]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/scsi/hpsa.c
hpsa: move scsi_add_device and scsi_remove_device calls to new function
[karo-tx-linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2014-2015 PMC-Sierra, Inc.
4  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License as published by
8  *    the Free Software Foundation; version 2 of the License.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
14  *
15  *    Questions/Comments/Bugfixes to storagedev@pmcs.com
16  *
17  */
18
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_dbg.h>
45 #include <linux/cciss_ioctl.h>
46 #include <linux/string.h>
47 #include <linux/bitmap.h>
48 #include <linux/atomic.h>
49 #include <linux/jiffies.h>
50 #include <linux/percpu-defs.h>
51 #include <linux/percpu.h>
52 #include <asm/unaligned.h>
53 #include <asm/div64.h>
54 #include "hpsa_cmd.h"
55 #include "hpsa.h"
56
57 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
58 #define HPSA_DRIVER_VERSION "3.4.10-0"
59 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
60 #define HPSA "hpsa"
61
62 /* How long to wait for CISS doorbell communication */
63 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
64 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
65 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
66 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
67 #define MAX_IOCTL_CONFIG_WAIT 1000
68
69 /*define how many times we will try a command because of bus resets */
70 #define MAX_CMD_RETRIES 3
71
72 /* Embedded module documentation macros - see modules.h */
73 MODULE_AUTHOR("Hewlett-Packard Company");
74 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
75         HPSA_DRIVER_VERSION);
76 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
77 MODULE_VERSION(HPSA_DRIVER_VERSION);
78 MODULE_LICENSE("GPL");
79
80 static int hpsa_allow_any;
81 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_allow_any,
83                 "Allow hpsa driver to access unknown HP Smart Array hardware");
84 static int hpsa_simple_mode;
85 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_simple_mode,
87         "Use 'simple mode' rather than 'performant mode'");
88
89 /* define the PCI info for the cards we can control */
90 static const struct pci_device_id hpsa_pci_device_id[] = {
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
131         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
132         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
133         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
134         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
137         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
138         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
139         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
140         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
141         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
142         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
143                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
144         {0,}
145 };
146
147 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
148
149 /*  board_id = Subsystem Device ID & Vendor ID
150  *  product = Marketing Name for the board
151  *  access = Address of the struct of function pointers
152  */
153 static struct board_type products[] = {
154         {0x3241103C, "Smart Array P212", &SA5_access},
155         {0x3243103C, "Smart Array P410", &SA5_access},
156         {0x3245103C, "Smart Array P410i", &SA5_access},
157         {0x3247103C, "Smart Array P411", &SA5_access},
158         {0x3249103C, "Smart Array P812", &SA5_access},
159         {0x324A103C, "Smart Array P712m", &SA5_access},
160         {0x324B103C, "Smart Array P711m", &SA5_access},
161         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
162         {0x3350103C, "Smart Array P222", &SA5_access},
163         {0x3351103C, "Smart Array P420", &SA5_access},
164         {0x3352103C, "Smart Array P421", &SA5_access},
165         {0x3353103C, "Smart Array P822", &SA5_access},
166         {0x3354103C, "Smart Array P420i", &SA5_access},
167         {0x3355103C, "Smart Array P220i", &SA5_access},
168         {0x3356103C, "Smart Array P721m", &SA5_access},
169         {0x1921103C, "Smart Array P830i", &SA5_access},
170         {0x1922103C, "Smart Array P430", &SA5_access},
171         {0x1923103C, "Smart Array P431", &SA5_access},
172         {0x1924103C, "Smart Array P830", &SA5_access},
173         {0x1926103C, "Smart Array P731m", &SA5_access},
174         {0x1928103C, "Smart Array P230i", &SA5_access},
175         {0x1929103C, "Smart Array P530", &SA5_access},
176         {0x21BD103C, "Smart Array P244br", &SA5_access},
177         {0x21BE103C, "Smart Array P741m", &SA5_access},
178         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
179         {0x21C0103C, "Smart Array P440ar", &SA5_access},
180         {0x21C1103C, "Smart Array P840ar", &SA5_access},
181         {0x21C2103C, "Smart Array P440", &SA5_access},
182         {0x21C3103C, "Smart Array P441", &SA5_access},
183         {0x21C4103C, "Smart Array", &SA5_access},
184         {0x21C5103C, "Smart Array P841", &SA5_access},
185         {0x21C6103C, "Smart HBA H244br", &SA5_access},
186         {0x21C7103C, "Smart HBA H240", &SA5_access},
187         {0x21C8103C, "Smart HBA H241", &SA5_access},
188         {0x21C9103C, "Smart Array", &SA5_access},
189         {0x21CA103C, "Smart Array P246br", &SA5_access},
190         {0x21CB103C, "Smart Array P840", &SA5_access},
191         {0x21CC103C, "Smart Array", &SA5_access},
192         {0x21CD103C, "Smart Array", &SA5_access},
193         {0x21CE103C, "Smart HBA", &SA5_access},
194         {0x05809005, "SmartHBA-SA", &SA5_access},
195         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
196         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
197         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
198         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
199         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
200         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
201         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
202         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
203         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
204         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
205         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
206 };
207
208 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
209 static const struct scsi_cmnd hpsa_cmd_busy;
210 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
211 static const struct scsi_cmnd hpsa_cmd_idle;
212 static int number_of_controllers;
213
214 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
215 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
216 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
217
218 #ifdef CONFIG_COMPAT
219 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
220         void __user *arg);
221 #endif
222
223 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
224 static struct CommandList *cmd_alloc(struct ctlr_info *h);
225 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
226 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
227                                             struct scsi_cmnd *scmd);
228 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
229         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
230         int cmd_type);
231 static void hpsa_free_cmd_pool(struct ctlr_info *h);
232 #define VPD_PAGE (1 << 8)
233 #define HPSA_SIMPLE_ERROR_BITS 0x03
234
235 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
236 static void hpsa_scan_start(struct Scsi_Host *);
237 static int hpsa_scan_finished(struct Scsi_Host *sh,
238         unsigned long elapsed_time);
239 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
240
241 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
242 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
243 static int hpsa_slave_alloc(struct scsi_device *sdev);
244 static int hpsa_slave_configure(struct scsi_device *sdev);
245 static void hpsa_slave_destroy(struct scsi_device *sdev);
246
247 static void hpsa_update_scsi_devices(struct ctlr_info *h);
248 static int check_for_unit_attention(struct ctlr_info *h,
249         struct CommandList *c);
250 static void check_ioctl_unit_attention(struct ctlr_info *h,
251         struct CommandList *c);
252 /* performant mode helper functions */
253 static void calc_bucket_map(int *bucket, int num_buckets,
254         int nsgs, int min_blocks, u32 *bucket_map);
255 static void hpsa_free_performant_mode(struct ctlr_info *h);
256 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
257 static inline u32 next_command(struct ctlr_info *h, u8 q);
258 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
259                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
260                                u64 *cfg_offset);
261 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
262                                     unsigned long *memory_bar);
263 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
264 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
265                                      int wait_for_ready);
266 static inline void finish_cmd(struct CommandList *c);
267 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
268 #define BOARD_NOT_READY 0
269 #define BOARD_READY 1
270 static void hpsa_drain_accel_commands(struct ctlr_info *h);
271 static void hpsa_flush_cache(struct ctlr_info *h);
272 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
273         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
274         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
275 static void hpsa_command_resubmit_worker(struct work_struct *work);
276 static u32 lockup_detected(struct ctlr_info *h);
277 static int detect_controller_lockup(struct ctlr_info *h);
278 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device);
279
280 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
281 {
282         unsigned long *priv = shost_priv(sdev->host);
283         return (struct ctlr_info *) *priv;
284 }
285
286 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
287 {
288         unsigned long *priv = shost_priv(sh);
289         return (struct ctlr_info *) *priv;
290 }
291
292 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
293 {
294         return c->scsi_cmd == SCSI_CMD_IDLE;
295 }
296
297 static inline bool hpsa_is_pending_event(struct CommandList *c)
298 {
299         return c->abort_pending || c->reset_pending;
300 }
301
302 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
303 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
304                         u8 *sense_key, u8 *asc, u8 *ascq)
305 {
306         struct scsi_sense_hdr sshdr;
307         bool rc;
308
309         *sense_key = -1;
310         *asc = -1;
311         *ascq = -1;
312
313         if (sense_data_len < 1)
314                 return;
315
316         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
317         if (rc) {
318                 *sense_key = sshdr.sense_key;
319                 *asc = sshdr.asc;
320                 *ascq = sshdr.ascq;
321         }
322 }
323
324 static int check_for_unit_attention(struct ctlr_info *h,
325         struct CommandList *c)
326 {
327         u8 sense_key, asc, ascq;
328         int sense_len;
329
330         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
331                 sense_len = sizeof(c->err_info->SenseInfo);
332         else
333                 sense_len = c->err_info->SenseLen;
334
335         decode_sense_data(c->err_info->SenseInfo, sense_len,
336                                 &sense_key, &asc, &ascq);
337         if (sense_key != UNIT_ATTENTION || asc == 0xff)
338                 return 0;
339
340         switch (asc) {
341         case STATE_CHANGED:
342                 dev_warn(&h->pdev->dev,
343                         "%s: a state change detected, command retried\n",
344                         h->devname);
345                 break;
346         case LUN_FAILED:
347                 dev_warn(&h->pdev->dev,
348                         "%s: LUN failure detected\n", h->devname);
349                 break;
350         case REPORT_LUNS_CHANGED:
351                 dev_warn(&h->pdev->dev,
352                         "%s: report LUN data changed\n", h->devname);
353         /*
354          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
355          * target (array) devices.
356          */
357                 break;
358         case POWER_OR_RESET:
359                 dev_warn(&h->pdev->dev,
360                         "%s: a power on or device reset detected\n",
361                         h->devname);
362                 break;
363         case UNIT_ATTENTION_CLEARED:
364                 dev_warn(&h->pdev->dev,
365                         "%s: unit attention cleared by another initiator\n",
366                         h->devname);
367                 break;
368         default:
369                 dev_warn(&h->pdev->dev,
370                         "%s: unknown unit attention detected\n",
371                         h->devname);
372                 break;
373         }
374         return 1;
375 }
376
377 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
378 {
379         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
380                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
381                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
382                 return 0;
383         dev_warn(&h->pdev->dev, HPSA "device busy");
384         return 1;
385 }
386
387 static u32 lockup_detected(struct ctlr_info *h);
388 static ssize_t host_show_lockup_detected(struct device *dev,
389                 struct device_attribute *attr, char *buf)
390 {
391         int ld;
392         struct ctlr_info *h;
393         struct Scsi_Host *shost = class_to_shost(dev);
394
395         h = shost_to_hba(shost);
396         ld = lockup_detected(h);
397
398         return sprintf(buf, "ld=%d\n", ld);
399 }
400
401 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
402                                          struct device_attribute *attr,
403                                          const char *buf, size_t count)
404 {
405         int status, len;
406         struct ctlr_info *h;
407         struct Scsi_Host *shost = class_to_shost(dev);
408         char tmpbuf[10];
409
410         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
411                 return -EACCES;
412         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
413         strncpy(tmpbuf, buf, len);
414         tmpbuf[len] = '\0';
415         if (sscanf(tmpbuf, "%d", &status) != 1)
416                 return -EINVAL;
417         h = shost_to_hba(shost);
418         h->acciopath_status = !!status;
419         dev_warn(&h->pdev->dev,
420                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
421                 h->acciopath_status ? "enabled" : "disabled");
422         return count;
423 }
424
425 static ssize_t host_store_raid_offload_debug(struct device *dev,
426                                          struct device_attribute *attr,
427                                          const char *buf, size_t count)
428 {
429         int debug_level, len;
430         struct ctlr_info *h;
431         struct Scsi_Host *shost = class_to_shost(dev);
432         char tmpbuf[10];
433
434         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
435                 return -EACCES;
436         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
437         strncpy(tmpbuf, buf, len);
438         tmpbuf[len] = '\0';
439         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
440                 return -EINVAL;
441         if (debug_level < 0)
442                 debug_level = 0;
443         h = shost_to_hba(shost);
444         h->raid_offload_debug = debug_level;
445         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
446                 h->raid_offload_debug);
447         return count;
448 }
449
450 static ssize_t host_store_rescan(struct device *dev,
451                                  struct device_attribute *attr,
452                                  const char *buf, size_t count)
453 {
454         struct ctlr_info *h;
455         struct Scsi_Host *shost = class_to_shost(dev);
456         h = shost_to_hba(shost);
457         hpsa_scan_start(h->scsi_host);
458         return count;
459 }
460
461 static ssize_t host_show_firmware_revision(struct device *dev,
462              struct device_attribute *attr, char *buf)
463 {
464         struct ctlr_info *h;
465         struct Scsi_Host *shost = class_to_shost(dev);
466         unsigned char *fwrev;
467
468         h = shost_to_hba(shost);
469         if (!h->hba_inquiry_data)
470                 return 0;
471         fwrev = &h->hba_inquiry_data[32];
472         return snprintf(buf, 20, "%c%c%c%c\n",
473                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
474 }
475
476 static ssize_t host_show_commands_outstanding(struct device *dev,
477              struct device_attribute *attr, char *buf)
478 {
479         struct Scsi_Host *shost = class_to_shost(dev);
480         struct ctlr_info *h = shost_to_hba(shost);
481
482         return snprintf(buf, 20, "%d\n",
483                         atomic_read(&h->commands_outstanding));
484 }
485
486 static ssize_t host_show_transport_mode(struct device *dev,
487         struct device_attribute *attr, char *buf)
488 {
489         struct ctlr_info *h;
490         struct Scsi_Host *shost = class_to_shost(dev);
491
492         h = shost_to_hba(shost);
493         return snprintf(buf, 20, "%s\n",
494                 h->transMethod & CFGTBL_Trans_Performant ?
495                         "performant" : "simple");
496 }
497
498 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
499         struct device_attribute *attr, char *buf)
500 {
501         struct ctlr_info *h;
502         struct Scsi_Host *shost = class_to_shost(dev);
503
504         h = shost_to_hba(shost);
505         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
506                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
507 }
508
509 /* List of controllers which cannot be hard reset on kexec with reset_devices */
510 static u32 unresettable_controller[] = {
511         0x324a103C, /* Smart Array P712m */
512         0x324b103C, /* Smart Array P711m */
513         0x3223103C, /* Smart Array P800 */
514         0x3234103C, /* Smart Array P400 */
515         0x3235103C, /* Smart Array P400i */
516         0x3211103C, /* Smart Array E200i */
517         0x3212103C, /* Smart Array E200 */
518         0x3213103C, /* Smart Array E200i */
519         0x3214103C, /* Smart Array E200i */
520         0x3215103C, /* Smart Array E200i */
521         0x3237103C, /* Smart Array E500 */
522         0x323D103C, /* Smart Array P700m */
523         0x40800E11, /* Smart Array 5i */
524         0x409C0E11, /* Smart Array 6400 */
525         0x409D0E11, /* Smart Array 6400 EM */
526         0x40700E11, /* Smart Array 5300 */
527         0x40820E11, /* Smart Array 532 */
528         0x40830E11, /* Smart Array 5312 */
529         0x409A0E11, /* Smart Array 641 */
530         0x409B0E11, /* Smart Array 642 */
531         0x40910E11, /* Smart Array 6i */
532 };
533
534 /* List of controllers which cannot even be soft reset */
535 static u32 soft_unresettable_controller[] = {
536         0x40800E11, /* Smart Array 5i */
537         0x40700E11, /* Smart Array 5300 */
538         0x40820E11, /* Smart Array 532 */
539         0x40830E11, /* Smart Array 5312 */
540         0x409A0E11, /* Smart Array 641 */
541         0x409B0E11, /* Smart Array 642 */
542         0x40910E11, /* Smart Array 6i */
543         /* Exclude 640x boards.  These are two pci devices in one slot
544          * which share a battery backed cache module.  One controls the
545          * cache, the other accesses the cache through the one that controls
546          * it.  If we reset the one controlling the cache, the other will
547          * likely not be happy.  Just forbid resetting this conjoined mess.
548          * The 640x isn't really supported by hpsa anyway.
549          */
550         0x409C0E11, /* Smart Array 6400 */
551         0x409D0E11, /* Smart Array 6400 EM */
552 };
553
554 static u32 needs_abort_tags_swizzled[] = {
555         0x323D103C, /* Smart Array P700m */
556         0x324a103C, /* Smart Array P712m */
557         0x324b103C, /* SmartArray P711m */
558 };
559
560 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
561 {
562         int i;
563
564         for (i = 0; i < nelems; i++)
565                 if (a[i] == board_id)
566                         return 1;
567         return 0;
568 }
569
570 static int ctlr_is_hard_resettable(u32 board_id)
571 {
572         return !board_id_in_array(unresettable_controller,
573                         ARRAY_SIZE(unresettable_controller), board_id);
574 }
575
576 static int ctlr_is_soft_resettable(u32 board_id)
577 {
578         return !board_id_in_array(soft_unresettable_controller,
579                         ARRAY_SIZE(soft_unresettable_controller), board_id);
580 }
581
582 static int ctlr_is_resettable(u32 board_id)
583 {
584         return ctlr_is_hard_resettable(board_id) ||
585                 ctlr_is_soft_resettable(board_id);
586 }
587
588 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
589 {
590         return board_id_in_array(needs_abort_tags_swizzled,
591                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
592 }
593
594 static ssize_t host_show_resettable(struct device *dev,
595         struct device_attribute *attr, char *buf)
596 {
597         struct ctlr_info *h;
598         struct Scsi_Host *shost = class_to_shost(dev);
599
600         h = shost_to_hba(shost);
601         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
602 }
603
604 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
605 {
606         return (scsi3addr[3] & 0xC0) == 0x40;
607 }
608
609 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
610         "1(+0)ADM", "UNKNOWN"
611 };
612 #define HPSA_RAID_0     0
613 #define HPSA_RAID_4     1
614 #define HPSA_RAID_1     2       /* also used for RAID 10 */
615 #define HPSA_RAID_5     3       /* also used for RAID 50 */
616 #define HPSA_RAID_51    4
617 #define HPSA_RAID_6     5       /* also used for RAID 60 */
618 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
619 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
620
621 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
622 {
623         return !device->physical_device;
624 }
625
626 static ssize_t raid_level_show(struct device *dev,
627              struct device_attribute *attr, char *buf)
628 {
629         ssize_t l = 0;
630         unsigned char rlevel;
631         struct ctlr_info *h;
632         struct scsi_device *sdev;
633         struct hpsa_scsi_dev_t *hdev;
634         unsigned long flags;
635
636         sdev = to_scsi_device(dev);
637         h = sdev_to_hba(sdev);
638         spin_lock_irqsave(&h->lock, flags);
639         hdev = sdev->hostdata;
640         if (!hdev) {
641                 spin_unlock_irqrestore(&h->lock, flags);
642                 return -ENODEV;
643         }
644
645         /* Is this even a logical drive? */
646         if (!is_logical_device(hdev)) {
647                 spin_unlock_irqrestore(&h->lock, flags);
648                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
649                 return l;
650         }
651
652         rlevel = hdev->raid_level;
653         spin_unlock_irqrestore(&h->lock, flags);
654         if (rlevel > RAID_UNKNOWN)
655                 rlevel = RAID_UNKNOWN;
656         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
657         return l;
658 }
659
660 static ssize_t lunid_show(struct device *dev,
661              struct device_attribute *attr, char *buf)
662 {
663         struct ctlr_info *h;
664         struct scsi_device *sdev;
665         struct hpsa_scsi_dev_t *hdev;
666         unsigned long flags;
667         unsigned char lunid[8];
668
669         sdev = to_scsi_device(dev);
670         h = sdev_to_hba(sdev);
671         spin_lock_irqsave(&h->lock, flags);
672         hdev = sdev->hostdata;
673         if (!hdev) {
674                 spin_unlock_irqrestore(&h->lock, flags);
675                 return -ENODEV;
676         }
677         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
678         spin_unlock_irqrestore(&h->lock, flags);
679         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
680                 lunid[0], lunid[1], lunid[2], lunid[3],
681                 lunid[4], lunid[5], lunid[6], lunid[7]);
682 }
683
684 static ssize_t unique_id_show(struct device *dev,
685              struct device_attribute *attr, char *buf)
686 {
687         struct ctlr_info *h;
688         struct scsi_device *sdev;
689         struct hpsa_scsi_dev_t *hdev;
690         unsigned long flags;
691         unsigned char sn[16];
692
693         sdev = to_scsi_device(dev);
694         h = sdev_to_hba(sdev);
695         spin_lock_irqsave(&h->lock, flags);
696         hdev = sdev->hostdata;
697         if (!hdev) {
698                 spin_unlock_irqrestore(&h->lock, flags);
699                 return -ENODEV;
700         }
701         memcpy(sn, hdev->device_id, sizeof(sn));
702         spin_unlock_irqrestore(&h->lock, flags);
703         return snprintf(buf, 16 * 2 + 2,
704                         "%02X%02X%02X%02X%02X%02X%02X%02X"
705                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
706                         sn[0], sn[1], sn[2], sn[3],
707                         sn[4], sn[5], sn[6], sn[7],
708                         sn[8], sn[9], sn[10], sn[11],
709                         sn[12], sn[13], sn[14], sn[15]);
710 }
711
712 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
713              struct device_attribute *attr, char *buf)
714 {
715         struct ctlr_info *h;
716         struct scsi_device *sdev;
717         struct hpsa_scsi_dev_t *hdev;
718         unsigned long flags;
719         int offload_enabled;
720
721         sdev = to_scsi_device(dev);
722         h = sdev_to_hba(sdev);
723         spin_lock_irqsave(&h->lock, flags);
724         hdev = sdev->hostdata;
725         if (!hdev) {
726                 spin_unlock_irqrestore(&h->lock, flags);
727                 return -ENODEV;
728         }
729         offload_enabled = hdev->offload_enabled;
730         spin_unlock_irqrestore(&h->lock, flags);
731         return snprintf(buf, 20, "%d\n", offload_enabled);
732 }
733
734 #define MAX_PATHS 8
735 #define PATH_STRING_LEN 50
736
737 static ssize_t path_info_show(struct device *dev,
738              struct device_attribute *attr, char *buf)
739 {
740         struct ctlr_info *h;
741         struct scsi_device *sdev;
742         struct hpsa_scsi_dev_t *hdev;
743         unsigned long flags;
744         int i;
745         int output_len = 0;
746         u8 box;
747         u8 bay;
748         u8 path_map_index = 0;
749         char *active;
750         unsigned char phys_connector[2];
751         unsigned char path[MAX_PATHS][PATH_STRING_LEN];
752
753         memset(path, 0, MAX_PATHS * PATH_STRING_LEN);
754         sdev = to_scsi_device(dev);
755         h = sdev_to_hba(sdev);
756         spin_lock_irqsave(&h->devlock, flags);
757         hdev = sdev->hostdata;
758         if (!hdev) {
759                 spin_unlock_irqrestore(&h->devlock, flags);
760                 return -ENODEV;
761         }
762
763         bay = hdev->bay;
764         for (i = 0; i < MAX_PATHS; i++) {
765                 path_map_index = 1<<i;
766                 if (i == hdev->active_path_index)
767                         active = "Active";
768                 else if (hdev->path_map & path_map_index)
769                         active = "Inactive";
770                 else
771                         continue;
772
773                 output_len = snprintf(path[i],
774                                 PATH_STRING_LEN, "[%d:%d:%d:%d] %20.20s ",
775                                 h->scsi_host->host_no,
776                                 hdev->bus, hdev->target, hdev->lun,
777                                 scsi_device_type(hdev->devtype));
778
779                 if (is_ext_target(h, hdev) ||
780                         hdev->devtype == TYPE_RAID ||
781                         is_logical_device(hdev)) {
782                         output_len += snprintf(path[i] + output_len,
783                                                 PATH_STRING_LEN, "%s\n",
784                                                 active);
785                         continue;
786                 }
787
788                 box = hdev->box[i];
789                 memcpy(&phys_connector, &hdev->phys_connector[i],
790                         sizeof(phys_connector));
791                 if (phys_connector[0] < '0')
792                         phys_connector[0] = '0';
793                 if (phys_connector[1] < '0')
794                         phys_connector[1] = '0';
795                 if (hdev->phys_connector[i] > 0)
796                         output_len += snprintf(path[i] + output_len,
797                                 PATH_STRING_LEN,
798                                 "PORT: %.2s ",
799                                 phys_connector);
800                 if (hdev->devtype == TYPE_DISK && hdev->expose_device) {
801                         if (box == 0 || box == 0xFF) {
802                                 output_len += snprintf(path[i] + output_len,
803                                         PATH_STRING_LEN,
804                                         "BAY: %hhu %s\n",
805                                         bay, active);
806                         } else {
807                                 output_len += snprintf(path[i] + output_len,
808                                         PATH_STRING_LEN,
809                                         "BOX: %hhu BAY: %hhu %s\n",
810                                         box, bay, active);
811                         }
812                 } else if (box != 0 && box != 0xFF) {
813                         output_len += snprintf(path[i] + output_len,
814                                 PATH_STRING_LEN, "BOX: %hhu %s\n",
815                                 box, active);
816                 } else
817                         output_len += snprintf(path[i] + output_len,
818                                 PATH_STRING_LEN, "%s\n", active);
819         }
820
821         spin_unlock_irqrestore(&h->devlock, flags);
822         return snprintf(buf, output_len+1, "%s%s%s%s%s%s%s%s",
823                 path[0], path[1], path[2], path[3],
824                 path[4], path[5], path[6], path[7]);
825 }
826
827 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
828 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
829 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
830 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
831 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
832                         host_show_hp_ssd_smart_path_enabled, NULL);
833 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
834 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
835                 host_show_hp_ssd_smart_path_status,
836                 host_store_hp_ssd_smart_path_status);
837 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
838                         host_store_raid_offload_debug);
839 static DEVICE_ATTR(firmware_revision, S_IRUGO,
840         host_show_firmware_revision, NULL);
841 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
842         host_show_commands_outstanding, NULL);
843 static DEVICE_ATTR(transport_mode, S_IRUGO,
844         host_show_transport_mode, NULL);
845 static DEVICE_ATTR(resettable, S_IRUGO,
846         host_show_resettable, NULL);
847 static DEVICE_ATTR(lockup_detected, S_IRUGO,
848         host_show_lockup_detected, NULL);
849
850 static struct device_attribute *hpsa_sdev_attrs[] = {
851         &dev_attr_raid_level,
852         &dev_attr_lunid,
853         &dev_attr_unique_id,
854         &dev_attr_hp_ssd_smart_path_enabled,
855         &dev_attr_path_info,
856         &dev_attr_lockup_detected,
857         NULL,
858 };
859
860 static struct device_attribute *hpsa_shost_attrs[] = {
861         &dev_attr_rescan,
862         &dev_attr_firmware_revision,
863         &dev_attr_commands_outstanding,
864         &dev_attr_transport_mode,
865         &dev_attr_resettable,
866         &dev_attr_hp_ssd_smart_path_status,
867         &dev_attr_raid_offload_debug,
868         NULL,
869 };
870
871 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
872                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
873
874 static struct scsi_host_template hpsa_driver_template = {
875         .module                 = THIS_MODULE,
876         .name                   = HPSA,
877         .proc_name              = HPSA,
878         .queuecommand           = hpsa_scsi_queue_command,
879         .scan_start             = hpsa_scan_start,
880         .scan_finished          = hpsa_scan_finished,
881         .change_queue_depth     = hpsa_change_queue_depth,
882         .this_id                = -1,
883         .use_clustering         = ENABLE_CLUSTERING,
884         .eh_abort_handler       = hpsa_eh_abort_handler,
885         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
886         .ioctl                  = hpsa_ioctl,
887         .slave_alloc            = hpsa_slave_alloc,
888         .slave_configure        = hpsa_slave_configure,
889         .slave_destroy          = hpsa_slave_destroy,
890 #ifdef CONFIG_COMPAT
891         .compat_ioctl           = hpsa_compat_ioctl,
892 #endif
893         .sdev_attrs = hpsa_sdev_attrs,
894         .shost_attrs = hpsa_shost_attrs,
895         .max_sectors = 8192,
896         .no_write_same = 1,
897 };
898
899 static inline u32 next_command(struct ctlr_info *h, u8 q)
900 {
901         u32 a;
902         struct reply_queue_buffer *rq = &h->reply_queue[q];
903
904         if (h->transMethod & CFGTBL_Trans_io_accel1)
905                 return h->access.command_completed(h, q);
906
907         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
908                 return h->access.command_completed(h, q);
909
910         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
911                 a = rq->head[rq->current_entry];
912                 rq->current_entry++;
913                 atomic_dec(&h->commands_outstanding);
914         } else {
915                 a = FIFO_EMPTY;
916         }
917         /* Check for wraparound */
918         if (rq->current_entry == h->max_commands) {
919                 rq->current_entry = 0;
920                 rq->wraparound ^= 1;
921         }
922         return a;
923 }
924
925 /*
926  * There are some special bits in the bus address of the
927  * command that we have to set for the controller to know
928  * how to process the command:
929  *
930  * Normal performant mode:
931  * bit 0: 1 means performant mode, 0 means simple mode.
932  * bits 1-3 = block fetch table entry
933  * bits 4-6 = command type (== 0)
934  *
935  * ioaccel1 mode:
936  * bit 0 = "performant mode" bit.
937  * bits 1-3 = block fetch table entry
938  * bits 4-6 = command type (== 110)
939  * (command type is needed because ioaccel1 mode
940  * commands are submitted through the same register as normal
941  * mode commands, so this is how the controller knows whether
942  * the command is normal mode or ioaccel1 mode.)
943  *
944  * ioaccel2 mode:
945  * bit 0 = "performant mode" bit.
946  * bits 1-4 = block fetch table entry (note extra bit)
947  * bits 4-6 = not needed, because ioaccel2 mode has
948  * a separate special register for submitting commands.
949  */
950
951 /*
952  * set_performant_mode: Modify the tag for cciss performant
953  * set bit 0 for pull model, bits 3-1 for block fetch
954  * register number
955  */
956 #define DEFAULT_REPLY_QUEUE (-1)
957 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
958                                         int reply_queue)
959 {
960         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
961                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
962                 if (unlikely(!h->msix_vector))
963                         return;
964                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
965                         c->Header.ReplyQueue =
966                                 raw_smp_processor_id() % h->nreply_queues;
967                 else
968                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
969         }
970 }
971
972 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
973                                                 struct CommandList *c,
974                                                 int reply_queue)
975 {
976         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
977
978         /*
979          * Tell the controller to post the reply to the queue for this
980          * processor.  This seems to give the best I/O throughput.
981          */
982         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
983                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
984         else
985                 cp->ReplyQueue = reply_queue % h->nreply_queues;
986         /*
987          * Set the bits in the address sent down to include:
988          *  - performant mode bit (bit 0)
989          *  - pull count (bits 1-3)
990          *  - command type (bits 4-6)
991          */
992         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
993                                         IOACCEL1_BUSADDR_CMDTYPE;
994 }
995
996 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
997                                                 struct CommandList *c,
998                                                 int reply_queue)
999 {
1000         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1001                 &h->ioaccel2_cmd_pool[c->cmdindex];
1002
1003         /* Tell the controller to post the reply to the queue for this
1004          * processor.  This seems to give the best I/O throughput.
1005          */
1006         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1007                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1008         else
1009                 cp->reply_queue = reply_queue % h->nreply_queues;
1010         /* Set the bits in the address sent down to include:
1011          *  - performant mode bit not used in ioaccel mode 2
1012          *  - pull count (bits 0-3)
1013          *  - command type isn't needed for ioaccel2
1014          */
1015         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1016 }
1017
1018 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1019                                                 struct CommandList *c,
1020                                                 int reply_queue)
1021 {
1022         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1023
1024         /*
1025          * Tell the controller to post the reply to the queue for this
1026          * processor.  This seems to give the best I/O throughput.
1027          */
1028         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1029                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1030         else
1031                 cp->reply_queue = reply_queue % h->nreply_queues;
1032         /*
1033          * Set the bits in the address sent down to include:
1034          *  - performant mode bit not used in ioaccel mode 2
1035          *  - pull count (bits 0-3)
1036          *  - command type isn't needed for ioaccel2
1037          */
1038         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1039 }
1040
1041 static int is_firmware_flash_cmd(u8 *cdb)
1042 {
1043         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1044 }
1045
1046 /*
1047  * During firmware flash, the heartbeat register may not update as frequently
1048  * as it should.  So we dial down lockup detection during firmware flash. and
1049  * dial it back up when firmware flash completes.
1050  */
1051 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1052 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1053 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1054                 struct CommandList *c)
1055 {
1056         if (!is_firmware_flash_cmd(c->Request.CDB))
1057                 return;
1058         atomic_inc(&h->firmware_flash_in_progress);
1059         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1060 }
1061
1062 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1063                 struct CommandList *c)
1064 {
1065         if (is_firmware_flash_cmd(c->Request.CDB) &&
1066                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1067                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1068 }
1069
1070 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1071         struct CommandList *c, int reply_queue)
1072 {
1073         dial_down_lockup_detection_during_fw_flash(h, c);
1074         atomic_inc(&h->commands_outstanding);
1075         switch (c->cmd_type) {
1076         case CMD_IOACCEL1:
1077                 set_ioaccel1_performant_mode(h, c, reply_queue);
1078                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1079                 break;
1080         case CMD_IOACCEL2:
1081                 set_ioaccel2_performant_mode(h, c, reply_queue);
1082                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1083                 break;
1084         case IOACCEL2_TMF:
1085                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1086                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1087                 break;
1088         default:
1089                 set_performant_mode(h, c, reply_queue);
1090                 h->access.submit_command(h, c);
1091         }
1092 }
1093
1094 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1095 {
1096         if (unlikely(hpsa_is_pending_event(c)))
1097                 return finish_cmd(c);
1098
1099         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1100 }
1101
1102 static inline int is_hba_lunid(unsigned char scsi3addr[])
1103 {
1104         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1105 }
1106
1107 static inline int is_scsi_rev_5(struct ctlr_info *h)
1108 {
1109         if (!h->hba_inquiry_data)
1110                 return 0;
1111         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1112                 return 1;
1113         return 0;
1114 }
1115
1116 static int hpsa_find_target_lun(struct ctlr_info *h,
1117         unsigned char scsi3addr[], int bus, int *target, int *lun)
1118 {
1119         /* finds an unused bus, target, lun for a new physical device
1120          * assumes h->devlock is held
1121          */
1122         int i, found = 0;
1123         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1124
1125         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1126
1127         for (i = 0; i < h->ndevices; i++) {
1128                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1129                         __set_bit(h->dev[i]->target, lun_taken);
1130         }
1131
1132         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1133         if (i < HPSA_MAX_DEVICES) {
1134                 /* *bus = 1; */
1135                 *target = i;
1136                 *lun = 0;
1137                 found = 1;
1138         }
1139         return !found;
1140 }
1141
1142 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1143         struct hpsa_scsi_dev_t *dev, char *description)
1144 {
1145         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1146                 return;
1147
1148         dev_printk(level, &h->pdev->dev,
1149                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
1150                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1151                         description,
1152                         scsi_device_type(dev->devtype),
1153                         dev->vendor,
1154                         dev->model,
1155                         dev->raid_level > RAID_UNKNOWN ?
1156                                 "RAID-?" : raid_label[dev->raid_level],
1157                         dev->offload_config ? '+' : '-',
1158                         dev->offload_enabled ? '+' : '-',
1159                         dev->expose_device);
1160 }
1161
1162 /* Add an entry into h->dev[] array. */
1163 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1164                 struct hpsa_scsi_dev_t *device,
1165                 struct hpsa_scsi_dev_t *added[], int *nadded)
1166 {
1167         /* assumes h->devlock is held */
1168         int n = h->ndevices;
1169         int i;
1170         unsigned char addr1[8], addr2[8];
1171         struct hpsa_scsi_dev_t *sd;
1172
1173         if (n >= HPSA_MAX_DEVICES) {
1174                 dev_err(&h->pdev->dev, "too many devices, some will be "
1175                         "inaccessible.\n");
1176                 return -1;
1177         }
1178
1179         /* physical devices do not have lun or target assigned until now. */
1180         if (device->lun != -1)
1181                 /* Logical device, lun is already assigned. */
1182                 goto lun_assigned;
1183
1184         /* If this device a non-zero lun of a multi-lun device
1185          * byte 4 of the 8-byte LUN addr will contain the logical
1186          * unit no, zero otherwise.
