044                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2045                                         sdev_id(sdev), sdev->lun);
2046
2047         if (sd && sd->expose_device) {
2048                 atomic_set(&sd->ioaccel_cmds_out, 0);
2049                 sdev->hostdata = sd;
2050         } else
2051                 sdev->hostdata = NULL;
2052         spin_unlock_irqrestore(&h->devlock, flags);
2053         return 0;
2054 }
2055
2056 /* configure scsi device based on internal per-device structure */
2057 static int hpsa_slave_configure(struct scsi_device *sdev)
2058 {
2059         struct hpsa_scsi_dev_t *sd;
2060         int queue_depth;
2061
2062         sd = sdev->hostdata;
2063         sdev->no_uld_attach = !sd || !sd->expose_device;
2064
2065         if (sd)
2066                 queue_depth = sd->queue_depth != 0 ?
2067                         sd->queue_depth : sdev->host->can_queue;
2068         else
2069                 queue_depth = sdev->host->can_queue;
2070
2071         scsi_change_queue_depth(sdev, queue_depth);
2072
2073         return 0;
2074 }
2075
2076 static void hpsa_slave_destroy(struct scsi_device *sdev)
2077 {
2078         /* nothing to do. */
2079 }
2080
2081 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2082 {
2083         int i;
2084
2085         if (!h->ioaccel2_cmd_sg_list)
2086                 return;
2087         for (i = 0; i < h->nr_cmds; i++) {
2088                 kfree(h->ioaccel2_cmd_sg_list[i]);
2089                 h->ioaccel2_cmd_sg_list[i] = NULL;
2090         }
2091         kfree(h->ioaccel2_cmd_sg_list);
2092         h->ioaccel2_cmd_sg_list = NULL;
2093 }
2094
2095 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2096 {
2097         int i;
2098
2099         if (h->chainsize <= 0)
2100                 return 0;
2101
2102         h->ioaccel2_cmd_sg_list =
2103                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2104                                         GFP_KERNEL);
2105         if (!h->ioaccel2_cmd_sg_list)
2106                 return -ENOMEM;
2107         for (i = 0; i < h->nr_cmds; i++) {
2108                 h->ioaccel2_cmd_sg_list[i] =
2109                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2110                                         h->maxsgentries, GFP_KERNEL);
2111                 if (!h->ioaccel2_cmd_sg_list[i])
2112                         goto clean;
2113         }
2114         return 0;
2115
2116 clean:
2117         hpsa_free_ioaccel2_sg_chain_blocks(h);
2118         return -ENOMEM;
2119 }
2120
2121 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2122 {
2123         int i;
2124
2125         if (!h->cmd_sg_list)
2126                 return;
2127         for (i = 0; i < h->nr_cmds; i++) {
2128                 kfree(h->cmd_sg_list[i]);
2129                 h->cmd_sg_list[i] = NULL;
2130         }
2131         kfree(h->cmd_sg_list);
2132         h->cmd_sg_list = NULL;
2133 }
2134
2135 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2136 {
2137         int i;
2138
2139         if (h->chainsize <= 0)
2140                 return 0;
2141
2142         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2143                                 GFP_KERNEL);
2144         if (!h->cmd_sg_list)
2145                 return -ENOMEM;
2146
2147         for (i = 0; i < h->nr_cmds; i++) {
2148                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2149                                                 h->chainsize, GFP_KERNEL);
2150                 if (!h->cmd_sg_list[i])
2151                         goto clean;
2152
2153         }
2154         return 0;
2155
2156 clean:
2157         hpsa_free_sg_chain_blocks(h);
2158         return -ENOMEM;
2159 }
2160
2161 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2162         struct io_accel2_cmd *cp, struct CommandList *c)
2163 {
2164         struct ioaccel2_sg_element *chain_block;
2165         u64 temp64;
2166         u32 chain_size;
2167
2168         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2169         chain_size = le32_to_cpu(cp->sg[0].length);
2170         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2171                                 PCI_DMA_TODEVICE);
2172         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2173                 /* prevent subsequent unmapping */
2174                 cp->sg->address = 0;
2175                 return -1;
2176         }
2177         cp->sg->address = cpu_to_le64(temp64);
2178         return 0;
2179 }
2180
2181 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2182         struct io_accel2_cmd *cp)
2183 {
2184         struct ioaccel2_sg_element *chain_sg;
2185         u64 temp64;
2186         u32 chain_size;
2187
2188         chain_sg = cp->sg;
2189         temp64 = le64_to_cpu(chain_sg->address);
2190         chain_size = le32_to_cpu(cp->sg[0].length);
2191         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2192 }
2193
2194 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2195         struct CommandList *c)
2196 {
2197         struct SGDescriptor *chain_sg, *chain_block;
2198         u64 temp64;
2199         u32 chain_len;
2200
2201         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2202         chain_block = h->cmd_sg_list[c->cmdindex];
2203         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2204         chain_len = sizeof(*chain_sg) *
2205                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2206         chain_sg->Len = cpu_to_le32(chain_len);
2207         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2208                                 PCI_DMA_TODEVICE);
2209         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2210                 /* prevent subsequent unmapping */
2211                 chain_sg->Addr = cpu_to_le64(0);
2212                 return -1;
2213         }
2214         chain_sg->Addr = cpu_to_le64(temp64);
2215         return 0;
2216 }
2217
2218 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2219         struct CommandList *c)
2220 {
2221         struct SGDescriptor *chain_sg;
2222
2223         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2224                 return;
2225
2226         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2227         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2228                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2229 }
2230
2231
2232 /* Decode the various types of errors on ioaccel2 path.
2233  * Return 1 for any error that should generate a RAID path retry.
2234  * Return 0 for errors that don't require a RAID path retry.
2235  */
2236 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2237                                         struct CommandList *c,
2238                                         struct scsi_cmnd *cmd,
2239                                         struct io_accel2_cmd *c2,
2240                                         struct hpsa_scsi_dev_t *dev)
2241 {
2242         int data_len;
2243         int retry = 0;
2244         u32 ioaccel2_resid = 0;
2245
2246         switch (c2->error_data.serv_response) {
2247         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2248                 switch (c2->error_data.status) {
2249                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2250                         break;
2251                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2252                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2253                         if (c2->error_data.data_present !=
2254                                         IOACCEL2_SENSE_DATA_PRESENT) {
2255                                 memset(cmd->sense_buffer, 0,
2256                                         SCSI_SENSE_BUFFERSIZE);
2257                                 break;
2258                         }
2259                         /* copy the sense data */
2260                         data_len = c2->error_data.sense_data_len;
2261                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2262                                 data_len = SCSI_SENSE_BUFFERSIZE;
2263                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2264                                 data_len =
2265                                         sizeof(c2->error_data.sense_data_buff);
2266                         memcpy(cmd->sense_buffer,
2267                                 c2->error_data.sense_data_buff, data_len);
2268                         retry = 1;
2269                         break;
2270                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2271                         retry = 1;
2272                         break;
2273                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2274                         retry = 1;
2275                         break;
2276                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2277                         retry = 1;
2278                         break;
2279                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2280                         retry = 1;
2281                         break;
2282                 default:
2283                         retry = 1;
2284                         break;
2285                 }
2286                 break;
2287         case IOACCEL2_SERV_RESPONSE_FAILURE:
2288                 switch (c2->error_data.status) {
2289                 case IOACCEL2_STATUS_SR_IO_ERROR:
2290                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2291                 case IOACCEL2_STATUS_SR_OVERRUN:
2292                         retry = 1;
2293                         break;
2294                 case IOACCEL2_STATUS_SR_UNDERRUN:
2295                         cmd->result = (DID_OK << 16);           /* host byte */
2296                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2297                         ioaccel2_resid = get_unaligned_le32(
2298                                                 &c2->error_data.resid_cnt[0]);
2299                         scsi_set_resid(cmd, ioaccel2_resid);
2300                         break;
2301                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2302                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2303                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2304                         /*
2305                          * Did an HBA disk disappear? We will eventually
2306                          * get a state change event from the controller but
2307                          * in the meantime, we need to tell the OS that the
2308                          * HBA disk is no longer there and stop I/O
2309                          * from going down. This allows the potential re-insert
2310                          * of the disk to get the same device node.
2311                          */
2312                         if (dev->physical_device && dev->expose_device) {
2313                                 cmd->result = DID_NO_CONNECT << 16;
2314                                 dev->removed = 1;
2315                                 h->drv_req_rescan = 1;
2316                                 dev_warn(&h->pdev->dev,
2317                                         "%s: device is gone!\n", __func__);
2318                         } else
2319                                 /*
2320                                  * Retry by sending down the RAID path.
2321                                  * We will get an event from ctlr to
2322                                  * trigger rescan regardless.
2323                                  */
2324                                 retry = 1;
2325                         break;
2326                 default:
2327                         retry = 1;
2328                 }
2329                 break;
2330         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2331                 break;
2332         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2333                 break;
2334         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2335                 retry = 1;
2336                 break;
2337         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2338                 break;
2339         default:
2340                 retry = 1;
2341                 break;
2342         }
2343
2344         return retry;   /* retry on raid path? */
2345 }
2346
2347 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2348                 struct CommandList *c)
2349 {
2350         bool do_wake = false;
2351
2352         /*
2353          * Prevent the following race in the abort handler:
2354          *
2355          * 1. LLD is requested to abort a SCSI command
2356          * 2. The SCSI command completes
2357          * 3. The struct CommandList associated with step 2 is made available
2358          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2359          * 5. Abort handler follows scsi_cmnd->host_scribble and
2360          *    finds struct CommandList and tries to aborts it
2361          * Now we have aborted the wrong command.
2362          *
2363          * Reset c->scsi_cmd here so that the abort or reset handler will know
2364          * this command has completed.  Then, check to see if the handler is
2365          * waiting for this command, and, if so, wake it.
2366          */
2367         c->scsi_cmd = SCSI_CMD_IDLE;
2368         mb();   /* Declare command idle before checking for pending events. */
2369         if (c->abort_pending) {
2370                 do_wake = true;
2371                 c->abort_pending = false;
2372         }
2373         if (c->reset_pending) {
2374                 unsigned long flags;
2375                 struct hpsa_scsi_dev_t *dev;
2376
2377                 /*
2378                  * There appears to be a reset pending; lock the lock and
2379                  * reconfirm.  If so, then decrement the count of outstanding
2380                  * commands and wake the reset command if this is the last one.
2381                  */
2382                 spin_lock_irqsave(&h->lock, flags);
2383                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2384                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2385                         do_wake = true;
2386                 c->reset_pending = NULL;
2387                 spin_unlock_irqrestore(&h->lock, flags);
2388         }
2389
2390         if (do_wake)
2391                 wake_up_all(&h->event_sync_wait_queue);
2392 }
2393
2394 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2395                                       struct CommandList *c)
2396 {
2397         hpsa_cmd_resolve_events(h, c);
2398         cmd_tagged_free(h, c);
2399 }
2400
2401 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2402                 struct CommandList *c, struct scsi_cmnd *cmd)
2403 {
2404         hpsa_cmd_resolve_and_free(h, c);
2405         if (cmd && cmd->scsi_done)
2406                 cmd->scsi_done(cmd);
2407 }
2408
2409 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2410 {
2411         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2412         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2413 }
2414
2415 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2416 {
2417         cmd->result = DID_ABORT << 16;
2418 }
2419
2420 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2421                                     struct scsi_cmnd *cmd)
2422 {
2423         hpsa_set_scsi_cmd_aborted(cmd);
2424         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2425                          c->Request.CDB, c->err_info->ScsiStatus);
2426         hpsa_cmd_resolve_and_free(h, c);
2427 }
2428
2429 static void process_ioaccel2_completion(struct ctlr_info *h,
2430                 struct CommandList *c, struct scsi_cmnd *cmd,
2431                 struct hpsa_scsi_dev_t *dev)
2432 {
2433         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2434
2435         /* check for good status */
2436         if (likely(c2->error_data.serv_response == 0 &&
2437                         c2->error_data.status == 0))
2438                 return hpsa_cmd_free_and_done(h, c, cmd);
2439
2440         /*
2441          * Any RAID offload error results in retry which will use
2442          * the normal I/O path so the controller can handle whatever's
2443          * wrong.
2444          */
2445         if (is_logical_device(dev) &&
2446                 c2->error_data.serv_response ==
2447                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2448                 if (c2->error_data.status ==
2449                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2450                         dev->offload_enabled = 0;
2451                         dev->offload_to_be_enabled = 0;
2452                 }
2453
2454                 return hpsa_retry_cmd(h, c);
2455         }
2456
2457         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2458                 return hpsa_retry_cmd(h, c);
2459
2460         return hpsa_cmd_free_and_done(h, c, cmd);
2461 }
2462
2463 /* Returns 0 on success, < 0 otherwise. */
2464 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2465                                         struct CommandList *cp)
2466 {
2467         u8 tmf_status = cp->err_info->ScsiStatus;
2468
2469         switch (tmf_status) {
2470         case CISS_TMF_COMPLETE:
2471                 /*
2472                  * CISS_TMF_COMPLETE never happens, instead,
2473                  * ei->CommandStatus == 0 for this case.
2474                  */
2475         case CISS_TMF_SUCCESS:
2476                 return 0;
2477         case CISS_TMF_INVALID_FRAME:
2478         case CISS_TMF_NOT_SUPPORTED:
2479         case CISS_TMF_FAILED:
2480         case CISS_TMF_WRONG_LUN:
2481         case CISS_TMF_OVERLAPPED_TAG:
2482                 break;
2483         default:
2484                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2485                                 tmf_status);
2486                 break;
2487         }
2488         return -tmf_status;
2489 }
2490
2491 static void complete_scsi_command(struct CommandList *cp)
2492 {
2493         struct scsi_cmnd *cmd;
2494         struct ctlr_info *h;
2495         struct ErrorInfo *ei;
2496         struct hpsa_scsi_dev_t *dev;
2497         struct io_accel2_cmd *c2;
2498
2499         u8 sense_key;
2500         u8 asc;      /* additional sense code */
2501         u8 ascq;     /* additional sense code qualifier */
2502         unsigned long sense_data_size;
2503
2504         ei = cp->err_info;
2505         cmd = cp->scsi_cmd;
2506         h = cp->h;
2507
2508         if (!cmd->device) {
2509                 cmd->result = DID_NO_CONNECT << 16;
2510                 return hpsa_cmd_free_and_done(h, cp, cmd);
2511         }
2512
2513         dev = cmd->device->hostdata;
2514         if (!dev) {
2515                 cmd->result = DID_NO_CONNECT << 16;
2516                 return hpsa_cmd_free_and_done(h, cp, cmd);
2517         }
2518         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2519
2520         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2521         if ((cp->cmd_type == CMD_SCSI) &&
2522                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2523                 hpsa_unmap_sg_chain_block(h, cp);
2524
2525         if ((cp->cmd_type == CMD_IOACCEL2) &&
2526                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2527                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2528
2529         cmd->result = (DID_OK << 16);           /* host byte */
2530         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2531
2532         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2533                 if (dev->physical_device && dev->expose_device &&
2534                         dev->removed) {
2535                         cmd->result = DID_NO_CONNECT << 16;
2536                         return hpsa_cmd_free_and_done(h, cp, cmd);
2537                 }
2538                 if (likely(cp->phys_disk != NULL))
2539                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2540         }
2541
2542         /*
2543          * We check for lockup status here as it may be set for
2544          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2545          * fail_all_oustanding_cmds()
2546          */
2547         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2548                 /* DID_NO_CONNECT will prevent a retry */
2549                 cmd->result = DID_NO_CONNECT << 16;
2550                 return hpsa_cmd_free_and_done(h, cp, cmd);
2551         }
2552
2553         if ((unlikely(hpsa_is_pending_event(cp)))) {
2554                 if (cp->reset_pending)
2555                         return hpsa_cmd_free_and_done(h, cp, cmd);
2556                 if (cp->abort_pending)
2557                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2558         }
2559
2560         if (cp->cmd_type == CMD_IOACCEL2)
2561                 return process_ioaccel2_completion(h, cp, cmd, dev);
2562
2563         scsi_set_resid(cmd, ei->ResidualCnt);
2564         if (ei->CommandStatus == 0)
2565                 return hpsa_cmd_free_and_done(h, cp, cmd);
2566
2567         /* For I/O accelerator commands, copy over some fields to the normal
2568          * CISS header used below for error handling.
2569          */
2570         if (cp->cmd_type == CMD_IOACCEL1) {
2571                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2572                 cp->Header.SGList = scsi_sg_count(cmd);
2573                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2574                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2575                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2576                 cp->Header.tag = c->tag;
2577                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2578                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2579
2580                 /* Any RAID offload error results in retry which will use
2581                  * the normal I/O path so the controller can handle whatever's
2582                  * wrong.
2583                  */
2584                 if (is_logical_device(dev)) {
2585                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2586                                 dev->offload_enabled = 0;
2587                         return hpsa_retry_cmd(h, cp);
2588                 }
2589         }
2590
2591         /* an error has occurred */
2592         switch (ei->CommandStatus) {
2593
2594         case CMD_TARGET_STATUS:
2595                 cmd->result |= ei->ScsiStatus;
2596                 /* copy the sense data */
2597                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2598                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2599                 else
2600                         sense_data_size = sizeof(ei->SenseInfo);
2601                 if (ei->SenseLen < sense_data_size)
2602                         sense_data_size = ei->SenseLen;
2603                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2604                 if (ei->ScsiStatus)
2605                         decode_sense_data(ei->SenseInfo, sense_data_size,
2606                                 &sense_key, &asc, &ascq);
2607                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2608                         if (sense_key == ABORTED_COMMAND) {
2609                                 cmd->result |= DID_SOFT_ERROR << 16;
2610                                 break;
2611                         }
2612                         break;
2613                 }
2614                 /* Problem was not a check condition
2615                  * Pass it up to the upper layers...
2616                  */
2617                 if (ei->ScsiStatus) {
2618                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2619                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2620                                 "Returning result: 0x%x\n",
2621                                 cp, ei->ScsiStatus,
2622                                 sense_key, asc, ascq,
2623                                 cmd->result);
2624                 } else {  /* scsi status is zero??? How??? */
2625                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2626                                 "Returning no connection.\n", cp),
2627
2628                         /* Ordinarily, this case should never happen,
2629                          * but there is a bug in some released firmware
2630                          * revisions that allows it to happen if, for
2631                          * example, a 4100 backplane loses power and
2632                          * the tape drive is in it.  We assume that
2633                          * it's a fatal error of some kind because we
2634                          * can't show that it wasn't. We will make it
2635                          * look like selection timeout since that is
2636                          * the most common reason for this to occur,
2637                          * and it's severe enough.
2638                          */
2639
2640                         cmd->result = DID_NO_CONNECT << 16;
2641                 }
2642                 break;
2643
2644         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2645                 break;
2646         case CMD_DATA_OVERRUN:
2647                 dev_warn(&h->pdev->dev,
2648                         "CDB %16phN data overrun\n", cp->Request.CDB);
2649                 break;
2650         case CMD_INVALID: {
2651                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2652                 print_cmd(cp); */
2653                 /* We get CMD_INVALID if you address a non-existent device
2654                  * instead of a selection timeout (no response).  You will
2655                  * see this if you yank out a drive, then try to access it.
2656                  * This is kind of a shame because it means that any other
2657                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2658                  * missing target. */
2659                 cmd->result = DID_NO_CONNECT << 16;
2660         }
2661                 break;
2662         case CMD_PROTOCOL_ERR:
2663                 cmd->result = DID_ERROR << 16;
2664                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2665                                 cp->Request.CDB);
2666                 break;
2667         case CMD_HARDWARE_ERR:
2668                 cmd->result = DID_ERROR << 16;
2669                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2670                         cp->Request.CDB);
2671                 break;
2672         case CMD_CONNECTION_LOST:
2673                 cmd->result = DID_ERROR << 16;
2674                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2675                         cp->Request.CDB);
2676                 break;
2677         case CMD_ABORTED:
2678                 /* Return now to avoid calling scsi_done(). */
2679                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2680         case CMD_ABORT_FAILED:
2681                 cmd->result = DID_ERROR << 16;
2682                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2683                         cp->Request.CDB);
2684                 break;
2685         case CMD_UNSOLICITED_ABORT:
2686                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2687                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2688                         cp->Request.CDB);
2689                 break;
2690         case CMD_TIMEOUT:
2691                 cmd->result = DID_TIME_OUT << 16;
2692                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2693                         cp->Request.CDB);
2694                 break;
2695         case CMD_UNABORTABLE:
2696                 cmd->result = DID_ERROR << 16;
2697                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2698                 break;
2699         case CMD_TMF_STATUS:
2700                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2701                         cmd->result = DID_ERROR << 16;
2702                 break;
2703         case CMD_IOACCEL_DISABLED:
2704                 /* This only handles the direct pass-through case since RAID
2705                  * offload is handled above.  Just attempt a retry.
2706                  */
2707                 cmd->result = DID_SOFT_ERROR << 16;
2708                 dev_warn(&h->pdev->dev,
2709                                 "cp %p had HP SSD Smart Path error\n", cp);
2710                 break;
2711         default:
2712                 cmd->result = DID_ERROR << 16;
2713                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2714                                 cp, ei->CommandStatus);
2715         }
2716
2717         return hpsa_cmd_free_and_done(h, cp, cmd);
2718 }
2719
2720 static void hpsa_pci_unmap(struct pci_dev *pdev,
2721         struct CommandList *c, int sg_used, int data_direction)
2722 {
2723         int i;
2724
2725         for (i = 0; i < sg_used; i++)
2726                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2727                                 le32_to_cpu(c->SG[i].Len),
2728                                 data_direction);
2729 }
2730
2731 static int hpsa_map_one(struct pci_dev *pdev,
2732                 struct CommandList *cp,
2733                 unsigned char *buf,
2734                 size_t buflen,
2735                 int data_direction)
2736 {
2737         u64 addr64;
2738
2739         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2740                 cp->Header.SGList = 0;
2741                 cp->Header.SGTotal = cpu_to_le16(0);
2742                 return 0;
2743         }
2744
2745         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2746         if (dma_mapping_error(&pdev->dev, addr64)) {
2747                 /* Prevent subsequent unmap of something never mapped */
2748                 cp->Header.SGList = 0;
2749                 cp->Header.SGTotal = cpu_to_le16(0);
2750                 return -1;
2751         }
2752         cp->SG[0].Addr = cpu_to_le64(addr64);
2753         cp->SG[0].Len = cpu_to_le32(buflen);
2754         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2755         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2756         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2757         return 0;
2758 }
2759
2760 #define NO_TIMEOUT ((unsigned long) -1)
2761 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2762 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2763         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2764 {
2765         DECLARE_COMPLETION_ONSTACK(wait);
2766
2767         c->waiting = &wait;
2768         __enqueue_cmd_and_start_io(h, c, reply_queue);
2769         if (timeout_msecs == NO_TIMEOUT) {
2770                 /* TODO: get rid of this no-timeout thing */
2771                 wait_for_completion_io(&wait);
2772                 return IO_OK;
2773         }
2774         if (!wait_for_completion_io_timeout(&wait,
2775                                         msecs_to_jiffies(timeout_msecs))) {
2776                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2777                 return -ETIMEDOUT;
2778         }
2779         return IO_OK;
2780 }
2781
2782 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2783                                    int reply_queue, unsigned long timeout_msecs)
2784 {
2785         if (unlikely(lockup_detected(h))) {
2786                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2787                 return IO_OK;
2788         }
2789         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2790 }
2791
2792 static u32 lockup_detected(struct ctlr_info *h)
2793 {
2794         int cpu;
2795         u32 rc, *lockup_detected;
2796
2797         cpu = get_cpu();
2798         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2799         rc = *lockup_detected;
2800         put_cpu();
2801         return rc;
2802 }
2803
2804 #define MAX_DRIVER_CMD_RETRIES 25
2805 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2806         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2807 {
2808         int backoff_time = 10, retry_count = 0;
2809         int rc;
2810
2811         do {
2812                 memset(c->err_info, 0, sizeof(*c->err_info));
2813                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2814                                                   timeout_msecs);
2815                 if (rc)
2816                         break;
2817                 retry_count++;
2818                 if (retry_count > 3) {
2819                         msleep(backoff_time);
2820                         if (backoff_time < 1000)
2821                                 backoff_time *= 2;
2822                 }
2823         } while ((check_for_unit_attention(h, c) ||
2824                         check_for_busy(h, c)) &&
2825                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2826         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2827         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2828                 rc = -EIO;
2829         return rc;
2830 }
2831
2832 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2833                                 struct CommandList *c)
2834 {
2835         const u8 *cdb = c->Request.CDB;
2836         const u8 *lun = c->Header.LUN.LunAddrBytes;
2837
2838         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2839                  txt, lun, cdb);
2840 }
2841
2842 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2843                         struct CommandList *cp)
2844 {
2845         const struct ErrorInfo *ei = cp->err_info;
2846         struct device *d = &cp->h->pdev->dev;
2847         u8 sense_key, asc, ascq;
2848         int sense_len;
2849
2850         switch (ei->CommandStatus) {
2851         case CMD_TARGET_STATUS:
2852                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2853                         sense_len = sizeof(ei->SenseInfo);
2854                 else
2855                         sense_len = ei->SenseLen;
2856                 decode_sense_data(ei->SenseInfo, sense_len,
2857                                         &sense_key, &asc, &ascq);
2858                 hpsa_print_cmd(h, "SCSI status", cp);
2859                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2860                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2861                                 sense_key, asc, ascq);
2862                 else
2863                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2864                 if (ei->ScsiStatus == 0)
2865                         dev_warn(d, "SCSI status is abnormally zero.  "
2866                         "(probably indicates selection timeout "
2867                         "reported incorrectly due to a known "
2868                         "firmware bug, circa July, 2001.)\n");
2869                 break;
2870         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2871                 break;
2872         case CMD_DATA_OVERRUN:
2873                 hpsa_print_cmd(h, "overrun condition", cp);
2874                 break;
2875         case CMD_INVALID: {
2876                 /* controller unfortunately reports SCSI passthru's
2877                  * to non-existent targets as invalid commands.
2878                  */
2879                 hpsa_print_cmd(h, "invalid command", cp);
2880                 dev_warn(d, "probably means device no longer present\n");
2881                 }
2882                 break;
2883         case CMD_PROTOCOL_ERR:
2884                 hpsa_print_cmd(h, "protocol error", cp);
2885                 break;
2886         case CMD_HARDWARE_ERR:
2887                 hpsa_print_cmd(h, "hardware error", cp);
2888                 break;
2889         case CMD_CONNECTION_LOST:
2890                 hpsa_print_cmd(h, "connection lost", cp);
2891                 break;
2892         case CMD_ABORTED:
2893                 hpsa_print_cmd(h, "aborted", cp);
2894                 break;
2895         case CMD_ABORT_FAILED:
2896                 hpsa_print_cmd(h, "abort failed", cp);
2897                 break;
2898         case CMD_UNSOLICITED_ABORT:
2899                 hpsa_print_cmd(h, "unsolicited abort", cp);
2900                 break;
2901         case CMD_TIMEOUT:
2902                 hpsa_print_cmd(h, "timed out", cp);
2903                 break;
2904         case CMD_UNABORTABLE:
2905                 hpsa_print_cmd(h, "unabortable", cp);
2906                 break;
2907         case CMD_CTLR_LOCKUP:
2908                 hpsa_print_cmd(h, "controller lockup detected", cp);
2909                 break;
2910         default:
2911                 hpsa_print_cmd(h, "unknown status", cp);
2912                 dev_warn(d, "Unknown command status %x\n",
2913                                 ei->CommandStatus);
2914         }
2915 }
2916
2917 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2918                         u16 page, unsigned char *buf,
2919                         unsigned char bufsize)
2920 {
2921         int rc = IO_OK;
2922         struct CommandList *c;
2923         struct ErrorInfo *ei;
2924
2925         c = cmd_alloc(h);
2926
2927         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2928                         page, scsi3addr, TYPE_CMD)) {
2929                 rc = -1;
2930                 goto out;
2931         }
2932         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2933                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2934         if (rc)
2935                 goto out;
2936         ei = c->err_info;
2937         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2938                 hpsa_scsi_interpret_error(h, c);
2939                 rc = -1;
2940         }
2941 out:
2942         cmd_free(h, c);
2943         return rc;
2944 }
2945
2946 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2947         u8 reset_type, int reply_queue)
2948 {
2949         int rc = IO_OK;
2950         struct CommandList *c;
2951         struct ErrorInfo *ei;
2952
2953         c = cmd_alloc(h);
2954
2955
2956         /* fill_cmd can't fail here, no data buffer to map. */
2957         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2958                         scsi3addr, TYPE_MSG);
2959         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
2960         if (rc) {
2961                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2962                 goto out;
2963         }
2964         /* no unmap needed here because no data xfer. */
2965
2966         ei = c->err_info;
2967         if (ei->CommandStatus != 0) {
2968                 hpsa_scsi_interpret_error(h, c);
2969                 rc = -1;
2970         }
2971 out:
2972         cmd_free(h, c);
2973         return rc;
2974 }
2975
2976 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2977                                struct hpsa_scsi_dev_t *dev,
2978                                unsigned char *scsi3addr)
2979 {
2980         int i;
2981         bool match = false;
2982         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2983         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2984
2985         if (hpsa_is_cmd_idle(c))
2986                 return false;
2987
2988         switch (c->cmd_type) {
2989         case CMD_SCSI:
2990         case CMD_IOCTL_PEND:
2991                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2992                                 sizeof(c->Header.LUN.LunAddrBytes));
2993                 break;
2994
2995         case CMD_IOACCEL1:
2996         case CMD_IOACCEL2:
2997                 if (c->phys_disk == dev) {
2998                         /* HBA mode match */
2999                         match = true;
3000                 } else {
3001                         /* Possible RAID mode -- check each phys dev. */
3002                         /* FIXME:  Do we need to take out a lock here?  If
3003                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3004                          * instead. */
3005                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3006                                 /* FIXME: an alternate test might be
3007                                  *
3008                                  * match = dev->phys_disk[i]->ioaccel_handle
3009                                  *              == c2->scsi_nexus;      */
3010                                 match = dev->phys_disk[i] == c->phys_disk;
3011                         }
3012                 }
3013                 break;
3014
3015         case IOACCEL2_TMF:
3016                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3017                         match = dev->phys_disk[i]->ioaccel_handle ==
3018                                         le32_to_cpu(ac->it_nexus);
3019                 }
3020                 break;
3021
3022         case 0:         /* The command is in the middle of being initialized. */
3023                 match = false;
3024                 break;
3025
3026         default:
3027                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3028                         c->cmd_type);
3029                 BUG();
3030         }
3031
3032         return match;
3033 }
3034
3035 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3036         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3037 {
3038         int i;
3039         int rc = 0;
3040
3041         /* We can really only handle one reset at a time */
3042         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3043                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3044                 return -EINTR;
3045         }
3046
3047         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3048
3049         for (i = 0; i < h->nr_cmds; i++) {
3050                 struct CommandList *c = h->cmd_pool + i;
3051                 int refcount = atomic_inc_return(&c->refcount);
3052
3053                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3054                         unsigned long flags;
3055
3056                         /*
3057                          * Mark the target command as having a reset pending,
3058                          * then lock a lock so that the command cannot complete
3059                          * while we're considering it.  If the command is not
3060                          * idle then count it; otherwise revoke the event.
