]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/scsi/hpsa.c
Merge tag 'doc-4.10-3' of git://git.lwn.net/linux
[karo-tx-linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88                 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92         "Use 'simple mode' rather than 'performant mode'");
93
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
148                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149         {0,}
150 };
151
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
153
154 /*  board_id = Subsystem Device ID & Vendor ID
155  *  product = Marketing Name for the board
156  *  access = Address of the struct of function pointers
157  */
158 static struct board_type products[] = {
159         {0x3241103C, "Smart Array P212", &SA5_access},
160         {0x3243103C, "Smart Array P410", &SA5_access},
161         {0x3245103C, "Smart Array P410i", &SA5_access},
162         {0x3247103C, "Smart Array P411", &SA5_access},
163         {0x3249103C, "Smart Array P812", &SA5_access},
164         {0x324A103C, "Smart Array P712m", &SA5_access},
165         {0x324B103C, "Smart Array P711m", &SA5_access},
166         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167         {0x3350103C, "Smart Array P222", &SA5_access},
168         {0x3351103C, "Smart Array P420", &SA5_access},
169         {0x3352103C, "Smart Array P421", &SA5_access},
170         {0x3353103C, "Smart Array P822", &SA5_access},
171         {0x3354103C, "Smart Array P420i", &SA5_access},
172         {0x3355103C, "Smart Array P220i", &SA5_access},
173         {0x3356103C, "Smart Array P721m", &SA5_access},
174         {0x1921103C, "Smart Array P830i", &SA5_access},
175         {0x1922103C, "Smart Array P430", &SA5_access},
176         {0x1923103C, "Smart Array P431", &SA5_access},
177         {0x1924103C, "Smart Array P830", &SA5_access},
178         {0x1926103C, "Smart Array P731m", &SA5_access},
179         {0x1928103C, "Smart Array P230i", &SA5_access},
180         {0x1929103C, "Smart Array P530", &SA5_access},
181         {0x21BD103C, "Smart Array P244br", &SA5_access},
182         {0x21BE103C, "Smart Array P741m", &SA5_access},
183         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
184         {0x21C0103C, "Smart Array P440ar", &SA5_access},
185         {0x21C1103C, "Smart Array P840ar", &SA5_access},
186         {0x21C2103C, "Smart Array P440", &SA5_access},
187         {0x21C3103C, "Smart Array P441", &SA5_access},
188         {0x21C4103C, "Smart Array", &SA5_access},
189         {0x21C5103C, "Smart Array P841", &SA5_access},
190         {0x21C6103C, "Smart HBA H244br", &SA5_access},
191         {0x21C7103C, "Smart HBA H240", &SA5_access},
192         {0x21C8103C, "Smart HBA H241", &SA5_access},
193         {0x21C9103C, "Smart Array", &SA5_access},
194         {0x21CA103C, "Smart Array P246br", &SA5_access},
195         {0x21CB103C, "Smart Array P840", &SA5_access},
196         {0x21CC103C, "Smart Array", &SA5_access},
197         {0x21CD103C, "Smart Array", &SA5_access},
198         {0x21CE103C, "Smart HBA", &SA5_access},
199         {0x05809005, "SmartHBA-SA", &SA5_access},
200         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
201         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
203         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
204         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
211 };
212
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217                         struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221                 struct sas_rphy *rphy);
222
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
228
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
232
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235         void __user *arg);
236 #endif
237
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242                                             struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245         int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
249
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253         unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
255
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
261
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264         struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266         struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269         int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275                                u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277                                     unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int wait_for_device_to_become_ready(struct ctlr_info *h,
280                                            unsigned char lunaddr[],
281                                            int reply_queue);
282 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
283                                      int wait_for_ready);
284 static inline void finish_cmd(struct CommandList *c);
285 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
286 #define BOARD_NOT_READY 0
287 #define BOARD_READY 1
288 static void hpsa_drain_accel_commands(struct ctlr_info *h);
289 static void hpsa_flush_cache(struct ctlr_info *h);
290 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
291         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
292         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
293 static void hpsa_command_resubmit_worker(struct work_struct *work);
294 static u32 lockup_detected(struct ctlr_info *h);
295 static int detect_controller_lockup(struct ctlr_info *h);
296 static void hpsa_disable_rld_caching(struct ctlr_info *h);
297 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
298         struct ReportExtendedLUNdata *buf, int bufsize);
299 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
300         unsigned char scsi3addr[], u8 page);
301 static int hpsa_luns_changed(struct ctlr_info *h);
302 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
303                                struct hpsa_scsi_dev_t *dev,
304                                unsigned char *scsi3addr);
305
306 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
307 {
308         unsigned long *priv = shost_priv(sdev->host);
309         return (struct ctlr_info *) *priv;
310 }
311
312 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
313 {
314         unsigned long *priv = shost_priv(sh);
315         return (struct ctlr_info *) *priv;
316 }
317
318 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
319 {
320         return c->scsi_cmd == SCSI_CMD_IDLE;
321 }
322
323 static inline bool hpsa_is_pending_event(struct CommandList *c)
324 {
325         return c->abort_pending || c->reset_pending;
326 }
327
328 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
329 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
330                         u8 *sense_key, u8 *asc, u8 *ascq)
331 {
332         struct scsi_sense_hdr sshdr;
333         bool rc;
334
335         *sense_key = -1;
336         *asc = -1;
337         *ascq = -1;
338
339         if (sense_data_len < 1)
340                 return;
341
342         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
343         if (rc) {
344                 *sense_key = sshdr.sense_key;
345                 *asc = sshdr.asc;
346                 *ascq = sshdr.ascq;
347         }
348 }
349
350 static int check_for_unit_attention(struct ctlr_info *h,
351         struct CommandList *c)
352 {
353         u8 sense_key, asc, ascq;
354         int sense_len;
355
356         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
357                 sense_len = sizeof(c->err_info->SenseInfo);
358         else
359                 sense_len = c->err_info->SenseLen;
360
361         decode_sense_data(c->err_info->SenseInfo, sense_len,
362                                 &sense_key, &asc, &ascq);
363         if (sense_key != UNIT_ATTENTION || asc == 0xff)
364                 return 0;
365
366         switch (asc) {
367         case STATE_CHANGED:
368                 dev_warn(&h->pdev->dev,
369                         "%s: a state change detected, command retried\n",
370                         h->devname);
371                 break;
372         case LUN_FAILED:
373                 dev_warn(&h->pdev->dev,
374                         "%s: LUN failure detected\n", h->devname);
375                 break;
376         case REPORT_LUNS_CHANGED:
377                 dev_warn(&h->pdev->dev,
378                         "%s: report LUN data changed\n", h->devname);
379         /*
380          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
381          * target (array) devices.
382          */
383                 break;
384         case POWER_OR_RESET:
385                 dev_warn(&h->pdev->dev,
386                         "%s: a power on or device reset detected\n",
387                         h->devname);
388                 break;
389         case UNIT_ATTENTION_CLEARED:
390                 dev_warn(&h->pdev->dev,
391                         "%s: unit attention cleared by another initiator\n",
392                         h->devname);
393                 break;
394         default:
395                 dev_warn(&h->pdev->dev,
396                         "%s: unknown unit attention detected\n",
397                         h->devname);
398                 break;
399         }
400         return 1;
401 }
402
403 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
404 {
405         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
406                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
407                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
408                 return 0;
409         dev_warn(&h->pdev->dev, HPSA "device busy");
410         return 1;
411 }
412
413 static u32 lockup_detected(struct ctlr_info *h);
414 static ssize_t host_show_lockup_detected(struct device *dev,
415                 struct device_attribute *attr, char *buf)
416 {
417         int ld;
418         struct ctlr_info *h;
419         struct Scsi_Host *shost = class_to_shost(dev);
420
421         h = shost_to_hba(shost);
422         ld = lockup_detected(h);
423
424         return sprintf(buf, "ld=%d\n", ld);
425 }
426
427 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
428                                          struct device_attribute *attr,
429                                          const char *buf, size_t count)
430 {
431         int status, len;
432         struct ctlr_info *h;
433         struct Scsi_Host *shost = class_to_shost(dev);
434         char tmpbuf[10];
435
436         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
437                 return -EACCES;
438         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
439         strncpy(tmpbuf, buf, len);
440         tmpbuf[len] = '\0';
441         if (sscanf(tmpbuf, "%d", &status) != 1)
442                 return -EINVAL;
443         h = shost_to_hba(shost);
444         h->acciopath_status = !!status;
445         dev_warn(&h->pdev->dev,
446                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
447                 h->acciopath_status ? "enabled" : "disabled");
448         return count;
449 }
450
451 static ssize_t host_store_raid_offload_debug(struct device *dev,
452                                          struct device_attribute *attr,
453                                          const char *buf, size_t count)
454 {
455         int debug_level, len;
456         struct ctlr_info *h;
457         struct Scsi_Host *shost = class_to_shost(dev);
458         char tmpbuf[10];
459
460         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461                 return -EACCES;
462         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463         strncpy(tmpbuf, buf, len);
464         tmpbuf[len] = '\0';
465         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
466                 return -EINVAL;
467         if (debug_level < 0)
468                 debug_level = 0;
469         h = shost_to_hba(shost);
470         h->raid_offload_debug = debug_level;
471         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
472                 h->raid_offload_debug);
473         return count;
474 }
475
476 static ssize_t host_store_rescan(struct device *dev,
477                                  struct device_attribute *attr,
478                                  const char *buf, size_t count)
479 {
480         struct ctlr_info *h;
481         struct Scsi_Host *shost = class_to_shost(dev);
482         h = shost_to_hba(shost);
483         hpsa_scan_start(h->scsi_host);
484         return count;
485 }
486
487 static ssize_t host_show_firmware_revision(struct device *dev,
488              struct device_attribute *attr, char *buf)
489 {
490         struct ctlr_info *h;
491         struct Scsi_Host *shost = class_to_shost(dev);
492         unsigned char *fwrev;
493
494         h = shost_to_hba(shost);
495         if (!h->hba_inquiry_data)
496                 return 0;
497         fwrev = &h->hba_inquiry_data[32];
498         return snprintf(buf, 20, "%c%c%c%c\n",
499                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
500 }
501
502 static ssize_t host_show_commands_outstanding(struct device *dev,
503              struct device_attribute *attr, char *buf)
504 {
505         struct Scsi_Host *shost = class_to_shost(dev);
506         struct ctlr_info *h = shost_to_hba(shost);
507
508         return snprintf(buf, 20, "%d\n",
509                         atomic_read(&h->commands_outstanding));
510 }
511
512 static ssize_t host_show_transport_mode(struct device *dev,
513         struct device_attribute *attr, char *buf)
514 {
515         struct ctlr_info *h;
516         struct Scsi_Host *shost = class_to_shost(dev);
517
518         h = shost_to_hba(shost);
519         return snprintf(buf, 20, "%s\n",
520                 h->transMethod & CFGTBL_Trans_Performant ?
521                         "performant" : "simple");
522 }
523
524 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
525         struct device_attribute *attr, char *buf)
526 {
527         struct ctlr_info *h;
528         struct Scsi_Host *shost = class_to_shost(dev);
529
530         h = shost_to_hba(shost);
531         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
532                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
533 }
534
535 /* List of controllers which cannot be hard reset on kexec with reset_devices */
536 static u32 unresettable_controller[] = {
537         0x324a103C, /* Smart Array P712m */
538         0x324b103C, /* Smart Array P711m */
539         0x3223103C, /* Smart Array P800 */
540         0x3234103C, /* Smart Array P400 */
541         0x3235103C, /* Smart Array P400i */
542         0x3211103C, /* Smart Array E200i */
543         0x3212103C, /* Smart Array E200 */
544         0x3213103C, /* Smart Array E200i */
545         0x3214103C, /* Smart Array E200i */
546         0x3215103C, /* Smart Array E200i */
547         0x3237103C, /* Smart Array E500 */
548         0x323D103C, /* Smart Array P700m */
549         0x40800E11, /* Smart Array 5i */
550         0x409C0E11, /* Smart Array 6400 */
551         0x409D0E11, /* Smart Array 6400 EM */
552         0x40700E11, /* Smart Array 5300 */
553         0x40820E11, /* Smart Array 532 */
554         0x40830E11, /* Smart Array 5312 */
555         0x409A0E11, /* Smart Array 641 */
556         0x409B0E11, /* Smart Array 642 */
557         0x40910E11, /* Smart Array 6i */
558 };
559
560 /* List of controllers which cannot even be soft reset */
561 static u32 soft_unresettable_controller[] = {
562         0x40800E11, /* Smart Array 5i */
563         0x40700E11, /* Smart Array 5300 */
564         0x40820E11, /* Smart Array 532 */
565         0x40830E11, /* Smart Array 5312 */
566         0x409A0E11, /* Smart Array 641 */
567         0x409B0E11, /* Smart Array 642 */
568         0x40910E11, /* Smart Array 6i */
569         /* Exclude 640x boards.  These are two pci devices in one slot
570          * which share a battery backed cache module.  One controls the
571          * cache, the other accesses the cache through the one that controls
572          * it.  If we reset the one controlling the cache, the other will
573          * likely not be happy.  Just forbid resetting this conjoined mess.
574          * The 640x isn't really supported by hpsa anyway.
575          */
576         0x409C0E11, /* Smart Array 6400 */
577         0x409D0E11, /* Smart Array 6400 EM */
578 };
579
580 static u32 needs_abort_tags_swizzled[] = {
581         0x323D103C, /* Smart Array P700m */
582         0x324a103C, /* Smart Array P712m */
583         0x324b103C, /* SmartArray P711m */
584 };
585
586 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
587 {
588         int i;
589
590         for (i = 0; i < nelems; i++)
591                 if (a[i] == board_id)
592                         return 1;
593         return 0;
594 }
595
596 static int ctlr_is_hard_resettable(u32 board_id)
597 {
598         return !board_id_in_array(unresettable_controller,
599                         ARRAY_SIZE(unresettable_controller), board_id);
600 }
601
602 static int ctlr_is_soft_resettable(u32 board_id)
603 {
604         return !board_id_in_array(soft_unresettable_controller,
605                         ARRAY_SIZE(soft_unresettable_controller), board_id);
606 }
607
608 static int ctlr_is_resettable(u32 board_id)
609 {
610         return ctlr_is_hard_resettable(board_id) ||
611                 ctlr_is_soft_resettable(board_id);
612 }
613
614 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
615 {
616         return board_id_in_array(needs_abort_tags_swizzled,
617                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
618 }
619
620 static ssize_t host_show_resettable(struct device *dev,
621         struct device_attribute *attr, char *buf)
622 {
623         struct ctlr_info *h;
624         struct Scsi_Host *shost = class_to_shost(dev);
625
626         h = shost_to_hba(shost);
627         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
628 }
629
630 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
631 {
632         return (scsi3addr[3] & 0xC0) == 0x40;
633 }
634
635 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
636         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
637 };
638 #define HPSA_RAID_0     0
639 #define HPSA_RAID_4     1
640 #define HPSA_RAID_1     2       /* also used for RAID 10 */
641 #define HPSA_RAID_5     3       /* also used for RAID 50 */
642 #define HPSA_RAID_51    4
643 #define HPSA_RAID_6     5       /* also used for RAID 60 */
644 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
645 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
646 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
647
648 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
649 {
650         return !device->physical_device;
651 }
652
653 static ssize_t raid_level_show(struct device *dev,
654              struct device_attribute *attr, char *buf)
655 {
656         ssize_t l = 0;
657         unsigned char rlevel;
658         struct ctlr_info *h;
659         struct scsi_device *sdev;
660         struct hpsa_scsi_dev_t *hdev;
661         unsigned long flags;
662
663         sdev = to_scsi_device(dev);
664         h = sdev_to_hba(sdev);
665         spin_lock_irqsave(&h->lock, flags);
666         hdev = sdev->hostdata;
667         if (!hdev) {
668                 spin_unlock_irqrestore(&h->lock, flags);
669                 return -ENODEV;
670         }
671
672         /* Is this even a logical drive? */
673         if (!is_logical_device(hdev)) {
674                 spin_unlock_irqrestore(&h->lock, flags);
675                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
676                 return l;
677         }
678
679         rlevel = hdev->raid_level;
680         spin_unlock_irqrestore(&h->lock, flags);
681         if (rlevel > RAID_UNKNOWN)
682                 rlevel = RAID_UNKNOWN;
683         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
684         return l;
685 }
686
687 static ssize_t lunid_show(struct device *dev,
688              struct device_attribute *attr, char *buf)
689 {
690         struct ctlr_info *h;
691         struct scsi_device *sdev;
692         struct hpsa_scsi_dev_t *hdev;
693         unsigned long flags;
694         unsigned char lunid[8];
695
696         sdev = to_scsi_device(dev);
697         h = sdev_to_hba(sdev);
698         spin_lock_irqsave(&h->lock, flags);
699         hdev = sdev->hostdata;
700         if (!hdev) {
701                 spin_unlock_irqrestore(&h->lock, flags);
702                 return -ENODEV;
703         }
704         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
705         spin_unlock_irqrestore(&h->lock, flags);
706         return snprintf(buf, 20, "0x%8phN\n", lunid);
707 }
708
709 static ssize_t unique_id_show(struct device *dev,
710              struct device_attribute *attr, char *buf)
711 {
712         struct ctlr_info *h;
713         struct scsi_device *sdev;
714         struct hpsa_scsi_dev_t *hdev;
715         unsigned long flags;
716         unsigned char sn[16];
717
718         sdev = to_scsi_device(dev);
719         h = sdev_to_hba(sdev);
720         spin_lock_irqsave(&h->lock, flags);
721         hdev = sdev->hostdata;
722         if (!hdev) {
723                 spin_unlock_irqrestore(&h->lock, flags);
724                 return -ENODEV;
725         }
726         memcpy(sn, hdev->device_id, sizeof(sn));
727         spin_unlock_irqrestore(&h->lock, flags);
728         return snprintf(buf, 16 * 2 + 2,
729                         "%02X%02X%02X%02X%02X%02X%02X%02X"
730                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
731                         sn[0], sn[1], sn[2], sn[3],
732                         sn[4], sn[5], sn[6], sn[7],
733                         sn[8], sn[9], sn[10], sn[11],
734                         sn[12], sn[13], sn[14], sn[15]);
735 }
736
737 static ssize_t sas_address_show(struct device *dev,
738               struct device_attribute *attr, char *buf)
739 {
740         struct ctlr_info *h;
741         struct scsi_device *sdev;
742         struct hpsa_scsi_dev_t *hdev;
743         unsigned long flags;
744         u64 sas_address;
745
746         sdev = to_scsi_device(dev);
747         h = sdev_to_hba(sdev);
748         spin_lock_irqsave(&h->lock, flags);
749         hdev = sdev->hostdata;
750         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
751                 spin_unlock_irqrestore(&h->lock, flags);
752                 return -ENODEV;
753         }
754         sas_address = hdev->sas_address;
755         spin_unlock_irqrestore(&h->lock, flags);
756
757         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
758 }
759
760 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
761              struct device_attribute *attr, char *buf)
762 {
763         struct ctlr_info *h;
764         struct scsi_device *sdev;
765         struct hpsa_scsi_dev_t *hdev;
766         unsigned long flags;
767         int offload_enabled;
768
769         sdev = to_scsi_device(dev);
770         h = sdev_to_hba(sdev);
771         spin_lock_irqsave(&h->lock, flags);
772         hdev = sdev->hostdata;
773         if (!hdev) {
774                 spin_unlock_irqrestore(&h->lock, flags);
775                 return -ENODEV;
776         }
777         offload_enabled = hdev->offload_enabled;
778         spin_unlock_irqrestore(&h->lock, flags);
779         return snprintf(buf, 20, "%d\n", offload_enabled);
780 }
781
782 #define MAX_PATHS 8
783 static ssize_t path_info_show(struct device *dev,
784              struct device_attribute *attr, char *buf)
785 {
786         struct ctlr_info *h;
787         struct scsi_device *sdev;
788         struct hpsa_scsi_dev_t *hdev;
789         unsigned long flags;
790         int i;
791         int output_len = 0;
792         u8 box;
793         u8 bay;
794         u8 path_map_index = 0;
795         char *active;
796         unsigned char phys_connector[2];
797
798         sdev = to_scsi_device(dev);
799         h = sdev_to_hba(sdev);
800         spin_lock_irqsave(&h->devlock, flags);
801         hdev = sdev->hostdata;
802         if (!hdev) {
803                 spin_unlock_irqrestore(&h->devlock, flags);
804                 return -ENODEV;
805         }
806
807         bay = hdev->bay;
808         for (i = 0; i < MAX_PATHS; i++) {
809                 path_map_index = 1<<i;
810                 if (i == hdev->active_path_index)
811                         active = "Active";
812                 else if (hdev->path_map & path_map_index)
813                         active = "Inactive";
814                 else
815                         continue;
816
817                 output_len += scnprintf(buf + output_len,
818                                 PAGE_SIZE - output_len,
819                                 "[%d:%d:%d:%d] %20.20s ",
820                                 h->scsi_host->host_no,
821                                 hdev->bus, hdev->target, hdev->lun,
822                                 scsi_device_type(hdev->devtype));
823
824                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
825                         output_len += scnprintf(buf + output_len,
826                                                 PAGE_SIZE - output_len,
827                                                 "%s\n", active);
828                         continue;
829                 }
830
831                 box = hdev->box[i];
832                 memcpy(&phys_connector, &hdev->phys_connector[i],
833                         sizeof(phys_connector));
834                 if (phys_connector[0] < '0')
835                         phys_connector[0] = '0';
836                 if (phys_connector[1] < '0')
837                         phys_connector[1] = '0';
838                 output_len += scnprintf(buf + output_len,
839                                 PAGE_SIZE - output_len,
840                                 "PORT: %.2s ",
841                                 phys_connector);
842                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
843                         hdev->expose_device) {
844                         if (box == 0 || box == 0xFF) {
845                                 output_len += scnprintf(buf + output_len,
846                                         PAGE_SIZE - output_len,
847                                         "BAY: %hhu %s\n",
848                                         bay, active);
849                         } else {
850                                 output_len += scnprintf(buf + output_len,
851                                         PAGE_SIZE - output_len,
852                                         "BOX: %hhu BAY: %hhu %s\n",
853                                         box, bay, active);
854                         }
855                 } else if (box != 0 && box != 0xFF) {
856                         output_len += scnprintf(buf + output_len,
857                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
858                                 box, active);
859                 } else
860                         output_len += scnprintf(buf + output_len,
861                                 PAGE_SIZE - output_len, "%s\n", active);
862         }
863
864         spin_unlock_irqrestore(&h->devlock, flags);
865         return output_len;
866 }
867
868 static ssize_t host_show_ctlr_num(struct device *dev,
869         struct device_attribute *attr, char *buf)
870 {
871         struct ctlr_info *h;
872         struct Scsi_Host *shost = class_to_shost(dev);
873
874         h = shost_to_hba(shost);
875         return snprintf(buf, 20, "%d\n", h->ctlr);
876 }
877
878 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
879 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
880 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
881 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
882 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
883 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
884                         host_show_hp_ssd_smart_path_enabled, NULL);
885 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
886 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
887                 host_show_hp_ssd_smart_path_status,
888                 host_store_hp_ssd_smart_path_status);
889 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
890                         host_store_raid_offload_debug);
891 static DEVICE_ATTR(firmware_revision, S_IRUGO,
892         host_show_firmware_revision, NULL);
893 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
894         host_show_commands_outstanding, NULL);
895 static DEVICE_ATTR(transport_mode, S_IRUGO,
896         host_show_transport_mode, NULL);
897 static DEVICE_ATTR(resettable, S_IRUGO,
898         host_show_resettable, NULL);
899 static DEVICE_ATTR(lockup_detected, S_IRUGO,
900         host_show_lockup_detected, NULL);
901 static DEVICE_ATTR(ctlr_num, S_IRUGO,
902         host_show_ctlr_num, NULL);
903
904 static struct device_attribute *hpsa_sdev_attrs[] = {
905         &dev_attr_raid_level,
906         &dev_attr_lunid,
907         &dev_attr_unique_id,
908         &dev_attr_hp_ssd_smart_path_enabled,
909         &dev_attr_path_info,
910         &dev_attr_sas_address,
911         NULL,
912 };
913
914 static struct device_attribute *hpsa_shost_attrs[] = {
915         &dev_attr_rescan,
916         &dev_attr_firmware_revision,
917         &dev_attr_commands_outstanding,
918         &dev_attr_transport_mode,
919         &dev_attr_resettable,
920         &dev_attr_hp_ssd_smart_path_status,
921         &dev_attr_raid_offload_debug,
922         &dev_attr_lockup_detected,
923         &dev_attr_ctlr_num,
924         NULL,
925 };
926
927 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
928                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
929
930 static struct scsi_host_template hpsa_driver_template = {
931         .module                 = THIS_MODULE,
932         .name                   = HPSA,
933         .proc_name              = HPSA,
934         .queuecommand           = hpsa_scsi_queue_command,
935         .scan_start             = hpsa_scan_start,
936         .scan_finished          = hpsa_scan_finished,
937         .change_queue_depth     = hpsa_change_queue_depth,
938         .this_id                = -1,
939         .use_clustering         = ENABLE_CLUSTERING,
940         .eh_abort_handler       = hpsa_eh_abort_handler,
941         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
942         .ioctl                  = hpsa_ioctl,
943         .slave_alloc            = hpsa_slave_alloc,
944         .slave_configure        = hpsa_slave_configure,
945         .slave_destroy          = hpsa_slave_destroy,
946 #ifdef CONFIG_COMPAT
947         .compat_ioctl           = hpsa_compat_ioctl,
948 #endif
949         .sdev_attrs = hpsa_sdev_attrs,
950         .shost_attrs = hpsa_shost_attrs,
951         .max_sectors = 8192,
952         .no_write_same = 1,
953 };
954
955 static inline u32 next_command(struct ctlr_info *h, u8 q)
956 {
957         u32 a;
958         struct reply_queue_buffer *rq = &h->reply_queue[q];
959
960         if (h->transMethod & CFGTBL_Trans_io_accel1)
961                 return h->access.command_completed(h, q);
962
963         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
964                 return h->access.command_completed(h, q);
965
966         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
967                 a = rq->head[rq->current_entry];
968                 rq->current_entry++;
969                 atomic_dec(&h->commands_outstanding);
970         } else {
971                 a = FIFO_EMPTY;
972         }
973         /* Check for wraparound */
974         if (rq->current_entry == h->max_commands) {
975                 rq->current_entry = 0;
976                 rq->wraparound ^= 1;
977         }
978         return a;
979 }
980
981 /*
982  * There are some special bits in the bus address of the
983  * command that we have to set for the controller to know
984  * how to process the command:
985  *
986  * Normal performant mode:
987  * bit 0: 1 means performant mode, 0 means simple mode.
988  * bits 1-3 = block fetch table entry
989  * bits 4-6 = command type (== 0)
990  *
991  * ioaccel1 mode:
992  * bit 0 = "performant mode" bit.
993  * bits 1-3 = block fetch table entry
994  * bits 4-6 = command type (== 110)
995  * (command type is needed because ioaccel1 mode
996  * commands are submitted through the same register as normal
997  * mode commands, so this is how the controller knows whether
998  * the command is normal mode or ioaccel1 mode.)
999  *
1000  * ioaccel2 mode:
1001  * bit 0 = "performant mode" bit.
1002  * bits 1-4 = block fetch table entry (note extra bit)
1003  * bits 4-6 = not needed, because ioaccel2 mode has
1004  * a separate special register for submitting commands.
1005  */
1006
1007 /*
1008  * set_performant_mode: Modify the tag for cciss performant
1009  * set bit 0 for pull model, bits 3-1 for block fetch
1010  * register number
1011  */
1012 #define DEFAULT_REPLY_QUEUE (-1)
1013 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1014                                         int reply_queue)
1015 {
1016         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1017                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1018                 if (unlikely(!h->msix_vectors))
1019                         return;
1020                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1021                         c->Header.ReplyQueue =
1022                                 raw_smp_processor_id() % h->nreply_queues;
1023                 else
1024                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1025         }
1026 }
1027
1028 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1029                                                 struct CommandList *c,
1030                                                 int reply_queue)
1031 {
1032         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1033
1034         /*
1035          * Tell the controller to post the reply to the queue for this
1036          * processor.  This seems to give the best I/O throughput.
1037          */
1038         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1039                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1040         else
1041                 cp->ReplyQueue = reply_queue % h->nreply_queues;
1042         /*
1043          * Set the bits in the address sent down to include:
1044          *  - performant mode bit (bit 0)
1045          *  - pull count (bits 1-3)
1046          *  - command type (bits 4-6)
1047          */
1048         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1049                                         IOACCEL1_BUSADDR_CMDTYPE;
1050 }
1051
1052 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1053                                                 struct CommandList *c,
1054                                                 int reply_queue)
1055 {
1056         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1057                 &h->ioaccel2_cmd_pool[c->cmdindex];
1058
1059         /* Tell the controller to post the reply to the queue for this
1060          * processor.  This seems to give the best I/O throughput.
1061          */
1062         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1063                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1064         else
1065                 cp->reply_queue = reply_queue % h->nreply_queues;
1066         /* Set the bits in the address sent down to include:
1067          *  - performant mode bit not used in ioaccel mode 2
1068          *  - pull count (bits 0-3)
1069          *  - command type isn't needed for ioaccel2
1070          */
1071         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1072 }
1073
1074 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1075                                                 struct CommandList *c,
1076                                                 int reply_queue)
1077 {
1078         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1079
1080         /*
1081          * Tell the controller to post the reply to the queue for this
1082          * processor.  This seems to give the best I/O throughput.
1083          */
1084         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1085                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1086         else
1087                 cp->reply_queue = reply_queue % h->nreply_queues;
1088         /*
1089          * Set the bits in the address sent down to include:
1090          *  - performant mode bit not used in ioaccel mode 2
1091          *  - pull count (bits 0-3)
1092          *  - command type isn't needed for ioaccel2
1093          */
1094         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1095 }
1096
1097 static int is_firmware_flash_cmd(u8 *cdb)
1098 {
1099         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1100 }
1101
1102 /*
1103  * During firmware flash, the heartbeat register may not update as frequently
1104  * as it should.  So we dial down lockup detection during firmware flash. and
1105  * dial it back up when firmware flash completes.
1106  */
1107 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1108 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1109 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1110                 struct CommandList *c)
1111 {
1112         if (!is_firmware_flash_cmd(c->Request.CDB))
1113                 return;
1114         atomic_inc(&h->firmware_flash_in_progress);
1115         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1116 }
1117
1118 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1119                 struct CommandList *c)
1120 {
1121         if (is_firmware_flash_cmd(c->Request.CDB) &&
1122                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1123                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1124 }
1125
1126 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1127         struct CommandList *c, int reply_queue)
1128 {
1129         dial_down_lockup_detection_during_fw_flash(h, c);
1130         atomic_inc(&h->commands_outstanding);
1131         switch (c->cmd_type) {
1132         case CMD_IOACCEL1:
1133                 set_ioaccel1_performant_mode(h, c, reply_queue);
1134                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1135                 break;
1136         case CMD_IOACCEL2:
1137                 set_ioaccel2_performant_mode(h, c, reply_queue);
1138                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1139                 break;
1140         case IOACCEL2_TMF:
1141                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1142                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1143                 break;
1144         default:
1145                 set_performant_mode(h, c, reply_queue);
1146                 h->access.submit_command(h, c);
1147         }
1148 }
1149
1150 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1151 {
1152         if (unlikely(hpsa_is_pending_event(c)))
1153                 return finish_cmd(c);
1154
1155         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1156 }
1157
1158 static inline int is_hba_lunid(unsigned char scsi3addr[])
1159 {
1160         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1161 }
1162
1163 static inline int is_scsi_rev_5(struct ctlr_info *h)
1164 {
1165         if (!h->hba_inquiry_data)
1166                 return 0;
1167         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1168                 return 1;
1169         return 0;
1170 }
1171
1172 static int hpsa_find_target_lun(struct ctlr_info *h,
1173         unsigned char scsi3addr[], int bus, int *target, int *lun)
1174 {
1175         /* finds an unused bus, target, lun for a new physical device
1176          * assumes h->devlock is held
1177          */
1178         int i, found = 0;
1179         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1180
1181         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1182
1183         for (i = 0; i < h->ndevices; i++) {
1184                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1185                         __set_bit(h->dev[i]->target, lun_taken);
1186         }
1187
1188         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1189         if (i < HPSA_MAX_DEVICES) {
1190                 /* *bus = 1; */
1191                 *target = i;
1192                 *lun = 0;
1193                 found = 1;
1194         }
1195         return !found;
1196 }
1197
1198 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1199         struct hpsa_scsi_dev_t *dev, char *description)
1200 {
1201 #define LABEL_SIZE 25
1202         char label[LABEL_SIZE];
1203
1204         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1205                 return;
1206
1207         switch (dev->devtype) {
1208         case TYPE_RAID:
1209                 snprintf(label, LABEL_SIZE, "controller");
1210                 break;
1211         case TYPE_ENCLOSURE:
1212                 snprintf(label, LABEL_SIZE, "enclosure");
1213                 break;
1214         case TYPE_DISK:
1215         case TYPE_ZBC:
1216                 if (dev->external)
1217                         snprintf(label, LABEL_SIZE, "external");
1218                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1219                         snprintf(label, LABEL_SIZE, "%s",
1220                                 raid_label[PHYSICAL_DRIVE]);
1221                 else
1222                         snprintf(label, LABEL_SIZE, "RAID-%s",
1223                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1224                                 raid_label[dev->raid_level]);
1225                 break;
1226         case TYPE_ROM:
1227                 snprintf(label, LABEL_SIZE, "rom");
1228                 break;
1229         case TYPE_TAPE:
1230                 snprintf(label, LABEL_SIZE, "tape");
1231                 break;
1232         case TYPE_MEDIUM_CHANGER:
1233                 snprintf(label, LABEL_SIZE, "changer");
1234                 break;
1235         default:
1236                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1237                 break;
1238         }
1239
1240         dev_printk(level, &h->pdev->dev,
1241                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1242                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1243                         description,
1244                         scsi_device_type(dev->devtype),
1245                         dev->vendor,
1246                         dev->model,
1247                         label,
1248                         dev->offload_config ? '+' : '-',
1249                         dev->offload_enabled ? '+' : '-',
1250                         dev->expose_device);
1251 }
1252
1253 /* Add an entry into h->dev[] array. */
1254 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1255                 struct hpsa_scsi_dev_t *device,
1256                 struct hpsa_scsi_dev_t *added[], int *nadded)
1257 {
1258         /* assumes h->devlock is held */
1259         int n = h->ndevices;
1260         int i;
1261         unsigned char addr1[8], addr2[8];
1262         struct hpsa_scsi_dev_t *sd;
1263
1264         if (n >= HPSA_MAX_DEVICES) {
1265                 dev_err(&h->pdev->dev, "too many devices, some will be "
1266                         "inaccessible.\n");
1267                 return -1;
1268         }
1269
1270         /* physical devices do not have lun or target assigned until now. */
1271         if (device->lun != -1)
1272                 /* Logical device, lun is already assigned. */
1273                 goto lun_assigned;
1274
1275         /* If this device a non-zero lun of a multi-lun device
1276          * byte 4 of the 8-byte LUN addr will contain the logical
1277          * unit no, zero otherwise.
1278          */
1279         if (device->scsi3addr[4] == 0) {
1280                 /* This is not a non-zero lun of a multi-lun device */
1281                 if (hpsa_find_target_lun(h, device->scsi3addr,
1282                         device->bus, &device->target, &device->lun) != 0)
1283                         return -1;
1284                 goto lun_assigned;
1285         }
1286
1287         /* This is a non-zero lun of a multi-lun device.
1288          * Search through our list and find the device which
1289          * has the same 8 byte LUN address, excepting byte 4 and 5.
1290          * Assign the same bus and target for this new LUN.
1291          * Use the logical unit number from the firmware.
1292          */
1293         memcpy(addr1, device->scsi3addr, 8);
1294         addr1[4] = 0;
1295         addr1[5] = 0;
1296         for (i = 0; i < n; i++) {
1297                 sd = h->dev[i];
1298                 memcpy(addr2, sd->scsi3addr, 8);
1299                 addr2[4] = 0;
1300                 addr2[5] = 0;
1301                 /* differ only in byte 4 and 5? */
1302                 if (memcmp(addr1, addr2, 8) == 0) {
1303                         device->bus = sd->bus;
1304                         device->target = sd->target;
1305                         device->lun = device->scsi3addr[4];
1306                         break;
1307                 }
1308         }
1309         if (device->lun == -1) {
1310                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1311                         " suspect firmware bug or unsupported hardware "
1312                         "configuration.\n");
1313                         return -1;
1314         }
1315
1316 lun_assigned:
1317
1318         h->dev[n] = device;
1319         h->ndevices++;
1320         added[*nadded] = device;
1321         (*nadded)++;
1322         hpsa_show_dev_msg(KERN_INFO, h, device,
1323                 device->expose_device ? "added" : "masked");
1324         device->offload_to_be_enabled = device->offload_enabled;
1325         device->offload_enabled = 0;
1326         return 0;
1327 }
1328
1329 /* Update an entry in h->dev[] array. */
1330 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1331         int entry, struct hpsa_scsi_dev_t *new_entry)
1332 {
1333         int offload_enabled;
1334         /* assumes h->devlock is held */
1335         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1336
1337         /* Raid level changed. */
1338         h->dev[entry]->raid_level = new_entry->raid_level;
1339
1340         /* Raid offload parameters changed.  Careful about the ordering. */
1341         if (new_entry->offload_config && new_entry->offload_enabled) {
1342                 /*
1343                  * if drive is newly offload_enabled, we want to copy the
1344                  * raid map data first.  If previously offload_enabled and
1345                  * offload_config were set, raid map data had better be
1346                  * the same as it was before.  if raid map data is changed
1347                  * then it had better be the case that
1348                  * h->dev[entry]->offload_enabled is currently 0.
1349                  */
1350                 h->dev[entry]->raid_map = new_entry->raid_map;
1351                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1352         }
1353         if (new_entry->hba_ioaccel_enabled) {
1354                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1355                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1356         }
1357         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1358         h->dev[entry]->offload_config = new_entry->offload_config;
1359         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1360         h->dev[entry]->queue_depth = new_entry->queue_depth;
1361
1362         /*
1363          * We can turn off ioaccel offload now, but need to delay turning
1364          * it on until we can update h->dev[entry]->phys_disk[], but we
1365          * can't do that until all the devices are updated.