1187          */
1188         if (device->scsi3addr[4] == 0) {
1189                 /* This is not a non-zero lun of a multi-lun device */
1190                 if (hpsa_find_target_lun(h, device->scsi3addr,
1191                         device->bus, &device->target, &device->lun) != 0)
1192                         return -1;
1193                 goto lun_assigned;
1194         }
1195
1196         /* This is a non-zero lun of a multi-lun device.
1197          * Search through our list and find the device which
1198          * has the same 8 byte LUN address, excepting byte 4 and 5.
1199          * Assign the same bus and target for this new LUN.
1200          * Use the logical unit number from the firmware.
1201          */
1202         memcpy(addr1, device->scsi3addr, 8);
1203         addr1[4] = 0;
1204         addr1[5] = 0;
1205         for (i = 0; i < n; i++) {
1206                 sd = h->dev[i];
1207                 memcpy(addr2, sd->scsi3addr, 8);
1208                 addr2[4] = 0;
1209                 addr2[5] = 0;
1210                 /* differ only in byte 4 and 5? */
1211                 if (memcmp(addr1, addr2, 8) == 0) {
1212                         device->bus = sd->bus;
1213                         device->target = sd->target;
1214                         device->lun = device->scsi3addr[4];
1215                         break;
1216                 }
1217         }
1218         if (device->lun == -1) {
1219                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1220                         " suspect firmware bug or unsupported hardware "
1221                         "configuration.\n");
1222                         return -1;
1223         }
1224
1225 lun_assigned:
1226
1227         h->dev[n] = device;
1228         h->ndevices++;
1229         added[*nadded] = device;
1230         (*nadded)++;
1231         hpsa_show_dev_msg(KERN_INFO, h, device,
1232                 device->expose_device ? "added" : "masked");
1233         device->offload_to_be_enabled = device->offload_enabled;
1234         device->offload_enabled = 0;
1235         return 0;
1236 }
1237
1238 /* Update an entry in h->dev[] array. */
1239 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1240         int entry, struct hpsa_scsi_dev_t *new_entry)
1241 {
1242         int offload_enabled;
1243         /* assumes h->devlock is held */
1244         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1245
1246         /* Raid level changed. */
1247         h->dev[entry]->raid_level = new_entry->raid_level;
1248
1249         /* Raid offload parameters changed.  Careful about the ordering. */
1250         if (new_entry->offload_config && new_entry->offload_enabled) {
1251                 /*
1252                  * if drive is newly offload_enabled, we want to copy the
1253                  * raid map data first.  If previously offload_enabled and
1254                  * offload_config were set, raid map data had better be
1255                  * the same as it was before.  if raid map data is changed
1256                  * then it had better be the case that
1257                  * h->dev[entry]->offload_enabled is currently 0.
1258                  */
1259                 h->dev[entry]->raid_map = new_entry->raid_map;
1260                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1261         }
1262         if (new_entry->hba_ioaccel_enabled) {
1263                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1264                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1265         }
1266         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1267         h->dev[entry]->offload_config = new_entry->offload_config;
1268         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1269         h->dev[entry]->queue_depth = new_entry->queue_depth;
1270
1271         /*
1272          * We can turn off ioaccel offload now, but need to delay turning
1273          * it on until we can update h->dev[entry]->phys_disk[], but we
1274          * can't do that until all the devices are updated.
1275          */
1276         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1277         if (!new_entry->offload_enabled)
1278                 h->dev[entry]->offload_enabled = 0;
1279
1280         offload_enabled = h->dev[entry]->offload_enabled;
1281         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1282         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1283         h->dev[entry]->offload_enabled = offload_enabled;
1284 }
1285
1286 /* Replace an entry from h->dev[] array. */
1287 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1288         int entry, struct hpsa_scsi_dev_t *new_entry,
1289         struct hpsa_scsi_dev_t *added[], int *nadded,
1290         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1291 {
1292         /* assumes h->devlock is held */
1293         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1294         removed[*nremoved] = h->dev[entry];
1295         (*nremoved)++;
1296
1297         /*
1298          * New physical devices won't have target/lun assigned yet
1299          * so we need to preserve the values in the slot we are replacing.
1300          */
1301         if (new_entry->target == -1) {
1302                 new_entry->target = h->dev[entry]->target;
1303                 new_entry->lun = h->dev[entry]->lun;
1304         }
1305
1306         h->dev[entry] = new_entry;
1307         added[*nadded] = new_entry;
1308         (*nadded)++;
1309         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1310         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1311         new_entry->offload_enabled = 0;
1312 }
1313
1314 /* Remove an entry from h->dev[] array. */
1315 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1316         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1317 {
1318         /* assumes h->devlock is held */
1319         int i;
1320         struct hpsa_scsi_dev_t *sd;
1321
1322         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1323
1324         sd = h->dev[entry];
1325         removed[*nremoved] = h->dev[entry];
1326         (*nremoved)++;
1327
1328         for (i = entry; i < h->ndevices-1; i++)
1329                 h->dev[i] = h->dev[i+1];
1330         h->ndevices--;
1331         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1332 }
1333
1334 #define SCSI3ADDR_EQ(a, b) ( \
1335         (a)[7] == (b)[7] && \
1336         (a)[6] == (b)[6] && \
1337         (a)[5] == (b)[5] && \
1338         (a)[4] == (b)[4] && \
1339         (a)[3] == (b)[3] && \
1340         (a)[2] == (b)[2] && \
1341         (a)[1] == (b)[1] && \
1342         (a)[0] == (b)[0])
1343
1344 static void fixup_botched_add(struct ctlr_info *h,
1345         struct hpsa_scsi_dev_t *added)
1346 {
1347         /* called when scsi_add_device fails in order to re-adjust
1348          * h->dev[] to match the mid layer's view.
1349          */
1350         unsigned long flags;
1351         int i, j;
1352
1353         spin_lock_irqsave(&h->lock, flags);
1354         for (i = 0; i < h->ndevices; i++) {
1355                 if (h->dev[i] == added) {
1356                         for (j = i; j < h->ndevices-1; j++)
1357                                 h->dev[j] = h->dev[j+1];
1358                         h->ndevices--;
1359                         break;
1360                 }
1361         }
1362         spin_unlock_irqrestore(&h->lock, flags);
1363         kfree(added);
1364 }
1365
1366 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1367         struct hpsa_scsi_dev_t *dev2)
1368 {
1369         /* we compare everything except lun and target as these
1370          * are not yet assigned.  Compare parts likely
1371          * to differ first
1372          */
1373         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1374                 sizeof(dev1->scsi3addr)) != 0)
1375                 return 0;
1376         if (memcmp(dev1->device_id, dev2->device_id,
1377                 sizeof(dev1->device_id)) != 0)
1378                 return 0;
1379         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1380                 return 0;
1381         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1382                 return 0;
1383         if (dev1->devtype != dev2->devtype)
1384                 return 0;
1385         if (dev1->bus != dev2->bus)
1386                 return 0;
1387         return 1;
1388 }
1389
1390 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1391         struct hpsa_scsi_dev_t *dev2)
1392 {
1393         /* Device attributes that can change, but don't mean
1394          * that the device is a different device, nor that the OS
1395          * needs to be told anything about the change.
1396          */
1397         if (dev1->raid_level != dev2->raid_level)
1398                 return 1;
1399         if (dev1->offload_config != dev2->offload_config)
1400                 return 1;
1401         if (dev1->offload_enabled != dev2->offload_enabled)
1402                 return 1;
1403         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1404                 if (dev1->queue_depth != dev2->queue_depth)
1405                         return 1;
1406         return 0;
1407 }
1408
1409 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1410  * and return needle location in *index.  If scsi3addr matches, but not
1411  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1412  * location in *index.
1413  * In the case of a minor device attribute change, such as RAID level, just
1414  * return DEVICE_UPDATED, along with the updated device's location in index.
1415  * If needle not found, return DEVICE_NOT_FOUND.
1416  */
1417 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1418         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1419         int *index)
1420 {
1421         int i;
1422 #define DEVICE_NOT_FOUND 0
1423 #define DEVICE_CHANGED 1
1424 #define DEVICE_SAME 2
1425 #define DEVICE_UPDATED 3
1426         if (needle == NULL)
1427                 return DEVICE_NOT_FOUND;
1428
1429         for (i = 0; i < haystack_size; i++) {
1430                 if (haystack[i] == NULL) /* previously removed. */
1431                         continue;
1432                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1433                         *index = i;
1434                         if (device_is_the_same(needle, haystack[i])) {
1435                                 if (device_updated(needle, haystack[i]))
1436                                         return DEVICE_UPDATED;
1437                                 return DEVICE_SAME;
1438                         } else {
1439                                 /* Keep offline devices offline */
1440                                 if (needle->volume_offline)
1441                                         return DEVICE_NOT_FOUND;
1442                                 return DEVICE_CHANGED;
1443                         }
1444                 }
1445         }
1446         *index = -1;
1447         return DEVICE_NOT_FOUND;
1448 }
1449
1450 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1451                                         unsigned char scsi3addr[])
1452 {
1453         struct offline_device_entry *device;
1454         unsigned long flags;
1455
1456         /* Check to see if device is already on the list */
1457         spin_lock_irqsave(&h->offline_device_lock, flags);
1458         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1459                 if (memcmp(device->scsi3addr, scsi3addr,
1460                         sizeof(device->scsi3addr)) == 0) {
1461                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1462                         return;
1463                 }
1464         }
1465         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1466
1467         /* Device is not on the list, add it. */
1468         device = kmalloc(sizeof(*device), GFP_KERNEL);
1469         if (!device) {
1470                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1471                 return;
1472         }
1473         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1474         spin_lock_irqsave(&h->offline_device_lock, flags);
1475         list_add_tail(&device->offline_list, &h->offline_device_list);
1476         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1477 }
1478
1479 /* Print a message explaining various offline volume states */
1480 static void hpsa_show_volume_status(struct ctlr_info *h,
1481         struct hpsa_scsi_dev_t *sd)
1482 {
1483         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1484                 dev_info(&h->pdev->dev,
1485                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1486                         h->scsi_host->host_no,
1487                         sd->bus, sd->target, sd->lun);
1488         switch (sd->volume_offline) {
1489         case HPSA_LV_OK:
1490                 break;
1491         case HPSA_LV_UNDERGOING_ERASE:
1492                 dev_info(&h->pdev->dev,
1493                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1494                         h->scsi_host->host_no,
1495                         sd->bus, sd->target, sd->lun);
1496                 break;
1497         case HPSA_LV_NOT_AVAILABLE:
1498                 dev_info(&h->pdev->dev,
1499                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1500                         h->scsi_host->host_no,
1501                         sd->bus, sd->target, sd->lun);
1502                 break;
1503         case HPSA_LV_UNDERGOING_RPI:
1504                 dev_info(&h->pdev->dev,
1505                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1506                         h->scsi_host->host_no,
1507                         sd->bus, sd->target, sd->lun);
1508                 break;
1509         case HPSA_LV_PENDING_RPI:
1510                 dev_info(&h->pdev->dev,
1511                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1512                         h->scsi_host->host_no,
1513                         sd->bus, sd->target, sd->lun);
1514                 break;
1515         case HPSA_LV_ENCRYPTED_NO_KEY:
1516                 dev_info(&h->pdev->dev,
1517                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1518                         h->scsi_host->host_no,
1519                         sd->bus, sd->target, sd->lun);
1520                 break;
1521         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1522                 dev_info(&h->pdev->dev,
1523                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1524                         h->scsi_host->host_no,
1525                         sd->bus, sd->target, sd->lun);
1526                 break;
1527         case HPSA_LV_UNDERGOING_ENCRYPTION:
1528                 dev_info(&h->pdev->dev,
1529                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1530                         h->scsi_host->host_no,
1531                         sd->bus, sd->target, sd->lun);
1532                 break;
1533         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1534                 dev_info(&h->pdev->dev,
1535                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1536                         h->scsi_host->host_no,
1537                         sd->bus, sd->target, sd->lun);
1538                 break;
1539         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1540                 dev_info(&h->pdev->dev,
1541                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1542                         h->scsi_host->host_no,
1543                         sd->bus, sd->target, sd->lun);
1544                 break;
1545         case HPSA_LV_PENDING_ENCRYPTION:
1546                 dev_info(&h->pdev->dev,
1547                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1548                         h->scsi_host->host_no,
1549                         sd->bus, sd->target, sd->lun);
1550                 break;
1551         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1552                 dev_info(&h->pdev->dev,
1553                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1554                         h->scsi_host->host_no,
1555                         sd->bus, sd->target, sd->lun);
1556                 break;
1557         }
1558 }
1559
1560 /*
1561  * Figure the list of physical drive pointers for a logical drive with
1562  * raid offload configured.
1563  */
1564 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1565                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1566                                 struct hpsa_scsi_dev_t *logical_drive)
1567 {
1568         struct raid_map_data *map = &logical_drive->raid_map;
1569         struct raid_map_disk_data *dd = &map->data[0];
1570         int i, j;
1571         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1572                                 le16_to_cpu(map->metadata_disks_per_row);
1573         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1574                                 le16_to_cpu(map->layout_map_count) *
1575                                 total_disks_per_row;
1576         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1577                                 total_disks_per_row;
1578         int qdepth;
1579
1580         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1581                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1582
1583         logical_drive->nphysical_disks = nraid_map_entries;
1584
1585         qdepth = 0;
1586         for (i = 0; i < nraid_map_entries; i++) {
1587                 logical_drive->phys_disk[i] = NULL;
1588                 if (!logical_drive->offload_config)
1589                         continue;
1590                 for (j = 0; j < ndevices; j++) {
1591                         if (dev[j] == NULL)
1592                                 continue;
1593                         if (dev[j]->devtype != TYPE_DISK)
1594                                 continue;
1595                         if (is_logical_device(dev[j]))
1596                                 continue;
1597                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1598                                 continue;
1599
1600                         logical_drive->phys_disk[i] = dev[j];
1601                         if (i < nphys_disk)
1602                                 qdepth = min(h->nr_cmds, qdepth +
1603                                     logical_drive->phys_disk[i]->queue_depth);
1604                         break;
1605                 }
1606
1607                 /*
1608                  * This can happen if a physical drive is removed and
1609                  * the logical drive is degraded.  In that case, the RAID
1610                  * map data will refer to a physical disk which isn't actually
1611                  * present.  And in that case offload_enabled should already
1612                  * be 0, but we'll turn it off here just in case
1613                  */
1614                 if (!logical_drive->phys_disk[i]) {
1615                         logical_drive->offload_enabled = 0;
1616                         logical_drive->offload_to_be_enabled = 0;
1617                         logical_drive->queue_depth = 8;
1618                 }
1619         }
1620         if (nraid_map_entries)
1621                 /*
1622                  * This is correct for reads, too high for full stripe writes,
1623                  * way too high for partial stripe writes
1624                  */
1625                 logical_drive->queue_depth = qdepth;
1626         else
1627                 logical_drive->queue_depth = h->nr_cmds;
1628 }
1629
1630 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1631                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1632 {
1633         int i;
1634
1635         for (i = 0; i < ndevices; i++) {
1636                 if (dev[i] == NULL)
1637                         continue;
1638                 if (dev[i]->devtype != TYPE_DISK)
1639                         continue;
1640                 if (!is_logical_device(dev[i]))
1641                         continue;
1642
1643                 /*
1644                  * If offload is currently enabled, the RAID map and
1645                  * phys_disk[] assignment *better* not be changing
1646                  * and since it isn't changing, we do not need to
1647                  * update it.
1648                  */
1649                 if (dev[i]->offload_enabled)
1650                         continue;
1651
1652                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1653         }
1654 }
1655
1656 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1657 {
1658         int rc = 0;
1659
1660         if (!h->scsi_host)
1661                 return 1;
1662
1663         rc = scsi_add_device(h->scsi_host, device->bus,
1664                                         device->target, device->lun);
1665         return rc;
1666 }
1667
1668 static void hpsa_remove_device(struct ctlr_info *h,
1669                         struct hpsa_scsi_dev_t *device)
1670 {
1671         struct scsi_device *sdev = NULL;
1672
1673         if (!h->scsi_host)
1674                 return;
1675
1676         sdev = scsi_device_lookup(h->scsi_host, device->bus,
1677                                                 device->target, device->lun);
1678
1679         if (sdev) {
1680                 scsi_remove_device(sdev);
1681                 scsi_device_put(sdev);
1682         } else {
1683                 /*
1684                  * We don't expect to get here.  Future commands
1685                  * to this device will get a selection timeout as
1686                  * if the device were gone.
1687                  */
1688                 hpsa_show_dev_msg(KERN_WARNING, h, device,
1689                                         "didn't find device for removal.");
1690         }
1691 }
1692
1693 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1694         struct hpsa_scsi_dev_t *sd[], int nsds)
1695 {
1696         /* sd contains scsi3 addresses and devtypes, and inquiry
1697          * data.  This function takes what's in sd to be the current
1698          * reality and updates h->dev[] to reflect that reality.
1699          */
1700         int i, entry, device_change, changes = 0;
1701         struct hpsa_scsi_dev_t *csd;
1702         unsigned long flags;
1703         struct hpsa_scsi_dev_t **added, **removed;
1704         int nadded, nremoved;
1705
1706         /*
1707          * A reset can cause a device status to change
1708          * re-schedule the scan to see what happened.
1709          */
1710         if (h->reset_in_progress) {
1711                 h->drv_req_rescan = 1;
1712                 return;
1713         }
1714
1715         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1716         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1717
1718         if (!added || !removed) {
1719                 dev_warn(&h->pdev->dev, "out of memory in "
1720                         "adjust_hpsa_scsi_table\n");
1721                 goto free_and_out;
1722         }
1723
1724         spin_lock_irqsave(&h->devlock, flags);
1725
1726         /* find any devices in h->dev[] that are not in
1727          * sd[] and remove them from h->dev[], and for any
1728          * devices which have changed, remove the old device
1729          * info and add the new device info.
1730          * If minor device attributes change, just update
1731          * the existing device structure.
1732          */
1733         i = 0;
1734         nremoved = 0;
1735         nadded = 0;
1736         while (i < h->ndevices) {
1737                 csd = h->dev[i];
1738                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1739                 if (device_change == DEVICE_NOT_FOUND) {
1740                         changes++;
1741                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1742                         continue; /* remove ^^^, hence i not incremented */
1743                 } else if (device_change == DEVICE_CHANGED) {
1744                         changes++;
1745                         hpsa_scsi_replace_entry(h, i, sd[entry],
1746                                 added, &nadded, removed, &nremoved);
1747                         /* Set it to NULL to prevent it from being freed
1748                          * at the bottom of hpsa_update_scsi_devices()
1749                          */
1750                         sd[entry] = NULL;
1751                 } else if (device_change == DEVICE_UPDATED) {
1752                         hpsa_scsi_update_entry(h, i, sd[entry]);
1753                 }
1754                 i++;
1755         }
1756
1757         /* Now, make sure every device listed in sd[] is also
1758          * listed in h->dev[], adding them if they aren't found
1759          */
1760
1761         for (i = 0; i < nsds; i++) {
1762                 if (!sd[i]) /* if already added above. */
1763                         continue;
1764
1765                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1766                  * as the SCSI mid-layer does not handle such devices well.
1767                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1768                  * at 160Hz, and prevents the system from coming up.
1769                  */
1770                 if (sd[i]->volume_offline) {
1771                         hpsa_show_volume_status(h, sd[i]);
1772                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1773                         continue;
1774                 }
1775
1776                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1777                                         h->ndevices, &entry);
1778                 if (device_change == DEVICE_NOT_FOUND) {
1779                         changes++;
1780                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1781                                 break;
1782                         sd[i] = NULL; /* prevent from being freed later. */
1783                 } else if (device_change == DEVICE_CHANGED) {
1784                         /* should never happen... */
1785                         changes++;
1786                         dev_warn(&h->pdev->dev,
1787                                 "device unexpectedly changed.\n");
1788                         /* but if it does happen, we just ignore that device */
1789                 }
1790         }
1791         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1792
1793         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1794          * any logical drives that need it enabled.
1795          */
1796         for (i = 0; i < h->ndevices; i++) {
1797                 if (h->dev[i] == NULL)
1798                         continue;
1799                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1800         }
1801
1802         spin_unlock_irqrestore(&h->devlock, flags);
1803
1804         /* Monitor devices which are in one of several NOT READY states to be
1805          * brought online later. This must be done without holding h->devlock,
1806          * so don't touch h->dev[]
1807          */
1808         for (i = 0; i < nsds; i++) {
1809                 if (!sd[i]) /* if already added above. */
1810                         continue;
1811                 if (sd[i]->volume_offline)
1812                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1813         }
1814
1815         /* Don't notify scsi mid layer of any changes the first time through
1816          * (or if there are no changes) scsi_scan_host will do it later the
1817          * first time through.
1818          */
1819         if (!changes)
1820                 goto free_and_out;
1821
1822         /* Notify scsi mid layer of any removed devices */
1823         for (i = 0; i < nremoved; i++) {
1824                 if (removed[i] == NULL)
1825                         continue;
1826                 if (removed[i]->expose_device)
1827                         hpsa_remove_device(h, removed[i]);
1828                 kfree(removed[i]);
1829                 removed[i] = NULL;
1830         }
1831
1832         /* Notify scsi mid layer of any added devices */
1833         for (i = 0; i < nadded; i++) {
1834                 int rc = 0;
1835
1836                 if (added[i] == NULL)
1837                         continue;
1838                 if (!(added[i]->expose_device))
1839                         continue;
1840                 rc = hpsa_add_device(h, added[i]);
1841                 if (!rc)
1842                         continue;
1843                 dev_warn(&h->pdev->dev,
1844                         "addition failed %d, device not added.", rc);
1845                 /* now we have to remove it from h->dev,
1846                  * since it didn't get added to scsi mid layer
1847                  */
1848                 fixup_botched_add(h, added[i]);
1849                 h->drv_req_rescan = 1;
1850         }
1851
1852 free_and_out:
1853         kfree(added);
1854         kfree(removed);
1855 }
1856
1857 /*
1858  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1859  * Assume's h->devlock is held.
1860  */
1861 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1862         int bus, int target, int lun)
1863 {
1864         int i;
1865         struct hpsa_scsi_dev_t *sd;
1866
1867         for (i = 0; i < h->ndevices; i++) {
1868                 sd = h->dev[i];
1869                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1870                         return sd;
1871         }
1872         return NULL;
1873 }
1874
1875 static int hpsa_slave_alloc(struct scsi_device *sdev)
1876 {
1877         struct hpsa_scsi_dev_t *sd;
1878         unsigned long flags;
1879         struct ctlr_info *h;
1880
1881         h = sdev_to_hba(sdev);
1882         spin_lock_irqsave(&h->devlock, flags);
1883         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1884                 sdev_id(sdev), sdev->lun);
1885         if (likely(sd)) {
1886                 atomic_set(&sd->ioaccel_cmds_out, 0);
1887                 sdev->hostdata = sd->expose_device ? sd : NULL;
1888         } else
1889                 sdev->hostdata = NULL;
1890         spin_unlock_irqrestore(&h->devlock, flags);
1891         return 0;
1892 }
1893
1894 /* configure scsi device based on internal per-device structure */
1895 static int hpsa_slave_configure(struct scsi_device *sdev)
1896 {
1897         struct hpsa_scsi_dev_t *sd;
1898         int queue_depth;
1899
1900         sd = sdev->hostdata;
1901         sdev->no_uld_attach = !sd || !sd->expose_device;
1902
1903         if (sd)
1904                 queue_depth = sd->queue_depth != 0 ?
1905                         sd->queue_depth : sdev->host->can_queue;
1906         else
1907                 queue_depth = sdev->host->can_queue;
1908
1909         scsi_change_queue_depth(sdev, queue_depth);
1910
1911         return 0;
1912 }
1913
1914 static void hpsa_slave_destroy(struct scsi_device *sdev)
1915 {
1916         /* nothing to do. */
1917 }
1918
1919 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1920 {
1921         int i;
1922
1923         if (!h->ioaccel2_cmd_sg_list)
1924                 return;
1925         for (i = 0; i < h->nr_cmds; i++) {
1926                 kfree(h->ioaccel2_cmd_sg_list[i]);
1927                 h->ioaccel2_cmd_sg_list[i] = NULL;
1928         }
1929         kfree(h->ioaccel2_cmd_sg_list);
1930         h->ioaccel2_cmd_sg_list = NULL;
1931 }
1932
1933 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1934 {
1935         int i;
1936
1937         if (h->chainsize <= 0)
1938                 return 0;
1939
1940         h->ioaccel2_cmd_sg_list =
1941                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
1942                                         GFP_KERNEL);
1943         if (!h->ioaccel2_cmd_sg_list)
1944                 return -ENOMEM;
1945         for (i = 0; i < h->nr_cmds; i++) {
1946                 h->ioaccel2_cmd_sg_list[i] =
1947                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
1948                                         h->maxsgentries, GFP_KERNEL);
1949                 if (!h->ioaccel2_cmd_sg_list[i])
1950                         goto clean;
1951         }
1952         return 0;
1953
1954 clean:
1955         hpsa_free_ioaccel2_sg_chain_blocks(h);
1956         return -ENOMEM;
1957 }
1958
1959 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1960 {
1961         int i;
1962
1963         if (!h->cmd_sg_list)
1964                 return;
1965         for (i = 0; i < h->nr_cmds; i++) {
1966                 kfree(h->cmd_sg_list[i]);
1967                 h->cmd_sg_list[i] = NULL;
1968         }
1969         kfree(h->cmd_sg_list);
1970         h->cmd_sg_list = NULL;
1971 }
1972
1973 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
1974 {
1975         int i;
1976
1977         if (h->chainsize <= 0)
1978                 return 0;
1979
1980         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1981                                 GFP_KERNEL);
1982         if (!h->cmd_sg_list) {
1983                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1984                 return -ENOMEM;
1985         }
1986         for (i = 0; i < h->nr_cmds; i++) {
1987                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1988                                                 h->chainsize, GFP_KERNEL);
1989                 if (!h->cmd_sg_list[i]) {
1990                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1991                         goto clean;
1992                 }
1993         }
1994         return 0;
1995
1996 clean:
1997         hpsa_free_sg_chain_blocks(h);
1998         return -ENOMEM;
1999 }
2000
2001 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2002         struct io_accel2_cmd *cp, struct CommandList *c)
2003 {
2004         struct ioaccel2_sg_element *chain_block;
2005         u64 temp64;
2006         u32 chain_size;
2007
2008         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2009         chain_size = le32_to_cpu(cp->sg[0].length);
2010         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2011                                 PCI_DMA_TODEVICE);
2012         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2013                 /* prevent subsequent unmapping */
2014                 cp->sg->address = 0;
2015                 return -1;
2016         }
2017         cp->sg->address = cpu_to_le64(temp64);
2018         return 0;
2019 }
2020
2021 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2022         struct io_accel2_cmd *cp)
2023 {
2024         struct ioaccel2_sg_element *chain_sg;
2025         u64 temp64;
2026         u32 chain_size;
2027
2028         chain_sg = cp->sg;
2029         temp64 = le64_to_cpu(chain_sg->address);
2030         chain_size = le32_to_cpu(cp->sg[0].length);
2031         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2032 }
2033
2034 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2035         struct CommandList *c)
2036 {
2037         struct SGDescriptor *chain_sg, *chain_block;
2038         u64 temp64;
2039         u32 chain_len;
2040
2041         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2042         chain_block = h->cmd_sg_list[c->cmdindex];
2043         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2044         chain_len = sizeof(*chain_sg) *
2045                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2046         chain_sg->Len = cpu_to_le32(chain_len);
2047         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2048                                 PCI_DMA_TODEVICE);
2049         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2050                 /* prevent subsequent unmapping */
2051                 chain_sg->Addr = cpu_to_le64(0);
2052                 return -1;
2053         }
2054         chain_sg->Addr = cpu_to_le64(temp64);
2055         return 0;
2056 }
2057
2058 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2059         struct CommandList *c)
2060 {
2061         struct SGDescriptor *chain_sg;
2062
2063         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2064                 return;
2065
2066         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2067         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2068                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2069 }
2070
2071
2072 /* Decode the various types of errors on ioaccel2 path.
2073  * Return 1 for any error that should generate a RAID path retry.
2074  * Return 0 for errors that don't require a RAID path retry.
2075  */
2076 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2077                                         struct CommandList *c,
2078                                         struct scsi_cmnd *cmd,
2079                                         struct io_accel2_cmd *c2)
2080 {
2081         int data_len;
2082         int retry = 0;
2083         u32 ioaccel2_resid = 0;
2084
2085         switch (c2->error_data.serv_response) {
2086         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2087                 switch (c2->error_data.status) {
2088                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2089                         break;
2090                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2091                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2092                         if (c2->error_data.data_present !=
2093                                         IOACCEL2_SENSE_DATA_PRESENT) {
2094                                 memset(cmd->sense_buffer, 0,
2095                                         SCSI_SENSE_BUFFERSIZE);
2096                                 break;
2097                         }
2098                         /* copy the sense data */
2099                         data_len = c2->error_data.sense_data_len;
2100                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2101                                 data_len = SCSI_SENSE_BUFFERSIZE;
2102                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2103                                 data_len =
2104                                         sizeof(c2->error_data.sense_data_buff);
2105                         memcpy(cmd->sense_buffer,
2106                                 c2->error_data.sense_data_buff, data_len);
2107                         retry = 1;
2108                         break;
2109                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2110                         retry = 1;
2111                         break;
2112                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2113                         retry = 1;
2114                         break;
2115                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2116                         retry = 1;
2117                         break;
2118                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2119                         retry = 1;
2120                         break;
2121                 default:
2122                         retry = 1;
2123                         break;
2124                 }
2125                 break;
2126         case IOACCEL2_SERV_RESPONSE_FAILURE:
2127                 switch (c2->error_data.status) {
2128                 case IOACCEL2_STATUS_SR_IO_ERROR:
2129                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2130                 case IOACCEL2_STATUS_SR_OVERRUN:
2131                         retry = 1;
2132                         break;
2133                 case IOACCEL2_STATUS_SR_UNDERRUN:
2134                         cmd->result = (DID_OK << 16);           /* host byte */
2135                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2136                         ioaccel2_resid = get_unaligned_le32(
2137                                                 &c2->error_data.resid_cnt[0]);
2138                         scsi_set_resid(cmd, ioaccel2_resid);
2139                         break;
2140                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2141                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2142                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2143                         /* We will get an event from ctlr to trigger rescan */
2144                         retry = 1;
2145                         break;
2146                 default:
2147                         retry = 1;
2148                 }
2149                 break;
2150         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2151                 break;
2152         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2153                 break;
2154         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2155                 retry = 1;
2156                 break;
2157         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2158                 break;
2159         default:
2160                 retry = 1;
2161                 break;
2162         }
2163
2164         return retry;   /* retry on raid path? */
2165 }
2166
2167 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2168                 struct CommandList *c)
2169 {
2170         bool do_wake = false;
2171
2172         /*
2173          * Prevent the following race in the abort handler:
2174          *
2175          * 1. LLD is requested to abort a SCSI command
2176          * 2. The SCSI command completes
2177          * 3. The struct CommandList associated with step 2 is made available
2178          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2179          * 5. Abort handler follows scsi_cmnd->host_scribble and
2180          *    finds struct CommandList and tries to aborts it
2181          * Now we have aborted the wrong command.
2182          *
2183          * Reset c->scsi_cmd here so that the abort or reset handler will know
2184          * this command has completed.  Then, check to see if the handler is
2185          * waiting for this command, and, if so, wake it.
2186          */
2187         c->scsi_cmd = SCSI_CMD_IDLE;
2188         mb();   /* Declare command idle before checking for pending events. */
2189         if (c->abort_pending) {
2190                 do_wake = true;
2191                 c->abort_pending = false;
2192         }
2193         if (c->reset_pending) {
2194                 unsigned long flags;
2195                 struct hpsa_scsi_dev_t *dev;
2196
2197                 /*
2198                  * There appears to be a reset pending; lock the lock and
2199                  * reconfirm.  If so, then decrement the count of outstanding
2200                  * commands and wake the reset command if this is the last one.
2201                  */
2202                 spin_lock_irqsave(&h->lock, flags);
2203                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2204                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2205                         do_wake = true;
2206                 c->reset_pending = NULL;
2207                 spin_unlock_irqrestore(&h->lock, flags);
2208         }
2209
2210         if (do_wake)
2211                 wake_up_all(&h->event_sync_wait_queue);
2212 }
2213
2214 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2215                                       struct CommandList *c)
2216 {
2217         hpsa_cmd_resolve_events(h, c);
2218         cmd_tagged_free(h, c);
2219 }
2220
2221 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2222                 struct CommandList *c, struct scsi_cmnd *cmd)
2223 {
2224         hpsa_cmd_resolve_and_free(h, c);
2225         cmd->scsi_done(cmd);
2226 }
2227
2228 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2229 {
2230         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2231         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2232 }
2233
2234 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2235 {
2236         cmd->result = DID_ABORT << 16;
2237 }
2238
2239 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2240                                     struct scsi_cmnd *cmd)
2241 {
2242         hpsa_set_scsi_cmd_aborted(cmd);
2243         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2244                          c->Request.CDB, c->err_info->ScsiStatus);
2245         hpsa_cmd_resolve_and_free(h, c);
2246 }
2247
2248 static void process_ioaccel2_completion(struct ctlr_info *h,
2249                 struct CommandList *c, struct scsi_cmnd *cmd,
2250                 struct hpsa_scsi_dev_t *dev)
2251 {
2252         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2253
2254         /* check for good status */
2255         if (likely(c2->error_data.serv_response == 0 &&
2256                         c2->error_data.status == 0))
2257                 return hpsa_cmd_free_and_done(h, c, cmd);
2258
2259         /*
2260          * Any RAID offload error results in retry which will use
2261          * the normal I/O path so the controller can handle whatever's
2262          * wrong.
2263          */
2264         if (is_logical_device(dev) &&
2265                 c2->error_data.serv_response ==
2266                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2267                 if (c2->error_data.status ==
2268                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2269                         dev->offload_enabled = 0;
2270
2271                 return hpsa_retry_cmd(h, c);
2272         }
2273
2274         if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2275                 return hpsa_retry_cmd(h, c);
2276
2277         return hpsa_cmd_free_and_done(h, c, cmd);
2278 }
2279
2280 /* Returns 0 on success, < 0 otherwise. */
2281 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2282                                         struct CommandList *cp)
2283 {
2284         u8 tmf_status = cp->err_info->ScsiStatus;
2285
2286         switch (tmf_status) {
2287         case CISS_TMF_COMPLETE:
2288                 /*
2289                  * CISS_TMF_COMPLETE never happens, instead,
2290                  * ei->CommandStatus == 0 for this case.