3061                          */
3062                         c->reset_pending = dev;
3063                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3064                         if (!hpsa_is_cmd_idle(c))
3065                                 atomic_inc(&dev->reset_cmds_out);
3066                         else
3067                                 c->reset_pending = NULL;
3068                         spin_unlock_irqrestore(&h->lock, flags);
3069                 }
3070
3071                 cmd_free(h, c);
3072         }
3073
3074         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3075         if (!rc)
3076                 wait_event(h->event_sync_wait_queue,
3077                         atomic_read(&dev->reset_cmds_out) == 0 ||
3078                         lockup_detected(h));
3079
3080         if (unlikely(lockup_detected(h))) {
3081                 dev_warn(&h->pdev->dev,
3082                          "Controller lockup detected during reset wait\n");
3083                 rc = -ENODEV;
3084         }
3085
3086         if (unlikely(rc))
3087                 atomic_set(&dev->reset_cmds_out, 0);
3088         else
3089                 wait_for_device_to_become_ready(h, scsi3addr, 0);
3090
3091         mutex_unlock(&h->reset_mutex);
3092         return rc;
3093 }
3094
3095 static void hpsa_get_raid_level(struct ctlr_info *h,
3096         unsigned char *scsi3addr, unsigned char *raid_level)
3097 {
3098         int rc;
3099         unsigned char *buf;
3100
3101         *raid_level = RAID_UNKNOWN;
3102         buf = kzalloc(64, GFP_KERNEL);
3103         if (!buf)
3104                 return;
3105
3106         if (!hpsa_vpd_page_supported(h, scsi3addr,
3107                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3108                 goto exit;
3109
3110         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3111                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3112
3113         if (rc == 0)
3114                 *raid_level = buf[8];
3115         if (*raid_level > RAID_UNKNOWN)
3116                 *raid_level = RAID_UNKNOWN;
3117 exit:
3118         kfree(buf);
3119         return;
3120 }
3121
3122 #define HPSA_MAP_DEBUG
3123 #ifdef HPSA_MAP_DEBUG
3124 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3125                                 struct raid_map_data *map_buff)
3126 {
3127         struct raid_map_disk_data *dd = &map_buff->data[0];
3128         int map, row, col;
3129         u16 map_cnt, row_cnt, disks_per_row;
3130
3131         if (rc != 0)
3132                 return;
3133
3134         /* Show details only if debugging has been activated. */
3135         if (h->raid_offload_debug < 2)
3136                 return;
3137
3138         dev_info(&h->pdev->dev, "structure_size = %u\n",
3139                                 le32_to_cpu(map_buff->structure_size));
3140         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3141                         le32_to_cpu(map_buff->volume_blk_size));
3142         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3143                         le64_to_cpu(map_buff->volume_blk_cnt));
3144         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3145                         map_buff->phys_blk_shift);
3146         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3147                         map_buff->parity_rotation_shift);
3148         dev_info(&h->pdev->dev, "strip_size = %u\n",
3149                         le16_to_cpu(map_buff->strip_size));
3150         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3151                         le64_to_cpu(map_buff->disk_starting_blk));
3152         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3153                         le64_to_cpu(map_buff->disk_blk_cnt));
3154         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3155                         le16_to_cpu(map_buff->data_disks_per_row));
3156         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3157                         le16_to_cpu(map_buff->metadata_disks_per_row));
3158         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3159                         le16_to_cpu(map_buff->row_cnt));
3160         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3161                         le16_to_cpu(map_buff->layout_map_count));
3162         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3163                         le16_to_cpu(map_buff->flags));
3164         dev_info(&h->pdev->dev, "encrypytion = %s\n",
3165                         le16_to_cpu(map_buff->flags) &
3166                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3167         dev_info(&h->pdev->dev, "dekindex = %u\n",
3168                         le16_to_cpu(map_buff->dekindex));
3169         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3170         for (map = 0; map < map_cnt; map++) {
3171                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3172                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3173                 for (row = 0; row < row_cnt; row++) {
3174                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3175                         disks_per_row =
3176                                 le16_to_cpu(map_buff->data_disks_per_row);
3177                         for (col = 0; col < disks_per_row; col++, dd++)
3178                                 dev_info(&h->pdev->dev,
3179                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3180                                         col, dd->ioaccel_handle,
3181                                         dd->xor_mult[0], dd->xor_mult[1]);
3182                         disks_per_row =
3183                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3184                         for (col = 0; col < disks_per_row; col++, dd++)
3185                                 dev_info(&h->pdev->dev,
3186                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3187                                         col, dd->ioaccel_handle,
3188                                         dd->xor_mult[0], dd->xor_mult[1]);
3189                 }
3190         }
3191 }
3192 #else
3193 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3194                         __attribute__((unused)) int rc,
3195                         __attribute__((unused)) struct raid_map_data *map_buff)
3196 {
3197 }
3198 #endif
3199
3200 static int hpsa_get_raid_map(struct ctlr_info *h,
3201         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3202 {
3203         int rc = 0;
3204         struct CommandList *c;
3205         struct ErrorInfo *ei;
3206
3207         c = cmd_alloc(h);
3208
3209         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3210                         sizeof(this_device->raid_map), 0,
3211                         scsi3addr, TYPE_CMD)) {
3212                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3213                 cmd_free(h, c);
3214                 return -1;
3215         }
3216         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3217                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3218         if (rc)
3219                 goto out;
3220         ei = c->err_info;
3221         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3222                 hpsa_scsi_interpret_error(h, c);
3223                 rc = -1;
3224                 goto out;
3225         }
3226         cmd_free(h, c);
3227
3228         /* @todo in the future, dynamically allocate RAID map memory */
3229         if (le32_to_cpu(this_device->raid_map.structure_size) >
3230                                 sizeof(this_device->raid_map)) {
3231                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3232                 rc = -1;
3233         }
3234         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3235         return rc;
3236 out:
3237         cmd_free(h, c);
3238         return rc;
3239 }
3240
3241 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3242                 unsigned char scsi3addr[], u16 bmic_device_index,
3243                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3244 {
3245         int rc = IO_OK;
3246         struct CommandList *c;
3247         struct ErrorInfo *ei;
3248
3249         c = cmd_alloc(h);
3250
3251         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3252                 0, RAID_CTLR_LUNID, TYPE_CMD);
3253         if (rc)
3254                 goto out;
3255
3256         c->Request.CDB[2] = bmic_device_index & 0xff;
3257         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3258
3259         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3260                                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3261         if (rc)
3262                 goto out;
3263         ei = c->err_info;
3264         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3265                 hpsa_scsi_interpret_error(h, c);
3266                 rc = -1;
3267         }
3268 out:
3269         cmd_free(h, c);
3270         return rc;
3271 }
3272
3273 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3274         struct bmic_identify_controller *buf, size_t bufsize)
3275 {
3276         int rc = IO_OK;
3277         struct CommandList *c;
3278         struct ErrorInfo *ei;
3279
3280         c = cmd_alloc(h);
3281
3282         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3283                 0, RAID_CTLR_LUNID, TYPE_CMD);
3284         if (rc)
3285                 goto out;
3286
3287         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3288                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3289         if (rc)
3290                 goto out;
3291         ei = c->err_info;
3292         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3293                 hpsa_scsi_interpret_error(h, c);
3294                 rc = -1;
3295         }
3296 out:
3297         cmd_free(h, c);
3298         return rc;
3299 }
3300
3301 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3302                 unsigned char scsi3addr[], u16 bmic_device_index,
3303                 struct bmic_identify_physical_device *buf, size_t bufsize)
3304 {
3305         int rc = IO_OK;
3306         struct CommandList *c;
3307         struct ErrorInfo *ei;
3308
3309         c = cmd_alloc(h);
3310         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3311                 0, RAID_CTLR_LUNID, TYPE_CMD);
3312         if (rc)
3313                 goto out;
3314
3315         c->Request.CDB[2] = bmic_device_index & 0xff;
3316         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3317
3318         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3319                                                 DEFAULT_TIMEOUT);
3320         ei = c->err_info;
3321         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3322                 hpsa_scsi_interpret_error(h, c);
3323                 rc = -1;
3324         }
3325 out:
3326         cmd_free(h, c);
3327
3328         return rc;
3329 }
3330
3331 /*
3332  * get enclosure information
3333  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3334  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3335  * Uses id_physical_device to determine the box_index.
3336  */
3337 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3338                         unsigned char *scsi3addr,
3339                         struct ReportExtendedLUNdata *rlep, int rle_index,
3340                         struct hpsa_scsi_dev_t *encl_dev)
3341 {
3342         int rc = -1;
3343         struct CommandList *c = NULL;
3344         struct ErrorInfo *ei = NULL;
3345         struct bmic_sense_storage_box_params *bssbp = NULL;
3346         struct bmic_identify_physical_device *id_phys = NULL;
3347         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3348         u16 bmic_device_index = 0;
3349
3350         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3351
3352         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3353                 rc = IO_OK;
3354                 goto out;
3355         }
3356
3357         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3358         if (!bssbp)
3359                 goto out;
3360
3361         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3362         if (!id_phys)
3363                 goto out;
3364
3365         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3366                                                 id_phys, sizeof(*id_phys));
3367         if (rc) {
3368                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3369                         __func__, encl_dev->external, bmic_device_index);
3370                 goto out;
3371         }
3372
3373         c = cmd_alloc(h);
3374
3375         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3376                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3377
3378         if (rc)
3379                 goto out;
3380
3381         if (id_phys->phys_connector[1] == 'E')
3382                 c->Request.CDB[5] = id_phys->box_index;
3383         else
3384                 c->Request.CDB[5] = 0;
3385
3386         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3387                                                 DEFAULT_TIMEOUT);
3388         if (rc)
3389                 goto out;
3390
3391         ei = c->err_info;
3392         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3393                 rc = -1;
3394                 goto out;
3395         }
3396
3397         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3398         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3399                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3400
3401         rc = IO_OK;
3402 out:
3403         kfree(bssbp);
3404         kfree(id_phys);
3405
3406         if (c)
3407                 cmd_free(h, c);
3408
3409         if (rc != IO_OK)
3410                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3411                         "Error, could not get enclosure information\n");
3412 }
3413
3414 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3415                                                 unsigned char *scsi3addr)
3416 {
3417         struct ReportExtendedLUNdata *physdev;
3418         u32 nphysicals;
3419         u64 sa = 0;
3420         int i;
3421
3422         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3423         if (!physdev)
3424                 return 0;
3425
3426         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3427                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3428                 kfree(physdev);
3429                 return 0;
3430         }
3431         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3432
3433         for (i = 0; i < nphysicals; i++)
3434                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3435                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3436                         break;
3437                 }
3438
3439         kfree(physdev);
3440
3441         return sa;
3442 }
3443
3444 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3445                                         struct hpsa_scsi_dev_t *dev)
3446 {
3447         int rc;
3448         u64 sa = 0;
3449
3450         if (is_hba_lunid(scsi3addr)) {
3451                 struct bmic_sense_subsystem_info *ssi;
3452
3453                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3454                 if (!ssi)
3455                         return;
3456
3457                 rc = hpsa_bmic_sense_subsystem_information(h,
3458                                         scsi3addr, 0, ssi, sizeof(*ssi));
3459                 if (rc == 0) {
3460                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3461                         h->sas_address = sa;
3462                 }
3463
3464                 kfree(ssi);
3465         } else
3466                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3467
3468         dev->sas_address = sa;
3469 }
3470
3471 /* Get a device id from inquiry page 0x83 */
3472 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3473         unsigned char scsi3addr[], u8 page)
3474 {
3475         int rc;
3476         int i;
3477         int pages;
3478         unsigned char *buf, bufsize;
3479
3480         buf = kzalloc(256, GFP_KERNEL);
3481         if (!buf)
3482                 return false;
3483
3484         /* Get the size of the page list first */
3485         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3486                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3487                                 buf, HPSA_VPD_HEADER_SZ);
3488         if (rc != 0)
3489                 goto exit_unsupported;
3490         pages = buf[3];
3491         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3492                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3493         else
3494                 bufsize = 255;
3495
3496         /* Get the whole VPD page list */
3497         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3498                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3499                                 buf, bufsize);
3500         if (rc != 0)
3501                 goto exit_unsupported;
3502
3503         pages = buf[3];
3504         for (i = 1; i <= pages; i++)
3505                 if (buf[3 + i] == page)
3506                         goto exit_supported;
3507 exit_unsupported:
3508         kfree(buf);
3509         return false;
3510 exit_supported:
3511         kfree(buf);
3512         return true;
3513 }
3514
3515 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3516         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3517 {
3518         int rc;
3519         unsigned char *buf;
3520         u8 ioaccel_status;
3521
3522         this_device->offload_config = 0;
3523         this_device->offload_enabled = 0;
3524         this_device->offload_to_be_enabled = 0;
3525
3526         buf = kzalloc(64, GFP_KERNEL);
3527         if (!buf)
3528                 return;
3529         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3530                 goto out;
3531         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3532                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3533         if (rc != 0)
3534                 goto out;
3535
3536 #define IOACCEL_STATUS_BYTE 4
3537 #define OFFLOAD_CONFIGURED_BIT 0x01
3538 #define OFFLOAD_ENABLED_BIT 0x02
3539         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3540         this_device->offload_config =
3541                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3542         if (this_device->offload_config) {
3543                 this_device->offload_enabled =
3544                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3545                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3546                         this_device->offload_enabled = 0;
3547         }
3548         this_device->offload_to_be_enabled = this_device->offload_enabled;
3549 out:
3550         kfree(buf);
3551         return;
3552 }
3553
3554 /* Get the device id from inquiry page 0x83 */
3555 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3556         unsigned char *device_id, int index, int buflen)
3557 {
3558         int rc;
3559         unsigned char *buf;
3560
3561         /* Does controller have VPD for device id? */
3562         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3563                 return 1; /* not supported */
3564
3565         buf = kzalloc(64, GFP_KERNEL);
3566         if (!buf)
3567                 return -ENOMEM;
3568
3569         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3570                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3571         if (rc == 0) {
3572                 if (buflen > 16)
3573                         buflen = 16;
3574                 memcpy(device_id, &buf[8], buflen);
3575         }
3576
3577         kfree(buf);
3578
3579         return rc; /*0 - got id,  otherwise, didn't */
3580 }
3581
3582 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3583                 void *buf, int bufsize,
3584                 int extended_response)
3585 {
3586         int rc = IO_OK;
3587         struct CommandList *c;
3588         unsigned char scsi3addr[8];
3589         struct ErrorInfo *ei;
3590
3591         c = cmd_alloc(h);
3592
3593         /* address the controller */
3594         memset(scsi3addr, 0, sizeof(scsi3addr));
3595         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3596                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3597                 rc = -1;
3598                 goto out;
3599         }
3600         if (extended_response)
3601                 c->Request.CDB[1] = extended_response;
3602         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3603                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3604         if (rc)
3605                 goto out;
3606         ei = c->err_info;
3607         if (ei->CommandStatus != 0 &&
3608             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3609                 hpsa_scsi_interpret_error(h, c);
3610                 rc = -1;
3611         } else {
3612                 struct ReportLUNdata *rld = buf;
3613
3614                 if (rld->extended_response_flag != extended_response) {
3615                         dev_err(&h->pdev->dev,
3616                                 "report luns requested format %u, got %u\n",
3617                                 extended_response,
3618                                 rld->extended_response_flag);
3619                         rc = -1;
3620                 }
3621         }
3622 out:
3623         cmd_free(h, c);
3624         return rc;
3625 }
3626
3627 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3628                 struct ReportExtendedLUNdata *buf, int bufsize)
3629 {
3630         int rc;
3631         struct ReportLUNdata *lbuf;
3632
3633         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3634                                       HPSA_REPORT_PHYS_EXTENDED);
3635         if (!rc || !hpsa_allow_any)
3636                 return rc;
3637
3638         /* REPORT PHYS EXTENDED is not supported */
3639         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3640         if (!lbuf)
3641                 return -ENOMEM;
3642
3643         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3644         if (!rc) {
3645                 int i;
3646                 u32 nphys;
3647
3648                 /* Copy ReportLUNdata header */
3649                 memcpy(buf, lbuf, 8);
3650                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3651                 for (i = 0; i < nphys; i++)
3652                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3653         }
3654         kfree(lbuf);
3655         return rc;
3656 }
3657
3658 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3659                 struct ReportLUNdata *buf, int bufsize)
3660 {
3661         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3662 }
3663
3664 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3665         int bus, int target, int lun)
3666 {
3667         device->bus = bus;
3668         device->target = target;
3669         device->lun = lun;
3670 }
3671
3672 /* Use VPD inquiry to get details of volume status */
3673 static int hpsa_get_volume_status(struct ctlr_info *h,
3674                                         unsigned char scsi3addr[])
3675 {
3676         int rc;
3677         int status;
3678         int size;
3679         unsigned char *buf;
3680
3681         buf = kzalloc(64, GFP_KERNEL);
3682         if (!buf)
3683                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3684
3685         /* Does controller have VPD for logical volume status? */
3686         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3687                 goto exit_failed;
3688
3689         /* Get the size of the VPD return buffer */
3690         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3691                                         buf, HPSA_VPD_HEADER_SZ);
3692         if (rc != 0)
3693                 goto exit_failed;
3694         size = buf[3];
3695
3696         /* Now get the whole VPD buffer */
3697         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3698                                         buf, size + HPSA_VPD_HEADER_SZ);
3699         if (rc != 0)
3700                 goto exit_failed;
3701         status = buf[4]; /* status byte */
3702
3703         kfree(buf);
3704         return status;
3705 exit_failed:
3706         kfree(buf);
3707         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3708 }
3709
3710 /* Determine offline status of a volume.
3711  * Return either:
3712  *  0 (not offline)
3713  *  0xff (offline for unknown reasons)
3714  *  # (integer code indicating one of several NOT READY states
3715  *     describing why a volume is to be kept offline)
3716  */
3717 static int hpsa_volume_offline(struct ctlr_info *h,
3718                                         unsigned char scsi3addr[])
3719 {
3720         struct CommandList *c;
3721         unsigned char *sense;
3722         u8 sense_key, asc, ascq;
3723         int sense_len;
3724         int rc, ldstat = 0;
3725         u16 cmd_status;
3726         u8 scsi_status;
3727 #define ASC_LUN_NOT_READY 0x04
3728 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3729 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3730
3731         c = cmd_alloc(h);
3732
3733         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3734         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3735                                         DEFAULT_TIMEOUT);
3736         if (rc) {
3737                 cmd_free(h, c);
3738                 return 0;
3739         }
3740         sense = c->err_info->SenseInfo;
3741         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3742                 sense_len = sizeof(c->err_info->SenseInfo);
3743         else
3744                 sense_len = c->err_info->SenseLen;
3745         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3746         cmd_status = c->err_info->CommandStatus;
3747         scsi_status = c->err_info->ScsiStatus;
3748         cmd_free(h, c);
3749         /* Is the volume 'not ready'? */
3750         if (cmd_status != CMD_TARGET_STATUS ||
3751                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3752                 sense_key != NOT_READY ||
3753                 asc != ASC_LUN_NOT_READY)  {
3754                 return 0;
3755         }
3756
3757         /* Determine the reason for not ready state */
3758         ldstat = hpsa_get_volume_status(h, scsi3addr);
3759
3760         /* Keep volume offline in certain cases: */
3761         switch (ldstat) {
3762         case HPSA_LV_UNDERGOING_ERASE:
3763         case HPSA_LV_NOT_AVAILABLE:
3764         case HPSA_LV_UNDERGOING_RPI:
3765         case HPSA_LV_PENDING_RPI:
3766         case HPSA_LV_ENCRYPTED_NO_KEY:
3767         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3768         case HPSA_LV_UNDERGOING_ENCRYPTION:
3769         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3770         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3771                 return ldstat;
3772         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3773                 /* If VPD status page isn't available,
3774                  * use ASC/ASCQ to determine state
3775                  */
3776                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3777                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3778                         return ldstat;
3779                 break;
3780         default:
3781                 break;
3782         }
3783         return 0;
3784 }
3785
3786 /*
3787  * Find out if a logical device supports aborts by simply trying one.
3788  * Smart Array may claim not to support aborts on logical drives, but
3789  * if a MSA2000 * is connected, the drives on that will be presented
3790  * by the Smart Array as logical drives, and aborts may be sent to
3791  * those devices successfully.  So the simplest way to find out is
3792  * to simply try an abort and see how the device responds.
3793  */
3794 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3795                                         unsigned char *scsi3addr)
3796 {
3797         struct CommandList *c;
3798         struct ErrorInfo *ei;
3799         int rc = 0;
3800
3801         u64 tag = (u64) -1; /* bogus tag */
3802
3803         /* Assume that physical devices support aborts */
3804         if (!is_logical_dev_addr_mode(scsi3addr))
3805                 return 1;
3806
3807         c = cmd_alloc(h);
3808
3809         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3810         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3811                                         DEFAULT_TIMEOUT);
3812         /* no unmap needed here because no data xfer. */
3813         ei = c->err_info;
3814         switch (ei->CommandStatus) {
3815         case CMD_INVALID:
3816                 rc = 0;
3817                 break;
3818         case CMD_UNABORTABLE:
3819         case CMD_ABORT_FAILED:
3820                 rc = 1;
3821                 break;
3822         case CMD_TMF_STATUS:
3823                 rc = hpsa_evaluate_tmf_status(h, c);
3824                 break;
3825         default:
3826                 rc = 0;
3827                 break;
3828         }
3829         cmd_free(h, c);
3830         return rc;
3831 }
3832
3833 static int hpsa_update_device_info(struct ctlr_info *h,
3834         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3835         unsigned char *is_OBDR_device)
3836 {
3837
3838 #define OBDR_SIG_OFFSET 43
3839 #define OBDR_TAPE_SIG "$DR-10"
3840 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3841 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3842
3843         unsigned char *inq_buff;
3844         unsigned char *obdr_sig;
3845         int rc = 0;
3846
3847         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3848         if (!inq_buff) {
3849                 rc = -ENOMEM;
3850                 goto bail_out;
3851         }
3852
3853         /* Do an inquiry to the device to see what it is. */
3854         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3855                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3856                 /* Inquiry failed (msg printed already) */
3857                 dev_err(&h->pdev->dev,
3858                         "hpsa_update_device_info: inquiry failed\n");
3859                 rc = -EIO;
3860                 goto bail_out;
3861         }
3862
3863         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3864         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3865
3866         this_device->devtype = (inq_buff[0] & 0x1f);
3867         memcpy(this_device->scsi3addr, scsi3addr, 8);
3868         memcpy(this_device->vendor, &inq_buff[8],
3869                 sizeof(this_device->vendor));
3870         memcpy(this_device->model, &inq_buff[16],
3871                 sizeof(this_device->model));
3872         this_device->rev = inq_buff[2];
3873         memset(this_device->device_id, 0,
3874                 sizeof(this_device->device_id));
3875         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3876                 sizeof(this_device->device_id)))
3877                 dev_err(&h->pdev->dev,
3878                         "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3879                         h->ctlr, __func__,
3880                         h->scsi_host->host_no,
3881                         this_device->target, this_device->lun,
3882                         scsi_device_type(this_device->devtype),
3883                         this_device->model);
3884
3885         if ((this_device->devtype == TYPE_DISK ||
3886                 this_device->devtype == TYPE_ZBC) &&
3887                 is_logical_dev_addr_mode(scsi3addr)) {
3888                 int volume_offline;
3889
3890                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3891                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3892                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3893                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3894                 if (volume_offline < 0 || volume_offline > 0xff)
3895                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3896                 this_device->volume_offline = volume_offline & 0xff;
3897         } else {
3898                 this_device->raid_level = RAID_UNKNOWN;
3899                 this_device->offload_config = 0;
3900                 this_device->offload_enabled = 0;
3901                 this_device->offload_to_be_enabled = 0;
3902                 this_device->hba_ioaccel_enabled = 0;
3903                 this_device->volume_offline = 0;
3904                 this_device->queue_depth = h->nr_cmds;
3905         }
3906
3907         if (is_OBDR_device) {
3908                 /* See if this is a One-Button-Disaster-Recovery device
3909                  * by looking for "$DR-10" at offset 43 in inquiry data.
3910                  */
3911                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3912                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3913                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3914                                                 OBDR_SIG_LEN) == 0);
3915         }
3916         kfree(inq_buff);
3917         return 0;
3918
3919 bail_out:
3920         kfree(inq_buff);
3921         return rc;
3922 }
3923
3924 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3925                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3926 {
3927         unsigned long flags;
3928         int rc, entry;
3929         /*
3930          * See if this device supports aborts.  If we already know
3931          * the device, we already know if it supports aborts, otherwise
3932          * we have to find out if it supports aborts by trying one.
3933          */
3934         spin_lock_irqsave(&h->devlock, flags);
3935         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3936         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3937                 entry >= 0 && entry < h->ndevices) {
3938                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3939                 spin_unlock_irqrestore(&h->devlock, flags);
3940         } else {
3941                 spin_unlock_irqrestore(&h->devlock, flags);
3942                 dev->supports_aborts =
3943                                 hpsa_device_supports_aborts(h, scsi3addr);
3944                 if (dev->supports_aborts < 0)
3945                         dev->supports_aborts = 0;
3946         }
3947 }
3948
3949 /*
3950  * Helper function to assign bus, target, lun mapping of devices.
3951  * Logical drive target and lun are assigned at this time, but
3952  * physical device lun and target assignment are deferred (assigned
3953  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3954 */
3955 static void figure_bus_target_lun(struct ctlr_info *h,
3956         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3957 {
3958         u32 lunid = get_unaligned_le32(lunaddrbytes);
3959
3960         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3961                 /* physical device, target and lun filled in later */
3962                 if (is_hba_lunid(lunaddrbytes)) {
3963                         int bus = HPSA_HBA_BUS;
3964
3965                         if (!device->rev)
3966                                 bus = HPSA_LEGACY_HBA_BUS;
3967                         hpsa_set_bus_target_lun(device,
3968                                         bus, 0, lunid & 0x3fff);
3969                 } else
3970                         /* defer target, lun assignment for physical devices */
3971                         hpsa_set_bus_target_lun(device,
3972                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3973                 return;
3974         }
3975         /* It's a logical device */
3976         if (device->external) {
3977                 hpsa_set_bus_target_lun(device,
3978                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3979                         lunid & 0x00ff);
3980                 return;
3981         }
3982         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3983                                 0, lunid & 0x3fff);
3984 }
3985
3986
3987 /*
3988  * Get address of physical disk used for an ioaccel2 mode command:
3989  *      1. Extract ioaccel2 handle from the command.
3990  *      2. Find a matching ioaccel2 handle from list of physical disks.
3991  *      3. Return:
3992  *              1 and set scsi3addr to address of matching physical
3993  *              0 if no matching physical disk was found.
3994  */
3995 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3996         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3997 {
3998         struct io_accel2_cmd *c2 =
3999                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
4000         unsigned long flags;
4001         int i;
4002
4003         spin_lock_irqsave(&h->devlock, flags);
4004         for (i = 0; i < h->ndevices; i++)
4005                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
4006                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
4007                                 sizeof(h->dev[i]->scsi3addr));
4008                         spin_unlock_irqrestore(&h->devlock, flags);
4009                         return 1;
4010                 }
4011         spin_unlock_irqrestore(&h->devlock, flags);
4012         return 0;
4013 }
4014
4015 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4016         int i, int nphysicals, int nlocal_logicals)
4017 {
4018         /* In report logicals, local logicals are listed first,
4019         * then any externals.
4020         */
4021         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4022
4023         if (i == raid_ctlr_position)
4024                 return 0;
4025
4026         if (i < logicals_start)
4027                 return 0;
4028
4029         /* i is in logicals range, but still within local logicals */
4030         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4031                 return 0;
4032
4033         return 1; /* it's an external lun */
4034 }
4035
4036 /*
4037  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4038  * logdev.  The number of luns in physdev and logdev are returned in
4039  * *nphysicals and *nlogicals, respectively.
4040  * Returns 0 on success, -1 otherwise.