1366          */
1367         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1368         if (!new_entry->offload_enabled)
1369                 h->dev[entry]->offload_enabled = 0;
1370
1371         offload_enabled = h->dev[entry]->offload_enabled;
1372         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1373         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1374         h->dev[entry]->offload_enabled = offload_enabled;
1375 }
1376
1377 /* Replace an entry from h->dev[] array. */
1378 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1379         int entry, struct hpsa_scsi_dev_t *new_entry,
1380         struct hpsa_scsi_dev_t *added[], int *nadded,
1381         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1382 {
1383         /* assumes h->devlock is held */
1384         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1385         removed[*nremoved] = h->dev[entry];
1386         (*nremoved)++;
1387
1388         /*
1389          * New physical devices won't have target/lun assigned yet
1390          * so we need to preserve the values in the slot we are replacing.
1391          */
1392         if (new_entry->target == -1) {
1393                 new_entry->target = h->dev[entry]->target;
1394                 new_entry->lun = h->dev[entry]->lun;
1395         }
1396
1397         h->dev[entry] = new_entry;
1398         added[*nadded] = new_entry;
1399         (*nadded)++;
1400         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1401         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1402         new_entry->offload_enabled = 0;
1403 }
1404
1405 /* Remove an entry from h->dev[] array. */
1406 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1407         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1408 {
1409         /* assumes h->devlock is held */
1410         int i;
1411         struct hpsa_scsi_dev_t *sd;
1412
1413         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1414
1415         sd = h->dev[entry];
1416         removed[*nremoved] = h->dev[entry];
1417         (*nremoved)++;
1418
1419         for (i = entry; i < h->ndevices-1; i++)
1420                 h->dev[i] = h->dev[i+1];
1421         h->ndevices--;
1422         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1423 }
1424
1425 #define SCSI3ADDR_EQ(a, b) ( \
1426         (a)[7] == (b)[7] && \
1427         (a)[6] == (b)[6] && \
1428         (a)[5] == (b)[5] && \
1429         (a)[4] == (b)[4] && \
1430         (a)[3] == (b)[3] && \
1431         (a)[2] == (b)[2] && \
1432         (a)[1] == (b)[1] && \
1433         (a)[0] == (b)[0])
1434
1435 static void fixup_botched_add(struct ctlr_info *h,
1436         struct hpsa_scsi_dev_t *added)
1437 {
1438         /* called when scsi_add_device fails in order to re-adjust
1439          * h->dev[] to match the mid layer's view.
1440          */
1441         unsigned long flags;
1442         int i, j;
1443
1444         spin_lock_irqsave(&h->lock, flags);
1445         for (i = 0; i < h->ndevices; i++) {
1446                 if (h->dev[i] == added) {
1447                         for (j = i; j < h->ndevices-1; j++)
1448                                 h->dev[j] = h->dev[j+1];
1449                         h->ndevices--;
1450                         break;
1451                 }
1452         }
1453         spin_unlock_irqrestore(&h->lock, flags);
1454         kfree(added);
1455 }
1456
1457 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1458         struct hpsa_scsi_dev_t *dev2)
1459 {
1460         /* we compare everything except lun and target as these
1461          * are not yet assigned.  Compare parts likely
1462          * to differ first
1463          */
1464         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1465                 sizeof(dev1->scsi3addr)) != 0)
1466                 return 0;
1467         if (memcmp(dev1->device_id, dev2->device_id,
1468                 sizeof(dev1->device_id)) != 0)
1469                 return 0;
1470         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1471                 return 0;
1472         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1473                 return 0;
1474         if (dev1->devtype != dev2->devtype)
1475                 return 0;
1476         if (dev1->bus != dev2->bus)
1477                 return 0;
1478         return 1;
1479 }
1480
1481 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1482         struct hpsa_scsi_dev_t *dev2)
1483 {
1484         /* Device attributes that can change, but don't mean
1485          * that the device is a different device, nor that the OS
1486          * needs to be told anything about the change.
1487          */
1488         if (dev1->raid_level != dev2->raid_level)
1489                 return 1;
1490         if (dev1->offload_config != dev2->offload_config)
1491                 return 1;
1492         if (dev1->offload_enabled != dev2->offload_enabled)
1493                 return 1;
1494         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1495                 if (dev1->queue_depth != dev2->queue_depth)
1496                         return 1;
1497         return 0;
1498 }
1499
1500 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1501  * and return needle location in *index.  If scsi3addr matches, but not
1502  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1503  * location in *index.
1504  * In the case of a minor device attribute change, such as RAID level, just
1505  * return DEVICE_UPDATED, along with the updated device's location in index.
1506  * If needle not found, return DEVICE_NOT_FOUND.
1507  */
1508 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1509         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1510         int *index)
1511 {
1512         int i;
1513 #define DEVICE_NOT_FOUND 0
1514 #define DEVICE_CHANGED 1
1515 #define DEVICE_SAME 2
1516 #define DEVICE_UPDATED 3
1517         if (needle == NULL)
1518                 return DEVICE_NOT_FOUND;
1519
1520         for (i = 0; i < haystack_size; i++) {
1521                 if (haystack[i] == NULL) /* previously removed. */
1522                         continue;
1523                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1524                         *index = i;
1525                         if (device_is_the_same(needle, haystack[i])) {
1526                                 if (device_updated(needle, haystack[i]))
1527                                         return DEVICE_UPDATED;
1528                                 return DEVICE_SAME;
1529                         } else {
1530                                 /* Keep offline devices offline */
1531                                 if (needle->volume_offline)
1532                                         return DEVICE_NOT_FOUND;
1533                                 return DEVICE_CHANGED;
1534                         }
1535                 }
1536         }
1537         *index = -1;
1538         return DEVICE_NOT_FOUND;
1539 }
1540
1541 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1542                                         unsigned char scsi3addr[])
1543 {
1544         struct offline_device_entry *device;
1545         unsigned long flags;
1546
1547         /* Check to see if device is already on the list */
1548         spin_lock_irqsave(&h->offline_device_lock, flags);
1549         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1550                 if (memcmp(device->scsi3addr, scsi3addr,
1551                         sizeof(device->scsi3addr)) == 0) {
1552                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1553                         return;
1554                 }
1555         }
1556         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1557
1558         /* Device is not on the list, add it. */
1559         device = kmalloc(sizeof(*device), GFP_KERNEL);
1560         if (!device) {
1561                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1562                 return;
1563         }
1564         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1565         spin_lock_irqsave(&h->offline_device_lock, flags);
1566         list_add_tail(&device->offline_list, &h->offline_device_list);
1567         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1568 }
1569
1570 /* Print a message explaining various offline volume states */
1571 static void hpsa_show_volume_status(struct ctlr_info *h,
1572         struct hpsa_scsi_dev_t *sd)
1573 {
1574         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1575                 dev_info(&h->pdev->dev,
1576                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1577                         h->scsi_host->host_no,
1578                         sd->bus, sd->target, sd->lun);
1579         switch (sd->volume_offline) {
1580         case HPSA_LV_OK:
1581                 break;
1582         case HPSA_LV_UNDERGOING_ERASE:
1583                 dev_info(&h->pdev->dev,
1584                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1585                         h->scsi_host->host_no,
1586                         sd->bus, sd->target, sd->lun);
1587                 break;
1588         case HPSA_LV_NOT_AVAILABLE:
1589                 dev_info(&h->pdev->dev,
1590                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1591                         h->scsi_host->host_no,
1592                         sd->bus, sd->target, sd->lun);
1593                 break;
1594         case HPSA_LV_UNDERGOING_RPI:
1595                 dev_info(&h->pdev->dev,
1596                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1597                         h->scsi_host->host_no,
1598                         sd->bus, sd->target, sd->lun);
1599                 break;
1600         case HPSA_LV_PENDING_RPI:
1601                 dev_info(&h->pdev->dev,
1602                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1603                         h->scsi_host->host_no,
1604                         sd->bus, sd->target, sd->lun);
1605                 break;
1606         case HPSA_LV_ENCRYPTED_NO_KEY:
1607                 dev_info(&h->pdev->dev,
1608                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1609                         h->scsi_host->host_no,
1610                         sd->bus, sd->target, sd->lun);
1611                 break;
1612         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1613                 dev_info(&h->pdev->dev,
1614                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1615                         h->scsi_host->host_no,
1616                         sd->bus, sd->target, sd->lun);
1617                 break;
1618         case HPSA_LV_UNDERGOING_ENCRYPTION:
1619                 dev_info(&h->pdev->dev,
1620                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1621                         h->scsi_host->host_no,
1622                         sd->bus, sd->target, sd->lun);
1623                 break;
1624         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1625                 dev_info(&h->pdev->dev,
1626                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1627                         h->scsi_host->host_no,
1628                         sd->bus, sd->target, sd->lun);
1629                 break;
1630         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1631                 dev_info(&h->pdev->dev,
1632                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1633                         h->scsi_host->host_no,
1634                         sd->bus, sd->target, sd->lun);
1635                 break;
1636         case HPSA_LV_PENDING_ENCRYPTION:
1637                 dev_info(&h->pdev->dev,
1638                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1639                         h->scsi_host->host_no,
1640                         sd->bus, sd->target, sd->lun);
1641                 break;
1642         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1643                 dev_info(&h->pdev->dev,
1644                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1645                         h->scsi_host->host_no,
1646                         sd->bus, sd->target, sd->lun);
1647                 break;
1648         }
1649 }
1650
1651 /*
1652  * Figure the list of physical drive pointers for a logical drive with
1653  * raid offload configured.
1654  */
1655 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1656                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1657                                 struct hpsa_scsi_dev_t *logical_drive)
1658 {
1659         struct raid_map_data *map = &logical_drive->raid_map;
1660         struct raid_map_disk_data *dd = &map->data[0];
1661         int i, j;
1662         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1663                                 le16_to_cpu(map->metadata_disks_per_row);
1664         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1665                                 le16_to_cpu(map->layout_map_count) *
1666                                 total_disks_per_row;
1667         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1668                                 total_disks_per_row;
1669         int qdepth;
1670
1671         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1672                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1673
1674         logical_drive->nphysical_disks = nraid_map_entries;
1675
1676         qdepth = 0;
1677         for (i = 0; i < nraid_map_entries; i++) {
1678                 logical_drive->phys_disk[i] = NULL;
1679                 if (!logical_drive->offload_config)
1680                         continue;
1681                 for (j = 0; j < ndevices; j++) {
1682                         if (dev[j] == NULL)
1683                                 continue;
1684                         if (dev[j]->devtype != TYPE_DISK &&
1685                             dev[j]->devtype != TYPE_ZBC)
1686                                 continue;
1687                         if (is_logical_device(dev[j]))
1688                                 continue;
1689                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1690                                 continue;
1691
1692                         logical_drive->phys_disk[i] = dev[j];
1693                         if (i < nphys_disk)
1694                                 qdepth = min(h->nr_cmds, qdepth +
1695                                     logical_drive->phys_disk[i]->queue_depth);
1696                         break;
1697                 }
1698
1699                 /*
1700                  * This can happen if a physical drive is removed and
1701                  * the logical drive is degraded.  In that case, the RAID
1702                  * map data will refer to a physical disk which isn't actually
1703                  * present.  And in that case offload_enabled should already
1704                  * be 0, but we'll turn it off here just in case
1705                  */
1706                 if (!logical_drive->phys_disk[i]) {
1707                         logical_drive->offload_enabled = 0;
1708                         logical_drive->offload_to_be_enabled = 0;
1709                         logical_drive->queue_depth = 8;
1710                 }
1711         }
1712         if (nraid_map_entries)
1713                 /*
1714                  * This is correct for reads, too high for full stripe writes,
1715                  * way too high for partial stripe writes
1716                  */
1717                 logical_drive->queue_depth = qdepth;
1718         else
1719                 logical_drive->queue_depth = h->nr_cmds;
1720 }
1721
1722 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1723                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1724 {
1725         int i;
1726
1727         for (i = 0; i < ndevices; i++) {
1728                 if (dev[i] == NULL)
1729                         continue;
1730                 if (dev[i]->devtype != TYPE_DISK &&
1731                     dev[i]->devtype != TYPE_ZBC)
1732                         continue;
1733                 if (!is_logical_device(dev[i]))
1734                         continue;
1735
1736                 /*
1737                  * If offload is currently enabled, the RAID map and
1738                  * phys_disk[] assignment *better* not be changing
1739                  * and since it isn't changing, we do not need to
1740                  * update it.
1741                  */
1742                 if (dev[i]->offload_enabled)
1743                         continue;
1744
1745                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1746         }
1747 }
1748
1749 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1750 {
1751         int rc = 0;
1752
1753         if (!h->scsi_host)
1754                 return 1;
1755
1756         if (is_logical_device(device)) /* RAID */
1757                 rc = scsi_add_device(h->scsi_host, device->bus,
1758                                         device->target, device->lun);
1759         else /* HBA */
1760                 rc = hpsa_add_sas_device(h->sas_host, device);
1761
1762         return rc;
1763 }
1764
1765 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1766                                                 struct hpsa_scsi_dev_t *dev)
1767 {
1768         int i;
1769         int count = 0;
1770
1771         for (i = 0; i < h->nr_cmds; i++) {
1772                 struct CommandList *c = h->cmd_pool + i;
1773                 int refcount = atomic_inc_return(&c->refcount);
1774
1775                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1776                                 dev->scsi3addr)) {
1777                         unsigned long flags;
1778
1779                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1780                         if (!hpsa_is_cmd_idle(c))
1781                                 ++count;
1782                         spin_unlock_irqrestore(&h->lock, flags);
1783                 }
1784
1785                 cmd_free(h, c);
1786         }
1787
1788         return count;
1789 }
1790
1791 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1792                                                 struct hpsa_scsi_dev_t *device)
1793 {
1794         int cmds = 0;
1795         int waits = 0;
1796
1797         while (1) {
1798                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1799                 if (cmds == 0)
1800                         break;
1801                 if (++waits > 20)
1802                         break;
1803                 dev_warn(&h->pdev->dev,
1804                         "%s: removing device with %d outstanding commands!\n",
1805                         __func__, cmds);
1806                 msleep(1000);
1807         }
1808 }
1809
1810 static void hpsa_remove_device(struct ctlr_info *h,
1811                         struct hpsa_scsi_dev_t *device)
1812 {
1813         struct scsi_device *sdev = NULL;
1814
1815         if (!h->scsi_host)
1816                 return;
1817
1818         if (is_logical_device(device)) { /* RAID */
1819                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1820                                                 device->target, device->lun);
1821                 if (sdev) {
1822                         scsi_remove_device(sdev);
1823                         scsi_device_put(sdev);
1824                 } else {
1825                         /*
1826                          * We don't expect to get here.  Future commands
1827                          * to this device will get a selection timeout as
1828                          * if the device were gone.
1829                          */
1830                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1831                                         "didn't find device for removal.");
1832                 }
1833         } else { /* HBA */
1834
1835                 device->removed = 1;
1836                 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1837
1838                 hpsa_remove_sas_device(device);
1839         }
1840 }
1841
1842 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1843         struct hpsa_scsi_dev_t *sd[], int nsds)
1844 {
1845         /* sd contains scsi3 addresses and devtypes, and inquiry
1846          * data.  This function takes what's in sd to be the current
1847          * reality and updates h->dev[] to reflect that reality.
1848          */
1849         int i, entry, device_change, changes = 0;
1850         struct hpsa_scsi_dev_t *csd;
1851         unsigned long flags;
1852         struct hpsa_scsi_dev_t **added, **removed;
1853         int nadded, nremoved;
1854
1855         /*
1856          * A reset can cause a device status to change
1857          * re-schedule the scan to see what happened.
1858          */
1859         if (h->reset_in_progress) {
1860                 h->drv_req_rescan = 1;
1861                 return;
1862         }
1863
1864         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1865         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1866
1867         if (!added || !removed) {
1868                 dev_warn(&h->pdev->dev, "out of memory in "
1869                         "adjust_hpsa_scsi_table\n");
1870                 goto free_and_out;
1871         }
1872
1873         spin_lock_irqsave(&h->devlock, flags);
1874
1875         /* find any devices in h->dev[] that are not in
1876          * sd[] and remove them from h->dev[], and for any
1877          * devices which have changed, remove the old device
1878          * info and add the new device info.
1879          * If minor device attributes change, just update
1880          * the existing device structure.
1881          */
1882         i = 0;
1883         nremoved = 0;
1884         nadded = 0;
1885         while (i < h->ndevices) {
1886                 csd = h->dev[i];
1887                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1888                 if (device_change == DEVICE_NOT_FOUND) {
1889                         changes++;
1890                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1891                         continue; /* remove ^^^, hence i not incremented */
1892                 } else if (device_change == DEVICE_CHANGED) {
1893                         changes++;
1894                         hpsa_scsi_replace_entry(h, i, sd[entry],
1895                                 added, &nadded, removed, &nremoved);
1896                         /* Set it to NULL to prevent it from being freed
1897                          * at the bottom of hpsa_update_scsi_devices()
1898                          */
1899                         sd[entry] = NULL;
1900                 } else if (device_change == DEVICE_UPDATED) {
1901                         hpsa_scsi_update_entry(h, i, sd[entry]);
1902                 }
1903                 i++;
1904         }
1905
1906         /* Now, make sure every device listed in sd[] is also
1907          * listed in h->dev[], adding them if they aren't found
1908          */
1909
1910         for (i = 0; i < nsds; i++) {
1911                 if (!sd[i]) /* if already added above. */
1912                         continue;
1913
1914                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1915                  * as the SCSI mid-layer does not handle such devices well.
1916                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1917                  * at 160Hz, and prevents the system from coming up.
1918                  */
1919                 if (sd[i]->volume_offline) {
1920                         hpsa_show_volume_status(h, sd[i]);
1921                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1922                         continue;
1923                 }
1924
1925                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1926                                         h->ndevices, &entry);
1927                 if (device_change == DEVICE_NOT_FOUND) {
1928                         changes++;
1929                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1930                                 break;
1931                         sd[i] = NULL; /* prevent from being freed later. */
1932                 } else if (device_change == DEVICE_CHANGED) {
1933                         /* should never happen... */
1934                         changes++;
1935                         dev_warn(&h->pdev->dev,
1936                                 "device unexpectedly changed.\n");
1937                         /* but if it does happen, we just ignore that device */
1938                 }
1939         }
1940         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1941
1942         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1943          * any logical drives that need it enabled.
1944          */
1945         for (i = 0; i < h->ndevices; i++) {
1946                 if (h->dev[i] == NULL)
1947                         continue;
1948                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1949         }
1950
1951         spin_unlock_irqrestore(&h->devlock, flags);
1952
1953         /* Monitor devices which are in one of several NOT READY states to be
1954          * brought online later. This must be done without holding h->devlock,
1955          * so don't touch h->dev[]
1956          */
1957         for (i = 0; i < nsds; i++) {
1958                 if (!sd[i]) /* if already added above. */
1959                         continue;
1960                 if (sd[i]->volume_offline)
1961                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1962         }
1963
1964         /* Don't notify scsi mid layer of any changes the first time through
1965          * (or if there are no changes) scsi_scan_host will do it later the
1966          * first time through.
1967          */
1968         if (!changes)
1969                 goto free_and_out;
1970
1971         /* Notify scsi mid layer of any removed devices */
1972         for (i = 0; i < nremoved; i++) {
1973                 if (removed[i] == NULL)
1974                         continue;
1975                 if (removed[i]->expose_device)
1976                         hpsa_remove_device(h, removed[i]);
1977                 kfree(removed[i]);
1978                 removed[i] = NULL;
1979         }
1980
1981         /* Notify scsi mid layer of any added devices */
1982         for (i = 0; i < nadded; i++) {
1983                 int rc = 0;
1984
1985                 if (added[i] == NULL)
1986                         continue;
1987                 if (!(added[i]->expose_device))
1988                         continue;
1989                 rc = hpsa_add_device(h, added[i]);
1990                 if (!rc)
1991                         continue;
1992                 dev_warn(&h->pdev->dev,
1993                         "addition failed %d, device not added.", rc);
1994                 /* now we have to remove it from h->dev,
1995                  * since it didn't get added to scsi mid layer
1996                  */
1997                 fixup_botched_add(h, added[i]);
1998                 h->drv_req_rescan = 1;
1999         }
2000
2001 free_and_out:
2002         kfree(added);
2003         kfree(removed);
2004 }
2005
2006 /*
2007  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2008  * Assume's h->devlock is held.
2009  */
2010 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2011         int bus, int target, int lun)
2012 {
2013         int i;
2014         struct hpsa_scsi_dev_t *sd;
2015
2016         for (i = 0; i < h->ndevices; i++) {
2017                 sd = h->dev[i];
2018                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2019                         return sd;
2020         }
2021         return NULL;
2022 }
2023
2024 static int hpsa_slave_alloc(struct scsi_device *sdev)
2025 {
2026         struct hpsa_scsi_dev_t *sd = NULL;
2027         unsigned long flags;
2028         struct ctlr_info *h;
2029
2030         h = sdev_to_hba(sdev);
2031         spin_lock_irqsave(&h->devlock, flags);
2032         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2033                 struct scsi_target *starget;
2034                 struct sas_rphy *rphy;
2035
2036                 starget = scsi_target(sdev);
2037                 rphy = target_to_rphy(starget);
2038                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2039                 if (sd) {
2040                         sd->target = sdev_id(sdev);
2041                         sd->lun = sdev->lun;
2042                 }
2043         }
2044         if (!sd)
2045                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2046                                         sdev_id(sdev), sdev->lun);
2047
2048         if (sd && sd->expose_device) {
2049                 atomic_set(&sd->ioaccel_cmds_out, 0);
2050                 sdev->hostdata = sd;
2051         } else
2052                 sdev->hostdata = NULL;
2053         spin_unlock_irqrestore(&h->devlock, flags);
2054         return 0;
2055 }
2056
2057 /* configure scsi device based on internal per-device structure */
2058 static int hpsa_slave_configure(struct scsi_device *sdev)
2059 {
2060         struct hpsa_scsi_dev_t *sd;
2061         int queue_depth;
2062
2063         sd = sdev->hostdata;
2064         sdev->no_uld_attach = !sd || !sd->expose_device;
2065
2066         if (sd)
2067                 queue_depth = sd->queue_depth != 0 ?
2068                         sd->queue_depth : sdev->host->can_queue;
2069         else
2070                 queue_depth = sdev->host->can_queue;
2071
2072         scsi_change_queue_depth(sdev, queue_depth);
2073
2074         return 0;
2075 }
2076
2077 static void hpsa_slave_destroy(struct scsi_device *sdev)
2078 {
2079         /* nothing to do. */
2080 }
2081
2082 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2083 {
2084         int i;
2085
2086         if (!h->ioaccel2_cmd_sg_list)
2087                 return;
2088         for (i = 0; i < h->nr_cmds; i++) {
2089                 kfree(h->ioaccel2_cmd_sg_list[i]);
2090                 h->ioaccel2_cmd_sg_list[i] = NULL;
2091         }
2092         kfree(h->ioaccel2_cmd_sg_list);
2093         h->ioaccel2_cmd_sg_list = NULL;
2094 }
2095
2096 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2097 {
2098         int i;
2099
2100         if (h->chainsize <= 0)
2101                 return 0;
2102
2103         h->ioaccel2_cmd_sg_list =
2104                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2105                                         GFP_KERNEL);
2106         if (!h->ioaccel2_cmd_sg_list)
2107                 return -ENOMEM;
2108         for (i = 0; i < h->nr_cmds; i++) {
2109                 h->ioaccel2_cmd_sg_list[i] =
2110                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2111                                         h->maxsgentries, GFP_KERNEL);
2112                 if (!h->ioaccel2_cmd_sg_list[i])
2113                         goto clean;
2114         }
2115         return 0;
2116
2117 clean:
2118         hpsa_free_ioaccel2_sg_chain_blocks(h);
2119         return -ENOMEM;
2120 }
2121
2122 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2123 {
2124         int i;
2125
2126         if (!h->cmd_sg_list)
2127                 return;
2128         for (i = 0; i < h->nr_cmds; i++) {
2129                 kfree(h->cmd_sg_list[i]);
2130                 h->cmd_sg_list[i] = NULL;
2131         }
2132         kfree(h->cmd_sg_list);
2133         h->cmd_sg_list = NULL;
2134 }
2135
2136 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2137 {
2138         int i;
2139
2140         if (h->chainsize <= 0)
2141                 return 0;
2142
2143         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2144                                 GFP_KERNEL);
2145         if (!h->cmd_sg_list) {
2146                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2147                 return -ENOMEM;
2148         }
2149         for (i = 0; i < h->nr_cmds; i++) {
2150                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2151                                                 h->chainsize, GFP_KERNEL);
2152                 if (!h->cmd_sg_list[i]) {
2153                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2154                         goto clean;
2155                 }
2156         }
2157         return 0;
2158
2159 clean:
2160         hpsa_free_sg_chain_blocks(h);
2161         return -ENOMEM;
2162 }
2163
2164 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2165         struct io_accel2_cmd *cp, struct CommandList *c)
2166 {
2167         struct ioaccel2_sg_element *chain_block;
2168         u64 temp64;
2169         u32 chain_size;
2170
2171         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2172         chain_size = le32_to_cpu(cp->sg[0].length);
2173         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2174                                 PCI_DMA_TODEVICE);
2175         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2176                 /* prevent subsequent unmapping */
2177                 cp->sg->address = 0;
2178                 return -1;
2179         }
2180         cp->sg->address = cpu_to_le64(temp64);
2181         return 0;
2182 }
2183
2184 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2185         struct io_accel2_cmd *cp)
2186 {
2187         struct ioaccel2_sg_element *chain_sg;
2188         u64 temp64;
2189         u32 chain_size;
2190
2191         chain_sg = cp->sg;
2192         temp64 = le64_to_cpu(chain_sg->address);
2193         chain_size = le32_to_cpu(cp->sg[0].length);
2194         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2195 }
2196
2197 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2198         struct CommandList *c)
2199 {
2200         struct SGDescriptor *chain_sg, *chain_block;
2201         u64 temp64;
2202         u32 chain_len;
2203
2204         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2205         chain_block = h->cmd_sg_list[c->cmdindex];
2206         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2207         chain_len = sizeof(*chain_sg) *
2208                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2209         chain_sg->Len = cpu_to_le32(chain_len);
2210         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2211                                 PCI_DMA_TODEVICE);
2212         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2213                 /* prevent subsequent unmapping */
2214                 chain_sg->Addr = cpu_to_le64(0);
2215                 return -1;
2216         }
2217         chain_sg->Addr = cpu_to_le64(temp64);
2218         return 0;
2219 }
2220
2221 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2222         struct CommandList *c)
2223 {
2224         struct SGDescriptor *chain_sg;
2225
2226         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2227                 return;
2228
2229         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2230         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2231                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2232 }
2233
2234
2235 /* Decode the various types of errors on ioaccel2 path.
2236  * Return 1 for any error that should generate a RAID path retry.
2237  * Return 0 for errors that don't require a RAID path retry.
2238  */
2239 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2240                                         struct CommandList *c,
2241                                         struct scsi_cmnd *cmd,
2242                                         struct io_accel2_cmd *c2,
2243                                         struct hpsa_scsi_dev_t *dev)
2244 {
2245         int data_len;
2246         int retry = 0;
2247         u32 ioaccel2_resid = 0;
2248
2249         switch (c2->error_data.serv_response) {
2250         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2251                 switch (c2->error_data.status) {
2252                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2253                         break;
2254                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2255                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2256                         if (c2->error_data.data_present !=
2257                                         IOACCEL2_SENSE_DATA_PRESENT) {
2258                                 memset(cmd->sense_buffer, 0,
2259                                         SCSI_SENSE_BUFFERSIZE);
2260                                 break;
2261                         }
2262                         /* copy the sense data */
2263                         data_len = c2->error_data.sense_data_len;
2264                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2265                                 data_len = SCSI_SENSE_BUFFERSIZE;
2266                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2267                                 data_len =
2268                                         sizeof(c2->error_data.sense_data_buff);
2269                         memcpy(cmd->sense_buffer,
2270                                 c2->error_data.sense_data_buff, data_len);
2271                         retry = 1;
2272                         break;
2273                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2274                         retry = 1;
2275                         break;
2276                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2277                         retry = 1;
2278                         break;
2279                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2280                         retry = 1;
2281                         break;
2282                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2283                         retry = 1;
2284                         break;
2285                 default:
2286                         retry = 1;
2287                         break;
2288                 }
2289                 break;
2290         case IOACCEL2_SERV_RESPONSE_FAILURE:
2291                 switch (c2->error_data.status) {
2292                 case IOACCEL2_STATUS_SR_IO_ERROR:
2293                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2294                 case IOACCEL2_STATUS_SR_OVERRUN:
2295                         retry = 1;
2296                         break;
2297                 case IOACCEL2_STATUS_SR_UNDERRUN:
2298                         cmd->result = (DID_OK << 16);           /* host byte */
2299                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2300                         ioaccel2_resid = get_unaligned_le32(
2301                                                 &c2->error_data.resid_cnt[0]);
2302                         scsi_set_resid(cmd, ioaccel2_resid);
2303                         break;
2304                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2305                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2306                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2307                         /*
2308                          * Did an HBA disk disappear? We will eventually
2309                          * get a state change event from the controller but
2310                          * in the meantime, we need to tell the OS that the
2311                          * HBA disk is no longer there and stop I/O
2312                          * from going down. This allows the potential re-insert
2313                          * of the disk to get the same device node.
2314                          */
2315                         if (dev->physical_device && dev->expose_device) {
2316                                 cmd->result = DID_NO_CONNECT << 16;
2317                                 dev->removed = 1;
2318                                 h->drv_req_rescan = 1;
2319                                 dev_warn(&h->pdev->dev,
2320                                         "%s: device is gone!\n", __func__);
2321                         } else
2322                                 /*
2323                                  * Retry by sending down the RAID path.
2324                                  * We will get an event from ctlr to
2325                                  * trigger rescan regardless.
2326                                  */
2327                                 retry = 1;
2328                         break;
2329                 default:
2330                         retry = 1;
2331                 }
2332                 break;
2333         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2334                 break;
2335         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2336                 break;
2337         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2338                 retry = 1;
2339                 break;
2340         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2341                 break;
2342         default:
2343                 retry = 1;
2344                 break;
2345         }
2346
2347         return retry;   /* retry on raid path? */
2348 }
2349
2350 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2351                 struct CommandList *c)
2352 {
2353         bool do_wake = false;
2354
2355         /*
2356          * Prevent the following race in the abort handler:
2357          *
2358          * 1. LLD is requested to abort a SCSI command
2359          * 2. The SCSI command completes
2360          * 3. The struct CommandList associated with step 2 is made available
2361          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2362          * 5. Abort handler follows scsi_cmnd->host_scribble and
2363          *    finds struct CommandList and tries to aborts it
2364          * Now we have aborted the wrong command.
2365          *
2366          * Reset c->scsi_cmd here so that the abort or reset handler will know
2367          * this command has completed.  Then, check to see if the handler is
2368          * waiting for this command, and, if so, wake it.
2369          */
2370         c->scsi_cmd = SCSI_CMD_IDLE;
2371         mb();   /* Declare command idle before checking for pending events. */
2372         if (c->abort_pending) {
2373                 do_wake = true;
2374                 c->abort_pending = false;
2375         }
2376         if (c->reset_pending) {
2377                 unsigned long flags;
2378                 struct hpsa_scsi_dev_t *dev;
2379
2380                 /*
2381                  * There appears to be a reset pending; lock the lock and
2382                  * reconfirm.  If so, then decrement the count of outstanding
2383                  * commands and wake the reset command if this is the last one.
2384                  */
2385                 spin_lock_irqsave(&h->lock, flags);
2386                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2387                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2388                         do_wake = true;
2389                 c->reset_pending = NULL;
2390                 spin_unlock_irqrestore(&h->lock, flags);
2391         }
2392
2393         if (do_wake)
2394                 wake_up_all(&h->event_sync_wait_queue);
2395 }
2396
2397 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2398                                       struct CommandList *c)
2399 {
2400         hpsa_cmd_resolve_events(h, c);
2401         cmd_tagged_free(h, c);
2402 }
2403
2404 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2405                 struct CommandList *c, struct scsi_cmnd *cmd)
2406 {
2407         hpsa_cmd_resolve_and_free(h, c);
2408         if (cmd && cmd->scsi_done)
2409                 cmd->scsi_done(cmd);
2410 }
2411
2412 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2413 {
2414         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2415         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2416 }
2417
2418 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2419 {
2420         cmd->result = DID_ABORT << 16;
2421 }
2422
2423 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2424                                     struct scsi_cmnd *cmd)
2425 {
2426         hpsa_set_scsi_cmd_aborted(cmd);
2427         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2428                          c->Request.CDB, c->err_info->ScsiStatus);
2429         hpsa_cmd_resolve_and_free(h, c);
2430 }
2431
2432 static void process_ioaccel2_completion(struct ctlr_info *h,
2433                 struct CommandList *c, struct scsi_cmnd *cmd,
2434                 struct hpsa_scsi_dev_t *dev)
2435 {
2436         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2437
2438         /* check for good status */
2439         if (likely(c2->error_data.serv_response == 0 &&
2440                         c2->error_data.status == 0))
2441                 return hpsa_cmd_free_and_done(h, c, cmd);
2442
2443         /*
2444          * Any RAID offload error results in retry which will use
2445          * the normal I/O path so the controller can handle whatever's
2446          * wrong.
2447          */
2448         if (is_logical_device(dev) &&
2449                 c2->error_data.serv_response ==
2450                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2451                 if (c2->error_data.status ==
2452                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2453                         dev->offload_enabled = 0;
2454                         dev->offload_to_be_enabled = 0;
2455                 }
2456
2457                 return hpsa_retry_cmd(h, c);
2458         }
2459
2460         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2461                 return hpsa_retry_cmd(h, c);
2462
2463         return hpsa_cmd_free_and_done(h, c, cmd);
2464 }
2465
2466 /* Returns 0 on success, < 0 otherwise. */
2467 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2468                                         struct CommandList *cp)
2469 {
2470         u8 tmf_status = cp->err_info->ScsiStatus;
2471
2472         switch (tmf_status) {
2473         case CISS_TMF_COMPLETE:
2474                 /*
2475                  * CISS_TMF_COMPLETE never happens, instead,
2476                  * ei->CommandStatus == 0 for this case.
2477                  */
2478         case CISS_TMF_SUCCESS:
2479                 return 0;
2480         case CISS_TMF_INVALID_FRAME:
2481         case CISS_TMF_NOT_SUPPORTED:
2482         case CISS_TMF_FAILED:
2483         case CISS_TMF_WRONG_LUN:
2484         case CISS_TMF_OVERLAPPED_TAG:
2485                 break;
2486         default:
2487                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2488                                 tmf_status);
2489                 break;
2490         }
2491         return -tmf_status;
2492 }
2493
2494 static void complete_scsi_command(struct CommandList *cp)
2495 {
2496         struct scsi_cmnd *cmd;
2497         struct ctlr_info *h;
2498         struct ErrorInfo *ei;
2499         struct hpsa_scsi_dev_t *dev;
2500         struct io_accel2_cmd *c2;
2501
2502         u8 sense_key;
2503         u8 asc;      /* additional sense code */
2504         u8 ascq;     /* additional sense code qualifier */
2505         unsigned long sense_data_size;
2506
2507         ei = cp->err_info;
2508         cmd = cp->scsi_cmd;
2509         h = cp->h;
2510
2511         if (!cmd->device) {
2512                 cmd->result = DID_NO_CONNECT << 16;
2513                 return hpsa_cmd_free_and_done(h, cp, cmd);
2514         }
2515
2516         dev = cmd->device->hostdata;
2517         if (!dev) {
2518                 cmd->result = DID_NO_CONNECT << 16;
2519                 return hpsa_cmd_free_and_done(h, cp, cmd);
2520         }
2521         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2522
2523         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2524         if ((cp->cmd_type == CMD_SCSI) &&
2525                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2526                 hpsa_unmap_sg_chain_block(h, cp);
2527
2528         if ((cp->cmd_type == CMD_IOACCEL2) &&
2529                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2530                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2531
2532         cmd->result = (DID_OK << 16);           /* host byte */
2533         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2534
2535         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2536                 if (dev->physical_device && dev->expose_device &&
2537                         dev->removed) {
2538                         cmd->result = DID_NO_CONNECT << 16;
2539                         return hpsa_cmd_free_and_done(h, cp, cmd);
2540                 }
2541                 if (likely(cp->phys_disk != NULL))
2542                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2543         }
2544
2545         /*
2546          * We check for lockup status here as it may be set for
2547          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2548          * fail_all_oustanding_cmds()
2549          */
2550         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2551                 /* DID_NO_CONNECT will prevent a retry */
2552                 cmd->result = DID_NO_CONNECT << 16;
2553                 return hpsa_cmd_free_and_done(h, cp, cmd);
2554         }
2555
2556         if ((unlikely(hpsa_is_pending_event(cp)))) {
2557                 if (cp->reset_pending)
2558                         return hpsa_cmd_free_and_done(h, cp, cmd);
2559                 if (cp->abort_pending)
2560                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2561         }
2562
2563         if (cp->cmd_type == CMD_IOACCEL2)
2564                 return process_ioaccel2_completion(h, cp, cmd, dev);
2565
2566         scsi_set_resid(cmd, ei->ResidualCnt);
2567         if (ei->CommandStatus == 0)
2568                 return hpsa_cmd_free_and_done(h, cp, cmd);
2569
2570         /* For I/O accelerator commands, copy over some fields to the normal
2571          * CISS header used below for error handling.
2572          */
2573         if (cp->cmd_type == CMD_IOACCEL1) {
2574                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2575                 cp->Header.SGList = scsi_sg_count(cmd);
2576                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2577                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2578                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2579                 cp->Header.tag = c->tag;
2580                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2581                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2582
2583                 /* Any RAID offload error results in retry which will use
2584                  * the normal I/O path so the controller can handle whatever's
2585                  * wrong.
2586                  */
2587                 if (is_logical_device(dev)) {
2588                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2589                                 dev->offload_enabled = 0;
2590                         return hpsa_retry_cmd(h, cp);
2591                 }
2592         }
2593
2594         /* an error has occurred */
2595         switch (ei->CommandStatus) {
2596
2597         case CMD_TARGET_STATUS:
2598                 cmd->result |= ei->ScsiStatus;
2599                 /* copy the sense data */
2600                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2601                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2602                 else
2603                         sense_data_size = sizeof(ei->SenseInfo);
2604                 if (ei->SenseLen < sense_data_size)
2605                         sense_data_size = ei->SenseLen;
2606                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2607                 if (ei->ScsiStatus)
2608                         decode_sense_data(ei->SenseInfo, sense_data_size,
2609                                 &sense_key, &asc, &ascq);
2610                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2611                         if (sense_key == ABORTED_COMMAND) {
2612                                 cmd->result |= DID_SOFT_ERROR << 16;
2613                                 break;
2614                         }
2615                         break;
2616                 }
2617                 /* Problem was not a check condition
2618                  * Pass it up to the upper layers...