2291                  */
2292         case CISS_TMF_SUCCESS:
2293                 return 0;
2294         case CISS_TMF_INVALID_FRAME:
2295         case CISS_TMF_NOT_SUPPORTED:
2296         case CISS_TMF_FAILED:
2297         case CISS_TMF_WRONG_LUN:
2298         case CISS_TMF_OVERLAPPED_TAG:
2299                 break;
2300         default:
2301                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2302                                 tmf_status);
2303                 break;
2304         }
2305         return -tmf_status;
2306 }
2307
2308 static void complete_scsi_command(struct CommandList *cp)
2309 {
2310         struct scsi_cmnd *cmd;
2311         struct ctlr_info *h;
2312         struct ErrorInfo *ei;
2313         struct hpsa_scsi_dev_t *dev;
2314         struct io_accel2_cmd *c2;
2315
2316         u8 sense_key;
2317         u8 asc;      /* additional sense code */
2318         u8 ascq;     /* additional sense code qualifier */
2319         unsigned long sense_data_size;
2320
2321         ei = cp->err_info;
2322         cmd = cp->scsi_cmd;
2323         h = cp->h;
2324         dev = cmd->device->hostdata;
2325         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2326
2327         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2328         if ((cp->cmd_type == CMD_SCSI) &&
2329                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2330                 hpsa_unmap_sg_chain_block(h, cp);
2331
2332         if ((cp->cmd_type == CMD_IOACCEL2) &&
2333                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2334                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2335
2336         cmd->result = (DID_OK << 16);           /* host byte */
2337         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2338
2339         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2340                 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2341
2342         /*
2343          * We check for lockup status here as it may be set for
2344          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2345          * fail_all_oustanding_cmds()
2346          */
2347         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2348                 /* DID_NO_CONNECT will prevent a retry */
2349                 cmd->result = DID_NO_CONNECT << 16;
2350                 return hpsa_cmd_free_and_done(h, cp, cmd);
2351         }
2352
2353         if ((unlikely(hpsa_is_pending_event(cp)))) {
2354                 if (cp->reset_pending)
2355                         return hpsa_cmd_resolve_and_free(h, cp);
2356                 if (cp->abort_pending)
2357                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2358         }
2359
2360         if (cp->cmd_type == CMD_IOACCEL2)
2361                 return process_ioaccel2_completion(h, cp, cmd, dev);
2362
2363         scsi_set_resid(cmd, ei->ResidualCnt);
2364         if (ei->CommandStatus == 0)
2365                 return hpsa_cmd_free_and_done(h, cp, cmd);
2366
2367         /* For I/O accelerator commands, copy over some fields to the normal
2368          * CISS header used below for error handling.
2369          */
2370         if (cp->cmd_type == CMD_IOACCEL1) {
2371                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2372                 cp->Header.SGList = scsi_sg_count(cmd);
2373                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2374                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2375                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2376                 cp->Header.tag = c->tag;
2377                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2378                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2379
2380                 /* Any RAID offload error results in retry which will use
2381                  * the normal I/O path so the controller can handle whatever's
2382                  * wrong.
2383                  */
2384                 if (is_logical_device(dev)) {
2385                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2386                                 dev->offload_enabled = 0;
2387                         return hpsa_retry_cmd(h, cp);
2388                 }
2389         }
2390
2391         /* an error has occurred */
2392         switch (ei->CommandStatus) {
2393
2394         case CMD_TARGET_STATUS:
2395                 cmd->result |= ei->ScsiStatus;
2396                 /* copy the sense data */
2397                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2398                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2399                 else
2400                         sense_data_size = sizeof(ei->SenseInfo);
2401                 if (ei->SenseLen < sense_data_size)
2402                         sense_data_size = ei->SenseLen;
2403                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2404                 if (ei->ScsiStatus)
2405                         decode_sense_data(ei->SenseInfo, sense_data_size,
2406                                 &sense_key, &asc, &ascq);
2407                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2408                         if (sense_key == ABORTED_COMMAND) {
2409                                 cmd->result |= DID_SOFT_ERROR << 16;
2410                                 break;
2411                         }
2412                         break;
2413                 }
2414                 /* Problem was not a check condition
2415                  * Pass it up to the upper layers...
2416                  */
2417                 if (ei->ScsiStatus) {
2418                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2419                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2420                                 "Returning result: 0x%x\n",
2421                                 cp, ei->ScsiStatus,
2422                                 sense_key, asc, ascq,
2423                                 cmd->result);
2424                 } else {  /* scsi status is zero??? How??? */
2425                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2426                                 "Returning no connection.\n", cp),
2427
2428                         /* Ordinarily, this case should never happen,
2429                          * but there is a bug in some released firmware
2430                          * revisions that allows it to happen if, for
2431                          * example, a 4100 backplane loses power and
2432                          * the tape drive is in it.  We assume that
2433                          * it's a fatal error of some kind because we
2434                          * can't show that it wasn't. We will make it
2435                          * look like selection timeout since that is
2436                          * the most common reason for this to occur,
2437                          * and it's severe enough.
2438                          */
2439
2440                         cmd->result = DID_NO_CONNECT << 16;
2441                 }
2442                 break;
2443
2444         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2445                 break;
2446         case CMD_DATA_OVERRUN:
2447                 dev_warn(&h->pdev->dev,
2448                         "CDB %16phN data overrun\n", cp->Request.CDB);
2449                 break;
2450         case CMD_INVALID: {
2451                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2452                 print_cmd(cp); */
2453                 /* We get CMD_INVALID if you address a non-existent device
2454                  * instead of a selection timeout (no response).  You will
2455                  * see this if you yank out a drive, then try to access it.
2456                  * This is kind of a shame because it means that any other
2457                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2458                  * missing target. */
2459                 cmd->result = DID_NO_CONNECT << 16;
2460         }
2461                 break;
2462         case CMD_PROTOCOL_ERR:
2463                 cmd->result = DID_ERROR << 16;
2464                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2465                                 cp->Request.CDB);
2466                 break;
2467         case CMD_HARDWARE_ERR:
2468                 cmd->result = DID_ERROR << 16;
2469                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2470                         cp->Request.CDB);
2471                 break;
2472         case CMD_CONNECTION_LOST:
2473                 cmd->result = DID_ERROR << 16;
2474                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2475                         cp->Request.CDB);
2476                 break;
2477         case CMD_ABORTED:
2478                 /* Return now to avoid calling scsi_done(). */
2479                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2480         case CMD_ABORT_FAILED:
2481                 cmd->result = DID_ERROR << 16;
2482                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2483                         cp->Request.CDB);
2484                 break;
2485         case CMD_UNSOLICITED_ABORT:
2486                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2487                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2488                         cp->Request.CDB);
2489                 break;
2490         case CMD_TIMEOUT:
2491                 cmd->result = DID_TIME_OUT << 16;
2492                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2493                         cp->Request.CDB);
2494                 break;
2495         case CMD_UNABORTABLE:
2496                 cmd->result = DID_ERROR << 16;
2497                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2498                 break;
2499         case CMD_TMF_STATUS:
2500                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2501                         cmd->result = DID_ERROR << 16;
2502                 break;
2503         case CMD_IOACCEL_DISABLED:
2504                 /* This only handles the direct pass-through case since RAID
2505                  * offload is handled above.  Just attempt a retry.
2506                  */
2507                 cmd->result = DID_SOFT_ERROR << 16;
2508                 dev_warn(&h->pdev->dev,
2509                                 "cp %p had HP SSD Smart Path error\n", cp);
2510                 break;
2511         default:
2512                 cmd->result = DID_ERROR << 16;
2513                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2514                                 cp, ei->CommandStatus);
2515         }
2516
2517         return hpsa_cmd_free_and_done(h, cp, cmd);
2518 }
2519
2520 static void hpsa_pci_unmap(struct pci_dev *pdev,
2521         struct CommandList *c, int sg_used, int data_direction)
2522 {
2523         int i;
2524
2525         for (i = 0; i < sg_used; i++)
2526                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2527                                 le32_to_cpu(c->SG[i].Len),
2528                                 data_direction);
2529 }
2530
2531 static int hpsa_map_one(struct pci_dev *pdev,
2532                 struct CommandList *cp,
2533                 unsigned char *buf,
2534                 size_t buflen,
2535                 int data_direction)
2536 {
2537         u64 addr64;
2538
2539         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2540                 cp->Header.SGList = 0;
2541                 cp->Header.SGTotal = cpu_to_le16(0);
2542                 return 0;
2543         }
2544
2545         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2546         if (dma_mapping_error(&pdev->dev, addr64)) {
2547                 /* Prevent subsequent unmap of something never mapped */
2548                 cp->Header.SGList = 0;
2549                 cp->Header.SGTotal = cpu_to_le16(0);
2550                 return -1;
2551         }
2552         cp->SG[0].Addr = cpu_to_le64(addr64);
2553         cp->SG[0].Len = cpu_to_le32(buflen);
2554         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2555         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2556         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2557         return 0;
2558 }
2559
2560 #define NO_TIMEOUT ((unsigned long) -1)
2561 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2562 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2563         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2564 {
2565         DECLARE_COMPLETION_ONSTACK(wait);
2566
2567         c->waiting = &wait;
2568         __enqueue_cmd_and_start_io(h, c, reply_queue);
2569         if (timeout_msecs == NO_TIMEOUT) {
2570                 /* TODO: get rid of this no-timeout thing */
2571                 wait_for_completion_io(&wait);
2572                 return IO_OK;
2573         }
2574         if (!wait_for_completion_io_timeout(&wait,
2575                                         msecs_to_jiffies(timeout_msecs))) {
2576                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2577                 return -ETIMEDOUT;
2578         }
2579         return IO_OK;
2580 }
2581
2582 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2583                                    int reply_queue, unsigned long timeout_msecs)
2584 {
2585         if (unlikely(lockup_detected(h))) {
2586                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2587                 return IO_OK;
2588         }
2589         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2590 }
2591
2592 static u32 lockup_detected(struct ctlr_info *h)
2593 {
2594         int cpu;
2595         u32 rc, *lockup_detected;
2596
2597         cpu = get_cpu();
2598         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2599         rc = *lockup_detected;
2600         put_cpu();
2601         return rc;
2602 }
2603
2604 #define MAX_DRIVER_CMD_RETRIES 25
2605 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2606         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2607 {
2608         int backoff_time = 10, retry_count = 0;
2609         int rc;
2610
2611         do {
2612                 memset(c->err_info, 0, sizeof(*c->err_info));
2613                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2614                                                   timeout_msecs);
2615                 if (rc)
2616                         break;
2617                 retry_count++;
2618                 if (retry_count > 3) {
2619                         msleep(backoff_time);
2620                         if (backoff_time < 1000)
2621                                 backoff_time *= 2;
2622                 }
2623         } while ((check_for_unit_attention(h, c) ||
2624                         check_for_busy(h, c)) &&
2625                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2626         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2627         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2628                 rc = -EIO;
2629         return rc;
2630 }
2631
2632 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2633                                 struct CommandList *c)
2634 {
2635         const u8 *cdb = c->Request.CDB;
2636         const u8 *lun = c->Header.LUN.LunAddrBytes;
2637
2638         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2639         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2640                 txt, lun[0], lun[1], lun[2], lun[3],
2641                 lun[4], lun[5], lun[6], lun[7],
2642                 cdb[0], cdb[1], cdb[2], cdb[3],
2643                 cdb[4], cdb[5], cdb[6], cdb[7],
2644                 cdb[8], cdb[9], cdb[10], cdb[11],
2645                 cdb[12], cdb[13], cdb[14], cdb[15]);
2646 }
2647
2648 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2649                         struct CommandList *cp)
2650 {
2651         const struct ErrorInfo *ei = cp->err_info;
2652         struct device *d = &cp->h->pdev->dev;
2653         u8 sense_key, asc, ascq;
2654         int sense_len;
2655
2656         switch (ei->CommandStatus) {
2657         case CMD_TARGET_STATUS:
2658                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2659                         sense_len = sizeof(ei->SenseInfo);
2660                 else
2661                         sense_len = ei->SenseLen;
2662                 decode_sense_data(ei->SenseInfo, sense_len,
2663                                         &sense_key, &asc, &ascq);
2664                 hpsa_print_cmd(h, "SCSI status", cp);
2665                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2666                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2667                                 sense_key, asc, ascq);
2668                 else
2669                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2670                 if (ei->ScsiStatus == 0)
2671                         dev_warn(d, "SCSI status is abnormally zero.  "
2672                         "(probably indicates selection timeout "
2673                         "reported incorrectly due to a known "
2674                         "firmware bug, circa July, 2001.)\n");
2675                 break;
2676         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2677                 break;
2678         case CMD_DATA_OVERRUN:
2679                 hpsa_print_cmd(h, "overrun condition", cp);
2680                 break;
2681         case CMD_INVALID: {
2682                 /* controller unfortunately reports SCSI passthru's
2683                  * to non-existent targets as invalid commands.
2684                  */
2685                 hpsa_print_cmd(h, "invalid command", cp);
2686                 dev_warn(d, "probably means device no longer present\n");
2687                 }
2688                 break;
2689         case CMD_PROTOCOL_ERR:
2690                 hpsa_print_cmd(h, "protocol error", cp);
2691                 break;
2692         case CMD_HARDWARE_ERR:
2693                 hpsa_print_cmd(h, "hardware error", cp);
2694                 break;
2695         case CMD_CONNECTION_LOST:
2696                 hpsa_print_cmd(h, "connection lost", cp);
2697                 break;
2698         case CMD_ABORTED:
2699                 hpsa_print_cmd(h, "aborted", cp);
2700                 break;
2701         case CMD_ABORT_FAILED:
2702                 hpsa_print_cmd(h, "abort failed", cp);
2703                 break;
2704         case CMD_UNSOLICITED_ABORT:
2705                 hpsa_print_cmd(h, "unsolicited abort", cp);
2706                 break;
2707         case CMD_TIMEOUT:
2708                 hpsa_print_cmd(h, "timed out", cp);
2709                 break;
2710         case CMD_UNABORTABLE:
2711                 hpsa_print_cmd(h, "unabortable", cp);
2712                 break;
2713         case CMD_CTLR_LOCKUP:
2714                 hpsa_print_cmd(h, "controller lockup detected", cp);
2715                 break;
2716         default:
2717                 hpsa_print_cmd(h, "unknown status", cp);
2718                 dev_warn(d, "Unknown command status %x\n",
2719                                 ei->CommandStatus);
2720         }
2721 }
2722
2723 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2724                         u16 page, unsigned char *buf,
2725                         unsigned char bufsize)
2726 {
2727         int rc = IO_OK;
2728         struct CommandList *c;
2729         struct ErrorInfo *ei;
2730
2731         c = cmd_alloc(h);
2732
2733         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2734                         page, scsi3addr, TYPE_CMD)) {
2735                 rc = -1;
2736                 goto out;
2737         }
2738         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2739                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2740         if (rc)
2741                 goto out;
2742         ei = c->err_info;
2743         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2744                 hpsa_scsi_interpret_error(h, c);
2745                 rc = -1;
2746         }
2747 out:
2748         cmd_free(h, c);
2749         return rc;
2750 }
2751
2752 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2753         u8 reset_type, int reply_queue)
2754 {
2755         int rc = IO_OK;
2756         struct CommandList *c;
2757         struct ErrorInfo *ei;
2758
2759         c = cmd_alloc(h);
2760
2761
2762         /* fill_cmd can't fail here, no data buffer to map. */
2763         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2764                         scsi3addr, TYPE_MSG);
2765         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2766         if (rc) {
2767                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2768                 goto out;
2769         }
2770         /* no unmap needed here because no data xfer. */
2771
2772         ei = c->err_info;
2773         if (ei->CommandStatus != 0) {
2774                 hpsa_scsi_interpret_error(h, c);
2775                 rc = -1;
2776         }
2777 out:
2778         cmd_free(h, c);
2779         return rc;
2780 }
2781
2782 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2783                                struct hpsa_scsi_dev_t *dev,
2784                                unsigned char *scsi3addr)
2785 {
2786         int i;
2787         bool match = false;
2788         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2789         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2790
2791         if (hpsa_is_cmd_idle(c))
2792                 return false;
2793
2794         switch (c->cmd_type) {
2795         case CMD_SCSI:
2796         case CMD_IOCTL_PEND:
2797                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2798                                 sizeof(c->Header.LUN.LunAddrBytes));
2799                 break;
2800
2801         case CMD_IOACCEL1:
2802         case CMD_IOACCEL2:
2803                 if (c->phys_disk == dev) {
2804                         /* HBA mode match */
2805                         match = true;
2806                 } else {
2807                         /* Possible RAID mode -- check each phys dev. */
2808                         /* FIXME:  Do we need to take out a lock here?  If
2809                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2810                          * instead. */
2811                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
2812                                 /* FIXME: an alternate test might be
2813                                  *
2814                                  * match = dev->phys_disk[i]->ioaccel_handle
2815                                  *              == c2->scsi_nexus;      */
2816                                 match = dev->phys_disk[i] == c->phys_disk;
2817                         }
2818                 }
2819                 break;
2820
2821         case IOACCEL2_TMF:
2822                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2823                         match = dev->phys_disk[i]->ioaccel_handle ==
2824                                         le32_to_cpu(ac->it_nexus);
2825                 }
2826                 break;
2827
2828         case 0:         /* The command is in the middle of being initialized. */
2829                 match = false;
2830                 break;
2831
2832         default:
2833                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2834                         c->cmd_type);
2835                 BUG();
2836         }
2837
2838         return match;
2839 }
2840
2841 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2842         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2843 {
2844         int i;
2845         int rc = 0;
2846
2847         /* We can really only handle one reset at a time */
2848         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2849                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2850                 return -EINTR;
2851         }
2852
2853         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2854
2855         for (i = 0; i < h->nr_cmds; i++) {
2856                 struct CommandList *c = h->cmd_pool + i;
2857                 int refcount = atomic_inc_return(&c->refcount);
2858
2859                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2860                         unsigned long flags;
2861
2862                         /*
2863                          * Mark the target command as having a reset pending,
2864                          * then lock a lock so that the command cannot complete
2865                          * while we're considering it.  If the command is not
2866                          * idle then count it; otherwise revoke the event.
2867                          */
2868                         c->reset_pending = dev;
2869                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
2870                         if (!hpsa_is_cmd_idle(c))
2871                                 atomic_inc(&dev->reset_cmds_out);
2872                         else
2873                                 c->reset_pending = NULL;
2874                         spin_unlock_irqrestore(&h->lock, flags);
2875                 }
2876
2877                 cmd_free(h, c);
2878         }
2879
2880         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2881         if (!rc)
2882                 wait_event(h->event_sync_wait_queue,
2883                         atomic_read(&dev->reset_cmds_out) == 0 ||
2884                         lockup_detected(h));
2885
2886         if (unlikely(lockup_detected(h))) {
2887                 dev_warn(&h->pdev->dev,
2888                          "Controller lockup detected during reset wait\n");
2889                 rc = -ENODEV;
2890         }
2891
2892         if (unlikely(rc))
2893                 atomic_set(&dev->reset_cmds_out, 0);
2894
2895         mutex_unlock(&h->reset_mutex);
2896         return rc;
2897 }
2898
2899 static void hpsa_get_raid_level(struct ctlr_info *h,
2900         unsigned char *scsi3addr, unsigned char *raid_level)
2901 {
2902         int rc;
2903         unsigned char *buf;
2904
2905         *raid_level = RAID_UNKNOWN;
2906         buf = kzalloc(64, GFP_KERNEL);
2907         if (!buf)
2908                 return;
2909         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2910         if (rc == 0)
2911                 *raid_level = buf[8];
2912         if (*raid_level > RAID_UNKNOWN)
2913                 *raid_level = RAID_UNKNOWN;
2914         kfree(buf);
2915         return;
2916 }
2917
2918 #define HPSA_MAP_DEBUG
2919 #ifdef HPSA_MAP_DEBUG
2920 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2921                                 struct raid_map_data *map_buff)
2922 {
2923         struct raid_map_disk_data *dd = &map_buff->data[0];
2924         int map, row, col;
2925         u16 map_cnt, row_cnt, disks_per_row;
2926
2927         if (rc != 0)
2928                 return;
2929
2930         /* Show details only if debugging has been activated. */
2931         if (h->raid_offload_debug < 2)
2932                 return;
2933
2934         dev_info(&h->pdev->dev, "structure_size = %u\n",
2935                                 le32_to_cpu(map_buff->structure_size));
2936         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2937                         le32_to_cpu(map_buff->volume_blk_size));
2938         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2939                         le64_to_cpu(map_buff->volume_blk_cnt));
2940         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2941                         map_buff->phys_blk_shift);
2942         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2943                         map_buff->parity_rotation_shift);
2944         dev_info(&h->pdev->dev, "strip_size = %u\n",
2945                         le16_to_cpu(map_buff->strip_size));
2946         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2947                         le64_to_cpu(map_buff->disk_starting_blk));
2948         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2949                         le64_to_cpu(map_buff->disk_blk_cnt));
2950         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2951                         le16_to_cpu(map_buff->data_disks_per_row));
2952         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2953                         le16_to_cpu(map_buff->metadata_disks_per_row));
2954         dev_info(&h->pdev->dev, "row_cnt = %u\n",
2955                         le16_to_cpu(map_buff->row_cnt));
2956         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2957                         le16_to_cpu(map_buff->layout_map_count));
2958         dev_info(&h->pdev->dev, "flags = 0x%x\n",
2959                         le16_to_cpu(map_buff->flags));
2960         dev_info(&h->pdev->dev, "encrypytion = %s\n",
2961                         le16_to_cpu(map_buff->flags) &
2962                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2963         dev_info(&h->pdev->dev, "dekindex = %u\n",
2964                         le16_to_cpu(map_buff->dekindex));
2965         map_cnt = le16_to_cpu(map_buff->layout_map_count);
2966         for (map = 0; map < map_cnt; map++) {
2967                 dev_info(&h->pdev->dev, "Map%u:\n", map);
2968                 row_cnt = le16_to_cpu(map_buff->row_cnt);
2969                 for (row = 0; row < row_cnt; row++) {
2970                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
2971                         disks_per_row =
2972                                 le16_to_cpu(map_buff->data_disks_per_row);
2973                         for (col = 0; col < disks_per_row; col++, dd++)
2974                                 dev_info(&h->pdev->dev,
2975                                         "    D%02u: h=0x%04x xor=%u,%u\n",
2976                                         col, dd->ioaccel_handle,
2977                                         dd->xor_mult[0], dd->xor_mult[1]);
2978                         disks_per_row =
2979                                 le16_to_cpu(map_buff->metadata_disks_per_row);
2980                         for (col = 0; col < disks_per_row; col++, dd++)
2981                                 dev_info(&h->pdev->dev,
2982                                         "    M%02u: h=0x%04x xor=%u,%u\n",
2983                                         col, dd->ioaccel_handle,
2984                                         dd->xor_mult[0], dd->xor_mult[1]);
2985                 }
2986         }
2987 }
2988 #else
2989 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2990                         __attribute__((unused)) int rc,
2991                         __attribute__((unused)) struct raid_map_data *map_buff)
2992 {
2993 }
2994 #endif
2995
2996 static int hpsa_get_raid_map(struct ctlr_info *h,
2997         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2998 {
2999         int rc = 0;
3000         struct CommandList *c;
3001         struct ErrorInfo *ei;
3002
3003         c = cmd_alloc(h);
3004
3005         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3006                         sizeof(this_device->raid_map), 0,
3007                         scsi3addr, TYPE_CMD)) {
3008                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3009                 cmd_free(h, c);
3010                 return -1;
3011         }
3012         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3013                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3014         if (rc)
3015                 goto out;
3016         ei = c->err_info;
3017         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3018                 hpsa_scsi_interpret_error(h, c);
3019                 rc = -1;
3020                 goto out;
3021         }
3022         cmd_free(h, c);
3023
3024         /* @todo in the future, dynamically allocate RAID map memory */
3025         if (le32_to_cpu(this_device->raid_map.structure_size) >
3026                                 sizeof(this_device->raid_map)) {
3027                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3028                 rc = -1;
3029         }
3030         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3031         return rc;
3032 out:
3033         cmd_free(h, c);
3034         return rc;
3035 }
3036
3037 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3038                 unsigned char scsi3addr[], u16 bmic_device_index,
3039                 struct bmic_identify_physical_device *buf, size_t bufsize)
3040 {
3041         int rc = IO_OK;
3042         struct CommandList *c;
3043         struct ErrorInfo *ei;
3044
3045         c = cmd_alloc(h);
3046         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3047                 0, RAID_CTLR_LUNID, TYPE_CMD);
3048         if (rc)
3049                 goto out;
3050
3051         c->Request.CDB[2] = bmic_device_index & 0xff;
3052         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3053
3054         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3055                                                 NO_TIMEOUT);
3056         ei = c->err_info;
3057         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3058                 hpsa_scsi_interpret_error(h, c);
3059                 rc = -1;
3060         }
3061 out:
3062         cmd_free(h, c);
3063         return rc;
3064 }
3065
3066 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3067         unsigned char scsi3addr[], u8 page)
3068 {
3069         int rc;
3070         int i;
3071         int pages;
3072         unsigned char *buf, bufsize;
3073
3074         buf = kzalloc(256, GFP_KERNEL);
3075         if (!buf)
3076                 return 0;
3077
3078         /* Get the size of the page list first */
3079         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3080                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3081                                 buf, HPSA_VPD_HEADER_SZ);
3082         if (rc != 0)
3083                 goto exit_unsupported;
3084         pages = buf[3];
3085         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3086                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3087         else
3088                 bufsize = 255;
3089
3090         /* Get the whole VPD page list */
3091         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3092                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3093                                 buf, bufsize);
3094         if (rc != 0)
3095                 goto exit_unsupported;
3096
3097         pages = buf[3];
3098         for (i = 1; i <= pages; i++)
3099                 if (buf[3 + i] == page)
3100                         goto exit_supported;
3101 exit_unsupported:
3102         kfree(buf);
3103         return 0;
3104 exit_supported:
3105         kfree(buf);
3106         return 1;
3107 }
3108
3109 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3110         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3111 {
3112         int rc;
3113         unsigned char *buf;
3114         u8 ioaccel_status;
3115
3116         this_device->offload_config = 0;
3117         this_device->offload_enabled = 0;
3118         this_device->offload_to_be_enabled = 0;
3119
3120         buf = kzalloc(64, GFP_KERNEL);
3121         if (!buf)
3122                 return;
3123         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3124                 goto out;
3125         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3126                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3127         if (rc != 0)
3128                 goto out;
3129
3130 #define IOACCEL_STATUS_BYTE 4
3131 #define OFFLOAD_CONFIGURED_BIT 0x01
3132 #define OFFLOAD_ENABLED_BIT 0x02
3133         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3134         this_device->offload_config =
3135                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3136         if (this_device->offload_config) {
3137                 this_device->offload_enabled =
3138                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3139                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3140                         this_device->offload_enabled = 0;
3141         }
3142         this_device->offload_to_be_enabled = this_device->offload_enabled;
3143 out:
3144         kfree(buf);
3145         return;
3146 }
3147
3148 /* Get the device id from inquiry page 0x83 */
3149 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3150         unsigned char *device_id, int index, int buflen)
3151 {
3152         int rc;
3153         unsigned char *buf;
3154
3155         if (buflen > 16)
3156                 buflen = 16;
3157         buf = kzalloc(64, GFP_KERNEL);
3158         if (!buf)
3159                 return -ENOMEM;
3160         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3161         if (rc == 0)
3162                 memcpy(device_id, &buf[index], buflen);
3163
3164         kfree(buf);
3165
3166         return rc != 0;
3167 }
3168
3169 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3170                 void *buf, int bufsize,
3171                 int extended_response)
3172 {
3173         int rc = IO_OK;
3174         struct CommandList *c;
3175         unsigned char scsi3addr[8];
3176         struct ErrorInfo *ei;
3177
3178         c = cmd_alloc(h);
3179
3180         /* address the controller */
3181         memset(scsi3addr, 0, sizeof(scsi3addr));
3182         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3183                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3184                 rc = -1;
3185                 goto out;
3186         }
3187         if (extended_response)
3188                 c->Request.CDB[1] = extended_response;
3189         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3190                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3191         if (rc)
3192                 goto out;
3193         ei = c->err_info;
3194         if (ei->CommandStatus != 0 &&
3195             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3196                 hpsa_scsi_interpret_error(h, c);
3197                 rc = -1;
3198         } else {
3199                 struct ReportLUNdata *rld = buf;
3200
3201                 if (rld->extended_response_flag != extended_response) {
3202                         dev_err(&h->pdev->dev,
3203                                 "report luns requested format %u, got %u\n",
3204                                 extended_response,
3205                                 rld->extended_response_flag);
3206                         rc = -1;
3207                 }
3208         }
3209 out:
3210         cmd_free(h, c);
3211         return rc;
3212 }
3213
3214 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3215                 struct ReportExtendedLUNdata *buf, int bufsize)
3216 {
3217         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3218                                                 HPSA_REPORT_PHYS_EXTENDED);
3219 }
3220
3221 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3222                 struct ReportLUNdata *buf, int bufsize)
3223 {
3224         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3225 }
3226
3227 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3228         int bus, int target, int lun)
3229 {
3230         device->bus = bus;
3231         device->target = target;
3232         device->lun = lun;
3233 }
3234
3235 /* Use VPD inquiry to get details of volume status */
3236 static int hpsa_get_volume_status(struct ctlr_info *h,
3237                                         unsigned char scsi3addr[])
3238 {
3239         int rc;
3240         int status;
3241         int size;
3242         unsigned char *buf;
3243
3244         buf = kzalloc(64, GFP_KERNEL);
3245         if (!buf)
3246                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3247
3248         /* Does controller have VPD for logical volume status? */
3249         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3250                 goto exit_failed;
3251
3252         /* Get the size of the VPD return buffer */
3253         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3254                                         buf, HPSA_VPD_HEADER_SZ);
3255         if (rc != 0)
3256                 goto exit_failed;
3257         size = buf[3];
3258
3259         /* Now get the whole VPD buffer */
3260         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3261                                         buf, size + HPSA_VPD_HEADER_SZ);
3262         if (rc != 0)
3263                 goto exit_failed;
3264         status = buf[4]; /* status byte */
3265
3266         kfree(buf);
3267         return status;
3268 exit_failed:
3269         kfree(buf);
3270         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3271 }
3272
3273 /* Determine offline status of a volume.
3274  * Return either:
3275  *  0 (not offline)
3276  *  0xff (offline for unknown reasons)
3277  *  # (integer code indicating one of several NOT READY states
3278  *     describing why a volume is to be kept offline)
3279  */
3280 static int hpsa_volume_offline(struct ctlr_info *h,
3281                                         unsigned char scsi3addr[])
3282 {
3283         struct CommandList *c;
3284         unsigned char *sense;
3285         u8 sense_key, asc, ascq;
3286         int sense_len;
3287         int rc, ldstat = 0;
3288         u16 cmd_status;
3289         u8 scsi_status;
3290 #define ASC_LUN_NOT_READY 0x04
3291 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3292 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3293
3294         c = cmd_alloc(h);
3295
3296         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3297         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3298         if (rc) {
3299                 cmd_free(h, c);
3300                 return 0;
3301         }
3302         sense = c->err_info->SenseInfo;
3303         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3304                 sense_len = sizeof(c->err_info->SenseInfo);
3305         else
3306                 sense_len = c->err_info->SenseLen;
3307         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3308         cmd_status = c->err_info->CommandStatus;
3309         scsi_status = c->err_info->ScsiStatus;
3310         cmd_free(h, c);
3311         /* Is the volume 'not ready'? */
3312         if (cmd_status != CMD_TARGET_STATUS ||
3313                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3314                 sense_key != NOT_READY ||
3315                 asc != ASC_LUN_NOT_READY)  {
3316                 return 0;
3317         }
3318
3319         /* Determine the reason for not ready state */
3320         ldstat = hpsa_get_volume_status(h, scsi3addr);
3321
3322         /* Keep volume offline in certain cases: */
3323         switch (ldstat) {
3324         case HPSA_LV_UNDERGOING_ERASE:
3325         case HPSA_LV_NOT_AVAILABLE:
3326         case HPSA_LV_UNDERGOING_RPI:
3327         case HPSA_LV_PENDING_RPI:
3328         case HPSA_LV_ENCRYPTED_NO_KEY:
3329         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3330         case HPSA_LV_UNDERGOING_ENCRYPTION:
3331         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3332         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3333                 return ldstat;
3334         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3335                 /* If VPD status page isn't available,
3336                  * use ASC/ASCQ to determine state
3337                  */
3338                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3339                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3340                         return ldstat;
3341                 break;
3342         default:
3343                 break;
3344         }
3345         return 0;
3346 }
3347
3348 /*
3349  * Find out if a logical device supports aborts by simply trying one.
3350  * Smart Array may claim not to support aborts on logical drives, but
3351  * if a MSA2000 * is connected, the drives on that will be presented
3352  * by the Smart Array as logical drives, and aborts may be sent to
3353  * those devices successfully.  So the simplest way to find out is
3354  * to simply try an abort and see how the device responds.
3355  */
3356 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3357                                         unsigned char *scsi3addr)
3358 {
3359         struct CommandList *c;
3360         struct ErrorInfo *ei;
3361         int rc = 0;
3362
3363         u64 tag = (u64) -1; /* bogus tag */
3364
3365         /* Assume that physical devices support aborts */
3366         if (!is_logical_dev_addr_mode(scsi3addr))
3367                 return 1;
3368
3369         c = cmd_alloc(h);
3370
3371         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3372         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3373         /* no unmap needed here because no data xfer. */
3374         ei = c->err_info;
3375         switch (ei->CommandStatus) {
3376         case CMD_INVALID:
3377                 rc = 0;
3378                 break;
3379         case CMD_UNABORTABLE:
3380         case CMD_ABORT_FAILED:
3381                 rc = 1;
3382                 break;
3383         case CMD_TMF_STATUS:
3384                 rc = hpsa_evaluate_tmf_status(h, c);
3385                 break;
3386         default:
3387                 rc = 0;
3388                 break;
3389         }
3390         cmd_free(h, c);
3391         return rc;
3392 }
3393
3394 static void sanitize_inquiry_string(unsigned char *s, int len)
3395 {
3396         bool terminated = false;
3397
3398         for (; len > 0; (--len, ++s)) {
3399                 if (*s == 0)
3400                         terminated = true;
3401                 if (terminated || *s < 0x20 || *s > 0x7e)
3402                         *s = ' ';
3403         }
3404 }
3405
3406 static int hpsa_update_device_info(struct ctlr_info *h,
3407         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3408         unsigned char *is_OBDR_device)
3409 {
3410
3411 #define OBDR_SIG_OFFSET 43
3412 #define OBDR_TAPE_SIG "$DR-10"
3413 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3414 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3415
3416         unsigned char *inq_buff;
3417         unsigned char *obdr_sig;
3418         int rc = 0;
3419
3420         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3421         if (!inq_buff) {
3422                 rc = -ENOMEM;
3423                 goto bail_out;
3424         }
3425
3426         /* Do an inquiry to the device to see what it is. */
3427         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3428                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3429                 /* Inquiry failed (msg printed already) */
3430                 dev_err(&h->pdev->dev,
3431                         "hpsa_update_device_info: inquiry failed\n");
3432                 rc = -EIO;
3433                 goto bail_out;
3434         }
3435
3436         sanitize_inquiry_string(&inq_buff[8], 8);
3437         sanitize_inquiry_string(&inq_buff[16], 16);
3438
3439         this_device->devtype = (inq_buff[0] & 0x1f);
3440         memcpy(this_device->scsi3addr, scsi3addr, 8);
3441         memcpy(this_device->vendor, &inq_buff[8],
3442                 sizeof(this_device->vendor));
3443         memcpy(this_device->model, &inq_buff[16],
3444                 sizeof(this_device->model));
3445         memset(this_device->device_id, 0,
3446                 sizeof(this_device->device_id));
3447         hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3448                 sizeof(this_device->device_id));
3449
3450         if (this_device->devtype == TYPE_DISK &&
3451                 is_logical_dev_addr_mode(scsi3addr)) {
3452                 int volume_offline;
3453
3454                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3455                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3456                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3457                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3458                 if (volume_offline < 0 || volume_offline > 0xff)
3459                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3460                 this_device->volume_offline = volume_offline & 0xff;
3461         } else {
3462                 this_device->raid_level = RAID_UNKNOWN;
3463                 this_device->offload_config = 0;
3464                 this_device->offload_enabled = 0;
3465                 this_device->offload_to_be_enabled = 0;
3466                 this_device->hba_ioaccel_enabled = 0;
3467                 this_device->volume_offline = 0;
3468                 this_device->queue_depth = h->nr_cmds;
3469         }
3470
3471         if (is_OBDR_device) {
3472                 /* See if this is a One-Button-Disaster-Recovery device
3473                  * by looking for "$DR-10" at offset 43 in inquiry data.