4041  */
4042 static int hpsa_gather_lun_info(struct ctlr_info *h,
4043         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4044         struct ReportLUNdata *logdev, u32 *nlogicals)
4045 {
4046         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4047                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4048                 return -1;
4049         }
4050         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4051         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4052                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4053                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4054                 *nphysicals = HPSA_MAX_PHYS_LUN;
4055         }
4056         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4057                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4058                 return -1;
4059         }
4060         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4061         /* Reject Logicals in excess of our max capability. */
4062         if (*nlogicals > HPSA_MAX_LUN) {
4063                 dev_warn(&h->pdev->dev,
4064                         "maximum logical LUNs (%d) exceeded.  "
4065                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4066                         *nlogicals - HPSA_MAX_LUN);
4067                         *nlogicals = HPSA_MAX_LUN;
4068         }
4069         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4070                 dev_warn(&h->pdev->dev,
4071                         "maximum logical + physical LUNs (%d) exceeded. "
4072                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4073                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4074                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4075         }
4076         return 0;
4077 }
4078
4079 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4080         int i, int nphysicals, int nlogicals,
4081         struct ReportExtendedLUNdata *physdev_list,
4082         struct ReportLUNdata *logdev_list)
4083 {
4084         /* Helper function, figure out where the LUN ID info is coming from
4085          * given index i, lists of physical and logical devices, where in
4086          * the list the raid controller is supposed to appear (first or last)
4087          */
4088
4089         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4090         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4091
4092         if (i == raid_ctlr_position)
4093                 return RAID_CTLR_LUNID;
4094
4095         if (i < logicals_start)
4096                 return &physdev_list->LUN[i -
4097                                 (raid_ctlr_position == 0)].lunid[0];
4098
4099         if (i < last_device)
4100                 return &logdev_list->LUN[i - nphysicals -
4101                         (raid_ctlr_position == 0)][0];
4102         BUG();
4103         return NULL;
4104 }
4105
4106 /* get physical drive ioaccel handle and queue depth */
4107 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4108                 struct hpsa_scsi_dev_t *dev,
4109                 struct ReportExtendedLUNdata *rlep, int rle_index,
4110                 struct bmic_identify_physical_device *id_phys)
4111 {
4112         int rc;
4113         struct ext_report_lun_entry *rle;
4114
4115         /*
4116          * external targets don't support BMIC
4117          */
4118         if (dev->external) {
4119                 dev->queue_depth = 7;
4120                 return;
4121         }
4122
4123         rle = &rlep->LUN[rle_index];
4124
4125         dev->ioaccel_handle = rle->ioaccel_handle;
4126         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4127                 dev->hba_ioaccel_enabled = 1;
4128         memset(id_phys, 0, sizeof(*id_phys));
4129         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4130                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4131                         sizeof(*id_phys));
4132         if (!rc)
4133                 /* Reserve space for FW operations */
4134 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4135 #define DRIVE_QUEUE_DEPTH 7
4136                 dev->queue_depth =
4137                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4138                                 DRIVE_CMDS_RESERVED_FOR_FW;
4139         else
4140                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4141 }
4142
4143 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4144         struct ReportExtendedLUNdata *rlep, int rle_index,
4145         struct bmic_identify_physical_device *id_phys)
4146 {
4147         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4148
4149         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4150                 this_device->hba_ioaccel_enabled = 1;
4151
4152         memcpy(&this_device->active_path_index,
4153                 &id_phys->active_path_number,
4154                 sizeof(this_device->active_path_index));
4155         memcpy(&this_device->path_map,
4156                 &id_phys->redundant_path_present_map,
4157                 sizeof(this_device->path_map));
4158         memcpy(&this_device->box,
4159                 &id_phys->alternate_paths_phys_box_on_port,
4160                 sizeof(this_device->box));
4161         memcpy(&this_device->phys_connector,
4162                 &id_phys->alternate_paths_phys_connector,
4163                 sizeof(this_device->phys_connector));
4164         memcpy(&this_device->bay,
4165                 &id_phys->phys_bay_in_box,
4166                 sizeof(this_device->bay));
4167 }
4168
4169 /* get number of local logical disks. */
4170 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4171         struct bmic_identify_controller *id_ctlr,
4172         u32 *nlocals)
4173 {
4174         int rc;
4175
4176         if (!id_ctlr) {
4177                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4178                         __func__);
4179                 return -ENOMEM;
4180         }
4181         memset(id_ctlr, 0, sizeof(*id_ctlr));
4182         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4183         if (!rc)
4184                 if (id_ctlr->configured_logical_drive_count < 256)
4185                         *nlocals = id_ctlr->configured_logical_drive_count;
4186                 else
4187                         *nlocals = le16_to_cpu(
4188                                         id_ctlr->extended_logical_unit_count);
4189         else
4190                 *nlocals = -1;
4191         return rc;
4192 }
4193
4194 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4195 {
4196         struct bmic_identify_physical_device *id_phys;
4197         bool is_spare = false;
4198         int rc;
4199
4200         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4201         if (!id_phys)
4202                 return false;
4203
4204         rc = hpsa_bmic_id_physical_device(h,
4205                                         lunaddrbytes,
4206                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4207                                         id_phys, sizeof(*id_phys));
4208         if (rc == 0)
4209                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4210
4211         kfree(id_phys);
4212         return is_spare;
4213 }
4214
4215 #define RPL_DEV_FLAG_NON_DISK                           0x1
4216 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4217 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4218
4219 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4220
4221 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4222                                 struct ext_report_lun_entry *rle)
4223 {
4224         u8 device_flags;
4225         u8 device_type;
4226
4227         if (!MASKED_DEVICE(lunaddrbytes))
4228                 return false;
4229
4230         device_flags = rle->device_flags;
4231         device_type = rle->device_type;
4232
4233         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4234                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4235                         return false;
4236                 return true;
4237         }
4238
4239         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4240                 return false;
4241
4242         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4243                 return false;
4244
4245         /*
4246          * Spares may be spun down, we do not want to
4247          * do an Inquiry to a RAID set spare drive as
4248          * that would have them spun up, that is a
4249          * performance hit because I/O to the RAID device
4250          * stops while the spin up occurs which can take
4251          * over 50 seconds.
4252          */
4253         if (hpsa_is_disk_spare(h, lunaddrbytes))
4254                 return true;
4255
4256         return false;
4257 }
4258
4259 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4260 {
4261         /* the idea here is we could get notified
4262          * that some devices have changed, so we do a report
4263          * physical luns and report logical luns cmd, and adjust
4264          * our list of devices accordingly.
4265          *
4266          * The scsi3addr's of devices won't change so long as the
4267          * adapter is not reset.  That means we can rescan and
4268          * tell which devices we already know about, vs. new
4269          * devices, vs.  disappearing devices.
4270          */
4271         struct ReportExtendedLUNdata *physdev_list = NULL;
4272         struct ReportLUNdata *logdev_list = NULL;
4273         struct bmic_identify_physical_device *id_phys = NULL;
4274         struct bmic_identify_controller *id_ctlr = NULL;
4275         u32 nphysicals = 0;
4276         u32 nlogicals = 0;
4277         u32 nlocal_logicals = 0;
4278         u32 ndev_allocated = 0;
4279         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4280         int ncurrent = 0;
4281         int i, n_ext_target_devs, ndevs_to_allocate;
4282         int raid_ctlr_position;
4283         bool physical_device;
4284         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4285
4286         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4287         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4288         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4289         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4290         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4291         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4292
4293         if (!currentsd || !physdev_list || !logdev_list ||
4294                 !tmpdevice || !id_phys || !id_ctlr) {
4295                 dev_err(&h->pdev->dev, "out of memory\n");
4296                 goto out;
4297         }
4298         memset(lunzerobits, 0, sizeof(lunzerobits));
4299
4300         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4301
4302         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4303                         logdev_list, &nlogicals)) {
4304                 h->drv_req_rescan = 1;
4305                 goto out;
4306         }
4307
4308         /* Set number of local logicals (non PTRAID) */
4309         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4310                 dev_warn(&h->pdev->dev,
4311                         "%s: Can't determine number of local logical devices.\n",
4312                         __func__);
4313         }
4314
4315         /* We might see up to the maximum number of logical and physical disks
4316          * plus external target devices, and a device for the local RAID
4317          * controller.
4318          */
4319         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4320
4321         /* Allocate the per device structures */
4322         for (i = 0; i < ndevs_to_allocate; i++) {
4323                 if (i >= HPSA_MAX_DEVICES) {
4324                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4325                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4326                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4327                         break;
4328                 }
4329
4330                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4331                 if (!currentsd[i]) {
4332                         h->drv_req_rescan = 1;
4333                         goto out;
4334                 }
4335                 ndev_allocated++;
4336         }
4337
4338         if (is_scsi_rev_5(h))
4339                 raid_ctlr_position = 0;
4340         else
4341                 raid_ctlr_position = nphysicals + nlogicals;
4342
4343         /* adjust our table of devices */
4344         n_ext_target_devs = 0;
4345         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4346                 u8 *lunaddrbytes, is_OBDR = 0;
4347                 int rc = 0;
4348                 int phys_dev_index = i - (raid_ctlr_position == 0);
4349                 bool skip_device = false;
4350
4351                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4352
4353                 /* Figure out where the LUN ID info is coming from */
4354                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4355                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4356
4357                 /* Determine if this is a lun from an external target array */
4358                 tmpdevice->external =
4359                         figure_external_status(h, raid_ctlr_position, i,
4360                                                 nphysicals, nlocal_logicals);
4361
4362                 /*
4363                  * Skip over some devices such as a spare.
4364                  */
4365                 if (!tmpdevice->external && physical_device) {
4366                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4367                                         &physdev_list->LUN[phys_dev_index]);
4368                         if (skip_device)
4369                                 continue;
4370                 }
4371
4372                 /* Get device type, vendor, model, device id */
4373                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4374                                                         &is_OBDR);
4375                 if (rc == -ENOMEM) {
4376                         dev_warn(&h->pdev->dev,
4377                                 "Out of memory, rescan deferred.\n");
4378                         h->drv_req_rescan = 1;
4379                         goto out;
4380                 }
4381                 if (rc) {
4382                         dev_warn(&h->pdev->dev,
4383                                 "Inquiry failed, skipping device.\n");
4384                         continue;
4385                 }
4386
4387                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4388                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4389                 this_device = currentsd[ncurrent];
4390
4391                 /* Turn on discovery_polling if there are ext target devices.
4392                  * Event-based change notification is unreliable for those.
4393                  */
4394                 if (!h->discovery_polling) {
4395                         if (tmpdevice->external) {
4396                                 h->discovery_polling = 1;
4397                                 dev_info(&h->pdev->dev,
4398                                         "External target, activate discovery polling.\n");
4399                         }
4400                 }
4401
4402
4403                 *this_device = *tmpdevice;
4404                 this_device->physical_device = physical_device;
4405
4406                 /*
4407                  * Expose all devices except for physical devices that
4408                  * are masked.
4409                  */
4410                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4411                         this_device->expose_device = 0;
4412                 else
4413                         this_device->expose_device = 1;
4414
4415
4416                 /*
4417                  * Get the SAS address for physical devices that are exposed.
4418                  */
4419                 if (this_device->physical_device && this_device->expose_device)
4420                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4421
4422                 switch (this_device->devtype) {
4423                 case TYPE_ROM:
4424                         /* We don't *really* support actual CD-ROM devices,
4425                          * just "One Button Disaster Recovery" tape drive
4426                          * which temporarily pretends to be a CD-ROM drive.
4427                          * So we check that the device is really an OBDR tape
4428                          * device by checking for "$DR-10" in bytes 43-48 of
4429                          * the inquiry data.
4430                          */
4431                         if (is_OBDR)
4432                                 ncurrent++;
4433                         break;
4434                 case TYPE_DISK:
4435                 case TYPE_ZBC:
4436                         if (this_device->physical_device) {
4437                                 /* The disk is in HBA mode. */
4438                                 /* Never use RAID mapper in HBA mode. */
4439                                 this_device->offload_enabled = 0;
4440                                 hpsa_get_ioaccel_drive_info(h, this_device,
4441                                         physdev_list, phys_dev_index, id_phys);
4442                                 hpsa_get_path_info(this_device,
4443                                         physdev_list, phys_dev_index, id_phys);
4444                         }
4445                         ncurrent++;
4446                         break;
4447                 case TYPE_TAPE:
4448                 case TYPE_MEDIUM_CHANGER:
4449                         ncurrent++;
4450                         break;
4451                 case TYPE_ENCLOSURE:
4452                         if (!this_device->external)
4453                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4454                                                 physdev_list, phys_dev_index,
4455                                                 this_device);
4456                         ncurrent++;
4457                         break;
4458                 case TYPE_RAID:
4459                         /* Only present the Smartarray HBA as a RAID controller.
4460                          * If it's a RAID controller other than the HBA itself
4461                          * (an external RAID controller, MSA500 or similar)
4462                          * don't present it.
4463                          */
4464                         if (!is_hba_lunid(lunaddrbytes))
4465                                 break;
4466                         ncurrent++;
4467                         break;
4468                 default:
4469                         break;
4470                 }
4471                 if (ncurrent >= HPSA_MAX_DEVICES)
4472                         break;
4473         }
4474
4475         if (h->sas_host == NULL) {
4476                 int rc = 0;
4477
4478                 rc = hpsa_add_sas_host(h);
4479                 if (rc) {
4480                         dev_warn(&h->pdev->dev,
4481                                 "Could not add sas host %d\n", rc);
4482                         goto out;
4483                 }
4484         }
4485
4486         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4487 out:
4488         kfree(tmpdevice);
4489         for (i = 0; i < ndev_allocated; i++)
4490                 kfree(currentsd[i]);
4491         kfree(currentsd);
4492         kfree(physdev_list);
4493         kfree(logdev_list);
4494         kfree(id_ctlr);
4495         kfree(id_phys);
4496 }
4497
4498 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4499                                    struct scatterlist *sg)
4500 {
4501         u64 addr64 = (u64) sg_dma_address(sg);
4502         unsigned int len = sg_dma_len(sg);
4503
4504         desc->Addr = cpu_to_le64(addr64);
4505         desc->Len = cpu_to_le32(len);
4506         desc->Ext = 0;
4507 }
4508
4509 /*
4510  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4511  * dma mapping  and fills in the scatter gather entries of the
4512  * hpsa command, cp.
4513  */
4514 static int hpsa_scatter_gather(struct ctlr_info *h,
4515                 struct CommandList *cp,
4516                 struct scsi_cmnd *cmd)
4517 {
4518         struct scatterlist *sg;
4519         int use_sg, i, sg_limit, chained, last_sg;
4520         struct SGDescriptor *curr_sg;
4521
4522         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4523
4524         use_sg = scsi_dma_map(cmd);
4525         if (use_sg < 0)
4526                 return use_sg;
4527
4528         if (!use_sg)
4529                 goto sglist_finished;
4530
4531         /*
4532          * If the number of entries is greater than the max for a single list,
4533          * then we have a chained list; we will set up all but one entry in the
4534          * first list (the last entry is saved for link information);
4535          * otherwise, we don't have a chained list and we'll set up at each of
4536          * the entries in the one list.
4537          */
4538         curr_sg = cp->SG;
4539         chained = use_sg > h->max_cmd_sg_entries;
4540         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4541         last_sg = scsi_sg_count(cmd) - 1;
4542         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4543                 hpsa_set_sg_descriptor(curr_sg, sg);
4544                 curr_sg++;
4545         }
4546
4547         if (chained) {
4548                 /*
4549                  * Continue with the chained list.  Set curr_sg to the chained
4550                  * list.  Modify the limit to the total count less the entries
4551                  * we've already set up.  Resume the scan at the list entry
4552                  * where the previous loop left off.
4553                  */
4554                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4555                 sg_limit = use_sg - sg_limit;
4556                 for_each_sg(sg, sg, sg_limit, i) {
4557                         hpsa_set_sg_descriptor(curr_sg, sg);
4558                         curr_sg++;
4559                 }
4560         }
4561
4562         /* Back the pointer up to the last entry and mark it as "last". */
4563         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4564
4565         if (use_sg + chained > h->maxSG)
4566                 h->maxSG = use_sg + chained;
4567
4568         if (chained) {
4569                 cp->Header.SGList = h->max_cmd_sg_entries;
4570                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4571                 if (hpsa_map_sg_chain_block(h, cp)) {
4572                         scsi_dma_unmap(cmd);
4573                         return -1;
4574                 }
4575                 return 0;
4576         }
4577
4578 sglist_finished:
4579
4580         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4581         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4582         return 0;
4583 }
4584
4585 #define IO_ACCEL_INELIGIBLE (1)
4586 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4587 {
4588         int is_write = 0;
4589         u32 block;
4590         u32 block_cnt;
4591
4592         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4593         switch (cdb[0]) {
4594         case WRITE_6:
4595         case WRITE_12:
4596                 is_write = 1;
4597         case READ_6:
4598         case READ_12:
4599                 if (*cdb_len == 6) {
4600                         block = (((cdb[1] & 0x1F) << 16) |
4601                                 (cdb[2] << 8) |
4602                                 cdb[3]);
4603                         block_cnt = cdb[4];
4604                         if (block_cnt == 0)
4605                                 block_cnt = 256;
4606                 } else {
4607                         BUG_ON(*cdb_len != 12);
4608                         block = get_unaligned_be32(&cdb[2]);
4609                         block_cnt = get_unaligned_be32(&cdb[6]);
4610                 }
4611                 if (block_cnt > 0xffff)
4612                         return IO_ACCEL_INELIGIBLE;
4613
4614                 cdb[0] = is_write ? WRITE_10 : READ_10;
4615                 cdb[1] = 0;
4616                 cdb[2] = (u8) (block >> 24);
4617                 cdb[3] = (u8) (block >> 16);
4618                 cdb[4] = (u8) (block >> 8);
4619                 cdb[5] = (u8) (block);
4620                 cdb[6] = 0;
4621                 cdb[7] = (u8) (block_cnt >> 8);
4622                 cdb[8] = (u8) (block_cnt);
4623                 cdb[9] = 0;
4624                 *cdb_len = 10;
4625                 break;
4626         }
4627         return 0;
4628 }
4629
4630 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4631         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4632         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4633 {
4634         struct scsi_cmnd *cmd = c->scsi_cmd;
4635         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4636         unsigned int len;
4637         unsigned int total_len = 0;
4638         struct scatterlist *sg;
4639         u64 addr64;
4640         int use_sg, i;
4641         struct SGDescriptor *curr_sg;
4642         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4643
4644         /* TODO: implement chaining support */
4645         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4646                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4647                 return IO_ACCEL_INELIGIBLE;
4648         }
4649
4650         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4651
4652         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4653                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4654                 return IO_ACCEL_INELIGIBLE;
4655         }
4656
4657         c->cmd_type = CMD_IOACCEL1;
4658
4659         /* Adjust the DMA address to point to the accelerated command buffer */
4660         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4661                                 (c->cmdindex * sizeof(*cp));
4662         BUG_ON(c->busaddr & 0x0000007F);
4663
4664         use_sg = scsi_dma_map(cmd);
4665         if (use_sg < 0) {
4666                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4667                 return use_sg;
4668         }
4669
4670         if (use_sg) {
4671                 curr_sg = cp->SG;
4672                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4673                         addr64 = (u64) sg_dma_address(sg);
4674                         len  = sg_dma_len(sg);
4675                         total_len += len;
4676                         curr_sg->Addr = cpu_to_le64(addr64);
4677                         curr_sg->Len = cpu_to_le32(len);
4678                         curr_sg->Ext = cpu_to_le32(0);
4679                         curr_sg++;
4680                 }
4681                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4682
4683                 switch (cmd->sc_data_direction) {
4684                 case DMA_TO_DEVICE:
4685                         control |= IOACCEL1_CONTROL_DATA_OUT;
4686                         break;
4687                 case DMA_FROM_DEVICE:
4688                         control |= IOACCEL1_CONTROL_DATA_IN;
4689                         break;
4690                 case DMA_NONE:
4691                         control |= IOACCEL1_CONTROL_NODATAXFER;
4692                         break;
4693                 default:
4694                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4695                         cmd->sc_data_direction);
4696                         BUG();
4697                         break;
4698                 }
4699         } else {
4700                 control |= IOACCEL1_CONTROL_NODATAXFER;
4701         }
4702
4703         c->Header.SGList = use_sg;
4704         /* Fill out the command structure to submit */
4705         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4706         cp->transfer_len = cpu_to_le32(total_len);
4707         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4708                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4709         cp->control = cpu_to_le32(control);
4710         memcpy(cp->CDB, cdb, cdb_len);
4711         memcpy(cp->CISS_LUN, scsi3addr, 8);
4712         /* Tag was already set at init time. */
4713         enqueue_cmd_and_start_io(h, c);
4714         return 0;
4715 }
4716
4717 /*
4718  * Queue a command directly to a device behind the controller using the
4719  * I/O accelerator path.
4720  */
4721 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4722         struct CommandList *c)
4723 {
4724         struct scsi_cmnd *cmd = c->scsi_cmd;
4725         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4726
4727         if (!dev)
4728                 return -1;
4729
4730         c->phys_disk = dev;
4731
4732         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4733                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4734 }
4735
4736 /*
4737  * Set encryption parameters for the ioaccel2 request
4738  */
4739 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4740         struct CommandList *c, struct io_accel2_cmd *cp)
4741 {
4742         struct scsi_cmnd *cmd = c->scsi_cmd;
4743         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4744         struct raid_map_data *map = &dev->raid_map;
4745         u64 first_block;
4746
4747         /* Are we doing encryption on this device */
4748         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4749                 return;
4750         /* Set the data encryption key index. */
4751         cp->dekindex = map->dekindex;
4752
4753         /* Set the encryption enable flag, encoded into direction field. */
4754         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4755
4756         /* Set encryption tweak values based on logical block address
4757          * If block size is 512, tweak value is LBA.
4758          * For other block sizes, tweak is (LBA * block size)/ 512)
4759          */
4760         switch (cmd->cmnd[0]) {
4761         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4762         case READ_6:
4763         case WRITE_6:
4764                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4765                                 (cmd->cmnd[2] << 8) |
4766                                 cmd->cmnd[3]);
4767                 break;
4768         case WRITE_10:
4769         case READ_10:
4770         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4771         case WRITE_12:
4772         case READ_12:
4773                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4774                 break;
4775         case WRITE_16:
4776         case READ_16:
4777                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4778                 break;
4779         default:
4780                 dev_err(&h->pdev->dev,
4781                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4782                         __func__, cmd->cmnd[0]);
4783                 BUG();
4784                 break;
4785         }
4786
4787         if (le32_to_cpu(map->volume_blk_size) != 512)
4788                 first_block = first_block *
4789                                 le32_to_cpu(map->volume_blk_size)/512;
4790
4791         cp->tweak_lower = cpu_to_le32(first_block);
4792         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4793 }
4794
4795 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4796         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4797         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4798 {
4799         struct scsi_cmnd *cmd = c->scsi_cmd;
4800         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4801         struct ioaccel2_sg_element *curr_sg;
4802         int use_sg, i;
4803         struct scatterlist *sg;
4804         u64 addr64;
4805         u32 len;
4806         u32 total_len = 0;
4807
4808         if (!cmd->device)
4809                 return -1;
4810
4811         if (!cmd->device->hostdata)
4812                 return -1;
4813
4814         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4815
4816         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4817                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4818                 return IO_ACCEL_INELIGIBLE;
4819         }
4820
4821         c->cmd_type = CMD_IOACCEL2;
4822         /* Adjust the DMA address to point to the accelerated command buffer */
4823         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4824                                 (c->cmdindex * sizeof(*cp));
4825         BUG_ON(c->busaddr & 0x0000007F);
4826
4827         memset(cp, 0, sizeof(*cp));
4828         cp->IU_type = IOACCEL2_IU_TYPE;
4829
4830         use_sg = scsi_dma_map(cmd);
4831         if (use_sg < 0) {
4832                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4833                 return use_sg;
4834         }
4835
4836         if (use_sg) {
4837                 curr_sg = cp->sg;
4838                 if (use_sg > h->ioaccel_maxsg) {
4839                         addr64 = le64_to_cpu(
4840                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4841                         curr_sg->address = cpu_to_le64(addr64);
4842                         curr_sg->length = 0;
4843                         curr_sg->reserved[0] = 0;
4844                         curr_sg->reserved[1] = 0;
4845                         curr_sg->reserved[2] = 0;
4846                         curr_sg->chain_indicator = 0x80;
4847
4848                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4849                 }
4850                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4851                         addr64 = (u64) sg_dma_address(sg);
4852                         len  = sg_dma_len(sg);
4853                         total_len += len;
4854                         curr_sg->address = cpu_to_le64(addr64);
4855                         curr_sg->length = cpu_to_le32(len);
4856                         curr_sg->reserved[0] = 0;
4857                         curr_sg->reserved[1] = 0;
4858                         curr_sg->reserved[2] = 0;
4859                         curr_sg->chain_indicator = 0;
4860                         curr_sg++;
4861                 }
4862
4863                 switch (cmd->sc_data_direction) {
4864                 case DMA_TO_DEVICE:
4865                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4866                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4867                         break;
4868                 case DMA_FROM_DEVICE:
4869                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4870                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4871                         break;
4872                 case DMA_NONE:
4873                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4874                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4875                         break;
4876                 default:
4877                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4878                                 cmd->sc_data_direction);
4879                         BUG();
4880                         break;
4881                 }
4882         } else {
4883                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4884                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4885         }
4886
4887         /* Set encryption parameters, if necessary */
4888         set_encrypt_ioaccel2(h, c, cp);
4889
4890         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4891         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4892         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4893
4894         cp->data_len = cpu_to_le32(total_len);
4895         cp->err_ptr = cpu_to_le64(c->busaddr +
4896                         offsetof(struct io_accel2_cmd, error_data));
4897         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4898
4899         /* fill in sg elements */
4900         if (use_sg > h->ioaccel_maxsg) {
4901                 cp->sg_count = 1;
4902                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4903                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4904                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4905                         scsi_dma_unmap(cmd);
4906                         return -1;
4907                 }
4908         } else
4909                 cp->sg_count = (u8) use_sg;
4910
4911         enqueue_cmd_and_start_io(h, c);
4912         return 0;
4913 }
4914
4915 /*
4916  * Queue a command to the correct I/O accelerator path.
4917  */
4918 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4919         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4920         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4921 {
4922         if (!c->scsi_cmd->device)
4923                 return -1;
4924
4925         if (!c->scsi_cmd->device->hostdata)
4926                 return -1;
4927
4928         /* Try to honor the device's queue depth */
4929         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4930                                         phys_disk->queue_depth) {
4931                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4932                 return IO_ACCEL_INELIGIBLE;
4933         }
4934         if (h->transMethod & CFGTBL_Trans_io_accel1)
4935                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4936                                                 cdb, cdb_len, scsi3addr,
4937                                                 phys_disk);
4938         else
4939                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4940                                                 cdb, cdb_len, scsi3addr,
4941                                                 phys_disk);
4942 }
4943
4944 static void raid_map_helper(struct raid_map_data *map,
4945                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4946 {
4947         if (offload_to_mirror == 0)  {
4948                 /* use physical disk in the first mirrored group. */
4949                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4950                 return;
4951         }
4952         do {
4953                 /* determine mirror group that *map_index indicates */
4954                 *current_group = *map_index /
4955                         le16_to_cpu(map->data_disks_per_row);
4956                 if (offload_to_mirror == *current_group)
4957                         continue;
4958                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4959                         /* select map index from next group */
4960                         *map_index += le16_to_cpu(map->data_disks_per_row);
4961                         (*current_group)++;
4962                 } else {
4963                         /* select map index from first group */
4964                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4965                         *current_group = 0;
4966                 }
4967         } while (offload_to_mirror != *current_group);
4968 }
4969
4970 /*
4971  * Attempt to perform offload RAID mapping for a logical volume I/O.
4972  */
4973 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4974         struct CommandList *c)
4975 {
4976         struct scsi_cmnd *cmd = c->scsi_cmd;
4977         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4978         struct raid_map_data *map = &dev->raid_map;
4979         struct raid_map_disk_data *dd = &map->data[0];
4980         int is_write = 0;
4981         u32 map_index;
4982         u64 first_block, last_block;
4983         u32 block_cnt;
4984         u32 blocks_per_row;
4985         u64 first_row, last_row;
4986         u32 first_row_offset, last_row_offset;
4987         u32 first_column, last_column;
4988         u64 r0_first_row, r0_last_row;
4989         u32 r5or6_blocks_per_row;
4990         u64 r5or6_first_row, r5or6_last_row;
4991         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4992         u32 r5or6_first_column, r5or6_last_column;
4993         u32 total_disks_per_row;
4994         u32 stripesize;
4995         u32 first_group, last_group, current_group;
4996         u32 map_row;
4997         u32 disk_handle;
4998         u64 disk_block;
4999         u32 disk_block_cnt;
5000         u8 cdb[16];
5001         u8 cdb_len;
5002         u16 strip_size;
5003 #if BITS_PER_LONG == 32
5004         u64 tmpdiv;
5005 #endif
5006         int offload_to_mirror;
5007
5008         if (!dev)
5009                 return -1;
5010
5011         /* check for valid opcode, get LBA and block count */
5012         switch (cmd->cmnd[0]) {
5013         case WRITE_6:
5014                 is_write = 1;
5015         case READ_6:
5016                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5017                                 (cmd->cmnd[2] << 8) |
5018                                 cmd->cmnd[3]);
5019                 block_cnt = cmd->cmnd[4];
5020                 if (block_cnt == 0)
5021                         block_cnt = 256;
5022                 break;
5023         case WRITE_10:
5024                 is_write = 1;
5025         case READ_10:
5026                 first_block =
5027                         (((u64) cmd->cmnd[2]) << 24) |
5028                         (((u64) cmd->cmnd[3]) << 16) |
5029                         (((u64) cmd->cmnd[4]) << 8) |
5030                         cmd->cmnd[5];
5031                 block_cnt =
5032                         (((u32) cmd->cmnd[7]) << 8) |
5033                         cmd->cmnd[8];
5034                 break;
5035         case WRITE_12:
5036                 is_write = 1;
5037         case READ_12:
5038                 first_block =
5039                         (((u64) cmd->cmnd[2]) << 24) |
5040                         (((u64) cmd->cmnd[3]) << 16) |
5041                         (((u64) cmd->cmnd[4]) << 8) |
5042                         cmd->cmnd[5];
5043                 block_cnt =
5044                         (((u32) cmd->cmnd[6]) << 24) |
5045                         (((u32) cmd->cmnd[7]) << 16) |
5046                         (((u32) cmd->cmnd[8]) << 8) |
5047                 cmd->cmnd[9];
5048                 break;
5049         case WRITE_16:
5050                 is_write = 1;
5051         case READ_16:
5052                 first_block =
5053                         (((u64) cmd->cmnd[2]) << 56) |
5054                         (((u64) cmd->cmnd[3]) << 48) |
5055                         (((u64) cmd->cmnd[4]) << 40) |
5056                         (((u64) cmd->cmnd[5]) << 32) |
5057                         (((u64) cmd->cmnd[6]) << 24) |
5058                         (((u64) cmd->cmnd[7]) << 16) |
5059                         (((u64) cmd->cmnd[8]) << 8) |
5060                         cmd->cmnd[9];
5061                 block_cnt =
5062                         (((u32) cmd->cmnd[10]) << 24) |
5063                         (((u32) cmd->cmnd[11]) << 16) |
5064                         (((u32) cmd->cmnd[12]) << 8) |
5065                         cmd->cmnd[13];
5066                 break;
5067         default:
5068                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5069         }
5070         last_block = first_block + block_cnt - 1;
5071
5072         /* check for write to non-RAID-0 */
5073         if (is_write && dev->raid_level != 0)
5074                 return IO_ACCEL_INELIGIBLE;
5075
5076         /* check for invalid block or wraparound */
5077         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5078                 last_block < first_block)
5079                 return IO_ACCEL_INELIGIBLE;
5080
5081         /* calculate stripe information for the request */
5082         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5083                                 le16_to_cpu(map->strip_size);
5084         strip_size = le16_to_cpu(map->strip_size);
5085 #if BITS_PER_LONG == 32
5086         tmpdiv = first_block;
5087         (void) do_div(tmpdiv, blocks_per_row);
5088         first_row = tmpdiv;
5089         tmpdiv = last_block;
5090         (void) do_div(tmpdiv, blocks_per_row);
5091         last_row = tmpdiv;
5092         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5093         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5094         tmpdiv = first_row_offset;
5095         (void) do_div(tmpdiv, strip_size);
5096         first_column = tmpdiv;
5097         tmpdiv = last_row_offset;
5098         (void) do_div(tmpdiv, strip_size);
5099         last_column = tmpdiv;
5100 #else
5101         first_row = first_block / blocks_per_row;
5102         last_row = last_block / blocks_per_row;
5103         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5104         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5105         first_column = first_row_offset / strip_size;
5106         last_column = last_row_offset / strip_size;
5107 #endif
5108
5109         /* if this isn't a single row/column then give to the controller */
5110         if ((first_row != last_row) || (first_column != last_column))
5111                 return IO_ACCEL_INELIGIBLE;
5112
5113         /* proceeding with driver mapping */
5114         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5115                                 le16_to_cpu(map->metadata_disks_per_row);
5116         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5117                                 le16_to_cpu(map->row_cnt);
5118         map_index = (map_row * total_disks_per_row) + first_column;
5119
5120         switch (dev->raid_level) {
5121         case HPSA_RAID_0:
5122                 break; /* nothing special to do */
5123         case HPSA_RAID_1:
5124                 /* Handles load balance across RAID 1 members.
5125                  * (2-drive R1 and R10 with even # of drives.)