2619                  */
2620                 if (ei->ScsiStatus) {
2621                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2622                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2623                                 "Returning result: 0x%x\n",
2624                                 cp, ei->ScsiStatus,
2625                                 sense_key, asc, ascq,
2626                                 cmd->result);
2627                 } else {  /* scsi status is zero??? How??? */
2628                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2629                                 "Returning no connection.\n", cp),
2630
2631                         /* Ordinarily, this case should never happen,
2632                          * but there is a bug in some released firmware
2633                          * revisions that allows it to happen if, for
2634                          * example, a 4100 backplane loses power and
2635                          * the tape drive is in it.  We assume that
2636                          * it's a fatal error of some kind because we
2637                          * can't show that it wasn't. We will make it
2638                          * look like selection timeout since that is
2639                          * the most common reason for this to occur,
2640                          * and it's severe enough.
2641                          */
2642
2643                         cmd->result = DID_NO_CONNECT << 16;
2644                 }
2645                 break;
2646
2647         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2648                 break;
2649         case CMD_DATA_OVERRUN:
2650                 dev_warn(&h->pdev->dev,
2651                         "CDB %16phN data overrun\n", cp->Request.CDB);
2652                 break;
2653         case CMD_INVALID: {
2654                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2655                 print_cmd(cp); */
2656                 /* We get CMD_INVALID if you address a non-existent device
2657                  * instead of a selection timeout (no response).  You will
2658                  * see this if you yank out a drive, then try to access it.
2659                  * This is kind of a shame because it means that any other
2660                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2661                  * missing target. */
2662                 cmd->result = DID_NO_CONNECT << 16;
2663         }
2664                 break;
2665         case CMD_PROTOCOL_ERR:
2666                 cmd->result = DID_ERROR << 16;
2667                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2668                                 cp->Request.CDB);
2669                 break;
2670         case CMD_HARDWARE_ERR:
2671                 cmd->result = DID_ERROR << 16;
2672                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2673                         cp->Request.CDB);
2674                 break;
2675         case CMD_CONNECTION_LOST:
2676                 cmd->result = DID_ERROR << 16;
2677                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2678                         cp->Request.CDB);
2679                 break;
2680         case CMD_ABORTED:
2681                 /* Return now to avoid calling scsi_done(). */
2682                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2683         case CMD_ABORT_FAILED:
2684                 cmd->result = DID_ERROR << 16;
2685                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2686                         cp->Request.CDB);
2687                 break;
2688         case CMD_UNSOLICITED_ABORT:
2689                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2690                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2691                         cp->Request.CDB);
2692                 break;
2693         case CMD_TIMEOUT:
2694                 cmd->result = DID_TIME_OUT << 16;
2695                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2696                         cp->Request.CDB);
2697                 break;
2698         case CMD_UNABORTABLE:
2699                 cmd->result = DID_ERROR << 16;
2700                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2701                 break;
2702         case CMD_TMF_STATUS:
2703                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2704                         cmd->result = DID_ERROR << 16;
2705                 break;
2706         case CMD_IOACCEL_DISABLED:
2707                 /* This only handles the direct pass-through case since RAID
2708                  * offload is handled above.  Just attempt a retry.
2709                  */
2710                 cmd->result = DID_SOFT_ERROR << 16;
2711                 dev_warn(&h->pdev->dev,
2712                                 "cp %p had HP SSD Smart Path error\n", cp);
2713                 break;
2714         default:
2715                 cmd->result = DID_ERROR << 16;
2716                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2717                                 cp, ei->CommandStatus);
2718         }
2719
2720         return hpsa_cmd_free_and_done(h, cp, cmd);
2721 }
2722
2723 static void hpsa_pci_unmap(struct pci_dev *pdev,
2724         struct CommandList *c, int sg_used, int data_direction)
2725 {
2726         int i;
2727
2728         for (i = 0; i < sg_used; i++)
2729                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2730                                 le32_to_cpu(c->SG[i].Len),
2731                                 data_direction);
2732 }
2733
2734 static int hpsa_map_one(struct pci_dev *pdev,
2735                 struct CommandList *cp,
2736                 unsigned char *buf,
2737                 size_t buflen,
2738                 int data_direction)
2739 {
2740         u64 addr64;
2741
2742         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2743                 cp->Header.SGList = 0;
2744                 cp->Header.SGTotal = cpu_to_le16(0);
2745                 return 0;
2746         }
2747
2748         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2749         if (dma_mapping_error(&pdev->dev, addr64)) {
2750                 /* Prevent subsequent unmap of something never mapped */
2751                 cp->Header.SGList = 0;
2752                 cp->Header.SGTotal = cpu_to_le16(0);
2753                 return -1;
2754         }
2755         cp->SG[0].Addr = cpu_to_le64(addr64);
2756         cp->SG[0].Len = cpu_to_le32(buflen);
2757         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2758         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2759         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2760         return 0;
2761 }
2762
2763 #define NO_TIMEOUT ((unsigned long) -1)
2764 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2765 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2766         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2767 {
2768         DECLARE_COMPLETION_ONSTACK(wait);
2769
2770         c->waiting = &wait;
2771         __enqueue_cmd_and_start_io(h, c, reply_queue);
2772         if (timeout_msecs == NO_TIMEOUT) {
2773                 /* TODO: get rid of this no-timeout thing */
2774                 wait_for_completion_io(&wait);
2775                 return IO_OK;
2776         }
2777         if (!wait_for_completion_io_timeout(&wait,
2778                                         msecs_to_jiffies(timeout_msecs))) {
2779                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2780                 return -ETIMEDOUT;
2781         }
2782         return IO_OK;
2783 }
2784
2785 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2786                                    int reply_queue, unsigned long timeout_msecs)
2787 {
2788         if (unlikely(lockup_detected(h))) {
2789                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2790                 return IO_OK;
2791         }
2792         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2793 }
2794
2795 static u32 lockup_detected(struct ctlr_info *h)
2796 {
2797         int cpu;
2798         u32 rc, *lockup_detected;
2799
2800         cpu = get_cpu();
2801         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2802         rc = *lockup_detected;
2803         put_cpu();
2804         return rc;
2805 }
2806
2807 #define MAX_DRIVER_CMD_RETRIES 25
2808 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2809         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2810 {
2811         int backoff_time = 10, retry_count = 0;
2812         int rc;
2813
2814         do {
2815                 memset(c->err_info, 0, sizeof(*c->err_info));
2816                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2817                                                   timeout_msecs);
2818                 if (rc)
2819                         break;
2820                 retry_count++;
2821                 if (retry_count > 3) {
2822                         msleep(backoff_time);
2823                         if (backoff_time < 1000)
2824                                 backoff_time *= 2;
2825                 }
2826         } while ((check_for_unit_attention(h, c) ||
2827                         check_for_busy(h, c)) &&
2828                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2829         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2830         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2831                 rc = -EIO;
2832         return rc;
2833 }
2834
2835 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2836                                 struct CommandList *c)
2837 {
2838         const u8 *cdb = c->Request.CDB;
2839         const u8 *lun = c->Header.LUN.LunAddrBytes;
2840
2841         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2842                  txt, lun, cdb);
2843 }
2844
2845 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2846                         struct CommandList *cp)
2847 {
2848         const struct ErrorInfo *ei = cp->err_info;
2849         struct device *d = &cp->h->pdev->dev;
2850         u8 sense_key, asc, ascq;
2851         int sense_len;
2852
2853         switch (ei->CommandStatus) {
2854         case CMD_TARGET_STATUS:
2855                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2856                         sense_len = sizeof(ei->SenseInfo);
2857                 else
2858                         sense_len = ei->SenseLen;
2859                 decode_sense_data(ei->SenseInfo, sense_len,
2860                                         &sense_key, &asc, &ascq);
2861                 hpsa_print_cmd(h, "SCSI status", cp);
2862                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2863                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2864                                 sense_key, asc, ascq);
2865                 else
2866                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2867                 if (ei->ScsiStatus == 0)
2868                         dev_warn(d, "SCSI status is abnormally zero.  "
2869                         "(probably indicates selection timeout "
2870                         "reported incorrectly due to a known "
2871                         "firmware bug, circa July, 2001.)\n");
2872                 break;
2873         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2874                 break;
2875         case CMD_DATA_OVERRUN:
2876                 hpsa_print_cmd(h, "overrun condition", cp);
2877                 break;
2878         case CMD_INVALID: {
2879                 /* controller unfortunately reports SCSI passthru's
2880                  * to non-existent targets as invalid commands.
2881                  */
2882                 hpsa_print_cmd(h, "invalid command", cp);
2883                 dev_warn(d, "probably means device no longer present\n");
2884                 }
2885                 break;
2886         case CMD_PROTOCOL_ERR:
2887                 hpsa_print_cmd(h, "protocol error", cp);
2888                 break;
2889         case CMD_HARDWARE_ERR:
2890                 hpsa_print_cmd(h, "hardware error", cp);
2891                 break;
2892         case CMD_CONNECTION_LOST:
2893                 hpsa_print_cmd(h, "connection lost", cp);
2894                 break;
2895         case CMD_ABORTED:
2896                 hpsa_print_cmd(h, "aborted", cp);
2897                 break;
2898         case CMD_ABORT_FAILED:
2899                 hpsa_print_cmd(h, "abort failed", cp);
2900                 break;
2901         case CMD_UNSOLICITED_ABORT:
2902                 hpsa_print_cmd(h, "unsolicited abort", cp);
2903                 break;
2904         case CMD_TIMEOUT:
2905                 hpsa_print_cmd(h, "timed out", cp);
2906                 break;
2907         case CMD_UNABORTABLE:
2908                 hpsa_print_cmd(h, "unabortable", cp);
2909                 break;
2910         case CMD_CTLR_LOCKUP:
2911                 hpsa_print_cmd(h, "controller lockup detected", cp);
2912                 break;
2913         default:
2914                 hpsa_print_cmd(h, "unknown status", cp);
2915                 dev_warn(d, "Unknown command status %x\n",
2916                                 ei->CommandStatus);
2917         }
2918 }
2919
2920 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2921                         u16 page, unsigned char *buf,
2922                         unsigned char bufsize)
2923 {
2924         int rc = IO_OK;
2925         struct CommandList *c;
2926         struct ErrorInfo *ei;
2927
2928         c = cmd_alloc(h);
2929
2930         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2931                         page, scsi3addr, TYPE_CMD)) {
2932                 rc = -1;
2933                 goto out;
2934         }
2935         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2936                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2937         if (rc)
2938                 goto out;
2939         ei = c->err_info;
2940         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2941                 hpsa_scsi_interpret_error(h, c);
2942                 rc = -1;
2943         }
2944 out:
2945         cmd_free(h, c);
2946         return rc;
2947 }
2948
2949 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2950         u8 reset_type, int reply_queue)
2951 {
2952         int rc = IO_OK;
2953         struct CommandList *c;
2954         struct ErrorInfo *ei;
2955
2956         c = cmd_alloc(h);
2957
2958
2959         /* fill_cmd can't fail here, no data buffer to map. */
2960         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2961                         scsi3addr, TYPE_MSG);
2962         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
2963         if (rc) {
2964                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2965                 goto out;
2966         }
2967         /* no unmap needed here because no data xfer. */
2968
2969         ei = c->err_info;
2970         if (ei->CommandStatus != 0) {
2971                 hpsa_scsi_interpret_error(h, c);
2972                 rc = -1;
2973         }
2974 out:
2975         cmd_free(h, c);
2976         return rc;
2977 }
2978
2979 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2980                                struct hpsa_scsi_dev_t *dev,
2981                                unsigned char *scsi3addr)
2982 {
2983         int i;
2984         bool match = false;
2985         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2986         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2987
2988         if (hpsa_is_cmd_idle(c))
2989                 return false;
2990
2991         switch (c->cmd_type) {
2992         case CMD_SCSI:
2993         case CMD_IOCTL_PEND:
2994                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2995                                 sizeof(c->Header.LUN.LunAddrBytes));
2996                 break;
2997
2998         case CMD_IOACCEL1:
2999         case CMD_IOACCEL2:
3000                 if (c->phys_disk == dev) {
3001                         /* HBA mode match */
3002                         match = true;
3003                 } else {
3004                         /* Possible RAID mode -- check each phys dev. */
3005                         /* FIXME:  Do we need to take out a lock here?  If
3006                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3007                          * instead. */
3008                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3009                                 /* FIXME: an alternate test might be
3010                                  *
3011                                  * match = dev->phys_disk[i]->ioaccel_handle
3012                                  *              == c2->scsi_nexus;      */
3013                                 match = dev->phys_disk[i] == c->phys_disk;
3014                         }
3015                 }
3016                 break;
3017
3018         case IOACCEL2_TMF:
3019                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3020                         match = dev->phys_disk[i]->ioaccel_handle ==
3021                                         le32_to_cpu(ac->it_nexus);
3022                 }
3023                 break;
3024
3025         case 0:         /* The command is in the middle of being initialized. */
3026                 match = false;
3027                 break;
3028
3029         default:
3030                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3031                         c->cmd_type);
3032                 BUG();
3033         }
3034
3035         return match;
3036 }
3037
3038 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3039         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3040 {
3041         int i;
3042         int rc = 0;
3043
3044         /* We can really only handle one reset at a time */
3045         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3046                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3047                 return -EINTR;
3048         }
3049
3050         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3051
3052         for (i = 0; i < h->nr_cmds; i++) {
3053                 struct CommandList *c = h->cmd_pool + i;
3054                 int refcount = atomic_inc_return(&c->refcount);
3055
3056                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3057                         unsigned long flags;
3058
3059                         /*
3060                          * Mark the target command as having a reset pending,
3061                          * then lock a lock so that the command cannot complete
3062                          * while we're considering it.  If the command is not
3063                          * idle then count it; otherwise revoke the event.
3064                          */
3065                         c->reset_pending = dev;
3066                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3067                         if (!hpsa_is_cmd_idle(c))
3068                                 atomic_inc(&dev->reset_cmds_out);
3069                         else
3070                                 c->reset_pending = NULL;
3071                         spin_unlock_irqrestore(&h->lock, flags);
3072                 }
3073
3074                 cmd_free(h, c);
3075         }
3076
3077         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3078         if (!rc)
3079                 wait_event(h->event_sync_wait_queue,
3080                         atomic_read(&dev->reset_cmds_out) == 0 ||
3081                         lockup_detected(h));
3082
3083         if (unlikely(lockup_detected(h))) {
3084                 dev_warn(&h->pdev->dev,
3085                          "Controller lockup detected during reset wait\n");
3086                 rc = -ENODEV;
3087         }
3088
3089         if (unlikely(rc))
3090                 atomic_set(&dev->reset_cmds_out, 0);
3091         else
3092                 wait_for_device_to_become_ready(h, scsi3addr, 0);
3093
3094         mutex_unlock(&h->reset_mutex);
3095         return rc;
3096 }
3097
3098 static void hpsa_get_raid_level(struct ctlr_info *h,
3099         unsigned char *scsi3addr, unsigned char *raid_level)
3100 {
3101         int rc;
3102         unsigned char *buf;
3103
3104         *raid_level = RAID_UNKNOWN;
3105         buf = kzalloc(64, GFP_KERNEL);
3106         if (!buf)
3107                 return;
3108
3109         if (!hpsa_vpd_page_supported(h, scsi3addr,
3110                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3111                 goto exit;
3112
3113         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3114                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3115
3116         if (rc == 0)
3117                 *raid_level = buf[8];
3118         if (*raid_level > RAID_UNKNOWN)
3119                 *raid_level = RAID_UNKNOWN;
3120 exit:
3121         kfree(buf);
3122         return;
3123 }
3124
3125 #define HPSA_MAP_DEBUG
3126 #ifdef HPSA_MAP_DEBUG
3127 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3128                                 struct raid_map_data *map_buff)
3129 {
3130         struct raid_map_disk_data *dd = &map_buff->data[0];
3131         int map, row, col;
3132         u16 map_cnt, row_cnt, disks_per_row;
3133
3134         if (rc != 0)
3135                 return;
3136
3137         /* Show details only if debugging has been activated. */
3138         if (h->raid_offload_debug < 2)
3139                 return;
3140
3141         dev_info(&h->pdev->dev, "structure_size = %u\n",
3142                                 le32_to_cpu(map_buff->structure_size));
3143         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3144                         le32_to_cpu(map_buff->volume_blk_size));
3145         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3146                         le64_to_cpu(map_buff->volume_blk_cnt));
3147         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3148                         map_buff->phys_blk_shift);
3149         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3150                         map_buff->parity_rotation_shift);
3151         dev_info(&h->pdev->dev, "strip_size = %u\n",
3152                         le16_to_cpu(map_buff->strip_size));
3153         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3154                         le64_to_cpu(map_buff->disk_starting_blk));
3155         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3156                         le64_to_cpu(map_buff->disk_blk_cnt));
3157         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3158                         le16_to_cpu(map_buff->data_disks_per_row));
3159         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3160                         le16_to_cpu(map_buff->metadata_disks_per_row));
3161         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3162                         le16_to_cpu(map_buff->row_cnt));
3163         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3164                         le16_to_cpu(map_buff->layout_map_count));
3165         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3166                         le16_to_cpu(map_buff->flags));
3167         dev_info(&h->pdev->dev, "encrypytion = %s\n",
3168                         le16_to_cpu(map_buff->flags) &
3169                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3170         dev_info(&h->pdev->dev, "dekindex = %u\n",
3171                         le16_to_cpu(map_buff->dekindex));
3172         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3173         for (map = 0; map < map_cnt; map++) {
3174                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3175                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3176                 for (row = 0; row < row_cnt; row++) {
3177                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3178                         disks_per_row =
3179                                 le16_to_cpu(map_buff->data_disks_per_row);
3180                         for (col = 0; col < disks_per_row; col++, dd++)
3181                                 dev_info(&h->pdev->dev,
3182                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3183                                         col, dd->ioaccel_handle,
3184                                         dd->xor_mult[0], dd->xor_mult[1]);
3185                         disks_per_row =
3186                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3187                         for (col = 0; col < disks_per_row; col++, dd++)
3188                                 dev_info(&h->pdev->dev,
3189                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3190                                         col, dd->ioaccel_handle,
3191                                         dd->xor_mult[0], dd->xor_mult[1]);
3192                 }
3193         }
3194 }
3195 #else
3196 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3197                         __attribute__((unused)) int rc,
3198                         __attribute__((unused)) struct raid_map_data *map_buff)
3199 {
3200 }
3201 #endif
3202
3203 static int hpsa_get_raid_map(struct ctlr_info *h,
3204         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3205 {
3206         int rc = 0;
3207         struct CommandList *c;
3208         struct ErrorInfo *ei;
3209
3210         c = cmd_alloc(h);
3211
3212         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3213                         sizeof(this_device->raid_map), 0,
3214                         scsi3addr, TYPE_CMD)) {
3215                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3216                 cmd_free(h, c);
3217                 return -1;
3218         }
3219         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3220                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3221         if (rc)
3222                 goto out;
3223         ei = c->err_info;
3224         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3225                 hpsa_scsi_interpret_error(h, c);
3226                 rc = -1;
3227                 goto out;
3228         }
3229         cmd_free(h, c);
3230
3231         /* @todo in the future, dynamically allocate RAID map memory */
3232         if (le32_to_cpu(this_device->raid_map.structure_size) >
3233                                 sizeof(this_device->raid_map)) {
3234                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3235                 rc = -1;
3236         }
3237         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3238         return rc;
3239 out:
3240         cmd_free(h, c);
3241         return rc;
3242 }
3243
3244 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3245                 unsigned char scsi3addr[], u16 bmic_device_index,
3246                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3247 {
3248         int rc = IO_OK;
3249         struct CommandList *c;
3250         struct ErrorInfo *ei;
3251
3252         c = cmd_alloc(h);
3253
3254         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3255                 0, RAID_CTLR_LUNID, TYPE_CMD);
3256         if (rc)
3257                 goto out;
3258
3259         c->Request.CDB[2] = bmic_device_index & 0xff;
3260         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3261
3262         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3263                                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3264         if (rc)
3265                 goto out;
3266         ei = c->err_info;
3267         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3268                 hpsa_scsi_interpret_error(h, c);
3269                 rc = -1;
3270         }
3271 out:
3272         cmd_free(h, c);
3273         return rc;
3274 }
3275
3276 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3277         struct bmic_identify_controller *buf, size_t bufsize)
3278 {
3279         int rc = IO_OK;
3280         struct CommandList *c;
3281         struct ErrorInfo *ei;
3282
3283         c = cmd_alloc(h);
3284
3285         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3286                 0, RAID_CTLR_LUNID, TYPE_CMD);
3287         if (rc)
3288                 goto out;
3289
3290         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3291                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3292         if (rc)
3293                 goto out;
3294         ei = c->err_info;
3295         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3296                 hpsa_scsi_interpret_error(h, c);
3297                 rc = -1;
3298         }
3299 out:
3300         cmd_free(h, c);
3301         return rc;
3302 }
3303
3304 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3305                 unsigned char scsi3addr[], u16 bmic_device_index,
3306                 struct bmic_identify_physical_device *buf, size_t bufsize)
3307 {
3308         int rc = IO_OK;
3309         struct CommandList *c;
3310         struct ErrorInfo *ei;
3311
3312         c = cmd_alloc(h);
3313         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3314                 0, RAID_CTLR_LUNID, TYPE_CMD);
3315         if (rc)
3316                 goto out;
3317
3318         c->Request.CDB[2] = bmic_device_index & 0xff;
3319         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3320
3321         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3322                                                 DEFAULT_TIMEOUT);
3323         ei = c->err_info;
3324         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3325                 hpsa_scsi_interpret_error(h, c);
3326                 rc = -1;
3327         }
3328 out:
3329         cmd_free(h, c);
3330
3331         return rc;
3332 }
3333
3334 /*
3335  * get enclosure information
3336  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3337  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3338  * Uses id_physical_device to determine the box_index.
3339  */
3340 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3341                         unsigned char *scsi3addr,
3342                         struct ReportExtendedLUNdata *rlep, int rle_index,
3343                         struct hpsa_scsi_dev_t *encl_dev)
3344 {
3345         int rc = -1;
3346         struct CommandList *c = NULL;
3347         struct ErrorInfo *ei = NULL;
3348         struct bmic_sense_storage_box_params *bssbp = NULL;
3349         struct bmic_identify_physical_device *id_phys = NULL;
3350         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3351         u16 bmic_device_index = 0;
3352
3353         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3354
3355         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3356                 rc = IO_OK;
3357                 goto out;
3358         }
3359
3360         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3361         if (!bssbp)
3362                 goto out;
3363
3364         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3365         if (!id_phys)
3366                 goto out;
3367
3368         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3369                                                 id_phys, sizeof(*id_phys));
3370         if (rc) {
3371                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3372                         __func__, encl_dev->external, bmic_device_index);
3373                 goto out;
3374         }
3375
3376         c = cmd_alloc(h);
3377
3378         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3379                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3380
3381         if (rc)
3382                 goto out;
3383
3384         if (id_phys->phys_connector[1] == 'E')
3385                 c->Request.CDB[5] = id_phys->box_index;
3386         else
3387                 c->Request.CDB[5] = 0;
3388
3389         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3390                                                 DEFAULT_TIMEOUT);
3391         if (rc)
3392                 goto out;
3393
3394         ei = c->err_info;
3395         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3396                 rc = -1;
3397                 goto out;
3398         }
3399
3400         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3401         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3402                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3403
3404         rc = IO_OK;
3405 out:
3406         kfree(bssbp);
3407         kfree(id_phys);
3408
3409         if (c)
3410                 cmd_free(h, c);
3411
3412         if (rc != IO_OK)
3413                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3414                         "Error, could not get enclosure information\n");
3415 }
3416
3417 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3418                                                 unsigned char *scsi3addr)
3419 {
3420         struct ReportExtendedLUNdata *physdev;
3421         u32 nphysicals;
3422         u64 sa = 0;
3423         int i;
3424
3425         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3426         if (!physdev)
3427                 return 0;
3428
3429         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3430                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3431                 kfree(physdev);
3432                 return 0;
3433         }
3434         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3435
3436         for (i = 0; i < nphysicals; i++)
3437                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3438                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3439                         break;
3440                 }
3441
3442         kfree(physdev);
3443
3444         return sa;
3445 }
3446
3447 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3448                                         struct hpsa_scsi_dev_t *dev)
3449 {
3450         int rc;
3451         u64 sa = 0;
3452
3453         if (is_hba_lunid(scsi3addr)) {
3454                 struct bmic_sense_subsystem_info *ssi;
3455
3456                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3457                 if (ssi == NULL) {
3458                         dev_warn(&h->pdev->dev,
3459                                 "%s: out of memory\n", __func__);
3460                         return;
3461                 }
3462
3463                 rc = hpsa_bmic_sense_subsystem_information(h,
3464                                         scsi3addr, 0, ssi, sizeof(*ssi));
3465                 if (rc == 0) {
3466                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3467                         h->sas_address = sa;
3468                 }
3469
3470                 kfree(ssi);
3471         } else
3472                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3473
3474         dev->sas_address = sa;
3475 }
3476
3477 /* Get a device id from inquiry page 0x83 */
3478 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3479         unsigned char scsi3addr[], u8 page)
3480 {
3481         int rc;
3482         int i;
3483         int pages;
3484         unsigned char *buf, bufsize;
3485
3486         buf = kzalloc(256, GFP_KERNEL);
3487         if (!buf)
3488                 return false;
3489
3490         /* Get the size of the page list first */
3491         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3492                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3493                                 buf, HPSA_VPD_HEADER_SZ);
3494         if (rc != 0)
3495                 goto exit_unsupported;
3496         pages = buf[3];
3497         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3498                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3499         else
3500                 bufsize = 255;
3501
3502         /* Get the whole VPD page list */
3503         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3504                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3505                                 buf, bufsize);
3506         if (rc != 0)
3507                 goto exit_unsupported;
3508
3509         pages = buf[3];
3510         for (i = 1; i <= pages; i++)
3511                 if (buf[3 + i] == page)
3512                         goto exit_supported;
3513 exit_unsupported:
3514         kfree(buf);
3515         return false;
3516 exit_supported:
3517         kfree(buf);
3518         return true;
3519 }
3520
3521 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3522         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3523 {
3524         int rc;
3525         unsigned char *buf;
3526         u8 ioaccel_status;
3527
3528         this_device->offload_config = 0;
3529         this_device->offload_enabled = 0;
3530         this_device->offload_to_be_enabled = 0;
3531
3532         buf = kzalloc(64, GFP_KERNEL);
3533         if (!buf)
3534                 return;
3535         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3536                 goto out;
3537         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3538                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3539         if (rc != 0)
3540                 goto out;
3541
3542 #define IOACCEL_STATUS_BYTE 4
3543 #define OFFLOAD_CONFIGURED_BIT 0x01
3544 #define OFFLOAD_ENABLED_BIT 0x02
3545         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3546         this_device->offload_config =
3547                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3548         if (this_device->offload_config) {
3549                 this_device->offload_enabled =
3550                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3551                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3552                         this_device->offload_enabled = 0;
3553         }
3554         this_device->offload_to_be_enabled = this_device->offload_enabled;
3555 out:
3556         kfree(buf);
3557         return;
3558 }
3559
3560 /* Get the device id from inquiry page 0x83 */
3561 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3562         unsigned char *device_id, int index, int buflen)
3563 {
3564         int rc;
3565         unsigned char *buf;
3566
3567         /* Does controller have VPD for device id? */
3568         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3569                 return 1; /* not supported */
3570
3571         buf = kzalloc(64, GFP_KERNEL);
3572         if (!buf)
3573                 return -ENOMEM;
3574
3575         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3576                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3577         if (rc == 0) {
3578                 if (buflen > 16)
3579                         buflen = 16;
3580                 memcpy(device_id, &buf[8], buflen);
3581         }
3582
3583         kfree(buf);
3584
3585         return rc; /*0 - got id,  otherwise, didn't */
3586 }
3587
3588 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3589                 void *buf, int bufsize,
3590                 int extended_response)
3591 {
3592         int rc = IO_OK;
3593         struct CommandList *c;
3594         unsigned char scsi3addr[8];
3595         struct ErrorInfo *ei;
3596
3597         c = cmd_alloc(h);
3598
3599         /* address the controller */
3600         memset(scsi3addr, 0, sizeof(scsi3addr));
3601         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3602                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3603                 rc = -1;
3604                 goto out;
3605         }
3606         if (extended_response)
3607                 c->Request.CDB[1] = extended_response;
3608         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3609                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3610         if (rc)
3611                 goto out;
3612         ei = c->err_info;
3613         if (ei->CommandStatus != 0 &&
3614             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3615                 hpsa_scsi_interpret_error(h, c);
3616                 rc = -1;
3617         } else {
3618                 struct ReportLUNdata *rld = buf;
3619
3620                 if (rld->extended_response_flag != extended_response) {
3621                         dev_err(&h->pdev->dev,
3622                                 "report luns requested format %u, got %u\n",
3623                                 extended_response,
3624                                 rld->extended_response_flag);
3625                         rc = -1;
3626                 }
3627         }
3628 out:
3629         cmd_free(h, c);
3630         return rc;
3631 }
3632
3633 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3634                 struct ReportExtendedLUNdata *buf, int bufsize)
3635 {
3636         int rc;
3637         struct ReportLUNdata *lbuf;
3638
3639         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3640                                       HPSA_REPORT_PHYS_EXTENDED);
3641         if (!rc || !hpsa_allow_any)
3642                 return rc;
3643
3644         /* REPORT PHYS EXTENDED is not supported */
3645         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3646         if (!lbuf)
3647                 return -ENOMEM;
3648
3649         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3650         if (!rc) {
3651                 int i;
3652                 u32 nphys;
3653
3654                 /* Copy ReportLUNdata header */
3655                 memcpy(buf, lbuf, 8);
3656                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3657                 for (i = 0; i < nphys; i++)
3658                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3659         }
3660         kfree(lbuf);
3661         return rc;
3662 }
3663
3664 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3665                 struct ReportLUNdata *buf, int bufsize)
3666 {
3667         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3668 }
3669
3670 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3671         int bus, int target, int lun)
3672 {
3673         device->bus = bus;
3674         device->target = target;
3675         device->lun = lun;
3676 }
3677
3678 /* Use VPD inquiry to get details of volume status */
3679 static int hpsa_get_volume_status(struct ctlr_info *h,
3680                                         unsigned char scsi3addr[])
3681 {
3682         int rc;
3683         int status;
3684         int size;
3685         unsigned char *buf;
3686
3687         buf = kzalloc(64, GFP_KERNEL);
3688         if (!buf)
3689                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3690
3691         /* Does controller have VPD for logical volume status? */
3692         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3693                 goto exit_failed;
3694
3695         /* Get the size of the VPD return buffer */
3696         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3697                                         buf, HPSA_VPD_HEADER_SZ);
3698         if (rc != 0)
3699                 goto exit_failed;
3700         size = buf[3];
3701
3702         /* Now get the whole VPD buffer */
3703         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3704                                         buf, size + HPSA_VPD_HEADER_SZ);
3705         if (rc != 0)
3706                 goto exit_failed;
3707         status = buf[4]; /* status byte */
3708
3709         kfree(buf);
3710         return status;
3711 exit_failed:
3712         kfree(buf);
3713         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3714 }
3715
3716 /* Determine offline status of a volume.
3717  * Return either:
3718  *  0 (not offline)
3719  *  0xff (offline for unknown reasons)
3720  *  # (integer code indicating one of several NOT READY states
3721  *     describing why a volume is to be kept offline)
3722  */
3723 static int hpsa_volume_offline(struct ctlr_info *h,
3724                                         unsigned char scsi3addr[])
3725 {
3726         struct CommandList *c;
3727         unsigned char *sense;
3728         u8 sense_key, asc, ascq;
3729         int sense_len;
3730         int rc, ldstat = 0;
3731         u16 cmd_status;
3732         u8 scsi_status;
3733 #define ASC_LUN_NOT_READY 0x04
3734 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3735 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3736
3737         c = cmd_alloc(h);
3738
3739         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3740         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3741                                         DEFAULT_TIMEOUT);
3742         if (rc) {
3743                 cmd_free(h, c);
3744                 return 0;
3745         }
3746         sense = c->err_info->SenseInfo;
3747         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3748                 sense_len = sizeof(c->err_info->SenseInfo);
3749         else
3750                 sense_len = c->err_info->SenseLen;
3751         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3752         cmd_status = c->err_info->CommandStatus;
3753         scsi_status = c->err_info->ScsiStatus;
3754         cmd_free(h, c);
3755         /* Is the volume 'not ready'? */
3756         if (cmd_status != CMD_TARGET_STATUS ||
3757                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3758                 sense_key != NOT_READY ||
3759                 asc != ASC_LUN_NOT_READY)  {
3760                 return 0;
3761         }
3762
3763         /* Determine the reason for not ready state */
3764         ldstat = hpsa_get_volume_status(h, scsi3addr);
3765
3766         /* Keep volume offline in certain cases: */
3767         switch (ldstat) {
3768         case HPSA_LV_UNDERGOING_ERASE:
3769         case HPSA_LV_NOT_AVAILABLE:
3770         case HPSA_LV_UNDERGOING_RPI:
3771         case HPSA_LV_PENDING_RPI:
3772         case HPSA_LV_ENCRYPTED_NO_KEY:
3773         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3774         case HPSA_LV_UNDERGOING_ENCRYPTION:
3775         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3776         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3777                 return ldstat;
3778         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3779                 /* If VPD status page isn't available,
3780                  * use ASC/ASCQ to determine state
3781                  */
3782                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3783                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3784                         return ldstat;
3785                 break;
3786         default:
3787                 break;
3788         }
3789         return 0;
3790 }
3791
3792 /*
3793  * Find out if a logical device supports aborts by simply trying one.
3794  * Smart Array may claim not to support aborts on logical drives, but
3795  * if a MSA2000 * is connected, the drives on that will be presented
3796  * by the Smart Array as logical drives, and aborts may be sent to
3797  * those devices successfully.  So the simplest way to find out is
3798  * to simply try an abort and see how the device responds.
3799  */
3800 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3801                                         unsigned char *scsi3addr)
3802 {
3803         struct CommandList *c;
3804         struct ErrorInfo *ei;
3805         int rc = 0;
3806
3807         u64 tag = (u64) -1; /* bogus tag */
3808
3809         /* Assume that physical devices support aborts */
3810         if (!is_logical_dev_addr_mode(scsi3addr))
3811                 return 1;
3812
3813         c = cmd_alloc(h);
3814
3815         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3816         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3817                                         DEFAULT_TIMEOUT);
3818         /* no unmap needed here because no data xfer. */
3819         ei = c->err_info;
3820         switch (ei->CommandStatus) {
3821         case CMD_INVALID:
3822                 rc = 0;
3823                 break;
3824         case CMD_UNABORTABLE:
3825         case CMD_ABORT_FAILED:
3826                 rc = 1;
3827                 break;
3828         case CMD_TMF_STATUS:
3829                 rc = hpsa_evaluate_tmf_status(h, c);
3830                 break;
3831         default:
3832                 rc = 0;
3833                 break;
3834         }
3835         cmd_free(h, c);
3836         return rc;
3837 }
3838
3839 static int hpsa_update_device_info(struct ctlr_info *h,
3840         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3841         unsigned char *is_OBDR_device)
3842 {
3843
3844 #define OBDR_SIG_OFFSET 43
3845 #define OBDR_TAPE_SIG "$DR-10"
3846 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3847 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3848
3849         unsigned char *inq_buff;
3850         unsigned char *obdr_sig;
3851         int rc = 0;
3852
3853         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3854         if (!inq_buff) {
3855                 rc = -ENOMEM;
3856                 goto bail_out;
3857         }
3858
3859         /* Do an inquiry to the device to see what it is. */
3860         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3861                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3862                 /* Inquiry failed (msg printed already) */
3863                 dev_err(&h->pdev->dev,
3864                         "hpsa_update_device_info: inquiry failed\n");
3865                 rc = -EIO;
3866                 goto bail_out;
3867         }
3868
3869         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3870         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3871
3872         this_device->devtype = (inq_buff[0] & 0x1f);
3873         memcpy(this_device->scsi3addr, scsi3addr, 8);
3874         memcpy(this_device->vendor, &inq_buff[8],
3875                 sizeof(this_device->vendor));
3876         memcpy(this_device->model, &inq_buff[16],
3877                 sizeof(this_device->model));
3878         this_device->rev = inq_buff[2];
3879         memset(this_device->device_id, 0,
3880                 sizeof(this_device->device_id));
3881         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3882                 sizeof(this_device->device_id)))
3883                 dev_err(&h->pdev->dev,
3884                         "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3885                         h->ctlr, __func__,
3886                         h->scsi_host->host_no,
3887                         this_device->target, this_device->lun,
3888                         scsi_device_type(this_device->devtype),
3889                         this_device->model);
3890
3891         if ((this_device->devtype == TYPE_DISK ||
3892                 this_device->devtype == TYPE_ZBC) &&
3893                 is_logical_dev_addr_mode(scsi3addr)) {
3894                 int volume_offline;
3895
3896                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3897                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3898                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3899                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3900                 if (volume_offline < 0 || volume_offline > 0xff)
3901                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3902                 this_device->volume_offline = volume_offline & 0xff;
3903         } else {
3904                 this_device->raid_level = RAID_UNKNOWN;
3905                 this_device->offload_config = 0;
3906                 this_device->offload_enabled = 0;
3907                 this_device->offload_to_be_enabled = 0;
3908                 this_device->hba_ioaccel_enabled = 0;
3909                 this_device->volume_offline = 0;
3910                 this_device->queue_depth = h->nr_cmds;
3911         }
3912
3913         if (is_OBDR_device) {
3914                 /* See if this is a One-Button-Disaster-Recovery device
3915                  * by looking for "$DR-10" at offset 43 in inquiry data.
3916                  */
3917                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3918                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3919                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3920                                                 OBDR_SIG_LEN) == 0);
3921         }
3922         kfree(inq_buff);
3923         return 0;
3924
3925 bail_out:
3926         kfree(inq_buff);
3927         return rc;
3928 }
3929
3930 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3931                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3932 {
3933         unsigned long flags;
3934         int rc, entry;
3935         /*
3936          * See if this device supports aborts.  If we already know
3937          * the device, we already know if it supports aborts, otherwise
3938          * we have to find out if it supports aborts by trying one.