3474                  */
3475                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3476                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3477                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3478                                                 OBDR_SIG_LEN) == 0);
3479         }
3480         kfree(inq_buff);
3481         return 0;
3482
3483 bail_out:
3484         kfree(inq_buff);
3485         return rc;
3486 }
3487
3488 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3489                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3490 {
3491         unsigned long flags;
3492         int rc, entry;
3493         /*
3494          * See if this device supports aborts.  If we already know
3495          * the device, we already know if it supports aborts, otherwise
3496          * we have to find out if it supports aborts by trying one.
3497          */
3498         spin_lock_irqsave(&h->devlock, flags);
3499         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3500         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3501                 entry >= 0 && entry < h->ndevices) {
3502                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3503                 spin_unlock_irqrestore(&h->devlock, flags);
3504         } else {
3505                 spin_unlock_irqrestore(&h->devlock, flags);
3506                 dev->supports_aborts =
3507                                 hpsa_device_supports_aborts(h, scsi3addr);
3508                 if (dev->supports_aborts < 0)
3509                         dev->supports_aborts = 0;
3510         }
3511 }
3512
3513 static unsigned char *ext_target_model[] = {
3514         "MSA2012",
3515         "MSA2024",
3516         "MSA2312",
3517         "MSA2324",
3518         "P2000 G3 SAS",
3519         "MSA 2040 SAS",
3520         NULL,
3521 };
3522
3523 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
3524 {
3525         int i;
3526
3527         for (i = 0; ext_target_model[i]; i++)
3528                 if (strncmp(device->model, ext_target_model[i],
3529                         strlen(ext_target_model[i])) == 0)
3530                         return 1;
3531         return 0;
3532 }
3533
3534 /*
3535  * Helper function to assign bus, target, lun mapping of devices.
3536  * Logical drive target and lun are assigned at this time, but
3537  * physical device lun and target assignment are deferred (assigned
3538  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3539 */
3540 static void figure_bus_target_lun(struct ctlr_info *h,
3541         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3542 {
3543         u32 lunid = get_unaligned_le32(lunaddrbytes);
3544
3545         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3546                 /* physical device, target and lun filled in later */
3547                 if (is_hba_lunid(lunaddrbytes))
3548                         hpsa_set_bus_target_lun(device,
3549                                         HPSA_HBA_BUS, 0, lunid & 0x3fff);
3550                 else
3551                         /* defer target, lun assignment for physical devices */
3552                         hpsa_set_bus_target_lun(device,
3553                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3554                 return;
3555         }
3556         /* It's a logical device */
3557         if (is_ext_target(h, device)) {
3558                 hpsa_set_bus_target_lun(device,
3559                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3560                         lunid & 0x00ff);
3561                 return;
3562         }
3563         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3564                                 0, lunid & 0x3fff);
3565 }
3566
3567 /*
3568  * If there is no lun 0 on a target, linux won't find any devices.
3569  * For the external targets (arrays), we have to manually detect the enclosure
3570  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
3571  * it for some reason.  *tmpdevice is the target we're adding,
3572  * this_device is a pointer into the current element of currentsd[]
3573  * that we're building up in update_scsi_devices(), below.
3574  * lunzerobits is a bitmap that tracks which targets already have a
3575  * lun 0 assigned.
3576  * Returns 1 if an enclosure was added, 0 if not.
3577  */
3578 static int add_ext_target_dev(struct ctlr_info *h,
3579         struct hpsa_scsi_dev_t *tmpdevice,
3580         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3581         unsigned long lunzerobits[], int *n_ext_target_devs)
3582 {
3583         unsigned char scsi3addr[8];
3584
3585         if (test_bit(tmpdevice->target, lunzerobits))
3586                 return 0; /* There is already a lun 0 on this target. */
3587
3588         if (!is_logical_dev_addr_mode(lunaddrbytes))
3589                 return 0; /* It's the logical targets that may lack lun 0. */
3590
3591         if (!is_ext_target(h, tmpdevice))
3592                 return 0; /* Only external target devices have this problem. */
3593
3594         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3595                 return 0;
3596
3597         memset(scsi3addr, 0, 8);
3598         scsi3addr[3] = tmpdevice->target;
3599         if (is_hba_lunid(scsi3addr))
3600                 return 0; /* Don't add the RAID controller here. */
3601
3602         if (is_scsi_rev_5(h))
3603                 return 0; /* p1210m doesn't need to do this. */
3604
3605         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3606                 dev_warn(&h->pdev->dev, "Maximum number of external "
3607                         "target devices exceeded.  Check your hardware "
3608                         "configuration.");
3609                 return 0;
3610         }
3611
3612         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3613                 return 0;
3614         (*n_ext_target_devs)++;
3615         hpsa_set_bus_target_lun(this_device,
3616                                 tmpdevice->bus, tmpdevice->target, 0);
3617         hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3618         set_bit(tmpdevice->target, lunzerobits);
3619         return 1;
3620 }
3621
3622 /*
3623  * Get address of physical disk used for an ioaccel2 mode command:
3624  *      1. Extract ioaccel2 handle from the command.
3625  *      2. Find a matching ioaccel2 handle from list of physical disks.
3626  *      3. Return:
3627  *              1 and set scsi3addr to address of matching physical
3628  *              0 if no matching physical disk was found.
3629  */
3630 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3631         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3632 {
3633         struct io_accel2_cmd *c2 =
3634                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3635         unsigned long flags;
3636         int i;
3637
3638         spin_lock_irqsave(&h->devlock, flags);
3639         for (i = 0; i < h->ndevices; i++)
3640                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3641                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3642                                 sizeof(h->dev[i]->scsi3addr));
3643                         spin_unlock_irqrestore(&h->devlock, flags);
3644                         return 1;
3645                 }
3646         spin_unlock_irqrestore(&h->devlock, flags);
3647         return 0;
3648 }
3649
3650 /*
3651  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3652  * logdev.  The number of luns in physdev and logdev are returned in
3653  * *nphysicals and *nlogicals, respectively.
3654  * Returns 0 on success, -1 otherwise.
3655  */
3656 static int hpsa_gather_lun_info(struct ctlr_info *h,
3657         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3658         struct ReportLUNdata *logdev, u32 *nlogicals)
3659 {
3660         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3661                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3662                 return -1;
3663         }
3664         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3665         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3666                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3667                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3668                 *nphysicals = HPSA_MAX_PHYS_LUN;
3669         }
3670         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3671                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3672                 return -1;
3673         }
3674         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3675         /* Reject Logicals in excess of our max capability. */
3676         if (*nlogicals > HPSA_MAX_LUN) {
3677                 dev_warn(&h->pdev->dev,
3678                         "maximum logical LUNs (%d) exceeded.  "
3679                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3680                         *nlogicals - HPSA_MAX_LUN);
3681                         *nlogicals = HPSA_MAX_LUN;
3682         }
3683         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3684                 dev_warn(&h->pdev->dev,
3685                         "maximum logical + physical LUNs (%d) exceeded. "
3686                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3687                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3688                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3689         }
3690         return 0;
3691 }
3692
3693 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3694         int i, int nphysicals, int nlogicals,
3695         struct ReportExtendedLUNdata *physdev_list,
3696         struct ReportLUNdata *logdev_list)
3697 {
3698         /* Helper function, figure out where the LUN ID info is coming from
3699          * given index i, lists of physical and logical devices, where in
3700          * the list the raid controller is supposed to appear (first or last)
3701          */
3702
3703         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3704         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3705
3706         if (i == raid_ctlr_position)
3707                 return RAID_CTLR_LUNID;
3708
3709         if (i < logicals_start)
3710                 return &physdev_list->LUN[i -
3711                                 (raid_ctlr_position == 0)].lunid[0];
3712
3713         if (i < last_device)
3714                 return &logdev_list->LUN[i - nphysicals -
3715                         (raid_ctlr_position == 0)][0];
3716         BUG();
3717         return NULL;
3718 }
3719
3720 /* get physical drive ioaccel handle and queue depth */
3721 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3722                 struct hpsa_scsi_dev_t *dev,
3723                 struct ReportExtendedLUNdata *rlep, int rle_index,
3724                 struct bmic_identify_physical_device *id_phys)
3725 {
3726         int rc;
3727         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3728
3729         dev->ioaccel_handle = rle->ioaccel_handle;
3730         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3731                 dev->hba_ioaccel_enabled = 1;
3732         memset(id_phys, 0, sizeof(*id_phys));
3733         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3734                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3735                         sizeof(*id_phys));
3736         if (!rc)
3737                 /* Reserve space for FW operations */
3738 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3739 #define DRIVE_QUEUE_DEPTH 7
3740                 dev->queue_depth =
3741                         le16_to_cpu(id_phys->current_queue_depth_limit) -
3742                                 DRIVE_CMDS_RESERVED_FOR_FW;
3743         else
3744                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3745 }
3746
3747 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3748         struct ReportExtendedLUNdata *rlep, int rle_index,
3749         struct bmic_identify_physical_device *id_phys)
3750 {
3751         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3752
3753         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
3754                 this_device->hba_ioaccel_enabled = 1;
3755
3756         memcpy(&this_device->active_path_index,
3757                 &id_phys->active_path_number,
3758                 sizeof(this_device->active_path_index));
3759         memcpy(&this_device->path_map,
3760                 &id_phys->redundant_path_present_map,
3761                 sizeof(this_device->path_map));
3762         memcpy(&this_device->box,
3763                 &id_phys->alternate_paths_phys_box_on_port,
3764                 sizeof(this_device->box));
3765         memcpy(&this_device->phys_connector,
3766                 &id_phys->alternate_paths_phys_connector,
3767                 sizeof(this_device->phys_connector));
3768         memcpy(&this_device->bay,
3769                 &id_phys->phys_bay_in_box,
3770                 sizeof(this_device->bay));
3771 }
3772
3773 static void hpsa_update_scsi_devices(struct ctlr_info *h)
3774 {
3775         /* the idea here is we could get notified
3776          * that some devices have changed, so we do a report
3777          * physical luns and report logical luns cmd, and adjust
3778          * our list of devices accordingly.
3779          *
3780          * The scsi3addr's of devices won't change so long as the
3781          * adapter is not reset.  That means we can rescan and
3782          * tell which devices we already know about, vs. new
3783          * devices, vs.  disappearing devices.
3784          */
3785         struct ReportExtendedLUNdata *physdev_list = NULL;
3786         struct ReportLUNdata *logdev_list = NULL;
3787         struct bmic_identify_physical_device *id_phys = NULL;
3788         u32 nphysicals = 0;
3789         u32 nlogicals = 0;
3790         u32 ndev_allocated = 0;
3791         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3792         int ncurrent = 0;
3793         int i, n_ext_target_devs, ndevs_to_allocate;
3794         int raid_ctlr_position;
3795         bool physical_device;
3796         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3797
3798         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3799         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3800         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3801         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3802         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3803
3804         if (!currentsd || !physdev_list || !logdev_list ||
3805                 !tmpdevice || !id_phys) {
3806                 dev_err(&h->pdev->dev, "out of memory\n");
3807                 goto out;
3808         }
3809         memset(lunzerobits, 0, sizeof(lunzerobits));
3810
3811         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
3812
3813         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3814                         logdev_list, &nlogicals)) {
3815                 h->drv_req_rescan = 1;
3816                 goto out;
3817         }
3818
3819         /* We might see up to the maximum number of logical and physical disks
3820          * plus external target devices, and a device for the local RAID
3821          * controller.
3822          */
3823         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3824
3825         /* Allocate the per device structures */
3826         for (i = 0; i < ndevs_to_allocate; i++) {
3827                 if (i >= HPSA_MAX_DEVICES) {
3828                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3829                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
3830                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
3831                         break;
3832                 }
3833
3834                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3835                 if (!currentsd[i]) {
3836                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3837                                 __FILE__, __LINE__);
3838                         h->drv_req_rescan = 1;
3839                         goto out;
3840                 }
3841                 ndev_allocated++;
3842         }
3843
3844         if (is_scsi_rev_5(h))
3845                 raid_ctlr_position = 0;
3846         else
3847                 raid_ctlr_position = nphysicals + nlogicals;
3848
3849         /* adjust our table of devices */
3850         n_ext_target_devs = 0;
3851         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3852                 u8 *lunaddrbytes, is_OBDR = 0;
3853                 int rc = 0;
3854                 int phys_dev_index = i - (raid_ctlr_position == 0);
3855
3856                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
3857
3858                 /* Figure out where the LUN ID info is coming from */
3859                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3860                         i, nphysicals, nlogicals, physdev_list, logdev_list);
3861
3862                 /* skip masked non-disk devices */
3863                 if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
3864                         (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
3865                         continue;
3866
3867                 /* Get device type, vendor, model, device id */
3868                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3869                                                         &is_OBDR);
3870                 if (rc == -ENOMEM) {
3871                         dev_warn(&h->pdev->dev,
3872                                 "Out of memory, rescan deferred.\n");
3873                         h->drv_req_rescan = 1;
3874                         goto out;
3875                 }
3876                 if (rc) {
3877                         dev_warn(&h->pdev->dev,
3878                                 "Inquiry failed, skipping device.\n");
3879                         continue;
3880                 }
3881
3882                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3883                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3884                 this_device = currentsd[ncurrent];
3885
3886                 /*
3887                  * For external target devices, we have to insert a LUN 0 which
3888                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3889                  * is nonetheless an enclosure device there.  We have to
3890                  * present that otherwise linux won't find anything if
3891                  * there is no lun 0.
3892                  */
3893                 if (add_ext_target_dev(h, tmpdevice, this_device,
3894                                 lunaddrbytes, lunzerobits,
3895                                 &n_ext_target_devs)) {
3896                         ncurrent++;
3897                         this_device = currentsd[ncurrent];
3898                 }
3899
3900                 *this_device = *tmpdevice;
3901                 this_device->physical_device = physical_device;
3902
3903                 /*
3904                  * Expose all devices except for physical devices that
3905                  * are masked.
3906                  */
3907                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
3908                         this_device->expose_device = 0;
3909                 else
3910                         this_device->expose_device = 1;
3911
3912                 switch (this_device->devtype) {
3913                 case TYPE_ROM:
3914                         /* We don't *really* support actual CD-ROM devices,
3915                          * just "One Button Disaster Recovery" tape drive
3916                          * which temporarily pretends to be a CD-ROM drive.
3917                          * So we check that the device is really an OBDR tape
3918                          * device by checking for "$DR-10" in bytes 43-48 of
3919                          * the inquiry data.
3920                          */
3921                         if (is_OBDR)
3922                                 ncurrent++;
3923                         break;
3924                 case TYPE_DISK:
3925                         if (this_device->physical_device) {
3926                                 /* The disk is in HBA mode. */
3927                                 /* Never use RAID mapper in HBA mode. */
3928                                 this_device->offload_enabled = 0;
3929                                 hpsa_get_ioaccel_drive_info(h, this_device,
3930                                         physdev_list, phys_dev_index, id_phys);
3931                                 hpsa_get_path_info(this_device,
3932                                         physdev_list, phys_dev_index, id_phys);
3933                         }
3934                         ncurrent++;
3935                         break;
3936                 case TYPE_TAPE:
3937                 case TYPE_MEDIUM_CHANGER:
3938                 case TYPE_ENCLOSURE:
3939                         ncurrent++;
3940                         break;
3941                 case TYPE_RAID:
3942                         /* Only present the Smartarray HBA as a RAID controller.
3943                          * If it's a RAID controller other than the HBA itself
3944                          * (an external RAID controller, MSA500 or similar)
3945                          * don't present it.
3946                          */
3947                         if (!is_hba_lunid(lunaddrbytes))
3948                                 break;
3949                         ncurrent++;
3950                         break;
3951                 default:
3952                         break;
3953                 }
3954                 if (ncurrent >= HPSA_MAX_DEVICES)
3955                         break;
3956         }
3957         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
3958 out:
3959         kfree(tmpdevice);
3960         for (i = 0; i < ndev_allocated; i++)
3961                 kfree(currentsd[i]);
3962         kfree(currentsd);
3963         kfree(physdev_list);
3964         kfree(logdev_list);
3965         kfree(id_phys);
3966 }
3967
3968 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3969                                    struct scatterlist *sg)
3970 {
3971         u64 addr64 = (u64) sg_dma_address(sg);
3972         unsigned int len = sg_dma_len(sg);
3973
3974         desc->Addr = cpu_to_le64(addr64);
3975         desc->Len = cpu_to_le32(len);
3976         desc->Ext = 0;
3977 }
3978
3979 /*
3980  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3981  * dma mapping  and fills in the scatter gather entries of the
3982  * hpsa command, cp.
3983  */
3984 static int hpsa_scatter_gather(struct ctlr_info *h,
3985                 struct CommandList *cp,
3986                 struct scsi_cmnd *cmd)
3987 {
3988         struct scatterlist *sg;
3989         int use_sg, i, sg_limit, chained, last_sg;
3990         struct SGDescriptor *curr_sg;
3991
3992         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3993
3994         use_sg = scsi_dma_map(cmd);
3995         if (use_sg < 0)
3996                 return use_sg;
3997
3998         if (!use_sg)
3999                 goto sglist_finished;
4000
4001         /*
4002          * If the number of entries is greater than the max for a single list,
4003          * then we have a chained list; we will set up all but one entry in the
4004          * first list (the last entry is saved for link information);
4005          * otherwise, we don't have a chained list and we'll set up at each of
4006          * the entries in the one list.
4007          */
4008         curr_sg = cp->SG;
4009         chained = use_sg > h->max_cmd_sg_entries;
4010         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4011         last_sg = scsi_sg_count(cmd) - 1;
4012         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4013                 hpsa_set_sg_descriptor(curr_sg, sg);
4014                 curr_sg++;
4015         }
4016
4017         if (chained) {
4018                 /*
4019                  * Continue with the chained list.  Set curr_sg to the chained
4020                  * list.  Modify the limit to the total count less the entries
4021                  * we've already set up.  Resume the scan at the list entry
4022                  * where the previous loop left off.
4023                  */
4024                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4025                 sg_limit = use_sg - sg_limit;
4026                 for_each_sg(sg, sg, sg_limit, i) {
4027                         hpsa_set_sg_descriptor(curr_sg, sg);
4028                         curr_sg++;
4029                 }
4030         }
4031
4032         /* Back the pointer up to the last entry and mark it as "last". */
4033         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4034
4035         if (use_sg + chained > h->maxSG)
4036                 h->maxSG = use_sg + chained;
4037
4038         if (chained) {
4039                 cp->Header.SGList = h->max_cmd_sg_entries;
4040                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4041                 if (hpsa_map_sg_chain_block(h, cp)) {
4042                         scsi_dma_unmap(cmd);
4043                         return -1;
4044                 }
4045                 return 0;
4046         }
4047
4048 sglist_finished:
4049
4050         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4051         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4052         return 0;
4053 }
4054
4055 #define IO_ACCEL_INELIGIBLE (1)
4056 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4057 {
4058         int is_write = 0;
4059         u32 block;
4060         u32 block_cnt;
4061
4062         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4063         switch (cdb[0]) {
4064         case WRITE_6:
4065         case WRITE_12:
4066                 is_write = 1;
4067         case READ_6:
4068         case READ_12:
4069                 if (*cdb_len == 6) {
4070                         block = get_unaligned_be16(&cdb[2]);
4071                         block_cnt = cdb[4];
4072                         if (block_cnt == 0)
4073                                 block_cnt = 256;
4074                 } else {
4075                         BUG_ON(*cdb_len != 12);
4076                         block = get_unaligned_be32(&cdb[2]);
4077                         block_cnt = get_unaligned_be32(&cdb[6]);
4078                 }
4079                 if (block_cnt > 0xffff)
4080                         return IO_ACCEL_INELIGIBLE;
4081
4082                 cdb[0] = is_write ? WRITE_10 : READ_10;
4083                 cdb[1] = 0;
4084                 cdb[2] = (u8) (block >> 24);
4085                 cdb[3] = (u8) (block >> 16);
4086                 cdb[4] = (u8) (block >> 8);
4087                 cdb[5] = (u8) (block);
4088                 cdb[6] = 0;
4089                 cdb[7] = (u8) (block_cnt >> 8);
4090                 cdb[8] = (u8) (block_cnt);
4091                 cdb[9] = 0;
4092                 *cdb_len = 10;
4093                 break;
4094         }
4095         return 0;
4096 }
4097
4098 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4099         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4100         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4101 {
4102         struct scsi_cmnd *cmd = c->scsi_cmd;
4103         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4104         unsigned int len;
4105         unsigned int total_len = 0;
4106         struct scatterlist *sg;
4107         u64 addr64;
4108         int use_sg, i;
4109         struct SGDescriptor *curr_sg;
4110         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4111
4112         /* TODO: implement chaining support */
4113         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4114                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4115                 return IO_ACCEL_INELIGIBLE;
4116         }
4117
4118         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4119
4120         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4121                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4122                 return IO_ACCEL_INELIGIBLE;
4123         }
4124
4125         c->cmd_type = CMD_IOACCEL1;
4126
4127         /* Adjust the DMA address to point to the accelerated command buffer */
4128         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4129                                 (c->cmdindex * sizeof(*cp));
4130         BUG_ON(c->busaddr & 0x0000007F);
4131
4132         use_sg = scsi_dma_map(cmd);
4133         if (use_sg < 0) {
4134                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4135                 return use_sg;
4136         }
4137
4138         if (use_sg) {
4139                 curr_sg = cp->SG;
4140                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4141                         addr64 = (u64) sg_dma_address(sg);
4142                         len  = sg_dma_len(sg);
4143                         total_len += len;
4144                         curr_sg->Addr = cpu_to_le64(addr64);
4145                         curr_sg->Len = cpu_to_le32(len);
4146                         curr_sg->Ext = cpu_to_le32(0);
4147                         curr_sg++;
4148                 }
4149                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4150
4151                 switch (cmd->sc_data_direction) {
4152                 case DMA_TO_DEVICE:
4153                         control |= IOACCEL1_CONTROL_DATA_OUT;
4154                         break;
4155                 case DMA_FROM_DEVICE:
4156                         control |= IOACCEL1_CONTROL_DATA_IN;
4157                         break;
4158                 case DMA_NONE:
4159                         control |= IOACCEL1_CONTROL_NODATAXFER;
4160                         break;
4161                 default:
4162                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4163                         cmd->sc_data_direction);
4164                         BUG();
4165                         break;
4166                 }
4167         } else {
4168                 control |= IOACCEL1_CONTROL_NODATAXFER;
4169         }
4170
4171         c->Header.SGList = use_sg;
4172         /* Fill out the command structure to submit */
4173         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4174         cp->transfer_len = cpu_to_le32(total_len);
4175         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4176                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4177         cp->control = cpu_to_le32(control);
4178         memcpy(cp->CDB, cdb, cdb_len);
4179         memcpy(cp->CISS_LUN, scsi3addr, 8);
4180         /* Tag was already set at init time. */
4181         enqueue_cmd_and_start_io(h, c);
4182         return 0;
4183 }
4184
4185 /*
4186  * Queue a command directly to a device behind the controller using the
4187  * I/O accelerator path.
4188  */
4189 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4190         struct CommandList *c)
4191 {
4192         struct scsi_cmnd *cmd = c->scsi_cmd;
4193         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4194
4195         c->phys_disk = dev;
4196
4197         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4198                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4199 }
4200
4201 /*
4202  * Set encryption parameters for the ioaccel2 request
4203  */
4204 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4205         struct CommandList *c, struct io_accel2_cmd *cp)
4206 {
4207         struct scsi_cmnd *cmd = c->scsi_cmd;
4208         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4209         struct raid_map_data *map = &dev->raid_map;
4210         u64 first_block;
4211
4212         /* Are we doing encryption on this device */
4213         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4214                 return;
4215         /* Set the data encryption key index. */
4216         cp->dekindex = map->dekindex;
4217
4218         /* Set the encryption enable flag, encoded into direction field. */
4219         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4220
4221         /* Set encryption tweak values based on logical block address
4222          * If block size is 512, tweak value is LBA.
4223          * For other block sizes, tweak is (LBA * block size)/ 512)
4224          */
4225         switch (cmd->cmnd[0]) {
4226         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4227         case WRITE_6:
4228         case READ_6:
4229                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4230                 break;
4231         case WRITE_10:
4232         case READ_10:
4233         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4234         case WRITE_12:
4235         case READ_12:
4236                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4237                 break;
4238         case WRITE_16:
4239         case READ_16:
4240                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4241                 break;
4242         default:
4243                 dev_err(&h->pdev->dev,
4244                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4245                         __func__, cmd->cmnd[0]);
4246                 BUG();
4247                 break;
4248         }
4249
4250         if (le32_to_cpu(map->volume_blk_size) != 512)
4251                 first_block = first_block *
4252                                 le32_to_cpu(map->volume_blk_size)/512;
4253
4254         cp->tweak_lower = cpu_to_le32(first_block);
4255         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4256 }
4257
4258 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4259         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4260         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4261 {
4262         struct scsi_cmnd *cmd = c->scsi_cmd;
4263         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4264         struct ioaccel2_sg_element *curr_sg;
4265         int use_sg, i;
4266         struct scatterlist *sg;
4267         u64 addr64;
4268         u32 len;
4269         u32 total_len = 0;
4270
4271         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4272
4273         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4274                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4275                 return IO_ACCEL_INELIGIBLE;
4276         }
4277
4278         c->cmd_type = CMD_IOACCEL2;
4279         /* Adjust the DMA address to point to the accelerated command buffer */
4280         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4281                                 (c->cmdindex * sizeof(*cp));
4282         BUG_ON(c->busaddr & 0x0000007F);
4283
4284         memset(cp, 0, sizeof(*cp));
4285         cp->IU_type = IOACCEL2_IU_TYPE;
4286
4287         use_sg = scsi_dma_map(cmd);
4288         if (use_sg < 0) {
4289                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4290                 return use_sg;
4291         }
4292
4293         if (use_sg) {
4294                 curr_sg = cp->sg;
4295                 if (use_sg > h->ioaccel_maxsg) {
4296                         addr64 = le64_to_cpu(
4297                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4298                         curr_sg->address = cpu_to_le64(addr64);
4299                         curr_sg->length = 0;
4300                         curr_sg->reserved[0] = 0;
4301                         curr_sg->reserved[1] = 0;
4302                         curr_sg->reserved[2] = 0;
4303                         curr_sg->chain_indicator = 0x80;
4304
4305                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4306                 }
4307                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4308                         addr64 = (u64) sg_dma_address(sg);
4309                         len  = sg_dma_len(sg);
4310                         total_len += len;
4311                         curr_sg->address = cpu_to_le64(addr64);
4312                         curr_sg->length = cpu_to_le32(len);
4313                         curr_sg->reserved[0] = 0;
4314                         curr_sg->reserved[1] = 0;
4315                         curr_sg->reserved[2] = 0;
4316                         curr_sg->chain_indicator = 0;
4317                         curr_sg++;
4318                 }
4319
4320                 switch (cmd->sc_data_direction) {
4321                 case DMA_TO_DEVICE:
4322                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4323                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4324                         break;
4325                 case DMA_FROM_DEVICE:
4326                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4327                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4328                         break;
4329                 case DMA_NONE:
4330                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4331                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4332                         break;
4333                 default:
4334                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4335                                 cmd->sc_data_direction);
4336                         BUG();
4337                         break;
4338                 }
4339         } else {
4340                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4341                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4342         }
4343
4344         /* Set encryption parameters, if necessary */
4345         set_encrypt_ioaccel2(h, c, cp);
4346
4347         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4348         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4349         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4350
4351         cp->data_len = cpu_to_le32(total_len);
4352         cp->err_ptr = cpu_to_le64(c->busaddr +
4353                         offsetof(struct io_accel2_cmd, error_data));
4354         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4355
4356         /* fill in sg elements */
4357         if (use_sg > h->ioaccel_maxsg) {
4358                 cp->sg_count = 1;
4359                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4360                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4361                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4362                         scsi_dma_unmap(cmd);
4363                         return -1;
4364                 }
4365         } else
4366                 cp->sg_count = (u8) use_sg;
4367
4368         enqueue_cmd_and_start_io(h, c);
4369         return 0;
4370 }
4371
4372 /*
4373  * Queue a command to the correct I/O accelerator path.
4374  */
4375 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4376         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4377         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4378 {
4379         /* Try to honor the device's queue depth */
4380         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4381                                         phys_disk->queue_depth) {
4382                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4383                 return IO_ACCEL_INELIGIBLE;
4384         }
4385         if (h->transMethod & CFGTBL_Trans_io_accel1)
4386                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4387                                                 cdb, cdb_len, scsi3addr,
4388                                                 phys_disk);
4389         else
4390                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4391                                                 cdb, cdb_len, scsi3addr,
4392                                                 phys_disk);
4393 }
4394
4395 static void raid_map_helper(struct raid_map_data *map,
4396                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4397 {
4398         if (offload_to_mirror == 0)  {
4399                 /* use physical disk in the first mirrored group. */
4400                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4401                 return;
4402         }
4403         do {
4404                 /* determine mirror group that *map_index indicates */
4405                 *current_group = *map_index /
4406                         le16_to_cpu(map->data_disks_per_row);
4407                 if (offload_to_mirror == *current_group)
4408                         continue;
4409                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4410                         /* select map index from next group */
4411                         *map_index += le16_to_cpu(map->data_disks_per_row);
4412                         (*current_group)++;
4413                 } else {
4414                         /* select map index from first group */
4415                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4416                         *current_group = 0;
4417                 }
4418         } while (offload_to_mirror != *current_group);
4419 }
4420
4421 /*
4422  * Attempt to perform offload RAID mapping for a logical volume I/O.
4423  */
4424 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4425         struct CommandList *c)
4426 {
4427         struct scsi_cmnd *cmd = c->scsi_cmd;
4428         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4429         struct raid_map_data *map = &dev->raid_map;
4430         struct raid_map_disk_data *dd = &map->data[0];
4431         int is_write = 0;
4432         u32 map_index;
4433         u64 first_block, last_block;
4434         u32 block_cnt;
4435         u32 blocks_per_row;
4436         u64 first_row, last_row;
4437         u32 first_row_offset, last_row_offset;
4438         u32 first_column, last_column;
4439         u64 r0_first_row, r0_last_row;
4440         u32 r5or6_blocks_per_row;
4441         u64 r5or6_first_row, r5or6_last_row;
4442         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4443         u32 r5or6_first_column, r5or6_last_column;
4444         u32 total_disks_per_row;
4445         u32 stripesize;
4446         u32 first_group, last_group, current_group;
4447         u32 map_row;
4448         u32 disk_handle;
4449         u64 disk_block;
4450         u32 disk_block_cnt;
4451         u8 cdb[16];
4452         u8 cdb_len;
4453         u16 strip_size;
4454 #if BITS_PER_LONG == 32
4455         u64 tmpdiv;
4456 #endif
4457         int offload_to_mirror;
4458
4459         /* check for valid opcode, get LBA and block count */
4460         switch (cmd->cmnd[0]) {
4461         case WRITE_6:
4462                 is_write = 1;
4463         case READ_6:
4464                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4465                 block_cnt = cmd->cmnd[4];
4466                 if (block_cnt == 0)
4467                         block_cnt = 256;
4468                 break;
4469         case WRITE_10:
4470                 is_write = 1;
4471         case READ_10:
4472                 first_block =
4473                         (((u64) cmd->cmnd[2]) << 24) |
4474                         (((u64) cmd->cmnd[3]) << 16) |
4475                         (((u64) cmd->cmnd[4]) << 8) |
4476                         cmd->cmnd[5];
4477                 block_cnt =
4478                         (((u32) cmd->cmnd[7]) << 8) |
4479                         cmd->cmnd[8];
4480                 break;
4481         case WRITE_12:
4482                 is_write = 1;
4483         case READ_12:
4484                 first_block =
4485                         (((u64) cmd->cmnd[2]) << 24) |
4486                         (((u64) cmd->cmnd[3]) << 16) |
4487                         (((u64) cmd->cmnd[4]) << 8) |
4488                         cmd->cmnd[5];
4489                 block_cnt =
4490                         (((u32) cmd->cmnd[6]) << 24) |
4491                         (((u32) cmd->cmnd[7]) << 16) |
4492                         (((u32) cmd->cmnd[8]) << 8) |
4493                 cmd->cmnd[9];
4494                 break;
4495         case WRITE_16:
4496                 is_write = 1;
4497         case READ_16:
4498                 first_block =
4499                         (((u64) cmd->cmnd[2]) << 56) |
4500                         (((u64) cmd->cmnd[3]) << 48) |
4501                         (((u64) cmd->cmnd[4]) << 40) |
4502                         (((u64) cmd->cmnd[5]) << 32) |
4503                         (((u64) cmd->cmnd[6]) << 24) |
4504                         (((u64) cmd->cmnd[7]) << 16) |
4505                         (((u64) cmd->cmnd[8]) << 8) |
4506                         cmd->cmnd[9];
4507                 block_cnt =
4508                         (((u32) cmd->cmnd[10]) << 24) |
4509                         (((u32) cmd->cmnd[11]) << 16) |
4510                         (((u32) cmd->cmnd[12]) << 8) |
4511                         cmd->cmnd[13];
4512                 break;
4513         default:
4514                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4515         }
4516         last_block = first_block + block_cnt - 1;
4517
4518         /* check for write to non-RAID-0 */
4519         if (is_write && dev->raid_level != 0)
4520                 return IO_ACCEL_INELIGIBLE;
4521
4522         /* check for invalid block or wraparound */
4523         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4524                 last_block < first_block)
4525                 return IO_ACCEL_INELIGIBLE;
4526
4527         /* calculate stripe information for the request */
4528         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4529                                 le16_to_cpu(map->strip_size);
4530         strip_size = le16_to_cpu(map->strip_size);
4531 #if BITS_PER_LONG == 32
4532         tmpdiv = first_block;
4533         (void) do_div(tmpdiv, blocks_per_row);
4534         first_row = tmpdiv;
4535         tmpdiv = last_block;
4536         (void) do_div(tmpdiv, blocks_per_row);
4537         last_row = tmpdiv;
4538         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4539         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4540         tmpdiv = first_row_offset;
4541         (void) do_div(tmpdiv, strip_size);
4542         first_column = tmpdiv;
4543         tmpdiv = last_row_offset;
4544         (void) do_div(tmpdiv, strip_size);
4545         last_column = tmpdiv;
4546 #else
4547         first_row = first_block / blocks_per_row;
4548         last_row = last_block / blocks_per_row;
4549         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4550         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4551         first_column = first_row_offset / strip_size;
4552         last_column = last_row_offset / strip_size;
4553 #endif
4554
4555         /* if this isn't a single row/column then give to the controller */
4556         if ((first_row != last_row) || (first_column != last_column))
4557                 return IO_ACCEL_INELIGIBLE;
4558
4559         /* proceeding with driver mapping */
4560         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4561                                 le16_to_cpu(map->metadata_disks_per_row);
4562         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4563                                 le16_to_cpu(map->row_cnt);
4564         map_index = (map_row * total_disks_per_row) + first_column;
4565
4566         switch (dev->raid_level) {
4567         case HPSA_RAID_0:
4568                 break; /* nothing special to do */
4569         case HPSA_RAID_1:
4570                 /* Handles load balance across RAID 1 members.
4571                  * (2-drive R1 and R10 with even # of drives.)