5126                  * Appropriate for SSDs, not optimal for HDDs
5127                  */
5128                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5129                 if (dev->offload_to_mirror)
5130                         map_index += le16_to_cpu(map->data_disks_per_row);
5131                 dev->offload_to_mirror = !dev->offload_to_mirror;
5132                 break;
5133         case HPSA_RAID_ADM:
5134                 /* Handles N-way mirrors  (R1-ADM)
5135                  * and R10 with # of drives divisible by 3.)
5136                  */
5137                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5138
5139                 offload_to_mirror = dev->offload_to_mirror;
5140                 raid_map_helper(map, offload_to_mirror,
5141                                 &map_index, &current_group);
5142                 /* set mirror group to use next time */
5143                 offload_to_mirror =
5144                         (offload_to_mirror >=
5145                         le16_to_cpu(map->layout_map_count) - 1)
5146                         ? 0 : offload_to_mirror + 1;
5147                 dev->offload_to_mirror = offload_to_mirror;
5148                 /* Avoid direct use of dev->offload_to_mirror within this
5149                  * function since multiple threads might simultaneously
5150                  * increment it beyond the range of dev->layout_map_count -1.
5151                  */
5152                 break;
5153         case HPSA_RAID_5:
5154         case HPSA_RAID_6:
5155                 if (le16_to_cpu(map->layout_map_count) <= 1)
5156                         break;
5157
5158                 /* Verify first and last block are in same RAID group */
5159                 r5or6_blocks_per_row =
5160                         le16_to_cpu(map->strip_size) *
5161                         le16_to_cpu(map->data_disks_per_row);
5162                 BUG_ON(r5or6_blocks_per_row == 0);
5163                 stripesize = r5or6_blocks_per_row *
5164                         le16_to_cpu(map->layout_map_count);
5165 #if BITS_PER_LONG == 32
5166                 tmpdiv = first_block;
5167                 first_group = do_div(tmpdiv, stripesize);
5168                 tmpdiv = first_group;
5169                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5170                 first_group = tmpdiv;
5171                 tmpdiv = last_block;
5172                 last_group = do_div(tmpdiv, stripesize);
5173                 tmpdiv = last_group;
5174                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5175                 last_group = tmpdiv;
5176 #else
5177                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5178                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5179 #endif
5180                 if (first_group != last_group)
5181                         return IO_ACCEL_INELIGIBLE;
5182
5183                 /* Verify request is in a single row of RAID 5/6 */
5184 #if BITS_PER_LONG == 32
5185                 tmpdiv = first_block;
5186                 (void) do_div(tmpdiv, stripesize);
5187                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5188                 tmpdiv = last_block;
5189                 (void) do_div(tmpdiv, stripesize);
5190                 r5or6_last_row = r0_last_row = tmpdiv;
5191 #else
5192                 first_row = r5or6_first_row = r0_first_row =
5193                                                 first_block / stripesize;
5194                 r5or6_last_row = r0_last_row = last_block / stripesize;
5195 #endif
5196                 if (r5or6_first_row != r5or6_last_row)
5197                         return IO_ACCEL_INELIGIBLE;
5198
5199
5200                 /* Verify request is in a single column */
5201 #if BITS_PER_LONG == 32
5202                 tmpdiv = first_block;
5203                 first_row_offset = do_div(tmpdiv, stripesize);
5204                 tmpdiv = first_row_offset;
5205                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5206                 r5or6_first_row_offset = first_row_offset;
5207                 tmpdiv = last_block;
5208                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5209                 tmpdiv = r5or6_last_row_offset;
5210                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5211                 tmpdiv = r5or6_first_row_offset;
5212                 (void) do_div(tmpdiv, map->strip_size);
5213                 first_column = r5or6_first_column = tmpdiv;
5214                 tmpdiv = r5or6_last_row_offset;
5215                 (void) do_div(tmpdiv, map->strip_size);
5216                 r5or6_last_column = tmpdiv;
5217 #else
5218                 first_row_offset = r5or6_first_row_offset =
5219                         (u32)((first_block % stripesize) %
5220                                                 r5or6_blocks_per_row);
5221
5222                 r5or6_last_row_offset =
5223                         (u32)((last_block % stripesize) %
5224                                                 r5or6_blocks_per_row);
5225
5226                 first_column = r5or6_first_column =
5227                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5228                 r5or6_last_column =
5229                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5230 #endif
5231                 if (r5or6_first_column != r5or6_last_column)
5232                         return IO_ACCEL_INELIGIBLE;
5233
5234                 /* Request is eligible */
5235                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5236                         le16_to_cpu(map->row_cnt);
5237
5238                 map_index = (first_group *
5239                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5240                         (map_row * total_disks_per_row) + first_column;
5241                 break;
5242         default:
5243                 return IO_ACCEL_INELIGIBLE;
5244         }
5245
5246         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5247                 return IO_ACCEL_INELIGIBLE;
5248
5249         c->phys_disk = dev->phys_disk[map_index];
5250         if (!c->phys_disk)
5251                 return IO_ACCEL_INELIGIBLE;
5252
5253         disk_handle = dd[map_index].ioaccel_handle;
5254         disk_block = le64_to_cpu(map->disk_starting_blk) +
5255                         first_row * le16_to_cpu(map->strip_size) +
5256                         (first_row_offset - first_column *
5257                         le16_to_cpu(map->strip_size));
5258         disk_block_cnt = block_cnt;
5259
5260         /* handle differing logical/physical block sizes */
5261         if (map->phys_blk_shift) {
5262                 disk_block <<= map->phys_blk_shift;
5263                 disk_block_cnt <<= map->phys_blk_shift;
5264         }
5265         BUG_ON(disk_block_cnt > 0xffff);
5266
5267         /* build the new CDB for the physical disk I/O */
5268         if (disk_block > 0xffffffff) {
5269                 cdb[0] = is_write ? WRITE_16 : READ_16;
5270                 cdb[1] = 0;
5271                 cdb[2] = (u8) (disk_block >> 56);
5272                 cdb[3] = (u8) (disk_block >> 48);
5273                 cdb[4] = (u8) (disk_block >> 40);
5274                 cdb[5] = (u8) (disk_block >> 32);
5275                 cdb[6] = (u8) (disk_block >> 24);
5276                 cdb[7] = (u8) (disk_block >> 16);
5277                 cdb[8] = (u8) (disk_block >> 8);
5278                 cdb[9] = (u8) (disk_block);
5279                 cdb[10] = (u8) (disk_block_cnt >> 24);
5280                 cdb[11] = (u8) (disk_block_cnt >> 16);
5281                 cdb[12] = (u8) (disk_block_cnt >> 8);
5282                 cdb[13] = (u8) (disk_block_cnt);
5283                 cdb[14] = 0;
5284                 cdb[15] = 0;
5285                 cdb_len = 16;
5286         } else {
5287                 cdb[0] = is_write ? WRITE_10 : READ_10;
5288                 cdb[1] = 0;
5289                 cdb[2] = (u8) (disk_block >> 24);
5290                 cdb[3] = (u8) (disk_block >> 16);
5291                 cdb[4] = (u8) (disk_block >> 8);
5292                 cdb[5] = (u8) (disk_block);
5293                 cdb[6] = 0;
5294                 cdb[7] = (u8) (disk_block_cnt >> 8);
5295                 cdb[8] = (u8) (disk_block_cnt);
5296                 cdb[9] = 0;
5297                 cdb_len = 10;
5298         }
5299         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5300                                                 dev->scsi3addr,
5301                                                 dev->phys_disk[map_index]);
5302 }
5303
5304 /*
5305  * Submit commands down the "normal" RAID stack path
5306  * All callers to hpsa_ciss_submit must check lockup_detected
5307  * beforehand, before (opt.) and after calling cmd_alloc
5308  */
5309 static int hpsa_ciss_submit(struct ctlr_info *h,
5310         struct CommandList *c, struct scsi_cmnd *cmd,
5311         unsigned char scsi3addr[])
5312 {
5313         cmd->host_scribble = (unsigned char *) c;
5314         c->cmd_type = CMD_SCSI;
5315         c->scsi_cmd = cmd;
5316         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5317         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5318         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5319
5320         /* Fill in the request block... */
5321
5322         c->Request.Timeout = 0;
5323         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5324         c->Request.CDBLen = cmd->cmd_len;
5325         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5326         switch (cmd->sc_data_direction) {
5327         case DMA_TO_DEVICE:
5328                 c->Request.type_attr_dir =
5329                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5330                 break;
5331         case DMA_FROM_DEVICE:
5332                 c->Request.type_attr_dir =
5333                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5334                 break;
5335         case DMA_NONE:
5336                 c->Request.type_attr_dir =
5337                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5338                 break;
5339         case DMA_BIDIRECTIONAL:
5340                 /* This can happen if a buggy application does a scsi passthru
5341                  * and sets both inlen and outlen to non-zero. ( see
5342                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5343                  */
5344
5345                 c->Request.type_attr_dir =
5346                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5347                 /* This is technically wrong, and hpsa controllers should
5348                  * reject it with CMD_INVALID, which is the most correct
5349                  * response, but non-fibre backends appear to let it
5350                  * slide by, and give the same results as if this field
5351                  * were set correctly.  Either way is acceptable for
5352                  * our purposes here.
5353                  */
5354
5355                 break;
5356
5357         default:
5358                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5359                         cmd->sc_data_direction);
5360                 BUG();
5361                 break;
5362         }
5363
5364         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5365                 hpsa_cmd_resolve_and_free(h, c);
5366                 return SCSI_MLQUEUE_HOST_BUSY;
5367         }
5368         enqueue_cmd_and_start_io(h, c);
5369         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5370         return 0;
5371 }
5372
5373 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5374                                 struct CommandList *c)
5375 {
5376         dma_addr_t cmd_dma_handle, err_dma_handle;
5377
5378         /* Zero out all of commandlist except the last field, refcount */
5379         memset(c, 0, offsetof(struct CommandList, refcount));
5380         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5381         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5382         c->err_info = h->errinfo_pool + index;
5383         memset(c->err_info, 0, sizeof(*c->err_info));
5384         err_dma_handle = h->errinfo_pool_dhandle
5385             + index * sizeof(*c->err_info);
5386         c->cmdindex = index;
5387         c->busaddr = (u32) cmd_dma_handle;
5388         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5389         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5390         c->h = h;
5391         c->scsi_cmd = SCSI_CMD_IDLE;
5392 }
5393
5394 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5395 {
5396         int i;
5397
5398         for (i = 0; i < h->nr_cmds; i++) {
5399                 struct CommandList *c = h->cmd_pool + i;
5400
5401                 hpsa_cmd_init(h, i, c);
5402                 atomic_set(&c->refcount, 0);
5403         }
5404 }
5405
5406 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5407                                 struct CommandList *c)
5408 {
5409         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5410
5411         BUG_ON(c->cmdindex != index);
5412
5413         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5414         memset(c->err_info, 0, sizeof(*c->err_info));
5415         c->busaddr = (u32) cmd_dma_handle;
5416 }
5417
5418 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5419                 struct CommandList *c, struct scsi_cmnd *cmd,
5420                 unsigned char *scsi3addr)
5421 {
5422         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5423         int rc = IO_ACCEL_INELIGIBLE;
5424
5425         if (!dev)
5426                 return SCSI_MLQUEUE_HOST_BUSY;
5427
5428         cmd->host_scribble = (unsigned char *) c;
5429
5430         if (dev->offload_enabled) {
5431                 hpsa_cmd_init(h, c->cmdindex, c);
5432                 c->cmd_type = CMD_SCSI;
5433                 c->scsi_cmd = cmd;
5434                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5435                 if (rc < 0)     /* scsi_dma_map failed. */
5436                         rc = SCSI_MLQUEUE_HOST_BUSY;
5437         } else if (dev->hba_ioaccel_enabled) {
5438                 hpsa_cmd_init(h, c->cmdindex, c);
5439                 c->cmd_type = CMD_SCSI;
5440                 c->scsi_cmd = cmd;
5441                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5442                 if (rc < 0)     /* scsi_dma_map failed. */
5443                         rc = SCSI_MLQUEUE_HOST_BUSY;
5444         }
5445         return rc;
5446 }
5447
5448 static void hpsa_command_resubmit_worker(struct work_struct *work)
5449 {
5450         struct scsi_cmnd *cmd;
5451         struct hpsa_scsi_dev_t *dev;
5452         struct CommandList *c = container_of(work, struct CommandList, work);
5453
5454         cmd = c->scsi_cmd;
5455         dev = cmd->device->hostdata;
5456         if (!dev) {
5457                 cmd->result = DID_NO_CONNECT << 16;
5458                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5459         }
5460         if (c->reset_pending)
5461                 return hpsa_cmd_resolve_and_free(c->h, c);
5462         if (c->abort_pending)
5463                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5464         if (c->cmd_type == CMD_IOACCEL2) {
5465                 struct ctlr_info *h = c->h;
5466                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5467                 int rc;
5468
5469                 if (c2->error_data.serv_response ==
5470                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5471                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5472                         if (rc == 0)
5473                                 return;
5474                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5475                                 /*
5476                                  * If we get here, it means dma mapping failed.
5477                                  * Try again via scsi mid layer, which will
5478                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5479                                  */
5480                                 cmd->result = DID_IMM_RETRY << 16;
5481                                 return hpsa_cmd_free_and_done(h, c, cmd);
5482                         }
5483                         /* else, fall thru and resubmit down CISS path */
5484                 }
5485         }
5486         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5487         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5488                 /*
5489                  * If we get here, it means dma mapping failed. Try
5490                  * again via scsi mid layer, which will then get
5491                  * SCSI_MLQUEUE_HOST_BUSY.
5492                  *
5493                  * hpsa_ciss_submit will have already freed c
5494                  * if it encountered a dma mapping failure.
5495                  */
5496                 cmd->result = DID_IMM_RETRY << 16;
5497                 cmd->scsi_done(cmd);
5498         }
5499 }
5500
5501 /* Running in struct Scsi_Host->host_lock less mode */
5502 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5503 {
5504         struct ctlr_info *h;
5505         struct hpsa_scsi_dev_t *dev;
5506         unsigned char scsi3addr[8];
5507         struct CommandList *c;
5508         int rc = 0;
5509
5510         /* Get the ptr to our adapter structure out of cmd->host. */
5511         h = sdev_to_hba(cmd->device);
5512
5513         BUG_ON(cmd->request->tag < 0);
5514
5515         dev = cmd->device->hostdata;
5516         if (!dev) {
5517                 cmd->result = DID_NO_CONNECT << 16;
5518                 cmd->scsi_done(cmd);
5519                 return 0;
5520         }
5521
5522         if (dev->removed) {
5523                 cmd->result = DID_NO_CONNECT << 16;
5524                 cmd->scsi_done(cmd);
5525                 return 0;
5526         }
5527
5528         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5529
5530         if (unlikely(lockup_detected(h))) {
5531                 cmd->result = DID_NO_CONNECT << 16;
5532                 cmd->scsi_done(cmd);
5533                 return 0;
5534         }
5535         c = cmd_tagged_alloc(h, cmd);
5536
5537         /*
5538          * Call alternate submit routine for I/O accelerated commands.
5539          * Retries always go down the normal I/O path.
5540          */
5541         if (likely(cmd->retries == 0 &&
5542                         !blk_rq_is_passthrough(cmd->request) &&
5543                         h->acciopath_status)) {
5544                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5545                 if (rc == 0)
5546                         return 0;
5547                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5548                         hpsa_cmd_resolve_and_free(h, c);
5549                         return SCSI_MLQUEUE_HOST_BUSY;
5550                 }
5551         }
5552         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5553 }
5554
5555 static void hpsa_scan_complete(struct ctlr_info *h)
5556 {
5557         unsigned long flags;
5558
5559         spin_lock_irqsave(&h->scan_lock, flags);
5560         h->scan_finished = 1;
5561         wake_up_all(&h->scan_wait_queue);
5562         spin_unlock_irqrestore(&h->scan_lock, flags);
5563 }
5564
5565 static void hpsa_scan_start(struct Scsi_Host *sh)
5566 {
5567         struct ctlr_info *h = shost_to_hba(sh);
5568         unsigned long flags;
5569
5570         /*
5571          * Don't let rescans be initiated on a controller known to be locked
5572          * up.  If the controller locks up *during* a rescan, that thread is
5573          * probably hosed, but at least we can prevent new rescan threads from
5574          * piling up on a locked up controller.
5575          */
5576         if (unlikely(lockup_detected(h)))
5577                 return hpsa_scan_complete(h);
5578
5579         /* wait until any scan already in progress is finished. */
5580         while (1) {
5581                 spin_lock_irqsave(&h->scan_lock, flags);
5582                 if (h->scan_finished)
5583                         break;
5584                 spin_unlock_irqrestore(&h->scan_lock, flags);
5585                 wait_event(h->scan_wait_queue, h->scan_finished);
5586                 /* Note: We don't need to worry about a race between this
5587                  * thread and driver unload because the midlayer will
5588                  * have incremented the reference count, so unload won't
5589                  * happen if we're in here.
5590                  */
5591         }
5592         h->scan_finished = 0; /* mark scan as in progress */
5593         spin_unlock_irqrestore(&h->scan_lock, flags);
5594
5595         if (unlikely(lockup_detected(h)))
5596                 return hpsa_scan_complete(h);
5597
5598         /*
5599          * Do the scan after a reset completion
5600          */
5601         if (h->reset_in_progress) {
5602                 h->drv_req_rescan = 1;
5603                 return;
5604         }
5605
5606         hpsa_update_scsi_devices(h);
5607
5608         hpsa_scan_complete(h);
5609 }
5610
5611 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5612 {
5613         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5614
5615         if (!logical_drive)
5616                 return -ENODEV;
5617
5618         if (qdepth < 1)
5619                 qdepth = 1;
5620         else if (qdepth > logical_drive->queue_depth)
5621                 qdepth = logical_drive->queue_depth;
5622
5623         return scsi_change_queue_depth(sdev, qdepth);
5624 }
5625
5626 static int hpsa_scan_finished(struct Scsi_Host *sh,
5627         unsigned long elapsed_time)
5628 {
5629         struct ctlr_info *h = shost_to_hba(sh);
5630         unsigned long flags;
5631         int finished;
5632
5633         spin_lock_irqsave(&h->scan_lock, flags);
5634         finished = h->scan_finished;
5635         spin_unlock_irqrestore(&h->scan_lock, flags);
5636         return finished;
5637 }
5638
5639 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5640 {
5641         struct Scsi_Host *sh;
5642
5643         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5644         if (sh == NULL) {
5645                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5646                 return -ENOMEM;
5647         }
5648
5649         sh->io_port = 0;
5650         sh->n_io_port = 0;
5651         sh->this_id = -1;
5652         sh->max_channel = 3;
5653         sh->max_cmd_len = MAX_COMMAND_SIZE;
5654         sh->max_lun = HPSA_MAX_LUN;
5655         sh->max_id = HPSA_MAX_LUN;
5656         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5657         sh->cmd_per_lun = sh->can_queue;
5658         sh->sg_tablesize = h->maxsgentries;
5659         sh->transportt = hpsa_sas_transport_template;
5660         sh->hostdata[0] = (unsigned long) h;
5661         sh->irq = pci_irq_vector(h->pdev, 0);
5662         sh->unique_id = sh->irq;
5663
5664         h->scsi_host = sh;
5665         return 0;
5666 }
5667
5668 static int hpsa_scsi_add_host(struct ctlr_info *h)
5669 {
5670         int rv;
5671
5672         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5673         if (rv) {
5674                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5675                 return rv;
5676         }
5677         scsi_scan_host(h->scsi_host);
5678         return 0;
5679 }
5680
5681 /*
5682  * The block layer has already gone to the trouble of picking out a unique,
5683  * small-integer tag for this request.  We use an offset from that value as
5684  * an index to select our command block.  (The offset allows us to reserve the
5685  * low-numbered entries for our own uses.)
5686  */
5687 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5688 {
5689         int idx = scmd->request->tag;
5690
5691         if (idx < 0)
5692                 return idx;
5693
5694         /* Offset to leave space for internal cmds. */
5695         return idx += HPSA_NRESERVED_CMDS;
5696 }
5697
5698 /*
5699  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5700  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5701  */
5702 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5703                                 struct CommandList *c, unsigned char lunaddr[],
5704                                 int reply_queue)
5705 {
5706         int rc;
5707
5708         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5709         (void) fill_cmd(c, TEST_UNIT_READY, h,
5710                         NULL, 0, 0, lunaddr, TYPE_CMD);
5711         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5712         if (rc)
5713                 return rc;
5714         /* no unmap needed here because no data xfer. */
5715
5716         /* Check if the unit is already ready. */
5717         if (c->err_info->CommandStatus == CMD_SUCCESS)
5718                 return 0;
5719
5720         /*
5721          * The first command sent after reset will receive "unit attention" to
5722          * indicate that the LUN has been reset...this is actually what we're
5723          * looking for (but, success is good too).
5724          */
5725         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5726                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5727                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5728                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5729                 return 0;
5730
5731         return 1;
5732 }
5733
5734 /*
5735  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5736  * returns zero when the unit is ready, and non-zero when giving up.
5737  */
5738 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5739                                 struct CommandList *c,
5740                                 unsigned char lunaddr[], int reply_queue)
5741 {
5742         int rc;
5743         int count = 0;
5744         int waittime = 1; /* seconds */
5745
5746         /* Send test unit ready until device ready, or give up. */
5747         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5748
5749                 /*
5750                  * Wait for a bit.  do this first, because if we send
5751                  * the TUR right away, the reset will just abort it.
5752                  */
5753                 msleep(1000 * waittime);
5754
5755                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5756                 if (!rc)
5757                         break;
5758
5759                 /* Increase wait time with each try, up to a point. */
5760                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5761                         waittime *= 2;
5762
5763                 dev_warn(&h->pdev->dev,
5764                          "waiting %d secs for device to become ready.\n",
5765                          waittime);
5766         }
5767
5768         return rc;
5769 }
5770
5771 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5772                                            unsigned char lunaddr[],
5773                                            int reply_queue)
5774 {
5775         int first_queue;
5776         int last_queue;
5777         int rq;
5778         int rc = 0;
5779         struct CommandList *c;
5780
5781         c = cmd_alloc(h);
5782
5783         /*
5784          * If no specific reply queue was requested, then send the TUR
5785          * repeatedly, requesting a reply on each reply queue; otherwise execute
5786          * the loop exactly once using only the specified queue.
5787          */
5788         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5789                 first_queue = 0;
5790                 last_queue = h->nreply_queues - 1;
5791         } else {
5792                 first_queue = reply_queue;
5793                 last_queue = reply_queue;
5794         }
5795
5796         for (rq = first_queue; rq <= last_queue; rq++) {
5797                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5798                 if (rc)
5799                         break;
5800         }
5801
5802         if (rc)
5803                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5804         else
5805                 dev_warn(&h->pdev->dev, "device is ready.\n");
5806
5807         cmd_free(h, c);
5808         return rc;
5809 }
5810
5811 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5812  * complaining.  Doing a host- or bus-reset can't do anything good here.
5813  */
5814 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5815 {
5816         int rc;
5817         struct ctlr_info *h;
5818         struct hpsa_scsi_dev_t *dev;
5819         u8 reset_type;
5820         char msg[48];
5821
5822         /* find the controller to which the command to be aborted was sent */
5823         h = sdev_to_hba(scsicmd->device);
5824         if (h == NULL) /* paranoia */
5825                 return FAILED;
5826
5827         if (lockup_detected(h))
5828                 return FAILED;
5829
5830         dev = scsicmd->device->hostdata;
5831         if (!dev) {
5832                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5833                 return FAILED;
5834         }
5835
5836         /* if controller locked up, we can guarantee command won't complete */
5837         if (lockup_detected(h)) {
5838                 snprintf(msg, sizeof(msg),
5839                          "cmd %d RESET FAILED, lockup detected",
5840                          hpsa_get_cmd_index(scsicmd));
5841                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5842                 return FAILED;
5843         }
5844
5845         /* this reset request might be the result of a lockup; check */
5846         if (detect_controller_lockup(h)) {
5847                 snprintf(msg, sizeof(msg),
5848                          "cmd %d RESET FAILED, new lockup detected",
5849                          hpsa_get_cmd_index(scsicmd));
5850                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5851                 return FAILED;
5852         }
5853
5854         /* Do not attempt on controller */
5855         if (is_hba_lunid(dev->scsi3addr))
5856                 return SUCCESS;
5857
5858         if (is_logical_dev_addr_mode(dev->scsi3addr))
5859                 reset_type = HPSA_DEVICE_RESET_MSG;
5860         else
5861                 reset_type = HPSA_PHYS_TARGET_RESET;
5862
5863         sprintf(msg, "resetting %s",
5864                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5865         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5866
5867         h->reset_in_progress = 1;
5868
5869         /* send a reset to the SCSI LUN which the command was sent to */
5870         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5871                            DEFAULT_REPLY_QUEUE);
5872         sprintf(msg, "reset %s %s",
5873                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5874                 rc == 0 ? "completed successfully" : "failed");
5875         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5876         h->reset_in_progress = 0;
5877         return rc == 0 ? SUCCESS : FAILED;
5878 }
5879
5880 static void swizzle_abort_tag(u8 *tag)
5881 {
5882         u8 original_tag[8];
5883
5884         memcpy(original_tag, tag, 8);
5885         tag[0] = original_tag[3];
5886         tag[1] = original_tag[2];
5887         tag[2] = original_tag[1];
5888         tag[3] = original_tag[0];
5889         tag[4] = original_tag[7];
5890         tag[5] = original_tag[6];
5891         tag[6] = original_tag[5];
5892         tag[7] = original_tag[4];
5893 }
5894
5895 static void hpsa_get_tag(struct ctlr_info *h,
5896         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5897 {
5898         u64 tag;
5899         if (c->cmd_type == CMD_IOACCEL1) {
5900                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5901                         &h->ioaccel_cmd_pool[c->cmdindex];
5902                 tag = le64_to_cpu(cm1->tag);
5903                 *tagupper = cpu_to_le32(tag >> 32);
5904                 *taglower = cpu_to_le32(tag);
5905                 return;
5906         }
5907         if (c->cmd_type == CMD_IOACCEL2) {
5908                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5909                         &h->ioaccel2_cmd_pool[c->cmdindex];
5910                 /* upper tag not used in ioaccel2 mode */
5911                 memset(tagupper, 0, sizeof(*tagupper));
5912                 *taglower = cm2->Tag;
5913                 return;
5914         }
5915         tag = le64_to_cpu(c->Header.tag);
5916         *tagupper = cpu_to_le32(tag >> 32);
5917         *taglower = cpu_to_le32(tag);
5918 }
5919
5920 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5921         struct CommandList *abort, int reply_queue)
5922 {
5923         int rc = IO_OK;
5924         struct CommandList *c;
5925         struct ErrorInfo *ei;
5926         __le32 tagupper, taglower;
5927
5928         c = cmd_alloc(h);
5929
5930         /* fill_cmd can't fail here, no buffer to map */
5931         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5932                 0, 0, scsi3addr, TYPE_MSG);
5933         if (h->needs_abort_tags_swizzled)
5934                 swizzle_abort_tag(&c->Request.CDB[4]);
5935         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5936         hpsa_get_tag(h, abort, &taglower, &tagupper);
5937         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5938                 __func__, tagupper, taglower);
5939         /* no unmap needed here because no data xfer. */
5940
5941         ei = c->err_info;
5942         switch (ei->CommandStatus) {
5943         case CMD_SUCCESS:
5944                 break;
5945         case CMD_TMF_STATUS:
5946                 rc = hpsa_evaluate_tmf_status(h, c);
5947                 break;
5948         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5949                 rc = -1;
5950                 break;
5951         default:
5952                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5953                         __func__, tagupper, taglower);
5954                 hpsa_scsi_interpret_error(h, c);
5955                 rc = -1;
5956                 break;
5957         }
5958         cmd_free(h, c);
5959         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5960                 __func__, tagupper, taglower);
5961         return rc;
5962 }
5963
5964 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5965         struct CommandList *command_to_abort, int reply_queue)
5966 {
5967         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5968         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5969         struct io_accel2_cmd *c2a =
5970                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5971         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5972         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5973
5974         if (!dev)
5975                 return;
5976
5977         /*
5978          * We're overlaying struct hpsa_tmf_struct on top of something which
5979          * was allocated as a struct io_accel2_cmd, so we better be sure it
5980          * actually fits, and doesn't overrun the error info space.
5981          */
5982         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5983                         sizeof(struct io_accel2_cmd));
5984         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5985                         offsetof(struct hpsa_tmf_struct, error_len) +
5986                                 sizeof(ac->error_len));
5987
5988         c->cmd_type = IOACCEL2_TMF;
5989         c->scsi_cmd = SCSI_CMD_BUSY;
5990
5991         /* Adjust the DMA address to point to the accelerated command buffer */
5992         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5993                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5994         BUG_ON(c->busaddr & 0x0000007F);
5995
5996         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5997         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5998         ac->reply_queue = reply_queue;
5999         ac->tmf = IOACCEL2_TMF_ABORT;
6000         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
6001         memset(ac->lun_id, 0, sizeof(ac->lun_id));
6002         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
6003         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
6004         ac->error_ptr = cpu_to_le64(c->busaddr +
6005                         offsetof(struct io_accel2_cmd, error_data));
6006         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
6007 }
6008
6009 /* ioaccel2 path firmware cannot handle abort task requests.
6010  * Change abort requests to physical target reset, and send to the
6011  * address of the physical disk used for the ioaccel 2 command.