3939          */
3940         spin_lock_irqsave(&h->devlock, flags);
3941         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3942         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3943                 entry >= 0 && entry < h->ndevices) {
3944                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3945                 spin_unlock_irqrestore(&h->devlock, flags);
3946         } else {
3947                 spin_unlock_irqrestore(&h->devlock, flags);
3948                 dev->supports_aborts =
3949                                 hpsa_device_supports_aborts(h, scsi3addr);
3950                 if (dev->supports_aborts < 0)
3951                         dev->supports_aborts = 0;
3952         }
3953 }
3954
3955 /*
3956  * Helper function to assign bus, target, lun mapping of devices.
3957  * Logical drive target and lun are assigned at this time, but
3958  * physical device lun and target assignment are deferred (assigned
3959  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3960 */
3961 static void figure_bus_target_lun(struct ctlr_info *h,
3962         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3963 {
3964         u32 lunid = get_unaligned_le32(lunaddrbytes);
3965
3966         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3967                 /* physical device, target and lun filled in later */
3968                 if (is_hba_lunid(lunaddrbytes)) {
3969                         int bus = HPSA_HBA_BUS;
3970
3971                         if (!device->rev)
3972                                 bus = HPSA_LEGACY_HBA_BUS;
3973                         hpsa_set_bus_target_lun(device,
3974                                         bus, 0, lunid & 0x3fff);
3975                 } else
3976                         /* defer target, lun assignment for physical devices */
3977                         hpsa_set_bus_target_lun(device,
3978                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3979                 return;
3980         }
3981         /* It's a logical device */
3982         if (device->external) {
3983                 hpsa_set_bus_target_lun(device,
3984                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3985                         lunid & 0x00ff);
3986                 return;
3987         }
3988         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3989                                 0, lunid & 0x3fff);
3990 }
3991
3992
3993 /*
3994  * Get address of physical disk used for an ioaccel2 mode command:
3995  *      1. Extract ioaccel2 handle from the command.
3996  *      2. Find a matching ioaccel2 handle from list of physical disks.
3997  *      3. Return:
3998  *              1 and set scsi3addr to address of matching physical
3999  *              0 if no matching physical disk was found.
4000  */
4001 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
4002         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
4003 {
4004         struct io_accel2_cmd *c2 =
4005                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
4006         unsigned long flags;
4007         int i;
4008
4009         spin_lock_irqsave(&h->devlock, flags);
4010         for (i = 0; i < h->ndevices; i++)
4011                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
4012                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
4013                                 sizeof(h->dev[i]->scsi3addr));
4014                         spin_unlock_irqrestore(&h->devlock, flags);
4015                         return 1;
4016                 }
4017         spin_unlock_irqrestore(&h->devlock, flags);
4018         return 0;
4019 }
4020
4021 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4022         int i, int nphysicals, int nlocal_logicals)
4023 {
4024         /* In report logicals, local logicals are listed first,
4025         * then any externals.
4026         */
4027         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4028
4029         if (i == raid_ctlr_position)
4030                 return 0;
4031
4032         if (i < logicals_start)
4033                 return 0;
4034
4035         /* i is in logicals range, but still within local logicals */
4036         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4037                 return 0;
4038
4039         return 1; /* it's an external lun */
4040 }
4041
4042 /*
4043  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4044  * logdev.  The number of luns in physdev and logdev are returned in
4045  * *nphysicals and *nlogicals, respectively.
4046  * Returns 0 on success, -1 otherwise.
4047  */
4048 static int hpsa_gather_lun_info(struct ctlr_info *h,
4049         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4050         struct ReportLUNdata *logdev, u32 *nlogicals)
4051 {
4052         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4053                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4054                 return -1;
4055         }
4056         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4057         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4058                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4059                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4060                 *nphysicals = HPSA_MAX_PHYS_LUN;
4061         }
4062         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4063                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4064                 return -1;
4065         }
4066         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4067         /* Reject Logicals in excess of our max capability. */
4068         if (*nlogicals > HPSA_MAX_LUN) {
4069                 dev_warn(&h->pdev->dev,
4070                         "maximum logical LUNs (%d) exceeded.  "
4071                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4072                         *nlogicals - HPSA_MAX_LUN);
4073                         *nlogicals = HPSA_MAX_LUN;
4074         }
4075         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4076                 dev_warn(&h->pdev->dev,
4077                         "maximum logical + physical LUNs (%d) exceeded. "
4078                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4079                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4080                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4081         }
4082         return 0;
4083 }
4084
4085 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4086         int i, int nphysicals, int nlogicals,
4087         struct ReportExtendedLUNdata *physdev_list,
4088         struct ReportLUNdata *logdev_list)
4089 {
4090         /* Helper function, figure out where the LUN ID info is coming from
4091          * given index i, lists of physical and logical devices, where in
4092          * the list the raid controller is supposed to appear (first or last)
4093          */
4094
4095         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4096         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4097
4098         if (i == raid_ctlr_position)
4099                 return RAID_CTLR_LUNID;
4100
4101         if (i < logicals_start)
4102                 return &physdev_list->LUN[i -
4103                                 (raid_ctlr_position == 0)].lunid[0];
4104
4105         if (i < last_device)
4106                 return &logdev_list->LUN[i - nphysicals -
4107                         (raid_ctlr_position == 0)][0];
4108         BUG();
4109         return NULL;
4110 }
4111
4112 /* get physical drive ioaccel handle and queue depth */
4113 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4114                 struct hpsa_scsi_dev_t *dev,
4115                 struct ReportExtendedLUNdata *rlep, int rle_index,
4116                 struct bmic_identify_physical_device *id_phys)
4117 {
4118         int rc;
4119         struct ext_report_lun_entry *rle;
4120
4121         /*
4122          * external targets don't support BMIC
4123          */
4124         if (dev->external) {
4125                 dev->queue_depth = 7;
4126                 return;
4127         }
4128
4129         rle = &rlep->LUN[rle_index];
4130
4131         dev->ioaccel_handle = rle->ioaccel_handle;
4132         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4133                 dev->hba_ioaccel_enabled = 1;
4134         memset(id_phys, 0, sizeof(*id_phys));
4135         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4136                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4137                         sizeof(*id_phys));
4138         if (!rc)
4139                 /* Reserve space for FW operations */
4140 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4141 #define DRIVE_QUEUE_DEPTH 7
4142                 dev->queue_depth =
4143                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4144                                 DRIVE_CMDS_RESERVED_FOR_FW;
4145         else
4146                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4147 }
4148
4149 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4150         struct ReportExtendedLUNdata *rlep, int rle_index,
4151         struct bmic_identify_physical_device *id_phys)
4152 {
4153         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4154
4155         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4156                 this_device->hba_ioaccel_enabled = 1;
4157
4158         memcpy(&this_device->active_path_index,
4159                 &id_phys->active_path_number,
4160                 sizeof(this_device->active_path_index));
4161         memcpy(&this_device->path_map,
4162                 &id_phys->redundant_path_present_map,
4163                 sizeof(this_device->path_map));
4164         memcpy(&this_device->box,
4165                 &id_phys->alternate_paths_phys_box_on_port,
4166                 sizeof(this_device->box));
4167         memcpy(&this_device->phys_connector,
4168                 &id_phys->alternate_paths_phys_connector,
4169                 sizeof(this_device->phys_connector));
4170         memcpy(&this_device->bay,
4171                 &id_phys->phys_bay_in_box,
4172                 sizeof(this_device->bay));
4173 }
4174
4175 /* get number of local logical disks. */
4176 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4177         struct bmic_identify_controller *id_ctlr,
4178         u32 *nlocals)
4179 {
4180         int rc;
4181
4182         if (!id_ctlr) {
4183                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4184                         __func__);
4185                 return -ENOMEM;
4186         }
4187         memset(id_ctlr, 0, sizeof(*id_ctlr));
4188         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4189         if (!rc)
4190                 if (id_ctlr->configured_logical_drive_count < 256)
4191                         *nlocals = id_ctlr->configured_logical_drive_count;
4192                 else
4193                         *nlocals = le16_to_cpu(
4194                                         id_ctlr->extended_logical_unit_count);
4195         else
4196                 *nlocals = -1;
4197         return rc;
4198 }
4199
4200 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4201 {
4202         struct bmic_identify_physical_device *id_phys;
4203         bool is_spare = false;
4204         int rc;
4205
4206         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4207         if (!id_phys)
4208                 return false;
4209
4210         rc = hpsa_bmic_id_physical_device(h,
4211                                         lunaddrbytes,
4212                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4213                                         id_phys, sizeof(*id_phys));
4214         if (rc == 0)
4215                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4216
4217         kfree(id_phys);
4218         return is_spare;
4219 }
4220
4221 #define RPL_DEV_FLAG_NON_DISK                           0x1
4222 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4223 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4224
4225 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4226
4227 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4228                                 struct ext_report_lun_entry *rle)
4229 {
4230         u8 device_flags;
4231         u8 device_type;
4232
4233         if (!MASKED_DEVICE(lunaddrbytes))
4234                 return false;
4235
4236         device_flags = rle->device_flags;
4237         device_type = rle->device_type;
4238
4239         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4240                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4241                         return false;
4242                 return true;
4243         }
4244
4245         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4246                 return false;
4247
4248         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4249                 return false;
4250
4251         /*
4252          * Spares may be spun down, we do not want to
4253          * do an Inquiry to a RAID set spare drive as
4254          * that would have them spun up, that is a
4255          * performance hit because I/O to the RAID device
4256          * stops while the spin up occurs which can take
4257          * over 50 seconds.
4258          */
4259         if (hpsa_is_disk_spare(h, lunaddrbytes))
4260                 return true;
4261
4262         return false;
4263 }
4264
4265 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4266 {
4267         /* the idea here is we could get notified
4268          * that some devices have changed, so we do a report
4269          * physical luns and report logical luns cmd, and adjust
4270          * our list of devices accordingly.
4271          *
4272          * The scsi3addr's of devices won't change so long as the
4273          * adapter is not reset.  That means we can rescan and
4274          * tell which devices we already know about, vs. new
4275          * devices, vs.  disappearing devices.
4276          */
4277         struct ReportExtendedLUNdata *physdev_list = NULL;
4278         struct ReportLUNdata *logdev_list = NULL;
4279         struct bmic_identify_physical_device *id_phys = NULL;
4280         struct bmic_identify_controller *id_ctlr = NULL;
4281         u32 nphysicals = 0;
4282         u32 nlogicals = 0;
4283         u32 nlocal_logicals = 0;
4284         u32 ndev_allocated = 0;
4285         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4286         int ncurrent = 0;
4287         int i, n_ext_target_devs, ndevs_to_allocate;
4288         int raid_ctlr_position;
4289         bool physical_device;
4290         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4291
4292         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4293         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4294         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4295         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4296         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4297         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4298
4299         if (!currentsd || !physdev_list || !logdev_list ||
4300                 !tmpdevice || !id_phys || !id_ctlr) {
4301                 dev_err(&h->pdev->dev, "out of memory\n");
4302                 goto out;
4303         }
4304         memset(lunzerobits, 0, sizeof(lunzerobits));
4305
4306         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4307
4308         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4309                         logdev_list, &nlogicals)) {
4310                 h->drv_req_rescan = 1;
4311                 goto out;
4312         }
4313
4314         /* Set number of local logicals (non PTRAID) */
4315         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4316                 dev_warn(&h->pdev->dev,
4317                         "%s: Can't determine number of local logical devices.\n",
4318                         __func__);
4319         }
4320
4321         /* We might see up to the maximum number of logical and physical disks
4322          * plus external target devices, and a device for the local RAID
4323          * controller.
4324          */
4325         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4326
4327         /* Allocate the per device structures */
4328         for (i = 0; i < ndevs_to_allocate; i++) {
4329                 if (i >= HPSA_MAX_DEVICES) {
4330                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4331                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4332                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4333                         break;
4334                 }
4335
4336                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4337                 if (!currentsd[i]) {
4338                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4339                                 __FILE__, __LINE__);
4340                         h->drv_req_rescan = 1;
4341                         goto out;
4342                 }
4343                 ndev_allocated++;
4344         }
4345
4346         if (is_scsi_rev_5(h))
4347                 raid_ctlr_position = 0;
4348         else
4349                 raid_ctlr_position = nphysicals + nlogicals;
4350
4351         /* adjust our table of devices */
4352         n_ext_target_devs = 0;
4353         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4354                 u8 *lunaddrbytes, is_OBDR = 0;
4355                 int rc = 0;
4356                 int phys_dev_index = i - (raid_ctlr_position == 0);
4357                 bool skip_device = false;
4358
4359                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4360
4361                 /* Figure out where the LUN ID info is coming from */
4362                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4363                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4364
4365                 /* Determine if this is a lun from an external target array */
4366                 tmpdevice->external =
4367                         figure_external_status(h, raid_ctlr_position, i,
4368                                                 nphysicals, nlocal_logicals);
4369
4370                 /*
4371                  * Skip over some devices such as a spare.
4372                  */
4373                 if (!tmpdevice->external && physical_device) {
4374                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4375                                         &physdev_list->LUN[phys_dev_index]);
4376                         if (skip_device)
4377                                 continue;
4378                 }
4379
4380                 /* Get device type, vendor, model, device id */
4381                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4382                                                         &is_OBDR);
4383                 if (rc == -ENOMEM) {
4384                         dev_warn(&h->pdev->dev,
4385                                 "Out of memory, rescan deferred.\n");
4386                         h->drv_req_rescan = 1;
4387                         goto out;
4388                 }
4389                 if (rc) {
4390                         dev_warn(&h->pdev->dev,
4391                                 "Inquiry failed, skipping device.\n");
4392                         continue;
4393                 }
4394
4395                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4396                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4397                 this_device = currentsd[ncurrent];
4398
4399                 /* Turn on discovery_polling if there are ext target devices.
4400                  * Event-based change notification is unreliable for those.
4401                  */
4402                 if (!h->discovery_polling) {
4403                         if (tmpdevice->external) {
4404                                 h->discovery_polling = 1;
4405                                 dev_info(&h->pdev->dev,
4406                                         "External target, activate discovery polling.\n");
4407                         }
4408                 }
4409
4410
4411                 *this_device = *tmpdevice;
4412                 this_device->physical_device = physical_device;
4413
4414                 /*
4415                  * Expose all devices except for physical devices that
4416                  * are masked.
4417                  */
4418                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4419                         this_device->expose_device = 0;
4420                 else
4421                         this_device->expose_device = 1;
4422
4423
4424                 /*
4425                  * Get the SAS address for physical devices that are exposed.
4426                  */
4427                 if (this_device->physical_device && this_device->expose_device)
4428                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4429
4430                 switch (this_device->devtype) {
4431                 case TYPE_ROM:
4432                         /* We don't *really* support actual CD-ROM devices,
4433                          * just "One Button Disaster Recovery" tape drive
4434                          * which temporarily pretends to be a CD-ROM drive.
4435                          * So we check that the device is really an OBDR tape
4436                          * device by checking for "$DR-10" in bytes 43-48 of
4437                          * the inquiry data.
4438                          */
4439                         if (is_OBDR)
4440                                 ncurrent++;
4441                         break;
4442                 case TYPE_DISK:
4443                 case TYPE_ZBC:
4444                         if (this_device->physical_device) {
4445                                 /* The disk is in HBA mode. */
4446                                 /* Never use RAID mapper in HBA mode. */
4447                                 this_device->offload_enabled = 0;
4448                                 hpsa_get_ioaccel_drive_info(h, this_device,
4449                                         physdev_list, phys_dev_index, id_phys);
4450                                 hpsa_get_path_info(this_device,
4451                                         physdev_list, phys_dev_index, id_phys);
4452                         }
4453                         ncurrent++;
4454                         break;
4455                 case TYPE_TAPE:
4456                 case TYPE_MEDIUM_CHANGER:
4457                         ncurrent++;
4458                         break;
4459                 case TYPE_ENCLOSURE:
4460                         if (!this_device->external)
4461                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4462                                                 physdev_list, phys_dev_index,
4463                                                 this_device);
4464                         ncurrent++;
4465                         break;
4466                 case TYPE_RAID:
4467                         /* Only present the Smartarray HBA as a RAID controller.
4468                          * If it's a RAID controller other than the HBA itself
4469                          * (an external RAID controller, MSA500 or similar)
4470                          * don't present it.
4471                          */
4472                         if (!is_hba_lunid(lunaddrbytes))
4473                                 break;
4474                         ncurrent++;
4475                         break;
4476                 default:
4477                         break;
4478                 }
4479                 if (ncurrent >= HPSA_MAX_DEVICES)
4480                         break;
4481         }
4482
4483         if (h->sas_host == NULL) {
4484                 int rc = 0;
4485
4486                 rc = hpsa_add_sas_host(h);
4487                 if (rc) {
4488                         dev_warn(&h->pdev->dev,
4489                                 "Could not add sas host %d\n", rc);
4490                         goto out;
4491                 }
4492         }
4493
4494         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4495 out:
4496         kfree(tmpdevice);
4497         for (i = 0; i < ndev_allocated; i++)
4498                 kfree(currentsd[i]);
4499         kfree(currentsd);
4500         kfree(physdev_list);
4501         kfree(logdev_list);
4502         kfree(id_ctlr);
4503         kfree(id_phys);
4504 }
4505
4506 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4507                                    struct scatterlist *sg)
4508 {
4509         u64 addr64 = (u64) sg_dma_address(sg);
4510         unsigned int len = sg_dma_len(sg);
4511
4512         desc->Addr = cpu_to_le64(addr64);
4513         desc->Len = cpu_to_le32(len);
4514         desc->Ext = 0;
4515 }
4516
4517 /*
4518  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4519  * dma mapping  and fills in the scatter gather entries of the
4520  * hpsa command, cp.
4521  */
4522 static int hpsa_scatter_gather(struct ctlr_info *h,
4523                 struct CommandList *cp,
4524                 struct scsi_cmnd *cmd)
4525 {
4526         struct scatterlist *sg;
4527         int use_sg, i, sg_limit, chained, last_sg;
4528         struct SGDescriptor *curr_sg;
4529
4530         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4531
4532         use_sg = scsi_dma_map(cmd);
4533         if (use_sg < 0)
4534                 return use_sg;
4535
4536         if (!use_sg)
4537                 goto sglist_finished;
4538
4539         /*
4540          * If the number of entries is greater than the max for a single list,
4541          * then we have a chained list; we will set up all but one entry in the
4542          * first list (the last entry is saved for link information);
4543          * otherwise, we don't have a chained list and we'll set up at each of
4544          * the entries in the one list.
4545          */
4546         curr_sg = cp->SG;
4547         chained = use_sg > h->max_cmd_sg_entries;
4548         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4549         last_sg = scsi_sg_count(cmd) - 1;
4550         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4551                 hpsa_set_sg_descriptor(curr_sg, sg);
4552                 curr_sg++;
4553         }
4554
4555         if (chained) {
4556                 /*
4557                  * Continue with the chained list.  Set curr_sg to the chained
4558                  * list.  Modify the limit to the total count less the entries
4559                  * we've already set up.  Resume the scan at the list entry
4560                  * where the previous loop left off.
4561                  */
4562                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4563                 sg_limit = use_sg - sg_limit;
4564                 for_each_sg(sg, sg, sg_limit, i) {
4565                         hpsa_set_sg_descriptor(curr_sg, sg);
4566                         curr_sg++;
4567                 }
4568         }
4569
4570         /* Back the pointer up to the last entry and mark it as "last". */
4571         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4572
4573         if (use_sg + chained > h->maxSG)
4574                 h->maxSG = use_sg + chained;
4575
4576         if (chained) {
4577                 cp->Header.SGList = h->max_cmd_sg_entries;
4578                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4579                 if (hpsa_map_sg_chain_block(h, cp)) {
4580                         scsi_dma_unmap(cmd);
4581                         return -1;
4582                 }
4583                 return 0;
4584         }
4585
4586 sglist_finished:
4587
4588         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4589         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4590         return 0;
4591 }
4592
4593 #define IO_ACCEL_INELIGIBLE (1)
4594 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4595 {
4596         int is_write = 0;
4597         u32 block;
4598         u32 block_cnt;
4599
4600         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4601         switch (cdb[0]) {
4602         case WRITE_6:
4603         case WRITE_12:
4604                 is_write = 1;
4605         case READ_6:
4606         case READ_12:
4607                 if (*cdb_len == 6) {
4608                         block = (((cdb[1] & 0x1F) << 16) |
4609                                 (cdb[2] << 8) |
4610                                 cdb[3]);
4611                         block_cnt = cdb[4];
4612                         if (block_cnt == 0)
4613                                 block_cnt = 256;
4614                 } else {
4615                         BUG_ON(*cdb_len != 12);
4616                         block = get_unaligned_be32(&cdb[2]);
4617                         block_cnt = get_unaligned_be32(&cdb[6]);
4618                 }
4619                 if (block_cnt > 0xffff)
4620                         return IO_ACCEL_INELIGIBLE;
4621
4622                 cdb[0] = is_write ? WRITE_10 : READ_10;
4623                 cdb[1] = 0;
4624                 cdb[2] = (u8) (block >> 24);
4625                 cdb[3] = (u8) (block >> 16);
4626                 cdb[4] = (u8) (block >> 8);
4627                 cdb[5] = (u8) (block);
4628                 cdb[6] = 0;
4629                 cdb[7] = (u8) (block_cnt >> 8);
4630                 cdb[8] = (u8) (block_cnt);
4631                 cdb[9] = 0;
4632                 *cdb_len = 10;
4633                 break;
4634         }
4635         return 0;
4636 }
4637
4638 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4639         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4640         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4641 {
4642         struct scsi_cmnd *cmd = c->scsi_cmd;
4643         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4644         unsigned int len;
4645         unsigned int total_len = 0;
4646         struct scatterlist *sg;
4647         u64 addr64;
4648         int use_sg, i;
4649         struct SGDescriptor *curr_sg;
4650         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4651
4652         /* TODO: implement chaining support */
4653         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4654                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4655                 return IO_ACCEL_INELIGIBLE;
4656         }
4657
4658         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4659
4660         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4661                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4662                 return IO_ACCEL_INELIGIBLE;
4663         }
4664
4665         c->cmd_type = CMD_IOACCEL1;
4666
4667         /* Adjust the DMA address to point to the accelerated command buffer */
4668         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4669                                 (c->cmdindex * sizeof(*cp));
4670         BUG_ON(c->busaddr & 0x0000007F);
4671
4672         use_sg = scsi_dma_map(cmd);
4673         if (use_sg < 0) {
4674                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4675                 return use_sg;
4676         }
4677
4678         if (use_sg) {
4679                 curr_sg = cp->SG;
4680                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4681                         addr64 = (u64) sg_dma_address(sg);
4682                         len  = sg_dma_len(sg);
4683                         total_len += len;
4684                         curr_sg->Addr = cpu_to_le64(addr64);
4685                         curr_sg->Len = cpu_to_le32(len);
4686                         curr_sg->Ext = cpu_to_le32(0);
4687                         curr_sg++;
4688                 }
4689                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4690
4691                 switch (cmd->sc_data_direction) {
4692                 case DMA_TO_DEVICE:
4693                         control |= IOACCEL1_CONTROL_DATA_OUT;
4694                         break;
4695                 case DMA_FROM_DEVICE:
4696                         control |= IOACCEL1_CONTROL_DATA_IN;
4697                         break;
4698                 case DMA_NONE:
4699                         control |= IOACCEL1_CONTROL_NODATAXFER;
4700                         break;
4701                 default:
4702                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4703                         cmd->sc_data_direction);
4704                         BUG();
4705                         break;
4706                 }
4707         } else {
4708                 control |= IOACCEL1_CONTROL_NODATAXFER;
4709         }
4710
4711         c->Header.SGList = use_sg;
4712         /* Fill out the command structure to submit */
4713         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4714         cp->transfer_len = cpu_to_le32(total_len);
4715         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4716                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4717         cp->control = cpu_to_le32(control);
4718         memcpy(cp->CDB, cdb, cdb_len);
4719         memcpy(cp->CISS_LUN, scsi3addr, 8);
4720         /* Tag was already set at init time. */
4721         enqueue_cmd_and_start_io(h, c);
4722         return 0;
4723 }
4724
4725 /*
4726  * Queue a command directly to a device behind the controller using the
4727  * I/O accelerator path.
4728  */
4729 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4730         struct CommandList *c)
4731 {
4732         struct scsi_cmnd *cmd = c->scsi_cmd;
4733         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4734
4735         if (!dev)
4736                 return -1;
4737
4738         c->phys_disk = dev;
4739
4740         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4741                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4742 }
4743
4744 /*
4745  * Set encryption parameters for the ioaccel2 request
4746  */
4747 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4748         struct CommandList *c, struct io_accel2_cmd *cp)
4749 {
4750         struct scsi_cmnd *cmd = c->scsi_cmd;
4751         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4752         struct raid_map_data *map = &dev->raid_map;
4753         u64 first_block;
4754
4755         /* Are we doing encryption on this device */
4756         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4757                 return;
4758         /* Set the data encryption key index. */
4759         cp->dekindex = map->dekindex;
4760
4761         /* Set the encryption enable flag, encoded into direction field. */
4762         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4763
4764         /* Set encryption tweak values based on logical block address
4765          * If block size is 512, tweak value is LBA.
4766          * For other block sizes, tweak is (LBA * block size)/ 512)
4767          */
4768         switch (cmd->cmnd[0]) {
4769         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4770         case READ_6:
4771         case WRITE_6:
4772                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4773                                 (cmd->cmnd[2] << 8) |
4774                                 cmd->cmnd[3]);
4775                 break;
4776         case WRITE_10:
4777         case READ_10:
4778         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4779         case WRITE_12:
4780         case READ_12:
4781                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4782                 break;
4783         case WRITE_16:
4784         case READ_16:
4785                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4786                 break;
4787         default:
4788                 dev_err(&h->pdev->dev,
4789                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4790                         __func__, cmd->cmnd[0]);
4791                 BUG();
4792                 break;
4793         }
4794
4795         if (le32_to_cpu(map->volume_blk_size) != 512)
4796                 first_block = first_block *
4797                                 le32_to_cpu(map->volume_blk_size)/512;
4798
4799         cp->tweak_lower = cpu_to_le32(first_block);
4800         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4801 }
4802
4803 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4804         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4805         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4806 {
4807         struct scsi_cmnd *cmd = c->scsi_cmd;
4808         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4809         struct ioaccel2_sg_element *curr_sg;
4810         int use_sg, i;
4811         struct scatterlist *sg;
4812         u64 addr64;
4813         u32 len;
4814         u32 total_len = 0;
4815
4816         if (!cmd->device)
4817                 return -1;
4818
4819         if (!cmd->device->hostdata)
4820                 return -1;
4821
4822         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4823
4824         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4825                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4826                 return IO_ACCEL_INELIGIBLE;
4827         }
4828
4829         c->cmd_type = CMD_IOACCEL2;
4830         /* Adjust the DMA address to point to the accelerated command buffer */
4831         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4832                                 (c->cmdindex * sizeof(*cp));
4833         BUG_ON(c->busaddr & 0x0000007F);
4834
4835         memset(cp, 0, sizeof(*cp));
4836         cp->IU_type = IOACCEL2_IU_TYPE;
4837
4838         use_sg = scsi_dma_map(cmd);
4839         if (use_sg < 0) {
4840                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4841                 return use_sg;
4842         }
4843
4844         if (use_sg) {
4845                 curr_sg = cp->sg;
4846                 if (use_sg > h->ioaccel_maxsg) {
4847                         addr64 = le64_to_cpu(
4848                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4849                         curr_sg->address = cpu_to_le64(addr64);
4850                         curr_sg->length = 0;
4851                         curr_sg->reserved[0] = 0;
4852                         curr_sg->reserved[1] = 0;
4853                         curr_sg->reserved[2] = 0;
4854                         curr_sg->chain_indicator = 0x80;
4855
4856                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4857                 }
4858                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4859                         addr64 = (u64) sg_dma_address(sg);
4860                         len  = sg_dma_len(sg);
4861                         total_len += len;
4862                         curr_sg->address = cpu_to_le64(addr64);
4863                         curr_sg->length = cpu_to_le32(len);
4864                         curr_sg->reserved[0] = 0;
4865                         curr_sg->reserved[1] = 0;
4866                         curr_sg->reserved[2] = 0;
4867                         curr_sg->chain_indicator = 0;
4868                         curr_sg++;
4869                 }
4870
4871                 switch (cmd->sc_data_direction) {
4872                 case DMA_TO_DEVICE:
4873                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4874                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4875                         break;
4876                 case DMA_FROM_DEVICE:
4877                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4878                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4879                         break;
4880                 case DMA_NONE:
4881                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4882                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4883                         break;
4884                 default:
4885                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4886                                 cmd->sc_data_direction);
4887                         BUG();
4888                         break;
4889                 }
4890         } else {
4891                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4892                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4893         }
4894
4895         /* Set encryption parameters, if necessary */
4896         set_encrypt_ioaccel2(h, c, cp);
4897
4898         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4899         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4900         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4901
4902         cp->data_len = cpu_to_le32(total_len);
4903         cp->err_ptr = cpu_to_le64(c->busaddr +
4904                         offsetof(struct io_accel2_cmd, error_data));
4905         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4906
4907         /* fill in sg elements */
4908         if (use_sg > h->ioaccel_maxsg) {
4909                 cp->sg_count = 1;
4910                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4911                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4912                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4913                         scsi_dma_unmap(cmd);
4914                         return -1;
4915                 }
4916         } else
4917                 cp->sg_count = (u8) use_sg;
4918
4919         enqueue_cmd_and_start_io(h, c);
4920         return 0;
4921 }
4922
4923 /*
4924  * Queue a command to the correct I/O accelerator path.
4925  */
4926 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4927         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4928         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4929 {
4930         if (!c->scsi_cmd->device)
4931                 return -1;
4932
4933         if (!c->scsi_cmd->device->hostdata)
4934                 return -1;
4935
4936         /* Try to honor the device's queue depth */
4937         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4938                                         phys_disk->queue_depth) {
4939                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4940                 return IO_ACCEL_INELIGIBLE;
4941         }
4942         if (h->transMethod & CFGTBL_Trans_io_accel1)
4943                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4944                                                 cdb, cdb_len, scsi3addr,
4945                                                 phys_disk);
4946         else
4947                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4948                                                 cdb, cdb_len, scsi3addr,
4949                                                 phys_disk);
4950 }
4951
4952 static void raid_map_helper(struct raid_map_data *map,
4953                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4954 {
4955         if (offload_to_mirror == 0)  {
4956                 /* use physical disk in the first mirrored group. */
4957                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4958                 return;
4959         }
4960         do {
4961                 /* determine mirror group that *map_index indicates */
4962                 *current_group = *map_index /
4963                         le16_to_cpu(map->data_disks_per_row);
4964                 if (offload_to_mirror == *current_group)
4965                         continue;
4966                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4967                         /* select map index from next group */
4968                         *map_index += le16_to_cpu(map->data_disks_per_row);
4969                         (*current_group)++;
4970                 } else {
4971                         /* select map index from first group */
4972                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4973                         *current_group = 0;
4974                 }
4975         } while (offload_to_mirror != *current_group);
4976 }
4977
4978 /*
4979  * Attempt to perform offload RAID mapping for a logical volume I/O.
4980  */
4981 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4982         struct CommandList *c)
4983 {
4984         struct scsi_cmnd *cmd = c->scsi_cmd;
4985         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4986         struct raid_map_data *map = &dev->raid_map;
4987         struct raid_map_disk_data *dd = &map->data[0];
4988         int is_write = 0;
4989         u32 map_index;
4990         u64 first_block, last_block;
4991         u32 block_cnt;
4992         u32 blocks_per_row;
4993         u64 first_row, last_row;
4994         u32 first_row_offset, last_row_offset;
4995         u32 first_column, last_column;
4996         u64 r0_first_row, r0_last_row;
4997         u32 r5or6_blocks_per_row;
4998         u64 r5or6_first_row, r5or6_last_row;
4999         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5000         u32 r5or6_first_column, r5or6_last_column;
5001         u32 total_disks_per_row;
5002         u32 stripesize;
5003         u32 first_group, last_group, current_group;
5004         u32 map_row;
5005         u32 disk_handle;
5006         u64 disk_block;
5007         u32 disk_block_cnt;
5008         u8 cdb[16];
5009         u8 cdb_len;
5010         u16 strip_size;
5011 #if BITS_PER_LONG == 32
5012         u64 tmpdiv;
5013 #endif
5014         int offload_to_mirror;
5015
5016         if (!dev)
5017                 return -1;
5018
5019         /* check for valid opcode, get LBA and block count */
5020         switch (cmd->cmnd[0]) {
5021         case WRITE_6:
5022                 is_write = 1;
5023         case READ_6:
5024                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5025                                 (cmd->cmnd[2] << 8) |
5026                                 cmd->cmnd[3]);
5027                 block_cnt = cmd->cmnd[4];
5028                 if (block_cnt == 0)
5029                         block_cnt = 256;
5030                 break;
5031         case WRITE_10:
5032                 is_write = 1;
5033         case READ_10:
5034                 first_block =
5035                         (((u64) cmd->cmnd[2]) << 24) |
5036                         (((u64) cmd->cmnd[3]) << 16) |
5037                         (((u64) cmd->cmnd[4]) << 8) |
5038                         cmd->cmnd[5];
5039                 block_cnt =
5040                         (((u32) cmd->cmnd[7]) << 8) |
5041                         cmd->cmnd[8];
5042                 break;
5043         case WRITE_12:
5044                 is_write = 1;
5045         case READ_12:
5046                 first_block =
5047                         (((u64) cmd->cmnd[2]) << 24) |
5048                         (((u64) cmd->cmnd[3]) << 16) |
5049                         (((u64) cmd->cmnd[4]) << 8) |
5050                         cmd->cmnd[5];
5051                 block_cnt =
5052                         (((u32) cmd->cmnd[6]) << 24) |
5053                         (((u32) cmd->cmnd[7]) << 16) |
5054                         (((u32) cmd->cmnd[8]) << 8) |
5055                 cmd->cmnd[9];
5056                 break;
5057         case WRITE_16:
5058                 is_write = 1;
5059         case READ_16:
5060                 first_block =
5061                         (((u64) cmd->cmnd[2]) << 56) |
5062                         (((u64) cmd->cmnd[3]) << 48) |
5063                         (((u64) cmd->cmnd[4]) << 40) |
5064                         (((u64) cmd->cmnd[5]) << 32) |
5065                         (((u64) cmd->cmnd[6]) << 24) |
5066                         (((u64) cmd->cmnd[7]) << 16) |
5067                         (((u64) cmd->cmnd[8]) << 8) |
5068                         cmd->cmnd[9];
5069                 block_cnt =
5070                         (((u32) cmd->cmnd[10]) << 24) |
5071                         (((u32) cmd->cmnd[11]) << 16) |
5072                         (((u32) cmd->cmnd[12]) << 8) |
5073                         cmd->cmnd[13];
5074                 break;
5075         default:
5076                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5077         }
5078         last_block = first_block + block_cnt - 1;
5079
5080         /* check for write to non-RAID-0 */
5081         if (is_write && dev->raid_level != 0)
5082                 return IO_ACCEL_INELIGIBLE;
5083
5084         /* check for invalid block or wraparound */
5085         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5086                 last_block < first_block)
5087                 return IO_ACCEL_INELIGIBLE;
5088
5089         /* calculate stripe information for the request */
5090         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5091                                 le16_to_cpu(map->strip_size);
5092         strip_size = le16_to_cpu(map->strip_size);
5093 #if BITS_PER_LONG == 32
5094         tmpdiv = first_block;
5095         (void) do_div(tmpdiv, blocks_per_row);
5096         first_row = tmpdiv;
5097         tmpdiv = last_block;
5098         (void) do_div(tmpdiv, blocks_per_row);
5099         last_row = tmpdiv;
5100         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5101         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5102         tmpdiv = first_row_offset;
5103         (void) do_div(tmpdiv, strip_size);
5104         first_column = tmpdiv;
5105         tmpdiv = last_row_offset;
5106         (void) do_div(tmpdiv, strip_size);
5107         last_column = tmpdiv;
5108 #else
5109         first_row = first_block / blocks_per_row;
5110         last_row = last_block / blocks_per_row;
5111         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5112         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5113         first_column = first_row_offset / strip_size;
5114         last_column = last_row_offset / strip_size;
5115 #endif
5116
5117         /* if this isn't a single row/column then give to the controller */
5118         if ((first_row != last_row) || (first_column != last_column))
5119                 return IO_ACCEL_INELIGIBLE;
5120
5121         /* proceeding with driver mapping */
5122         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5123                                 le16_to_cpu(map->metadata_disks_per_row);
5124         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5125                                 le16_to_cpu(map->row_cnt);
5126         map_index = (map_row * total_disks_per_row) + first_column;
5127
5128         switch (dev->raid_level) {
5129         case HPSA_RAID_0:
5130                 break; /* nothing special to do */
5131         case HPSA_RAID_1:
5132                 /* Handles load balance across RAID 1 members.
5133                  * (2-drive R1 and R10 with even # of drives.)
5134                  * Appropriate for SSDs, not optimal for HDDs
5135                  */
5136                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5137                 if (dev->offload_to_mirror)
5138                         map_index += le16_to_cpu(map->data_disks_per_row);
5139                 dev->offload_to_mirror = !dev->offload_to_mirror;
5140                 break;
5141         case HPSA_RAID_ADM:
5142                 /* Handles N-way mirrors  (R1-ADM)
5143                  * and R10 with # of drives divisible by 3.)
5144                  */
5145                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5146
5147                 offload_to_mirror = dev->offload_to_mirror;
5148                 raid_map_helper(map, offload_to_mirror,
5149                                 &map_index, &current_group);
5150                 /* set mirror group to use next time */
5151                 offload_to_mirror =
5152                         (offload_to_mirror >=
5153                         le16_to_cpu(map->layout_map_count) - 1)
5154                         ? 0 : offload_to_mirror + 1;
5155                 dev->offload_to_mirror = offload_to_mirror;
5156                 /* Avoid direct use of dev->offload_to_mirror within this
5157                  * function since multiple threads might simultaneously
5158                  * increment it beyond the range of dev->layout_map_count -1.