4572                  * Appropriate for SSDs, not optimal for HDDs
4573                  */
4574                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4575                 if (dev->offload_to_mirror)
4576                         map_index += le16_to_cpu(map->data_disks_per_row);
4577                 dev->offload_to_mirror = !dev->offload_to_mirror;
4578                 break;
4579         case HPSA_RAID_ADM:
4580                 /* Handles N-way mirrors  (R1-ADM)
4581                  * and R10 with # of drives divisible by 3.)
4582                  */
4583                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4584
4585                 offload_to_mirror = dev->offload_to_mirror;
4586                 raid_map_helper(map, offload_to_mirror,
4587                                 &map_index, &current_group);
4588                 /* set mirror group to use next time */
4589                 offload_to_mirror =
4590                         (offload_to_mirror >=
4591                         le16_to_cpu(map->layout_map_count) - 1)
4592                         ? 0 : offload_to_mirror + 1;
4593                 dev->offload_to_mirror = offload_to_mirror;
4594                 /* Avoid direct use of dev->offload_to_mirror within this
4595                  * function since multiple threads might simultaneously
4596                  * increment it beyond the range of dev->layout_map_count -1.
4597                  */
4598                 break;
4599         case HPSA_RAID_5:
4600         case HPSA_RAID_6:
4601                 if (le16_to_cpu(map->layout_map_count) <= 1)
4602                         break;
4603
4604                 /* Verify first and last block are in same RAID group */
4605                 r5or6_blocks_per_row =
4606                         le16_to_cpu(map->strip_size) *
4607                         le16_to_cpu(map->data_disks_per_row);
4608                 BUG_ON(r5or6_blocks_per_row == 0);
4609                 stripesize = r5or6_blocks_per_row *
4610                         le16_to_cpu(map->layout_map_count);
4611 #if BITS_PER_LONG == 32
4612                 tmpdiv = first_block;
4613                 first_group = do_div(tmpdiv, stripesize);
4614                 tmpdiv = first_group;
4615                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4616                 first_group = tmpdiv;
4617                 tmpdiv = last_block;
4618                 last_group = do_div(tmpdiv, stripesize);
4619                 tmpdiv = last_group;
4620                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4621                 last_group = tmpdiv;
4622 #else
4623                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4624                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4625 #endif
4626                 if (first_group != last_group)
4627                         return IO_ACCEL_INELIGIBLE;
4628
4629                 /* Verify request is in a single row of RAID 5/6 */
4630 #if BITS_PER_LONG == 32
4631                 tmpdiv = first_block;
4632                 (void) do_div(tmpdiv, stripesize);
4633                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4634                 tmpdiv = last_block;
4635                 (void) do_div(tmpdiv, stripesize);
4636                 r5or6_last_row = r0_last_row = tmpdiv;
4637 #else
4638                 first_row = r5or6_first_row = r0_first_row =
4639                                                 first_block / stripesize;
4640                 r5or6_last_row = r0_last_row = last_block / stripesize;
4641 #endif
4642                 if (r5or6_first_row != r5or6_last_row)
4643                         return IO_ACCEL_INELIGIBLE;
4644
4645
4646                 /* Verify request is in a single column */
4647 #if BITS_PER_LONG == 32
4648                 tmpdiv = first_block;
4649                 first_row_offset = do_div(tmpdiv, stripesize);
4650                 tmpdiv = first_row_offset;
4651                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4652                 r5or6_first_row_offset = first_row_offset;
4653                 tmpdiv = last_block;
4654                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4655                 tmpdiv = r5or6_last_row_offset;
4656                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4657                 tmpdiv = r5or6_first_row_offset;
4658                 (void) do_div(tmpdiv, map->strip_size);
4659                 first_column = r5or6_first_column = tmpdiv;
4660                 tmpdiv = r5or6_last_row_offset;
4661                 (void) do_div(tmpdiv, map->strip_size);
4662                 r5or6_last_column = tmpdiv;
4663 #else
4664                 first_row_offset = r5or6_first_row_offset =
4665                         (u32)((first_block % stripesize) %
4666                                                 r5or6_blocks_per_row);
4667
4668                 r5or6_last_row_offset =
4669                         (u32)((last_block % stripesize) %
4670                                                 r5or6_blocks_per_row);
4671
4672                 first_column = r5or6_first_column =
4673                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4674                 r5or6_last_column =
4675                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4676 #endif
4677                 if (r5or6_first_column != r5or6_last_column)
4678                         return IO_ACCEL_INELIGIBLE;
4679
4680                 /* Request is eligible */
4681                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4682                         le16_to_cpu(map->row_cnt);
4683
4684                 map_index = (first_group *
4685                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4686                         (map_row * total_disks_per_row) + first_column;
4687                 break;
4688         default:
4689                 return IO_ACCEL_INELIGIBLE;
4690         }
4691
4692         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4693                 return IO_ACCEL_INELIGIBLE;
4694
4695         c->phys_disk = dev->phys_disk[map_index];
4696
4697         disk_handle = dd[map_index].ioaccel_handle;
4698         disk_block = le64_to_cpu(map->disk_starting_blk) +
4699                         first_row * le16_to_cpu(map->strip_size) +
4700                         (first_row_offset - first_column *
4701                         le16_to_cpu(map->strip_size));
4702         disk_block_cnt = block_cnt;
4703
4704         /* handle differing logical/physical block sizes */
4705         if (map->phys_blk_shift) {
4706                 disk_block <<= map->phys_blk_shift;
4707                 disk_block_cnt <<= map->phys_blk_shift;
4708         }
4709         BUG_ON(disk_block_cnt > 0xffff);
4710
4711         /* build the new CDB for the physical disk I/O */
4712         if (disk_block > 0xffffffff) {
4713                 cdb[0] = is_write ? WRITE_16 : READ_16;
4714                 cdb[1] = 0;
4715                 cdb[2] = (u8) (disk_block >> 56);
4716                 cdb[3] = (u8) (disk_block >> 48);
4717                 cdb[4] = (u8) (disk_block >> 40);
4718                 cdb[5] = (u8) (disk_block >> 32);
4719                 cdb[6] = (u8) (disk_block >> 24);
4720                 cdb[7] = (u8) (disk_block >> 16);
4721                 cdb[8] = (u8) (disk_block >> 8);
4722                 cdb[9] = (u8) (disk_block);
4723                 cdb[10] = (u8) (disk_block_cnt >> 24);
4724                 cdb[11] = (u8) (disk_block_cnt >> 16);
4725                 cdb[12] = (u8) (disk_block_cnt >> 8);
4726                 cdb[13] = (u8) (disk_block_cnt);
4727                 cdb[14] = 0;
4728                 cdb[15] = 0;
4729                 cdb_len = 16;
4730         } else {
4731                 cdb[0] = is_write ? WRITE_10 : READ_10;
4732                 cdb[1] = 0;
4733                 cdb[2] = (u8) (disk_block >> 24);
4734                 cdb[3] = (u8) (disk_block >> 16);
4735                 cdb[4] = (u8) (disk_block >> 8);
4736                 cdb[5] = (u8) (disk_block);
4737                 cdb[6] = 0;
4738                 cdb[7] = (u8) (disk_block_cnt >> 8);
4739                 cdb[8] = (u8) (disk_block_cnt);
4740                 cdb[9] = 0;
4741                 cdb_len = 10;
4742         }
4743         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4744                                                 dev->scsi3addr,
4745                                                 dev->phys_disk[map_index]);
4746 }
4747
4748 /*
4749  * Submit commands down the "normal" RAID stack path
4750  * All callers to hpsa_ciss_submit must check lockup_detected
4751  * beforehand, before (opt.) and after calling cmd_alloc
4752  */
4753 static int hpsa_ciss_submit(struct ctlr_info *h,
4754         struct CommandList *c, struct scsi_cmnd *cmd,
4755         unsigned char scsi3addr[])
4756 {
4757         cmd->host_scribble = (unsigned char *) c;
4758         c->cmd_type = CMD_SCSI;
4759         c->scsi_cmd = cmd;
4760         c->Header.ReplyQueue = 0;  /* unused in simple mode */
4761         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4762         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4763
4764         /* Fill in the request block... */
4765
4766         c->Request.Timeout = 0;
4767         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4768         c->Request.CDBLen = cmd->cmd_len;
4769         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4770         switch (cmd->sc_data_direction) {
4771         case DMA_TO_DEVICE:
4772                 c->Request.type_attr_dir =
4773                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4774                 break;
4775         case DMA_FROM_DEVICE:
4776                 c->Request.type_attr_dir =
4777                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4778                 break;
4779         case DMA_NONE:
4780                 c->Request.type_attr_dir =
4781                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4782                 break;
4783         case DMA_BIDIRECTIONAL:
4784                 /* This can happen if a buggy application does a scsi passthru
4785                  * and sets both inlen and outlen to non-zero. ( see
4786                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4787                  */
4788
4789                 c->Request.type_attr_dir =
4790                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4791                 /* This is technically wrong, and hpsa controllers should
4792                  * reject it with CMD_INVALID, which is the most correct
4793                  * response, but non-fibre backends appear to let it
4794                  * slide by, and give the same results as if this field
4795                  * were set correctly.  Either way is acceptable for
4796                  * our purposes here.
4797                  */
4798
4799                 break;
4800
4801         default:
4802                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4803                         cmd->sc_data_direction);
4804                 BUG();
4805                 break;
4806         }
4807
4808         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4809                 hpsa_cmd_resolve_and_free(h, c);
4810                 return SCSI_MLQUEUE_HOST_BUSY;
4811         }
4812         enqueue_cmd_and_start_io(h, c);
4813         /* the cmd'll come back via intr handler in complete_scsi_command()  */
4814         return 0;
4815 }
4816
4817 static void hpsa_cmd_init(struct ctlr_info *h, int index,
4818                                 struct CommandList *c)
4819 {
4820         dma_addr_t cmd_dma_handle, err_dma_handle;
4821
4822         /* Zero out all of commandlist except the last field, refcount */
4823         memset(c, 0, offsetof(struct CommandList, refcount));
4824         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
4825         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4826         c->err_info = h->errinfo_pool + index;
4827         memset(c->err_info, 0, sizeof(*c->err_info));
4828         err_dma_handle = h->errinfo_pool_dhandle
4829             + index * sizeof(*c->err_info);
4830         c->cmdindex = index;
4831         c->busaddr = (u32) cmd_dma_handle;
4832         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4833         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4834         c->h = h;
4835         c->scsi_cmd = SCSI_CMD_IDLE;
4836 }
4837
4838 static void hpsa_preinitialize_commands(struct ctlr_info *h)
4839 {
4840         int i;
4841
4842         for (i = 0; i < h->nr_cmds; i++) {
4843                 struct CommandList *c = h->cmd_pool + i;
4844
4845                 hpsa_cmd_init(h, i, c);
4846                 atomic_set(&c->refcount, 0);
4847         }
4848 }
4849
4850 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
4851                                 struct CommandList *c)
4852 {
4853         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4854
4855         BUG_ON(c->cmdindex != index);
4856
4857         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4858         memset(c->err_info, 0, sizeof(*c->err_info));
4859         c->busaddr = (u32) cmd_dma_handle;
4860 }
4861
4862 static int hpsa_ioaccel_submit(struct ctlr_info *h,
4863                 struct CommandList *c, struct scsi_cmnd *cmd,
4864                 unsigned char *scsi3addr)
4865 {
4866         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4867         int rc = IO_ACCEL_INELIGIBLE;
4868
4869         cmd->host_scribble = (unsigned char *) c;
4870
4871         if (dev->offload_enabled) {
4872                 hpsa_cmd_init(h, c->cmdindex, c);
4873                 c->cmd_type = CMD_SCSI;
4874                 c->scsi_cmd = cmd;
4875                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
4876                 if (rc < 0)     /* scsi_dma_map failed. */
4877                         rc = SCSI_MLQUEUE_HOST_BUSY;
4878         } else if (dev->hba_ioaccel_enabled) {
4879                 hpsa_cmd_init(h, c->cmdindex, c);
4880                 c->cmd_type = CMD_SCSI;
4881                 c->scsi_cmd = cmd;
4882                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
4883                 if (rc < 0)     /* scsi_dma_map failed. */
4884                         rc = SCSI_MLQUEUE_HOST_BUSY;
4885         }
4886         return rc;
4887 }
4888
4889 static void hpsa_command_resubmit_worker(struct work_struct *work)
4890 {
4891         struct scsi_cmnd *cmd;
4892         struct hpsa_scsi_dev_t *dev;
4893         struct CommandList *c = container_of(work, struct CommandList, work);
4894
4895         cmd = c->scsi_cmd;
4896         dev = cmd->device->hostdata;
4897         if (!dev) {
4898                 cmd->result = DID_NO_CONNECT << 16;
4899                 return hpsa_cmd_free_and_done(c->h, c, cmd);
4900         }
4901         if (c->reset_pending)
4902                 return hpsa_cmd_resolve_and_free(c->h, c);
4903         if (c->abort_pending)
4904                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
4905         if (c->cmd_type == CMD_IOACCEL2) {
4906                 struct ctlr_info *h = c->h;
4907                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
4908                 int rc;
4909
4910                 if (c2->error_data.serv_response ==
4911                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
4912                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
4913                         if (rc == 0)
4914                                 return;
4915                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4916                                 /*
4917                                  * If we get here, it means dma mapping failed.
4918                                  * Try again via scsi mid layer, which will
4919                                  * then get SCSI_MLQUEUE_HOST_BUSY.
4920                                  */
4921                                 cmd->result = DID_IMM_RETRY << 16;
4922                                 return hpsa_cmd_free_and_done(h, c, cmd);
4923                         }
4924                         /* else, fall thru and resubmit down CISS path */
4925                 }
4926         }
4927         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4928         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4929                 /*
4930                  * If we get here, it means dma mapping failed. Try
4931                  * again via scsi mid layer, which will then get
4932                  * SCSI_MLQUEUE_HOST_BUSY.
4933                  *
4934                  * hpsa_ciss_submit will have already freed c
4935                  * if it encountered a dma mapping failure.
4936                  */
4937                 cmd->result = DID_IMM_RETRY << 16;
4938                 cmd->scsi_done(cmd);
4939         }
4940 }
4941
4942 /* Running in struct Scsi_Host->host_lock less mode */
4943 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4944 {
4945         struct ctlr_info *h;
4946         struct hpsa_scsi_dev_t *dev;
4947         unsigned char scsi3addr[8];
4948         struct CommandList *c;
4949         int rc = 0;
4950
4951         /* Get the ptr to our adapter structure out of cmd->host. */
4952         h = sdev_to_hba(cmd->device);
4953
4954         BUG_ON(cmd->request->tag < 0);
4955
4956         dev = cmd->device->hostdata;
4957         if (!dev) {
4958                 cmd->result = DID_NO_CONNECT << 16;
4959                 cmd->scsi_done(cmd);
4960                 return 0;
4961         }
4962
4963         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4964
4965         if (unlikely(lockup_detected(h))) {
4966                 cmd->result = DID_NO_CONNECT << 16;
4967                 cmd->scsi_done(cmd);
4968                 return 0;
4969         }
4970         c = cmd_tagged_alloc(h, cmd);
4971
4972         /*
4973          * Call alternate submit routine for I/O accelerated commands.
4974          * Retries always go down the normal I/O path.
4975          */
4976         if (likely(cmd->retries == 0 &&
4977                 cmd->request->cmd_type == REQ_TYPE_FS &&
4978                 h->acciopath_status)) {
4979                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
4980                 if (rc == 0)
4981                         return 0;
4982                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4983                         hpsa_cmd_resolve_and_free(h, c);
4984                         return SCSI_MLQUEUE_HOST_BUSY;
4985                 }
4986         }
4987         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4988 }
4989
4990 static void hpsa_scan_complete(struct ctlr_info *h)
4991 {
4992         unsigned long flags;
4993
4994         spin_lock_irqsave(&h->scan_lock, flags);
4995         h->scan_finished = 1;
4996         wake_up_all(&h->scan_wait_queue);
4997         spin_unlock_irqrestore(&h->scan_lock, flags);
4998 }
4999
5000 static void hpsa_scan_start(struct Scsi_Host *sh)
5001 {
5002         struct ctlr_info *h = shost_to_hba(sh);
5003         unsigned long flags;
5004
5005         /*
5006          * Don't let rescans be initiated on a controller known to be locked
5007          * up.  If the controller locks up *during* a rescan, that thread is
5008          * probably hosed, but at least we can prevent new rescan threads from
5009          * piling up on a locked up controller.
5010          */
5011         if (unlikely(lockup_detected(h)))
5012                 return hpsa_scan_complete(h);
5013
5014         /* wait until any scan already in progress is finished. */
5015         while (1) {
5016                 spin_lock_irqsave(&h->scan_lock, flags);
5017                 if (h->scan_finished)
5018                         break;
5019                 spin_unlock_irqrestore(&h->scan_lock, flags);
5020                 wait_event(h->scan_wait_queue, h->scan_finished);
5021                 /* Note: We don't need to worry about a race between this
5022                  * thread and driver unload because the midlayer will
5023                  * have incremented the reference count, so unload won't
5024                  * happen if we're in here.
5025                  */
5026         }
5027         h->scan_finished = 0; /* mark scan as in progress */
5028         spin_unlock_irqrestore(&h->scan_lock, flags);
5029
5030         if (unlikely(lockup_detected(h)))
5031                 return hpsa_scan_complete(h);
5032
5033         hpsa_update_scsi_devices(h);
5034
5035         hpsa_scan_complete(h);
5036 }
5037
5038 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5039 {
5040         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5041
5042         if (!logical_drive)
5043                 return -ENODEV;
5044
5045         if (qdepth < 1)
5046                 qdepth = 1;
5047         else if (qdepth > logical_drive->queue_depth)
5048                 qdepth = logical_drive->queue_depth;
5049
5050         return scsi_change_queue_depth(sdev, qdepth);
5051 }
5052
5053 static int hpsa_scan_finished(struct Scsi_Host *sh,
5054         unsigned long elapsed_time)
5055 {
5056         struct ctlr_info *h = shost_to_hba(sh);
5057         unsigned long flags;
5058         int finished;
5059
5060         spin_lock_irqsave(&h->scan_lock, flags);
5061         finished = h->scan_finished;
5062         spin_unlock_irqrestore(&h->scan_lock, flags);
5063         return finished;
5064 }
5065
5066 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5067 {
5068         struct Scsi_Host *sh;
5069         int error;
5070
5071         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5072         if (sh == NULL) {
5073                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5074                 return -ENOMEM;
5075         }
5076
5077         sh->io_port = 0;
5078         sh->n_io_port = 0;
5079         sh->this_id = -1;
5080         sh->max_channel = 3;
5081         sh->max_cmd_len = MAX_COMMAND_SIZE;
5082         sh->max_lun = HPSA_MAX_LUN;
5083         sh->max_id = HPSA_MAX_LUN;
5084         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5085         sh->cmd_per_lun = sh->can_queue;
5086         sh->sg_tablesize = h->maxsgentries;
5087         sh->hostdata[0] = (unsigned long) h;
5088         sh->irq = h->intr[h->intr_mode];
5089         sh->unique_id = sh->irq;
5090         error = scsi_init_shared_tag_map(sh, sh->can_queue);
5091         if (error) {
5092                 dev_err(&h->pdev->dev,
5093                         "%s: scsi_init_shared_tag_map failed for controller %d\n",
5094                         __func__, h->ctlr);
5095                         scsi_host_put(sh);
5096                         return error;
5097         }
5098         h->scsi_host = sh;
5099         return 0;
5100 }
5101
5102 static int hpsa_scsi_add_host(struct ctlr_info *h)
5103 {
5104         int rv;
5105
5106         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5107         if (rv) {
5108                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5109                 return rv;
5110         }
5111         scsi_scan_host(h->scsi_host);
5112         return 0;
5113 }
5114
5115 /*
5116  * The block layer has already gone to the trouble of picking out a unique,
5117  * small-integer tag for this request.  We use an offset from that value as
5118  * an index to select our command block.  (The offset allows us to reserve the
5119  * low-numbered entries for our own uses.)
5120  */
5121 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5122 {
5123         int idx = scmd->request->tag;
5124
5125         if (idx < 0)
5126                 return idx;
5127
5128         /* Offset to leave space for internal cmds. */
5129         return idx += HPSA_NRESERVED_CMDS;
5130 }
5131
5132 /*
5133  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5134  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5135  */
5136 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5137                                 struct CommandList *c, unsigned char lunaddr[],
5138                                 int reply_queue)
5139 {
5140         int rc;
5141
5142         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5143         (void) fill_cmd(c, TEST_UNIT_READY, h,
5144                         NULL, 0, 0, lunaddr, TYPE_CMD);
5145         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5146         if (rc)
5147                 return rc;
5148         /* no unmap needed here because no data xfer. */
5149
5150         /* Check if the unit is already ready. */
5151         if (c->err_info->CommandStatus == CMD_SUCCESS)
5152                 return 0;
5153
5154         /*
5155          * The first command sent after reset will receive "unit attention" to
5156          * indicate that the LUN has been reset...this is actually what we're
5157          * looking for (but, success is good too).
5158          */
5159         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5160                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5161                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5162                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5163                 return 0;
5164
5165         return 1;
5166 }
5167
5168 /*
5169  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5170  * returns zero when the unit is ready, and non-zero when giving up.
5171  */
5172 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5173                                 struct CommandList *c,
5174                                 unsigned char lunaddr[], int reply_queue)
5175 {
5176         int rc;
5177         int count = 0;
5178         int waittime = 1; /* seconds */
5179
5180         /* Send test unit ready until device ready, or give up. */
5181         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5182
5183                 /*
5184                  * Wait for a bit.  do this first, because if we send
5185                  * the TUR right away, the reset will just abort it.
5186                  */
5187                 msleep(1000 * waittime);
5188
5189                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5190                 if (!rc)
5191                         break;
5192
5193                 /* Increase wait time with each try, up to a point. */
5194                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5195                         waittime *= 2;
5196
5197                 dev_warn(&h->pdev->dev,
5198                          "waiting %d secs for device to become ready.\n",
5199                          waittime);
5200         }
5201
5202         return rc;
5203 }
5204
5205 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5206                                            unsigned char lunaddr[],
5207                                            int reply_queue)
5208 {
5209         int first_queue;
5210         int last_queue;
5211         int rq;
5212         int rc = 0;
5213         struct CommandList *c;
5214
5215         c = cmd_alloc(h);
5216
5217         /*
5218          * If no specific reply queue was requested, then send the TUR
5219          * repeatedly, requesting a reply on each reply queue; otherwise execute
5220          * the loop exactly once using only the specified queue.
5221          */
5222         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5223                 first_queue = 0;
5224                 last_queue = h->nreply_queues - 1;
5225         } else {
5226                 first_queue = reply_queue;
5227                 last_queue = reply_queue;
5228         }
5229
5230         for (rq = first_queue; rq <= last_queue; rq++) {
5231                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5232                 if (rc)
5233                         break;
5234         }
5235
5236         if (rc)
5237                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5238         else
5239                 dev_warn(&h->pdev->dev, "device is ready.\n");
5240
5241         cmd_free(h, c);
5242         return rc;
5243 }
5244
5245 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5246  * complaining.  Doing a host- or bus-reset can't do anything good here.
5247  */
5248 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5249 {
5250         int rc;
5251         struct ctlr_info *h;
5252         struct hpsa_scsi_dev_t *dev;
5253         u8 reset_type;
5254         char msg[48];
5255
5256         /* find the controller to which the command to be aborted was sent */
5257         h = sdev_to_hba(scsicmd->device);
5258         if (h == NULL) /* paranoia */
5259                 return FAILED;
5260
5261         if (lockup_detected(h))
5262                 return FAILED;
5263
5264         dev = scsicmd->device->hostdata;
5265         if (!dev) {
5266                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5267                 return FAILED;
5268         }
5269
5270         /* if controller locked up, we can guarantee command won't complete */
5271         if (lockup_detected(h)) {
5272                 snprintf(msg, sizeof(msg),
5273                          "cmd %d RESET FAILED, lockup detected",
5274                          hpsa_get_cmd_index(scsicmd));
5275                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5276                 return FAILED;
5277         }
5278
5279         /* this reset request might be the result of a lockup; check */
5280         if (detect_controller_lockup(h)) {
5281                 snprintf(msg, sizeof(msg),
5282                          "cmd %d RESET FAILED, new lockup detected",
5283                          hpsa_get_cmd_index(scsicmd));
5284                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5285                 return FAILED;
5286         }
5287
5288         /* Do not attempt on controller */
5289         if (is_hba_lunid(dev->scsi3addr))
5290                 return SUCCESS;
5291
5292         if (is_logical_dev_addr_mode(dev->scsi3addr))
5293                 reset_type = HPSA_DEVICE_RESET_MSG;
5294         else
5295                 reset_type = HPSA_PHYS_TARGET_RESET;
5296
5297         sprintf(msg, "resetting %s",
5298                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5299         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5300
5301         h->reset_in_progress = 1;
5302
5303         /* send a reset to the SCSI LUN which the command was sent to */
5304         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5305                            DEFAULT_REPLY_QUEUE);
5306         sprintf(msg, "reset %s %s",
5307                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5308                 rc == 0 ? "completed successfully" : "failed");
5309         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5310         h->reset_in_progress = 0;
5311         return rc == 0 ? SUCCESS : FAILED;
5312 }
5313
5314 static void swizzle_abort_tag(u8 *tag)
5315 {
5316         u8 original_tag[8];
5317
5318         memcpy(original_tag, tag, 8);
5319         tag[0] = original_tag[3];
5320         tag[1] = original_tag[2];
5321         tag[2] = original_tag[1];
5322         tag[3] = original_tag[0];
5323         tag[4] = original_tag[7];
5324         tag[5] = original_tag[6];
5325         tag[6] = original_tag[5];
5326         tag[7] = original_tag[4];
5327 }
5328
5329 static void hpsa_get_tag(struct ctlr_info *h,
5330         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5331 {
5332         u64 tag;
5333         if (c->cmd_type == CMD_IOACCEL1) {
5334                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5335                         &h->ioaccel_cmd_pool[c->cmdindex];
5336                 tag = le64_to_cpu(cm1->tag);
5337                 *tagupper = cpu_to_le32(tag >> 32);
5338                 *taglower = cpu_to_le32(tag);
5339                 return;
5340         }
5341         if (c->cmd_type == CMD_IOACCEL2) {
5342                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5343                         &h->ioaccel2_cmd_pool[c->cmdindex];
5344                 /* upper tag not used in ioaccel2 mode */
5345                 memset(tagupper, 0, sizeof(*tagupper));
5346                 *taglower = cm2->Tag;
5347                 return;
5348         }
5349         tag = le64_to_cpu(c->Header.tag);
5350         *tagupper = cpu_to_le32(tag >> 32);
5351         *taglower = cpu_to_le32(tag);
5352 }
5353
5354 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5355         struct CommandList *abort, int reply_queue)
5356 {
5357         int rc = IO_OK;
5358         struct CommandList *c;
5359         struct ErrorInfo *ei;
5360         __le32 tagupper, taglower;
5361
5362         c = cmd_alloc(h);
5363
5364         /* fill_cmd can't fail here, no buffer to map */
5365         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5366                 0, 0, scsi3addr, TYPE_MSG);
5367         if (h->needs_abort_tags_swizzled)
5368                 swizzle_abort_tag(&c->Request.CDB[4]);
5369         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5370         hpsa_get_tag(h, abort, &taglower, &tagupper);
5371         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5372                 __func__, tagupper, taglower);
5373         /* no unmap needed here because no data xfer. */
5374
5375         ei = c->err_info;
5376         switch (ei->CommandStatus) {
5377         case CMD_SUCCESS:
5378                 break;
5379         case CMD_TMF_STATUS:
5380                 rc = hpsa_evaluate_tmf_status(h, c);
5381                 break;
5382         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5383                 rc = -1;
5384                 break;
5385         default:
5386                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5387                         __func__, tagupper, taglower);
5388                 hpsa_scsi_interpret_error(h, c);
5389                 rc = -1;
5390                 break;
5391         }
5392         cmd_free(h, c);
5393         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5394                 __func__, tagupper, taglower);
5395         return rc;
5396 }
5397
5398 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5399         struct CommandList *command_to_abort, int reply_queue)
5400 {
5401         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5402         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5403         struct io_accel2_cmd *c2a =
5404                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5405         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5406         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5407
5408         /*
5409          * We're overlaying struct hpsa_tmf_struct on top of something which
5410          * was allocated as a struct io_accel2_cmd, so we better be sure it
5411          * actually fits, and doesn't overrun the error info space.
5412          */
5413         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5414                         sizeof(struct io_accel2_cmd));
5415         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5416                         offsetof(struct hpsa_tmf_struct, error_len) +
5417                                 sizeof(ac->error_len));
5418
5419         c->cmd_type = IOACCEL2_TMF;
5420         c->scsi_cmd = SCSI_CMD_BUSY;
5421
5422         /* Adjust the DMA address to point to the accelerated command buffer */
5423         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5424                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5425         BUG_ON(c->busaddr & 0x0000007F);
5426
5427         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5428         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5429         ac->reply_queue = reply_queue;
5430         ac->tmf = IOACCEL2_TMF_ABORT;
5431         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5432         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5433         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5434         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5435         ac->error_ptr = cpu_to_le64(c->busaddr +
5436                         offsetof(struct io_accel2_cmd, error_data));
5437         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5438 }
5439
5440 /* ioaccel2 path firmware cannot handle abort task requests.
5441  * Change abort requests to physical target reset, and send to the
5442  * address of the physical disk used for the ioaccel 2 command.
5443  * Return 0 on success (IO_OK)
5444  *       -1 on failure
5445  */
5446
5447 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5448         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5449 {
5450         int rc = IO_OK;
5451         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5452         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5453         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5454         unsigned char *psa = &phys_scsi3addr[0];
5455
5456         /* Get a pointer to the hpsa logical device. */
5457         scmd = abort->scsi_cmd;
5458         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5459         if (dev == NULL) {
5460                 dev_warn(&h->pdev->dev,
5461                         "Cannot abort: no device pointer for command.\n");
5462                         return -1; /* not abortable */
5463         }
5464
5465         if (h->raid_offload_debug > 0)
5466                 dev_info(&h->pdev->dev,
5467                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5468                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5469                         "Reset as abort",
5470                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5471                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5472
5473         if (!dev->offload_enabled) {
5474                 dev_warn(&h->pdev->dev,
5475                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5476                 return -1; /* not abortable */
5477         }
5478
5479         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5480         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5481                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5482                 return -1; /* not abortable */
5483         }
5484
5485         /* send the reset */
5486         if (h->raid_offload_debug > 0)
5487                 dev_info(&h->pdev->dev,
5488                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5489                         psa[0], psa[1], psa[2], psa[3],
5490                         psa[4], psa[5], psa[6], psa[7]);
5491         rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5492         if (rc != 0) {
5493                 dev_warn(&h->pdev->dev,
5494                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5495                         psa[0], psa[1], psa[2], psa[3],
5496                         psa[4], psa[5], psa[6], psa[7]);
5497                 return rc; /* failed to reset */
5498         }
5499
5500         /* wait for device to recover */
5501         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5502                 dev_warn(&h->pdev->dev,
5503                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5504                         psa[0], psa[1], psa[2], psa[3],
5505                         psa[4], psa[5], psa[6], psa[7]);
5506                 return -1;  /* failed to recover */
5507         }
5508
5509         /* device recovered */
5510         dev_info(&h->pdev->dev,
5511                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5512                 psa[0], psa[1], psa[2], psa[3],
5513                 psa[4], psa[5], psa[6], psa[7]);
5514
5515         return rc; /* success */
5516 }
5517
5518 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5519         struct CommandList *abort, int reply_queue)
5520 {
5521         int rc = IO_OK;
5522         struct CommandList *c;
5523         __le32 taglower, tagupper;
5524         struct hpsa_scsi_dev_t *dev;
5525         struct io_accel2_cmd *c2;
5526
5527         dev = abort->scsi_cmd->device->hostdata;
5528         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5529                 return -1;
5530
5531         c = cmd_alloc(h);
5532         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5533         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5534         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5535         hpsa_get_tag(h, abort, &taglower, &tagupper);
5536         dev_dbg(&h->pdev->dev,
5537                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5538                 __func__, tagupper, taglower);
5539         /* no unmap needed here because no data xfer. */
5540
5541         dev_dbg(&h->pdev->dev,
5542                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5543                 __func__, tagupper, taglower, c2->error_data.serv_response);
5544         switch (c2->error_data.serv_response) {
5545         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5546         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5547                 rc = 0;
5548                 break;
5549         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5550         case IOACCEL2_SERV_RESPONSE_FAILURE:
5551         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5552                 rc = -1;
5553                 break;
5554         default:
5555                 dev_warn(&h->pdev->dev,
5556                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5557                         __func__, tagupper, taglower,
5558                         c2->error_data.serv_response);
5559                 rc = -1;
5560         }
5561         cmd_free(h, c);
5562         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5563                 tagupper, taglower);
5564         return rc;
5565 }
5566
5567 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5568         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5569 {
5570         /*
5571          * ioccelerator mode 2 commands should be aborted via the
5572          * accelerated path, since RAID path is unaware of these commands,
5573          * but not all underlying firmware can handle abort TMF.
5574          * Change abort to physical device reset when abort TMF is unsupported.
5575          */
5576         if (abort->cmd_type == CMD_IOACCEL2) {
5577                 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5578                         return hpsa_send_abort_ioaccel2(h, abort,
5579                                                 reply_queue);
5580                 else
5581                         return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5582                                                         abort, reply_queue);
5583         }
5584         return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5585 }
5586
5587 /* Find out which reply queue a command was meant to return on */
5588 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5589                                         struct CommandList *c)
5590 {
5591         if (c->cmd_type == CMD_IOACCEL2)
5592                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5593         return c->Header.ReplyQueue;
5594 }
5595
5596 /*
5597  * Limit concurrency of abort commands to prevent
5598  * over-subscription of commands
5599  */
5600 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5601 {
5602 #define ABORT_CMD_WAIT_MSECS 5000
5603         return !wait_event_timeout(h->abort_cmd_wait_queue,
5604                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5605                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5606 }
5607
5608 /* Send an abort for the specified command.
5609  *      If the device and controller support it,
5610  *              send a task abort request.
5611  */
5612 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5613 {
5614
5615         int rc;
5616         struct ctlr_info *h;
5617         struct hpsa_scsi_dev_t *dev;
5618         struct CommandList *abort; /* pointer to command to be aborted */
5619         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
5620         char msg[256];          /* For debug messaging. */
5621         int ml = 0;
5622         __le32 tagupper, taglower;
5623         int refcount, reply_queue;
5624
5625         if (sc == NULL)
5626                 return FAILED;
5627
5628         if (sc->device == NULL)
5629                 return FAILED;
5630
5631         /* Find the controller of the command to be aborted */
5632         h = sdev_to_hba(sc->device);
5633         if (h == NULL)
5634                 return FAILED;
5635
5636         /* Find the device of the command to be aborted */
5637         dev = sc->device->hostdata;
5638         if (!dev) {
5639                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5640                                 msg);
5641                 return FAILED;
5642         }
5643
5644         /* If controller locked up, we can guarantee command won't complete */
5645         if (lockup_detected(h)) {
5646                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5647                                         "ABORT FAILED, lockup detected");
5648                 return FAILED;
5649         }
5650
5651         /* This is a good time to check if controller lockup has occurred */
5652         if (detect_controller_lockup(h)) {
5653                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5654                                         "ABORT FAILED, new lockup detected");
5655                 return FAILED;
5656         }
5657
5658         /* Check that controller supports some kind of task abort */
5659         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5660                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5661                 return FAILED;
5662
5663         memset(msg, 0, sizeof(msg));
5664         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5665                 h->scsi_host->host_no, sc->device->channel,
5666                 sc->device->id, sc->device->lun,
5667                 "Aborting command", sc);
5668
5669         /* Get SCSI command to be aborted */
5670         abort = (struct CommandList *) sc->host_scribble;
5671         if (abort == NULL) {
5672                 /* This can happen if the command already completed. */
5673                 return SUCCESS;
5674         }
5675         refcount = atomic_inc_return(&abort->refcount);
5676         if (refcount == 1) { /* Command is done already. */
5677                 cmd_free(h, abort);
5678                 return SUCCESS;
5679         }
5680
5681         /* Don't bother trying the abort if we know it won't work. */
5682         if (abort->cmd_type != CMD_IOACCEL2 &&
5683                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5684                 cmd_free(h, abort);
5685                 return FAILED;
5686         }
5687
5688         /*
5689          * Check that we're aborting the right command.