6012  * Return 0 on success (IO_OK)
6013  *       -1 on failure
6014  */
6015
6016 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
6017         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
6018 {
6019         int rc = IO_OK;
6020         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
6021         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
6022         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
6023         unsigned char *psa = &phys_scsi3addr[0];
6024
6025         /* Get a pointer to the hpsa logical device. */
6026         scmd = abort->scsi_cmd;
6027         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
6028         if (dev == NULL) {
6029                 dev_warn(&h->pdev->dev,
6030                         "Cannot abort: no device pointer for command.\n");
6031                         return -1; /* not abortable */
6032         }
6033
6034         if (h->raid_offload_debug > 0)
6035                 dev_info(&h->pdev->dev,
6036                         "scsi %d:%d:%d:%d %s scsi3addr 0x%8phN\n",
6037                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
6038                         "Reset as abort", scsi3addr);
6039
6040         if (!dev->offload_enabled) {
6041                 dev_warn(&h->pdev->dev,
6042                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
6043                 return -1; /* not abortable */
6044         }
6045
6046         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
6047         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
6048                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
6049                 return -1; /* not abortable */
6050         }
6051
6052         /* send the reset */
6053         if (h->raid_offload_debug > 0)
6054                 dev_info(&h->pdev->dev,
6055                         "Reset as abort: Resetting physical device at scsi3addr 0x%8phN\n",
6056                         psa);
6057         rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue);
6058         if (rc != 0) {
6059                 dev_warn(&h->pdev->dev,
6060                         "Reset as abort: Failed on physical device at scsi3addr 0x%8phN\n",
6061                         psa);
6062                 return rc; /* failed to reset */
6063         }
6064
6065         /* wait for device to recover */
6066         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
6067                 dev_warn(&h->pdev->dev,
6068                         "Reset as abort: Failed: Device never recovered from reset: 0x%8phN\n",
6069                         psa);
6070                 return -1;  /* failed to recover */
6071         }
6072
6073         /* device recovered */
6074         dev_info(&h->pdev->dev,
6075                 "Reset as abort: Device recovered from reset: scsi3addr 0x%8phN\n",
6076                 psa);
6077
6078         return rc; /* success */
6079 }
6080
6081 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
6082         struct CommandList *abort, int reply_queue)
6083 {
6084         int rc = IO_OK;
6085         struct CommandList *c;
6086         __le32 taglower, tagupper;
6087         struct hpsa_scsi_dev_t *dev;
6088         struct io_accel2_cmd *c2;
6089
6090         dev = abort->scsi_cmd->device->hostdata;
6091         if (!dev)
6092                 return -1;
6093
6094         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
6095                 return -1;
6096
6097         c = cmd_alloc(h);
6098         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
6099         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
6100         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
6101         hpsa_get_tag(h, abort, &taglower, &tagupper);
6102         dev_dbg(&h->pdev->dev,
6103                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
6104                 __func__, tagupper, taglower);
6105         /* no unmap needed here because no data xfer. */
6106
6107         dev_dbg(&h->pdev->dev,
6108                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6109                 __func__, tagupper, taglower, c2->error_data.serv_response);
6110         switch (c2->error_data.serv_response) {
6111         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
6112         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
6113                 rc = 0;
6114                 break;
6115         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
6116         case IOACCEL2_SERV_RESPONSE_FAILURE:
6117         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
6118                 rc = -1;
6119                 break;
6120         default:
6121                 dev_warn(&h->pdev->dev,
6122                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6123                         __func__, tagupper, taglower,
6124                         c2->error_data.serv_response);
6125                 rc = -1;
6126         }
6127         cmd_free(h, c);
6128         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6129                 tagupper, taglower);
6130         return rc;
6131 }
6132
6133 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
6134         struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6135 {
6136         /*
6137          * ioccelerator mode 2 commands should be aborted via the
6138          * accelerated path, since RAID path is unaware of these commands,
6139          * but not all underlying firmware can handle abort TMF.
6140          * Change abort to physical device reset when abort TMF is unsupported.
6141          */
6142         if (abort->cmd_type == CMD_IOACCEL2) {
6143                 if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6144                         dev->physical_device)
6145                         return hpsa_send_abort_ioaccel2(h, abort,
6146                                                 reply_queue);
6147                 else
6148                         return hpsa_send_reset_as_abort_ioaccel2(h,
6149                                                         dev->scsi3addr,
6150                                                         abort, reply_queue);
6151         }
6152         return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
6153 }
6154
6155 /* Find out which reply queue a command was meant to return on */
6156 static int hpsa_extract_reply_queue(struct ctlr_info *h,
6157                                         struct CommandList *c)
6158 {
6159         if (c->cmd_type == CMD_IOACCEL2)
6160                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6161         return c->Header.ReplyQueue;
6162 }
6163
6164 /*
6165  * Limit concurrency of abort commands to prevent
6166  * over-subscription of commands
6167  */
6168 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6169 {
6170 #define ABORT_CMD_WAIT_MSECS 5000
6171         return !wait_event_timeout(h->abort_cmd_wait_queue,
6172                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6173                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6174 }
6175
6176 /* Send an abort for the specified command.
6177  *      If the device and controller support it,
6178  *              send a task abort request.
6179  */
6180 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6181 {
6182
6183         int rc;
6184         struct ctlr_info *h;
6185         struct hpsa_scsi_dev_t *dev;
6186         struct CommandList *abort; /* pointer to command to be aborted */
6187         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
6188         char msg[256];          /* For debug messaging. */
6189         int ml = 0;
6190         __le32 tagupper, taglower;
6191         int refcount, reply_queue;
6192
6193         if (sc == NULL)
6194                 return FAILED;
6195
6196         if (sc->device == NULL)
6197                 return FAILED;
6198
6199         /* Find the controller of the command to be aborted */
6200         h = sdev_to_hba(sc->device);
6201         if (h == NULL)
6202                 return FAILED;
6203
6204         /* Find the device of the command to be aborted */
6205         dev = sc->device->hostdata;
6206         if (!dev) {
6207                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6208                                 msg);
6209                 return FAILED;
6210         }
6211
6212         /* If controller locked up, we can guarantee command won't complete */
6213         if (lockup_detected(h)) {
6214                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6215                                         "ABORT FAILED, lockup detected");
6216                 return FAILED;
6217         }
6218
6219         /* This is a good time to check if controller lockup has occurred */
6220         if (detect_controller_lockup(h)) {
6221                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6222                                         "ABORT FAILED, new lockup detected");
6223                 return FAILED;
6224         }
6225
6226         /* Check that controller supports some kind of task abort */
6227         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6228                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6229                 return FAILED;
6230
6231         memset(msg, 0, sizeof(msg));
6232         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6233                 h->scsi_host->host_no, sc->device->channel,
6234                 sc->device->id, sc->device->lun,
6235                 "Aborting command", sc);
6236
6237         /* Get SCSI command to be aborted */
6238         abort = (struct CommandList *) sc->host_scribble;
6239         if (abort == NULL) {
6240                 /* This can happen if the command already completed. */
6241                 return SUCCESS;
6242         }
6243         refcount = atomic_inc_return(&abort->refcount);
6244         if (refcount == 1) { /* Command is done already. */
6245                 cmd_free(h, abort);
6246                 return SUCCESS;
6247         }
6248
6249         /* Don't bother trying the abort if we know it won't work. */
6250         if (abort->cmd_type != CMD_IOACCEL2 &&
6251                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6252                 cmd_free(h, abort);
6253                 return FAILED;
6254         }
6255
6256         /*
6257          * Check that we're aborting the right command.
6258          * It's possible the CommandList already completed and got re-used.
6259          */
6260         if (abort->scsi_cmd != sc) {
6261                 cmd_free(h, abort);
6262                 return SUCCESS;
6263         }
6264
6265         abort->abort_pending = true;
6266         hpsa_get_tag(h, abort, &taglower, &tagupper);
6267         reply_queue = hpsa_extract_reply_queue(h, abort);
6268         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6269         as  = abort->scsi_cmd;
6270         if (as != NULL)
6271                 ml += sprintf(msg+ml,
6272                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6273                         as->cmd_len, as->cmnd[0], as->cmnd[1],
6274                         as->serial_number);
6275         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6276         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6277
6278         /*
6279          * Command is in flight, or possibly already completed
6280          * by the firmware (but not to the scsi mid layer) but we can't
6281          * distinguish which.  Send the abort down.
6282          */
6283         if (wait_for_available_abort_cmd(h)) {
6284                 dev_warn(&h->pdev->dev,
6285                         "%s FAILED, timeout waiting for an abort command to become available.\n",
6286                         msg);
6287                 cmd_free(h, abort);
6288                 return FAILED;
6289         }
6290         rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6291         atomic_inc(&h->abort_cmds_available);
6292         wake_up_all(&h->abort_cmd_wait_queue);
6293         if (rc != 0) {
6294                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6295                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6296                                 "FAILED to abort command");
6297                 cmd_free(h, abort);
6298                 return FAILED;
6299         }
6300         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6301         wait_event(h->event_sync_wait_queue,
6302                    abort->scsi_cmd != sc || lockup_detected(h));
6303         cmd_free(h, abort);
6304         return !lockup_detected(h) ? SUCCESS : FAILED;
6305 }
6306
6307 /*
6308  * For operations with an associated SCSI command, a command block is allocated
6309  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6310  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6311  * the complement, although cmd_free() may be called instead.
6312  */
6313 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6314                                             struct scsi_cmnd *scmd)
6315 {
6316         int idx = hpsa_get_cmd_index(scmd);
6317         struct CommandList *c = h->cmd_pool + idx;
6318
6319         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6320                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6321                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6322                 /* The index value comes from the block layer, so if it's out of
6323                  * bounds, it's probably not our bug.
6324                  */
6325                 BUG();
6326         }
6327
6328         atomic_inc(&c->refcount);
6329         if (unlikely(!hpsa_is_cmd_idle(c))) {
6330                 /*
6331                  * We expect that the SCSI layer will hand us a unique tag
6332                  * value.  Thus, there should never be a collision here between
6333                  * two requests...because if the selected command isn't idle
6334                  * then someone is going to be very disappointed.
6335                  */
6336                 dev_err(&h->pdev->dev,
6337                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6338                         idx);
6339                 if (c->scsi_cmd != NULL)
6340                         scsi_print_command(c->scsi_cmd);
6341                 scsi_print_command(scmd);
6342         }
6343
6344         hpsa_cmd_partial_init(h, idx, c);
6345         return c;
6346 }
6347
6348 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6349 {
6350         /*
6351          * Release our reference to the block.  We don't need to do anything
6352          * else to free it, because it is accessed by index.  (There's no point
6353          * in checking the result of the decrement, since we cannot guarantee
6354          * that there isn't a concurrent abort which is also accessing it.)
6355          */
6356         (void)atomic_dec(&c->refcount);
6357 }
6358
6359 /*
6360  * For operations that cannot sleep, a command block is allocated at init,
6361  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6362  * which ones are free or in use.  Lock must be held when calling this.
6363  * cmd_free() is the complement.
6364  * This function never gives up and returns NULL.  If it hangs,
6365  * another thread must call cmd_free() to free some tags.
6366  */
6367
6368 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6369 {
6370         struct CommandList *c;
6371         int refcount, i;
6372         int offset = 0;
6373
6374         /*
6375          * There is some *extremely* small but non-zero chance that that
6376          * multiple threads could get in here, and one thread could
6377          * be scanning through the list of bits looking for a free
6378          * one, but the free ones are always behind him, and other
6379          * threads sneak in behind him and eat them before he can
6380          * get to them, so that while there is always a free one, a
6381          * very unlucky thread might be starved anyway, never able to
6382          * beat the other threads.  In reality, this happens so
6383          * infrequently as to be indistinguishable from never.
6384          *
6385          * Note that we start allocating commands before the SCSI host structure
6386          * is initialized.  Since the search starts at bit zero, this
6387          * all works, since we have at least one command structure available;
6388          * however, it means that the structures with the low indexes have to be
6389          * reserved for driver-initiated requests, while requests from the block
6390          * layer will use the higher indexes.
6391          */
6392
6393         for (;;) {
6394                 i = find_next_zero_bit(h->cmd_pool_bits,
6395                                         HPSA_NRESERVED_CMDS,
6396                                         offset);
6397                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6398                         offset = 0;
6399                         continue;
6400                 }
6401                 c = h->cmd_pool + i;
6402                 refcount = atomic_inc_return(&c->refcount);
6403                 if (unlikely(refcount > 1)) {
6404                         cmd_free(h, c); /* already in use */
6405                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6406                         continue;
6407                 }
6408                 set_bit(i & (BITS_PER_LONG - 1),
6409                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6410                 break; /* it's ours now. */
6411         }
6412         hpsa_cmd_partial_init(h, i, c);
6413         return c;
6414 }
6415
6416 /*
6417  * This is the complementary operation to cmd_alloc().  Note, however, in some
6418  * corner cases it may also be used to free blocks allocated by
6419  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6420  * the clear-bit is harmless.
6421  */
6422 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6423 {
6424         if (atomic_dec_and_test(&c->refcount)) {
6425                 int i;
6426
6427                 i = c - h->cmd_pool;
6428                 clear_bit(i & (BITS_PER_LONG - 1),
6429                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6430         }
6431 }
6432
6433 #ifdef CONFIG_COMPAT
6434
6435 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6436         void __user *arg)
6437 {
6438         IOCTL32_Command_struct __user *arg32 =
6439             (IOCTL32_Command_struct __user *) arg;
6440         IOCTL_Command_struct arg64;
6441         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6442         int err;
6443         u32 cp;
6444
6445         memset(&arg64, 0, sizeof(arg64));
6446         err = 0;
6447         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6448                            sizeof(arg64.LUN_info));
6449         err |= copy_from_user(&arg64.Request, &arg32->Request,
6450                            sizeof(arg64.Request));
6451         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6452                            sizeof(arg64.error_info));
6453         err |= get_user(arg64.buf_size, &arg32->buf_size);
6454         err |= get_user(cp, &arg32->buf);
6455         arg64.buf = compat_ptr(cp);
6456         err |= copy_to_user(p, &arg64, sizeof(arg64));
6457
6458         if (err)
6459                 return -EFAULT;
6460
6461         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6462         if (err)
6463                 return err;
6464         err |= copy_in_user(&arg32->error_info, &p->error_info,
6465                          sizeof(arg32->error_info));
6466         if (err)
6467                 return -EFAULT;
6468         return err;
6469 }
6470
6471 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6472         int cmd, void __user *arg)
6473 {
6474         BIG_IOCTL32_Command_struct __user *arg32 =
6475             (BIG_IOCTL32_Command_struct __user *) arg;
6476         BIG_IOCTL_Command_struct arg64;
6477         BIG_IOCTL_Command_struct __user *p =
6478             compat_alloc_user_space(sizeof(arg64));
6479         int err;
6480         u32 cp;
6481
6482         memset(&arg64, 0, sizeof(arg64));
6483         err = 0;
6484         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6485                            sizeof(arg64.LUN_info));
6486         err |= copy_from_user(&arg64.Request, &arg32->Request,
6487                            sizeof(arg64.Request));
6488         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6489                            sizeof(arg64.error_info));
6490         err |= get_user(arg64.buf_size, &arg32->buf_size);
6491         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6492         err |= get_user(cp, &arg32->buf);
6493         arg64.buf = compat_ptr(cp);
6494         err |= copy_to_user(p, &arg64, sizeof(arg64));
6495
6496         if (err)
6497                 return -EFAULT;
6498
6499         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6500         if (err)
6501                 return err;
6502         err |= copy_in_user(&arg32->error_info, &p->error_info,
6503                          sizeof(arg32->error_info));
6504         if (err)
6505                 return -EFAULT;
6506         return err;
6507 }
6508
6509 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6510 {
6511         switch (cmd) {
6512         case CCISS_GETPCIINFO:
6513         case CCISS_GETINTINFO:
6514         case CCISS_SETINTINFO:
6515         case CCISS_GETNODENAME:
6516         case CCISS_SETNODENAME:
6517         case CCISS_GETHEARTBEAT:
6518         case CCISS_GETBUSTYPES:
6519         case CCISS_GETFIRMVER:
6520         case CCISS_GETDRIVVER:
6521         case CCISS_REVALIDVOLS:
6522         case CCISS_DEREGDISK:
6523         case CCISS_REGNEWDISK:
6524         case CCISS_REGNEWD:
6525         case CCISS_RESCANDISK:
6526         case CCISS_GETLUNINFO:
6527                 return hpsa_ioctl(dev, cmd, arg);
6528
6529         case CCISS_PASSTHRU32:
6530                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6531         case CCISS_BIG_PASSTHRU32:
6532                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6533
6534         default:
6535                 return -ENOIOCTLCMD;
6536         }
6537 }
6538 #endif
6539
6540 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6541 {
6542         struct hpsa_pci_info pciinfo;
6543
6544         if (!argp)
6545                 return -EINVAL;
6546         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6547         pciinfo.bus = h->pdev->bus->number;
6548         pciinfo.dev_fn = h->pdev->devfn;
6549         pciinfo.board_id = h->board_id;
6550         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6551                 return -EFAULT;
6552         return 0;
6553 }
6554
6555 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6556 {
6557         DriverVer_type DriverVer;
6558         unsigned char vmaj, vmin, vsubmin;
6559         int rc;
6560
6561         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6562                 &vmaj, &vmin, &vsubmin);
6563         if (rc != 3) {
6564                 dev_info(&h->pdev->dev, "driver version string '%s' "
6565                         "unrecognized.", HPSA_DRIVER_VERSION);
6566                 vmaj = 0;
6567                 vmin = 0;
6568                 vsubmin = 0;
6569         }
6570         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6571         if (!argp)
6572                 return -EINVAL;
6573         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6574                 return -EFAULT;
6575         return 0;
6576 }
6577
6578 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6579 {
6580         IOCTL_Command_struct iocommand;
6581         struct CommandList *c;
6582         char *buff = NULL;
6583         u64 temp64;
6584         int rc = 0;
6585
6586         if (!argp)
6587                 return -EINVAL;
6588         if (!capable(CAP_SYS_RAWIO))
6589                 return -EPERM;
6590         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6591                 return -EFAULT;
6592         if ((iocommand.buf_size < 1) &&
6593             (iocommand.Request.Type.Direction != XFER_NONE)) {
6594                 return -EINVAL;
6595         }
6596         if (iocommand.buf_size > 0) {
6597                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6598                 if (buff == NULL)
6599                         return -ENOMEM;
6600                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6601                         /* Copy the data into the buffer we created */
6602                         if (copy_from_user(buff, iocommand.buf,
6603                                 iocommand.buf_size)) {
6604                                 rc = -EFAULT;
6605                                 goto out_kfree;
6606                         }
6607                 } else {
6608                         memset(buff, 0, iocommand.buf_size);
6609                 }
6610         }
6611         c = cmd_alloc(h);
6612
6613         /* Fill in the command type */
6614         c->cmd_type = CMD_IOCTL_PEND;
6615         c->scsi_cmd = SCSI_CMD_BUSY;
6616         /* Fill in Command Header */
6617         c->Header.ReplyQueue = 0; /* unused in simple mode */
6618         if (iocommand.buf_size > 0) {   /* buffer to fill */
6619                 c->Header.SGList = 1;
6620                 c->Header.SGTotal = cpu_to_le16(1);
6621         } else  { /* no buffers to fill */
6622                 c->Header.SGList = 0;
6623                 c->Header.SGTotal = cpu_to_le16(0);
6624         }
6625         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6626
6627         /* Fill in Request block */
6628         memcpy(&c->Request, &iocommand.Request,
6629                 sizeof(c->Request));
6630
6631         /* Fill in the scatter gather information */
6632         if (iocommand.buf_size > 0) {
6633                 temp64 = pci_map_single(h->pdev, buff,
6634                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6635                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6636                         c->SG[0].Addr = cpu_to_le64(0);
6637                         c->SG[0].Len = cpu_to_le32(0);
6638                         rc = -ENOMEM;
6639                         goto out;
6640                 }
6641                 c->SG[0].Addr = cpu_to_le64(temp64);
6642                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6643                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6644         }
6645         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6646                                         NO_TIMEOUT);
6647         if (iocommand.buf_size > 0)
6648                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6649         check_ioctl_unit_attention(h, c);
6650         if (rc) {
6651                 rc = -EIO;
6652                 goto out;
6653         }
6654
6655         /* Copy the error information out */
6656         memcpy(&iocommand.error_info, c->err_info,
6657                 sizeof(iocommand.error_info));
6658         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6659                 rc = -EFAULT;
6660                 goto out;
6661         }
6662         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6663                 iocommand.buf_size > 0) {
6664                 /* Copy the data out of the buffer we created */
6665                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6666                         rc = -EFAULT;
6667                         goto out;
6668                 }
6669         }
6670 out:
6671         cmd_free(h, c);
6672 out_kfree:
6673         kfree(buff);
6674         return rc;
6675 }
6676
6677 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6678 {
6679         BIG_IOCTL_Command_struct *ioc;
6680         struct CommandList *c;
6681         unsigned char **buff = NULL;
6682         int *buff_size = NULL;
6683         u64 temp64;
6684         BYTE sg_used = 0;
6685         int status = 0;
6686         u32 left;
6687         u32 sz;
6688         BYTE __user *data_ptr;
6689
6690         if (!argp)
6691                 return -EINVAL;
6692         if (!capable(CAP_SYS_RAWIO))
6693                 return -EPERM;
6694         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6695         if (!ioc) {
6696                 status = -ENOMEM;
6697                 goto cleanup1;
6698         }
6699         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6700                 status = -EFAULT;
6701                 goto cleanup1;
6702         }
6703         if ((ioc->buf_size < 1) &&
6704             (ioc->Request.Type.Direction != XFER_NONE)) {
6705                 status = -EINVAL;
6706                 goto cleanup1;
6707         }
6708         /* Check kmalloc limits  using all SGs */
6709         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6710                 status = -EINVAL;
6711                 goto cleanup1;
6712         }
6713         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6714                 status = -EINVAL;
6715                 goto cleanup1;
6716         }
6717         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6718         if (!buff) {
6719                 status = -ENOMEM;
6720                 goto cleanup1;
6721         }
6722         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6723         if (!buff_size) {
6724                 status = -ENOMEM;
6725                 goto cleanup1;
6726         }
6727         left = ioc->buf_size;
6728         data_ptr = ioc->buf;
6729         while (left) {
6730                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6731                 buff_size[sg_used] = sz;
6732                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6733                 if (buff[sg_used] == NULL) {
6734                         status = -ENOMEM;
6735                         goto cleanup1;
6736                 }
6737                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6738                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6739                                 status = -EFAULT;
6740                                 goto cleanup1;
6741                         }
6742                 } else
6743                         memset(buff[sg_used], 0, sz);
6744                 left -= sz;
6745                 data_ptr += sz;
6746                 sg_used++;
6747         }
6748         c = cmd_alloc(h);
6749
6750         c->cmd_type = CMD_IOCTL_PEND;
6751         c->scsi_cmd = SCSI_CMD_BUSY;
6752         c->Header.ReplyQueue = 0;
6753         c->Header.SGList = (u8) sg_used;
6754         c->Header.SGTotal = cpu_to_le16(sg_used);
6755         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6756         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6757         if (ioc->buf_size > 0) {
6758                 int i;
6759                 for (i = 0; i < sg_used; i++) {
6760                         temp64 = pci_map_single(h->pdev, buff[i],
6761                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6762                         if (dma_mapping_error(&h->pdev->dev,
6763                                                         (dma_addr_t) temp64)) {
6764                                 c->SG[i].Addr = cpu_to_le64(0);
6765                                 c->SG[i].Len = cpu_to_le32(0);
6766                                 hpsa_pci_unmap(h->pdev, c, i,
6767                                         PCI_DMA_BIDIRECTIONAL);
6768                                 status = -ENOMEM;
6769                                 goto cleanup0;
6770                         }
6771                         c->SG[i].Addr = cpu_to_le64(temp64);
6772                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6773                         c->SG[i].Ext = cpu_to_le32(0);
6774                 }
6775                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6776         }
6777         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6778                                                 NO_TIMEOUT);
6779         if (sg_used)
6780                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6781         check_ioctl_unit_attention(h, c);
6782         if (status) {
6783                 status = -EIO;
6784                 goto cleanup0;
6785         }
6786
6787         /* Copy the error information out */
6788         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6789         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6790                 status = -EFAULT;
6791                 goto cleanup0;
6792         }
6793         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6794                 int i;
6795
6796                 /* Copy the data out of the buffer we created */
6797                 BYTE __user *ptr = ioc->buf;
6798                 for (i = 0; i < sg_used; i++) {
6799                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6800                                 status = -EFAULT;
6801                                 goto cleanup0;
6802                         }
6803                         ptr += buff_size[i];
6804                 }
6805         }
6806         status = 0;
6807 cleanup0:
6808         cmd_free(h, c);
6809 cleanup1:
6810         if (buff) {
6811                 int i;
6812
6813                 for (i = 0; i < sg_used; i++)
6814                         kfree(buff[i]);
6815                 kfree(buff);
6816         }
6817         kfree(buff_size);
6818         kfree(ioc);
6819         return status;
6820 }
6821
6822 static void check_ioctl_unit_attention(struct ctlr_info *h,
6823         struct CommandList *c)
6824 {
6825         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6826                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6827                 (void) check_for_unit_attention(h, c);
6828 }
6829
6830 /*
6831  * ioctl
6832  */
6833 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6834 {
6835         struct ctlr_info *h;
6836         void __user *argp = (void __user *)arg;
6837         int rc;
6838
6839         h = sdev_to_hba(dev);
6840
6841         switch (cmd) {
6842         case CCISS_DEREGDISK:
6843         case CCISS_REGNEWDISK:
6844         case CCISS_REGNEWD:
6845                 hpsa_scan_start(h->scsi_host);
6846                 return 0;
6847         case CCISS_GETPCIINFO:
6848                 return hpsa_getpciinfo_ioctl(h, argp);
6849         case CCISS_GETDRIVVER:
6850                 return hpsa_getdrivver_ioctl(h, argp);
6851         case CCISS_PASSTHRU:
6852                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6853                         return -EAGAIN;
6854                 rc = hpsa_passthru_ioctl(h, argp);
6855                 atomic_inc(&h->passthru_cmds_avail);
6856                 return rc;
6857         case CCISS_BIG_PASSTHRU:
6858                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6859                         return -EAGAIN;
6860                 rc = hpsa_big_passthru_ioctl(h, argp);
6861                 atomic_inc(&h->passthru_cmds_avail);
6862                 return rc;
6863         default:
6864                 return -ENOTTY;
6865         }
6866 }
6867
6868 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6869                                 u8 reset_type)
6870 {
6871         struct CommandList *c;
6872
6873         c = cmd_alloc(h);
6874
6875         /* fill_cmd can't fail here, no data buffer to map */
6876         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6877                 RAID_CTLR_LUNID, TYPE_MSG);
6878         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6879         c->waiting = NULL;
6880         enqueue_cmd_and_start_io(h, c);
6881         /* Don't wait for completion, the reset won't complete.  Don't free
6882          * the command either.  This is the last command we will send before
6883          * re-initializing everything, so it doesn't matter and won't leak.
6884          */
6885         return;
6886 }
6887
6888 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6889         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6890         int cmd_type)
6891 {
6892         int pci_dir = XFER_NONE;
6893         u64 tag; /* for commands to be aborted */
6894
6895         c->cmd_type = CMD_IOCTL_PEND;
6896         c->scsi_cmd = SCSI_CMD_BUSY;
6897         c->Header.ReplyQueue = 0;
6898         if (buff != NULL && size > 0) {
6899                 c->Header.SGList = 1;
6900                 c->Header.SGTotal = cpu_to_le16(1);
6901         } else {
6902                 c->Header.SGList = 0;
6903                 c->Header.SGTotal = cpu_to_le16(0);
6904         }
6905         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6906
6907         if (cmd_type == TYPE_CMD) {
6908                 switch (cmd) {
6909                 case HPSA_INQUIRY:
6910                         /* are we trying to read a vital product page */
6911                         if (page_code & VPD_PAGE) {
6912                                 c->Request.CDB[1] = 0x01;
6913                                 c->Request.CDB[2] = (page_code & 0xff);
6914                         }
6915                         c->Request.CDBLen = 6;
6916                         c->Request.type_attr_dir =
6917                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6918                         c->Request.Timeout = 0;
6919                         c->Request.CDB[0] = HPSA_INQUIRY;
6920                         c->Request.CDB[4] = size & 0xFF;
6921                         break;
6922                 case HPSA_REPORT_LOG:
6923                 case HPSA_REPORT_PHYS:
6924                         /* Talking to controller so It's a physical command
6925                            mode = 00 target = 0.  Nothing to write.