5159                  */
5160                 break;
5161         case HPSA_RAID_5:
5162         case HPSA_RAID_6:
5163                 if (le16_to_cpu(map->layout_map_count) <= 1)
5164                         break;
5165
5166                 /* Verify first and last block are in same RAID group */
5167                 r5or6_blocks_per_row =
5168                         le16_to_cpu(map->strip_size) *
5169                         le16_to_cpu(map->data_disks_per_row);
5170                 BUG_ON(r5or6_blocks_per_row == 0);
5171                 stripesize = r5or6_blocks_per_row *
5172                         le16_to_cpu(map->layout_map_count);
5173 #if BITS_PER_LONG == 32
5174                 tmpdiv = first_block;
5175                 first_group = do_div(tmpdiv, stripesize);
5176                 tmpdiv = first_group;
5177                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5178                 first_group = tmpdiv;
5179                 tmpdiv = last_block;
5180                 last_group = do_div(tmpdiv, stripesize);
5181                 tmpdiv = last_group;
5182                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5183                 last_group = tmpdiv;
5184 #else
5185                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5186                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5187 #endif
5188                 if (first_group != last_group)
5189                         return IO_ACCEL_INELIGIBLE;
5190
5191                 /* Verify request is in a single row of RAID 5/6 */
5192 #if BITS_PER_LONG == 32
5193                 tmpdiv = first_block;
5194                 (void) do_div(tmpdiv, stripesize);
5195                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5196                 tmpdiv = last_block;
5197                 (void) do_div(tmpdiv, stripesize);
5198                 r5or6_last_row = r0_last_row = tmpdiv;
5199 #else
5200                 first_row = r5or6_first_row = r0_first_row =
5201                                                 first_block / stripesize;
5202                 r5or6_last_row = r0_last_row = last_block / stripesize;
5203 #endif
5204                 if (r5or6_first_row != r5or6_last_row)
5205                         return IO_ACCEL_INELIGIBLE;
5206
5207
5208                 /* Verify request is in a single column */
5209 #if BITS_PER_LONG == 32
5210                 tmpdiv = first_block;
5211                 first_row_offset = do_div(tmpdiv, stripesize);
5212                 tmpdiv = first_row_offset;
5213                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5214                 r5or6_first_row_offset = first_row_offset;
5215                 tmpdiv = last_block;
5216                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5217                 tmpdiv = r5or6_last_row_offset;
5218                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5219                 tmpdiv = r5or6_first_row_offset;
5220                 (void) do_div(tmpdiv, map->strip_size);
5221                 first_column = r5or6_first_column = tmpdiv;
5222                 tmpdiv = r5or6_last_row_offset;
5223                 (void) do_div(tmpdiv, map->strip_size);
5224                 r5or6_last_column = tmpdiv;
5225 #else
5226                 first_row_offset = r5or6_first_row_offset =
5227                         (u32)((first_block % stripesize) %
5228                                                 r5or6_blocks_per_row);
5229
5230                 r5or6_last_row_offset =
5231                         (u32)((last_block % stripesize) %
5232                                                 r5or6_blocks_per_row);
5233
5234                 first_column = r5or6_first_column =
5235                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5236                 r5or6_last_column =
5237                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5238 #endif
5239                 if (r5or6_first_column != r5or6_last_column)
5240                         return IO_ACCEL_INELIGIBLE;
5241
5242                 /* Request is eligible */
5243                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5244                         le16_to_cpu(map->row_cnt);
5245
5246                 map_index = (first_group *
5247                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5248                         (map_row * total_disks_per_row) + first_column;
5249                 break;
5250         default:
5251                 return IO_ACCEL_INELIGIBLE;
5252         }
5253
5254         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5255                 return IO_ACCEL_INELIGIBLE;
5256
5257         c->phys_disk = dev->phys_disk[map_index];
5258         if (!c->phys_disk)
5259                 return IO_ACCEL_INELIGIBLE;
5260
5261         disk_handle = dd[map_index].ioaccel_handle;
5262         disk_block = le64_to_cpu(map->disk_starting_blk) +
5263                         first_row * le16_to_cpu(map->strip_size) +
5264                         (first_row_offset - first_column *
5265                         le16_to_cpu(map->strip_size));
5266         disk_block_cnt = block_cnt;
5267
5268         /* handle differing logical/physical block sizes */
5269         if (map->phys_blk_shift) {
5270                 disk_block <<= map->phys_blk_shift;
5271                 disk_block_cnt <<= map->phys_blk_shift;
5272         }
5273         BUG_ON(disk_block_cnt > 0xffff);
5274
5275         /* build the new CDB for the physical disk I/O */
5276         if (disk_block > 0xffffffff) {
5277                 cdb[0] = is_write ? WRITE_16 : READ_16;
5278                 cdb[1] = 0;
5279                 cdb[2] = (u8) (disk_block >> 56);
5280                 cdb[3] = (u8) (disk_block >> 48);
5281                 cdb[4] = (u8) (disk_block >> 40);
5282                 cdb[5] = (u8) (disk_block >> 32);
5283                 cdb[6] = (u8) (disk_block >> 24);
5284                 cdb[7] = (u8) (disk_block >> 16);
5285                 cdb[8] = (u8) (disk_block >> 8);
5286                 cdb[9] = (u8) (disk_block);
5287                 cdb[10] = (u8) (disk_block_cnt >> 24);
5288                 cdb[11] = (u8) (disk_block_cnt >> 16);
5289                 cdb[12] = (u8) (disk_block_cnt >> 8);
5290                 cdb[13] = (u8) (disk_block_cnt);
5291                 cdb[14] = 0;
5292                 cdb[15] = 0;
5293                 cdb_len = 16;
5294         } else {
5295                 cdb[0] = is_write ? WRITE_10 : READ_10;
5296                 cdb[1] = 0;
5297                 cdb[2] = (u8) (disk_block >> 24);
5298                 cdb[3] = (u8) (disk_block >> 16);
5299                 cdb[4] = (u8) (disk_block >> 8);
5300                 cdb[5] = (u8) (disk_block);
5301                 cdb[6] = 0;
5302                 cdb[7] = (u8) (disk_block_cnt >> 8);
5303                 cdb[8] = (u8) (disk_block_cnt);
5304                 cdb[9] = 0;
5305                 cdb_len = 10;
5306         }
5307         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5308                                                 dev->scsi3addr,
5309                                                 dev->phys_disk[map_index]);
5310 }
5311
5312 /*
5313  * Submit commands down the "normal" RAID stack path
5314  * All callers to hpsa_ciss_submit must check lockup_detected
5315  * beforehand, before (opt.) and after calling cmd_alloc
5316  */
5317 static int hpsa_ciss_submit(struct ctlr_info *h,
5318         struct CommandList *c, struct scsi_cmnd *cmd,
5319         unsigned char scsi3addr[])
5320 {
5321         cmd->host_scribble = (unsigned char *) c;
5322         c->cmd_type = CMD_SCSI;
5323         c->scsi_cmd = cmd;
5324         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5325         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5326         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5327
5328         /* Fill in the request block... */
5329
5330         c->Request.Timeout = 0;
5331         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5332         c->Request.CDBLen = cmd->cmd_len;
5333         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5334         switch (cmd->sc_data_direction) {
5335         case DMA_TO_DEVICE:
5336                 c->Request.type_attr_dir =
5337                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5338                 break;
5339         case DMA_FROM_DEVICE:
5340                 c->Request.type_attr_dir =
5341                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5342                 break;
5343         case DMA_NONE:
5344                 c->Request.type_attr_dir =
5345                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5346                 break;
5347         case DMA_BIDIRECTIONAL:
5348                 /* This can happen if a buggy application does a scsi passthru
5349                  * and sets both inlen and outlen to non-zero. ( see
5350                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5351                  */
5352
5353                 c->Request.type_attr_dir =
5354                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5355                 /* This is technically wrong, and hpsa controllers should
5356                  * reject it with CMD_INVALID, which is the most correct
5357                  * response, but non-fibre backends appear to let it
5358                  * slide by, and give the same results as if this field
5359                  * were set correctly.  Either way is acceptable for
5360                  * our purposes here.
5361                  */
5362
5363                 break;
5364
5365         default:
5366                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5367                         cmd->sc_data_direction);
5368                 BUG();
5369                 break;
5370         }
5371
5372         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5373                 hpsa_cmd_resolve_and_free(h, c);
5374                 return SCSI_MLQUEUE_HOST_BUSY;
5375         }
5376         enqueue_cmd_and_start_io(h, c);
5377         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5378         return 0;
5379 }
5380
5381 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5382                                 struct CommandList *c)
5383 {
5384         dma_addr_t cmd_dma_handle, err_dma_handle;
5385
5386         /* Zero out all of commandlist except the last field, refcount */
5387         memset(c, 0, offsetof(struct CommandList, refcount));
5388         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5389         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5390         c->err_info = h->errinfo_pool + index;
5391         memset(c->err_info, 0, sizeof(*c->err_info));
5392         err_dma_handle = h->errinfo_pool_dhandle
5393             + index * sizeof(*c->err_info);
5394         c->cmdindex = index;
5395         c->busaddr = (u32) cmd_dma_handle;
5396         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5397         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5398         c->h = h;
5399         c->scsi_cmd = SCSI_CMD_IDLE;
5400 }
5401
5402 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5403 {
5404         int i;
5405
5406         for (i = 0; i < h->nr_cmds; i++) {
5407                 struct CommandList *c = h->cmd_pool + i;
5408
5409                 hpsa_cmd_init(h, i, c);
5410                 atomic_set(&c->refcount, 0);
5411         }
5412 }
5413
5414 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5415                                 struct CommandList *c)
5416 {
5417         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5418
5419         BUG_ON(c->cmdindex != index);
5420
5421         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5422         memset(c->err_info, 0, sizeof(*c->err_info));
5423         c->busaddr = (u32) cmd_dma_handle;
5424 }
5425
5426 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5427                 struct CommandList *c, struct scsi_cmnd *cmd,
5428                 unsigned char *scsi3addr)
5429 {
5430         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5431         int rc = IO_ACCEL_INELIGIBLE;
5432
5433         if (!dev)
5434                 return SCSI_MLQUEUE_HOST_BUSY;
5435
5436         cmd->host_scribble = (unsigned char *) c;
5437
5438         if (dev->offload_enabled) {
5439                 hpsa_cmd_init(h, c->cmdindex, c);
5440                 c->cmd_type = CMD_SCSI;
5441                 c->scsi_cmd = cmd;
5442                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5443                 if (rc < 0)     /* scsi_dma_map failed. */
5444                         rc = SCSI_MLQUEUE_HOST_BUSY;
5445         } else if (dev->hba_ioaccel_enabled) {
5446                 hpsa_cmd_init(h, c->cmdindex, c);
5447                 c->cmd_type = CMD_SCSI;
5448                 c->scsi_cmd = cmd;
5449                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5450                 if (rc < 0)     /* scsi_dma_map failed. */
5451                         rc = SCSI_MLQUEUE_HOST_BUSY;
5452         }
5453         return rc;
5454 }
5455
5456 static void hpsa_command_resubmit_worker(struct work_struct *work)
5457 {
5458         struct scsi_cmnd *cmd;
5459         struct hpsa_scsi_dev_t *dev;
5460         struct CommandList *c = container_of(work, struct CommandList, work);
5461
5462         cmd = c->scsi_cmd;
5463         dev = cmd->device->hostdata;
5464         if (!dev) {
5465                 cmd->result = DID_NO_CONNECT << 16;
5466                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5467         }
5468         if (c->reset_pending)
5469                 return hpsa_cmd_resolve_and_free(c->h, c);
5470         if (c->abort_pending)
5471                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5472         if (c->cmd_type == CMD_IOACCEL2) {
5473                 struct ctlr_info *h = c->h;
5474                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5475                 int rc;
5476
5477                 if (c2->error_data.serv_response ==
5478                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5479                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5480                         if (rc == 0)
5481                                 return;
5482                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5483                                 /*
5484                                  * If we get here, it means dma mapping failed.
5485                                  * Try again via scsi mid layer, which will
5486                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5487                                  */
5488                                 cmd->result = DID_IMM_RETRY << 16;
5489                                 return hpsa_cmd_free_and_done(h, c, cmd);
5490                         }
5491                         /* else, fall thru and resubmit down CISS path */
5492                 }
5493         }
5494         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5495         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5496                 /*
5497                  * If we get here, it means dma mapping failed. Try
5498                  * again via scsi mid layer, which will then get
5499                  * SCSI_MLQUEUE_HOST_BUSY.
5500                  *
5501                  * hpsa_ciss_submit will have already freed c
5502                  * if it encountered a dma mapping failure.
5503                  */
5504                 cmd->result = DID_IMM_RETRY << 16;
5505                 cmd->scsi_done(cmd);
5506         }
5507 }
5508
5509 /* Running in struct Scsi_Host->host_lock less mode */
5510 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5511 {
5512         struct ctlr_info *h;
5513         struct hpsa_scsi_dev_t *dev;
5514         unsigned char scsi3addr[8];
5515         struct CommandList *c;
5516         int rc = 0;
5517
5518         /* Get the ptr to our adapter structure out of cmd->host. */
5519         h = sdev_to_hba(cmd->device);
5520
5521         BUG_ON(cmd->request->tag < 0);
5522
5523         dev = cmd->device->hostdata;
5524         if (!dev) {
5525                 cmd->result = DID_NO_CONNECT << 16;
5526                 cmd->scsi_done(cmd);
5527                 return 0;
5528         }
5529
5530         if (dev->removed) {
5531                 cmd->result = DID_NO_CONNECT << 16;
5532                 cmd->scsi_done(cmd);
5533                 return 0;
5534         }
5535
5536         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5537
5538         if (unlikely(lockup_detected(h))) {
5539                 cmd->result = DID_NO_CONNECT << 16;
5540                 cmd->scsi_done(cmd);
5541                 return 0;
5542         }
5543         c = cmd_tagged_alloc(h, cmd);
5544
5545         /*
5546          * Call alternate submit routine for I/O accelerated commands.
5547          * Retries always go down the normal I/O path.
5548          */
5549         if (likely(cmd->retries == 0 &&
5550                 cmd->request->cmd_type == REQ_TYPE_FS &&
5551                 h->acciopath_status)) {
5552                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5553                 if (rc == 0)
5554                         return 0;
5555                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5556                         hpsa_cmd_resolve_and_free(h, c);
5557                         return SCSI_MLQUEUE_HOST_BUSY;
5558                 }
5559         }
5560         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5561 }
5562
5563 static void hpsa_scan_complete(struct ctlr_info *h)
5564 {
5565         unsigned long flags;
5566
5567         spin_lock_irqsave(&h->scan_lock, flags);
5568         h->scan_finished = 1;
5569         wake_up_all(&h->scan_wait_queue);
5570         spin_unlock_irqrestore(&h->scan_lock, flags);
5571 }
5572
5573 static void hpsa_scan_start(struct Scsi_Host *sh)
5574 {
5575         struct ctlr_info *h = shost_to_hba(sh);
5576         unsigned long flags;
5577
5578         /*
5579          * Don't let rescans be initiated on a controller known to be locked
5580          * up.  If the controller locks up *during* a rescan, that thread is
5581          * probably hosed, but at least we can prevent new rescan threads from
5582          * piling up on a locked up controller.
5583          */
5584         if (unlikely(lockup_detected(h)))
5585                 return hpsa_scan_complete(h);
5586
5587         /* wait until any scan already in progress is finished. */
5588         while (1) {
5589                 spin_lock_irqsave(&h->scan_lock, flags);
5590                 if (h->scan_finished)
5591                         break;
5592                 spin_unlock_irqrestore(&h->scan_lock, flags);
5593                 wait_event(h->scan_wait_queue, h->scan_finished);
5594                 /* Note: We don't need to worry about a race between this
5595                  * thread and driver unload because the midlayer will
5596                  * have incremented the reference count, so unload won't
5597                  * happen if we're in here.
5598                  */
5599         }
5600         h->scan_finished = 0; /* mark scan as in progress */
5601         spin_unlock_irqrestore(&h->scan_lock, flags);
5602
5603         if (unlikely(lockup_detected(h)))
5604                 return hpsa_scan_complete(h);
5605
5606         /*
5607          * Do the scan after a reset completion
5608          */
5609         if (h->reset_in_progress) {
5610                 h->drv_req_rescan = 1;
5611                 return;
5612         }
5613
5614         hpsa_update_scsi_devices(h);
5615
5616         hpsa_scan_complete(h);
5617 }
5618
5619 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5620 {
5621         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5622
5623         if (!logical_drive)
5624                 return -ENODEV;
5625
5626         if (qdepth < 1)
5627                 qdepth = 1;
5628         else if (qdepth > logical_drive->queue_depth)
5629                 qdepth = logical_drive->queue_depth;
5630
5631         return scsi_change_queue_depth(sdev, qdepth);
5632 }
5633
5634 static int hpsa_scan_finished(struct Scsi_Host *sh,
5635         unsigned long elapsed_time)
5636 {
5637         struct ctlr_info *h = shost_to_hba(sh);
5638         unsigned long flags;
5639         int finished;
5640
5641         spin_lock_irqsave(&h->scan_lock, flags);
5642         finished = h->scan_finished;
5643         spin_unlock_irqrestore(&h->scan_lock, flags);
5644         return finished;
5645 }
5646
5647 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5648 {
5649         struct Scsi_Host *sh;
5650
5651         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5652         if (sh == NULL) {
5653                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5654                 return -ENOMEM;
5655         }
5656
5657         sh->io_port = 0;
5658         sh->n_io_port = 0;
5659         sh->this_id = -1;
5660         sh->max_channel = 3;
5661         sh->max_cmd_len = MAX_COMMAND_SIZE;
5662         sh->max_lun = HPSA_MAX_LUN;
5663         sh->max_id = HPSA_MAX_LUN;
5664         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5665         sh->cmd_per_lun = sh->can_queue;
5666         sh->sg_tablesize = h->maxsgentries;
5667         sh->transportt = hpsa_sas_transport_template;
5668         sh->hostdata[0] = (unsigned long) h;
5669         sh->irq = pci_irq_vector(h->pdev, 0);
5670         sh->unique_id = sh->irq;
5671
5672         h->scsi_host = sh;
5673         return 0;
5674 }
5675
5676 static int hpsa_scsi_add_host(struct ctlr_info *h)
5677 {
5678         int rv;
5679
5680         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5681         if (rv) {
5682                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5683                 return rv;
5684         }
5685         scsi_scan_host(h->scsi_host);
5686         return 0;
5687 }
5688
5689 /*
5690  * The block layer has already gone to the trouble of picking out a unique,
5691  * small-integer tag for this request.  We use an offset from that value as
5692  * an index to select our command block.  (The offset allows us to reserve the
5693  * low-numbered entries for our own uses.)
5694  */
5695 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5696 {
5697         int idx = scmd->request->tag;
5698
5699         if (idx < 0)
5700                 return idx;
5701
5702         /* Offset to leave space for internal cmds. */
5703         return idx += HPSA_NRESERVED_CMDS;
5704 }
5705
5706 /*
5707  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5708  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5709  */
5710 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5711                                 struct CommandList *c, unsigned char lunaddr[],
5712                                 int reply_queue)
5713 {
5714         int rc;
5715
5716         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5717         (void) fill_cmd(c, TEST_UNIT_READY, h,
5718                         NULL, 0, 0, lunaddr, TYPE_CMD);
5719         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5720         if (rc)
5721                 return rc;
5722         /* no unmap needed here because no data xfer. */
5723
5724         /* Check if the unit is already ready. */
5725         if (c->err_info->CommandStatus == CMD_SUCCESS)
5726                 return 0;
5727
5728         /*
5729          * The first command sent after reset will receive "unit attention" to
5730          * indicate that the LUN has been reset...this is actually what we're
5731          * looking for (but, success is good too).
5732          */
5733         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5734                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5735                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5736                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5737                 return 0;
5738
5739         return 1;
5740 }
5741
5742 /*
5743  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5744  * returns zero when the unit is ready, and non-zero when giving up.
5745  */
5746 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5747                                 struct CommandList *c,
5748                                 unsigned char lunaddr[], int reply_queue)
5749 {
5750         int rc;
5751         int count = 0;
5752         int waittime = 1; /* seconds */
5753
5754         /* Send test unit ready until device ready, or give up. */
5755         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5756
5757                 /*
5758                  * Wait for a bit.  do this first, because if we send
5759                  * the TUR right away, the reset will just abort it.
5760                  */
5761                 msleep(1000 * waittime);
5762
5763                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5764                 if (!rc)
5765                         break;
5766
5767                 /* Increase wait time with each try, up to a point. */
5768                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5769                         waittime *= 2;
5770
5771                 dev_warn(&h->pdev->dev,
5772                          "waiting %d secs for device to become ready.\n",
5773                          waittime);
5774         }
5775
5776         return rc;
5777 }
5778
5779 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5780                                            unsigned char lunaddr[],
5781                                            int reply_queue)
5782 {
5783         int first_queue;
5784         int last_queue;
5785         int rq;
5786         int rc = 0;
5787         struct CommandList *c;
5788
5789         c = cmd_alloc(h);
5790
5791         /*
5792          * If no specific reply queue was requested, then send the TUR
5793          * repeatedly, requesting a reply on each reply queue; otherwise execute
5794          * the loop exactly once using only the specified queue.
5795          */
5796         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5797                 first_queue = 0;
5798                 last_queue = h->nreply_queues - 1;
5799         } else {
5800                 first_queue = reply_queue;
5801                 last_queue = reply_queue;
5802         }
5803
5804         for (rq = first_queue; rq <= last_queue; rq++) {
5805                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5806                 if (rc)
5807                         break;
5808         }
5809
5810         if (rc)
5811                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5812         else
5813                 dev_warn(&h->pdev->dev, "device is ready.\n");
5814
5815         cmd_free(h, c);
5816         return rc;
5817 }
5818
5819 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5820  * complaining.  Doing a host- or bus-reset can't do anything good here.
5821  */
5822 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5823 {
5824         int rc;
5825         struct ctlr_info *h;
5826         struct hpsa_scsi_dev_t *dev;
5827         u8 reset_type;
5828         char msg[48];
5829
5830         /* find the controller to which the command to be aborted was sent */
5831         h = sdev_to_hba(scsicmd->device);
5832         if (h == NULL) /* paranoia */
5833                 return FAILED;
5834
5835         if (lockup_detected(h))
5836                 return FAILED;
5837
5838         dev = scsicmd->device->hostdata;
5839         if (!dev) {
5840                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5841                 return FAILED;
5842         }
5843
5844         /* if controller locked up, we can guarantee command won't complete */
5845         if (lockup_detected(h)) {
5846                 snprintf(msg, sizeof(msg),
5847                          "cmd %d RESET FAILED, lockup detected",
5848                          hpsa_get_cmd_index(scsicmd));
5849                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5850                 return FAILED;
5851         }
5852
5853         /* this reset request might be the result of a lockup; check */
5854         if (detect_controller_lockup(h)) {
5855                 snprintf(msg, sizeof(msg),
5856                          "cmd %d RESET FAILED, new lockup detected",
5857                          hpsa_get_cmd_index(scsicmd));
5858                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5859                 return FAILED;
5860         }
5861
5862         /* Do not attempt on controller */
5863         if (is_hba_lunid(dev->scsi3addr))
5864                 return SUCCESS;
5865
5866         if (is_logical_dev_addr_mode(dev->scsi3addr))
5867                 reset_type = HPSA_DEVICE_RESET_MSG;
5868         else
5869                 reset_type = HPSA_PHYS_TARGET_RESET;
5870
5871         sprintf(msg, "resetting %s",
5872                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5873         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5874
5875         h->reset_in_progress = 1;
5876
5877         /* send a reset to the SCSI LUN which the command was sent to */
5878         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5879                            DEFAULT_REPLY_QUEUE);
5880         sprintf(msg, "reset %s %s",
5881                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5882                 rc == 0 ? "completed successfully" : "failed");
5883         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5884         h->reset_in_progress = 0;
5885         return rc == 0 ? SUCCESS : FAILED;
5886 }
5887
5888 static void swizzle_abort_tag(u8 *tag)
5889 {
5890         u8 original_tag[8];
5891
5892         memcpy(original_tag, tag, 8);
5893         tag[0] = original_tag[3];
5894         tag[1] = original_tag[2];
5895         tag[2] = original_tag[1];
5896         tag[3] = original_tag[0];
5897         tag[4] = original_tag[7];
5898         tag[5] = original_tag[6];
5899         tag[6] = original_tag[5];
5900         tag[7] = original_tag[4];
5901 }
5902
5903 static void hpsa_get_tag(struct ctlr_info *h,
5904         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5905 {
5906         u64 tag;
5907         if (c->cmd_type == CMD_IOACCEL1) {
5908                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5909                         &h->ioaccel_cmd_pool[c->cmdindex];
5910                 tag = le64_to_cpu(cm1->tag);
5911                 *tagupper = cpu_to_le32(tag >> 32);
5912                 *taglower = cpu_to_le32(tag);
5913                 return;
5914         }
5915         if (c->cmd_type == CMD_IOACCEL2) {
5916                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5917                         &h->ioaccel2_cmd_pool[c->cmdindex];
5918                 /* upper tag not used in ioaccel2 mode */
5919                 memset(tagupper, 0, sizeof(*tagupper));
5920                 *taglower = cm2->Tag;
5921                 return;
5922         }
5923         tag = le64_to_cpu(c->Header.tag);
5924         *tagupper = cpu_to_le32(tag >> 32);
5925         *taglower = cpu_to_le32(tag);
5926 }
5927
5928 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5929         struct CommandList *abort, int reply_queue)
5930 {
5931         int rc = IO_OK;
5932         struct CommandList *c;
5933         struct ErrorInfo *ei;
5934         __le32 tagupper, taglower;
5935
5936         c = cmd_alloc(h);
5937
5938         /* fill_cmd can't fail here, no buffer to map */
5939         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5940                 0, 0, scsi3addr, TYPE_MSG);
5941         if (h->needs_abort_tags_swizzled)
5942                 swizzle_abort_tag(&c->Request.CDB[4]);
5943         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5944         hpsa_get_tag(h, abort, &taglower, &tagupper);
5945         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5946                 __func__, tagupper, taglower);
5947         /* no unmap needed here because no data xfer. */
5948
5949         ei = c->err_info;
5950         switch (ei->CommandStatus) {
5951         case CMD_SUCCESS:
5952                 break;
5953         case CMD_TMF_STATUS:
5954                 rc = hpsa_evaluate_tmf_status(h, c);
5955                 break;
5956         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5957                 rc = -1;
5958                 break;
5959         default:
5960                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5961                         __func__, tagupper, taglower);
5962                 hpsa_scsi_interpret_error(h, c);
5963                 rc = -1;
5964                 break;
5965         }
5966         cmd_free(h, c);
5967         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5968                 __func__, tagupper, taglower);
5969         return rc;
5970 }
5971
5972 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5973         struct CommandList *command_to_abort, int reply_queue)
5974 {
5975         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5976         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5977         struct io_accel2_cmd *c2a =
5978                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5979         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5980         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5981
5982         if (!dev)
5983                 return;
5984
5985         /*
5986          * We're overlaying struct hpsa_tmf_struct on top of something which
5987          * was allocated as a struct io_accel2_cmd, so we better be sure it
5988          * actually fits, and doesn't overrun the error info space.
5989          */
5990         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5991                         sizeof(struct io_accel2_cmd));
5992         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5993                         offsetof(struct hpsa_tmf_struct, error_len) +
5994                                 sizeof(ac->error_len));
5995
5996         c->cmd_type = IOACCEL2_TMF;
5997         c->scsi_cmd = SCSI_CMD_BUSY;
5998
5999         /* Adjust the DMA address to point to the accelerated command buffer */
6000         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
6001                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
6002         BUG_ON(c->busaddr & 0x0000007F);
6003
6004         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
6005         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
6006         ac->reply_queue = reply_queue;
6007         ac->tmf = IOACCEL2_TMF_ABORT;
6008         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
6009         memset(ac->lun_id, 0, sizeof(ac->lun_id));
6010         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
6011         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
6012         ac->error_ptr = cpu_to_le64(c->busaddr +
6013                         offsetof(struct io_accel2_cmd, error_data));
6014         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
6015 }
6016
6017 /* ioaccel2 path firmware cannot handle abort task requests.
6018  * Change abort requests to physical target reset, and send to the
6019  * address of the physical disk used for the ioaccel 2 command.
6020  * Return 0 on success (IO_OK)
6021  *       -1 on failure
6022  */
6023
6024 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
6025         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
6026 {
6027         int rc = IO_OK;
6028         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
6029         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
6030         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
6031         unsigned char *psa = &phys_scsi3addr[0];
6032
6033         /* Get a pointer to the hpsa logical device. */
6034         scmd = abort->scsi_cmd;
6035         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
6036         if (dev == NULL) {
6037                 dev_warn(&h->pdev->dev,
6038                         "Cannot abort: no device pointer for command.\n");
6039                         return -1; /* not abortable */
6040         }
6041
6042         if (h->raid_offload_debug > 0)
6043                 dev_info(&h->pdev->dev,
6044                         "scsi %d:%d:%d:%d %s scsi3addr 0x%8phN\n",
6045                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
6046                         "Reset as abort", scsi3addr);
6047
6048         if (!dev->offload_enabled) {
6049                 dev_warn(&h->pdev->dev,
6050                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
6051                 return -1; /* not abortable */
6052         }
6053
6054         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
6055         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
6056                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
6057                 return -1; /* not abortable */
6058         }
6059
6060         /* send the reset */
6061         if (h->raid_offload_debug > 0)
6062                 dev_info(&h->pdev->dev,
6063                         "Reset as abort: Resetting physical device at scsi3addr 0x%8phN\n",
6064                         psa);
6065         rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue);
6066         if (rc != 0) {
6067                 dev_warn(&h->pdev->dev,
6068                         "Reset as abort: Failed on physical device at scsi3addr 0x%8phN\n",
6069                         psa);
6070                 return rc; /* failed to reset */
6071         }
6072
6073         /* wait for device to recover */
6074         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
6075                 dev_warn(&h->pdev->dev,
6076                         "Reset as abort: Failed: Device never recovered from reset: 0x%8phN\n",
6077                         psa);
6078                 return -1;  /* failed to recover */
6079         }
6080
6081         /* device recovered */
6082         dev_info(&h->pdev->dev,
6083                 "Reset as abort: Device recovered from reset: scsi3addr 0x%8phN\n",
6084                 psa);
6085
6086         return rc; /* success */
6087 }
6088
6089 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
6090         struct CommandList *abort, int reply_queue)
6091 {
6092         int rc = IO_OK;
6093         struct CommandList *c;
6094         __le32 taglower, tagupper;
6095         struct hpsa_scsi_dev_t *dev;
6096         struct io_accel2_cmd *c2;
6097
6098         dev = abort->scsi_cmd->device->hostdata;
6099         if (!dev)
6100                 return -1;
6101
6102         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
6103                 return -1;
6104
6105         c = cmd_alloc(h);
6106         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
6107         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
6108         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
6109         hpsa_get_tag(h, abort, &taglower, &tagupper);
6110         dev_dbg(&h->pdev->dev,
6111                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
6112                 __func__, tagupper, taglower);
6113         /* no unmap needed here because no data xfer. */
6114
6115         dev_dbg(&h->pdev->dev,
6116                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6117                 __func__, tagupper, taglower, c2->error_data.serv_response);
6118         switch (c2->error_data.serv_response) {
6119         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
6120         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
6121                 rc = 0;
6122                 break;
6123         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
6124         case IOACCEL2_SERV_RESPONSE_FAILURE:
6125         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
6126                 rc = -1;
6127                 break;
6128         default:
6129                 dev_warn(&h->pdev->dev,
6130                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6131                         __func__, tagupper, taglower,
6132                         c2->error_data.serv_response);
6133                 rc = -1;
6134         }
6135         cmd_free(h, c);
6136         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6137                 tagupper, taglower);
6138         return rc;
6139 }
6140
6141 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
6142         struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6143 {
6144         /*
6145          * ioccelerator mode 2 commands should be aborted via the
6146          * accelerated path, since RAID path is unaware of these commands,
6147          * but not all underlying firmware can handle abort TMF.
6148          * Change abort to physical device reset when abort TMF is unsupported.
6149          */
6150         if (abort->cmd_type == CMD_IOACCEL2) {
6151                 if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6152                         dev->physical_device)
6153                         return hpsa_send_abort_ioaccel2(h, abort,
6154                                                 reply_queue);
6155                 else
6156                         return hpsa_send_reset_as_abort_ioaccel2(h,
6157                                                         dev->scsi3addr,
6158                                                         abort, reply_queue);
6159         }
6160         return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
6161 }
6162
6163 /* Find out which reply queue a command was meant to return on */
6164 static int hpsa_extract_reply_queue(struct ctlr_info *h,
6165                                         struct CommandList *c)
6166 {
6167         if (c->cmd_type == CMD_IOACCEL2)
6168                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6169         return c->Header.ReplyQueue;
6170 }
6171
6172 /*
6173  * Limit concurrency of abort commands to prevent
6174  * over-subscription of commands
6175  */
6176 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6177 {
6178 #define ABORT_CMD_WAIT_MSECS 5000
6179         return !wait_event_timeout(h->abort_cmd_wait_queue,
6180                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6181                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6182 }
6183
6184 /* Send an abort for the specified command.
6185  *      If the device and controller support it,
6186  *              send a task abort request.
6187  */
6188 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6189 {
6190
6191         int rc;
6192         struct ctlr_info *h;
6193         struct hpsa_scsi_dev_t *dev;
6194         struct CommandList *abort; /* pointer to command to be aborted */
6195         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
6196         char msg[256];          /* For debug messaging. */
6197         int ml = 0;
6198         __le32 tagupper, taglower;
6199         int refcount, reply_queue;
6200
6201         if (sc == NULL)
6202                 return FAILED;
6203
6204         if (sc->device == NULL)
6205                 return FAILED;
6206
6207         /* Find the controller of the command to be aborted */
6208         h = sdev_to_hba(sc->device);
6209         if (h == NULL)
6210                 return FAILED;
6211
6212         /* Find the device of the command to be aborted */
6213         dev = sc->device->hostdata;
6214         if (!dev) {
6215                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6216                                 msg);
6217                 return FAILED;
6218         }
6219
6220         /* If controller locked up, we can guarantee command won't complete */
6221         if (lockup_detected(h)) {
6222                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6223                                         "ABORT FAILED, lockup detected");
6224                 return FAILED;
6225         }
6226
6227         /* This is a good time to check if controller lockup has occurred */
6228         if (detect_controller_lockup(h)) {
6229                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6230                                         "ABORT FAILED, new lockup detected");
6231                 return FAILED;
6232         }
6233
6234         /* Check that controller supports some kind of task abort */
6235         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6236                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6237                 return FAILED;
6238
6239         memset(msg, 0, sizeof(msg));
6240         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6241                 h->scsi_host->host_no, sc->device->channel,
6242                 sc->device->id, sc->device->lun,
6243                 "Aborting command", sc);
6244
6245         /* Get SCSI command to be aborted */
6246         abort = (struct CommandList *) sc->host_scribble;
6247         if (abort == NULL) {
6248                 /* This can happen if the command already completed. */
6249                 return SUCCESS;
6250         }
6251         refcount = atomic_inc_return(&abort->refcount);
6252         if (refcount == 1) { /* Command is done already. */
6253                 cmd_free(h, abort);
6254                 return SUCCESS;
6255         }
6256
6257         /* Don't bother trying the abort if we know it won't work. */
6258         if (abort->cmd_type != CMD_IOACCEL2 &&
6259                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6260                 cmd_free(h, abort);
6261                 return FAILED;
6262         }
6263
6264         /*
6265          * Check that we're aborting the right command.
6266          * It's possible the CommandList already completed and got re-used.
6267          */
6268         if (abort->scsi_cmd != sc) {
6269                 cmd_free(h, abort);
6270                 return SUCCESS;
6271         }
6272
6273         abort->abort_pending = true;
6274         hpsa_get_tag(h, abort, &taglower, &tagupper);
6275         reply_queue = hpsa_extract_reply_queue(h, abort);
6276         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6277         as  = abort->scsi_cmd;
6278         if (as != NULL)
6279                 ml += sprintf(msg+ml,
6280                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6281                         as->cmd_len, as->cmnd[0], as->cmnd[1],
6282                         as->serial_number);
6283         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6284         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6285
6286         /*
6287          * Command is in flight, or possibly already completed
6288          * by the firmware (but not to the scsi mid layer) but we can't
6289          * distinguish which.  Send the abort down.
6290          */
6291         if (wait_for_available_abort_cmd(h)) {
6292                 dev_warn(&h->pdev->dev,
6293                         "%s FAILED, timeout waiting for an abort command to become available.\n",
6294                         msg);
6295                 cmd_free(h, abort);
6296                 return FAILED;
6297         }
6298         rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6299         atomic_inc(&h->abort_cmds_available);
6300         wake_up_all(&h->abort_cmd_wait_queue);
6301         if (rc != 0) {
6302                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6303                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6304                                 "FAILED to abort command");
6305                 cmd_free(h, abort);
6306                 return FAILED;
6307         }
6308         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6309         wait_event(h->event_sync_wait_queue,
6310                    abort->scsi_cmd != sc || lockup_detected(h));
6311         cmd_free(h, abort);
6312         return !lockup_detected(h) ? SUCCESS : FAILED;
6313 }
6314
6315 /*
6316  * For operations with an associated SCSI command, a command block is allocated
6317  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6318  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6319  * the complement, although cmd_free() may be called instead.
6320  */
6321 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6322                                             struct scsi_cmnd *scmd)
6323 {
6324         int idx = hpsa_get_cmd_index(scmd);
6325         struct CommandList *c = h->cmd_pool + idx;
6326
6327         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6328                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6329                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6330                 /* The index value comes from the block layer, so if it's out of
6331                  * bounds, it's probably not our bug.
6332                  */
6333                 BUG();
6334         }
6335
6336         atomic_inc(&c->refcount);
6337         if (unlikely(!hpsa_is_cmd_idle(c))) {
6338                 /*
6339                  * We expect that the SCSI layer will hand us a unique tag
6340                  * value.  Thus, there should never be a collision here between
6341                  * two requests...because if the selected command isn't idle
6342                  * then someone is going to be very disappointed.
6343                  */
6344                 dev_err(&h->pdev->dev,
6345                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6346                         idx);
6347                 if (c->scsi_cmd != NULL)
6348                         scsi_print_command(c->scsi_cmd);
6349                 scsi_print_command(scmd);
6350         }
6351
6352         hpsa_cmd_partial_init(h, idx, c);
6353         return c;
6354 }
6355
6356 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6357 {
6358         /*
6359          * Release our reference to the block.  We don't need to do anything
6360          * else to free it, because it is accessed by index.  (There's no point
6361          * in checking the result of the decrement, since we cannot guarantee
6362          * that there isn't a concurrent abort which is also accessing it.)