5690          * It's possible the CommandList already completed and got re-used.
5691          */
5692         if (abort->scsi_cmd != sc) {
5693                 cmd_free(h, abort);
5694                 return SUCCESS;
5695         }
5696
5697         abort->abort_pending = true;
5698         hpsa_get_tag(h, abort, &taglower, &tagupper);
5699         reply_queue = hpsa_extract_reply_queue(h, abort);
5700         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5701         as  = abort->scsi_cmd;
5702         if (as != NULL)
5703                 ml += sprintf(msg+ml,
5704                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5705                         as->cmd_len, as->cmnd[0], as->cmnd[1],
5706                         as->serial_number);
5707         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5708         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5709
5710         /*
5711          * Command is in flight, or possibly already completed
5712          * by the firmware (but not to the scsi mid layer) but we can't
5713          * distinguish which.  Send the abort down.
5714          */
5715         if (wait_for_available_abort_cmd(h)) {
5716                 dev_warn(&h->pdev->dev,
5717                         "%s FAILED, timeout waiting for an abort command to become available.\n",
5718                         msg);
5719                 cmd_free(h, abort);
5720                 return FAILED;
5721         }
5722         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5723         atomic_inc(&h->abort_cmds_available);
5724         wake_up_all(&h->abort_cmd_wait_queue);
5725         if (rc != 0) {
5726                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5727                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5728                                 "FAILED to abort command");
5729                 cmd_free(h, abort);
5730                 return FAILED;
5731         }
5732         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5733         wait_event(h->event_sync_wait_queue,
5734                    abort->scsi_cmd != sc || lockup_detected(h));
5735         cmd_free(h, abort);
5736         return !lockup_detected(h) ? SUCCESS : FAILED;
5737 }
5738
5739 /*
5740  * For operations with an associated SCSI command, a command block is allocated
5741  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5742  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5743  * the complement, although cmd_free() may be called instead.
5744  */
5745 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5746                                             struct scsi_cmnd *scmd)
5747 {
5748         int idx = hpsa_get_cmd_index(scmd);
5749         struct CommandList *c = h->cmd_pool + idx;
5750
5751         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5752                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5753                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5754                 /* The index value comes from the block layer, so if it's out of
5755                  * bounds, it's probably not our bug.
5756                  */
5757                 BUG();
5758         }
5759
5760         atomic_inc(&c->refcount);
5761         if (unlikely(!hpsa_is_cmd_idle(c))) {
5762                 /*
5763                  * We expect that the SCSI layer will hand us a unique tag
5764                  * value.  Thus, there should never be a collision here between
5765                  * two requests...because if the selected command isn't idle
5766                  * then someone is going to be very disappointed.
5767                  */
5768                 dev_err(&h->pdev->dev,
5769                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5770                         idx);
5771                 if (c->scsi_cmd != NULL)
5772                         scsi_print_command(c->scsi_cmd);
5773                 scsi_print_command(scmd);
5774         }
5775
5776         hpsa_cmd_partial_init(h, idx, c);
5777         return c;
5778 }
5779
5780 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5781 {
5782         /*
5783          * Release our reference to the block.  We don't need to do anything
5784          * else to free it, because it is accessed by index.  (There's no point
5785          * in checking the result of the decrement, since we cannot guarantee
5786          * that there isn't a concurrent abort which is also accessing it.)
5787          */
5788         (void)atomic_dec(&c->refcount);
5789 }
5790
5791 /*
5792  * For operations that cannot sleep, a command block is allocated at init,
5793  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5794  * which ones are free or in use.  Lock must be held when calling this.
5795  * cmd_free() is the complement.
5796  * This function never gives up and returns NULL.  If it hangs,
5797  * another thread must call cmd_free() to free some tags.
5798  */
5799
5800 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5801 {
5802         struct CommandList *c;
5803         int refcount, i;
5804         int offset = 0;
5805
5806         /*
5807          * There is some *extremely* small but non-zero chance that that
5808          * multiple threads could get in here, and one thread could
5809          * be scanning through the list of bits looking for a free
5810          * one, but the free ones are always behind him, and other
5811          * threads sneak in behind him and eat them before he can
5812          * get to them, so that while there is always a free one, a
5813          * very unlucky thread might be starved anyway, never able to
5814          * beat the other threads.  In reality, this happens so
5815          * infrequently as to be indistinguishable from never.
5816          *
5817          * Note that we start allocating commands before the SCSI host structure
5818          * is initialized.  Since the search starts at bit zero, this
5819          * all works, since we have at least one command structure available;
5820          * however, it means that the structures with the low indexes have to be
5821          * reserved for driver-initiated requests, while requests from the block
5822          * layer will use the higher indexes.
5823          */
5824
5825         for (;;) {
5826                 i = find_next_zero_bit(h->cmd_pool_bits,
5827                                         HPSA_NRESERVED_CMDS,
5828                                         offset);
5829                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5830                         offset = 0;
5831                         continue;
5832                 }
5833                 c = h->cmd_pool + i;
5834                 refcount = atomic_inc_return(&c->refcount);
5835                 if (unlikely(refcount > 1)) {
5836                         cmd_free(h, c); /* already in use */
5837                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
5838                         continue;
5839                 }
5840                 set_bit(i & (BITS_PER_LONG - 1),
5841                         h->cmd_pool_bits + (i / BITS_PER_LONG));
5842                 break; /* it's ours now. */
5843         }
5844         hpsa_cmd_partial_init(h, i, c);
5845         return c;
5846 }
5847
5848 /*
5849  * This is the complementary operation to cmd_alloc().  Note, however, in some
5850  * corner cases it may also be used to free blocks allocated by
5851  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5852  * the clear-bit is harmless.
5853  */
5854 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5855 {
5856         if (atomic_dec_and_test(&c->refcount)) {
5857                 int i;
5858
5859                 i = c - h->cmd_pool;
5860                 clear_bit(i & (BITS_PER_LONG - 1),
5861                           h->cmd_pool_bits + (i / BITS_PER_LONG));
5862         }
5863 }
5864
5865 #ifdef CONFIG_COMPAT
5866
5867 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5868         void __user *arg)
5869 {
5870         IOCTL32_Command_struct __user *arg32 =
5871             (IOCTL32_Command_struct __user *) arg;
5872         IOCTL_Command_struct arg64;
5873         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5874         int err;
5875         u32 cp;
5876
5877         memset(&arg64, 0, sizeof(arg64));
5878         err = 0;
5879         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5880                            sizeof(arg64.LUN_info));
5881         err |= copy_from_user(&arg64.Request, &arg32->Request,
5882                            sizeof(arg64.Request));
5883         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5884                            sizeof(arg64.error_info));
5885         err |= get_user(arg64.buf_size, &arg32->buf_size);
5886         err |= get_user(cp, &arg32->buf);
5887         arg64.buf = compat_ptr(cp);
5888         err |= copy_to_user(p, &arg64, sizeof(arg64));
5889
5890         if (err)
5891                 return -EFAULT;
5892
5893         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5894         if (err)
5895                 return err;
5896         err |= copy_in_user(&arg32->error_info, &p->error_info,
5897                          sizeof(arg32->error_info));
5898         if (err)
5899                 return -EFAULT;
5900         return err;
5901 }
5902
5903 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
5904         int cmd, void __user *arg)
5905 {
5906         BIG_IOCTL32_Command_struct __user *arg32 =
5907             (BIG_IOCTL32_Command_struct __user *) arg;
5908         BIG_IOCTL_Command_struct arg64;
5909         BIG_IOCTL_Command_struct __user *p =
5910             compat_alloc_user_space(sizeof(arg64));
5911         int err;
5912         u32 cp;
5913
5914         memset(&arg64, 0, sizeof(arg64));
5915         err = 0;
5916         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5917                            sizeof(arg64.LUN_info));
5918         err |= copy_from_user(&arg64.Request, &arg32->Request,
5919                            sizeof(arg64.Request));
5920         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5921                            sizeof(arg64.error_info));
5922         err |= get_user(arg64.buf_size, &arg32->buf_size);
5923         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
5924         err |= get_user(cp, &arg32->buf);
5925         arg64.buf = compat_ptr(cp);
5926         err |= copy_to_user(p, &arg64, sizeof(arg64));
5927
5928         if (err)
5929                 return -EFAULT;
5930
5931         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5932         if (err)
5933                 return err;
5934         err |= copy_in_user(&arg32->error_info, &p->error_info,
5935                          sizeof(arg32->error_info));
5936         if (err)
5937                 return -EFAULT;
5938         return err;
5939 }
5940
5941 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5942 {
5943         switch (cmd) {
5944         case CCISS_GETPCIINFO:
5945         case CCISS_GETINTINFO:
5946         case CCISS_SETINTINFO:
5947         case CCISS_GETNODENAME:
5948         case CCISS_SETNODENAME:
5949         case CCISS_GETHEARTBEAT:
5950         case CCISS_GETBUSTYPES:
5951         case CCISS_GETFIRMVER:
5952         case CCISS_GETDRIVVER:
5953         case CCISS_REVALIDVOLS:
5954         case CCISS_DEREGDISK:
5955         case CCISS_REGNEWDISK:
5956         case CCISS_REGNEWD:
5957         case CCISS_RESCANDISK:
5958         case CCISS_GETLUNINFO:
5959                 return hpsa_ioctl(dev, cmd, arg);
5960
5961         case CCISS_PASSTHRU32:
5962                 return hpsa_ioctl32_passthru(dev, cmd, arg);
5963         case CCISS_BIG_PASSTHRU32:
5964                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
5965
5966         default:
5967                 return -ENOIOCTLCMD;
5968         }
5969 }
5970 #endif
5971
5972 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
5973 {
5974         struct hpsa_pci_info pciinfo;
5975
5976         if (!argp)
5977                 return -EINVAL;
5978         pciinfo.domain = pci_domain_nr(h->pdev->bus);
5979         pciinfo.bus = h->pdev->bus->number;
5980         pciinfo.dev_fn = h->pdev->devfn;
5981         pciinfo.board_id = h->board_id;
5982         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
5983                 return -EFAULT;
5984         return 0;
5985 }
5986
5987 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
5988 {
5989         DriverVer_type DriverVer;
5990         unsigned char vmaj, vmin, vsubmin;
5991         int rc;
5992
5993         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
5994                 &vmaj, &vmin, &vsubmin);
5995         if (rc != 3) {
5996                 dev_info(&h->pdev->dev, "driver version string '%s' "
5997                         "unrecognized.", HPSA_DRIVER_VERSION);
5998                 vmaj = 0;
5999                 vmin = 0;
6000                 vsubmin = 0;
6001         }
6002         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6003         if (!argp)
6004                 return -EINVAL;
6005         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6006                 return -EFAULT;
6007         return 0;
6008 }
6009
6010 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6011 {
6012         IOCTL_Command_struct iocommand;
6013         struct CommandList *c;
6014         char *buff = NULL;
6015         u64 temp64;
6016         int rc = 0;
6017
6018         if (!argp)
6019                 return -EINVAL;
6020         if (!capable(CAP_SYS_RAWIO))
6021                 return -EPERM;
6022         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6023                 return -EFAULT;
6024         if ((iocommand.buf_size < 1) &&
6025             (iocommand.Request.Type.Direction != XFER_NONE)) {
6026                 return -EINVAL;
6027         }
6028         if (iocommand.buf_size > 0) {
6029                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6030                 if (buff == NULL)
6031                         return -ENOMEM;
6032                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6033                         /* Copy the data into the buffer we created */
6034                         if (copy_from_user(buff, iocommand.buf,
6035                                 iocommand.buf_size)) {
6036                                 rc = -EFAULT;
6037                                 goto out_kfree;
6038                         }
6039                 } else {
6040                         memset(buff, 0, iocommand.buf_size);
6041                 }
6042         }
6043         c = cmd_alloc(h);
6044
6045         /* Fill in the command type */
6046         c->cmd_type = CMD_IOCTL_PEND;
6047         c->scsi_cmd = SCSI_CMD_BUSY;
6048         /* Fill in Command Header */
6049         c->Header.ReplyQueue = 0; /* unused in simple mode */
6050         if (iocommand.buf_size > 0) {   /* buffer to fill */
6051                 c->Header.SGList = 1;
6052                 c->Header.SGTotal = cpu_to_le16(1);
6053         } else  { /* no buffers to fill */
6054                 c->Header.SGList = 0;
6055                 c->Header.SGTotal = cpu_to_le16(0);
6056         }
6057         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6058
6059         /* Fill in Request block */
6060         memcpy(&c->Request, &iocommand.Request,
6061                 sizeof(c->Request));
6062
6063         /* Fill in the scatter gather information */
6064         if (iocommand.buf_size > 0) {
6065                 temp64 = pci_map_single(h->pdev, buff,
6066                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6067                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6068                         c->SG[0].Addr = cpu_to_le64(0);
6069                         c->SG[0].Len = cpu_to_le32(0);
6070                         rc = -ENOMEM;
6071                         goto out;
6072                 }
6073                 c->SG[0].Addr = cpu_to_le64(temp64);
6074                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6075                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6076         }
6077         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6078         if (iocommand.buf_size > 0)
6079                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6080         check_ioctl_unit_attention(h, c);
6081         if (rc) {
6082                 rc = -EIO;
6083                 goto out;
6084         }
6085
6086         /* Copy the error information out */
6087         memcpy(&iocommand.error_info, c->err_info,
6088                 sizeof(iocommand.error_info));
6089         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6090                 rc = -EFAULT;
6091                 goto out;
6092         }
6093         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6094                 iocommand.buf_size > 0) {
6095                 /* Copy the data out of the buffer we created */
6096                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6097                         rc = -EFAULT;
6098                         goto out;
6099                 }
6100         }
6101 out:
6102         cmd_free(h, c);
6103 out_kfree:
6104         kfree(buff);
6105         return rc;
6106 }
6107
6108 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6109 {
6110         BIG_IOCTL_Command_struct *ioc;
6111         struct CommandList *c;
6112         unsigned char **buff = NULL;
6113         int *buff_size = NULL;
6114         u64 temp64;
6115         BYTE sg_used = 0;
6116         int status = 0;
6117         u32 left;
6118         u32 sz;
6119         BYTE __user *data_ptr;
6120
6121         if (!argp)
6122                 return -EINVAL;
6123         if (!capable(CAP_SYS_RAWIO))
6124                 return -EPERM;
6125         ioc = (BIG_IOCTL_Command_struct *)
6126             kmalloc(sizeof(*ioc), GFP_KERNEL);
6127         if (!ioc) {
6128                 status = -ENOMEM;
6129                 goto cleanup1;
6130         }
6131         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6132                 status = -EFAULT;
6133                 goto cleanup1;
6134         }
6135         if ((ioc->buf_size < 1) &&
6136             (ioc->Request.Type.Direction != XFER_NONE)) {
6137                 status = -EINVAL;
6138                 goto cleanup1;
6139         }
6140         /* Check kmalloc limits  using all SGs */
6141         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6142                 status = -EINVAL;
6143                 goto cleanup1;
6144         }
6145         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6146                 status = -EINVAL;
6147                 goto cleanup1;
6148         }
6149         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6150         if (!buff) {
6151                 status = -ENOMEM;
6152                 goto cleanup1;
6153         }
6154         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6155         if (!buff_size) {
6156                 status = -ENOMEM;
6157                 goto cleanup1;
6158         }
6159         left = ioc->buf_size;
6160         data_ptr = ioc->buf;
6161         while (left) {
6162                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6163                 buff_size[sg_used] = sz;
6164                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6165                 if (buff[sg_used] == NULL) {
6166                         status = -ENOMEM;
6167                         goto cleanup1;
6168                 }
6169                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6170                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6171                                 status = -EFAULT;
6172                                 goto cleanup1;
6173                         }
6174                 } else
6175                         memset(buff[sg_used], 0, sz);
6176                 left -= sz;
6177                 data_ptr += sz;
6178                 sg_used++;
6179         }
6180         c = cmd_alloc(h);
6181
6182         c->cmd_type = CMD_IOCTL_PEND;
6183         c->scsi_cmd = SCSI_CMD_BUSY;
6184         c->Header.ReplyQueue = 0;
6185         c->Header.SGList = (u8) sg_used;
6186         c->Header.SGTotal = cpu_to_le16(sg_used);
6187         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6188         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6189         if (ioc->buf_size > 0) {
6190                 int i;
6191                 for (i = 0; i < sg_used; i++) {
6192                         temp64 = pci_map_single(h->pdev, buff[i],
6193                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6194                         if (dma_mapping_error(&h->pdev->dev,
6195                                                         (dma_addr_t) temp64)) {
6196                                 c->SG[i].Addr = cpu_to_le64(0);
6197                                 c->SG[i].Len = cpu_to_le32(0);
6198                                 hpsa_pci_unmap(h->pdev, c, i,
6199                                         PCI_DMA_BIDIRECTIONAL);
6200                                 status = -ENOMEM;
6201                                 goto cleanup0;
6202                         }
6203                         c->SG[i].Addr = cpu_to_le64(temp64);
6204                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6205                         c->SG[i].Ext = cpu_to_le32(0);
6206                 }
6207                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6208         }
6209         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6210         if (sg_used)
6211                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6212         check_ioctl_unit_attention(h, c);
6213         if (status) {
6214                 status = -EIO;
6215                 goto cleanup0;
6216         }
6217
6218         /* Copy the error information out */
6219         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6220         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6221                 status = -EFAULT;
6222                 goto cleanup0;
6223         }
6224         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6225                 int i;
6226
6227                 /* Copy the data out of the buffer we created */
6228                 BYTE __user *ptr = ioc->buf;
6229                 for (i = 0; i < sg_used; i++) {
6230                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6231                                 status = -EFAULT;
6232                                 goto cleanup0;
6233                         }
6234                         ptr += buff_size[i];
6235                 }
6236         }
6237         status = 0;
6238 cleanup0:
6239         cmd_free(h, c);
6240 cleanup1:
6241         if (buff) {
6242                 int i;
6243
6244                 for (i = 0; i < sg_used; i++)
6245                         kfree(buff[i]);
6246                 kfree(buff);
6247         }
6248         kfree(buff_size);
6249         kfree(ioc);
6250         return status;
6251 }
6252
6253 static void check_ioctl_unit_attention(struct ctlr_info *h,
6254         struct CommandList *c)
6255 {
6256         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6257                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6258                 (void) check_for_unit_attention(h, c);
6259 }
6260
6261 /*
6262  * ioctl
6263  */
6264 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6265 {
6266         struct ctlr_info *h;
6267         void __user *argp = (void __user *)arg;
6268         int rc;
6269
6270         h = sdev_to_hba(dev);
6271
6272         switch (cmd) {
6273         case CCISS_DEREGDISK:
6274         case CCISS_REGNEWDISK:
6275         case CCISS_REGNEWD:
6276                 hpsa_scan_start(h->scsi_host);
6277                 return 0;
6278         case CCISS_GETPCIINFO:
6279                 return hpsa_getpciinfo_ioctl(h, argp);
6280         case CCISS_GETDRIVVER:
6281                 return hpsa_getdrivver_ioctl(h, argp);
6282         case CCISS_PASSTHRU:
6283                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6284                         return -EAGAIN;
6285                 rc = hpsa_passthru_ioctl(h, argp);
6286                 atomic_inc(&h->passthru_cmds_avail);
6287                 return rc;
6288         case CCISS_BIG_PASSTHRU:
6289                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6290                         return -EAGAIN;
6291                 rc = hpsa_big_passthru_ioctl(h, argp);
6292                 atomic_inc(&h->passthru_cmds_avail);
6293                 return rc;
6294         default:
6295                 return -ENOTTY;
6296         }
6297 }
6298
6299 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6300                                 u8 reset_type)
6301 {
6302         struct CommandList *c;
6303
6304         c = cmd_alloc(h);
6305
6306         /* fill_cmd can't fail here, no data buffer to map */
6307         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6308                 RAID_CTLR_LUNID, TYPE_MSG);
6309         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6310         c->waiting = NULL;
6311         enqueue_cmd_and_start_io(h, c);
6312         /* Don't wait for completion, the reset won't complete.  Don't free
6313          * the command either.  This is the last command we will send before
6314          * re-initializing everything, so it doesn't matter and won't leak.
6315          */
6316         return;
6317 }
6318
6319 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6320         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6321         int cmd_type)
6322 {
6323         int pci_dir = XFER_NONE;
6324         u64 tag; /* for commands to be aborted */
6325
6326         c->cmd_type = CMD_IOCTL_PEND;
6327         c->scsi_cmd = SCSI_CMD_BUSY;
6328         c->Header.ReplyQueue = 0;
6329         if (buff != NULL && size > 0) {
6330                 c->Header.SGList = 1;
6331                 c->Header.SGTotal = cpu_to_le16(1);
6332         } else {
6333                 c->Header.SGList = 0;
6334                 c->Header.SGTotal = cpu_to_le16(0);
6335         }
6336         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6337
6338         if (cmd_type == TYPE_CMD) {
6339                 switch (cmd) {
6340                 case HPSA_INQUIRY:
6341                         /* are we trying to read a vital product page */
6342                         if (page_code & VPD_PAGE) {
6343                                 c->Request.CDB[1] = 0x01;
6344                                 c->Request.CDB[2] = (page_code & 0xff);
6345                         }
6346                         c->Request.CDBLen = 6;
6347                         c->Request.type_attr_dir =
6348                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6349                         c->Request.Timeout = 0;
6350                         c->Request.CDB[0] = HPSA_INQUIRY;
6351                         c->Request.CDB[4] = size & 0xFF;
6352                         break;
6353                 case HPSA_REPORT_LOG:
6354                 case HPSA_REPORT_PHYS:
6355                         /* Talking to controller so It's a physical command
6356                            mode = 00 target = 0.  Nothing to write.
6357                          */
6358                         c->Request.CDBLen = 12;
6359                         c->Request.type_attr_dir =
6360                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6361                         c->Request.Timeout = 0;
6362                         c->Request.CDB[0] = cmd;
6363                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6364                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6365                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6366                         c->Request.CDB[9] = size & 0xFF;
6367                         break;
6368                 case HPSA_CACHE_FLUSH:
6369                         c->Request.CDBLen = 12;
6370                         c->Request.type_attr_dir =
6371                                         TYPE_ATTR_DIR(cmd_type,
6372                                                 ATTR_SIMPLE, XFER_WRITE);
6373                         c->Request.Timeout = 0;
6374                         c->Request.CDB[0] = BMIC_WRITE;
6375                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6376                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6377                         c->Request.CDB[8] = size & 0xFF;
6378                         break;
6379                 case TEST_UNIT_READY:
6380                         c->Request.CDBLen = 6;
6381                         c->Request.type_attr_dir =
6382                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6383                         c->Request.Timeout = 0;
6384                         break;
6385                 case HPSA_GET_RAID_MAP:
6386                         c->Request.CDBLen = 12;
6387                         c->Request.type_attr_dir =
6388                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6389                         c->Request.Timeout = 0;
6390                         c->Request.CDB[0] = HPSA_CISS_READ;
6391                         c->Request.CDB[1] = cmd;
6392                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6393                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6394                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6395                         c->Request.CDB[9] = size & 0xFF;
6396                         break;
6397                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6398                         c->Request.CDBLen = 10;
6399                         c->Request.type_attr_dir =
6400                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6401                         c->Request.Timeout = 0;
6402                         c->Request.CDB[0] = BMIC_READ;
6403                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6404                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6405                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6406                         break;
6407                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6408                         c->Request.CDBLen = 10;
6409                         c->Request.type_attr_dir =
6410                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6411                         c->Request.Timeout = 0;
6412                         c->Request.CDB[0] = BMIC_READ;
6413                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6414                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6415                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6416                         break;
6417                 default:
6418                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6419                         BUG();
6420                         return -1;
6421                 }
6422         } else if (cmd_type == TYPE_MSG) {
6423                 switch (cmd) {
6424
6425                 case  HPSA_PHYS_TARGET_RESET:
6426                         c->Request.CDBLen = 16;
6427                         c->Request.type_attr_dir =
6428                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6429                         c->Request.Timeout = 0; /* Don't time out */
6430                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6431                         c->Request.CDB[0] = HPSA_RESET;
6432                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6433                         /* Physical target reset needs no control bytes 4-7*/
6434                         c->Request.CDB[4] = 0x00;
6435                         c->Request.CDB[5] = 0x00;
6436                         c->Request.CDB[6] = 0x00;
6437                         c->Request.CDB[7] = 0x00;
6438                         break;
6439                 case  HPSA_DEVICE_RESET_MSG:
6440                         c->Request.CDBLen = 16;
6441                         c->Request.type_attr_dir =
6442                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6443                         c->Request.Timeout = 0; /* Don't time out */
6444                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6445                         c->Request.CDB[0] =  cmd;
6446                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6447                         /* If bytes 4-7 are zero, it means reset the */
6448                         /* LunID device */
6449                         c->Request.CDB[4] = 0x00;
6450                         c->Request.CDB[5] = 0x00;
6451                         c->Request.CDB[6] = 0x00;
6452                         c->Request.CDB[7] = 0x00;
6453                         break;
6454                 case  HPSA_ABORT_MSG:
6455                         memcpy(&tag, buff, sizeof(tag));
6456                         dev_dbg(&h->pdev->dev,
6457                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6458                                 tag, c->Header.tag);
6459                         c->Request.CDBLen = 16;
6460                         c->Request.type_attr_dir =
6461                                         TYPE_ATTR_DIR(cmd_type,
6462                                                 ATTR_SIMPLE, XFER_WRITE);
6463                         c->Request.Timeout = 0; /* Don't time out */
6464                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6465                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6466                         c->Request.CDB[2] = 0x00; /* reserved */
6467                         c->Request.CDB[3] = 0x00; /* reserved */
6468                         /* Tag to abort goes in CDB[4]-CDB[11] */
6469                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6470                         c->Request.CDB[12] = 0x00; /* reserved */
6471                         c->Request.CDB[13] = 0x00; /* reserved */
6472                         c->Request.CDB[14] = 0x00; /* reserved */
6473                         c->Request.CDB[15] = 0x00; /* reserved */
6474                 break;
6475                 default:
6476                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6477                                 cmd);
6478                         BUG();
6479                 }
6480         } else {
6481                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6482                 BUG();
6483         }
6484
6485         switch (GET_DIR(c->Request.type_attr_dir)) {
6486         case XFER_READ:
6487                 pci_dir = PCI_DMA_FROMDEVICE;
6488                 break;
6489         case XFER_WRITE:
6490                 pci_dir = PCI_DMA_TODEVICE;
6491                 break;
6492         case XFER_NONE:
6493                 pci_dir = PCI_DMA_NONE;
6494                 break;
6495         default:
6496                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6497         }
6498         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6499                 return -1;
6500         return 0;
6501 }
6502
6503 /*
6504  * Map (physical) PCI mem into (virtual) kernel space
6505  */
6506 static void __iomem *remap_pci_mem(ulong base, ulong size)
6507 {
6508         ulong page_base = ((ulong) base) & PAGE_MASK;
6509         ulong page_offs = ((ulong) base) - page_base;
6510         void __iomem *page_remapped = ioremap_nocache(page_base,
6511                 page_offs + size);
6512
6513         return page_remapped ? (page_remapped + page_offs) : NULL;
6514 }
6515
6516 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6517 {
6518         return h->access.command_completed(h, q);
6519 }
6520
6521 static inline bool interrupt_pending(struct ctlr_info *h)
6522 {
6523         return h->access.intr_pending(h);
6524 }
6525
6526 static inline long interrupt_not_for_us(struct ctlr_info *h)
6527 {
6528         return (h->access.intr_pending(h) == 0) ||
6529                 (h->interrupts_enabled == 0);
6530 }
6531
6532 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6533         u32 raw_tag)
6534 {
6535         if (unlikely(tag_index >= h->nr_cmds)) {
6536                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6537                 return 1;
6538         }
6539         return 0;
6540 }
6541
6542 static inline void finish_cmd(struct CommandList *c)
6543 {
6544         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6545         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6546                         || c->cmd_type == CMD_IOACCEL2))
6547                 complete_scsi_command(c);
6548         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6549                 complete(c->waiting);
6550 }
6551
6552 /* process completion of an indexed ("direct lookup") command */
6553 static inline void process_indexed_cmd(struct ctlr_info *h,
6554         u32 raw_tag)
6555 {
6556         u32 tag_index;
6557         struct CommandList *c;
6558
6559         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6560         if (!bad_tag(h, tag_index, raw_tag)) {
6561                 c = h->cmd_pool + tag_index;
6562                 finish_cmd(c);
6563         }
6564 }
6565
6566 /* Some controllers, like p400, will give us one interrupt
6567  * after a soft reset, even if we turned interrupts off.
6568  * Only need to check for this in the hpsa_xxx_discard_completions
6569  * functions.
6570  */
6571 static int ignore_bogus_interrupt(struct ctlr_info *h)
6572 {
6573         if (likely(!reset_devices))
6574                 return 0;
6575
6576         if (likely(h->interrupts_enabled))
6577                 return 0;
6578
6579         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6580                 "(known firmware bug.)  Ignoring.\n");
6581
6582         return 1;
6583 }
6584
6585 /*
6586  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6587  * Relies on (h-q[x] == x) being true for x such that
6588  * 0 <= x < MAX_REPLY_QUEUES.
6589  */
6590 static struct ctlr_info *queue_to_hba(u8 *queue)
6591 {
6592         return container_of((queue - *queue), struct ctlr_info, q[0]);
6593 }
6594
6595 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6596 {
6597         struct ctlr_info *h = queue_to_hba(queue);
6598         u8 q = *(u8 *) queue;
6599         u32 raw_tag;
6600
6601         if (ignore_bogus_interrupt(h))
6602                 return IRQ_NONE;
6603
6604         if (interrupt_not_for_us(h))
6605                 return IRQ_NONE;
6606         h->last_intr_timestamp = get_jiffies_64();
6607         while (interrupt_pending(h)) {
6608                 raw_tag = get_next_completion(h, q);
6609                 while (raw_tag != FIFO_EMPTY)
6610                         raw_tag = next_command(h, q);
6611         }
6612         return IRQ_HANDLED;
6613 }
6614
6615 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6616 {
6617         struct ctlr_info *h = queue_to_hba(queue);
6618         u32 raw_tag;
6619         u8 q = *(u8 *) queue;
6620
6621         if (ignore_bogus_interrupt(h))
6622                 return IRQ_NONE;
6623
6624         h->last_intr_timestamp = get_jiffies_64();
6625         raw_tag = get_next_completion(h, q);
6626         while (raw_tag != FIFO_EMPTY)
6627                 raw_tag = next_command(h, q);
6628         return IRQ_HANDLED;
6629 }
6630
6631 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6632 {
6633         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6634         u32 raw_tag;
6635         u8 q = *(u8 *) queue;
6636
6637         if (interrupt_not_for_us(h))
6638                 return IRQ_NONE;
6639         h->last_intr_timestamp = get_jiffies_64();
6640         while (interrupt_pending(h)) {
6641                 raw_tag = get_next_completion(h, q);
6642                 while (raw_tag != FIFO_EMPTY) {
6643                         process_indexed_cmd(h, raw_tag);
6644                         raw_tag = next_command(h, q);
6645                 }
6646         }
6647         return IRQ_HANDLED;
6648 }
6649
6650 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6651 {
6652         struct ctlr_info *h = queue_to_hba(queue);
6653         u32 raw_tag;
6654         u8 q = *(u8 *) queue;
6655
6656         h->last_intr_timestamp = get_jiffies_64();
6657         raw_tag = get_next_completion(h, q);
6658         while (raw_tag != FIFO_EMPTY) {
6659                 process_indexed_cmd(h, raw_tag);
6660                 raw_tag = next_command(h, q);
6661         }
6662         return IRQ_HANDLED;
6663 }
6664
6665 /* Send a message CDB to the firmware. Careful, this only works
6666  * in simple mode, not performant mode due to the tag lookup.
6667  * We only ever use this immediately after a controller reset.
6668  */
6669 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6670                         unsigned char type)
6671 {
6672         struct Command {
6673                 struct CommandListHeader CommandHeader;
6674                 struct RequestBlock Request;
6675                 struct ErrDescriptor ErrorDescriptor;
6676         };
6677         struct Command *cmd;
6678         static const size_t cmd_sz = sizeof(*cmd) +
6679                                         sizeof(cmd->ErrorDescriptor);
6680         dma_addr_t paddr64;
6681         __le32 paddr32;
6682         u32 tag;
6683         void __iomem *vaddr;
6684         int i, err;
6685
6686         vaddr = pci_ioremap_bar(pdev, 0);
6687         if (vaddr == NULL)
6688                 return -ENOMEM;
6689
6690         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6691          * CCISS commands, so they must be allocated from the lower 4GiB of
6692          * memory.
6693          */
6694         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6695         if (err) {
6696                 iounmap(vaddr);
6697                 return err;
6698         }
6699
6700         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6701         if (cmd == NULL) {
6702                 iounmap(vaddr);
6703                 return -ENOMEM;
6704         }
6705
6706         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
6707          * although there's no guarantee, we assume that the address is at
6708          * least 4-byte aligned (most likely, it's page-aligned).
6709          */
6710         paddr32 = cpu_to_le32(paddr64);
6711
6712         cmd->CommandHeader.ReplyQueue = 0;
6713         cmd->CommandHeader.SGList = 0;
6714         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6715         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6716         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6717
6718         cmd->Request.CDBLen = 16;
6719         cmd->Request.type_attr_dir =
6720                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6721         cmd->Request.Timeout = 0; /* Don't time out */
6722         cmd->Request.CDB[0] = opcode;
6723         cmd->Request.CDB[1] = type;
6724         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6725         cmd->ErrorDescriptor.Addr =
6726                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6727         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6728
6729         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6730
6731         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6732                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6733                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6734                         break;
6735                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6736         }
6737
6738         iounmap(vaddr);
6739
6740         /* we leak the DMA buffer here ... no choice since the controller could
6741          *  still complete the command.
6742          */
6743         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6744                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6745                         opcode, type);
6746                 return -ETIMEDOUT;
6747         }
6748
6749         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6750
6751         if (tag & HPSA_ERROR_BIT) {
6752                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6753                         opcode, type);
6754                 return -EIO;
6755         }
6756
6757         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6758                 opcode, type);
6759         return 0;
6760 }
6761
6762 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6763
6764 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6765         void __iomem *vaddr, u32 use_doorbell)
6766 {
6767
6768         if (use_doorbell) {
6769                 /* For everything after the P600, the PCI power state method
6770                  * of resetting the controller doesn't work, so we have this
6771                  * other way using the doorbell register.
6772                  */
6773                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
6774                 writel(use_doorbell, vaddr + SA5_DOORBELL);
6775
6776                 /* PMC hardware guys tell us we need a 10 second delay after
6777                  * doorbell reset and before any attempt to talk to the board
6778                  * at all to ensure that this actually works and doesn't fall
6779                  * over in some weird corner cases.
6780                  */
6781                 msleep(10000);
6782         } else { /* Try to do it the PCI power state way */
6783
6784                 /* Quoting from the Open CISS Specification: "The Power
6785                  * Management Control/Status Register (CSR) controls the power
6786                  * state of the device.  The normal operating state is D0,
6787                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
6788                  * the controller, place the interface device in D3 then to D0,
6789                  * this causes a secondary PCI reset which will reset the
6790                  * controller." */
6791
6792                 int rc = 0;
6793
6794                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6795
6796                 /* enter the D3hot power management state */
6797                 rc = pci_set_power_state(pdev, PCI_D3hot);
6798                 if (rc)
6799                         return rc;
6800
6801                 msleep(500);
6802
6803                 /* enter the D0 power management state */
6804                 rc = pci_set_power_state(pdev, PCI_D0);
6805                 if (rc)
6806                         return rc;
6807
6808                 /*
6809                  * The P600 requires a small delay when changing states.