6926                          */
6927                         c->Request.CDBLen = 12;
6928                         c->Request.type_attr_dir =
6929                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6930                         c->Request.Timeout = 0;
6931                         c->Request.CDB[0] = cmd;
6932                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6933                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6934                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6935                         c->Request.CDB[9] = size & 0xFF;
6936                         break;
6937                 case BMIC_SENSE_DIAG_OPTIONS:
6938                         c->Request.CDBLen = 16;
6939                         c->Request.type_attr_dir =
6940                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6941                         c->Request.Timeout = 0;
6942                         /* Spec says this should be BMIC_WRITE */
6943                         c->Request.CDB[0] = BMIC_READ;
6944                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6945                         break;
6946                 case BMIC_SET_DIAG_OPTIONS:
6947                         c->Request.CDBLen = 16;
6948                         c->Request.type_attr_dir =
6949                                         TYPE_ATTR_DIR(cmd_type,
6950                                                 ATTR_SIMPLE, XFER_WRITE);
6951                         c->Request.Timeout = 0;
6952                         c->Request.CDB[0] = BMIC_WRITE;
6953                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6954                         break;
6955                 case HPSA_CACHE_FLUSH:
6956                         c->Request.CDBLen = 12;
6957                         c->Request.type_attr_dir =
6958                                         TYPE_ATTR_DIR(cmd_type,
6959                                                 ATTR_SIMPLE, XFER_WRITE);
6960                         c->Request.Timeout = 0;
6961                         c->Request.CDB[0] = BMIC_WRITE;
6962                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6963                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6964                         c->Request.CDB[8] = size & 0xFF;
6965                         break;
6966                 case TEST_UNIT_READY:
6967                         c->Request.CDBLen = 6;
6968                         c->Request.type_attr_dir =
6969                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6970                         c->Request.Timeout = 0;
6971                         break;
6972                 case HPSA_GET_RAID_MAP:
6973                         c->Request.CDBLen = 12;
6974                         c->Request.type_attr_dir =
6975                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6976                         c->Request.Timeout = 0;
6977                         c->Request.CDB[0] = HPSA_CISS_READ;
6978                         c->Request.CDB[1] = cmd;
6979                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6980                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6981                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6982                         c->Request.CDB[9] = size & 0xFF;
6983                         break;
6984                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6985                         c->Request.CDBLen = 10;
6986                         c->Request.type_attr_dir =
6987                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6988                         c->Request.Timeout = 0;
6989                         c->Request.CDB[0] = BMIC_READ;
6990                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6991                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6992                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6993                         break;
6994                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6995                         c->Request.CDBLen = 10;
6996                         c->Request.type_attr_dir =
6997                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6998                         c->Request.Timeout = 0;
6999                         c->Request.CDB[0] = BMIC_READ;
7000                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
7001                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7002                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7003                         break;
7004                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
7005                         c->Request.CDBLen = 10;
7006                         c->Request.type_attr_dir =
7007                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7008                         c->Request.Timeout = 0;
7009                         c->Request.CDB[0] = BMIC_READ;
7010                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
7011                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7012                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7013                         break;
7014                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
7015                         c->Request.CDBLen = 10;
7016                         c->Request.type_attr_dir =
7017                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7018                         c->Request.Timeout = 0;
7019                         c->Request.CDB[0] = BMIC_READ;
7020                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
7021                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7022                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7023                         break;
7024                 case BMIC_IDENTIFY_CONTROLLER:
7025                         c->Request.CDBLen = 10;
7026                         c->Request.type_attr_dir =
7027                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7028                         c->Request.Timeout = 0;
7029                         c->Request.CDB[0] = BMIC_READ;
7030                         c->Request.CDB[1] = 0;
7031                         c->Request.CDB[2] = 0;
7032                         c->Request.CDB[3] = 0;
7033                         c->Request.CDB[4] = 0;
7034                         c->Request.CDB[5] = 0;
7035                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
7036                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7037                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7038                         c->Request.CDB[9] = 0;
7039                         break;
7040                 default:
7041                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
7042                         BUG();
7043                         return -1;
7044                 }
7045         } else if (cmd_type == TYPE_MSG) {
7046                 switch (cmd) {
7047
7048                 case  HPSA_PHYS_TARGET_RESET:
7049                         c->Request.CDBLen = 16;
7050                         c->Request.type_attr_dir =
7051                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7052                         c->Request.Timeout = 0; /* Don't time out */
7053                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7054                         c->Request.CDB[0] = HPSA_RESET;
7055                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
7056                         /* Physical target reset needs no control bytes 4-7*/
7057                         c->Request.CDB[4] = 0x00;
7058                         c->Request.CDB[5] = 0x00;
7059                         c->Request.CDB[6] = 0x00;
7060                         c->Request.CDB[7] = 0x00;
7061                         break;
7062                 case  HPSA_DEVICE_RESET_MSG:
7063                         c->Request.CDBLen = 16;
7064                         c->Request.type_attr_dir =
7065                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7066                         c->Request.Timeout = 0; /* Don't time out */
7067                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7068                         c->Request.CDB[0] =  cmd;
7069                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
7070                         /* If bytes 4-7 are zero, it means reset the */
7071                         /* LunID device */
7072                         c->Request.CDB[4] = 0x00;
7073                         c->Request.CDB[5] = 0x00;
7074                         c->Request.CDB[6] = 0x00;
7075                         c->Request.CDB[7] = 0x00;
7076                         break;
7077                 case  HPSA_ABORT_MSG:
7078                         memcpy(&tag, buff, sizeof(tag));
7079                         dev_dbg(&h->pdev->dev,
7080                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
7081                                 tag, c->Header.tag);
7082                         c->Request.CDBLen = 16;
7083                         c->Request.type_attr_dir =
7084                                         TYPE_ATTR_DIR(cmd_type,
7085                                                 ATTR_SIMPLE, XFER_WRITE);
7086                         c->Request.Timeout = 0; /* Don't time out */
7087                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
7088                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
7089                         c->Request.CDB[2] = 0x00; /* reserved */
7090                         c->Request.CDB[3] = 0x00; /* reserved */
7091                         /* Tag to abort goes in CDB[4]-CDB[11] */
7092                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
7093                         c->Request.CDB[12] = 0x00; /* reserved */
7094                         c->Request.CDB[13] = 0x00; /* reserved */
7095                         c->Request.CDB[14] = 0x00; /* reserved */
7096                         c->Request.CDB[15] = 0x00; /* reserved */
7097                 break;
7098                 default:
7099                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
7100                                 cmd);
7101                         BUG();
7102                 }
7103         } else {
7104                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
7105                 BUG();
7106         }
7107
7108         switch (GET_DIR(c->Request.type_attr_dir)) {
7109         case XFER_READ:
7110                 pci_dir = PCI_DMA_FROMDEVICE;
7111                 break;
7112         case XFER_WRITE:
7113                 pci_dir = PCI_DMA_TODEVICE;
7114                 break;
7115         case XFER_NONE:
7116                 pci_dir = PCI_DMA_NONE;
7117                 break;
7118         default:
7119                 pci_dir = PCI_DMA_BIDIRECTIONAL;
7120         }
7121         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7122                 return -1;
7123         return 0;
7124 }
7125
7126 /*
7127  * Map (physical) PCI mem into (virtual) kernel space
7128  */
7129 static void __iomem *remap_pci_mem(ulong base, ulong size)
7130 {
7131         ulong page_base = ((ulong) base) & PAGE_MASK;
7132         ulong page_offs = ((ulong) base) - page_base;
7133         void __iomem *page_remapped = ioremap_nocache(page_base,
7134                 page_offs + size);
7135
7136         return page_remapped ? (page_remapped + page_offs) : NULL;
7137 }
7138
7139 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
7140 {
7141         return h->access.command_completed(h, q);
7142 }
7143
7144 static inline bool interrupt_pending(struct ctlr_info *h)
7145 {
7146         return h->access.intr_pending(h);
7147 }
7148
7149 static inline long interrupt_not_for_us(struct ctlr_info *h)
7150 {
7151         return (h->access.intr_pending(h) == 0) ||
7152                 (h->interrupts_enabled == 0);
7153 }
7154
7155 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7156         u32 raw_tag)
7157 {
7158         if (unlikely(tag_index >= h->nr_cmds)) {
7159                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7160                 return 1;
7161         }
7162         return 0;
7163 }
7164
7165 static inline void finish_cmd(struct CommandList *c)
7166 {
7167         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
7168         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7169                         || c->cmd_type == CMD_IOACCEL2))
7170                 complete_scsi_command(c);
7171         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
7172                 complete(c->waiting);
7173 }
7174
7175 /* process completion of an indexed ("direct lookup") command */
7176 static inline void process_indexed_cmd(struct ctlr_info *h,
7177         u32 raw_tag)
7178 {
7179         u32 tag_index;
7180         struct CommandList *c;
7181
7182         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
7183         if (!bad_tag(h, tag_index, raw_tag)) {
7184                 c = h->cmd_pool + tag_index;
7185                 finish_cmd(c);
7186         }
7187 }
7188
7189 /* Some controllers, like p400, will give us one interrupt
7190  * after a soft reset, even if we turned interrupts off.
7191  * Only need to check for this in the hpsa_xxx_discard_completions
7192  * functions.
7193  */
7194 static int ignore_bogus_interrupt(struct ctlr_info *h)
7195 {
7196         if (likely(!reset_devices))
7197                 return 0;
7198
7199         if (likely(h->interrupts_enabled))
7200                 return 0;
7201
7202         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7203                 "(known firmware bug.)  Ignoring.\n");
7204
7205         return 1;
7206 }
7207
7208 /*
7209  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7210  * Relies on (h-q[x] == x) being true for x such that
7211  * 0 <= x < MAX_REPLY_QUEUES.
7212  */
7213 static struct ctlr_info *queue_to_hba(u8 *queue)
7214 {
7215         return container_of((queue - *queue), struct ctlr_info, q[0]);
7216 }
7217
7218 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7219 {
7220         struct ctlr_info *h = queue_to_hba(queue);
7221         u8 q = *(u8 *) queue;
7222         u32 raw_tag;
7223
7224         if (ignore_bogus_interrupt(h))
7225                 return IRQ_NONE;
7226
7227         if (interrupt_not_for_us(h))
7228                 return IRQ_NONE;
7229         h->last_intr_timestamp = get_jiffies_64();
7230         while (interrupt_pending(h)) {
7231                 raw_tag = get_next_completion(h, q);
7232                 while (raw_tag != FIFO_EMPTY)
7233                         raw_tag = next_command(h, q);
7234         }
7235         return IRQ_HANDLED;
7236 }
7237
7238 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7239 {
7240         struct ctlr_info *h = queue_to_hba(queue);
7241         u32 raw_tag;
7242         u8 q = *(u8 *) queue;
7243
7244         if (ignore_bogus_interrupt(h))
7245                 return IRQ_NONE;
7246
7247         h->last_intr_timestamp = get_jiffies_64();
7248         raw_tag = get_next_completion(h, q);
7249         while (raw_tag != FIFO_EMPTY)
7250                 raw_tag = next_command(h, q);
7251         return IRQ_HANDLED;
7252 }
7253
7254 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7255 {
7256         struct ctlr_info *h = queue_to_hba((u8 *) queue);
7257         u32 raw_tag;
7258         u8 q = *(u8 *) queue;
7259
7260         if (interrupt_not_for_us(h))
7261                 return IRQ_NONE;
7262         h->last_intr_timestamp = get_jiffies_64();
7263         while (interrupt_pending(h)) {
7264                 raw_tag = get_next_completion(h, q);
7265                 while (raw_tag != FIFO_EMPTY) {
7266                         process_indexed_cmd(h, raw_tag);
7267                         raw_tag = next_command(h, q);
7268                 }
7269         }
7270         return IRQ_HANDLED;
7271 }
7272
7273 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7274 {
7275         struct ctlr_info *h = queue_to_hba(queue);
7276         u32 raw_tag;
7277         u8 q = *(u8 *) queue;
7278
7279         h->last_intr_timestamp = get_jiffies_64();
7280         raw_tag = get_next_completion(h, q);
7281         while (raw_tag != FIFO_EMPTY) {
7282                 process_indexed_cmd(h, raw_tag);
7283                 raw_tag = next_command(h, q);
7284         }
7285         return IRQ_HANDLED;
7286 }
7287
7288 /* Send a message CDB to the firmware. Careful, this only works
7289  * in simple mode, not performant mode due to the tag lookup.
7290  * We only ever use this immediately after a controller reset.
7291  */
7292 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7293                         unsigned char type)
7294 {
7295         struct Command {
7296                 struct CommandListHeader CommandHeader;
7297                 struct RequestBlock Request;
7298                 struct ErrDescriptor ErrorDescriptor;
7299         };
7300         struct Command *cmd;
7301         static const size_t cmd_sz = sizeof(*cmd) +
7302                                         sizeof(cmd->ErrorDescriptor);
7303         dma_addr_t paddr64;
7304         __le32 paddr32;
7305         u32 tag;
7306         void __iomem *vaddr;
7307         int i, err;
7308
7309         vaddr = pci_ioremap_bar(pdev, 0);
7310         if (vaddr == NULL)
7311                 return -ENOMEM;
7312
7313         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7314          * CCISS commands, so they must be allocated from the lower 4GiB of
7315          * memory.
7316          */
7317         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7318         if (err) {
7319                 iounmap(vaddr);
7320                 return err;
7321         }
7322
7323         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7324         if (cmd == NULL) {
7325                 iounmap(vaddr);
7326                 return -ENOMEM;
7327         }
7328
7329         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7330          * although there's no guarantee, we assume that the address is at
7331          * least 4-byte aligned (most likely, it's page-aligned).
7332          */
7333         paddr32 = cpu_to_le32(paddr64);
7334
7335         cmd->CommandHeader.ReplyQueue = 0;
7336         cmd->CommandHeader.SGList = 0;
7337         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7338         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7339         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7340
7341         cmd->Request.CDBLen = 16;
7342         cmd->Request.type_attr_dir =
7343                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7344         cmd->Request.Timeout = 0; /* Don't time out */
7345         cmd->Request.CDB[0] = opcode;
7346         cmd->Request.CDB[1] = type;
7347         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7348         cmd->ErrorDescriptor.Addr =
7349                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7350         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7351
7352         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7353
7354         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7355                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7356                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7357                         break;
7358                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7359         }
7360
7361         iounmap(vaddr);
7362
7363         /* we leak the DMA buffer here ... no choice since the controller could
7364          *  still complete the command.
7365          */
7366         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7367                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7368                         opcode, type);
7369                 return -ETIMEDOUT;
7370         }
7371
7372         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7373
7374         if (tag & HPSA_ERROR_BIT) {
7375                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7376                         opcode, type);
7377                 return -EIO;
7378         }
7379
7380         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7381                 opcode, type);
7382         return 0;
7383 }
7384
7385 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7386
7387 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7388         void __iomem *vaddr, u32 use_doorbell)
7389 {
7390
7391         if (use_doorbell) {
7392                 /* For everything after the P600, the PCI power state method
7393                  * of resetting the controller doesn't work, so we have this
7394                  * other way using the doorbell register.
7395                  */
7396                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7397                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7398
7399                 /* PMC hardware guys tell us we need a 10 second delay after
7400                  * doorbell reset and before any attempt to talk to the board
7401                  * at all to ensure that this actually works and doesn't fall
7402                  * over in some weird corner cases.
7403                  */
7404                 msleep(10000);
7405         } else { /* Try to do it the PCI power state way */
7406
7407                 /* Quoting from the Open CISS Specification: "The Power
7408                  * Management Control/Status Register (CSR) controls the power
7409                  * state of the device.  The normal operating state is D0,
7410                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7411                  * the controller, place the interface device in D3 then to D0,
7412                  * this causes a secondary PCI reset which will reset the
7413                  * controller." */
7414
7415                 int rc = 0;
7416
7417                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7418
7419                 /* enter the D3hot power management state */
7420                 rc = pci_set_power_state(pdev, PCI_D3hot);
7421                 if (rc)
7422                         return rc;
7423
7424                 msleep(500);
7425
7426                 /* enter the D0 power management state */
7427                 rc = pci_set_power_state(pdev, PCI_D0);
7428                 if (rc)
7429                         return rc;
7430
7431                 /*
7432                  * The P600 requires a small delay when changing states.
7433                  * Otherwise we may think the board did not reset and we bail.
7434                  * This for kdump only and is particular to the P600.
7435                  */
7436                 msleep(500);
7437         }
7438         return 0;
7439 }
7440
7441 static void init_driver_version(char *driver_version, int len)
7442 {
7443         memset(driver_version, 0, len);
7444         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7445 }
7446
7447 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7448 {
7449         char *driver_version;
7450         int i, size = sizeof(cfgtable->driver_version);
7451
7452         driver_version = kmalloc(size, GFP_KERNEL);
7453         if (!driver_version)
7454                 return -ENOMEM;
7455
7456         init_driver_version(driver_version, size);
7457         for (i = 0; i < size; i++)
7458                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7459         kfree(driver_version);
7460         return 0;
7461 }
7462
7463 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7464                                           unsigned char *driver_ver)
7465 {
7466         int i;
7467
7468         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7469                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7470 }
7471
7472 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7473 {
7474
7475         char *driver_ver, *old_driver_ver;
7476         int rc, size = sizeof(cfgtable->driver_version);
7477
7478         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7479         if (!old_driver_ver)
7480                 return -ENOMEM;
7481         driver_ver = old_driver_ver + size;
7482
7483         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7484          * should have been changed, otherwise we know the reset failed.
7485          */
7486         init_driver_version(old_driver_ver, size);
7487         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7488         rc = !memcmp(driver_ver, old_driver_ver, size);
7489         kfree(old_driver_ver);
7490         return rc;
7491 }
7492 /* This does a hard reset of the controller using PCI power management
7493  * states or the using the doorbell register.
7494  */
7495 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7496 {
7497         u64 cfg_offset;
7498         u32 cfg_base_addr;
7499         u64 cfg_base_addr_index;
7500         void __iomem *vaddr;
7501         unsigned long paddr;
7502         u32 misc_fw_support;
7503         int rc;
7504         struct CfgTable __iomem *cfgtable;
7505         u32 use_doorbell;
7506         u16 command_register;
7507
7508         /* For controllers as old as the P600, this is very nearly
7509          * the same thing as
7510          *
7511          * pci_save_state(pci_dev);
7512          * pci_set_power_state(pci_dev, PCI_D3hot);
7513          * pci_set_power_state(pci_dev, PCI_D0);
7514          * pci_restore_state(pci_dev);
7515          *
7516          * For controllers newer than the P600, the pci power state
7517          * method of resetting doesn't work so we have another way
7518          * using the doorbell register.
7519          */
7520
7521         if (!ctlr_is_resettable(board_id)) {
7522                 dev_warn(&pdev->dev, "Controller not resettable\n");
7523                 return -ENODEV;
7524         }
7525
7526         /* if controller is soft- but not hard resettable... */
7527         if (!ctlr_is_hard_resettable(board_id))
7528                 return -ENOTSUPP; /* try soft reset later. */
7529
7530         /* Save the PCI command register */
7531         pci_read_config_word(pdev, 4, &command_register);
7532         pci_save_state(pdev);
7533
7534         /* find the first memory BAR, so we can find the cfg table */
7535         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7536         if (rc)
7537                 return rc;
7538         vaddr = remap_pci_mem(paddr, 0x250);
7539         if (!vaddr)
7540                 return -ENOMEM;
7541
7542         /* find cfgtable in order to check if reset via doorbell is supported */
7543         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7544                                         &cfg_base_addr_index, &cfg_offset);
7545         if (rc)
7546                 goto unmap_vaddr;
7547         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7548                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7549         if (!cfgtable) {
7550                 rc = -ENOMEM;
7551                 goto unmap_vaddr;
7552         }
7553         rc = write_driver_ver_to_cfgtable(cfgtable);
7554         if (rc)
7555                 goto unmap_cfgtable;
7556
7557         /* If reset via doorbell register is supported, use that.
7558          * There are two such methods.  Favor the newest method.
7559          */
7560         misc_fw_support = readl(&cfgtable->misc_fw_support);
7561         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7562         if (use_doorbell) {
7563                 use_doorbell = DOORBELL_CTLR_RESET2;
7564         } else {
7565                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7566                 if (use_doorbell) {
7567                         dev_warn(&pdev->dev,
7568                                 "Soft reset not supported. Firmware update is required.\n");
7569                         rc = -ENOTSUPP; /* try soft reset */
7570                         goto unmap_cfgtable;
7571                 }
7572         }
7573
7574         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7575         if (rc)
7576                 goto unmap_cfgtable;
7577
7578         pci_restore_state(pdev);
7579         pci_write_config_word(pdev, 4, command_register);
7580
7581         /* Some devices (notably the HP Smart Array 5i Controller)
7582            need a little pause here */
7583         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7584
7585         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7586         if (rc) {
7587                 dev_warn(&pdev->dev,
7588                         "Failed waiting for board to become ready after hard reset\n");
7589                 goto unmap_cfgtable;
7590         }
7591
7592         rc = controller_reset_failed(vaddr);
7593         if (rc < 0)
7594                 goto unmap_cfgtable;
7595         if (rc) {
7596                 dev_warn(&pdev->dev, "Unable to successfully reset "
7597                         "controller. Will try soft reset.\n");
7598                 rc = -ENOTSUPP;
7599         } else {
7600                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7601         }
7602
7603 unmap_cfgtable:
7604         iounmap(cfgtable);
7605
7606 unmap_vaddr:
7607         iounmap(vaddr);
7608         return rc;
7609 }
7610
7611 /*
7612  *  We cannot read the structure directly, for portability we must use
7613  *   the io functions.
7614  *   This is for debug only.
7615  */
7616 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7617 {
7618 #ifdef HPSA_DEBUG
7619         int i;
7620         char temp_name[17];
7621
7622         dev_info(dev, "Controller Configuration information\n");
7623         dev_info(dev, "------------------------------------\n");
7624         for (i = 0; i < 4; i++)
7625                 temp_name[i] = readb(&(tb->Signature[i]));
7626         temp_name[4] = '\0';
7627         dev_info(dev, "   Signature = %s\n", temp_name);
7628         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7629         dev_info(dev, "   Transport methods supported = 0x%x\n",
7630                readl(&(tb->TransportSupport)));
7631         dev_info(dev, "   Transport methods active = 0x%x\n",
7632                readl(&(tb->TransportActive)));
7633         dev_info(dev, "   Requested transport Method = 0x%x\n",
7634                readl(&(tb->HostWrite.TransportRequest)));
7635         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7636                readl(&(tb->HostWrite.CoalIntDelay)));
7637         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7638                readl(&(tb->HostWrite.CoalIntCount)));
7639         dev_info(dev, "   Max outstanding commands = %d\n",
7640                readl(&(tb->CmdsOutMax)));
7641         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7642         for (i = 0; i < 16; i++)
7643                 temp_name[i] = readb(&(tb->ServerName[i]));
7644         temp_name[16] = '\0';
7645         dev_info(dev, "   Server Name = %s\n", temp_name);
7646         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7647                 readl(&(tb->HeartBeat)));
7648 #endif                          /* HPSA_DEBUG */
7649 }
7650
7651 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7652 {
7653         int i, offset, mem_type, bar_type;
7654
7655         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7656                 return 0;
7657         offset = 0;
7658         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7659                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7660                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7661                         offset += 4;
7662                 else {
7663                         mem_type = pci_resource_flags(pdev, i) &
7664                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7665                         switch (mem_type) {
7666                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7667                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7668                                 offset += 4;    /* 32 bit */
7669                                 break;
7670                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7671                                 offset += 8;
7672                                 break;
7673                         default:        /* reserved in PCI 2.2 */
7674                                 dev_warn(&pdev->dev,
7675                                        "base address is invalid\n");
7676                                 return -1;
7677                                 break;
7678                         }
7679                 }
7680                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7681                         return i + 1;
7682         }
7683         return -1;
7684 }
7685
7686 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7687 {
7688         pci_free_irq_vectors(h->pdev);
7689         h->msix_vectors = 0;
7690 }
7691
7692 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7693  * controllers that are capable. If not, we use legacy INTx mode.
7694  */
7695 static int hpsa_interrupt_mode(struct ctlr_info *h)
7696 {
7697         unsigned int flags = PCI_IRQ_LEGACY;
7698         int ret;
7699
7700         /* Some boards advertise MSI but don't really support it */
7701         switch (h->board_id) {
7702         case 0x40700E11:
7703         case 0x40800E11:
7704         case 0x40820E11:
7705         case 0x40830E11:
7706                 break;
7707         default:
7708                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7709                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7710                 if (ret > 0) {
7711                         h->msix_vectors = ret;
7712                         return 0;
7713                 }
7714
7715                 flags |= PCI_IRQ_MSI;
7716                 break;
7717         }
7718
7719         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7720         if (ret < 0)
7721                 return ret;
7722         return 0;
7723 }
7724
7725 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7726 {
7727         int i;
7728         u32 subsystem_vendor_id, subsystem_device_id;
7729
7730         subsystem_vendor_id = pdev->subsystem_vendor;
7731         subsystem_device_id = pdev->subsystem_device;
7732         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7733                     subsystem_vendor_id;
7734
7735         for (i = 0; i < ARRAY_SIZE(products); i++)
7736                 if (*board_id == products[i].board_id)
7737                         return i;
7738
7739         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7740                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7741                 !hpsa_allow_any) {
7742                 dev_warn(&pdev->dev, "unrecognized board ID: "
7743                         "0x%08x, ignoring.\n", *board_id);
7744                         return -ENODEV;
7745         }
7746         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7747 }
7748
7749 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7750                                     unsigned long *memory_bar)
7751 {
7752         int i;
7753
7754         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7755                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7756                         /* addressing mode bits already removed */
7757                         *memory_bar = pci_resource_start(pdev, i);
7758                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7759                                 *memory_bar);
7760                         return 0;
7761                 }
7762         dev_warn(&pdev->dev, "no memory BAR found\n");
7763         return -ENODEV;
7764 }
7765
7766 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7767                                      int wait_for_ready)
7768 {
7769         int i, iterations;
7770         u32 scratchpad;
7771         if (wait_for_ready)
7772                 iterations = HPSA_BOARD_READY_ITERATIONS;
7773         else
7774                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7775
7776         for (i = 0; i < iterations; i++) {
7777                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7778                 if (wait_for_ready) {
7779                         if (scratchpad == HPSA_FIRMWARE_READY)
7780                                 return 0;
7781                 } else {
7782                         if (scratchpad != HPSA_FIRMWARE_READY)
7783                                 return 0;
7784                 }
7785                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7786         }
7787         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7788         return -ENODEV;
7789 }
7790
7791 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7792                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7793                                u64 *cfg_offset)
7794 {
7795         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7796         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7797         *cfg_base_addr &= (u32) 0x0000ffff;
7798         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7799         if (*cfg_base_addr_index == -1) {
7800                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7801                 return -ENODEV;
7802         }
7803         return 0;
7804 }
7805
7806 static void hpsa_free_cfgtables(struct ctlr_info *h)
7807 {
7808         if (h->transtable) {
7809                 iounmap(h->transtable);
7810                 h->transtable = NULL;
7811         }
7812         if (h->cfgtable) {
7813                 iounmap(h->cfgtable);
7814                 h->cfgtable = NULL;
7815         }
7816 }
7817
7818 /* Find and map CISS config table and transfer table
7819 + * several items must be unmapped (freed) later
7820 + * */
7821 static int hpsa_find_cfgtables(struct ctlr_info *h)
7822 {
7823         u64 cfg_offset;
7824         u32 cfg_base_addr;
7825         u64 cfg_base_addr_index;
7826         u32 trans_offset;
7827         int rc;
7828
7829         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7830                 &cfg_base_addr_index, &cfg_offset);
7831         if (rc)
7832                 return rc;
7833         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7834                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7835         if (!h->cfgtable) {
7836                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7837                 return -ENOMEM;
7838         }
7839         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7840         if (rc)
7841                 return rc;
7842         /* Find performant mode table. */
7843         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7844         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7845                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7846                                 sizeof(*h->transtable));
7847         if (!h->transtable) {
7848                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7849                 hpsa_free_cfgtables(h);
7850                 return -ENOMEM;
7851         }
7852         return 0;
7853 }
7854
7855 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7856 {
7857 #define MIN_MAX_COMMANDS 16
7858         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7859
7860         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7861
7862         /* Limit commands in memory limited kdump scenario. */
7863         if (reset_devices && h->max_commands > 32)
7864                 h->max_commands = 32;
7865
7866         if (h->max_commands < MIN_MAX_COMMANDS) {
7867                 dev_warn(&h->pdev->dev,
7868                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7869                         h->max_commands,
7870                         MIN_MAX_COMMANDS);
7871                 h->max_commands = MIN_MAX_COMMANDS;
7872         }
7873 }
7874
7875 /* If the controller reports that the total max sg entries is greater than 512,
7876  * then we know that chained SG blocks work.  (Original smart arrays did not
7877  * support chained SG blocks and would return zero for max sg entries.)
7878  */
7879 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7880 {
7881         return h->maxsgentries > 512;
7882 }
7883
7884 /* Interrogate the hardware for some limits:
7885  * max commands, max SG elements without chaining, and with chaining,
7886  * SG chain block size, etc.
7887  */
7888 static void hpsa_find_board_params(struct ctlr_info *h)
7889 {
7890         hpsa_get_max_perf_mode_cmds(h);
7891         h->nr_cmds = h->max_commands;
7892         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7893         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7894         if (hpsa_supports_chained_sg_blocks(h)) {
7895                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7896                 h->max_cmd_sg_entries = 32;
7897                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7898                 h->maxsgentries--; /* save one for chain pointer */
7899         } else {
7900                 /*
7901                  * Original smart arrays supported at most 31 s/g entries
7902                  * embedded inline in the command (trying to use more
7903                  * would lock up the controller)
7904                  */
7905                 h->max_cmd_sg_entries = 31;
7906                 h->maxsgentries = 31; /* default to traditional values */
7907                 h->chainsize = 0;
7908         }
7909
7910         /* Find out what task management functions are supported and cache */
7911         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7912         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7913                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7914         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7915                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7916         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7917                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7918 }
7919
7920 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7921 {
7922         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7923                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7924                 return false;
7925         }
7926         return true;
7927 }
7928
7929 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7930 {
7931         u32 driver_support;
7932
7933         driver_support = readl(&(h->cfgtable->driver_support));
7934         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7935 #ifdef CONFIG_X86
7936         driver_support |= ENABLE_SCSI_PREFETCH;
7937 #endif
7938         driver_support |= ENABLE_UNIT_ATTN;
7939         writel(driver_support, &(h->cfgtable->driver_support));
7940 }
7941
7942 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7943  * in a prefetch beyond physical memory.
7944  */
7945 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7946 {
7947         u32 dma_prefetch;
7948
7949         if (h->board_id != 0x3225103C)
7950                 return;
7951         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7952         dma_prefetch |= 0x8000;
7953         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7954 }
7955
7956 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7957 {
7958         int i;
7959         u32 doorbell_value;
7960         unsigned long flags;
7961         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7962         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7963                 spin_lock_irqsave(&h->lock, flags);
7964                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7965                 spin_unlock_irqrestore(&h->lock, flags);
7966                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7967                         goto done;
7968                 /* delay and try again */
7969                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7970         }
7971         return -ENODEV;
7972 done:
7973         return 0;
7974 }
7975
7976 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7977 {
7978         int i;
7979         u32 doorbell_value;
7980         unsigned long flags;
7981
7982         /* under certain very rare conditions, this can take awhile.
7983          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7984          * as we enter this code.)
7985          */
7986         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7987                 if (h->remove_in_progress)
7988                         goto done;
7989                 spin_lock_irqsave(&h->lock, flags);
7990                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7991                 spin_unlock_irqrestore(&h->lock, flags);
7992                 if (!(doorbell_value & CFGTBL_ChangeReq))
7993                         goto done;
7994                 /* delay and try again */
7995                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7996         }
7997         return -ENODEV;
7998 done:
7999         return 0;
8000 }
8001
8002 /* return -ENODEV or other reason on error, 0 on success */
8003 static int hpsa_enter_simple_mode(struct ctlr_info *h)
8004 {
8005         u32 trans_support;
8006
8007         trans_support = readl(&(h->cfgtable->TransportSupport));
8008         if (!(trans_support & SIMPLE_MODE))
8009                 return -ENOTSUPP;
8010
8011         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
8012
8013         /* Update the field, and then ring the doorbell */
8014         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
8015         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8016         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8017         if (hpsa_wait_for_mode_change_ack(h))
8018                 goto error;
8019         print_cfg_table(&h->pdev->dev, h->cfgtable);
8020         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
8021                 goto error;
8022         h->transMethod = CFGTBL_Trans_Simple;
8023         return 0;
8024 error:
8025         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
8026         return -ENODEV;
8027 }
8028
8029 /* free items allocated or mapped by hpsa_pci_init */
8030 static void hpsa_free_pci_init(struct ctlr_info *h)
8031 {
8032         hpsa_free_cfgtables(h);                 /* pci_init 4 */
8033         iounmap(h->vaddr);                      /* pci_init 3 */
8034         h->vaddr = NULL;
8035         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8036         /*
8037          * call pci_disable_device before pci_release_regions per
8038          * Documentation/PCI/pci.txt
8039          */
8040         pci_disable_device(h->pdev);            /* pci_init 1 */
8041         pci_release_regions(h->pdev);           /* pci_init 2 */
8042 }
8043
8044 /* several items must be freed later */
8045 static int hpsa_pci_init(struct ctlr_info *h)
8046 {
8047         int prod_index, err;
8048
8049         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
8050         if (prod_index < 0)
8051                 return prod_index;
8052         h->product_name = products[prod_index].product_name;
8053         h->access = *(products[prod_index].access);
8054
8055         h->needs_abort_tags_swizzled =
8056                 ctlr_needs_abort_tags_swizzled(h->board_id);
8057
8058         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
8059                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
8060
8061         err = pci_enable_device(h->pdev);
8062         if (err) {
8063                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
8064                 pci_disable_device(h->pdev);
8065                 return err;
8066         }
8067
8068         err = pci_request_regions(h->pdev, HPSA);
8069         if (err) {
8070                 dev_err(&h->pdev->dev,
8071                         "failed to obtain PCI resources\n");
8072                 pci_disable_device(h->pdev);
8073                 return err;
8074         }
8075
8076         pci_set_master(h->pdev);
8077
8078         err = hpsa_interrupt_mode(h);
8079         if (err)
8080                 goto clean1;
8081         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
8082         if (err)
8083                 goto clean2;    /* intmode+region, pci */
8084         h->vaddr = remap_pci_mem(h->paddr, 0x250);
8085         if (!h->vaddr) {
8086                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
8087                 err = -ENOMEM;
8088                 goto clean2;    /* intmode+region, pci */
8089         }
8090         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8091         if (err)
8092                 goto clean3;    /* vaddr, intmode+region, pci */
8093         err = hpsa_find_cfgtables(h);
8094         if (err)
8095                 goto clean3;    /* vaddr, intmode+region, pci */
8096         hpsa_find_board_params(h);
8097
8098         if (!hpsa_CISS_signature_present(h)) {
8099                 err = -ENODEV;
8100                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
8101         }
8102         hpsa_set_driver_support_bits(h);
8103         hpsa_p600_dma_prefetch_quirk(h);
8104         err = hpsa_enter_simple_mode(h);
8105         if (err)
8106                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
8107         return 0;
8108
8109 clean4: /* cfgtables, vaddr, intmode+region, pci */
8110         hpsa_free_cfgtables(h);
8111 clean3: /* vaddr, intmode+region, pci */
8112         iounmap(h->vaddr);
8113         h->vaddr = NULL;
8114 clean2: /* intmode+region, pci */
8115         hpsa_disable_interrupt_mode(h);
8116 clean1:
8117         /*
8118          * call pci_disable_device before pci_release_regions per
8119          * Documentation/PCI/pci.txt
8120          */
8121         pci_disable_device(h->pdev);
8122         pci_release_regions(h->pdev);
8123         return err;
8124 }
8125
8126 static void hpsa_hba_inquiry(struct ctlr_info *h)
8127 {
8128         int rc;
8129
8130 #define HBA_INQUIRY_BYTE_COUNT 64
8131         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8132         if (!h->hba_inquiry_data)
8133                 return;
8134         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8135                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8136         if (rc != 0) {
8137                 kfree(h->hba_inquiry_data);
8138                 h->hba_inquiry_data = NULL;
8139         }
8140 }
8141
8142 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
8143 {
8144         int rc, i;
8145         void __iomem *vaddr;
8146
8147         if (!reset_devices)
8148                 return 0;
8149
8150         /* kdump kernel is loading, we don't know in which state is
8151          * the pci interface. The dev->enable_cnt is equal zero
8152          * so we call enable+disable, wait a while and switch it on.