6363          */
6364         (void)atomic_dec(&c->refcount);
6365 }
6366
6367 /*
6368  * For operations that cannot sleep, a command block is allocated at init,
6369  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6370  * which ones are free or in use.  Lock must be held when calling this.
6371  * cmd_free() is the complement.
6372  * This function never gives up and returns NULL.  If it hangs,
6373  * another thread must call cmd_free() to free some tags.
6374  */
6375
6376 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6377 {
6378         struct CommandList *c;
6379         int refcount, i;
6380         int offset = 0;
6381
6382         /*
6383          * There is some *extremely* small but non-zero chance that that
6384          * multiple threads could get in here, and one thread could
6385          * be scanning through the list of bits looking for a free
6386          * one, but the free ones are always behind him, and other
6387          * threads sneak in behind him and eat them before he can
6388          * get to them, so that while there is always a free one, a
6389          * very unlucky thread might be starved anyway, never able to
6390          * beat the other threads.  In reality, this happens so
6391          * infrequently as to be indistinguishable from never.
6392          *
6393          * Note that we start allocating commands before the SCSI host structure
6394          * is initialized.  Since the search starts at bit zero, this
6395          * all works, since we have at least one command structure available;
6396          * however, it means that the structures with the low indexes have to be
6397          * reserved for driver-initiated requests, while requests from the block
6398          * layer will use the higher indexes.
6399          */
6400
6401         for (;;) {
6402                 i = find_next_zero_bit(h->cmd_pool_bits,
6403                                         HPSA_NRESERVED_CMDS,
6404                                         offset);
6405                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6406                         offset = 0;
6407                         continue;
6408                 }
6409                 c = h->cmd_pool + i;
6410                 refcount = atomic_inc_return(&c->refcount);
6411                 if (unlikely(refcount > 1)) {
6412                         cmd_free(h, c); /* already in use */
6413                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6414                         continue;
6415                 }
6416                 set_bit(i & (BITS_PER_LONG - 1),
6417                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6418                 break; /* it's ours now. */
6419         }
6420         hpsa_cmd_partial_init(h, i, c);
6421         return c;
6422 }
6423
6424 /*
6425  * This is the complementary operation to cmd_alloc().  Note, however, in some
6426  * corner cases it may also be used to free blocks allocated by
6427  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6428  * the clear-bit is harmless.
6429  */
6430 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6431 {
6432         if (atomic_dec_and_test(&c->refcount)) {
6433                 int i;
6434
6435                 i = c - h->cmd_pool;
6436                 clear_bit(i & (BITS_PER_LONG - 1),
6437                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6438         }
6439 }
6440
6441 #ifdef CONFIG_COMPAT
6442
6443 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6444         void __user *arg)
6445 {
6446         IOCTL32_Command_struct __user *arg32 =
6447             (IOCTL32_Command_struct __user *) arg;
6448         IOCTL_Command_struct arg64;
6449         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6450         int err;
6451         u32 cp;
6452
6453         memset(&arg64, 0, sizeof(arg64));
6454         err = 0;
6455         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6456                            sizeof(arg64.LUN_info));
6457         err |= copy_from_user(&arg64.Request, &arg32->Request,
6458                            sizeof(arg64.Request));
6459         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6460                            sizeof(arg64.error_info));
6461         err |= get_user(arg64.buf_size, &arg32->buf_size);
6462         err |= get_user(cp, &arg32->buf);
6463         arg64.buf = compat_ptr(cp);
6464         err |= copy_to_user(p, &arg64, sizeof(arg64));
6465
6466         if (err)
6467                 return -EFAULT;
6468
6469         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6470         if (err)
6471                 return err;
6472         err |= copy_in_user(&arg32->error_info, &p->error_info,
6473                          sizeof(arg32->error_info));
6474         if (err)
6475                 return -EFAULT;
6476         return err;
6477 }
6478
6479 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6480         int cmd, void __user *arg)
6481 {
6482         BIG_IOCTL32_Command_struct __user *arg32 =
6483             (BIG_IOCTL32_Command_struct __user *) arg;
6484         BIG_IOCTL_Command_struct arg64;
6485         BIG_IOCTL_Command_struct __user *p =
6486             compat_alloc_user_space(sizeof(arg64));
6487         int err;
6488         u32 cp;
6489
6490         memset(&arg64, 0, sizeof(arg64));
6491         err = 0;
6492         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6493                            sizeof(arg64.LUN_info));
6494         err |= copy_from_user(&arg64.Request, &arg32->Request,
6495                            sizeof(arg64.Request));
6496         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6497                            sizeof(arg64.error_info));
6498         err |= get_user(arg64.buf_size, &arg32->buf_size);
6499         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6500         err |= get_user(cp, &arg32->buf);
6501         arg64.buf = compat_ptr(cp);
6502         err |= copy_to_user(p, &arg64, sizeof(arg64));
6503
6504         if (err)
6505                 return -EFAULT;
6506
6507         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6508         if (err)
6509                 return err;
6510         err |= copy_in_user(&arg32->error_info, &p->error_info,
6511                          sizeof(arg32->error_info));
6512         if (err)
6513                 return -EFAULT;
6514         return err;
6515 }
6516
6517 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6518 {
6519         switch (cmd) {
6520         case CCISS_GETPCIINFO:
6521         case CCISS_GETINTINFO:
6522         case CCISS_SETINTINFO:
6523         case CCISS_GETNODENAME:
6524         case CCISS_SETNODENAME:
6525         case CCISS_GETHEARTBEAT:
6526         case CCISS_GETBUSTYPES:
6527         case CCISS_GETFIRMVER:
6528         case CCISS_GETDRIVVER:
6529         case CCISS_REVALIDVOLS:
6530         case CCISS_DEREGDISK:
6531         case CCISS_REGNEWDISK:
6532         case CCISS_REGNEWD:
6533         case CCISS_RESCANDISK:
6534         case CCISS_GETLUNINFO:
6535                 return hpsa_ioctl(dev, cmd, arg);
6536
6537         case CCISS_PASSTHRU32:
6538                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6539         case CCISS_BIG_PASSTHRU32:
6540                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6541
6542         default:
6543                 return -ENOIOCTLCMD;
6544         }
6545 }
6546 #endif
6547
6548 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6549 {
6550         struct hpsa_pci_info pciinfo;
6551
6552         if (!argp)
6553                 return -EINVAL;
6554         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6555         pciinfo.bus = h->pdev->bus->number;
6556         pciinfo.dev_fn = h->pdev->devfn;
6557         pciinfo.board_id = h->board_id;
6558         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6559                 return -EFAULT;
6560         return 0;
6561 }
6562
6563 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6564 {
6565         DriverVer_type DriverVer;
6566         unsigned char vmaj, vmin, vsubmin;
6567         int rc;
6568
6569         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6570                 &vmaj, &vmin, &vsubmin);
6571         if (rc != 3) {
6572                 dev_info(&h->pdev->dev, "driver version string '%s' "
6573                         "unrecognized.", HPSA_DRIVER_VERSION);
6574                 vmaj = 0;
6575                 vmin = 0;
6576                 vsubmin = 0;
6577         }
6578         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6579         if (!argp)
6580                 return -EINVAL;
6581         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6582                 return -EFAULT;
6583         return 0;
6584 }
6585
6586 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6587 {
6588         IOCTL_Command_struct iocommand;
6589         struct CommandList *c;
6590         char *buff = NULL;
6591         u64 temp64;
6592         int rc = 0;
6593
6594         if (!argp)
6595                 return -EINVAL;
6596         if (!capable(CAP_SYS_RAWIO))
6597                 return -EPERM;
6598         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6599                 return -EFAULT;
6600         if ((iocommand.buf_size < 1) &&
6601             (iocommand.Request.Type.Direction != XFER_NONE)) {
6602                 return -EINVAL;
6603         }
6604         if (iocommand.buf_size > 0) {
6605                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6606                 if (buff == NULL)
6607                         return -ENOMEM;
6608                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6609                         /* Copy the data into the buffer we created */
6610                         if (copy_from_user(buff, iocommand.buf,
6611                                 iocommand.buf_size)) {
6612                                 rc = -EFAULT;
6613                                 goto out_kfree;
6614                         }
6615                 } else {
6616                         memset(buff, 0, iocommand.buf_size);
6617                 }
6618         }
6619         c = cmd_alloc(h);
6620
6621         /* Fill in the command type */
6622         c->cmd_type = CMD_IOCTL_PEND;
6623         c->scsi_cmd = SCSI_CMD_BUSY;
6624         /* Fill in Command Header */
6625         c->Header.ReplyQueue = 0; /* unused in simple mode */
6626         if (iocommand.buf_size > 0) {   /* buffer to fill */
6627                 c->Header.SGList = 1;
6628                 c->Header.SGTotal = cpu_to_le16(1);
6629         } else  { /* no buffers to fill */
6630                 c->Header.SGList = 0;
6631                 c->Header.SGTotal = cpu_to_le16(0);
6632         }
6633         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6634
6635         /* Fill in Request block */
6636         memcpy(&c->Request, &iocommand.Request,
6637                 sizeof(c->Request));
6638
6639         /* Fill in the scatter gather information */
6640         if (iocommand.buf_size > 0) {
6641                 temp64 = pci_map_single(h->pdev, buff,
6642                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6643                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6644                         c->SG[0].Addr = cpu_to_le64(0);
6645                         c->SG[0].Len = cpu_to_le32(0);
6646                         rc = -ENOMEM;
6647                         goto out;
6648                 }
6649                 c->SG[0].Addr = cpu_to_le64(temp64);
6650                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6651                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6652         }
6653         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6654                                         NO_TIMEOUT);
6655         if (iocommand.buf_size > 0)
6656                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6657         check_ioctl_unit_attention(h, c);
6658         if (rc) {
6659                 rc = -EIO;
6660                 goto out;
6661         }
6662
6663         /* Copy the error information out */
6664         memcpy(&iocommand.error_info, c->err_info,
6665                 sizeof(iocommand.error_info));
6666         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6667                 rc = -EFAULT;
6668                 goto out;
6669         }
6670         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6671                 iocommand.buf_size > 0) {
6672                 /* Copy the data out of the buffer we created */
6673                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6674                         rc = -EFAULT;
6675                         goto out;
6676                 }
6677         }
6678 out:
6679         cmd_free(h, c);
6680 out_kfree:
6681         kfree(buff);
6682         return rc;
6683 }
6684
6685 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6686 {
6687         BIG_IOCTL_Command_struct *ioc;
6688         struct CommandList *c;
6689         unsigned char **buff = NULL;
6690         int *buff_size = NULL;
6691         u64 temp64;
6692         BYTE sg_used = 0;
6693         int status = 0;
6694         u32 left;
6695         u32 sz;
6696         BYTE __user *data_ptr;
6697
6698         if (!argp)
6699                 return -EINVAL;
6700         if (!capable(CAP_SYS_RAWIO))
6701                 return -EPERM;
6702         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6703         if (!ioc) {
6704                 status = -ENOMEM;
6705                 goto cleanup1;
6706         }
6707         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6708                 status = -EFAULT;
6709                 goto cleanup1;
6710         }
6711         if ((ioc->buf_size < 1) &&
6712             (ioc->Request.Type.Direction != XFER_NONE)) {
6713                 status = -EINVAL;
6714                 goto cleanup1;
6715         }
6716         /* Check kmalloc limits  using all SGs */
6717         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6718                 status = -EINVAL;
6719                 goto cleanup1;
6720         }
6721         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6722                 status = -EINVAL;
6723                 goto cleanup1;
6724         }
6725         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6726         if (!buff) {
6727                 status = -ENOMEM;
6728                 goto cleanup1;
6729         }
6730         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6731         if (!buff_size) {
6732                 status = -ENOMEM;
6733                 goto cleanup1;
6734         }
6735         left = ioc->buf_size;
6736         data_ptr = ioc->buf;
6737         while (left) {
6738                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6739                 buff_size[sg_used] = sz;
6740                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6741                 if (buff[sg_used] == NULL) {
6742                         status = -ENOMEM;
6743                         goto cleanup1;
6744                 }
6745                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6746                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6747                                 status = -EFAULT;
6748                                 goto cleanup1;
6749                         }
6750                 } else
6751                         memset(buff[sg_used], 0, sz);
6752                 left -= sz;
6753                 data_ptr += sz;
6754                 sg_used++;
6755         }
6756         c = cmd_alloc(h);
6757
6758         c->cmd_type = CMD_IOCTL_PEND;
6759         c->scsi_cmd = SCSI_CMD_BUSY;
6760         c->Header.ReplyQueue = 0;
6761         c->Header.SGList = (u8) sg_used;
6762         c->Header.SGTotal = cpu_to_le16(sg_used);
6763         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6764         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6765         if (ioc->buf_size > 0) {
6766                 int i;
6767                 for (i = 0; i < sg_used; i++) {
6768                         temp64 = pci_map_single(h->pdev, buff[i],
6769                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6770                         if (dma_mapping_error(&h->pdev->dev,
6771                                                         (dma_addr_t) temp64)) {
6772                                 c->SG[i].Addr = cpu_to_le64(0);
6773                                 c->SG[i].Len = cpu_to_le32(0);
6774                                 hpsa_pci_unmap(h->pdev, c, i,
6775                                         PCI_DMA_BIDIRECTIONAL);
6776                                 status = -ENOMEM;
6777                                 goto cleanup0;
6778                         }
6779                         c->SG[i].Addr = cpu_to_le64(temp64);
6780                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6781                         c->SG[i].Ext = cpu_to_le32(0);
6782                 }
6783                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6784         }
6785         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6786                                                 NO_TIMEOUT);
6787         if (sg_used)
6788                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6789         check_ioctl_unit_attention(h, c);
6790         if (status) {
6791                 status = -EIO;
6792                 goto cleanup0;
6793         }
6794
6795         /* Copy the error information out */
6796         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6797         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6798                 status = -EFAULT;
6799                 goto cleanup0;
6800         }
6801         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6802                 int i;
6803
6804                 /* Copy the data out of the buffer we created */
6805                 BYTE __user *ptr = ioc->buf;
6806                 for (i = 0; i < sg_used; i++) {
6807                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6808                                 status = -EFAULT;
6809                                 goto cleanup0;
6810                         }
6811                         ptr += buff_size[i];
6812                 }
6813         }
6814         status = 0;
6815 cleanup0:
6816         cmd_free(h, c);
6817 cleanup1:
6818         if (buff) {
6819                 int i;
6820
6821                 for (i = 0; i < sg_used; i++)
6822                         kfree(buff[i]);
6823                 kfree(buff);
6824         }
6825         kfree(buff_size);
6826         kfree(ioc);
6827         return status;
6828 }
6829
6830 static void check_ioctl_unit_attention(struct ctlr_info *h,
6831         struct CommandList *c)
6832 {
6833         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6834                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6835                 (void) check_for_unit_attention(h, c);
6836 }
6837
6838 /*
6839  * ioctl
6840  */
6841 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6842 {
6843         struct ctlr_info *h;
6844         void __user *argp = (void __user *)arg;
6845         int rc;
6846
6847         h = sdev_to_hba(dev);
6848
6849         switch (cmd) {
6850         case CCISS_DEREGDISK:
6851         case CCISS_REGNEWDISK:
6852         case CCISS_REGNEWD:
6853                 hpsa_scan_start(h->scsi_host);
6854                 return 0;
6855         case CCISS_GETPCIINFO:
6856                 return hpsa_getpciinfo_ioctl(h, argp);
6857         case CCISS_GETDRIVVER:
6858                 return hpsa_getdrivver_ioctl(h, argp);
6859         case CCISS_PASSTHRU:
6860                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6861                         return -EAGAIN;
6862                 rc = hpsa_passthru_ioctl(h, argp);
6863                 atomic_inc(&h->passthru_cmds_avail);
6864                 return rc;
6865         case CCISS_BIG_PASSTHRU:
6866                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6867                         return -EAGAIN;
6868                 rc = hpsa_big_passthru_ioctl(h, argp);
6869                 atomic_inc(&h->passthru_cmds_avail);
6870                 return rc;
6871         default:
6872                 return -ENOTTY;
6873         }
6874 }
6875
6876 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6877                                 u8 reset_type)
6878 {
6879         struct CommandList *c;
6880
6881         c = cmd_alloc(h);
6882
6883         /* fill_cmd can't fail here, no data buffer to map */
6884         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6885                 RAID_CTLR_LUNID, TYPE_MSG);
6886         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6887         c->waiting = NULL;
6888         enqueue_cmd_and_start_io(h, c);
6889         /* Don't wait for completion, the reset won't complete.  Don't free
6890          * the command either.  This is the last command we will send before
6891          * re-initializing everything, so it doesn't matter and won't leak.
6892          */
6893         return;
6894 }
6895
6896 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6897         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6898         int cmd_type)
6899 {
6900         int pci_dir = XFER_NONE;
6901         u64 tag; /* for commands to be aborted */
6902
6903         c->cmd_type = CMD_IOCTL_PEND;
6904         c->scsi_cmd = SCSI_CMD_BUSY;
6905         c->Header.ReplyQueue = 0;
6906         if (buff != NULL && size > 0) {
6907                 c->Header.SGList = 1;
6908                 c->Header.SGTotal = cpu_to_le16(1);
6909         } else {
6910                 c->Header.SGList = 0;
6911                 c->Header.SGTotal = cpu_to_le16(0);
6912         }
6913         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6914
6915         if (cmd_type == TYPE_CMD) {
6916                 switch (cmd) {
6917                 case HPSA_INQUIRY:
6918                         /* are we trying to read a vital product page */
6919                         if (page_code & VPD_PAGE) {
6920                                 c->Request.CDB[1] = 0x01;
6921                                 c->Request.CDB[2] = (page_code & 0xff);
6922                         }
6923                         c->Request.CDBLen = 6;
6924                         c->Request.type_attr_dir =
6925                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6926                         c->Request.Timeout = 0;
6927                         c->Request.CDB[0] = HPSA_INQUIRY;
6928                         c->Request.CDB[4] = size & 0xFF;
6929                         break;
6930                 case HPSA_REPORT_LOG:
6931                 case HPSA_REPORT_PHYS:
6932                         /* Talking to controller so It's a physical command
6933                            mode = 00 target = 0.  Nothing to write.
6934                          */
6935                         c->Request.CDBLen = 12;
6936                         c->Request.type_attr_dir =
6937                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6938                         c->Request.Timeout = 0;
6939                         c->Request.CDB[0] = cmd;
6940                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6941                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6942                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6943                         c->Request.CDB[9] = size & 0xFF;
6944                         break;
6945                 case BMIC_SENSE_DIAG_OPTIONS:
6946                         c->Request.CDBLen = 16;
6947                         c->Request.type_attr_dir =
6948                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6949                         c->Request.Timeout = 0;
6950                         /* Spec says this should be BMIC_WRITE */
6951                         c->Request.CDB[0] = BMIC_READ;
6952                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6953                         break;
6954                 case BMIC_SET_DIAG_OPTIONS:
6955                         c->Request.CDBLen = 16;
6956                         c->Request.type_attr_dir =
6957                                         TYPE_ATTR_DIR(cmd_type,
6958                                                 ATTR_SIMPLE, XFER_WRITE);
6959                         c->Request.Timeout = 0;
6960                         c->Request.CDB[0] = BMIC_WRITE;
6961                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6962                         break;
6963                 case HPSA_CACHE_FLUSH:
6964                         c->Request.CDBLen = 12;
6965                         c->Request.type_attr_dir =
6966                                         TYPE_ATTR_DIR(cmd_type,
6967                                                 ATTR_SIMPLE, XFER_WRITE);
6968                         c->Request.Timeout = 0;
6969                         c->Request.CDB[0] = BMIC_WRITE;
6970                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6971                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6972                         c->Request.CDB[8] = size & 0xFF;
6973                         break;
6974                 case TEST_UNIT_READY:
6975                         c->Request.CDBLen = 6;
6976                         c->Request.type_attr_dir =
6977                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6978                         c->Request.Timeout = 0;
6979                         break;
6980                 case HPSA_GET_RAID_MAP:
6981                         c->Request.CDBLen = 12;
6982                         c->Request.type_attr_dir =
6983                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6984                         c->Request.Timeout = 0;
6985                         c->Request.CDB[0] = HPSA_CISS_READ;
6986                         c->Request.CDB[1] = cmd;
6987                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6988                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6989                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6990                         c->Request.CDB[9] = size & 0xFF;
6991                         break;
6992                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6993                         c->Request.CDBLen = 10;
6994                         c->Request.type_attr_dir =
6995                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6996                         c->Request.Timeout = 0;
6997                         c->Request.CDB[0] = BMIC_READ;
6998                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6999                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7000                         c->Request.CDB[8] = (size >> 8) & 0xFF;
7001                         break;
7002                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
7003                         c->Request.CDBLen = 10;
7004                         c->Request.type_attr_dir =
7005                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7006                         c->Request.Timeout = 0;
7007                         c->Request.CDB[0] = BMIC_READ;
7008                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
7009                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7010                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7011                         break;
7012                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
7013                         c->Request.CDBLen = 10;
7014                         c->Request.type_attr_dir =
7015                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7016                         c->Request.Timeout = 0;
7017                         c->Request.CDB[0] = BMIC_READ;
7018                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
7019                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7020                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7021                         break;
7022                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
7023                         c->Request.CDBLen = 10;
7024                         c->Request.type_attr_dir =
7025                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7026                         c->Request.Timeout = 0;
7027                         c->Request.CDB[0] = BMIC_READ;
7028                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
7029                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7030                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7031                         break;
7032                 case BMIC_IDENTIFY_CONTROLLER:
7033                         c->Request.CDBLen = 10;
7034                         c->Request.type_attr_dir =
7035                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7036                         c->Request.Timeout = 0;
7037                         c->Request.CDB[0] = BMIC_READ;
7038                         c->Request.CDB[1] = 0;
7039                         c->Request.CDB[2] = 0;
7040                         c->Request.CDB[3] = 0;
7041                         c->Request.CDB[4] = 0;
7042                         c->Request.CDB[5] = 0;
7043                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
7044                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7045                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7046                         c->Request.CDB[9] = 0;
7047                         break;
7048                 default:
7049                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
7050                         BUG();
7051                         return -1;
7052                 }
7053         } else if (cmd_type == TYPE_MSG) {
7054                 switch (cmd) {
7055
7056                 case  HPSA_PHYS_TARGET_RESET:
7057                         c->Request.CDBLen = 16;
7058                         c->Request.type_attr_dir =
7059                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7060                         c->Request.Timeout = 0; /* Don't time out */
7061                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7062                         c->Request.CDB[0] = HPSA_RESET;
7063                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
7064                         /* Physical target reset needs no control bytes 4-7*/
7065                         c->Request.CDB[4] = 0x00;
7066                         c->Request.CDB[5] = 0x00;
7067                         c->Request.CDB[6] = 0x00;
7068                         c->Request.CDB[7] = 0x00;
7069                         break;
7070                 case  HPSA_DEVICE_RESET_MSG:
7071                         c->Request.CDBLen = 16;
7072                         c->Request.type_attr_dir =
7073                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7074                         c->Request.Timeout = 0; /* Don't time out */
7075                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7076                         c->Request.CDB[0] =  cmd;
7077                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
7078                         /* If bytes 4-7 are zero, it means reset the */
7079                         /* LunID device */
7080                         c->Request.CDB[4] = 0x00;
7081                         c->Request.CDB[5] = 0x00;
7082                         c->Request.CDB[6] = 0x00;
7083                         c->Request.CDB[7] = 0x00;
7084                         break;
7085                 case  HPSA_ABORT_MSG:
7086                         memcpy(&tag, buff, sizeof(tag));
7087                         dev_dbg(&h->pdev->dev,
7088                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
7089                                 tag, c->Header.tag);
7090                         c->Request.CDBLen = 16;
7091                         c->Request.type_attr_dir =
7092                                         TYPE_ATTR_DIR(cmd_type,
7093                                                 ATTR_SIMPLE, XFER_WRITE);
7094                         c->Request.Timeout = 0; /* Don't time out */
7095                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
7096                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
7097                         c->Request.CDB[2] = 0x00; /* reserved */
7098                         c->Request.CDB[3] = 0x00; /* reserved */
7099                         /* Tag to abort goes in CDB[4]-CDB[11] */
7100                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
7101                         c->Request.CDB[12] = 0x00; /* reserved */
7102                         c->Request.CDB[13] = 0x00; /* reserved */
7103                         c->Request.CDB[14] = 0x00; /* reserved */
7104                         c->Request.CDB[15] = 0x00; /* reserved */
7105                 break;
7106                 default:
7107                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
7108                                 cmd);
7109                         BUG();
7110                 }
7111         } else {
7112                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
7113                 BUG();
7114         }
7115
7116         switch (GET_DIR(c->Request.type_attr_dir)) {
7117         case XFER_READ:
7118                 pci_dir = PCI_DMA_FROMDEVICE;
7119                 break;
7120         case XFER_WRITE:
7121                 pci_dir = PCI_DMA_TODEVICE;
7122                 break;
7123         case XFER_NONE:
7124                 pci_dir = PCI_DMA_NONE;
7125                 break;
7126         default:
7127                 pci_dir = PCI_DMA_BIDIRECTIONAL;
7128         }
7129         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7130                 return -1;
7131         return 0;
7132 }
7133
7134 /*
7135  * Map (physical) PCI mem into (virtual) kernel space
7136  */
7137 static void __iomem *remap_pci_mem(ulong base, ulong size)
7138 {
7139         ulong page_base = ((ulong) base) & PAGE_MASK;
7140         ulong page_offs = ((ulong) base) - page_base;
7141         void __iomem *page_remapped = ioremap_nocache(page_base,
7142                 page_offs + size);
7143
7144         return page_remapped ? (page_remapped + page_offs) : NULL;
7145 }
7146
7147 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
7148 {
7149         return h->access.command_completed(h, q);
7150 }
7151
7152 static inline bool interrupt_pending(struct ctlr_info *h)
7153 {
7154         return h->access.intr_pending(h);
7155 }
7156
7157 static inline long interrupt_not_for_us(struct ctlr_info *h)
7158 {
7159         return (h->access.intr_pending(h) == 0) ||
7160                 (h->interrupts_enabled == 0);
7161 }
7162
7163 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7164         u32 raw_tag)
7165 {
7166         if (unlikely(tag_index >= h->nr_cmds)) {
7167                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7168                 return 1;
7169         }
7170         return 0;
7171 }
7172
7173 static inline void finish_cmd(struct CommandList *c)
7174 {
7175         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
7176         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7177                         || c->cmd_type == CMD_IOACCEL2))
7178                 complete_scsi_command(c);
7179         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
7180                 complete(c->waiting);
7181 }
7182
7183 /* process completion of an indexed ("direct lookup") command */
7184 static inline void process_indexed_cmd(struct ctlr_info *h,
7185         u32 raw_tag)
7186 {
7187         u32 tag_index;
7188         struct CommandList *c;
7189
7190         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
7191         if (!bad_tag(h, tag_index, raw_tag)) {
7192                 c = h->cmd_pool + tag_index;
7193                 finish_cmd(c);
7194         }
7195 }
7196
7197 /* Some controllers, like p400, will give us one interrupt
7198  * after a soft reset, even if we turned interrupts off.
7199  * Only need to check for this in the hpsa_xxx_discard_completions
7200  * functions.
7201  */
7202 static int ignore_bogus_interrupt(struct ctlr_info *h)
7203 {
7204         if (likely(!reset_devices))
7205                 return 0;
7206
7207         if (likely(h->interrupts_enabled))
7208                 return 0;
7209
7210         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7211                 "(known firmware bug.)  Ignoring.\n");
7212
7213         return 1;
7214 }
7215
7216 /*
7217  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7218  * Relies on (h-q[x] == x) being true for x such that
7219  * 0 <= x < MAX_REPLY_QUEUES.
7220  */
7221 static struct ctlr_info *queue_to_hba(u8 *queue)
7222 {
7223         return container_of((queue - *queue), struct ctlr_info, q[0]);
7224 }
7225
7226 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7227 {
7228         struct ctlr_info *h = queue_to_hba(queue);
7229         u8 q = *(u8 *) queue;
7230         u32 raw_tag;
7231
7232         if (ignore_bogus_interrupt(h))
7233                 return IRQ_NONE;
7234
7235         if (interrupt_not_for_us(h))
7236                 return IRQ_NONE;
7237         h->last_intr_timestamp = get_jiffies_64();
7238         while (interrupt_pending(h)) {
7239                 raw_tag = get_next_completion(h, q);
7240                 while (raw_tag != FIFO_EMPTY)
7241                         raw_tag = next_command(h, q);
7242         }
7243         return IRQ_HANDLED;
7244 }
7245
7246 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7247 {
7248         struct ctlr_info *h = queue_to_hba(queue);
7249         u32 raw_tag;
7250         u8 q = *(u8 *) queue;
7251
7252         if (ignore_bogus_interrupt(h))
7253                 return IRQ_NONE;
7254
7255         h->last_intr_timestamp = get_jiffies_64();
7256         raw_tag = get_next_completion(h, q);
7257         while (raw_tag != FIFO_EMPTY)
7258                 raw_tag = next_command(h, q);
7259         return IRQ_HANDLED;
7260 }
7261
7262 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7263 {
7264         struct ctlr_info *h = queue_to_hba((u8 *) queue);
7265         u32 raw_tag;
7266         u8 q = *(u8 *) queue;
7267
7268         if (interrupt_not_for_us(h))
7269                 return IRQ_NONE;
7270         h->last_intr_timestamp = get_jiffies_64();
7271         while (interrupt_pending(h)) {
7272                 raw_tag = get_next_completion(h, q);
7273                 while (raw_tag != FIFO_EMPTY) {
7274                         process_indexed_cmd(h, raw_tag);
7275                         raw_tag = next_command(h, q);
7276                 }
7277         }
7278         return IRQ_HANDLED;
7279 }
7280
7281 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7282 {
7283         struct ctlr_info *h = queue_to_hba(queue);
7284         u32 raw_tag;
7285         u8 q = *(u8 *) queue;
7286
7287         h->last_intr_timestamp = get_jiffies_64();
7288         raw_tag = get_next_completion(h, q);
7289         while (raw_tag != FIFO_EMPTY) {
7290                 process_indexed_cmd(h, raw_tag);
7291                 raw_tag = next_command(h, q);
7292         }
7293         return IRQ_HANDLED;
7294 }
7295
7296 /* Send a message CDB to the firmware. Careful, this only works
7297  * in simple mode, not performant mode due to the tag lookup.
7298  * We only ever use this immediately after a controller reset.
7299  */
7300 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7301                         unsigned char type)
7302 {
7303         struct Command {
7304                 struct CommandListHeader CommandHeader;
7305                 struct RequestBlock Request;
7306                 struct ErrDescriptor ErrorDescriptor;
7307         };
7308         struct Command *cmd;
7309         static const size_t cmd_sz = sizeof(*cmd) +
7310                                         sizeof(cmd->ErrorDescriptor);
7311         dma_addr_t paddr64;
7312         __le32 paddr32;
7313         u32 tag;
7314         void __iomem *vaddr;
7315         int i, err;
7316
7317         vaddr = pci_ioremap_bar(pdev, 0);
7318         if (vaddr == NULL)
7319                 return -ENOMEM;
7320
7321         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7322          * CCISS commands, so they must be allocated from the lower 4GiB of
7323          * memory.
7324          */
7325         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7326         if (err) {
7327                 iounmap(vaddr);
7328                 return err;
7329         }
7330
7331         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7332         if (cmd == NULL) {
7333                 iounmap(vaddr);
7334                 return -ENOMEM;
7335         }
7336
7337         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7338          * although there's no guarantee, we assume that the address is at
7339          * least 4-byte aligned (most likely, it's page-aligned).
7340          */
7341         paddr32 = cpu_to_le32(paddr64);
7342
7343         cmd->CommandHeader.ReplyQueue = 0;
7344         cmd->CommandHeader.SGList = 0;
7345         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7346         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7347         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7348
7349         cmd->Request.CDBLen = 16;
7350         cmd->Request.type_attr_dir =
7351                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7352         cmd->Request.Timeout = 0; /* Don't time out */
7353         cmd->Request.CDB[0] = opcode;
7354         cmd->Request.CDB[1] = type;
7355         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7356         cmd->ErrorDescriptor.Addr =
7357                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7358         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7359
7360         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7361
7362         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7363                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7364                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7365                         break;
7366                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7367         }
7368
7369         iounmap(vaddr);
7370
7371         /* we leak the DMA buffer here ... no choice since the controller could
7372          *  still complete the command.
7373          */
7374         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7375                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7376                         opcode, type);
7377                 return -ETIMEDOUT;
7378         }
7379
7380         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7381
7382         if (tag & HPSA_ERROR_BIT) {
7383                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7384                         opcode, type);
7385                 return -EIO;
7386         }
7387
7388         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7389                 opcode, type);
7390         return 0;
7391 }
7392
7393 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7394
7395 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7396         void __iomem *vaddr, u32 use_doorbell)
7397 {
7398
7399         if (use_doorbell) {
7400                 /* For everything after the P600, the PCI power state method
7401                  * of resetting the controller doesn't work, so we have this
7402                  * other way using the doorbell register.
7403                  */
7404                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7405                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7406
7407                 /* PMC hardware guys tell us we need a 10 second delay after
7408                  * doorbell reset and before any attempt to talk to the board
7409                  * at all to ensure that this actually works and doesn't fall
7410                  * over in some weird corner cases.
7411                  */
7412                 msleep(10000);
7413         } else { /* Try to do it the PCI power state way */
7414
7415                 /* Quoting from the Open CISS Specification: "The Power
7416                  * Management Control/Status Register (CSR) controls the power
7417                  * state of the device.  The normal operating state is D0,
7418                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7419                  * the controller, place the interface device in D3 then to D0,
7420                  * this causes a secondary PCI reset which will reset the
7421                  * controller." */
7422
7423                 int rc = 0;
7424
7425                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7426
7427                 /* enter the D3hot power management state */
7428                 rc = pci_set_power_state(pdev, PCI_D3hot);
7429                 if (rc)
7430                         return rc;
7431
7432                 msleep(500);
7433
7434                 /* enter the D0 power management state */
7435                 rc = pci_set_power_state(pdev, PCI_D0);
7436                 if (rc)
7437                         return rc;
7438
7439                 /*
7440                  * The P600 requires a small delay when changing states.
7441                  * Otherwise we may think the board did not reset and we bail.
7442                  * This for kdump only and is particular to the P600.
7443                  */
7444                 msleep(500);
7445         }
7446         return 0;
7447 }
7448
7449 static void init_driver_version(char *driver_version, int len)
7450 {
7451         memset(driver_version, 0, len);
7452         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7453 }
7454
7455 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7456 {
7457         char *driver_version;
7458         int i, size = sizeof(cfgtable->driver_version);
7459
7460         driver_version = kmalloc(size, GFP_KERNEL);
7461         if (!driver_version)
7462                 return -ENOMEM;
7463
7464         init_driver_version(driver_version, size);
7465         for (i = 0; i < size; i++)
7466                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7467         kfree(driver_version);
7468         return 0;
7469 }
7470
7471 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7472                                           unsigned char *driver_ver)
7473 {
7474         int i;
7475
7476         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7477                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7478 }
7479
7480 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7481 {
7482
7483         char *driver_ver, *old_driver_ver;
7484         int rc, size = sizeof(cfgtable->driver_version);
7485
7486         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7487         if (!old_driver_ver)
7488                 return -ENOMEM;
7489         driver_ver = old_driver_ver + size;
7490
7491         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7492          * should have been changed, otherwise we know the reset failed.
7493          */
7494         init_driver_version(old_driver_ver, size);
7495         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7496         rc = !memcmp(driver_ver, old_driver_ver, size);
7497         kfree(old_driver_ver);
7498         return rc;
7499 }
7500 /* This does a hard reset of the controller using PCI power management
7501  * states or the using the doorbell register.
7502  */
7503 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7504 {
7505         u64 cfg_offset;
7506         u32 cfg_base_addr;
7507         u64 cfg_base_addr_index;
7508         void __iomem *vaddr;
7509         unsigned long paddr;
7510         u32 misc_fw_support;
7511         int rc;
7512         struct CfgTable __iomem *cfgtable;
7513         u32 use_doorbell;
7514         u16 command_register;
7515
7516         /* For controllers as old as the P600, this is very nearly
7517          * the same thing as
7518          *
7519          * pci_save_state(pci_dev);
7520          * pci_set_power_state(pci_dev, PCI_D3hot);
7521          * pci_set_power_state(pci_dev, PCI_D0);
7522          * pci_restore_state(pci_dev);
7523          *
7524          * For controllers newer than the P600, the pci power state
7525          * method of resetting doesn't work so we have another way
7526          * using the doorbell register.
7527          */
7528
7529         if (!ctlr_is_resettable(board_id)) {
7530                 dev_warn(&pdev->dev, "Controller not resettable\n");
7531                 return -ENODEV;
7532         }
7533
7534         /* if controller is soft- but not hard resettable... */
7535         if (!ctlr_is_hard_resettable(board_id))
7536                 return -ENOTSUPP; /* try soft reset later. */
7537
7538         /* Save the PCI command register */
7539         pci_read_config_word(pdev, 4, &command_register);
7540         pci_save_state(pdev);
7541
7542         /* find the first memory BAR, so we can find the cfg table */
7543         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7544         if (rc)
7545                 return rc;
7546         vaddr = remap_pci_mem(paddr, 0x250);
7547         if (!vaddr)
7548                 return -ENOMEM;
7549
7550         /* find cfgtable in order to check if reset via doorbell is supported */
7551         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7552                                         &cfg_base_addr_index, &cfg_offset);
7553         if (rc)
7554                 goto unmap_vaddr;
7555         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7556                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7557         if (!cfgtable) {
7558                 rc = -ENOMEM;
7559                 goto unmap_vaddr;
7560         }
7561         rc = write_driver_ver_to_cfgtable(cfgtable);
7562         if (rc)
7563                 goto unmap_cfgtable;
7564
7565         /* If reset via doorbell register is supported, use that.
7566          * There are two such methods.  Favor the newest method.