6810                  * Otherwise we may think the board did not reset and we bail.
6811                  * This for kdump only and is particular to the P600.
6812                  */
6813                 msleep(500);
6814         }
6815         return 0;
6816 }
6817
6818 static void init_driver_version(char *driver_version, int len)
6819 {
6820         memset(driver_version, 0, len);
6821         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6822 }
6823
6824 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6825 {
6826         char *driver_version;
6827         int i, size = sizeof(cfgtable->driver_version);
6828
6829         driver_version = kmalloc(size, GFP_KERNEL);
6830         if (!driver_version)
6831                 return -ENOMEM;
6832
6833         init_driver_version(driver_version, size);
6834         for (i = 0; i < size; i++)
6835                 writeb(driver_version[i], &cfgtable->driver_version[i]);
6836         kfree(driver_version);
6837         return 0;
6838 }
6839
6840 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6841                                           unsigned char *driver_ver)
6842 {
6843         int i;
6844
6845         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6846                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
6847 }
6848
6849 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6850 {
6851
6852         char *driver_ver, *old_driver_ver;
6853         int rc, size = sizeof(cfgtable->driver_version);
6854
6855         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6856         if (!old_driver_ver)
6857                 return -ENOMEM;
6858         driver_ver = old_driver_ver + size;
6859
6860         /* After a reset, the 32 bytes of "driver version" in the cfgtable
6861          * should have been changed, otherwise we know the reset failed.
6862          */
6863         init_driver_version(old_driver_ver, size);
6864         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6865         rc = !memcmp(driver_ver, old_driver_ver, size);
6866         kfree(old_driver_ver);
6867         return rc;
6868 }
6869 /* This does a hard reset of the controller using PCI power management
6870  * states or the using the doorbell register.
6871  */
6872 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6873 {
6874         u64 cfg_offset;
6875         u32 cfg_base_addr;
6876         u64 cfg_base_addr_index;
6877         void __iomem *vaddr;
6878         unsigned long paddr;
6879         u32 misc_fw_support;
6880         int rc;
6881         struct CfgTable __iomem *cfgtable;
6882         u32 use_doorbell;
6883         u16 command_register;
6884
6885         /* For controllers as old as the P600, this is very nearly
6886          * the same thing as
6887          *
6888          * pci_save_state(pci_dev);
6889          * pci_set_power_state(pci_dev, PCI_D3hot);
6890          * pci_set_power_state(pci_dev, PCI_D0);
6891          * pci_restore_state(pci_dev);
6892          *
6893          * For controllers newer than the P600, the pci power state
6894          * method of resetting doesn't work so we have another way
6895          * using the doorbell register.
6896          */
6897
6898         if (!ctlr_is_resettable(board_id)) {
6899                 dev_warn(&pdev->dev, "Controller not resettable\n");
6900                 return -ENODEV;
6901         }
6902
6903         /* if controller is soft- but not hard resettable... */
6904         if (!ctlr_is_hard_resettable(board_id))
6905                 return -ENOTSUPP; /* try soft reset later. */
6906
6907         /* Save the PCI command register */
6908         pci_read_config_word(pdev, 4, &command_register);
6909         pci_save_state(pdev);
6910
6911         /* find the first memory BAR, so we can find the cfg table */
6912         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
6913         if (rc)
6914                 return rc;
6915         vaddr = remap_pci_mem(paddr, 0x250);
6916         if (!vaddr)
6917                 return -ENOMEM;
6918
6919         /* find cfgtable in order to check if reset via doorbell is supported */
6920         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
6921                                         &cfg_base_addr_index, &cfg_offset);
6922         if (rc)
6923                 goto unmap_vaddr;
6924         cfgtable = remap_pci_mem(pci_resource_start(pdev,
6925                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
6926         if (!cfgtable) {
6927                 rc = -ENOMEM;
6928                 goto unmap_vaddr;
6929         }
6930         rc = write_driver_ver_to_cfgtable(cfgtable);
6931         if (rc)
6932                 goto unmap_cfgtable;
6933
6934         /* If reset via doorbell register is supported, use that.
6935          * There are two such methods.  Favor the newest method.
6936          */
6937         misc_fw_support = readl(&cfgtable->misc_fw_support);
6938         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6939         if (use_doorbell) {
6940                 use_doorbell = DOORBELL_CTLR_RESET2;
6941         } else {
6942                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6943                 if (use_doorbell) {
6944                         dev_warn(&pdev->dev,
6945                                 "Soft reset not supported. Firmware update is required.\n");
6946                         rc = -ENOTSUPP; /* try soft reset */
6947                         goto unmap_cfgtable;
6948                 }
6949         }
6950
6951         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6952         if (rc)
6953                 goto unmap_cfgtable;
6954
6955         pci_restore_state(pdev);
6956         pci_write_config_word(pdev, 4, command_register);
6957
6958         /* Some devices (notably the HP Smart Array 5i Controller)
6959            need a little pause here */
6960         msleep(HPSA_POST_RESET_PAUSE_MSECS);
6961
6962         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6963         if (rc) {
6964                 dev_warn(&pdev->dev,
6965                         "Failed waiting for board to become ready after hard reset\n");
6966                 goto unmap_cfgtable;
6967         }
6968
6969         rc = controller_reset_failed(vaddr);
6970         if (rc < 0)
6971                 goto unmap_cfgtable;
6972         if (rc) {
6973                 dev_warn(&pdev->dev, "Unable to successfully reset "
6974                         "controller. Will try soft reset.\n");
6975                 rc = -ENOTSUPP;
6976         } else {
6977                 dev_info(&pdev->dev, "board ready after hard reset.\n");
6978         }
6979
6980 unmap_cfgtable:
6981         iounmap(cfgtable);
6982
6983 unmap_vaddr:
6984         iounmap(vaddr);
6985         return rc;
6986 }
6987
6988 /*
6989  *  We cannot read the structure directly, for portability we must use
6990  *   the io functions.
6991  *   This is for debug only.
6992  */
6993 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6994 {
6995 #ifdef HPSA_DEBUG
6996         int i;
6997         char temp_name[17];
6998
6999         dev_info(dev, "Controller Configuration information\n");
7000         dev_info(dev, "------------------------------------\n");
7001         for (i = 0; i < 4; i++)
7002                 temp_name[i] = readb(&(tb->Signature[i]));
7003         temp_name[4] = '\0';
7004         dev_info(dev, "   Signature = %s\n", temp_name);
7005         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7006         dev_info(dev, "   Transport methods supported = 0x%x\n",
7007                readl(&(tb->TransportSupport)));
7008         dev_info(dev, "   Transport methods active = 0x%x\n",
7009                readl(&(tb->TransportActive)));
7010         dev_info(dev, "   Requested transport Method = 0x%x\n",
7011                readl(&(tb->HostWrite.TransportRequest)));
7012         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7013                readl(&(tb->HostWrite.CoalIntDelay)));
7014         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7015                readl(&(tb->HostWrite.CoalIntCount)));
7016         dev_info(dev, "   Max outstanding commands = %d\n",
7017                readl(&(tb->CmdsOutMax)));
7018         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7019         for (i = 0; i < 16; i++)
7020                 temp_name[i] = readb(&(tb->ServerName[i]));
7021         temp_name[16] = '\0';
7022         dev_info(dev, "   Server Name = %s\n", temp_name);
7023         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7024                 readl(&(tb->HeartBeat)));
7025 #endif                          /* HPSA_DEBUG */
7026 }
7027
7028 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7029 {
7030         int i, offset, mem_type, bar_type;
7031
7032         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7033                 return 0;
7034         offset = 0;
7035         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7036                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7037                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7038                         offset += 4;
7039                 else {
7040                         mem_type = pci_resource_flags(pdev, i) &
7041                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7042                         switch (mem_type) {
7043                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7044                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7045                                 offset += 4;    /* 32 bit */
7046                                 break;
7047                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7048                                 offset += 8;
7049                                 break;
7050                         default:        /* reserved in PCI 2.2 */
7051                                 dev_warn(&pdev->dev,
7052                                        "base address is invalid\n");
7053                                 return -1;
7054                                 break;
7055                         }
7056                 }
7057                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7058                         return i + 1;
7059         }
7060         return -1;
7061 }
7062
7063 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7064 {
7065         if (h->msix_vector) {
7066                 if (h->pdev->msix_enabled)
7067                         pci_disable_msix(h->pdev);
7068                 h->msix_vector = 0;
7069         } else if (h->msi_vector) {
7070                 if (h->pdev->msi_enabled)
7071                         pci_disable_msi(h->pdev);
7072                 h->msi_vector = 0;
7073         }
7074 }
7075
7076 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7077  * controllers that are capable. If not, we use legacy INTx mode.
7078  */
7079 static void hpsa_interrupt_mode(struct ctlr_info *h)
7080 {
7081 #ifdef CONFIG_PCI_MSI
7082         int err, i;
7083         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7084
7085         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7086                 hpsa_msix_entries[i].vector = 0;
7087                 hpsa_msix_entries[i].entry = i;
7088         }
7089
7090         /* Some boards advertise MSI but don't really support it */
7091         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7092             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7093                 goto default_int_mode;
7094         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7095                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7096                 h->msix_vector = MAX_REPLY_QUEUES;
7097                 if (h->msix_vector > num_online_cpus())
7098                         h->msix_vector = num_online_cpus();
7099                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7100                                             1, h->msix_vector);
7101                 if (err < 0) {
7102                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7103                         h->msix_vector = 0;
7104                         goto single_msi_mode;
7105                 } else if (err < h->msix_vector) {
7106                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7107                                "available\n", err);
7108                 }
7109                 h->msix_vector = err;
7110                 for (i = 0; i < h->msix_vector; i++)
7111                         h->intr[i] = hpsa_msix_entries[i].vector;
7112                 return;
7113         }
7114 single_msi_mode:
7115         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7116                 dev_info(&h->pdev->dev, "MSI capable controller\n");
7117                 if (!pci_enable_msi(h->pdev))
7118                         h->msi_vector = 1;
7119                 else
7120                         dev_warn(&h->pdev->dev, "MSI init failed\n");
7121         }
7122 default_int_mode:
7123 #endif                          /* CONFIG_PCI_MSI */
7124         /* if we get here we're going to use the default interrupt mode */
7125         h->intr[h->intr_mode] = h->pdev->irq;
7126 }
7127
7128 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7129 {
7130         int i;
7131         u32 subsystem_vendor_id, subsystem_device_id;
7132
7133         subsystem_vendor_id = pdev->subsystem_vendor;
7134         subsystem_device_id = pdev->subsystem_device;
7135         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7136                     subsystem_vendor_id;
7137
7138         for (i = 0; i < ARRAY_SIZE(products); i++)
7139                 if (*board_id == products[i].board_id)
7140                         return i;
7141
7142         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7143                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7144                 !hpsa_allow_any) {
7145                 dev_warn(&pdev->dev, "unrecognized board ID: "
7146                         "0x%08x, ignoring.\n", *board_id);
7147                         return -ENODEV;
7148         }
7149         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7150 }
7151
7152 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7153                                     unsigned long *memory_bar)
7154 {
7155         int i;
7156
7157         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7158                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7159                         /* addressing mode bits already removed */
7160                         *memory_bar = pci_resource_start(pdev, i);
7161                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7162                                 *memory_bar);
7163                         return 0;
7164                 }
7165         dev_warn(&pdev->dev, "no memory BAR found\n");
7166         return -ENODEV;
7167 }
7168
7169 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7170                                      int wait_for_ready)
7171 {
7172         int i, iterations;
7173         u32 scratchpad;
7174         if (wait_for_ready)
7175                 iterations = HPSA_BOARD_READY_ITERATIONS;
7176         else
7177                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7178
7179         for (i = 0; i < iterations; i++) {
7180                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7181                 if (wait_for_ready) {
7182                         if (scratchpad == HPSA_FIRMWARE_READY)
7183                                 return 0;
7184                 } else {
7185                         if (scratchpad != HPSA_FIRMWARE_READY)
7186                                 return 0;
7187                 }
7188                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7189         }
7190         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7191         return -ENODEV;
7192 }
7193
7194 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7195                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7196                                u64 *cfg_offset)
7197 {
7198         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7199         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7200         *cfg_base_addr &= (u32) 0x0000ffff;
7201         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7202         if (*cfg_base_addr_index == -1) {
7203                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7204                 return -ENODEV;
7205         }
7206         return 0;
7207 }
7208
7209 static void hpsa_free_cfgtables(struct ctlr_info *h)
7210 {
7211         if (h->transtable) {
7212                 iounmap(h->transtable);
7213                 h->transtable = NULL;
7214         }
7215         if (h->cfgtable) {
7216                 iounmap(h->cfgtable);
7217                 h->cfgtable = NULL;
7218         }
7219 }
7220
7221 /* Find and map CISS config table and transfer table
7222 + * several items must be unmapped (freed) later
7223 + * */
7224 static int hpsa_find_cfgtables(struct ctlr_info *h)
7225 {
7226         u64 cfg_offset;
7227         u32 cfg_base_addr;
7228         u64 cfg_base_addr_index;
7229         u32 trans_offset;
7230         int rc;
7231
7232         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7233                 &cfg_base_addr_index, &cfg_offset);
7234         if (rc)
7235                 return rc;
7236         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7237                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7238         if (!h->cfgtable) {
7239                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7240                 return -ENOMEM;
7241         }
7242         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7243         if (rc)
7244                 return rc;
7245         /* Find performant mode table. */
7246         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7247         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7248                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7249                                 sizeof(*h->transtable));
7250         if (!h->transtable) {
7251                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7252                 hpsa_free_cfgtables(h);
7253                 return -ENOMEM;
7254         }
7255         return 0;
7256 }
7257
7258 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7259 {
7260 #define MIN_MAX_COMMANDS 16
7261         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7262
7263         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7264
7265         /* Limit commands in memory limited kdump scenario. */
7266         if (reset_devices && h->max_commands > 32)
7267                 h->max_commands = 32;
7268
7269         if (h->max_commands < MIN_MAX_COMMANDS) {
7270                 dev_warn(&h->pdev->dev,
7271                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7272                         h->max_commands,
7273                         MIN_MAX_COMMANDS);
7274                 h->max_commands = MIN_MAX_COMMANDS;
7275         }
7276 }
7277
7278 /* If the controller reports that the total max sg entries is greater than 512,
7279  * then we know that chained SG blocks work.  (Original smart arrays did not
7280  * support chained SG blocks and would return zero for max sg entries.)
7281  */
7282 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7283 {
7284         return h->maxsgentries > 512;
7285 }
7286
7287 /* Interrogate the hardware for some limits:
7288  * max commands, max SG elements without chaining, and with chaining,
7289  * SG chain block size, etc.
7290  */
7291 static void hpsa_find_board_params(struct ctlr_info *h)
7292 {
7293         hpsa_get_max_perf_mode_cmds(h);
7294         h->nr_cmds = h->max_commands;
7295         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7296         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7297         if (hpsa_supports_chained_sg_blocks(h)) {
7298                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7299                 h->max_cmd_sg_entries = 32;
7300                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7301                 h->maxsgentries--; /* save one for chain pointer */
7302         } else {
7303                 /*
7304                  * Original smart arrays supported at most 31 s/g entries
7305                  * embedded inline in the command (trying to use more
7306                  * would lock up the controller)
7307                  */
7308                 h->max_cmd_sg_entries = 31;
7309                 h->maxsgentries = 31; /* default to traditional values */
7310                 h->chainsize = 0;
7311         }
7312
7313         /* Find out what task management functions are supported and cache */
7314         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7315         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7316                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7317         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7318                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7319         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7320                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7321 }
7322
7323 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7324 {
7325         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7326                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7327                 return false;
7328         }
7329         return true;
7330 }
7331
7332 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7333 {
7334         u32 driver_support;
7335
7336         driver_support = readl(&(h->cfgtable->driver_support));
7337         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7338 #ifdef CONFIG_X86
7339         driver_support |= ENABLE_SCSI_PREFETCH;
7340 #endif
7341         driver_support |= ENABLE_UNIT_ATTN;
7342         writel(driver_support, &(h->cfgtable->driver_support));
7343 }
7344
7345 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7346  * in a prefetch beyond physical memory.
7347  */
7348 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7349 {
7350         u32 dma_prefetch;
7351
7352         if (h->board_id != 0x3225103C)
7353                 return;
7354         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7355         dma_prefetch |= 0x8000;
7356         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7357 }
7358
7359 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7360 {
7361         int i;
7362         u32 doorbell_value;
7363         unsigned long flags;
7364         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7365         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7366                 spin_lock_irqsave(&h->lock, flags);
7367                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7368                 spin_unlock_irqrestore(&h->lock, flags);
7369                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7370                         goto done;
7371                 /* delay and try again */
7372                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7373         }
7374         return -ENODEV;
7375 done:
7376         return 0;
7377 }
7378
7379 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7380 {
7381         int i;
7382         u32 doorbell_value;
7383         unsigned long flags;
7384
7385         /* under certain very rare conditions, this can take awhile.
7386          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7387          * as we enter this code.)
7388          */
7389         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7390                 if (h->remove_in_progress)
7391                         goto done;
7392                 spin_lock_irqsave(&h->lock, flags);
7393                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7394                 spin_unlock_irqrestore(&h->lock, flags);
7395                 if (!(doorbell_value & CFGTBL_ChangeReq))
7396                         goto done;
7397                 /* delay and try again */
7398                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7399         }
7400         return -ENODEV;
7401 done:
7402         return 0;
7403 }
7404
7405 /* return -ENODEV or other reason on error, 0 on success */
7406 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7407 {
7408         u32 trans_support;
7409
7410         trans_support = readl(&(h->cfgtable->TransportSupport));
7411         if (!(trans_support & SIMPLE_MODE))
7412                 return -ENOTSUPP;
7413
7414         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7415
7416         /* Update the field, and then ring the doorbell */
7417         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7418         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7419         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7420         if (hpsa_wait_for_mode_change_ack(h))
7421                 goto error;
7422         print_cfg_table(&h->pdev->dev, h->cfgtable);
7423         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7424                 goto error;
7425         h->transMethod = CFGTBL_Trans_Simple;
7426         return 0;
7427 error:
7428         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7429         return -ENODEV;
7430 }
7431
7432 /* free items allocated or mapped by hpsa_pci_init */
7433 static void hpsa_free_pci_init(struct ctlr_info *h)
7434 {
7435         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7436         iounmap(h->vaddr);                      /* pci_init 3 */
7437         h->vaddr = NULL;
7438         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7439         /*
7440          * call pci_disable_device before pci_release_regions per
7441          * Documentation/PCI/pci.txt
7442          */
7443         pci_disable_device(h->pdev);            /* pci_init 1 */
7444         pci_release_regions(h->pdev);           /* pci_init 2 */
7445 }
7446
7447 /* several items must be freed later */
7448 static int hpsa_pci_init(struct ctlr_info *h)
7449 {
7450         int prod_index, err;
7451
7452         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7453         if (prod_index < 0)
7454                 return prod_index;
7455         h->product_name = products[prod_index].product_name;
7456         h->access = *(products[prod_index].access);
7457
7458         h->needs_abort_tags_swizzled =
7459                 ctlr_needs_abort_tags_swizzled(h->board_id);
7460
7461         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7462                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7463
7464         err = pci_enable_device(h->pdev);
7465         if (err) {
7466                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7467                 pci_disable_device(h->pdev);
7468                 return err;
7469         }
7470
7471         err = pci_request_regions(h->pdev, HPSA);
7472         if (err) {
7473                 dev_err(&h->pdev->dev,
7474                         "failed to obtain PCI resources\n");
7475                 pci_disable_device(h->pdev);
7476                 return err;
7477         }
7478
7479         pci_set_master(h->pdev);
7480
7481         hpsa_interrupt_mode(h);
7482         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7483         if (err)
7484                 goto clean2;    /* intmode+region, pci */
7485         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7486         if (!h->vaddr) {
7487                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7488                 err = -ENOMEM;
7489                 goto clean2;    /* intmode+region, pci */
7490         }
7491         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7492         if (err)
7493                 goto clean3;    /* vaddr, intmode+region, pci */
7494         err = hpsa_find_cfgtables(h);
7495         if (err)
7496                 goto clean3;    /* vaddr, intmode+region, pci */
7497         hpsa_find_board_params(h);
7498
7499         if (!hpsa_CISS_signature_present(h)) {
7500                 err = -ENODEV;
7501                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7502         }
7503         hpsa_set_driver_support_bits(h);
7504         hpsa_p600_dma_prefetch_quirk(h);
7505         err = hpsa_enter_simple_mode(h);
7506         if (err)
7507                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7508         return 0;
7509
7510 clean4: /* cfgtables, vaddr, intmode+region, pci */
7511         hpsa_free_cfgtables(h);
7512 clean3: /* vaddr, intmode+region, pci */
7513         iounmap(h->vaddr);
7514         h->vaddr = NULL;
7515 clean2: /* intmode+region, pci */
7516         hpsa_disable_interrupt_mode(h);
7517         /*
7518          * call pci_disable_device before pci_release_regions per
7519          * Documentation/PCI/pci.txt
7520          */
7521         pci_disable_device(h->pdev);
7522         pci_release_regions(h->pdev);
7523         return err;
7524 }
7525
7526 static void hpsa_hba_inquiry(struct ctlr_info *h)
7527 {
7528         int rc;
7529
7530 #define HBA_INQUIRY_BYTE_COUNT 64
7531         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7532         if (!h->hba_inquiry_data)
7533                 return;
7534         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7535                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7536         if (rc != 0) {
7537                 kfree(h->hba_inquiry_data);
7538                 h->hba_inquiry_data = NULL;
7539         }
7540 }
7541
7542 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7543 {
7544         int rc, i;
7545         void __iomem *vaddr;
7546
7547         if (!reset_devices)
7548                 return 0;
7549
7550         /* kdump kernel is loading, we don't know in which state is
7551          * the pci interface. The dev->enable_cnt is equal zero
7552          * so we call enable+disable, wait a while and switch it on.
7553          */
7554         rc = pci_enable_device(pdev);
7555         if (rc) {
7556                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7557                 return -ENODEV;
7558         }
7559         pci_disable_device(pdev);
7560         msleep(260);                    /* a randomly chosen number */
7561         rc = pci_enable_device(pdev);
7562         if (rc) {
7563                 dev_warn(&pdev->dev, "failed to enable device.\n");
7564                 return -ENODEV;
7565         }
7566
7567         pci_set_master(pdev);
7568
7569         vaddr = pci_ioremap_bar(pdev, 0);
7570         if (vaddr == NULL) {
7571                 rc = -ENOMEM;
7572                 goto out_disable;
7573         }
7574         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7575         iounmap(vaddr);
7576
7577         /* Reset the controller with a PCI power-cycle or via doorbell */
7578         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7579
7580         /* -ENOTSUPP here means we cannot reset the controller
7581          * but it's already (and still) up and running in
7582          * "performant mode".  Or, it might be 640x, which can't reset
7583          * due to concerns about shared bbwc between 6402/6404 pair.
7584          */
7585         if (rc)
7586                 goto out_disable;
7587
7588         /* Now try to get the controller to respond to a no-op */
7589         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7590         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7591                 if (hpsa_noop(pdev) == 0)
7592                         break;
7593                 else
7594                         dev_warn(&pdev->dev, "no-op failed%s\n",
7595                                         (i < 11 ? "; re-trying" : ""));
7596         }
7597
7598 out_disable:
7599
7600         pci_disable_device(pdev);
7601         return rc;
7602 }
7603
7604 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7605 {
7606         kfree(h->cmd_pool_bits);
7607         h->cmd_pool_bits = NULL;
7608         if (h->cmd_pool) {
7609                 pci_free_consistent(h->pdev,
7610                                 h->nr_cmds * sizeof(struct CommandList),
7611                                 h->cmd_pool,
7612                                 h->cmd_pool_dhandle);
7613                 h->cmd_pool = NULL;
7614                 h->cmd_pool_dhandle = 0;
7615         }
7616         if (h->errinfo_pool) {
7617                 pci_free_consistent(h->pdev,
7618                                 h->nr_cmds * sizeof(struct ErrorInfo),
7619                                 h->errinfo_pool,
7620                                 h->errinfo_pool_dhandle);
7621                 h->errinfo_pool = NULL;
7622                 h->errinfo_pool_dhandle = 0;
7623         }
7624 }
7625
7626 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7627 {
7628         h->cmd_pool_bits = kzalloc(
7629                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7630                 sizeof(unsigned long), GFP_KERNEL);
7631         h->cmd_pool = pci_alloc_consistent(h->pdev,
7632                     h->nr_cmds * sizeof(*h->cmd_pool),
7633                     &(h->cmd_pool_dhandle));
7634         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7635                     h->nr_cmds * sizeof(*h->errinfo_pool),
7636                     &(h->errinfo_pool_dhandle));
7637         if ((h->cmd_pool_bits == NULL)
7638             || (h->cmd_pool == NULL)
7639             || (h->errinfo_pool == NULL)) {
7640                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7641                 goto clean_up;
7642         }
7643         hpsa_preinitialize_commands(h);
7644         return 0;
7645 clean_up:
7646         hpsa_free_cmd_pool(h);
7647         return -ENOMEM;
7648 }
7649
7650 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7651 {
7652         int i, cpu;
7653
7654         cpu = cpumask_first(cpu_online_mask);
7655         for (i = 0; i < h->msix_vector; i++) {
7656                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7657                 cpu = cpumask_next(cpu, cpu_online_mask);
7658         }
7659 }
7660
7661 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7662 static void hpsa_free_irqs(struct ctlr_info *h)
7663 {
7664         int i;
7665
7666         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7667                 /* Single reply queue, only one irq to free */
7668                 i = h->intr_mode;
7669                 irq_set_affinity_hint(h->intr[i], NULL);
7670                 free_irq(h->intr[i], &h->q[i]);
7671                 h->q[i] = 0;
7672                 return;
7673         }
7674
7675         for (i = 0; i < h->msix_vector; i++) {
7676                 irq_set_affinity_hint(h->intr[i], NULL);
7677                 free_irq(h->intr[i], &h->q[i]);
7678                 h->q[i] = 0;
7679         }
7680         for (; i < MAX_REPLY_QUEUES; i++)
7681                 h->q[i] = 0;
7682 }
7683
7684 /* returns 0 on success; cleans up and returns -Enn on error */
7685 static int hpsa_request_irqs(struct ctlr_info *h,
7686         irqreturn_t (*msixhandler)(int, void *),
7687         irqreturn_t (*intxhandler)(int, void *))
7688 {
7689         int rc, i;
7690
7691         /*
7692          * initialize h->q[x] = x so that interrupt handlers know which
7693          * queue to process.
7694          */
7695         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7696                 h->q[i] = (u8) i;
7697
7698         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7699                 /* If performant mode and MSI-X, use multiple reply queues */
7700                 for (i = 0; i < h->msix_vector; i++) {
7701                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7702                         rc = request_irq(h->intr[i], msixhandler,
7703                                         0, h->intrname[i],
7704                                         &h->q[i]);
7705                         if (rc) {
7706                                 int j;
7707
7708                                 dev_err(&h->pdev->dev,
7709                                         "failed to get irq %d for %s\n",
7710                                        h->intr[i], h->devname);
7711                                 for (j = 0; j < i; j++) {
7712                                         free_irq(h->intr[j], &h->q[j]);
7713                                         h->q[j] = 0;
7714                                 }
7715                                 for (; j < MAX_REPLY_QUEUES; j++)
7716                                         h->q[j] = 0;
7717                                 return rc;
7718                         }
7719                 }
7720                 hpsa_irq_affinity_hints(h);
7721         } else {
7722                 /* Use single reply pool */
7723                 if (h->msix_vector > 0 || h->msi_vector) {
7724                         if (h->msix_vector)
7725                                 sprintf(h->intrname[h->intr_mode],
7726                                         "%s-msix", h->devname);
7727                         else
7728                                 sprintf(h->intrname[h->intr_mode],
7729                                         "%s-msi", h->devname);
7730                         rc = request_irq(h->intr[h->intr_mode],
7731                                 msixhandler, 0,
7732                                 h->intrname[h->intr_mode],
7733                                 &h->q[h->intr_mode]);
7734                 } else {
7735                         sprintf(h->intrname[h->intr_mode],
7736                                 "%s-intx", h->devname);
7737                         rc = request_irq(h->intr[h->intr_mode],
7738                                 intxhandler, IRQF_SHARED,
7739                                 h->intrname[h->intr_mode],
7740                                 &h->q[h->intr_mode]);
7741                 }
7742                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7743         }
7744         if (rc) {
7745                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7746                        h->intr[h->intr_mode], h->devname);
7747                 hpsa_free_irqs(h);
7748                 return -ENODEV;
7749         }
7750         return 0;
7751 }
7752
7753 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7754 {
7755         int rc;
7756         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7757
7758         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7759         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7760         if (rc) {
7761                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7762                 return rc;
7763         }
7764
7765         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7766         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7767         if (rc) {
7768                 dev_warn(&h->pdev->dev, "Board failed to become ready "
7769                         "after soft reset.\n");
7770                 return rc;
7771         }
7772
7773         return 0;
7774 }
7775
7776 static void hpsa_free_reply_queues(struct ctlr_info *h)
7777 {
7778         int i;
7779
7780         for (i = 0; i < h->nreply_queues; i++) {
7781                 if (!h->reply_queue[i].head)
7782                         continue;
7783                 pci_free_consistent(h->pdev,
7784                                         h->reply_queue_size,
7785                                         h->reply_queue[i].head,
7786                                         h->reply_queue[i].busaddr);
7787                 h->reply_queue[i].head = NULL;
7788                 h->reply_queue[i].busaddr = 0;
7789         }
7790         h->reply_queue_size = 0;
7791 }
7792
7793 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7794 {
7795         hpsa_free_performant_mode(h);           /* init_one 7 */
7796         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
7797         hpsa_free_cmd_pool(h);                  /* init_one 5 */
7798         hpsa_free_irqs(h);                      /* init_one 4 */
7799         scsi_host_put(h->scsi_host);            /* init_one 3 */
7800         h->scsi_host = NULL;                    /* init_one 3 */
7801         hpsa_free_pci_init(h);                  /* init_one 2_5 */
7802         free_percpu(h->lockup_detected);        /* init_one 2 */
7803         h->lockup_detected = NULL;              /* init_one 2 */
7804         if (h->resubmit_wq) {
7805                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
7806                 h->resubmit_wq = NULL;
7807         }
7808         if (h->rescan_ctlr_wq) {
7809                 destroy_workqueue(h->rescan_ctlr_wq);
7810                 h->rescan_ctlr_wq = NULL;
7811         }
7812         kfree(h);                               /* init_one 1 */
7813 }
7814
7815 /* Called when controller lockup detected. */
7816 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7817 {
7818         int i, refcount;
7819         struct CommandList *c;
7820         int failcount = 0;
7821
7822         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7823         for (i = 0; i < h->nr_cmds; i++) {
7824                 c = h->cmd_pool + i;
7825                 refcount = atomic_inc_return(&c->refcount);
7826                 if (refcount > 1) {
7827                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7828                         finish_cmd(c);
7829                         atomic_dec(&h->commands_outstanding);
7830                         failcount++;
7831                 }
7832                 cmd_free(h, c);
7833         }
7834         dev_warn(&h->pdev->dev,
7835                 "failed %d commands in fail_all\n", failcount);
7836 }
7837
7838 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7839 {
7840         int cpu;
7841
7842         for_each_online_cpu(cpu) {
7843                 u32 *lockup_detected;
7844                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7845                 *lockup_detected = value;
7846         }
7847         wmb(); /* be sure the per-cpu variables are out to memory */
7848 }
7849
7850 static void controller_lockup_detected(struct ctlr_info *h)
7851 {
7852         unsigned long flags;
7853         u32 lockup_detected;
7854
7855         h->access.set_intr_mask(h, HPSA_INTR_OFF);
7856         spin_lock_irqsave(&h->lock, flags);
7857         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7858         if (!lockup_detected) {
7859                 /* no heartbeat, but controller gave us a zero. */
7860                 dev_warn(&h->pdev->dev,
7861                         "lockup detected after %d but scratchpad register is zero\n",
7862                         h->heartbeat_sample_interval / HZ);
7863                 lockup_detected = 0xffffffff;
7864         }
7865         set_lockup_detected_for_all_cpus(h, lockup_detected);
7866         spin_unlock_irqrestore(&h->lock, flags);
7867         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
7868                         lockup_detected, h->heartbeat_sample_interval / HZ);
7869         pci_disable_device(h->pdev);
7870         fail_all_outstanding_cmds(h);
7871 }
7872
7873 static int detect_controller_lockup(struct ctlr_info *h)
7874 {
7875         u64 now;
7876         u32 heartbeat;
7877         unsigned long flags;
7878
7879         now = get_jiffies_64();
7880         /* If we've received an interrupt recently, we're ok. */
7881         if (time_after64(h->last_intr_timestamp +
7882                                 (h->heartbeat_sample_interval), now))
7883                 return false;
7884
7885         /*
7886          * If we've already checked the heartbeat recently, we're ok.
7887          * This could happen if someone sends us a signal. We
7888          * otherwise don't care about signals in this thread.
7889          */
7890         if (time_after64(h->last_heartbeat_timestamp +
7891                                 (h->heartbeat_sample_interval), now))
7892                 return false;
7893
7894         /* If heartbeat has not changed since we last looked, we're not ok. */
7895         spin_lock_irqsave(&h->lock, flags);
7896         heartbeat = readl(&h->cfgtable->HeartBeat);
7897         spin_unlock_irqrestore(&h->lock, flags);
7898         if (h->last_heartbeat == heartbeat) {
7899                 controller_lockup_detected(h);
7900                 return true;
7901         }
7902
7903         /* We're ok. */
7904         h->last_heartbeat = heartbeat;
7905         h->last_heartbeat_timestamp = now;
7906         return false;
7907 }
7908
7909 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7910 {
7911         int i;
7912         char *event_type;
7913
7914         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7915                 return;
7916
7917         /* Ask the controller to clear the events we're handling. */
7918         if ((h->transMethod & (CFGTBL_Trans_io_accel1
7919                         | CFGTBL_Trans_io_accel2)) &&
7920                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
7921                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
7922
7923                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
7924                         event_type = "state change";
7925                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
7926                         event_type = "configuration change";
7927                 /* Stop sending new RAID offload reqs via the IO accelerator */
7928                 scsi_block_requests(h->scsi_host);
7929                 for (i = 0; i < h->ndevices; i++)
7930                         h->dev[i]->offload_enabled = 0;
7931                 hpsa_drain_accel_commands(h);
7932                 /* Set 'accelerator path config change' bit */
7933                 dev_warn(&h->pdev->dev,
7934                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
7935                         h->events, event_type);
7936                 writel(h->events, &(h->cfgtable->clear_event_notify));
7937                 /* Set the "clear event notify field update" bit 6 */
7938                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7939                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
7940                 hpsa_wait_for_clear_event_notify_ack(h);
7941                 scsi_unblock_requests(h->scsi_host);
7942         } else {
7943                 /* Acknowledge controller notification events. */
7944                 writel(h->events, &(h->cfgtable->clear_event_notify));
7945                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7946                 hpsa_wait_for_clear_event_notify_ack(h);
7947 #if 0
7948                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7949                 hpsa_wait_for_mode_change_ack(h);
7950 #endif
7951         }
7952         return;
7953 }
7954
7955 /* Check a register on the controller to see if there are configuration
7956  * changes (added/changed/removed logical drives, etc.) which mean that
7957  * we should rescan the controller for devices.