8153          */
8154         rc = pci_enable_device(pdev);
8155         if (rc) {
8156                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8157                 return -ENODEV;
8158         }
8159         pci_disable_device(pdev);
8160         msleep(260);                    /* a randomly chosen number */
8161         rc = pci_enable_device(pdev);
8162         if (rc) {
8163                 dev_warn(&pdev->dev, "failed to enable device.\n");
8164                 return -ENODEV;
8165         }
8166
8167         pci_set_master(pdev);
8168
8169         vaddr = pci_ioremap_bar(pdev, 0);
8170         if (vaddr == NULL) {
8171                 rc = -ENOMEM;
8172                 goto out_disable;
8173         }
8174         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8175         iounmap(vaddr);
8176
8177         /* Reset the controller with a PCI power-cycle or via doorbell */
8178         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8179
8180         /* -ENOTSUPP here means we cannot reset the controller
8181          * but it's already (and still) up and running in
8182          * "performant mode".  Or, it might be 640x, which can't reset
8183          * due to concerns about shared bbwc between 6402/6404 pair.
8184          */
8185         if (rc)
8186                 goto out_disable;
8187
8188         /* Now try to get the controller to respond to a no-op */
8189         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8190         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8191                 if (hpsa_noop(pdev) == 0)
8192                         break;
8193                 else
8194                         dev_warn(&pdev->dev, "no-op failed%s\n",
8195                                         (i < 11 ? "; re-trying" : ""));
8196         }
8197
8198 out_disable:
8199
8200         pci_disable_device(pdev);
8201         return rc;
8202 }
8203
8204 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8205 {
8206         kfree(h->cmd_pool_bits);
8207         h->cmd_pool_bits = NULL;
8208         if (h->cmd_pool) {
8209                 pci_free_consistent(h->pdev,
8210                                 h->nr_cmds * sizeof(struct CommandList),
8211                                 h->cmd_pool,
8212                                 h->cmd_pool_dhandle);
8213                 h->cmd_pool = NULL;
8214                 h->cmd_pool_dhandle = 0;
8215         }
8216         if (h->errinfo_pool) {
8217                 pci_free_consistent(h->pdev,
8218                                 h->nr_cmds * sizeof(struct ErrorInfo),
8219                                 h->errinfo_pool,
8220                                 h->errinfo_pool_dhandle);
8221                 h->errinfo_pool = NULL;
8222                 h->errinfo_pool_dhandle = 0;
8223         }
8224 }
8225
8226 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8227 {
8228         h->cmd_pool_bits = kzalloc(
8229                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8230                 sizeof(unsigned long), GFP_KERNEL);
8231         h->cmd_pool = pci_alloc_consistent(h->pdev,
8232                     h->nr_cmds * sizeof(*h->cmd_pool),
8233                     &(h->cmd_pool_dhandle));
8234         h->errinfo_pool = pci_alloc_consistent(h->pdev,
8235                     h->nr_cmds * sizeof(*h->errinfo_pool),
8236                     &(h->errinfo_pool_dhandle));
8237         if ((h->cmd_pool_bits == NULL)
8238             || (h->cmd_pool == NULL)
8239             || (h->errinfo_pool == NULL)) {
8240                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8241                 goto clean_up;
8242         }
8243         hpsa_preinitialize_commands(h);
8244         return 0;
8245 clean_up:
8246         hpsa_free_cmd_pool(h);
8247         return -ENOMEM;
8248 }
8249
8250 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8251 static void hpsa_free_irqs(struct ctlr_info *h)
8252 {
8253         int i;
8254
8255         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8256                 /* Single reply queue, only one irq to free */
8257                 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
8258                 h->q[h->intr_mode] = 0;
8259                 return;
8260         }
8261
8262         for (i = 0; i < h->msix_vectors; i++) {
8263                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8264                 h->q[i] = 0;
8265         }
8266         for (; i < MAX_REPLY_QUEUES; i++)
8267                 h->q[i] = 0;
8268 }
8269
8270 /* returns 0 on success; cleans up and returns -Enn on error */
8271 static int hpsa_request_irqs(struct ctlr_info *h,
8272         irqreturn_t (*msixhandler)(int, void *),
8273         irqreturn_t (*intxhandler)(int, void *))
8274 {
8275         int rc, i;
8276
8277         /*
8278          * initialize h->q[x] = x so that interrupt handlers know which
8279          * queue to process.
8280          */
8281         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8282                 h->q[i] = (u8) i;
8283
8284         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8285                 /* If performant mode and MSI-X, use multiple reply queues */
8286                 for (i = 0; i < h->msix_vectors; i++) {
8287                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8288                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8289                                         0, h->intrname[i],
8290                                         &h->q[i]);
8291                         if (rc) {
8292                                 int j;
8293
8294                                 dev_err(&h->pdev->dev,
8295                                         "failed to get irq %d for %s\n",
8296                                        pci_irq_vector(h->pdev, i), h->devname);
8297                                 for (j = 0; j < i; j++) {
8298                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8299                                         h->q[j] = 0;
8300                                 }
8301                                 for (; j < MAX_REPLY_QUEUES; j++)
8302                                         h->q[j] = 0;
8303                                 return rc;
8304                         }
8305                 }
8306         } else {
8307                 /* Use single reply pool */
8308                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8309                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8310                                 h->msix_vectors ? "x" : "");
8311                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8312                                 msixhandler, 0,
8313                                 h->intrname[0],
8314                                 &h->q[h->intr_mode]);
8315                 } else {
8316                         sprintf(h->intrname[h->intr_mode],
8317                                 "%s-intx", h->devname);
8318                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8319                                 intxhandler, IRQF_SHARED,
8320                                 h->intrname[0],
8321                                 &h->q[h->intr_mode]);
8322                 }
8323         }
8324         if (rc) {
8325                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8326                        pci_irq_vector(h->pdev, 0), h->devname);
8327                 hpsa_free_irqs(h);
8328                 return -ENODEV;
8329         }
8330         return 0;
8331 }
8332
8333 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8334 {
8335         int rc;
8336         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8337
8338         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8339         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8340         if (rc) {
8341                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8342                 return rc;
8343         }
8344
8345         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8346         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8347         if (rc) {
8348                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8349                         "after soft reset.\n");
8350                 return rc;
8351         }
8352
8353         return 0;
8354 }
8355
8356 static void hpsa_free_reply_queues(struct ctlr_info *h)
8357 {
8358         int i;
8359
8360         for (i = 0; i < h->nreply_queues; i++) {
8361                 if (!h->reply_queue[i].head)
8362                         continue;
8363                 pci_free_consistent(h->pdev,
8364                                         h->reply_queue_size,
8365                                         h->reply_queue[i].head,
8366                                         h->reply_queue[i].busaddr);
8367                 h->reply_queue[i].head = NULL;
8368                 h->reply_queue[i].busaddr = 0;
8369         }
8370         h->reply_queue_size = 0;
8371 }
8372
8373 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8374 {
8375         hpsa_free_performant_mode(h);           /* init_one 7 */
8376         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8377         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8378         hpsa_free_irqs(h);                      /* init_one 4 */
8379         scsi_host_put(h->scsi_host);            /* init_one 3 */
8380         h->scsi_host = NULL;                    /* init_one 3 */
8381         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8382         free_percpu(h->lockup_detected);        /* init_one 2 */
8383         h->lockup_detected = NULL;              /* init_one 2 */
8384         if (h->resubmit_wq) {
8385                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8386                 h->resubmit_wq = NULL;
8387         }
8388         if (h->rescan_ctlr_wq) {
8389                 destroy_workqueue(h->rescan_ctlr_wq);
8390                 h->rescan_ctlr_wq = NULL;
8391         }
8392         kfree(h);                               /* init_one 1 */
8393 }
8394
8395 /* Called when controller lockup detected. */
8396 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8397 {
8398         int i, refcount;
8399         struct CommandList *c;
8400         int failcount = 0;
8401
8402         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8403         for (i = 0; i < h->nr_cmds; i++) {
8404                 c = h->cmd_pool + i;
8405                 refcount = atomic_inc_return(&c->refcount);
8406                 if (refcount > 1) {
8407                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8408                         finish_cmd(c);
8409                         atomic_dec(&h->commands_outstanding);
8410                         failcount++;
8411                 }
8412                 cmd_free(h, c);
8413         }
8414         dev_warn(&h->pdev->dev,
8415                 "failed %d commands in fail_all\n", failcount);
8416 }
8417
8418 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8419 {
8420         int cpu;
8421
8422         for_each_online_cpu(cpu) {
8423                 u32 *lockup_detected;
8424                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8425                 *lockup_detected = value;
8426         }
8427         wmb(); /* be sure the per-cpu variables are out to memory */
8428 }
8429
8430 static void controller_lockup_detected(struct ctlr_info *h)
8431 {
8432         unsigned long flags;
8433         u32 lockup_detected;
8434
8435         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8436         spin_lock_irqsave(&h->lock, flags);
8437         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8438         if (!lockup_detected) {
8439                 /* no heartbeat, but controller gave us a zero. */
8440                 dev_warn(&h->pdev->dev,
8441                         "lockup detected after %d but scratchpad register is zero\n",
8442                         h->heartbeat_sample_interval / HZ);
8443                 lockup_detected = 0xffffffff;
8444         }
8445         set_lockup_detected_for_all_cpus(h, lockup_detected);
8446         spin_unlock_irqrestore(&h->lock, flags);
8447         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8448                         lockup_detected, h->heartbeat_sample_interval / HZ);
8449         pci_disable_device(h->pdev);
8450         fail_all_outstanding_cmds(h);
8451 }
8452
8453 static int detect_controller_lockup(struct ctlr_info *h)
8454 {
8455         u64 now;
8456         u32 heartbeat;
8457         unsigned long flags;
8458
8459         now = get_jiffies_64();
8460         /* If we've received an interrupt recently, we're ok. */
8461         if (time_after64(h->last_intr_timestamp +
8462                                 (h->heartbeat_sample_interval), now))
8463                 return false;
8464
8465         /*
8466          * If we've already checked the heartbeat recently, we're ok.
8467          * This could happen if someone sends us a signal. We
8468          * otherwise don't care about signals in this thread.
8469          */
8470         if (time_after64(h->last_heartbeat_timestamp +
8471                                 (h->heartbeat_sample_interval), now))
8472                 return false;
8473
8474         /* If heartbeat has not changed since we last looked, we're not ok. */
8475         spin_lock_irqsave(&h->lock, flags);
8476         heartbeat = readl(&h->cfgtable->HeartBeat);
8477         spin_unlock_irqrestore(&h->lock, flags);
8478         if (h->last_heartbeat == heartbeat) {
8479                 controller_lockup_detected(h);
8480                 return true;
8481         }
8482
8483         /* We're ok. */
8484         h->last_heartbeat = heartbeat;
8485         h->last_heartbeat_timestamp = now;
8486         return false;
8487 }
8488
8489 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8490 {
8491         int i;
8492         char *event_type;
8493
8494         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8495                 return;
8496
8497         /* Ask the controller to clear the events we're handling. */
8498         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8499                         | CFGTBL_Trans_io_accel2)) &&
8500                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8501                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8502
8503                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8504                         event_type = "state change";
8505                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8506                         event_type = "configuration change";
8507                 /* Stop sending new RAID offload reqs via the IO accelerator */
8508                 scsi_block_requests(h->scsi_host);
8509                 for (i = 0; i < h->ndevices; i++) {
8510                         h->dev[i]->offload_enabled = 0;
8511                         h->dev[i]->offload_to_be_enabled = 0;
8512                 }
8513                 hpsa_drain_accel_commands(h);
8514                 /* Set 'accelerator path config change' bit */
8515                 dev_warn(&h->pdev->dev,
8516                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8517                         h->events, event_type);
8518                 writel(h->events, &(h->cfgtable->clear_event_notify));
8519                 /* Set the "clear event notify field update" bit 6 */
8520                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8521                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8522                 hpsa_wait_for_clear_event_notify_ack(h);
8523                 scsi_unblock_requests(h->scsi_host);
8524         } else {
8525                 /* Acknowledge controller notification events. */
8526                 writel(h->events, &(h->cfgtable->clear_event_notify));
8527                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8528                 hpsa_wait_for_clear_event_notify_ack(h);
8529 #if 0
8530                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8531                 hpsa_wait_for_mode_change_ack(h);
8532 #endif
8533         }
8534         return;
8535 }
8536
8537 /* Check a register on the controller to see if there are configuration
8538  * changes (added/changed/removed logical drives, etc.) which mean that
8539  * we should rescan the controller for devices.
8540  * Also check flag for driver-initiated rescan.
8541  */
8542 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8543 {
8544         if (h->drv_req_rescan) {
8545                 h->drv_req_rescan = 0;
8546                 return 1;
8547         }
8548
8549         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8550                 return 0;
8551
8552         h->events = readl(&(h->cfgtable->event_notify));
8553         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8554 }
8555
8556 /*
8557  * Check if any of the offline devices have become ready
8558  */
8559 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8560 {
8561         unsigned long flags;
8562         struct offline_device_entry *d;
8563         struct list_head *this, *tmp;
8564
8565         spin_lock_irqsave(&h->offline_device_lock, flags);
8566         list_for_each_safe(this, tmp, &h->offline_device_list) {
8567                 d = list_entry(this, struct offline_device_entry,
8568                                 offline_list);
8569                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8570                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8571                         spin_lock_irqsave(&h->offline_device_lock, flags);
8572                         list_del(&d->offline_list);
8573                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8574                         return 1;
8575                 }
8576                 spin_lock_irqsave(&h->offline_device_lock, flags);
8577         }
8578         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8579         return 0;
8580 }
8581
8582 static int hpsa_luns_changed(struct ctlr_info *h)
8583 {
8584         int rc = 1; /* assume there are changes */
8585         struct ReportLUNdata *logdev = NULL;
8586
8587         /* if we can't find out if lun data has changed,
8588          * assume that it has.
8589          */
8590
8591         if (!h->lastlogicals)
8592                 return rc;
8593
8594         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8595         if (!logdev)
8596                 return rc;
8597
8598         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8599                 dev_warn(&h->pdev->dev,
8600                         "report luns failed, can't track lun changes.\n");
8601                 goto out;
8602         }
8603         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8604                 dev_info(&h->pdev->dev,
8605                         "Lun changes detected.\n");
8606                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8607                 goto out;
8608         } else
8609                 rc = 0; /* no changes detected. */
8610 out:
8611         kfree(logdev);
8612         return rc;
8613 }
8614
8615 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8616 {
8617         unsigned long flags;
8618         struct ctlr_info *h = container_of(to_delayed_work(work),
8619                                         struct ctlr_info, rescan_ctlr_work);
8620
8621
8622         if (h->remove_in_progress)
8623                 return;
8624
8625         /*
8626          * Do the scan after the reset
8627          */
8628         if (h->reset_in_progress) {
8629                 h->drv_req_rescan = 1;
8630                 return;
8631         }
8632
8633         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8634                 scsi_host_get(h->scsi_host);
8635                 hpsa_ack_ctlr_events(h);
8636                 hpsa_scan_start(h->scsi_host);
8637                 scsi_host_put(h->scsi_host);
8638         } else if (h->discovery_polling) {
8639                 hpsa_disable_rld_caching(h);
8640                 if (hpsa_luns_changed(h)) {
8641                         struct Scsi_Host *sh = NULL;
8642
8643                         dev_info(&h->pdev->dev,
8644                                 "driver discovery polling rescan.\n");
8645                         sh = scsi_host_get(h->scsi_host);
8646                         if (sh != NULL) {
8647                                 hpsa_scan_start(sh);
8648                                 scsi_host_put(sh);
8649                         }
8650                 }
8651         }
8652         spin_lock_irqsave(&h->lock, flags);
8653         if (!h->remove_in_progress)
8654                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8655                                 h->heartbeat_sample_interval);
8656         spin_unlock_irqrestore(&h->lock, flags);
8657 }
8658
8659 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8660 {
8661         unsigned long flags;
8662         struct ctlr_info *h = container_of(to_delayed_work(work),
8663                                         struct ctlr_info, monitor_ctlr_work);
8664
8665         detect_controller_lockup(h);
8666         if (lockup_detected(h))
8667                 return;
8668
8669         spin_lock_irqsave(&h->lock, flags);
8670         if (!h->remove_in_progress)
8671                 schedule_delayed_work(&h->monitor_ctlr_work,
8672                                 h->heartbeat_sample_interval);
8673         spin_unlock_irqrestore(&h->lock, flags);
8674 }
8675
8676 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8677                                                 char *name)
8678 {
8679         struct workqueue_struct *wq = NULL;
8680
8681         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8682         if (!wq)
8683                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8684
8685         return wq;
8686 }
8687
8688 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8689 {
8690         int dac, rc;
8691         struct ctlr_info *h;
8692         int try_soft_reset = 0;
8693         unsigned long flags;
8694         u32 board_id;
8695
8696         if (number_of_controllers == 0)
8697                 printk(KERN_INFO DRIVER_NAME "\n");
8698
8699         rc = hpsa_lookup_board_id(pdev, &board_id);
8700         if (rc < 0) {
8701                 dev_warn(&pdev->dev, "Board ID not found\n");
8702                 return rc;
8703         }
8704
8705         rc = hpsa_init_reset_devices(pdev, board_id);
8706         if (rc) {
8707                 if (rc != -ENOTSUPP)
8708                         return rc;
8709                 /* If the reset fails in a particular way (it has no way to do
8710                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8711                  * a soft reset once we get the controller configured up to the
8712                  * point that it can accept a command.
8713                  */
8714                 try_soft_reset = 1;
8715                 rc = 0;
8716         }
8717
8718 reinit_after_soft_reset:
8719
8720         /* Command structures must be aligned on a 32-byte boundary because
8721          * the 5 lower bits of the address are used by the hardware. and by
8722          * the driver.  See comments in hpsa.h for more info.
8723          */
8724         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8725         h = kzalloc(sizeof(*h), GFP_KERNEL);
8726         if (!h) {
8727                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8728                 return -ENOMEM;
8729         }
8730
8731         h->pdev = pdev;
8732
8733         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8734         INIT_LIST_HEAD(&h->offline_device_list);
8735         spin_lock_init(&h->lock);
8736         spin_lock_init(&h->offline_device_lock);
8737         spin_lock_init(&h->scan_lock);
8738         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8739         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8740
8741         /* Allocate and clear per-cpu variable lockup_detected */
8742         h->lockup_detected = alloc_percpu(u32);
8743         if (!h->lockup_detected) {
8744                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8745                 rc = -ENOMEM;
8746                 goto clean1;    /* aer/h */
8747         }
8748         set_lockup_detected_for_all_cpus(h, 0);
8749
8750         rc = hpsa_pci_init(h);
8751         if (rc)
8752                 goto clean2;    /* lu, aer/h */
8753
8754         /* relies on h-> settings made by hpsa_pci_init, including
8755          * interrupt_mode h->intr */
8756         rc = hpsa_scsi_host_alloc(h);
8757         if (rc)
8758                 goto clean2_5;  /* pci, lu, aer/h */
8759
8760         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8761         h->ctlr = number_of_controllers;
8762         number_of_controllers++;
8763
8764         /* configure PCI DMA stuff */
8765         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8766         if (rc == 0) {
8767                 dac = 1;
8768         } else {
8769                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8770                 if (rc == 0) {
8771                         dac = 0;
8772                 } else {
8773                         dev_err(&pdev->dev, "no suitable DMA available\n");
8774                         goto clean3;    /* shost, pci, lu, aer/h */
8775                 }
8776         }
8777
8778         /* make sure the board interrupts are off */
8779         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8780
8781         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8782         if (rc)
8783                 goto clean3;    /* shost, pci, lu, aer/h */
8784         rc = hpsa_alloc_cmd_pool(h);
8785         if (rc)
8786                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8787         rc = hpsa_alloc_sg_chain_blocks(h);
8788         if (rc)
8789                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8790         init_waitqueue_head(&h->scan_wait_queue);
8791         init_waitqueue_head(&h->abort_cmd_wait_queue);
8792         init_waitqueue_head(&h->event_sync_wait_queue);
8793         mutex_init(&h->reset_mutex);
8794         h->scan_finished = 1; /* no scan currently in progress */
8795
8796         pci_set_drvdata(pdev, h);
8797         h->ndevices = 0;
8798
8799         spin_lock_init(&h->devlock);
8800         rc = hpsa_put_ctlr_into_performant_mode(h);
8801         if (rc)
8802                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8803
8804         /* create the resubmit workqueue */
8805         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8806         if (!h->rescan_ctlr_wq) {
8807                 rc = -ENOMEM;
8808                 goto clean7;
8809         }
8810
8811         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8812         if (!h->resubmit_wq) {
8813                 rc = -ENOMEM;
8814                 goto clean7;    /* aer/h */
8815         }
8816
8817         /*
8818          * At this point, the controller is ready to take commands.
8819          * Now, if reset_devices and the hard reset didn't work, try
8820          * the soft reset and see if that works.
8821          */
8822         if (try_soft_reset) {
8823
8824                 /* This is kind of gross.  We may or may not get a completion
8825                  * from the soft reset command, and if we do, then the value
8826                  * from the fifo may or may not be valid.  So, we wait 10 secs
8827                  * after the reset throwing away any completions we get during
8828                  * that time.  Unregister the interrupt handler and register
8829                  * fake ones to scoop up any residual completions.
8830                  */
8831                 spin_lock_irqsave(&h->lock, flags);
8832                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8833                 spin_unlock_irqrestore(&h->lock, flags);
8834                 hpsa_free_irqs(h);
8835                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8836                                         hpsa_intx_discard_completions);
8837                 if (rc) {
8838                         dev_warn(&h->pdev->dev,
8839                                 "Failed to request_irq after soft reset.\n");
8840                         /*
8841                          * cannot goto clean7 or free_irqs will be called
8842                          * again. Instead, do its work
8843                          */
8844                         hpsa_free_performant_mode(h);   /* clean7 */
8845                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8846                         hpsa_free_cmd_pool(h);          /* clean5 */
8847                         /*
8848                          * skip hpsa_free_irqs(h) clean4 since that
8849                          * was just called before request_irqs failed
8850                          */
8851                         goto clean3;
8852                 }
8853
8854                 rc = hpsa_kdump_soft_reset(h);
8855                 if (rc)
8856                         /* Neither hard nor soft reset worked, we're hosed. */
8857                         goto clean7;
8858
8859                 dev_info(&h->pdev->dev, "Board READY.\n");
8860                 dev_info(&h->pdev->dev,
8861                         "Waiting for stale completions to drain.\n");
8862                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8863                 msleep(10000);
8864                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8865
8866                 rc = controller_reset_failed(h->cfgtable);
8867                 if (rc)
8868                         dev_info(&h->pdev->dev,
8869                                 "Soft reset appears to have failed.\n");
8870
8871                 /* since the controller's reset, we have to go back and re-init
8872                  * everything.  Easiest to just forget what we've done and do it
8873                  * all over again.
8874                  */
8875                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8876                 try_soft_reset = 0;
8877                 if (rc)
8878                         /* don't goto clean, we already unallocated */
8879                         return -ENODEV;
8880
8881                 goto reinit_after_soft_reset;
8882         }
8883
8884         /* Enable Accelerated IO path at driver layer */
8885         h->acciopath_status = 1;
8886         /* Disable discovery polling.*/
8887         h->discovery_polling = 0;
8888
8889
8890         /* Turn the interrupts on so we can service requests */
8891         h->access.set_intr_mask(h, HPSA_INTR_ON);
8892
8893         hpsa_hba_inquiry(h);
8894
8895         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8896         if (!h->lastlogicals)
8897                 dev_info(&h->pdev->dev,
8898                         "Can't track change to report lun data\n");
8899
8900         /* hook into SCSI subsystem */
8901         rc = hpsa_scsi_add_host(h);
8902         if (rc)
8903                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8904
8905         /* Monitor the controller for firmware lockups */
8906         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8907         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8908         schedule_delayed_work(&h->monitor_ctlr_work,
8909                                 h->heartbeat_sample_interval);
8910         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8911         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8912                                 h->heartbeat_sample_interval);
8913         return 0;
8914
8915 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8916         hpsa_free_performant_mode(h);
8917         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8918 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8919         hpsa_free_sg_chain_blocks(h);
8920 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8921         hpsa_free_cmd_pool(h);
8922 clean4: /* irq, shost, pci, lu, aer/h */
8923         hpsa_free_irqs(h);
8924 clean3: /* shost, pci, lu, aer/h */
8925         scsi_host_put(h->scsi_host);
8926         h->scsi_host = NULL;
8927 clean2_5: /* pci, lu, aer/h */
8928         hpsa_free_pci_init(h);
8929 clean2: /* lu, aer/h */
8930         if (h->lockup_detected) {
8931                 free_percpu(h->lockup_detected);
8932                 h->lockup_detected = NULL;
8933         }
8934 clean1: /* wq/aer/h */
8935         if (h->resubmit_wq) {
8936                 destroy_workqueue(h->resubmit_wq);
8937                 h->resubmit_wq = NULL;
8938         }
8939         if (h->rescan_ctlr_wq) {
8940                 destroy_workqueue(h->rescan_ctlr_wq);
8941                 h->rescan_ctlr_wq = NULL;
8942         }
8943         kfree(h);
8944         return rc;
8945 }
8946
8947 static void hpsa_flush_cache(struct ctlr_info *h)
8948 {
8949         char *flush_buf;
8950         struct CommandList *c;
8951         int rc;
8952
8953         if (unlikely(lockup_detected(h)))
8954                 return;
8955         flush_buf = kzalloc(4, GFP_KERNEL);
8956         if (!flush_buf)
8957                 return;
8958
8959         c = cmd_alloc(h);
8960
8961         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8962                 RAID_CTLR_LUNID, TYPE_CMD)) {
8963                 goto out;
8964         }
8965         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8966                                         PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8967         if (rc)
8968                 goto out;
8969         if (c->err_info->CommandStatus != 0)
8970 out:
8971                 dev_warn(&h->pdev->dev,
8972                         "error flushing cache on controller\n");
8973         cmd_free(h, c);
8974         kfree(flush_buf);
8975 }
8976
8977 /* Make controller gather fresh report lun data each time we
8978  * send down a report luns request
8979  */
8980 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8981 {
8982         u32 *options;
8983         struct CommandList *c;
8984         int rc;
8985
8986         /* Don't bother trying to set diag options if locked up */
8987         if (unlikely(h->lockup_detected))
8988                 return;
8989
8990         options = kzalloc(sizeof(*options), GFP_KERNEL);
8991         if (!options)
8992                 return;
8993
8994         c = cmd_alloc(h);
8995
8996         /* first, get the current diag options settings */
8997         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8998                 RAID_CTLR_LUNID, TYPE_CMD))
8999                 goto errout;
9000
9001         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9002                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9003         if ((rc != 0) || (c->err_info->CommandStatus != 0))
9004                 goto errout;
9005
9006         /* Now, set the bit for disabling the RLD caching */
9007         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
9008
9009         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
9010                 RAID_CTLR_LUNID, TYPE_CMD))
9011                 goto errout;
9012
9013         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9014                 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
9015         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9016                 goto errout;
9017
9018         /* Now verify that it got set: */
9019         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9020                 RAID_CTLR_LUNID, TYPE_CMD))
9021                 goto errout;
9022
9023         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9024                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9025         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9026                 goto errout;
9027
9028         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9029                 goto out;
9030
9031 errout:
9032         dev_err(&h->pdev->dev,
9033                         "Error: failed to disable report lun data caching.\n");
9034 out:
9035         cmd_free(h, c);
9036         kfree(options);
9037 }
9038
9039 static void hpsa_shutdown(struct pci_dev *pdev)
9040 {
9041         struct ctlr_info *h;
9042
9043         h = pci_get_drvdata(pdev);
9044         /* Turn board interrupts off  and send the flush cache command
9045          * sendcmd will turn off interrupt, and send the flush...
9046          * To write all data in the battery backed cache to disks
9047          */
9048         hpsa_flush_cache(h);
9049         h->access.set_intr_mask(h, HPSA_INTR_OFF);
9050         hpsa_free_irqs(h);                      /* init_one 4 */
9051         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
9052 }
9053
9054 static void hpsa_free_device_info(struct ctlr_info *h)
9055 {
9056         int i;
9057
9058         for (i = 0; i < h->ndevices; i++) {
9059                 kfree(h->dev[i]);
9060                 h->dev[i] = NULL;
9061         }
9062 }
9063
9064 static void hpsa_remove_one(struct pci_dev *pdev)
9065 {
9066         struct ctlr_info *h;
9067         unsigned long flags;
9068
9069         if (pci_get_drvdata(pdev) == NULL) {
9070                 dev_err(&pdev->dev, "unable to remove device\n");
9071                 return;
9072         }
9073         h = pci_get_drvdata(pdev);
9074
9075         /* Get rid of any controller monitoring work items */
9076         spin_lock_irqsave(&h->lock, flags);
9077         h->remove_in_progress = 1;
9078         spin_unlock_irqrestore(&h->lock, flags);
9079         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9080         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9081         destroy_workqueue(h->rescan_ctlr_wq);
9082         destroy_workqueue(h->resubmit_wq);
9083
9084         /*
9085          * Call before disabling interrupts.
9086          * scsi_remove_host can trigger I/O operations especially
9087          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9088          * operations which cannot complete and will hang the system.