7567          */
7568         misc_fw_support = readl(&cfgtable->misc_fw_support);
7569         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7570         if (use_doorbell) {
7571                 use_doorbell = DOORBELL_CTLR_RESET2;
7572         } else {
7573                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7574                 if (use_doorbell) {
7575                         dev_warn(&pdev->dev,
7576                                 "Soft reset not supported. Firmware update is required.\n");
7577                         rc = -ENOTSUPP; /* try soft reset */
7578                         goto unmap_cfgtable;
7579                 }
7580         }
7581
7582         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7583         if (rc)
7584                 goto unmap_cfgtable;
7585
7586         pci_restore_state(pdev);
7587         pci_write_config_word(pdev, 4, command_register);
7588
7589         /* Some devices (notably the HP Smart Array 5i Controller)
7590            need a little pause here */
7591         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7592
7593         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7594         if (rc) {
7595                 dev_warn(&pdev->dev,
7596                         "Failed waiting for board to become ready after hard reset\n");
7597                 goto unmap_cfgtable;
7598         }
7599
7600         rc = controller_reset_failed(vaddr);
7601         if (rc < 0)
7602                 goto unmap_cfgtable;
7603         if (rc) {
7604                 dev_warn(&pdev->dev, "Unable to successfully reset "
7605                         "controller. Will try soft reset.\n");
7606                 rc = -ENOTSUPP;
7607         } else {
7608                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7609         }
7610
7611 unmap_cfgtable:
7612         iounmap(cfgtable);
7613
7614 unmap_vaddr:
7615         iounmap(vaddr);
7616         return rc;
7617 }
7618
7619 /*
7620  *  We cannot read the structure directly, for portability we must use
7621  *   the io functions.
7622  *   This is for debug only.
7623  */
7624 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7625 {
7626 #ifdef HPSA_DEBUG
7627         int i;
7628         char temp_name[17];
7629
7630         dev_info(dev, "Controller Configuration information\n");
7631         dev_info(dev, "------------------------------------\n");
7632         for (i = 0; i < 4; i++)
7633                 temp_name[i] = readb(&(tb->Signature[i]));
7634         temp_name[4] = '\0';
7635         dev_info(dev, "   Signature = %s\n", temp_name);
7636         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7637         dev_info(dev, "   Transport methods supported = 0x%x\n",
7638                readl(&(tb->TransportSupport)));
7639         dev_info(dev, "   Transport methods active = 0x%x\n",
7640                readl(&(tb->TransportActive)));
7641         dev_info(dev, "   Requested transport Method = 0x%x\n",
7642                readl(&(tb->HostWrite.TransportRequest)));
7643         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7644                readl(&(tb->HostWrite.CoalIntDelay)));
7645         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7646                readl(&(tb->HostWrite.CoalIntCount)));
7647         dev_info(dev, "   Max outstanding commands = %d\n",
7648                readl(&(tb->CmdsOutMax)));
7649         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7650         for (i = 0; i < 16; i++)
7651                 temp_name[i] = readb(&(tb->ServerName[i]));
7652         temp_name[16] = '\0';
7653         dev_info(dev, "   Server Name = %s\n", temp_name);
7654         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7655                 readl(&(tb->HeartBeat)));
7656 #endif                          /* HPSA_DEBUG */
7657 }
7658
7659 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7660 {
7661         int i, offset, mem_type, bar_type;
7662
7663         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7664                 return 0;
7665         offset = 0;
7666         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7667                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7668                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7669                         offset += 4;
7670                 else {
7671                         mem_type = pci_resource_flags(pdev, i) &
7672                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7673                         switch (mem_type) {
7674                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7675                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7676                                 offset += 4;    /* 32 bit */
7677                                 break;
7678                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7679                                 offset += 8;
7680                                 break;
7681                         default:        /* reserved in PCI 2.2 */
7682                                 dev_warn(&pdev->dev,
7683                                        "base address is invalid\n");
7684                                 return -1;
7685                                 break;
7686                         }
7687                 }
7688                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7689                         return i + 1;
7690         }
7691         return -1;
7692 }
7693
7694 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7695 {
7696         pci_free_irq_vectors(h->pdev);
7697         h->msix_vectors = 0;
7698 }
7699
7700 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7701  * controllers that are capable. If not, we use legacy INTx mode.
7702  */
7703 static int hpsa_interrupt_mode(struct ctlr_info *h)
7704 {
7705         unsigned int flags = PCI_IRQ_LEGACY;
7706         int ret;
7707
7708         /* Some boards advertise MSI but don't really support it */
7709         switch (h->board_id) {
7710         case 0x40700E11:
7711         case 0x40800E11:
7712         case 0x40820E11:
7713         case 0x40830E11:
7714                 break;
7715         default:
7716                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7717                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7718                 if (ret > 0) {
7719                         h->msix_vectors = ret;
7720                         return 0;
7721                 }
7722
7723                 flags |= PCI_IRQ_MSI;
7724                 break;
7725         }
7726
7727         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7728         if (ret < 0)
7729                 return ret;
7730         return 0;
7731 }
7732
7733 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7734 {
7735         int i;
7736         u32 subsystem_vendor_id, subsystem_device_id;
7737
7738         subsystem_vendor_id = pdev->subsystem_vendor;
7739         subsystem_device_id = pdev->subsystem_device;
7740         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7741                     subsystem_vendor_id;
7742
7743         for (i = 0; i < ARRAY_SIZE(products); i++)
7744                 if (*board_id == products[i].board_id)
7745                         return i;
7746
7747         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7748                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7749                 !hpsa_allow_any) {
7750                 dev_warn(&pdev->dev, "unrecognized board ID: "
7751                         "0x%08x, ignoring.\n", *board_id);
7752                         return -ENODEV;
7753         }
7754         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7755 }
7756
7757 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7758                                     unsigned long *memory_bar)
7759 {
7760         int i;
7761
7762         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7763                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7764                         /* addressing mode bits already removed */
7765                         *memory_bar = pci_resource_start(pdev, i);
7766                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7767                                 *memory_bar);
7768                         return 0;
7769                 }
7770         dev_warn(&pdev->dev, "no memory BAR found\n");
7771         return -ENODEV;
7772 }
7773
7774 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7775                                      int wait_for_ready)
7776 {
7777         int i, iterations;
7778         u32 scratchpad;
7779         if (wait_for_ready)
7780                 iterations = HPSA_BOARD_READY_ITERATIONS;
7781         else
7782                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7783
7784         for (i = 0; i < iterations; i++) {
7785                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7786                 if (wait_for_ready) {
7787                         if (scratchpad == HPSA_FIRMWARE_READY)
7788                                 return 0;
7789                 } else {
7790                         if (scratchpad != HPSA_FIRMWARE_READY)
7791                                 return 0;
7792                 }
7793                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7794         }
7795         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7796         return -ENODEV;
7797 }
7798
7799 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7800                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7801                                u64 *cfg_offset)
7802 {
7803         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7804         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7805         *cfg_base_addr &= (u32) 0x0000ffff;
7806         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7807         if (*cfg_base_addr_index == -1) {
7808                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7809                 return -ENODEV;
7810         }
7811         return 0;
7812 }
7813
7814 static void hpsa_free_cfgtables(struct ctlr_info *h)
7815 {
7816         if (h->transtable) {
7817                 iounmap(h->transtable);
7818                 h->transtable = NULL;
7819         }
7820         if (h->cfgtable) {
7821                 iounmap(h->cfgtable);
7822                 h->cfgtable = NULL;
7823         }
7824 }
7825
7826 /* Find and map CISS config table and transfer table
7827 + * several items must be unmapped (freed) later
7828 + * */
7829 static int hpsa_find_cfgtables(struct ctlr_info *h)
7830 {
7831         u64 cfg_offset;
7832         u32 cfg_base_addr;
7833         u64 cfg_base_addr_index;
7834         u32 trans_offset;
7835         int rc;
7836
7837         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7838                 &cfg_base_addr_index, &cfg_offset);
7839         if (rc)
7840                 return rc;
7841         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7842                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7843         if (!h->cfgtable) {
7844                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7845                 return -ENOMEM;
7846         }
7847         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7848         if (rc)
7849                 return rc;
7850         /* Find performant mode table. */
7851         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7852         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7853                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7854                                 sizeof(*h->transtable));
7855         if (!h->transtable) {
7856                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7857                 hpsa_free_cfgtables(h);
7858                 return -ENOMEM;
7859         }
7860         return 0;
7861 }
7862
7863 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7864 {
7865 #define MIN_MAX_COMMANDS 16
7866         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7867
7868         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7869
7870         /* Limit commands in memory limited kdump scenario. */
7871         if (reset_devices && h->max_commands > 32)
7872                 h->max_commands = 32;
7873
7874         if (h->max_commands < MIN_MAX_COMMANDS) {
7875                 dev_warn(&h->pdev->dev,
7876                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7877                         h->max_commands,
7878                         MIN_MAX_COMMANDS);
7879                 h->max_commands = MIN_MAX_COMMANDS;
7880         }
7881 }
7882
7883 /* If the controller reports that the total max sg entries is greater than 512,
7884  * then we know that chained SG blocks work.  (Original smart arrays did not
7885  * support chained SG blocks and would return zero for max sg entries.)
7886  */
7887 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7888 {
7889         return h->maxsgentries > 512;
7890 }
7891
7892 /* Interrogate the hardware for some limits:
7893  * max commands, max SG elements without chaining, and with chaining,
7894  * SG chain block size, etc.
7895  */
7896 static void hpsa_find_board_params(struct ctlr_info *h)
7897 {
7898         hpsa_get_max_perf_mode_cmds(h);
7899         h->nr_cmds = h->max_commands;
7900         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7901         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7902         if (hpsa_supports_chained_sg_blocks(h)) {
7903                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7904                 h->max_cmd_sg_entries = 32;
7905                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7906                 h->maxsgentries--; /* save one for chain pointer */
7907         } else {
7908                 /*
7909                  * Original smart arrays supported at most 31 s/g entries
7910                  * embedded inline in the command (trying to use more
7911                  * would lock up the controller)
7912                  */
7913                 h->max_cmd_sg_entries = 31;
7914                 h->maxsgentries = 31; /* default to traditional values */
7915                 h->chainsize = 0;
7916         }
7917
7918         /* Find out what task management functions are supported and cache */
7919         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7920         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7921                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7922         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7923                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7924         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7925                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7926 }
7927
7928 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7929 {
7930         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7931                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7932                 return false;
7933         }
7934         return true;
7935 }
7936
7937 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7938 {
7939         u32 driver_support;
7940
7941         driver_support = readl(&(h->cfgtable->driver_support));
7942         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7943 #ifdef CONFIG_X86
7944         driver_support |= ENABLE_SCSI_PREFETCH;
7945 #endif
7946         driver_support |= ENABLE_UNIT_ATTN;
7947         writel(driver_support, &(h->cfgtable->driver_support));
7948 }
7949
7950 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7951  * in a prefetch beyond physical memory.
7952  */
7953 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7954 {
7955         u32 dma_prefetch;
7956
7957         if (h->board_id != 0x3225103C)
7958                 return;
7959         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7960         dma_prefetch |= 0x8000;
7961         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7962 }
7963
7964 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7965 {
7966         int i;
7967         u32 doorbell_value;
7968         unsigned long flags;
7969         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7970         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7971                 spin_lock_irqsave(&h->lock, flags);
7972                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7973                 spin_unlock_irqrestore(&h->lock, flags);
7974                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7975                         goto done;
7976                 /* delay and try again */
7977                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7978         }
7979         return -ENODEV;
7980 done:
7981         return 0;
7982 }
7983
7984 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7985 {
7986         int i;
7987         u32 doorbell_value;
7988         unsigned long flags;
7989
7990         /* under certain very rare conditions, this can take awhile.
7991          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7992          * as we enter this code.)
7993          */
7994         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7995                 if (h->remove_in_progress)
7996                         goto done;
7997                 spin_lock_irqsave(&h->lock, flags);
7998                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7999                 spin_unlock_irqrestore(&h->lock, flags);
8000                 if (!(doorbell_value & CFGTBL_ChangeReq))
8001                         goto done;
8002                 /* delay and try again */
8003                 msleep(MODE_CHANGE_WAIT_INTERVAL);
8004         }
8005         return -ENODEV;
8006 done:
8007         return 0;
8008 }
8009
8010 /* return -ENODEV or other reason on error, 0 on success */
8011 static int hpsa_enter_simple_mode(struct ctlr_info *h)
8012 {
8013         u32 trans_support;
8014
8015         trans_support = readl(&(h->cfgtable->TransportSupport));
8016         if (!(trans_support & SIMPLE_MODE))
8017                 return -ENOTSUPP;
8018
8019         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
8020
8021         /* Update the field, and then ring the doorbell */
8022         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
8023         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8024         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8025         if (hpsa_wait_for_mode_change_ack(h))
8026                 goto error;
8027         print_cfg_table(&h->pdev->dev, h->cfgtable);
8028         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
8029                 goto error;
8030         h->transMethod = CFGTBL_Trans_Simple;
8031         return 0;
8032 error:
8033         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
8034         return -ENODEV;
8035 }
8036
8037 /* free items allocated or mapped by hpsa_pci_init */
8038 static void hpsa_free_pci_init(struct ctlr_info *h)
8039 {
8040         hpsa_free_cfgtables(h);                 /* pci_init 4 */
8041         iounmap(h->vaddr);                      /* pci_init 3 */
8042         h->vaddr = NULL;
8043         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8044         /*
8045          * call pci_disable_device before pci_release_regions per
8046          * Documentation/PCI/pci.txt
8047          */
8048         pci_disable_device(h->pdev);            /* pci_init 1 */
8049         pci_release_regions(h->pdev);           /* pci_init 2 */
8050 }
8051
8052 /* several items must be freed later */
8053 static int hpsa_pci_init(struct ctlr_info *h)
8054 {
8055         int prod_index, err;
8056
8057         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
8058         if (prod_index < 0)
8059                 return prod_index;
8060         h->product_name = products[prod_index].product_name;
8061         h->access = *(products[prod_index].access);
8062
8063         h->needs_abort_tags_swizzled =
8064                 ctlr_needs_abort_tags_swizzled(h->board_id);
8065
8066         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
8067                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
8068
8069         err = pci_enable_device(h->pdev);
8070         if (err) {
8071                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
8072                 pci_disable_device(h->pdev);
8073                 return err;
8074         }
8075
8076         err = pci_request_regions(h->pdev, HPSA);
8077         if (err) {
8078                 dev_err(&h->pdev->dev,
8079                         "failed to obtain PCI resources\n");
8080                 pci_disable_device(h->pdev);
8081                 return err;
8082         }
8083
8084         pci_set_master(h->pdev);
8085
8086         err = hpsa_interrupt_mode(h);
8087         if (err)
8088                 goto clean1;
8089         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
8090         if (err)
8091                 goto clean2;    /* intmode+region, pci */
8092         h->vaddr = remap_pci_mem(h->paddr, 0x250);
8093         if (!h->vaddr) {
8094                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
8095                 err = -ENOMEM;
8096                 goto clean2;    /* intmode+region, pci */
8097         }
8098         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8099         if (err)
8100                 goto clean3;    /* vaddr, intmode+region, pci */
8101         err = hpsa_find_cfgtables(h);
8102         if (err)
8103                 goto clean3;    /* vaddr, intmode+region, pci */
8104         hpsa_find_board_params(h);
8105
8106         if (!hpsa_CISS_signature_present(h)) {
8107                 err = -ENODEV;
8108                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
8109         }
8110         hpsa_set_driver_support_bits(h);
8111         hpsa_p600_dma_prefetch_quirk(h);
8112         err = hpsa_enter_simple_mode(h);
8113         if (err)
8114                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
8115         return 0;
8116
8117 clean4: /* cfgtables, vaddr, intmode+region, pci */
8118         hpsa_free_cfgtables(h);
8119 clean3: /* vaddr, intmode+region, pci */
8120         iounmap(h->vaddr);
8121         h->vaddr = NULL;
8122 clean2: /* intmode+region, pci */
8123         hpsa_disable_interrupt_mode(h);
8124 clean1:
8125         /*
8126          * call pci_disable_device before pci_release_regions per
8127          * Documentation/PCI/pci.txt
8128          */
8129         pci_disable_device(h->pdev);
8130         pci_release_regions(h->pdev);
8131         return err;
8132 }
8133
8134 static void hpsa_hba_inquiry(struct ctlr_info *h)
8135 {
8136         int rc;
8137
8138 #define HBA_INQUIRY_BYTE_COUNT 64
8139         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8140         if (!h->hba_inquiry_data)
8141                 return;
8142         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8143                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8144         if (rc != 0) {
8145                 kfree(h->hba_inquiry_data);
8146                 h->hba_inquiry_data = NULL;
8147         }
8148 }
8149
8150 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
8151 {
8152         int rc, i;
8153         void __iomem *vaddr;
8154
8155         if (!reset_devices)
8156                 return 0;
8157
8158         /* kdump kernel is loading, we don't know in which state is
8159          * the pci interface. The dev->enable_cnt is equal zero
8160          * so we call enable+disable, wait a while and switch it on.
8161          */
8162         rc = pci_enable_device(pdev);
8163         if (rc) {
8164                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8165                 return -ENODEV;
8166         }
8167         pci_disable_device(pdev);
8168         msleep(260);                    /* a randomly chosen number */
8169         rc = pci_enable_device(pdev);
8170         if (rc) {
8171                 dev_warn(&pdev->dev, "failed to enable device.\n");
8172                 return -ENODEV;
8173         }
8174
8175         pci_set_master(pdev);
8176
8177         vaddr = pci_ioremap_bar(pdev, 0);
8178         if (vaddr == NULL) {
8179                 rc = -ENOMEM;
8180                 goto out_disable;
8181         }
8182         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8183         iounmap(vaddr);
8184
8185         /* Reset the controller with a PCI power-cycle or via doorbell */
8186         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8187
8188         /* -ENOTSUPP here means we cannot reset the controller
8189          * but it's already (and still) up and running in
8190          * "performant mode".  Or, it might be 640x, which can't reset
8191          * due to concerns about shared bbwc between 6402/6404 pair.
8192          */
8193         if (rc)
8194                 goto out_disable;
8195
8196         /* Now try to get the controller to respond to a no-op */
8197         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8198         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8199                 if (hpsa_noop(pdev) == 0)
8200                         break;
8201                 else
8202                         dev_warn(&pdev->dev, "no-op failed%s\n",
8203                                         (i < 11 ? "; re-trying" : ""));
8204         }
8205
8206 out_disable:
8207
8208         pci_disable_device(pdev);
8209         return rc;
8210 }
8211
8212 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8213 {
8214         kfree(h->cmd_pool_bits);
8215         h->cmd_pool_bits = NULL;
8216         if (h->cmd_pool) {
8217                 pci_free_consistent(h->pdev,
8218                                 h->nr_cmds * sizeof(struct CommandList),
8219                                 h->cmd_pool,
8220                                 h->cmd_pool_dhandle);
8221                 h->cmd_pool = NULL;
8222                 h->cmd_pool_dhandle = 0;
8223         }
8224         if (h->errinfo_pool) {
8225                 pci_free_consistent(h->pdev,
8226                                 h->nr_cmds * sizeof(struct ErrorInfo),
8227                                 h->errinfo_pool,
8228                                 h->errinfo_pool_dhandle);
8229                 h->errinfo_pool = NULL;
8230                 h->errinfo_pool_dhandle = 0;
8231         }
8232 }
8233
8234 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8235 {
8236         h->cmd_pool_bits = kzalloc(
8237                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8238                 sizeof(unsigned long), GFP_KERNEL);
8239         h->cmd_pool = pci_alloc_consistent(h->pdev,
8240                     h->nr_cmds * sizeof(*h->cmd_pool),
8241                     &(h->cmd_pool_dhandle));
8242         h->errinfo_pool = pci_alloc_consistent(h->pdev,
8243                     h->nr_cmds * sizeof(*h->errinfo_pool),
8244                     &(h->errinfo_pool_dhandle));
8245         if ((h->cmd_pool_bits == NULL)
8246             || (h->cmd_pool == NULL)
8247             || (h->errinfo_pool == NULL)) {
8248                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8249                 goto clean_up;
8250         }
8251         hpsa_preinitialize_commands(h);
8252         return 0;
8253 clean_up:
8254         hpsa_free_cmd_pool(h);
8255         return -ENOMEM;
8256 }
8257
8258 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8259 static void hpsa_free_irqs(struct ctlr_info *h)
8260 {
8261         int i;
8262
8263         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8264                 /* Single reply queue, only one irq to free */
8265                 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
8266                 h->q[h->intr_mode] = 0;
8267                 return;
8268         }
8269
8270         for (i = 0; i < h->msix_vectors; i++) {
8271                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8272                 h->q[i] = 0;
8273         }
8274         for (; i < MAX_REPLY_QUEUES; i++)
8275                 h->q[i] = 0;
8276 }
8277
8278 /* returns 0 on success; cleans up and returns -Enn on error */
8279 static int hpsa_request_irqs(struct ctlr_info *h,
8280         irqreturn_t (*msixhandler)(int, void *),
8281         irqreturn_t (*intxhandler)(int, void *))
8282 {
8283         int rc, i;
8284
8285         /*
8286          * initialize h->q[x] = x so that interrupt handlers know which
8287          * queue to process.
8288          */
8289         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8290                 h->q[i] = (u8) i;
8291
8292         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8293                 /* If performant mode and MSI-X, use multiple reply queues */
8294                 for (i = 0; i < h->msix_vectors; i++) {
8295                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8296                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8297                                         0, h->intrname[i],
8298                                         &h->q[i]);
8299                         if (rc) {
8300                                 int j;
8301
8302                                 dev_err(&h->pdev->dev,
8303                                         "failed to get irq %d for %s\n",
8304                                        pci_irq_vector(h->pdev, i), h->devname);
8305                                 for (j = 0; j < i; j++) {
8306                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8307                                         h->q[j] = 0;
8308                                 }
8309                                 for (; j < MAX_REPLY_QUEUES; j++)
8310                                         h->q[j] = 0;
8311                                 return rc;
8312                         }
8313                 }
8314         } else {
8315                 /* Use single reply pool */
8316                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8317                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8318                                 h->msix_vectors ? "x" : "");
8319                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8320                                 msixhandler, 0,
8321                                 h->intrname[0],
8322                                 &h->q[h->intr_mode]);
8323                 } else {
8324                         sprintf(h->intrname[h->intr_mode],
8325                                 "%s-intx", h->devname);
8326                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8327                                 intxhandler, IRQF_SHARED,
8328                                 h->intrname[0],
8329                                 &h->q[h->intr_mode]);
8330                 }
8331         }
8332         if (rc) {
8333                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8334                        pci_irq_vector(h->pdev, 0), h->devname);
8335                 hpsa_free_irqs(h);
8336                 return -ENODEV;
8337         }
8338         return 0;
8339 }
8340
8341 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8342 {
8343         int rc;
8344         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8345
8346         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8347         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8348         if (rc) {
8349                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8350                 return rc;
8351         }
8352
8353         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8354         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8355         if (rc) {
8356                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8357                         "after soft reset.\n");
8358                 return rc;
8359         }
8360
8361         return 0;
8362 }
8363
8364 static void hpsa_free_reply_queues(struct ctlr_info *h)
8365 {
8366         int i;
8367
8368         for (i = 0; i < h->nreply_queues; i++) {
8369                 if (!h->reply_queue[i].head)
8370                         continue;
8371                 pci_free_consistent(h->pdev,
8372                                         h->reply_queue_size,
8373                                         h->reply_queue[i].head,
8374                                         h->reply_queue[i].busaddr);
8375                 h->reply_queue[i].head = NULL;
8376                 h->reply_queue[i].busaddr = 0;
8377         }
8378         h->reply_queue_size = 0;
8379 }
8380
8381 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8382 {
8383         hpsa_free_performant_mode(h);           /* init_one 7 */
8384         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8385         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8386         hpsa_free_irqs(h);                      /* init_one 4 */
8387         scsi_host_put(h->scsi_host);            /* init_one 3 */
8388         h->scsi_host = NULL;                    /* init_one 3 */
8389         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8390         free_percpu(h->lockup_detected);        /* init_one 2 */
8391         h->lockup_detected = NULL;              /* init_one 2 */
8392         if (h->resubmit_wq) {
8393                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8394                 h->resubmit_wq = NULL;
8395         }
8396         if (h->rescan_ctlr_wq) {
8397                 destroy_workqueue(h->rescan_ctlr_wq);
8398                 h->rescan_ctlr_wq = NULL;
8399         }
8400         kfree(h);                               /* init_one 1 */
8401 }
8402
8403 /* Called when controller lockup detected. */
8404 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8405 {
8406         int i, refcount;
8407         struct CommandList *c;
8408         int failcount = 0;
8409
8410         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8411         for (i = 0; i < h->nr_cmds; i++) {
8412                 c = h->cmd_pool + i;
8413                 refcount = atomic_inc_return(&c->refcount);
8414                 if (refcount > 1) {
8415                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8416                         finish_cmd(c);
8417                         atomic_dec(&h->commands_outstanding);
8418                         failcount++;
8419                 }
8420                 cmd_free(h, c);
8421         }
8422         dev_warn(&h->pdev->dev,
8423                 "failed %d commands in fail_all\n", failcount);
8424 }
8425
8426 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8427 {
8428         int cpu;
8429
8430         for_each_online_cpu(cpu) {
8431                 u32 *lockup_detected;
8432                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8433                 *lockup_detected = value;
8434         }
8435         wmb(); /* be sure the per-cpu variables are out to memory */
8436 }
8437
8438 static void controller_lockup_detected(struct ctlr_info *h)
8439 {
8440         unsigned long flags;
8441         u32 lockup_detected;
8442
8443         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8444         spin_lock_irqsave(&h->lock, flags);
8445         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8446         if (!lockup_detected) {
8447                 /* no heartbeat, but controller gave us a zero. */
8448                 dev_warn(&h->pdev->dev,
8449                         "lockup detected after %d but scratchpad register is zero\n",
8450                         h->heartbeat_sample_interval / HZ);
8451                 lockup_detected = 0xffffffff;
8452         }
8453         set_lockup_detected_for_all_cpus(h, lockup_detected);
8454         spin_unlock_irqrestore(&h->lock, flags);
8455         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8456                         lockup_detected, h->heartbeat_sample_interval / HZ);
8457         pci_disable_device(h->pdev);
8458         fail_all_outstanding_cmds(h);
8459 }
8460
8461 static int detect_controller_lockup(struct ctlr_info *h)
8462 {
8463         u64 now;
8464         u32 heartbeat;
8465         unsigned long flags;
8466
8467         now = get_jiffies_64();
8468         /* If we've received an interrupt recently, we're ok. */
8469         if (time_after64(h->last_intr_timestamp +
8470                                 (h->heartbeat_sample_interval), now))
8471                 return false;
8472
8473         /*
8474          * If we've already checked the heartbeat recently, we're ok.
8475          * This could happen if someone sends us a signal. We
8476          * otherwise don't care about signals in this thread.
8477          */
8478         if (time_after64(h->last_heartbeat_timestamp +
8479                                 (h->heartbeat_sample_interval), now))
8480                 return false;
8481
8482         /* If heartbeat has not changed since we last looked, we're not ok. */
8483         spin_lock_irqsave(&h->lock, flags);
8484         heartbeat = readl(&h->cfgtable->HeartBeat);
8485         spin_unlock_irqrestore(&h->lock, flags);
8486         if (h->last_heartbeat == heartbeat) {
8487                 controller_lockup_detected(h);
8488                 return true;
8489         }
8490
8491         /* We're ok. */
8492         h->last_heartbeat = heartbeat;
8493         h->last_heartbeat_timestamp = now;
8494         return false;
8495 }
8496
8497 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8498 {
8499         int i;
8500         char *event_type;
8501
8502         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8503                 return;
8504
8505         /* Ask the controller to clear the events we're handling. */
8506         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8507                         | CFGTBL_Trans_io_accel2)) &&
8508                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8509                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8510
8511                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8512                         event_type = "state change";
8513                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8514                         event_type = "configuration change";
8515                 /* Stop sending new RAID offload reqs via the IO accelerator */
8516                 scsi_block_requests(h->scsi_host);
8517                 for (i = 0; i < h->ndevices; i++) {
8518                         h->dev[i]->offload_enabled = 0;
8519                         h->dev[i]->offload_to_be_enabled = 0;
8520                 }
8521                 hpsa_drain_accel_commands(h);
8522                 /* Set 'accelerator path config change' bit */
8523                 dev_warn(&h->pdev->dev,
8524                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8525                         h->events, event_type);
8526                 writel(h->events, &(h->cfgtable->clear_event_notify));
8527                 /* Set the "clear event notify field update" bit 6 */
8528                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8529                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8530                 hpsa_wait_for_clear_event_notify_ack(h);
8531                 scsi_unblock_requests(h->scsi_host);
8532         } else {
8533                 /* Acknowledge controller notification events. */
8534                 writel(h->events, &(h->cfgtable->clear_event_notify));
8535                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8536                 hpsa_wait_for_clear_event_notify_ack(h);
8537 #if 0
8538                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8539                 hpsa_wait_for_mode_change_ack(h);
8540 #endif
8541         }
8542         return;
8543 }
8544
8545 /* Check a register on the controller to see if there are configuration
8546  * changes (added/changed/removed logical drives, etc.) which mean that
8547  * we should rescan the controller for devices.
8548  * Also check flag for driver-initiated rescan.
8549  */
8550 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8551 {
8552         if (h->drv_req_rescan) {
8553                 h->drv_req_rescan = 0;
8554                 return 1;
8555         }
8556
8557         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8558                 return 0;
8559
8560         h->events = readl(&(h->cfgtable->event_notify));
8561         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8562 }
8563
8564 /*
8565  * Check if any of the offline devices have become ready
8566  */
8567 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8568 {
8569         unsigned long flags;
8570         struct offline_device_entry *d;
8571         struct list_head *this, *tmp;
8572
8573         spin_lock_irqsave(&h->offline_device_lock, flags);
8574         list_for_each_safe(this, tmp, &h->offline_device_list) {
8575                 d = list_entry(this, struct offline_device_entry,
8576                                 offline_list);
8577                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8578                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8579                         spin_lock_irqsave(&h->offline_device_lock, flags);
8580                         list_del(&d->offline_list);
8581                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8582                         return 1;
8583                 }
8584                 spin_lock_irqsave(&h->offline_device_lock, flags);
8585         }
8586         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8587         return 0;
8588 }
8589
8590 static int hpsa_luns_changed(struct ctlr_info *h)
8591 {
8592         int rc = 1; /* assume there are changes */
8593         struct ReportLUNdata *logdev = NULL;
8594
8595         /* if we can't find out if lun data has changed,
8596          * assume that it has.
8597          */
8598
8599         if (!h->lastlogicals)
8600                 goto out;
8601
8602         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8603         if (!logdev) {
8604                 dev_warn(&h->pdev->dev,
8605                         "Out of memory, can't track lun changes.\n");
8606                 goto out;
8607         }
8608         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8609                 dev_warn(&h->pdev->dev,
8610                         "report luns failed, can't track lun changes.\n");
8611                 goto out;
8612         }
8613         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8614                 dev_info(&h->pdev->dev,
8615                         "Lun changes detected.\n");
8616                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8617                 goto out;
8618         } else
8619                 rc = 0; /* no changes detected. */
8620 out:
8621         kfree(logdev);
8622         return rc;
8623 }
8624
8625 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8626 {
8627         unsigned long flags;
8628         struct ctlr_info *h = container_of(to_delayed_work(work),
8629                                         struct ctlr_info, rescan_ctlr_work);
8630
8631
8632         if (h->remove_in_progress)
8633                 return;
8634
8635         /*
8636          * Do the scan after the reset
8637          */
8638         if (h->reset_in_progress) {
8639                 h->drv_req_rescan = 1;
8640                 return;
8641         }
8642
8643         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8644                 scsi_host_get(h->scsi_host);
8645                 hpsa_ack_ctlr_events(h);
8646                 hpsa_scan_start(h->scsi_host);
8647                 scsi_host_put(h->scsi_host);
8648         } else if (h->discovery_polling) {
8649                 hpsa_disable_rld_caching(h);
8650                 if (hpsa_luns_changed(h)) {
8651                         struct Scsi_Host *sh = NULL;
8652
8653                         dev_info(&h->pdev->dev,
8654                                 "driver discovery polling rescan.\n");
8655                         sh = scsi_host_get(h->scsi_host);
8656                         if (sh != NULL) {
8657                                 hpsa_scan_start(sh);
8658                                 scsi_host_put(sh);
8659                         }
8660                 }
8661         }
8662         spin_lock_irqsave(&h->lock, flags);
8663         if (!h->remove_in_progress)
8664                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8665                                 h->heartbeat_sample_interval);
8666         spin_unlock_irqrestore(&h->lock, flags);
8667 }
8668
8669 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8670 {
8671         unsigned long flags;
8672         struct ctlr_info *h = container_of(to_delayed_work(work),
8673                                         struct ctlr_info, monitor_ctlr_work);
8674
8675         detect_controller_lockup(h);
8676         if (lockup_detected(h))
8677                 return;
8678
8679         spin_lock_irqsave(&h->lock, flags);
8680         if (!h->remove_in_progress)
8681                 schedule_delayed_work(&h->monitor_ctlr_work,
8682                                 h->heartbeat_sample_interval);
8683         spin_unlock_irqrestore(&h->lock, flags);
8684 }
8685
8686 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8687                                                 char *name)
8688 {
8689         struct workqueue_struct *wq = NULL;
8690
8691         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8692         if (!wq)
8693                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8694
8695         return wq;
8696 }
8697
8698 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8699 {
8700         int dac, rc;
8701         struct ctlr_info *h;
8702         int try_soft_reset = 0;
8703         unsigned long flags;
8704         u32 board_id;
8705
8706         if (number_of_controllers == 0)
8707                 printk(KERN_INFO DRIVER_NAME "\n");
8708
8709         rc = hpsa_lookup_board_id(pdev, &board_id);
8710         if (rc < 0) {
8711                 dev_warn(&pdev->dev, "Board ID not found\n");
8712                 return rc;
8713         }
8714
8715         rc = hpsa_init_reset_devices(pdev, board_id);
8716         if (rc) {
8717                 if (rc != -ENOTSUPP)
8718                         return rc;
8719                 /* If the reset fails in a particular way (it has no way to do
8720                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8721                  * a soft reset once we get the controller configured up to the
8722                  * point that it can accept a command.
8723                  */
8724                 try_soft_reset = 1;
8725                 rc = 0;
8726         }
8727
8728 reinit_after_soft_reset:
8729
8730         /* Command structures must be aligned on a 32-byte boundary because
8731          * the 5 lower bits of the address are used by the hardware. and by
8732          * the driver.  See comments in hpsa.h for more info.
8733          */
8734         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8735         h = kzalloc(sizeof(*h), GFP_KERNEL);
8736         if (!h) {
8737                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8738                 return -ENOMEM;
8739         }
8740
8741         h->pdev = pdev;
8742
8743         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8744         INIT_LIST_HEAD(&h->offline_device_list);
8745         spin_lock_init(&h->lock);
8746         spin_lock_init(&h->offline_device_lock);
8747         spin_lock_init(&h->scan_lock);
8748         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8749         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8750
8751         /* Allocate and clear per-cpu variable lockup_detected */
8752         h->lockup_detected = alloc_percpu(u32);
8753         if (!h->lockup_detected) {
8754                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8755                 rc = -ENOMEM;
8756                 goto clean1;    /* aer/h */
8757         }
8758         set_lockup_detected_for_all_cpus(h, 0);
8759
8760         rc = hpsa_pci_init(h);
8761         if (rc)
8762                 goto clean2;    /* lu, aer/h */
8763
8764         /* relies on h-> settings made by hpsa_pci_init, including
8765          * interrupt_mode h->intr */
8766         rc = hpsa_scsi_host_alloc(h);
8767         if (rc)
8768                 goto clean2_5;  /* pci, lu, aer/h */
8769
8770         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8771         h->ctlr = number_of_controllers;
8772         number_of_controllers++;
8773
8774         /* configure PCI DMA stuff */
8775         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8776         if (rc == 0) {
8777                 dac = 1;
8778         } else {
8779                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8780                 if (rc == 0) {
8781                         dac = 0;
8782                 } else {
8783                         dev_err(&pdev->dev, "no suitable DMA available\n");
8784                         goto clean3;    /* shost, pci, lu, aer/h */
8785                 }
8786         }
8787
8788         /* make sure the board interrupts are off */
8789         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8790
8791         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8792         if (rc)
8793                 goto clean3;    /* shost, pci, lu, aer/h */
8794         rc = hpsa_alloc_cmd_pool(h);
8795         if (rc)
8796                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8797         rc = hpsa_alloc_sg_chain_blocks(h);
8798         if (rc)
8799                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8800         init_waitqueue_head(&h->scan_wait_queue);
8801         init_waitqueue_head(&h->abort_cmd_wait_queue);
8802         init_waitqueue_head(&h->event_sync_wait_queue);
8803         mutex_init(&h->reset_mutex);
8804         h->scan_finished = 1; /* no scan currently in progress */
8805
8806         pci_set_drvdata(pdev, h);
8807         h->ndevices = 0;
8808
8809         spin_lock_init(&h->devlock);
8810         rc = hpsa_put_ctlr_into_performant_mode(h);
8811         if (rc)
8812                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8813
8814         /* create the resubmit workqueue */
8815         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8816         if (!h->rescan_ctlr_wq) {
8817                 rc = -ENOMEM;
8818                 goto clean7;
8819         }
8820
8821         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8822         if (!h->resubmit_wq) {
8823                 rc = -ENOMEM;
8824                 goto clean7;    /* aer/h */
8825         }
8826
8827         /*
8828          * At this point, the controller is ready to take commands.
8829          * Now, if reset_devices and the hard reset didn't work, try
8830          * the soft reset and see if that works.
8831          */
8832         if (try_soft_reset) {
8833
8834                 /* This is kind of gross.  We may or may not get a completion
8835                  * from the soft reset command, and if we do, then the value
8836                  * from the fifo may or may not be valid.  So, we wait 10 secs
8837                  * after the reset throwing away any completions we get during
8838                  * that time.  Unregister the interrupt handler and register
8839                  * fake ones to scoop up any residual completions.