7958  * Also check flag for driver-initiated rescan.
7959  */
7960 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
7961 {
7962         if (h->drv_req_rescan) {
7963                 h->drv_req_rescan = 0;
7964                 return 1;
7965         }
7966
7967         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7968                 return 0;
7969
7970         h->events = readl(&(h->cfgtable->event_notify));
7971         return h->events & RESCAN_REQUIRED_EVENT_BITS;
7972 }
7973
7974 /*
7975  * Check if any of the offline devices have become ready
7976  */
7977 static int hpsa_offline_devices_ready(struct ctlr_info *h)
7978 {
7979         unsigned long flags;
7980         struct offline_device_entry *d;
7981         struct list_head *this, *tmp;
7982
7983         spin_lock_irqsave(&h->offline_device_lock, flags);
7984         list_for_each_safe(this, tmp, &h->offline_device_list) {
7985                 d = list_entry(this, struct offline_device_entry,
7986                                 offline_list);
7987                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
7988                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
7989                         spin_lock_irqsave(&h->offline_device_lock, flags);
7990                         list_del(&d->offline_list);
7991                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
7992                         return 1;
7993                 }
7994                 spin_lock_irqsave(&h->offline_device_lock, flags);
7995         }
7996         spin_unlock_irqrestore(&h->offline_device_lock, flags);
7997         return 0;
7998 }
7999
8000 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8001 {
8002         unsigned long flags;
8003         struct ctlr_info *h = container_of(to_delayed_work(work),
8004                                         struct ctlr_info, rescan_ctlr_work);
8005
8006
8007         if (h->remove_in_progress)
8008                 return;
8009
8010         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8011                 scsi_host_get(h->scsi_host);
8012                 hpsa_ack_ctlr_events(h);
8013                 hpsa_scan_start(h->scsi_host);
8014                 scsi_host_put(h->scsi_host);
8015         }
8016         spin_lock_irqsave(&h->lock, flags);
8017         if (!h->remove_in_progress)
8018                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8019                                 h->heartbeat_sample_interval);
8020         spin_unlock_irqrestore(&h->lock, flags);
8021 }
8022
8023 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8024 {
8025         unsigned long flags;
8026         struct ctlr_info *h = container_of(to_delayed_work(work),
8027                                         struct ctlr_info, monitor_ctlr_work);
8028
8029         detect_controller_lockup(h);
8030         if (lockup_detected(h))
8031                 return;
8032
8033         spin_lock_irqsave(&h->lock, flags);
8034         if (!h->remove_in_progress)
8035                 schedule_delayed_work(&h->monitor_ctlr_work,
8036                                 h->heartbeat_sample_interval);
8037         spin_unlock_irqrestore(&h->lock, flags);
8038 }
8039
8040 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8041                                                 char *name)
8042 {
8043         struct workqueue_struct *wq = NULL;
8044
8045         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8046         if (!wq)
8047                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8048
8049         return wq;
8050 }
8051
8052 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8053 {
8054         int dac, rc;
8055         struct ctlr_info *h;
8056         int try_soft_reset = 0;
8057         unsigned long flags;
8058         u32 board_id;
8059
8060         if (number_of_controllers == 0)
8061                 printk(KERN_INFO DRIVER_NAME "\n");
8062
8063         rc = hpsa_lookup_board_id(pdev, &board_id);
8064         if (rc < 0) {
8065                 dev_warn(&pdev->dev, "Board ID not found\n");
8066                 return rc;
8067         }
8068
8069         rc = hpsa_init_reset_devices(pdev, board_id);
8070         if (rc) {
8071                 if (rc != -ENOTSUPP)
8072                         return rc;
8073                 /* If the reset fails in a particular way (it has no way to do
8074                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8075                  * a soft reset once we get the controller configured up to the
8076                  * point that it can accept a command.
8077                  */
8078                 try_soft_reset = 1;
8079                 rc = 0;
8080         }
8081
8082 reinit_after_soft_reset:
8083
8084         /* Command structures must be aligned on a 32-byte boundary because
8085          * the 5 lower bits of the address are used by the hardware. and by
8086          * the driver.  See comments in hpsa.h for more info.
8087          */
8088         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8089         h = kzalloc(sizeof(*h), GFP_KERNEL);
8090         if (!h) {
8091                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8092                 return -ENOMEM;
8093         }
8094
8095         h->pdev = pdev;
8096
8097         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8098         INIT_LIST_HEAD(&h->offline_device_list);
8099         spin_lock_init(&h->lock);
8100         spin_lock_init(&h->offline_device_lock);
8101         spin_lock_init(&h->scan_lock);
8102         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8103         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8104
8105         /* Allocate and clear per-cpu variable lockup_detected */
8106         h->lockup_detected = alloc_percpu(u32);
8107         if (!h->lockup_detected) {
8108                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8109                 rc = -ENOMEM;
8110                 goto clean1;    /* aer/h */
8111         }
8112         set_lockup_detected_for_all_cpus(h, 0);
8113
8114         rc = hpsa_pci_init(h);
8115         if (rc)
8116                 goto clean2;    /* lu, aer/h */
8117
8118         /* relies on h-> settings made by hpsa_pci_init, including
8119          * interrupt_mode h->intr */
8120         rc = hpsa_scsi_host_alloc(h);
8121         if (rc)
8122                 goto clean2_5;  /* pci, lu, aer/h */
8123
8124         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8125         h->ctlr = number_of_controllers;
8126         number_of_controllers++;
8127
8128         /* configure PCI DMA stuff */
8129         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8130         if (rc == 0) {
8131                 dac = 1;
8132         } else {
8133                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8134                 if (rc == 0) {
8135                         dac = 0;
8136                 } else {
8137                         dev_err(&pdev->dev, "no suitable DMA available\n");
8138                         goto clean3;    /* shost, pci, lu, aer/h */
8139                 }
8140         }
8141
8142         /* make sure the board interrupts are off */
8143         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8144
8145         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8146         if (rc)
8147                 goto clean3;    /* shost, pci, lu, aer/h */
8148         rc = hpsa_alloc_cmd_pool(h);
8149         if (rc)
8150                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8151         rc = hpsa_alloc_sg_chain_blocks(h);
8152         if (rc)
8153                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8154         init_waitqueue_head(&h->scan_wait_queue);
8155         init_waitqueue_head(&h->abort_cmd_wait_queue);
8156         init_waitqueue_head(&h->event_sync_wait_queue);
8157         mutex_init(&h->reset_mutex);
8158         h->scan_finished = 1; /* no scan currently in progress */
8159
8160         pci_set_drvdata(pdev, h);
8161         h->ndevices = 0;
8162
8163         spin_lock_init(&h->devlock);
8164         rc = hpsa_put_ctlr_into_performant_mode(h);
8165         if (rc)
8166                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8167
8168         /* hook into SCSI subsystem */
8169         rc = hpsa_scsi_add_host(h);
8170         if (rc)
8171                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8172
8173         /* create the resubmit workqueue */
8174         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8175         if (!h->rescan_ctlr_wq) {
8176                 rc = -ENOMEM;
8177                 goto clean7;
8178         }
8179
8180         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8181         if (!h->resubmit_wq) {
8182                 rc = -ENOMEM;
8183                 goto clean7;    /* aer/h */
8184         }
8185
8186         /*
8187          * At this point, the controller is ready to take commands.
8188          * Now, if reset_devices and the hard reset didn't work, try
8189          * the soft reset and see if that works.
8190          */
8191         if (try_soft_reset) {
8192
8193                 /* This is kind of gross.  We may or may not get a completion
8194                  * from the soft reset command, and if we do, then the value
8195                  * from the fifo may or may not be valid.  So, we wait 10 secs
8196                  * after the reset throwing away any completions we get during
8197                  * that time.  Unregister the interrupt handler and register
8198                  * fake ones to scoop up any residual completions.
8199                  */
8200                 spin_lock_irqsave(&h->lock, flags);
8201                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8202                 spin_unlock_irqrestore(&h->lock, flags);
8203                 hpsa_free_irqs(h);
8204                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8205                                         hpsa_intx_discard_completions);
8206                 if (rc) {
8207                         dev_warn(&h->pdev->dev,
8208                                 "Failed to request_irq after soft reset.\n");
8209                         /*
8210                          * cannot goto clean7 or free_irqs will be called
8211                          * again. Instead, do its work
8212                          */
8213                         hpsa_free_performant_mode(h);   /* clean7 */
8214                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8215                         hpsa_free_cmd_pool(h);          /* clean5 */
8216                         /*
8217                          * skip hpsa_free_irqs(h) clean4 since that
8218                          * was just called before request_irqs failed
8219                          */
8220                         goto clean3;
8221                 }
8222
8223                 rc = hpsa_kdump_soft_reset(h);
8224                 if (rc)
8225                         /* Neither hard nor soft reset worked, we're hosed. */
8226                         goto clean7;
8227
8228                 dev_info(&h->pdev->dev, "Board READY.\n");
8229                 dev_info(&h->pdev->dev,
8230                         "Waiting for stale completions to drain.\n");
8231                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8232                 msleep(10000);
8233                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8234
8235                 rc = controller_reset_failed(h->cfgtable);
8236                 if (rc)
8237                         dev_info(&h->pdev->dev,
8238                                 "Soft reset appears to have failed.\n");
8239
8240                 /* since the controller's reset, we have to go back and re-init
8241                  * everything.  Easiest to just forget what we've done and do it
8242                  * all over again.
8243                  */
8244                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8245                 try_soft_reset = 0;
8246                 if (rc)
8247                         /* don't goto clean, we already unallocated */
8248                         return -ENODEV;
8249
8250                 goto reinit_after_soft_reset;
8251         }
8252
8253         /* Enable Accelerated IO path at driver layer */
8254         h->acciopath_status = 1;
8255
8256
8257         /* Turn the interrupts on so we can service requests */
8258         h->access.set_intr_mask(h, HPSA_INTR_ON);
8259
8260         hpsa_hba_inquiry(h);
8261
8262         /* Monitor the controller for firmware lockups */
8263         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8264         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8265         schedule_delayed_work(&h->monitor_ctlr_work,
8266                                 h->heartbeat_sample_interval);
8267         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8268         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8269                                 h->heartbeat_sample_interval);
8270         return 0;
8271
8272 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8273         hpsa_free_performant_mode(h);
8274         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8275 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8276         hpsa_free_sg_chain_blocks(h);
8277 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8278         hpsa_free_cmd_pool(h);
8279 clean4: /* irq, shost, pci, lu, aer/h */
8280         hpsa_free_irqs(h);
8281 clean3: /* shost, pci, lu, aer/h */
8282         scsi_host_put(h->scsi_host);
8283         h->scsi_host = NULL;
8284 clean2_5: /* pci, lu, aer/h */
8285         hpsa_free_pci_init(h);
8286 clean2: /* lu, aer/h */
8287         if (h->lockup_detected) {
8288                 free_percpu(h->lockup_detected);
8289                 h->lockup_detected = NULL;
8290         }
8291 clean1: /* wq/aer/h */
8292         if (h->resubmit_wq) {
8293                 destroy_workqueue(h->resubmit_wq);
8294                 h->resubmit_wq = NULL;
8295         }
8296         if (h->rescan_ctlr_wq) {
8297                 destroy_workqueue(h->rescan_ctlr_wq);
8298                 h->rescan_ctlr_wq = NULL;
8299         }
8300         kfree(h);
8301         return rc;
8302 }
8303
8304 static void hpsa_flush_cache(struct ctlr_info *h)
8305 {
8306         char *flush_buf;
8307         struct CommandList *c;
8308         int rc;
8309
8310         if (unlikely(lockup_detected(h)))
8311                 return;
8312         flush_buf = kzalloc(4, GFP_KERNEL);
8313         if (!flush_buf)
8314                 return;
8315
8316         c = cmd_alloc(h);
8317
8318         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8319                 RAID_CTLR_LUNID, TYPE_CMD)) {
8320                 goto out;
8321         }
8322         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8323                                         PCI_DMA_TODEVICE, NO_TIMEOUT);
8324         if (rc)
8325                 goto out;
8326         if (c->err_info->CommandStatus != 0)
8327 out:
8328                 dev_warn(&h->pdev->dev,
8329                         "error flushing cache on controller\n");
8330         cmd_free(h, c);
8331         kfree(flush_buf);
8332 }
8333
8334 static void hpsa_shutdown(struct pci_dev *pdev)
8335 {
8336         struct ctlr_info *h;
8337
8338         h = pci_get_drvdata(pdev);
8339         /* Turn board interrupts off  and send the flush cache command
8340          * sendcmd will turn off interrupt, and send the flush...
8341          * To write all data in the battery backed cache to disks
8342          */
8343         hpsa_flush_cache(h);
8344         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8345         hpsa_free_irqs(h);                      /* init_one 4 */
8346         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8347 }
8348
8349 static void hpsa_free_device_info(struct ctlr_info *h)
8350 {
8351         int i;
8352
8353         for (i = 0; i < h->ndevices; i++) {
8354                 kfree(h->dev[i]);
8355                 h->dev[i] = NULL;
8356         }
8357 }
8358
8359 static void hpsa_remove_one(struct pci_dev *pdev)
8360 {
8361         struct ctlr_info *h;
8362         unsigned long flags;
8363
8364         if (pci_get_drvdata(pdev) == NULL) {
8365                 dev_err(&pdev->dev, "unable to remove device\n");
8366                 return;
8367         }
8368         h = pci_get_drvdata(pdev);
8369
8370         /* Get rid of any controller monitoring work items */
8371         spin_lock_irqsave(&h->lock, flags);
8372         h->remove_in_progress = 1;
8373         spin_unlock_irqrestore(&h->lock, flags);
8374         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8375         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8376         destroy_workqueue(h->rescan_ctlr_wq);
8377         destroy_workqueue(h->resubmit_wq);
8378
8379         /*
8380          * Call before disabling interrupts.
8381          * scsi_remove_host can trigger I/O operations especially
8382          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8383          * operations which cannot complete and will hang the system.
8384          */
8385         if (h->scsi_host)
8386                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8387         /* includes hpsa_free_irqs - init_one 4 */
8388         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8389         hpsa_shutdown(pdev);
8390
8391         hpsa_free_device_info(h);               /* scan */
8392
8393         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8394         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8395         hpsa_free_ioaccel2_sg_chain_blocks(h);
8396         hpsa_free_performant_mode(h);                   /* init_one 7 */
8397         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8398         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8399
8400         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8401
8402         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8403         h->scsi_host = NULL;                            /* init_one 3 */
8404
8405         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8406         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8407
8408         free_percpu(h->lockup_detected);                /* init_one 2 */
8409         h->lockup_detected = NULL;                      /* init_one 2 */
8410         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8411         kfree(h);                                       /* init_one 1 */
8412 }
8413
8414 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8415         __attribute__((unused)) pm_message_t state)
8416 {
8417         return -ENOSYS;
8418 }
8419
8420 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8421 {
8422         return -ENOSYS;
8423 }
8424
8425 static struct pci_driver hpsa_pci_driver = {
8426         .name = HPSA,
8427         .probe = hpsa_init_one,
8428         .remove = hpsa_remove_one,
8429         .id_table = hpsa_pci_device_id, /* id_table */
8430         .shutdown = hpsa_shutdown,
8431         .suspend = hpsa_suspend,
8432         .resume = hpsa_resume,
8433 };
8434
8435 /* Fill in bucket_map[], given nsgs (the max number of
8436  * scatter gather elements supported) and bucket[],
8437  * which is an array of 8 integers.  The bucket[] array
8438  * contains 8 different DMA transfer sizes (in 16
8439  * byte increments) which the controller uses to fetch
8440  * commands.  This function fills in bucket_map[], which
8441  * maps a given number of scatter gather elements to one of
8442  * the 8 DMA transfer sizes.  The point of it is to allow the
8443  * controller to only do as much DMA as needed to fetch the
8444  * command, with the DMA transfer size encoded in the lower
8445  * bits of the command address.
8446  */
8447 static void  calc_bucket_map(int bucket[], int num_buckets,
8448         int nsgs, int min_blocks, u32 *bucket_map)
8449 {
8450         int i, j, b, size;
8451
8452         /* Note, bucket_map must have nsgs+1 entries. */
8453         for (i = 0; i <= nsgs; i++) {
8454                 /* Compute size of a command with i SG entries */
8455                 size = i + min_blocks;
8456                 b = num_buckets; /* Assume the biggest bucket */
8457                 /* Find the bucket that is just big enough */
8458                 for (j = 0; j < num_buckets; j++) {
8459                         if (bucket[j] >= size) {
8460                                 b = j;
8461                                 break;
8462                         }
8463                 }
8464                 /* for a command with i SG entries, use bucket b. */
8465                 bucket_map[i] = b;
8466         }
8467 }
8468
8469 /*
8470  * return -ENODEV on err, 0 on success (or no action)
8471  * allocates numerous items that must be freed later
8472  */
8473 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8474 {
8475         int i;
8476         unsigned long register_value;
8477         unsigned long transMethod = CFGTBL_Trans_Performant |
8478                         (trans_support & CFGTBL_Trans_use_short_tags) |
8479                                 CFGTBL_Trans_enable_directed_msix |
8480                         (trans_support & (CFGTBL_Trans_io_accel1 |
8481                                 CFGTBL_Trans_io_accel2));
8482         struct access_method access = SA5_performant_access;
8483
8484         /* This is a bit complicated.  There are 8 registers on
8485          * the controller which we write to to tell it 8 different
8486          * sizes of commands which there may be.  It's a way of
8487          * reducing the DMA done to fetch each command.  Encoded into
8488          * each command's tag are 3 bits which communicate to the controller
8489          * which of the eight sizes that command fits within.  The size of
8490          * each command depends on how many scatter gather entries there are.
8491          * Each SG entry requires 16 bytes.  The eight registers are programmed
8492          * with the number of 16-byte blocks a command of that size requires.
8493          * The smallest command possible requires 5 such 16 byte blocks.
8494          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8495          * blocks.  Note, this only extends to the SG entries contained
8496          * within the command block, and does not extend to chained blocks
8497          * of SG elements.   bft[] contains the eight values we write to
8498          * the registers.  They are not evenly distributed, but have more
8499          * sizes for small commands, and fewer sizes for larger commands.
8500          */
8501         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8502 #define MIN_IOACCEL2_BFT_ENTRY 5
8503 #define HPSA_IOACCEL2_HEADER_SZ 4
8504         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8505                         13, 14, 15, 16, 17, 18, 19,
8506                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8507         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8508         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8509         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8510                                  16 * MIN_IOACCEL2_BFT_ENTRY);
8511         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8512         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8513         /*  5 = 1 s/g entry or 4k
8514          *  6 = 2 s/g entry or 8k
8515          *  8 = 4 s/g entry or 16k
8516          * 10 = 6 s/g entry or 24k
8517          */
8518
8519         /* If the controller supports either ioaccel method then
8520          * we can also use the RAID stack submit path that does not
8521          * perform the superfluous readl() after each command submission.
8522          */
8523         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8524                 access = SA5_performant_access_no_read;
8525
8526         /* Controller spec: zero out this buffer. */
8527         for (i = 0; i < h->nreply_queues; i++)
8528                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8529
8530         bft[7] = SG_ENTRIES_IN_CMD + 4;
8531         calc_bucket_map(bft, ARRAY_SIZE(bft),
8532                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8533         for (i = 0; i < 8; i++)
8534                 writel(bft[i], &h->transtable->BlockFetch[i]);
8535
8536         /* size of controller ring buffer */
8537         writel(h->max_commands, &h->transtable->RepQSize);
8538         writel(h->nreply_queues, &h->transtable->RepQCount);
8539         writel(0, &h->transtable->RepQCtrAddrLow32);
8540         writel(0, &h->transtable->RepQCtrAddrHigh32);
8541
8542         for (i = 0; i < h->nreply_queues; i++) {
8543                 writel(0, &h->transtable->RepQAddr[i].upper);
8544                 writel(h->reply_queue[i].busaddr,
8545                         &h->transtable->RepQAddr[i].lower);
8546         }
8547
8548         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8549         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8550         /*
8551          * enable outbound interrupt coalescing in accelerator mode;
8552          */
8553         if (trans_support & CFGTBL_Trans_io_accel1) {
8554                 access = SA5_ioaccel_mode1_access;
8555                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8556                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8557         } else {
8558                 if (trans_support & CFGTBL_Trans_io_accel2) {
8559                         access = SA5_ioaccel_mode2_access;
8560                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8561                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8562                 }
8563         }
8564         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8565         if (hpsa_wait_for_mode_change_ack(h)) {
8566                 dev_err(&h->pdev->dev,
8567                         "performant mode problem - doorbell timeout\n");
8568                 return -ENODEV;
8569         }
8570         register_value = readl(&(h->cfgtable->TransportActive));
8571         if (!(register_value & CFGTBL_Trans_Performant)) {
8572                 dev_err(&h->pdev->dev,
8573                         "performant mode problem - transport not active\n");
8574                 return -ENODEV;
8575         }
8576         /* Change the access methods to the performant access methods */
8577         h->access = access;
8578         h->transMethod = transMethod;
8579
8580         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8581                 (trans_support & CFGTBL_Trans_io_accel2)))
8582                 return 0;
8583
8584         if (trans_support & CFGTBL_Trans_io_accel1) {
8585                 /* Set up I/O accelerator mode */
8586                 for (i = 0; i < h->nreply_queues; i++) {
8587                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8588                         h->reply_queue[i].current_entry =
8589                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8590                 }
8591                 bft[7] = h->ioaccel_maxsg + 8;
8592                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8593                                 h->ioaccel1_blockFetchTable);
8594
8595                 /* initialize all reply queue entries to unused */
8596                 for (i = 0; i < h->nreply_queues; i++)
8597                         memset(h->reply_queue[i].head,
8598                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8599                                 h->reply_queue_size);
8600
8601                 /* set all the constant fields in the accelerator command
8602                  * frames once at init time to save CPU cycles later.
8603                  */
8604                 for (i = 0; i < h->nr_cmds; i++) {
8605                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8606
8607                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
8608                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
8609                                         (i * sizeof(struct ErrorInfo)));
8610                         cp->err_info_len = sizeof(struct ErrorInfo);
8611                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
8612                         cp->host_context_flags =
8613                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8614                         cp->timeout_sec = 0;
8615                         cp->ReplyQueue = 0;
8616                         cp->tag =
8617                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8618                         cp->host_addr =
8619                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8620                                         (i * sizeof(struct io_accel1_cmd)));
8621                 }
8622         } else if (trans_support & CFGTBL_Trans_io_accel2) {
8623                 u64 cfg_offset, cfg_base_addr_index;
8624                 u32 bft2_offset, cfg_base_addr;
8625                 int rc;
8626
8627                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8628                         &cfg_base_addr_index, &cfg_offset);
8629                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8630                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8631                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8632                                 4, h->ioaccel2_blockFetchTable);
8633                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8634                 BUILD_BUG_ON(offsetof(struct CfgTable,
8635                                 io_accel_request_size_offset) != 0xb8);
8636                 h->ioaccel2_bft2_regs =
8637                         remap_pci_mem(pci_resource_start(h->pdev,
8638                                         cfg_base_addr_index) +
8639                                         cfg_offset + bft2_offset,
8640                                         ARRAY_SIZE(bft2) *
8641                                         sizeof(*h->ioaccel2_bft2_regs));
8642                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
8643                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8644         }
8645         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8646         if (hpsa_wait_for_mode_change_ack(h)) {
8647                 dev_err(&h->pdev->dev,
8648                         "performant mode problem - enabling ioaccel mode\n");
8649                 return -ENODEV;
8650         }
8651         return 0;
8652 }
8653
8654 /* Free ioaccel1 mode command blocks and block fetch table */
8655 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8656 {
8657         if (h->ioaccel_cmd_pool) {
8658                 pci_free_consistent(h->pdev,
8659                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8660                         h->ioaccel_cmd_pool,
8661                         h->ioaccel_cmd_pool_dhandle);
8662                 h->ioaccel_cmd_pool = NULL;
8663                 h->ioaccel_cmd_pool_dhandle = 0;
8664         }
8665         kfree(h->ioaccel1_blockFetchTable);
8666         h->ioaccel1_blockFetchTable = NULL;
8667 }
8668
8669 /* Allocate ioaccel1 mode command blocks and block fetch table */
8670 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8671 {
8672         h->ioaccel_maxsg =
8673                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8674         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8675                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8676
8677         /* Command structures must be aligned on a 128-byte boundary
8678          * because the 7 lower bits of the address are used by the
8679          * hardware.
8680          */
8681         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8682                         IOACCEL1_COMMANDLIST_ALIGNMENT);
8683         h->ioaccel_cmd_pool =
8684                 pci_alloc_consistent(h->pdev,
8685                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8686                         &(h->ioaccel_cmd_pool_dhandle));
8687
8688         h->ioaccel1_blockFetchTable =
8689                 kmalloc(((h->ioaccel_maxsg + 1) *
8690                                 sizeof(u32)), GFP_KERNEL);
8691
8692         if ((h->ioaccel_cmd_pool == NULL) ||
8693                 (h->ioaccel1_blockFetchTable == NULL))
8694                 goto clean_up;
8695
8696         memset(h->ioaccel_cmd_pool, 0,
8697                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
8698         return 0;
8699
8700 clean_up:
8701         hpsa_free_ioaccel1_cmd_and_bft(h);
8702         return -ENOMEM;
8703 }
8704
8705 /* Free ioaccel2 mode command blocks and block fetch table */
8706 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8707 {
8708         hpsa_free_ioaccel2_sg_chain_blocks(h);
8709
8710         if (h->ioaccel2_cmd_pool) {
8711                 pci_free_consistent(h->pdev,
8712                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8713                         h->ioaccel2_cmd_pool,
8714                         h->ioaccel2_cmd_pool_dhandle);
8715                 h->ioaccel2_cmd_pool = NULL;
8716                 h->ioaccel2_cmd_pool_dhandle = 0;
8717         }
8718         kfree(h->ioaccel2_blockFetchTable);
8719         h->ioaccel2_blockFetchTable = NULL;
8720 }
8721
8722 /* Allocate ioaccel2 mode command blocks and block fetch table */
8723 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8724 {
8725         int rc;
8726
8727         /* Allocate ioaccel2 mode command blocks and block fetch table */
8728
8729         h->ioaccel_maxsg =
8730                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8731         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
8732                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
8733
8734         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
8735                         IOACCEL2_COMMANDLIST_ALIGNMENT);
8736         h->ioaccel2_cmd_pool =
8737                 pci_alloc_consistent(h->pdev,
8738                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8739                         &(h->ioaccel2_cmd_pool_dhandle));
8740
8741         h->ioaccel2_blockFetchTable =
8742                 kmalloc(((h->ioaccel_maxsg + 1) *
8743                                 sizeof(u32)), GFP_KERNEL);
8744
8745         if ((h->ioaccel2_cmd_pool == NULL) ||
8746                 (h->ioaccel2_blockFetchTable == NULL)) {
8747                 rc = -ENOMEM;
8748                 goto clean_up;
8749         }
8750
8751         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
8752         if (rc)
8753                 goto clean_up;
8754
8755         memset(h->ioaccel2_cmd_pool, 0,
8756                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
8757         return 0;
8758
8759 clean_up:
8760         hpsa_free_ioaccel2_cmd_and_bft(h);
8761         return rc;
8762 }
8763
8764 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
8765 static void hpsa_free_performant_mode(struct ctlr_info *h)
8766 {
8767         kfree(h->blockFetchTable);
8768         h->blockFetchTable = NULL;
8769         hpsa_free_reply_queues(h);
8770         hpsa_free_ioaccel1_cmd_and_bft(h);
8771         hpsa_free_ioaccel2_cmd_and_bft(h);
8772 }
8773
8774 /* return -ENODEV on error, 0 on success (or no action)
8775  * allocates numerous items that must be freed later
8776  */
8777 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
8778 {
8779         u32 trans_support;
8780         unsigned long transMethod = CFGTBL_Trans_Performant |
8781                                         CFGTBL_Trans_use_short_tags;
8782         int i, rc;
8783
8784         if (hpsa_simple_mode)
8785                 return 0;
8786
8787         trans_support = readl(&(h->cfgtable->TransportSupport));
8788         if (!(trans_support & PERFORMANT_MODE))
8789                 return 0;
8790
8791         /* Check for I/O accelerator mode support */
8792         if (trans_support & CFGTBL_Trans_io_accel1) {
8793                 transMethod |= CFGTBL_Trans_io_accel1 |
8794                                 CFGTBL_Trans_enable_directed_msix;
8795                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
8796                 if (rc)
8797                         return rc;
8798         } else if (trans_support & CFGTBL_Trans_io_accel2) {
8799                 transMethod |= CFGTBL_Trans_io_accel2 |
8800                                 CFGTBL_Trans_enable_directed_msix;
8801                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
8802                 if (rc)
8803                         return rc;
8804         }
8805
8806         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
8807         hpsa_get_max_perf_mode_cmds(h);
8808         /* Performant mode ring buffer and supporting data structures */
8809         h->reply_queue_size = h->max_commands * sizeof(u64);
8810
8811         for (i = 0; i < h->nreply_queues; i++) {
8812                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
8813                                                 h->reply_queue_size,
8814                                                 &(h->reply_queue[i].busaddr));
8815                 if (!h->reply_queue[i].head) {
8816                         rc = -ENOMEM;
8817                         goto clean1;    /* rq, ioaccel */
8818                 }
8819                 h->reply_queue[i].size = h->max_commands;
8820                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
8821                 h->reply_queue[i].current_entry = 0;
8822         }
8823
8824         /* Need a block fetch table for performant mode */
8825         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
8826                                 sizeof(u32)), GFP_KERNEL);
8827         if (!h->blockFetchTable) {
8828                 rc = -ENOMEM;
8829                 goto clean1;    /* rq, ioaccel */
8830         }
8831
8832         rc = hpsa_enter_performant_mode(h, trans_support);
8833         if (rc)
8834                 goto clean2;    /* bft, rq, ioaccel */
8835         return 0;
8836
8837 clean2: /* bft, rq, ioaccel */
8838         kfree(h->blockFetchTable);
8839         h->blockFetchTable = NULL;
8840 clean1: /* rq, ioaccel */
8841         hpsa_free_reply_queues(h);
8842         hpsa_free_ioaccel1_cmd_and_bft(h);
8843         hpsa_free_ioaccel2_cmd_and_bft(h);
8844         return rc;
8845 }
8846
8847 static int is_accelerated_cmd(struct CommandList *c)
8848 {
8849         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
8850 }
8851
8852 static void hpsa_drain_accel_commands(struct ctlr_info *h)
8853 {
8854         struct CommandList *c = NULL;
8855         int i, accel_cmds_out;
8856         int refcount;
8857
8858         do { /* wait for all outstanding ioaccel commands to drain out */
8859                 accel_cmds_out = 0;
8860                 for (i = 0; i < h->nr_cmds; i++) {
8861                         c = h->cmd_pool + i;
8862                         refcount = atomic_inc_return(&c->refcount);
8863                         if (refcount > 1) /* Command is allocated */
8864                                 accel_cmds_out += is_accelerated_cmd(c);
8865                         cmd_free(h, c);
8866                 }
8867                 if (accel_cmds_out <= 0)
8868                         break;
8869                 msleep(100);
8870         } while (1);
8871 }
8872
8873 /*
8874  *  This is it.  Register the PCI driver information for the cards we control
8875  *  the OS will call our registered routines when it finds one of our cards.
8876  */
8877 static int __init hpsa_init(void)
8878 {
8879         return pci_register_driver(&hpsa_pci_driver);
8880 }
8881
8882 static void __exit hpsa_cleanup(void)
8883 {
8884         pci_unregister_driver(&hpsa_pci_driver);
8885 }
8886
8887 static void __attribute__((unused)) verify_offsets(void)
8888 {
8889 #define VERIFY_OFFSET(member, offset) \
8890         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
8891
8892         VERIFY_OFFSET(structure_size, 0);
8893         VERIFY_OFFSET(volume_blk_size, 4);
8894         VERIFY_OFFSET(volume_blk_cnt, 8);
8895         VERIFY_OFFSET(phys_blk_shift, 16);
8896         VERIFY_OFFSET(parity_rotation_shift, 17);
8897         VERIFY_OFFSET(strip_size, 18);
8898         VERIFY_OFFSET(disk_starting_blk, 20);
8899         VERIFY_OFFSET(disk_blk_cnt, 28);
8900         VERIFY_OFFSET(data_disks_per_row, 36);
8901         VERIFY_OFFSET(metadata_disks_per_row, 38);
8902         VERIFY_OFFSET(row_cnt, 40);
8903         VERIFY_OFFSET(layout_map_count, 42);
8904         VERIFY_OFFSET(flags, 44);
8905         VERIFY_OFFSET(dekindex, 46);
8906         /* VERIFY_OFFSET(reserved, 48 */
8907         VERIFY_OFFSET(data, 64);
8908
8909 #undef VERIFY_OFFSET
8910
8911 #define VERIFY_OFFSET(member, offset) \
8912         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
8913
8914         VERIFY_OFFSET(IU_type, 0);
8915         VERIFY_OFFSET(direction, 1);
8916         VERIFY_OFFSET(reply_queue, 2);
8917         /* VERIFY_OFFSET(reserved1, 3);  */
8918         VERIFY_OFFSET(scsi_nexus, 4);
8919         VERIFY_OFFSET(Tag, 8);
8920         VERIFY_OFFSET(cdb, 16);
8921         VERIFY_OFFSET(cciss_lun, 32);
8922         VERIFY_OFFSET(data_len, 40);
8923         VERIFY_OFFSET(cmd_priority_task_attr, 44);
8924         VERIFY_OFFSET(sg_count, 45);
8925         /* VERIFY_OFFSET(reserved3 */
8926         VERIFY_OFFSET(err_ptr, 48);
8927         VERIFY_OFFSET(err_len, 56);
8928         /* VERIFY_OFFSET(reserved4  */
8929         VERIFY_OFFSET(sg, 64);
8930
8931 #undef VERIFY_OFFSET
8932
8933 #define VERIFY_OFFSET(member, offset) \
8934         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
8935
8936         VERIFY_OFFSET(dev_handle, 0x00);
8937         VERIFY_OFFSET(reserved1, 0x02);
8938         VERIFY_OFFSET(function, 0x03);
8939         VERIFY_OFFSET(reserved2, 0x04);
8940         VERIFY_OFFSET(err_info, 0x0C);
8941         VERIFY_OFFSET(reserved3, 0x10);
8942         VERIFY_OFFSET(err_info_len, 0x12);
8943         VERIFY_OFFSET(reserved4, 0x13);
8944         VERIFY_OFFSET(sgl_offset, 0x14);
8945         VERIFY_OFFSET(reserved5, 0x15);
8946         VERIFY_OFFSET(transfer_len, 0x1C);
8947         VERIFY_OFFSET(reserved6, 0x20);
8948         VERIFY_OFFSET(io_flags, 0x24);
8949         VERIFY_OFFSET(reserved7, 0x26);
8950         VERIFY_OFFSET(LUN, 0x34);
8951         VERIFY_OFFSET(control, 0x3C);
8952         VERIFY_OFFSET(CDB, 0x40);
8953         VERIFY_OFFSET(reserved8, 0x50);
8954         VERIFY_OFFSET(host_context_flags, 0x60);
8955         VERIFY_OFFSET(timeout_sec, 0x62);
8956         VERIFY_OFFSET(ReplyQueue, 0x64);
8957         VERIFY_OFFSET(reserved9, 0x65);
8958         VERIFY_OFFSET(tag, 0x68);
8959         VERIFY_OFFSET(host_addr, 0x70);
8960         VERIFY_OFFSET(CISS_LUN, 0x78);
8961         VERIFY_OFFSET(SG, 0x78 + 8);
8962 #undef VERIFY_OFFSET
8963 }
8964
8965 module_init(hpsa_init);
8966 module_exit(hpsa_cleanup);