9089          */
9090         if (h->scsi_host)
9091                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9092         /* includes hpsa_free_irqs - init_one 4 */
9093         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9094         hpsa_shutdown(pdev);
9095
9096         hpsa_free_device_info(h);               /* scan */
9097
9098         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9099         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9100         hpsa_free_ioaccel2_sg_chain_blocks(h);
9101         hpsa_free_performant_mode(h);                   /* init_one 7 */
9102         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9103         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9104         kfree(h->lastlogicals);
9105
9106         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9107
9108         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9109         h->scsi_host = NULL;                            /* init_one 3 */
9110
9111         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9112         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9113
9114         free_percpu(h->lockup_detected);                /* init_one 2 */
9115         h->lockup_detected = NULL;                      /* init_one 2 */
9116         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9117
9118         hpsa_delete_sas_host(h);
9119
9120         kfree(h);                                       /* init_one 1 */
9121 }
9122
9123 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9124         __attribute__((unused)) pm_message_t state)
9125 {
9126         return -ENOSYS;
9127 }
9128
9129 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9130 {
9131         return -ENOSYS;
9132 }
9133
9134 static struct pci_driver hpsa_pci_driver = {
9135         .name = HPSA,
9136         .probe = hpsa_init_one,
9137         .remove = hpsa_remove_one,
9138         .id_table = hpsa_pci_device_id, /* id_table */
9139         .shutdown = hpsa_shutdown,
9140         .suspend = hpsa_suspend,
9141         .resume = hpsa_resume,
9142 };
9143
9144 /* Fill in bucket_map[], given nsgs (the max number of
9145  * scatter gather elements supported) and bucket[],
9146  * which is an array of 8 integers.  The bucket[] array
9147  * contains 8 different DMA transfer sizes (in 16
9148  * byte increments) which the controller uses to fetch
9149  * commands.  This function fills in bucket_map[], which
9150  * maps a given number of scatter gather elements to one of
9151  * the 8 DMA transfer sizes.  The point of it is to allow the
9152  * controller to only do as much DMA as needed to fetch the
9153  * command, with the DMA transfer size encoded in the lower
9154  * bits of the command address.
9155  */
9156 static void  calc_bucket_map(int bucket[], int num_buckets,
9157         int nsgs, int min_blocks, u32 *bucket_map)
9158 {
9159         int i, j, b, size;
9160
9161         /* Note, bucket_map must have nsgs+1 entries. */
9162         for (i = 0; i <= nsgs; i++) {
9163                 /* Compute size of a command with i SG entries */
9164                 size = i + min_blocks;
9165                 b = num_buckets; /* Assume the biggest bucket */
9166                 /* Find the bucket that is just big enough */
9167                 for (j = 0; j < num_buckets; j++) {
9168                         if (bucket[j] >= size) {
9169                                 b = j;
9170                                 break;
9171                         }
9172                 }
9173                 /* for a command with i SG entries, use bucket b. */
9174                 bucket_map[i] = b;
9175         }
9176 }
9177
9178 /*
9179  * return -ENODEV on err, 0 on success (or no action)
9180  * allocates numerous items that must be freed later
9181  */
9182 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9183 {
9184         int i;
9185         unsigned long register_value;
9186         unsigned long transMethod = CFGTBL_Trans_Performant |
9187                         (trans_support & CFGTBL_Trans_use_short_tags) |
9188                                 CFGTBL_Trans_enable_directed_msix |
9189                         (trans_support & (CFGTBL_Trans_io_accel1 |
9190                                 CFGTBL_Trans_io_accel2));
9191         struct access_method access = SA5_performant_access;
9192
9193         /* This is a bit complicated.  There are 8 registers on
9194          * the controller which we write to to tell it 8 different
9195          * sizes of commands which there may be.  It's a way of
9196          * reducing the DMA done to fetch each command.  Encoded into
9197          * each command's tag are 3 bits which communicate to the controller
9198          * which of the eight sizes that command fits within.  The size of
9199          * each command depends on how many scatter gather entries there are.
9200          * Each SG entry requires 16 bytes.  The eight registers are programmed
9201          * with the number of 16-byte blocks a command of that size requires.
9202          * The smallest command possible requires 5 such 16 byte blocks.
9203          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9204          * blocks.  Note, this only extends to the SG entries contained
9205          * within the command block, and does not extend to chained blocks
9206          * of SG elements.   bft[] contains the eight values we write to
9207          * the registers.  They are not evenly distributed, but have more
9208          * sizes for small commands, and fewer sizes for larger commands.
9209          */
9210         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9211 #define MIN_IOACCEL2_BFT_ENTRY 5
9212 #define HPSA_IOACCEL2_HEADER_SZ 4
9213         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9214                         13, 14, 15, 16, 17, 18, 19,
9215                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9216         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9217         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9218         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9219                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9220         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9221         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9222         /*  5 = 1 s/g entry or 4k
9223          *  6 = 2 s/g entry or 8k
9224          *  8 = 4 s/g entry or 16k
9225          * 10 = 6 s/g entry or 24k
9226          */
9227
9228         /* If the controller supports either ioaccel method then
9229          * we can also use the RAID stack submit path that does not
9230          * perform the superfluous readl() after each command submission.
9231          */
9232         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9233                 access = SA5_performant_access_no_read;
9234
9235         /* Controller spec: zero out this buffer. */
9236         for (i = 0; i < h->nreply_queues; i++)
9237                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9238
9239         bft[7] = SG_ENTRIES_IN_CMD + 4;
9240         calc_bucket_map(bft, ARRAY_SIZE(bft),
9241                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9242         for (i = 0; i < 8; i++)
9243                 writel(bft[i], &h->transtable->BlockFetch[i]);
9244
9245         /* size of controller ring buffer */
9246         writel(h->max_commands, &h->transtable->RepQSize);
9247         writel(h->nreply_queues, &h->transtable->RepQCount);
9248         writel(0, &h->transtable->RepQCtrAddrLow32);
9249         writel(0, &h->transtable->RepQCtrAddrHigh32);
9250
9251         for (i = 0; i < h->nreply_queues; i++) {
9252                 writel(0, &h->transtable->RepQAddr[i].upper);
9253                 writel(h->reply_queue[i].busaddr,
9254                         &h->transtable->RepQAddr[i].lower);
9255         }
9256
9257         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9258         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9259         /*
9260          * enable outbound interrupt coalescing in accelerator mode;
9261          */
9262         if (trans_support & CFGTBL_Trans_io_accel1) {
9263                 access = SA5_ioaccel_mode1_access;
9264                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9265                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9266         } else
9267                 if (trans_support & CFGTBL_Trans_io_accel2)
9268                         access = SA5_ioaccel_mode2_access;
9269         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9270         if (hpsa_wait_for_mode_change_ack(h)) {
9271                 dev_err(&h->pdev->dev,
9272                         "performant mode problem - doorbell timeout\n");
9273                 return -ENODEV;
9274         }
9275         register_value = readl(&(h->cfgtable->TransportActive));
9276         if (!(register_value & CFGTBL_Trans_Performant)) {
9277                 dev_err(&h->pdev->dev,
9278                         "performant mode problem - transport not active\n");
9279                 return -ENODEV;
9280         }
9281         /* Change the access methods to the performant access methods */
9282         h->access = access;
9283         h->transMethod = transMethod;
9284
9285         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9286                 (trans_support & CFGTBL_Trans_io_accel2)))
9287                 return 0;
9288
9289         if (trans_support & CFGTBL_Trans_io_accel1) {
9290                 /* Set up I/O accelerator mode */
9291                 for (i = 0; i < h->nreply_queues; i++) {
9292                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9293                         h->reply_queue[i].current_entry =
9294                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9295                 }
9296                 bft[7] = h->ioaccel_maxsg + 8;
9297                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9298                                 h->ioaccel1_blockFetchTable);
9299
9300                 /* initialize all reply queue entries to unused */
9301                 for (i = 0; i < h->nreply_queues; i++)
9302                         memset(h->reply_queue[i].head,
9303                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9304                                 h->reply_queue_size);
9305
9306                 /* set all the constant fields in the accelerator command
9307                  * frames once at init time to save CPU cycles later.
9308                  */
9309                 for (i = 0; i < h->nr_cmds; i++) {
9310                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9311
9312                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9313                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9314                                         (i * sizeof(struct ErrorInfo)));
9315                         cp->err_info_len = sizeof(struct ErrorInfo);
9316                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9317                         cp->host_context_flags =
9318                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9319                         cp->timeout_sec = 0;
9320                         cp->ReplyQueue = 0;
9321                         cp->tag =
9322                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9323                         cp->host_addr =
9324                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9325                                         (i * sizeof(struct io_accel1_cmd)));
9326                 }
9327         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9328                 u64 cfg_offset, cfg_base_addr_index;
9329                 u32 bft2_offset, cfg_base_addr;
9330                 int rc;
9331
9332                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9333                         &cfg_base_addr_index, &cfg_offset);
9334                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9335                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9336                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9337                                 4, h->ioaccel2_blockFetchTable);
9338                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9339                 BUILD_BUG_ON(offsetof(struct CfgTable,
9340                                 io_accel_request_size_offset) != 0xb8);
9341                 h->ioaccel2_bft2_regs =
9342                         remap_pci_mem(pci_resource_start(h->pdev,
9343                                         cfg_base_addr_index) +
9344                                         cfg_offset + bft2_offset,
9345                                         ARRAY_SIZE(bft2) *
9346                                         sizeof(*h->ioaccel2_bft2_regs));
9347                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9348                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9349         }
9350         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9351         if (hpsa_wait_for_mode_change_ack(h)) {
9352                 dev_err(&h->pdev->dev,
9353                         "performant mode problem - enabling ioaccel mode\n");
9354                 return -ENODEV;
9355         }
9356         return 0;
9357 }
9358
9359 /* Free ioaccel1 mode command blocks and block fetch table */
9360 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9361 {
9362         if (h->ioaccel_cmd_pool) {
9363                 pci_free_consistent(h->pdev,
9364                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9365                         h->ioaccel_cmd_pool,
9366                         h->ioaccel_cmd_pool_dhandle);
9367                 h->ioaccel_cmd_pool = NULL;
9368                 h->ioaccel_cmd_pool_dhandle = 0;
9369         }
9370         kfree(h->ioaccel1_blockFetchTable);
9371         h->ioaccel1_blockFetchTable = NULL;
9372 }
9373
9374 /* Allocate ioaccel1 mode command blocks and block fetch table */
9375 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9376 {
9377         h->ioaccel_maxsg =
9378                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9379         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9380                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9381
9382         /* Command structures must be aligned on a 128-byte boundary
9383          * because the 7 lower bits of the address are used by the
9384          * hardware.
9385          */
9386         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9387                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9388         h->ioaccel_cmd_pool =
9389                 pci_alloc_consistent(h->pdev,
9390                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9391                         &(h->ioaccel_cmd_pool_dhandle));
9392
9393         h->ioaccel1_blockFetchTable =
9394                 kmalloc(((h->ioaccel_maxsg + 1) *
9395                                 sizeof(u32)), GFP_KERNEL);
9396
9397         if ((h->ioaccel_cmd_pool == NULL) ||
9398                 (h->ioaccel1_blockFetchTable == NULL))
9399                 goto clean_up;
9400
9401         memset(h->ioaccel_cmd_pool, 0,
9402                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9403         return 0;
9404
9405 clean_up:
9406         hpsa_free_ioaccel1_cmd_and_bft(h);
9407         return -ENOMEM;
9408 }
9409
9410 /* Free ioaccel2 mode command blocks and block fetch table */
9411 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9412 {
9413         hpsa_free_ioaccel2_sg_chain_blocks(h);
9414
9415         if (h->ioaccel2_cmd_pool) {
9416                 pci_free_consistent(h->pdev,
9417                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9418                         h->ioaccel2_cmd_pool,
9419                         h->ioaccel2_cmd_pool_dhandle);
9420                 h->ioaccel2_cmd_pool = NULL;
9421                 h->ioaccel2_cmd_pool_dhandle = 0;
9422         }
9423         kfree(h->ioaccel2_blockFetchTable);
9424         h->ioaccel2_blockFetchTable = NULL;
9425 }
9426
9427 /* Allocate ioaccel2 mode command blocks and block fetch table */
9428 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9429 {
9430         int rc;
9431
9432         /* Allocate ioaccel2 mode command blocks and block fetch table */
9433
9434         h->ioaccel_maxsg =
9435                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9436         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9437                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9438
9439         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9440                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9441         h->ioaccel2_cmd_pool =
9442                 pci_alloc_consistent(h->pdev,
9443                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9444                         &(h->ioaccel2_cmd_pool_dhandle));
9445
9446         h->ioaccel2_blockFetchTable =
9447                 kmalloc(((h->ioaccel_maxsg + 1) *
9448                                 sizeof(u32)), GFP_KERNEL);
9449
9450         if ((h->ioaccel2_cmd_pool == NULL) ||
9451                 (h->ioaccel2_blockFetchTable == NULL)) {
9452                 rc = -ENOMEM;
9453                 goto clean_up;
9454         }
9455
9456         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9457         if (rc)
9458                 goto clean_up;
9459
9460         memset(h->ioaccel2_cmd_pool, 0,
9461                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9462         return 0;
9463
9464 clean_up:
9465         hpsa_free_ioaccel2_cmd_and_bft(h);
9466         return rc;
9467 }
9468
9469 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9470 static void hpsa_free_performant_mode(struct ctlr_info *h)
9471 {
9472         kfree(h->blockFetchTable);
9473         h->blockFetchTable = NULL;
9474         hpsa_free_reply_queues(h);
9475         hpsa_free_ioaccel1_cmd_and_bft(h);
9476         hpsa_free_ioaccel2_cmd_and_bft(h);
9477 }
9478
9479 /* return -ENODEV on error, 0 on success (or no action)
9480  * allocates numerous items that must be freed later
9481  */
9482 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9483 {
9484         u32 trans_support;
9485         unsigned long transMethod = CFGTBL_Trans_Performant |
9486                                         CFGTBL_Trans_use_short_tags;
9487         int i, rc;
9488
9489         if (hpsa_simple_mode)
9490                 return 0;
9491
9492         trans_support = readl(&(h->cfgtable->TransportSupport));
9493         if (!(trans_support & PERFORMANT_MODE))
9494                 return 0;
9495
9496         /* Check for I/O accelerator mode support */
9497         if (trans_support & CFGTBL_Trans_io_accel1) {
9498                 transMethod |= CFGTBL_Trans_io_accel1 |
9499                                 CFGTBL_Trans_enable_directed_msix;
9500                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9501                 if (rc)
9502                         return rc;
9503         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9504                 transMethod |= CFGTBL_Trans_io_accel2 |
9505                                 CFGTBL_Trans_enable_directed_msix;
9506                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9507                 if (rc)
9508                         return rc;
9509         }
9510
9511         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9512         hpsa_get_max_perf_mode_cmds(h);
9513         /* Performant mode ring buffer and supporting data structures */
9514         h->reply_queue_size = h->max_commands * sizeof(u64);
9515
9516         for (i = 0; i < h->nreply_queues; i++) {
9517                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9518                                                 h->reply_queue_size,
9519                                                 &(h->reply_queue[i].busaddr));
9520                 if (!h->reply_queue[i].head) {
9521                         rc = -ENOMEM;
9522                         goto clean1;    /* rq, ioaccel */
9523                 }
9524                 h->reply_queue[i].size = h->max_commands;
9525                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9526                 h->reply_queue[i].current_entry = 0;
9527         }
9528
9529         /* Need a block fetch table for performant mode */
9530         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9531                                 sizeof(u32)), GFP_KERNEL);
9532         if (!h->blockFetchTable) {
9533                 rc = -ENOMEM;
9534                 goto clean1;    /* rq, ioaccel */
9535         }
9536
9537         rc = hpsa_enter_performant_mode(h, trans_support);
9538         if (rc)
9539                 goto clean2;    /* bft, rq, ioaccel */
9540         return 0;
9541
9542 clean2: /* bft, rq, ioaccel */
9543         kfree(h->blockFetchTable);
9544         h->blockFetchTable = NULL;
9545 clean1: /* rq, ioaccel */
9546         hpsa_free_reply_queues(h);
9547         hpsa_free_ioaccel1_cmd_and_bft(h);
9548         hpsa_free_ioaccel2_cmd_and_bft(h);
9549         return rc;
9550 }
9551
9552 static int is_accelerated_cmd(struct CommandList *c)
9553 {
9554         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9555 }
9556
9557 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9558 {
9559         struct CommandList *c = NULL;
9560         int i, accel_cmds_out;
9561         int refcount;
9562
9563         do { /* wait for all outstanding ioaccel commands to drain out */
9564                 accel_cmds_out = 0;
9565                 for (i = 0; i < h->nr_cmds; i++) {
9566                         c = h->cmd_pool + i;
9567                         refcount = atomic_inc_return(&c->refcount);
9568                         if (refcount > 1) /* Command is allocated */
9569                                 accel_cmds_out += is_accelerated_cmd(c);
9570                         cmd_free(h, c);
9571                 }
9572                 if (accel_cmds_out <= 0)
9573                         break;
9574                 msleep(100);
9575         } while (1);
9576 }
9577
9578 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9579                                 struct hpsa_sas_port *hpsa_sas_port)
9580 {
9581         struct hpsa_sas_phy *hpsa_sas_phy;
9582         struct sas_phy *phy;
9583
9584         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9585         if (!hpsa_sas_phy)
9586                 return NULL;
9587
9588         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9589                 hpsa_sas_port->next_phy_index);
9590         if (!phy) {
9591                 kfree(hpsa_sas_phy);
9592                 return NULL;
9593         }
9594
9595         hpsa_sas_port->next_phy_index++;
9596         hpsa_sas_phy->phy = phy;
9597         hpsa_sas_phy->parent_port = hpsa_sas_port;
9598
9599         return hpsa_sas_phy;
9600 }
9601
9602 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9603 {
9604         struct sas_phy *phy = hpsa_sas_phy->phy;
9605
9606         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9607         sas_phy_free(phy);
9608         if (hpsa_sas_phy->added_to_port)
9609                 list_del(&hpsa_sas_phy->phy_list_entry);
9610         kfree(hpsa_sas_phy);
9611 }
9612
9613 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9614 {
9615         int rc;
9616         struct hpsa_sas_port *hpsa_sas_port;
9617         struct sas_phy *phy;
9618         struct sas_identify *identify;
9619
9620         hpsa_sas_port = hpsa_sas_phy->parent_port;
9621         phy = hpsa_sas_phy->phy;
9622
9623         identify = &phy->identify;
9624         memset(identify, 0, sizeof(*identify));
9625         identify->sas_address = hpsa_sas_port->sas_address;
9626         identify->device_type = SAS_END_DEVICE;
9627         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9628         identify->target_port_protocols = SAS_PROTOCOL_STP;
9629         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9630         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9631         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9632         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9633         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9634
9635         rc = sas_phy_add(hpsa_sas_phy->phy);
9636         if (rc)
9637                 return rc;
9638
9639         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9640         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9641                         &hpsa_sas_port->phy_list_head);
9642         hpsa_sas_phy->added_to_port = true;
9643
9644         return 0;
9645 }
9646
9647 static int
9648         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9649                                 struct sas_rphy *rphy)
9650 {
9651         struct sas_identify *identify;
9652
9653         identify = &rphy->identify;
9654         identify->sas_address = hpsa_sas_port->sas_address;
9655         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9656         identify->target_port_protocols = SAS_PROTOCOL_STP;
9657
9658         return sas_rphy_add(rphy);
9659 }
9660
9661 static struct hpsa_sas_port
9662         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9663                                 u64 sas_address)
9664 {
9665         int rc;
9666         struct hpsa_sas_port *hpsa_sas_port;
9667         struct sas_port *port;
9668
9669         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9670         if (!hpsa_sas_port)
9671                 return NULL;
9672
9673         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9674         hpsa_sas_port->parent_node = hpsa_sas_node;
9675
9676         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9677         if (!port)
9678                 goto free_hpsa_port;
9679
9680         rc = sas_port_add(port);
9681         if (rc)
9682                 goto free_sas_port;
9683
9684         hpsa_sas_port->port = port;
9685         hpsa_sas_port->sas_address = sas_address;
9686         list_add_tail(&hpsa_sas_port->port_list_entry,
9687                         &hpsa_sas_node->port_list_head);
9688
9689         return hpsa_sas_port;
9690
9691 free_sas_port:
9692         sas_port_free(port);
9693 free_hpsa_port:
9694         kfree(hpsa_sas_port);
9695
9696         return NULL;
9697 }
9698
9699 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9700 {
9701         struct hpsa_sas_phy *hpsa_sas_phy;
9702         struct hpsa_sas_phy *next;
9703
9704         list_for_each_entry_safe(hpsa_sas_phy, next,
9705                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9706                 hpsa_free_sas_phy(hpsa_sas_phy);
9707
9708         sas_port_delete(hpsa_sas_port->port);
9709         list_del(&hpsa_sas_port->port_list_entry);
9710         kfree(hpsa_sas_port);
9711 }
9712
9713 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9714 {
9715         struct hpsa_sas_node *hpsa_sas_node;
9716
9717         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9718         if (hpsa_sas_node) {
9719                 hpsa_sas_node->parent_dev = parent_dev;
9720                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9721         }
9722
9723         return hpsa_sas_node;
9724 }
9725
9726 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9727 {
9728         struct hpsa_sas_port *hpsa_sas_port;
9729         struct hpsa_sas_port *next;
9730
9731         if (!hpsa_sas_node)
9732                 return;
9733
9734         list_for_each_entry_safe(hpsa_sas_port, next,
9735                         &hpsa_sas_node->port_list_head, port_list_entry)
9736                 hpsa_free_sas_port(hpsa_sas_port);
9737
9738         kfree(hpsa_sas_node);
9739 }
9740
9741 static struct hpsa_scsi_dev_t
9742         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9743                                         struct sas_rphy *rphy)
9744 {
9745         int i;
9746         struct hpsa_scsi_dev_t *device;
9747
9748         for (i = 0; i < h->ndevices; i++) {
9749                 device = h->dev[i];
9750                 if (!device->sas_port)
9751                         continue;
9752                 if (device->sas_port->rphy == rphy)
9753                         return device;
9754         }
9755
9756         return NULL;
9757 }
9758
9759 static int hpsa_add_sas_host(struct ctlr_info *h)
9760 {
9761         int rc;
9762         struct device *parent_dev;
9763         struct hpsa_sas_node *hpsa_sas_node;
9764         struct hpsa_sas_port *hpsa_sas_port;
9765         struct hpsa_sas_phy *hpsa_sas_phy;
9766
9767         parent_dev = &h->scsi_host->shost_gendev;
9768
9769         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9770         if (!hpsa_sas_node)
9771                 return -ENOMEM;
9772
9773         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9774         if (!hpsa_sas_port) {
9775                 rc = -ENODEV;
9776                 goto free_sas_node;
9777         }
9778
9779         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9780         if (!hpsa_sas_phy) {
9781                 rc = -ENODEV;
9782                 goto free_sas_port;
9783         }
9784
9785         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9786         if (rc)
9787                 goto free_sas_phy;
9788
9789         h->sas_host = hpsa_sas_node;
9790
9791         return 0;
9792
9793 free_sas_phy:
9794         hpsa_free_sas_phy(hpsa_sas_phy);
9795 free_sas_port:
9796         hpsa_free_sas_port(hpsa_sas_port);
9797 free_sas_node:
9798         hpsa_free_sas_node(hpsa_sas_node);
9799
9800         return rc;
9801 }
9802
9803 static void hpsa_delete_sas_host(struct ctlr_info *h)
9804 {
9805         hpsa_free_sas_node(h->sas_host);
9806 }
9807
9808 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9809                                 struct hpsa_scsi_dev_t *device)
9810 {
9811         int rc;
9812         struct hpsa_sas_port *hpsa_sas_port;
9813         struct sas_rphy *rphy;
9814
9815         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9816         if (!hpsa_sas_port)
9817                 return -ENOMEM;
9818
9819         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9820         if (!rphy) {
9821                 rc = -ENODEV;
9822                 goto free_sas_port;
9823         }
9824
9825         hpsa_sas_port->rphy = rphy;
9826         device->sas_port = hpsa_sas_port;
9827
9828         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9829         if (rc)
9830                 goto free_sas_port;
9831
9832         return 0;
9833
9834 free_sas_port:
9835         hpsa_free_sas_port(hpsa_sas_port);
9836         device->sas_port = NULL;
9837
9838         return rc;
9839 }
9840
9841 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9842 {
9843         if (device->sas_port) {
9844                 hpsa_free_sas_port(device->sas_port);
9845                 device->sas_port = NULL;
9846         }
9847 }
9848
9849 static int
9850 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9851 {
9852         return 0;
9853 }
9854
9855 static int
9856 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9857 {
9858         *identifier = 0;
9859         return 0;
9860 }
9861
9862 static int
9863 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9864 {
9865         return -ENXIO;
9866 }
9867
9868 static int
9869 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9870 {
9871         return 0;
9872 }
9873
9874 static int
9875 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9876 {
9877         return 0;
9878 }
9879
9880 static int
9881 hpsa_sas_phy_setup(struct sas_phy *phy)
9882 {
9883         return 0;
9884 }
9885
9886 static void
9887 hpsa_sas_phy_release(struct sas_phy *phy)
9888 {
9889 }
9890
9891 static int
9892 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9893 {
9894         return -EINVAL;
9895 }
9896
9897 /* SMP = Serial Management Protocol */
9898 static int
9899 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9900 struct request *req)
9901 {
9902         return -EINVAL;
9903 }
9904
9905 static struct sas_function_template hpsa_sas_transport_functions = {
9906         .get_linkerrors = hpsa_sas_get_linkerrors,
9907         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9908         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9909         .phy_reset = hpsa_sas_phy_reset,
9910         .phy_enable = hpsa_sas_phy_enable,
9911         .phy_setup = hpsa_sas_phy_setup,
9912         .phy_release = hpsa_sas_phy_release,
9913         .set_phy_speed = hpsa_sas_phy_speed,
9914         .smp_handler = hpsa_sas_smp_handler,
9915 };
9916
9917 /*
9918  *  This is it.  Register the PCI driver information for the cards we control
9919  *  the OS will call our registered routines when it finds one of our cards.
9920  */
9921 static int __init hpsa_init(void)
9922 {
9923         int rc;
9924
9925         hpsa_sas_transport_template =
9926                 sas_attach_transport(&hpsa_sas_transport_functions);
9927         if (!hpsa_sas_transport_template)
9928                 return -ENODEV;
9929
9930         rc = pci_register_driver(&hpsa_pci_driver);
9931
9932         if (rc)
9933                 sas_release_transport(hpsa_sas_transport_template);
9934
9935         return rc;
9936 }
9937
9938 static void __exit hpsa_cleanup(void)
9939 {
9940         pci_unregister_driver(&hpsa_pci_driver);
9941         sas_release_transport(hpsa_sas_transport_template);
9942 }
9943
9944 static void __attribute__((unused)) verify_offsets(void)
9945 {
9946 #define VERIFY_OFFSET(member, offset) \
9947         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9948
9949         VERIFY_OFFSET(structure_size, 0);
9950         VERIFY_OFFSET(volume_blk_size, 4);
9951         VERIFY_OFFSET(volume_blk_cnt, 8);
9952         VERIFY_OFFSET(phys_blk_shift, 16);
9953         VERIFY_OFFSET(parity_rotation_shift, 17);
9954         VERIFY_OFFSET(strip_size, 18);
9955         VERIFY_OFFSET(disk_starting_blk, 20);
9956         VERIFY_OFFSET(disk_blk_cnt, 28);
9957         VERIFY_OFFSET(data_disks_per_row, 36);
9958         VERIFY_OFFSET(metadata_disks_per_row, 38);
9959         VERIFY_OFFSET(row_cnt, 40);
9960         VERIFY_OFFSET(layout_map_count, 42);
9961         VERIFY_OFFSET(flags, 44);
9962         VERIFY_OFFSET(dekindex, 46);
9963         /* VERIFY_OFFSET(reserved, 48 */
9964         VERIFY_OFFSET(data, 64);
9965
9966 #undef VERIFY_OFFSET
9967
9968 #define VERIFY_OFFSET(member, offset) \
9969         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9970
9971         VERIFY_OFFSET(IU_type, 0);
9972         VERIFY_OFFSET(direction, 1);
9973         VERIFY_OFFSET(reply_queue, 2);
9974         /* VERIFY_OFFSET(reserved1, 3);  */
9975         VERIFY_OFFSET(scsi_nexus, 4);
9976         VERIFY_OFFSET(Tag, 8);
9977         VERIFY_OFFSET(cdb, 16);
9978         VERIFY_OFFSET(cciss_lun, 32);
9979         VERIFY_OFFSET(data_len, 40);
9980         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9981         VERIFY_OFFSET(sg_count, 45);
9982         /* VERIFY_OFFSET(reserved3 */
9983         VERIFY_OFFSET(err_ptr, 48);
9984         VERIFY_OFFSET(err_len, 56);
9985         /* VERIFY_OFFSET(reserved4  */
9986         VERIFY_OFFSET(sg, 64);
9987
9988 #undef VERIFY_OFFSET
9989
9990 #define VERIFY_OFFSET(member, offset) \
9991         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9992
9993         VERIFY_OFFSET(dev_handle, 0x00);
9994         VERIFY_OFFSET(reserved1, 0x02);
9995         VERIFY_OFFSET(function, 0x03);
9996         VERIFY_OFFSET(reserved2, 0x04);
9997         VERIFY_OFFSET(err_info, 0x0C);
9998         VERIFY_OFFSET(reserved3, 0x10);
9999         VERIFY_OFFSET(err_info_len, 0x12);
10000         VERIFY_OFFSET(reserved4, 0x13);
10001         VERIFY_OFFSET(sgl_offset, 0x14);
10002         VERIFY_OFFSET(reserved5, 0x15);
10003         VERIFY_OFFSET(transfer_len, 0x1C);
10004         VERIFY_OFFSET(reserved6, 0x20);
10005         VERIFY_OFFSET(io_flags, 0x24);
10006         VERIFY_OFFSET(reserved7, 0x26);
10007         VERIFY_OFFSET(LUN, 0x34);
10008         VERIFY_OFFSET(control, 0x3C);
10009         VERIFY_OFFSET(CDB, 0x40);
10010         VERIFY_OFFSET(reserved8, 0x50);
10011         VERIFY_OFFSET(host_context_flags, 0x60);
10012         VERIFY_OFFSET(timeout_sec, 0x62);
10013         VERIFY_OFFSET(ReplyQueue, 0x64);
10014         VERIFY_OFFSET(reserved9, 0x65);
10015         VERIFY_OFFSET(tag, 0x68);
10016         VERIFY_OFFSET(host_addr, 0x70);
10017         VERIFY_OFFSET(CISS_LUN, 0x78);
10018         VERIFY_OFFSET(SG, 0x78 + 8);
10019 #undef VERIFY_OFFSET
10020 }
10021
10022 module_init(hpsa_init);
10023 module_exit(hpsa_cleanup);