8840                  */
8841                 spin_lock_irqsave(&h->lock, flags);
8842                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8843                 spin_unlock_irqrestore(&h->lock, flags);
8844                 hpsa_free_irqs(h);
8845                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8846                                         hpsa_intx_discard_completions);
8847                 if (rc) {
8848                         dev_warn(&h->pdev->dev,
8849                                 "Failed to request_irq after soft reset.\n");
8850                         /*
8851                          * cannot goto clean7 or free_irqs will be called
8852                          * again. Instead, do its work
8853                          */
8854                         hpsa_free_performant_mode(h);   /* clean7 */
8855                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8856                         hpsa_free_cmd_pool(h);          /* clean5 */
8857                         /*
8858                          * skip hpsa_free_irqs(h) clean4 since that
8859                          * was just called before request_irqs failed
8860                          */
8861                         goto clean3;
8862                 }
8863
8864                 rc = hpsa_kdump_soft_reset(h);
8865                 if (rc)
8866                         /* Neither hard nor soft reset worked, we're hosed. */
8867                         goto clean7;
8868
8869                 dev_info(&h->pdev->dev, "Board READY.\n");
8870                 dev_info(&h->pdev->dev,
8871                         "Waiting for stale completions to drain.\n");
8872                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8873                 msleep(10000);
8874                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8875
8876                 rc = controller_reset_failed(h->cfgtable);
8877                 if (rc)
8878                         dev_info(&h->pdev->dev,
8879                                 "Soft reset appears to have failed.\n");
8880
8881                 /* since the controller's reset, we have to go back and re-init
8882                  * everything.  Easiest to just forget what we've done and do it
8883                  * all over again.
8884                  */
8885                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8886                 try_soft_reset = 0;
8887                 if (rc)
8888                         /* don't goto clean, we already unallocated */
8889                         return -ENODEV;
8890
8891                 goto reinit_after_soft_reset;
8892         }
8893
8894         /* Enable Accelerated IO path at driver layer */
8895         h->acciopath_status = 1;
8896         /* Disable discovery polling.*/
8897         h->discovery_polling = 0;
8898
8899
8900         /* Turn the interrupts on so we can service requests */
8901         h->access.set_intr_mask(h, HPSA_INTR_ON);
8902
8903         hpsa_hba_inquiry(h);
8904
8905         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8906         if (!h->lastlogicals)
8907                 dev_info(&h->pdev->dev,
8908                         "Can't track change to report lun data\n");
8909
8910         /* hook into SCSI subsystem */
8911         rc = hpsa_scsi_add_host(h);
8912         if (rc)
8913                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8914
8915         /* Monitor the controller for firmware lockups */
8916         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8917         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8918         schedule_delayed_work(&h->monitor_ctlr_work,
8919                                 h->heartbeat_sample_interval);
8920         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8921         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8922                                 h->heartbeat_sample_interval);
8923         return 0;
8924
8925 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8926         hpsa_free_performant_mode(h);
8927         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8928 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8929         hpsa_free_sg_chain_blocks(h);
8930 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8931         hpsa_free_cmd_pool(h);
8932 clean4: /* irq, shost, pci, lu, aer/h */
8933         hpsa_free_irqs(h);
8934 clean3: /* shost, pci, lu, aer/h */
8935         scsi_host_put(h->scsi_host);
8936         h->scsi_host = NULL;
8937 clean2_5: /* pci, lu, aer/h */
8938         hpsa_free_pci_init(h);
8939 clean2: /* lu, aer/h */
8940         if (h->lockup_detected) {
8941                 free_percpu(h->lockup_detected);
8942                 h->lockup_detected = NULL;
8943         }
8944 clean1: /* wq/aer/h */
8945         if (h->resubmit_wq) {
8946                 destroy_workqueue(h->resubmit_wq);
8947                 h->resubmit_wq = NULL;
8948         }
8949         if (h->rescan_ctlr_wq) {
8950                 destroy_workqueue(h->rescan_ctlr_wq);
8951                 h->rescan_ctlr_wq = NULL;
8952         }
8953         kfree(h);
8954         return rc;
8955 }
8956
8957 static void hpsa_flush_cache(struct ctlr_info *h)
8958 {
8959         char *flush_buf;
8960         struct CommandList *c;
8961         int rc;
8962
8963         if (unlikely(lockup_detected(h)))
8964                 return;
8965         flush_buf = kzalloc(4, GFP_KERNEL);
8966         if (!flush_buf)
8967                 return;
8968
8969         c = cmd_alloc(h);
8970
8971         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8972                 RAID_CTLR_LUNID, TYPE_CMD)) {
8973                 goto out;
8974         }
8975         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8976                                         PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8977         if (rc)
8978                 goto out;
8979         if (c->err_info->CommandStatus != 0)
8980 out:
8981                 dev_warn(&h->pdev->dev,
8982                         "error flushing cache on controller\n");
8983         cmd_free(h, c);
8984         kfree(flush_buf);
8985 }
8986
8987 /* Make controller gather fresh report lun data each time we
8988  * send down a report luns request
8989  */
8990 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8991 {
8992         u32 *options;
8993         struct CommandList *c;
8994         int rc;
8995
8996         /* Don't bother trying to set diag options if locked up */
8997         if (unlikely(h->lockup_detected))
8998                 return;
8999
9000         options = kzalloc(sizeof(*options), GFP_KERNEL);
9001         if (!options) {
9002                 dev_err(&h->pdev->dev,
9003                         "Error: failed to disable rld caching, during alloc.\n");
9004                 return;
9005         }
9006
9007         c = cmd_alloc(h);
9008
9009         /* first, get the current diag options settings */
9010         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9011                 RAID_CTLR_LUNID, TYPE_CMD))
9012                 goto errout;
9013
9014         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9015                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9016         if ((rc != 0) || (c->err_info->CommandStatus != 0))
9017                 goto errout;
9018
9019         /* Now, set the bit for disabling the RLD caching */
9020         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
9021
9022         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
9023                 RAID_CTLR_LUNID, TYPE_CMD))
9024                 goto errout;
9025
9026         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9027                 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
9028         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9029                 goto errout;
9030
9031         /* Now verify that it got set: */
9032         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9033                 RAID_CTLR_LUNID, TYPE_CMD))
9034                 goto errout;
9035
9036         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9037                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9038         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9039                 goto errout;
9040
9041         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9042                 goto out;
9043
9044 errout:
9045         dev_err(&h->pdev->dev,
9046                         "Error: failed to disable report lun data caching.\n");
9047 out:
9048         cmd_free(h, c);
9049         kfree(options);
9050 }
9051
9052 static void hpsa_shutdown(struct pci_dev *pdev)
9053 {
9054         struct ctlr_info *h;
9055
9056         h = pci_get_drvdata(pdev);
9057         /* Turn board interrupts off  and send the flush cache command
9058          * sendcmd will turn off interrupt, and send the flush...
9059          * To write all data in the battery backed cache to disks
9060          */
9061         hpsa_flush_cache(h);
9062         h->access.set_intr_mask(h, HPSA_INTR_OFF);
9063         hpsa_free_irqs(h);                      /* init_one 4 */
9064         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
9065 }
9066
9067 static void hpsa_free_device_info(struct ctlr_info *h)
9068 {
9069         int i;
9070
9071         for (i = 0; i < h->ndevices; i++) {
9072                 kfree(h->dev[i]);
9073                 h->dev[i] = NULL;
9074         }
9075 }
9076
9077 static void hpsa_remove_one(struct pci_dev *pdev)
9078 {
9079         struct ctlr_info *h;
9080         unsigned long flags;
9081
9082         if (pci_get_drvdata(pdev) == NULL) {
9083                 dev_err(&pdev->dev, "unable to remove device\n");
9084                 return;
9085         }
9086         h = pci_get_drvdata(pdev);
9087
9088         /* Get rid of any controller monitoring work items */
9089         spin_lock_irqsave(&h->lock, flags);
9090         h->remove_in_progress = 1;
9091         spin_unlock_irqrestore(&h->lock, flags);
9092         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9093         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9094         destroy_workqueue(h->rescan_ctlr_wq);
9095         destroy_workqueue(h->resubmit_wq);
9096
9097         /*
9098          * Call before disabling interrupts.
9099          * scsi_remove_host can trigger I/O operations especially
9100          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9101          * operations which cannot complete and will hang the system.
9102          */
9103         if (h->scsi_host)
9104                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9105         /* includes hpsa_free_irqs - init_one 4 */
9106         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9107         hpsa_shutdown(pdev);
9108
9109         hpsa_free_device_info(h);               /* scan */
9110
9111         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9112         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9113         hpsa_free_ioaccel2_sg_chain_blocks(h);
9114         hpsa_free_performant_mode(h);                   /* init_one 7 */
9115         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9116         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9117         kfree(h->lastlogicals);
9118
9119         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9120
9121         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9122         h->scsi_host = NULL;                            /* init_one 3 */
9123
9124         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9125         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9126
9127         free_percpu(h->lockup_detected);                /* init_one 2 */
9128         h->lockup_detected = NULL;                      /* init_one 2 */
9129         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9130
9131         hpsa_delete_sas_host(h);
9132
9133         kfree(h);                                       /* init_one 1 */
9134 }
9135
9136 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9137         __attribute__((unused)) pm_message_t state)
9138 {
9139         return -ENOSYS;
9140 }
9141
9142 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9143 {
9144         return -ENOSYS;
9145 }
9146
9147 static struct pci_driver hpsa_pci_driver = {
9148         .name = HPSA,
9149         .probe = hpsa_init_one,
9150         .remove = hpsa_remove_one,
9151         .id_table = hpsa_pci_device_id, /* id_table */
9152         .shutdown = hpsa_shutdown,
9153         .suspend = hpsa_suspend,
9154         .resume = hpsa_resume,
9155 };
9156
9157 /* Fill in bucket_map[], given nsgs (the max number of
9158  * scatter gather elements supported) and bucket[],
9159  * which is an array of 8 integers.  The bucket[] array
9160  * contains 8 different DMA transfer sizes (in 16
9161  * byte increments) which the controller uses to fetch
9162  * commands.  This function fills in bucket_map[], which
9163  * maps a given number of scatter gather elements to one of
9164  * the 8 DMA transfer sizes.  The point of it is to allow the
9165  * controller to only do as much DMA as needed to fetch the
9166  * command, with the DMA transfer size encoded in the lower
9167  * bits of the command address.
9168  */
9169 static void  calc_bucket_map(int bucket[], int num_buckets,
9170         int nsgs, int min_blocks, u32 *bucket_map)
9171 {
9172         int i, j, b, size;
9173
9174         /* Note, bucket_map must have nsgs+1 entries. */
9175         for (i = 0; i <= nsgs; i++) {
9176                 /* Compute size of a command with i SG entries */
9177                 size = i + min_blocks;
9178                 b = num_buckets; /* Assume the biggest bucket */
9179                 /* Find the bucket that is just big enough */
9180                 for (j = 0; j < num_buckets; j++) {
9181                         if (bucket[j] >= size) {
9182                                 b = j;
9183                                 break;
9184                         }
9185                 }
9186                 /* for a command with i SG entries, use bucket b. */
9187                 bucket_map[i] = b;
9188         }
9189 }
9190
9191 /*
9192  * return -ENODEV on err, 0 on success (or no action)
9193  * allocates numerous items that must be freed later
9194  */
9195 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9196 {
9197         int i;
9198         unsigned long register_value;
9199         unsigned long transMethod = CFGTBL_Trans_Performant |
9200                         (trans_support & CFGTBL_Trans_use_short_tags) |
9201                                 CFGTBL_Trans_enable_directed_msix |
9202                         (trans_support & (CFGTBL_Trans_io_accel1 |
9203                                 CFGTBL_Trans_io_accel2));
9204         struct access_method access = SA5_performant_access;
9205
9206         /* This is a bit complicated.  There are 8 registers on
9207          * the controller which we write to to tell it 8 different
9208          * sizes of commands which there may be.  It's a way of
9209          * reducing the DMA done to fetch each command.  Encoded into
9210          * each command's tag are 3 bits which communicate to the controller
9211          * which of the eight sizes that command fits within.  The size of
9212          * each command depends on how many scatter gather entries there are.
9213          * Each SG entry requires 16 bytes.  The eight registers are programmed
9214          * with the number of 16-byte blocks a command of that size requires.
9215          * The smallest command possible requires 5 such 16 byte blocks.
9216          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9217          * blocks.  Note, this only extends to the SG entries contained
9218          * within the command block, and does not extend to chained blocks
9219          * of SG elements.   bft[] contains the eight values we write to
9220          * the registers.  They are not evenly distributed, but have more
9221          * sizes for small commands, and fewer sizes for larger commands.
9222          */
9223         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9224 #define MIN_IOACCEL2_BFT_ENTRY 5
9225 #define HPSA_IOACCEL2_HEADER_SZ 4
9226         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9227                         13, 14, 15, 16, 17, 18, 19,
9228                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9229         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9230         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9231         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9232                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9233         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9234         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9235         /*  5 = 1 s/g entry or 4k
9236          *  6 = 2 s/g entry or 8k
9237          *  8 = 4 s/g entry or 16k
9238          * 10 = 6 s/g entry or 24k
9239          */
9240
9241         /* If the controller supports either ioaccel method then
9242          * we can also use the RAID stack submit path that does not
9243          * perform the superfluous readl() after each command submission.
9244          */
9245         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9246                 access = SA5_performant_access_no_read;
9247
9248         /* Controller spec: zero out this buffer. */
9249         for (i = 0; i < h->nreply_queues; i++)
9250                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9251
9252         bft[7] = SG_ENTRIES_IN_CMD + 4;
9253         calc_bucket_map(bft, ARRAY_SIZE(bft),
9254                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9255         for (i = 0; i < 8; i++)
9256                 writel(bft[i], &h->transtable->BlockFetch[i]);
9257
9258         /* size of controller ring buffer */
9259         writel(h->max_commands, &h->transtable->RepQSize);
9260         writel(h->nreply_queues, &h->transtable->RepQCount);
9261         writel(0, &h->transtable->RepQCtrAddrLow32);
9262         writel(0, &h->transtable->RepQCtrAddrHigh32);
9263
9264         for (i = 0; i < h->nreply_queues; i++) {
9265                 writel(0, &h->transtable->RepQAddr[i].upper);
9266                 writel(h->reply_queue[i].busaddr,
9267                         &h->transtable->RepQAddr[i].lower);
9268         }
9269
9270         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9271         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9272         /*
9273          * enable outbound interrupt coalescing in accelerator mode;
9274          */
9275         if (trans_support & CFGTBL_Trans_io_accel1) {
9276                 access = SA5_ioaccel_mode1_access;
9277                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9278                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9279         } else {
9280                 if (trans_support & CFGTBL_Trans_io_accel2) {
9281                         access = SA5_ioaccel_mode2_access;
9282                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9283                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9284                 }
9285         }
9286         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9287         if (hpsa_wait_for_mode_change_ack(h)) {
9288                 dev_err(&h->pdev->dev,
9289                         "performant mode problem - doorbell timeout\n");
9290                 return -ENODEV;
9291         }
9292         register_value = readl(&(h->cfgtable->TransportActive));
9293         if (!(register_value & CFGTBL_Trans_Performant)) {
9294                 dev_err(&h->pdev->dev,
9295                         "performant mode problem - transport not active\n");
9296                 return -ENODEV;
9297         }
9298         /* Change the access methods to the performant access methods */
9299         h->access = access;
9300         h->transMethod = transMethod;
9301
9302         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9303                 (trans_support & CFGTBL_Trans_io_accel2)))
9304                 return 0;
9305
9306         if (trans_support & CFGTBL_Trans_io_accel1) {
9307                 /* Set up I/O accelerator mode */
9308                 for (i = 0; i < h->nreply_queues; i++) {
9309                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9310                         h->reply_queue[i].current_entry =
9311                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9312                 }
9313                 bft[7] = h->ioaccel_maxsg + 8;
9314                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9315                                 h->ioaccel1_blockFetchTable);
9316
9317                 /* initialize all reply queue entries to unused */
9318                 for (i = 0; i < h->nreply_queues; i++)
9319                         memset(h->reply_queue[i].head,
9320                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9321                                 h->reply_queue_size);
9322
9323                 /* set all the constant fields in the accelerator command
9324                  * frames once at init time to save CPU cycles later.
9325                  */
9326                 for (i = 0; i < h->nr_cmds; i++) {
9327                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9328
9329                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9330                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9331                                         (i * sizeof(struct ErrorInfo)));
9332                         cp->err_info_len = sizeof(struct ErrorInfo);
9333                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9334                         cp->host_context_flags =
9335                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9336                         cp->timeout_sec = 0;
9337                         cp->ReplyQueue = 0;
9338                         cp->tag =
9339                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9340                         cp->host_addr =
9341                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9342                                         (i * sizeof(struct io_accel1_cmd)));
9343                 }
9344         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9345                 u64 cfg_offset, cfg_base_addr_index;
9346                 u32 bft2_offset, cfg_base_addr;
9347                 int rc;
9348
9349                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9350                         &cfg_base_addr_index, &cfg_offset);
9351                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9352                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9353                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9354                                 4, h->ioaccel2_blockFetchTable);
9355                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9356                 BUILD_BUG_ON(offsetof(struct CfgTable,
9357                                 io_accel_request_size_offset) != 0xb8);
9358                 h->ioaccel2_bft2_regs =
9359                         remap_pci_mem(pci_resource_start(h->pdev,
9360                                         cfg_base_addr_index) +
9361                                         cfg_offset + bft2_offset,
9362                                         ARRAY_SIZE(bft2) *
9363                                         sizeof(*h->ioaccel2_bft2_regs));
9364                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9365                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9366         }
9367         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9368         if (hpsa_wait_for_mode_change_ack(h)) {
9369                 dev_err(&h->pdev->dev,
9370                         "performant mode problem - enabling ioaccel mode\n");
9371                 return -ENODEV;
9372         }
9373         return 0;
9374 }
9375
9376 /* Free ioaccel1 mode command blocks and block fetch table */
9377 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9378 {
9379         if (h->ioaccel_cmd_pool) {
9380                 pci_free_consistent(h->pdev,
9381                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9382                         h->ioaccel_cmd_pool,
9383                         h->ioaccel_cmd_pool_dhandle);
9384                 h->ioaccel_cmd_pool = NULL;
9385                 h->ioaccel_cmd_pool_dhandle = 0;
9386         }
9387         kfree(h->ioaccel1_blockFetchTable);
9388         h->ioaccel1_blockFetchTable = NULL;
9389 }
9390
9391 /* Allocate ioaccel1 mode command blocks and block fetch table */
9392 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9393 {
9394         h->ioaccel_maxsg =
9395                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9396         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9397                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9398
9399         /* Command structures must be aligned on a 128-byte boundary
9400          * because the 7 lower bits of the address are used by the
9401          * hardware.
9402          */
9403         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9404                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9405         h->ioaccel_cmd_pool =
9406                 pci_alloc_consistent(h->pdev,
9407                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9408                         &(h->ioaccel_cmd_pool_dhandle));
9409
9410         h->ioaccel1_blockFetchTable =
9411                 kmalloc(((h->ioaccel_maxsg + 1) *
9412                                 sizeof(u32)), GFP_KERNEL);
9413
9414         if ((h->ioaccel_cmd_pool == NULL) ||
9415                 (h->ioaccel1_blockFetchTable == NULL))
9416                 goto clean_up;
9417
9418         memset(h->ioaccel_cmd_pool, 0,
9419                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9420         return 0;
9421
9422 clean_up:
9423         hpsa_free_ioaccel1_cmd_and_bft(h);
9424         return -ENOMEM;
9425 }
9426
9427 /* Free ioaccel2 mode command blocks and block fetch table */
9428 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9429 {
9430         hpsa_free_ioaccel2_sg_chain_blocks(h);
9431
9432         if (h->ioaccel2_cmd_pool) {
9433                 pci_free_consistent(h->pdev,
9434                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9435                         h->ioaccel2_cmd_pool,
9436                         h->ioaccel2_cmd_pool_dhandle);
9437                 h->ioaccel2_cmd_pool = NULL;
9438                 h->ioaccel2_cmd_pool_dhandle = 0;
9439         }
9440         kfree(h->ioaccel2_blockFetchTable);
9441         h->ioaccel2_blockFetchTable = NULL;
9442 }
9443
9444 /* Allocate ioaccel2 mode command blocks and block fetch table */
9445 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9446 {
9447         int rc;
9448
9449         /* Allocate ioaccel2 mode command blocks and block fetch table */
9450
9451         h->ioaccel_maxsg =
9452                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9453         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9454                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9455
9456         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9457                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9458         h->ioaccel2_cmd_pool =
9459                 pci_alloc_consistent(h->pdev,
9460                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9461                         &(h->ioaccel2_cmd_pool_dhandle));
9462
9463         h->ioaccel2_blockFetchTable =
9464                 kmalloc(((h->ioaccel_maxsg + 1) *
9465                                 sizeof(u32)), GFP_KERNEL);
9466
9467         if ((h->ioaccel2_cmd_pool == NULL) ||
9468                 (h->ioaccel2_blockFetchTable == NULL)) {
9469                 rc = -ENOMEM;
9470                 goto clean_up;
9471         }
9472
9473         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9474         if (rc)
9475                 goto clean_up;
9476
9477         memset(h->ioaccel2_cmd_pool, 0,
9478                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9479         return 0;
9480
9481 clean_up:
9482         hpsa_free_ioaccel2_cmd_and_bft(h);
9483         return rc;
9484 }
9485
9486 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9487 static void hpsa_free_performant_mode(struct ctlr_info *h)
9488 {
9489         kfree(h->blockFetchTable);
9490         h->blockFetchTable = NULL;
9491         hpsa_free_reply_queues(h);
9492         hpsa_free_ioaccel1_cmd_and_bft(h);
9493         hpsa_free_ioaccel2_cmd_and_bft(h);
9494 }
9495
9496 /* return -ENODEV on error, 0 on success (or no action)
9497  * allocates numerous items that must be freed later
9498  */
9499 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9500 {
9501         u32 trans_support;
9502         unsigned long transMethod = CFGTBL_Trans_Performant |
9503                                         CFGTBL_Trans_use_short_tags;
9504         int i, rc;
9505
9506         if (hpsa_simple_mode)
9507                 return 0;
9508
9509         trans_support = readl(&(h->cfgtable->TransportSupport));
9510         if (!(trans_support & PERFORMANT_MODE))
9511                 return 0;
9512
9513         /* Check for I/O accelerator mode support */
9514         if (trans_support & CFGTBL_Trans_io_accel1) {
9515                 transMethod |= CFGTBL_Trans_io_accel1 |
9516                                 CFGTBL_Trans_enable_directed_msix;
9517                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9518                 if (rc)
9519                         return rc;
9520         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9521                 transMethod |= CFGTBL_Trans_io_accel2 |
9522                                 CFGTBL_Trans_enable_directed_msix;
9523                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9524                 if (rc)
9525                         return rc;
9526         }
9527
9528         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9529         hpsa_get_max_perf_mode_cmds(h);
9530         /* Performant mode ring buffer and supporting data structures */
9531         h->reply_queue_size = h->max_commands * sizeof(u64);
9532
9533         for (i = 0; i < h->nreply_queues; i++) {
9534                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9535                                                 h->reply_queue_size,
9536                                                 &(h->reply_queue[i].busaddr));
9537                 if (!h->reply_queue[i].head) {
9538                         rc = -ENOMEM;
9539                         goto clean1;    /* rq, ioaccel */
9540                 }
9541                 h->reply_queue[i].size = h->max_commands;
9542                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9543                 h->reply_queue[i].current_entry = 0;
9544         }
9545
9546         /* Need a block fetch table for performant mode */
9547         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9548                                 sizeof(u32)), GFP_KERNEL);
9549         if (!h->blockFetchTable) {
9550                 rc = -ENOMEM;
9551                 goto clean1;    /* rq, ioaccel */
9552         }
9553
9554         rc = hpsa_enter_performant_mode(h, trans_support);
9555         if (rc)
9556                 goto clean2;    /* bft, rq, ioaccel */
9557         return 0;
9558
9559 clean2: /* bft, rq, ioaccel */
9560         kfree(h->blockFetchTable);
9561         h->blockFetchTable = NULL;
9562 clean1: /* rq, ioaccel */
9563         hpsa_free_reply_queues(h);
9564         hpsa_free_ioaccel1_cmd_and_bft(h);
9565         hpsa_free_ioaccel2_cmd_and_bft(h);
9566         return rc;
9567 }
9568
9569 static int is_accelerated_cmd(struct CommandList *c)
9570 {
9571         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9572 }
9573
9574 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9575 {
9576         struct CommandList *c = NULL;
9577         int i, accel_cmds_out;
9578         int refcount;
9579
9580         do { /* wait for all outstanding ioaccel commands to drain out */
9581                 accel_cmds_out = 0;
9582                 for (i = 0; i < h->nr_cmds; i++) {
9583                         c = h->cmd_pool + i;
9584                         refcount = atomic_inc_return(&c->refcount);
9585                         if (refcount > 1) /* Command is allocated */
9586                                 accel_cmds_out += is_accelerated_cmd(c);
9587                         cmd_free(h, c);
9588                 }
9589                 if (accel_cmds_out <= 0)
9590                         break;
9591                 msleep(100);
9592         } while (1);
9593 }
9594
9595 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9596                                 struct hpsa_sas_port *hpsa_sas_port)
9597 {
9598         struct hpsa_sas_phy *hpsa_sas_phy;
9599         struct sas_phy *phy;
9600
9601         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9602         if (!hpsa_sas_phy)
9603                 return NULL;
9604
9605         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9606                 hpsa_sas_port->next_phy_index);
9607         if (!phy) {
9608                 kfree(hpsa_sas_phy);
9609                 return NULL;
9610         }
9611
9612         hpsa_sas_port->next_phy_index++;
9613         hpsa_sas_phy->phy = phy;
9614         hpsa_sas_phy->parent_port = hpsa_sas_port;
9615
9616         return hpsa_sas_phy;
9617 }
9618
9619 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9620 {
9621         struct sas_phy *phy = hpsa_sas_phy->phy;
9622
9623         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9624         sas_phy_free(phy);
9625         if (hpsa_sas_phy->added_to_port)
9626                 list_del(&hpsa_sas_phy->phy_list_entry);
9627         kfree(hpsa_sas_phy);
9628 }
9629
9630 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9631 {
9632         int rc;
9633         struct hpsa_sas_port *hpsa_sas_port;
9634         struct sas_phy *phy;
9635         struct sas_identify *identify;
9636
9637         hpsa_sas_port = hpsa_sas_phy->parent_port;
9638         phy = hpsa_sas_phy->phy;
9639
9640         identify = &phy->identify;
9641         memset(identify, 0, sizeof(*identify));
9642         identify->sas_address = hpsa_sas_port->sas_address;
9643         identify->device_type = SAS_END_DEVICE;
9644         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9645         identify->target_port_protocols = SAS_PROTOCOL_STP;
9646         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9647         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9648         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9649         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9650         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9651
9652         rc = sas_phy_add(hpsa_sas_phy->phy);
9653         if (rc)
9654                 return rc;
9655
9656         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9657         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9658                         &hpsa_sas_port->phy_list_head);
9659         hpsa_sas_phy->added_to_port = true;
9660
9661         return 0;
9662 }
9663
9664 static int
9665         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9666                                 struct sas_rphy *rphy)
9667 {
9668         struct sas_identify *identify;
9669
9670         identify = &rphy->identify;
9671         identify->sas_address = hpsa_sas_port->sas_address;
9672         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9673         identify->target_port_protocols = SAS_PROTOCOL_STP;
9674
9675         return sas_rphy_add(rphy);
9676 }
9677
9678 static struct hpsa_sas_port
9679         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9680                                 u64 sas_address)
9681 {
9682         int rc;
9683         struct hpsa_sas_port *hpsa_sas_port;
9684         struct sas_port *port;
9685
9686         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9687         if (!hpsa_sas_port)
9688                 return NULL;
9689
9690         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9691         hpsa_sas_port->parent_node = hpsa_sas_node;
9692
9693         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9694         if (!port)
9695                 goto free_hpsa_port;
9696
9697         rc = sas_port_add(port);
9698         if (rc)
9699                 goto free_sas_port;
9700
9701         hpsa_sas_port->port = port;
9702         hpsa_sas_port->sas_address = sas_address;
9703         list_add_tail(&hpsa_sas_port->port_list_entry,
9704                         &hpsa_sas_node->port_list_head);
9705
9706         return hpsa_sas_port;
9707
9708 free_sas_port:
9709         sas_port_free(port);
9710 free_hpsa_port:
9711         kfree(hpsa_sas_port);
9712
9713         return NULL;
9714 }
9715
9716 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9717 {
9718         struct hpsa_sas_phy *hpsa_sas_phy;
9719         struct hpsa_sas_phy *next;
9720
9721         list_for_each_entry_safe(hpsa_sas_phy, next,
9722                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9723                 hpsa_free_sas_phy(hpsa_sas_phy);
9724
9725         sas_port_delete(hpsa_sas_port->port);
9726         list_del(&hpsa_sas_port->port_list_entry);
9727         kfree(hpsa_sas_port);
9728 }
9729
9730 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9731 {
9732         struct hpsa_sas_node *hpsa_sas_node;
9733
9734         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9735         if (hpsa_sas_node) {
9736                 hpsa_sas_node->parent_dev = parent_dev;
9737                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9738         }
9739
9740         return hpsa_sas_node;
9741 }
9742
9743 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9744 {
9745         struct hpsa_sas_port *hpsa_sas_port;
9746         struct hpsa_sas_port *next;
9747
9748         if (!hpsa_sas_node)
9749                 return;
9750
9751         list_for_each_entry_safe(hpsa_sas_port, next,
9752                         &hpsa_sas_node->port_list_head, port_list_entry)
9753                 hpsa_free_sas_port(hpsa_sas_port);
9754
9755         kfree(hpsa_sas_node);
9756 }
9757
9758 static struct hpsa_scsi_dev_t
9759         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9760                                         struct sas_rphy *rphy)
9761 {
9762         int i;
9763         struct hpsa_scsi_dev_t *device;
9764
9765         for (i = 0; i < h->ndevices; i++) {
9766                 device = h->dev[i];
9767                 if (!device->sas_port)
9768                         continue;
9769                 if (device->sas_port->rphy == rphy)
9770                         return device;
9771         }
9772
9773         return NULL;
9774 }
9775
9776 static int hpsa_add_sas_host(struct ctlr_info *h)
9777 {
9778         int rc;
9779         struct device *parent_dev;
9780         struct hpsa_sas_node *hpsa_sas_node;
9781         struct hpsa_sas_port *hpsa_sas_port;
9782         struct hpsa_sas_phy *hpsa_sas_phy;
9783
9784         parent_dev = &h->scsi_host->shost_gendev;
9785
9786         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9787         if (!hpsa_sas_node)
9788                 return -ENOMEM;
9789
9790         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9791         if (!hpsa_sas_port) {
9792                 rc = -ENODEV;
9793                 goto free_sas_node;
9794         }
9795
9796         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9797         if (!hpsa_sas_phy) {
9798                 rc = -ENODEV;
9799                 goto free_sas_port;
9800         }
9801
9802         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9803         if (rc)
9804                 goto free_sas_phy;
9805
9806         h->sas_host = hpsa_sas_node;
9807
9808         return 0;
9809
9810 free_sas_phy:
9811         hpsa_free_sas_phy(hpsa_sas_phy);
9812 free_sas_port:
9813         hpsa_free_sas_port(hpsa_sas_port);
9814 free_sas_node:
9815         hpsa_free_sas_node(hpsa_sas_node);
9816
9817         return rc;
9818 }
9819
9820 static void hpsa_delete_sas_host(struct ctlr_info *h)
9821 {
9822         hpsa_free_sas_node(h->sas_host);
9823 }
9824
9825 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9826                                 struct hpsa_scsi_dev_t *device)
9827 {
9828         int rc;
9829         struct hpsa_sas_port *hpsa_sas_port;
9830         struct sas_rphy *rphy;
9831
9832         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9833         if (!hpsa_sas_port)
9834                 return -ENOMEM;
9835
9836         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9837         if (!rphy) {
9838                 rc = -ENODEV;
9839                 goto free_sas_port;
9840         }
9841
9842         hpsa_sas_port->rphy = rphy;
9843         device->sas_port = hpsa_sas_port;
9844
9845         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9846         if (rc)
9847                 goto free_sas_port;
9848
9849         return 0;
9850
9851 free_sas_port:
9852         hpsa_free_sas_port(hpsa_sas_port);
9853         device->sas_port = NULL;
9854
9855         return rc;
9856 }
9857
9858 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9859 {
9860         if (device->sas_port) {
9861                 hpsa_free_sas_port(device->sas_port);
9862                 device->sas_port = NULL;
9863         }
9864 }
9865
9866 static int
9867 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9868 {
9869         return 0;
9870 }
9871
9872 static int
9873 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9874 {
9875         *identifier = 0;
9876         return 0;
9877 }
9878
9879 static int
9880 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9881 {
9882         return -ENXIO;
9883 }
9884
9885 static int
9886 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9887 {
9888         return 0;
9889 }
9890
9891 static int
9892 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9893 {
9894         return 0;
9895 }
9896
9897 static int
9898 hpsa_sas_phy_setup(struct sas_phy *phy)
9899 {
9900         return 0;
9901 }
9902
9903 static void
9904 hpsa_sas_phy_release(struct sas_phy *phy)
9905 {
9906 }
9907
9908 static int
9909 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9910 {
9911         return -EINVAL;
9912 }
9913
9914 /* SMP = Serial Management Protocol */
9915 static int
9916 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9917 struct request *req)
9918 {
9919         return -EINVAL;
9920 }
9921
9922 static struct sas_function_template hpsa_sas_transport_functions = {
9923         .get_linkerrors = hpsa_sas_get_linkerrors,
9924         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9925         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9926         .phy_reset = hpsa_sas_phy_reset,
9927         .phy_enable = hpsa_sas_phy_enable,
9928         .phy_setup = hpsa_sas_phy_setup,
9929         .phy_release = hpsa_sas_phy_release,
9930         .set_phy_speed = hpsa_sas_phy_speed,
9931         .smp_handler = hpsa_sas_smp_handler,
9932 };
9933
9934 /*
9935  *  This is it.  Register the PCI driver information for the cards we control
9936  *  the OS will call our registered routines when it finds one of our cards.
9937  */
9938 static int __init hpsa_init(void)
9939 {
9940         int rc;
9941
9942         hpsa_sas_transport_template =
9943                 sas_attach_transport(&hpsa_sas_transport_functions);
9944         if (!hpsa_sas_transport_template)
9945                 return -ENODEV;
9946
9947         rc = pci_register_driver(&hpsa_pci_driver);
9948
9949         if (rc)
9950                 sas_release_transport(hpsa_sas_transport_template);
9951
9952         return rc;
9953 }
9954
9955 static void __exit hpsa_cleanup(void)
9956 {
9957         pci_unregister_driver(&hpsa_pci_driver);
9958         sas_release_transport(hpsa_sas_transport_template);
9959 }
9960
9961 static void __attribute__((unused)) verify_offsets(void)
9962 {
9963 #define VERIFY_OFFSET(member, offset) \
9964         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9965
9966         VERIFY_OFFSET(structure_size, 0);
9967         VERIFY_OFFSET(volume_blk_size, 4);
9968         VERIFY_OFFSET(volume_blk_cnt, 8);
9969         VERIFY_OFFSET(phys_blk_shift, 16);
9970         VERIFY_OFFSET(parity_rotation_shift, 17);
9971         VERIFY_OFFSET(strip_size, 18);
9972         VERIFY_OFFSET(disk_starting_blk, 20);
9973         VERIFY_OFFSET(disk_blk_cnt, 28);
9974         VERIFY_OFFSET(data_disks_per_row, 36);
9975         VERIFY_OFFSET(metadata_disks_per_row, 38);
9976         VERIFY_OFFSET(row_cnt, 40);
9977         VERIFY_OFFSET(layout_map_count, 42);
9978         VERIFY_OFFSET(flags, 44);
9979         VERIFY_OFFSET(dekindex, 46);
9980         /* VERIFY_OFFSET(reserved, 48 */
9981         VERIFY_OFFSET(data, 64);
9982
9983 #undef VERIFY_OFFSET
9984
9985 #define VERIFY_OFFSET(member, offset) \
9986         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9987
9988         VERIFY_OFFSET(IU_type, 0);
9989         VERIFY_OFFSET(direction, 1);
9990         VERIFY_OFFSET(reply_queue, 2);
9991         /* VERIFY_OFFSET(reserved1, 3);  */
9992         VERIFY_OFFSET(scsi_nexus, 4);
9993         VERIFY_OFFSET(Tag, 8);
9994         VERIFY_OFFSET(cdb, 16);
9995         VERIFY_OFFSET(cciss_lun, 32);
9996         VERIFY_OFFSET(data_len, 40);
9997         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9998         VERIFY_OFFSET(sg_count, 45);
9999         /* VERIFY_OFFSET(reserved3 */
10000         VERIFY_OFFSET(err_ptr, 48);
10001         VERIFY_OFFSET(err_len, 56);
10002         /* VERIFY_OFFSET(reserved4  */
10003         VERIFY_OFFSET(sg, 64);
10004
10005 #undef VERIFY_OFFSET
10006
10007 #define VERIFY_OFFSET(member, offset) \
10008         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
10009
10010         VERIFY_OFFSET(dev_handle, 0x00);
10011         VERIFY_OFFSET(reserved1, 0x02);
10012         VERIFY_OFFSET(function, 0x03);
10013         VERIFY_OFFSET(reserved2, 0x04);
10014         VERIFY_OFFSET(err_info, 0x0C);
10015         VERIFY_OFFSET(reserved3, 0x10);
10016         VERIFY_OFFSET(err_info_len, 0x12);
10017         VERIFY_OFFSET(reserved4, 0x13);
10018         VERIFY_OFFSET(sgl_offset, 0x14);
10019         VERIFY_OFFSET(reserved5, 0x15);
10020         VERIFY_OFFSET(transfer_len, 0x1C);
10021         VERIFY_OFFSET(reserved6, 0x20);
10022         VERIFY_OFFSET(io_flags, 0x24);
10023         VERIFY_OFFSET(reserved7, 0x26);
10024         VERIFY_OFFSET(LUN, 0x34);
10025         VERIFY_OFFSET(control, 0x3C);
10026         VERIFY_OFFSET(CDB, 0x40);
10027         VERIFY_OFFSET(reserved8, 0x50);
10028         VERIFY_OFFSET(host_context_flags, 0x60);
10029         VERIFY_OFFSET(timeout_sec, 0x62);
10030         VERIFY_OFFSET(ReplyQueue, 0x64);
10031         VERIFY_OFFSET(reserved9, 0x65);
10032         VERIFY_OFFSET(tag, 0x68);
10033         VERIFY_OFFSET(host_addr, 0x70);
10034         VERIFY_OFFSET(CISS_LUN, 0x78);
10035         VERIFY_OFFSET(SG, 0x78 + 8);
10036 #undef VERIFY_OFFSET
10037 }
10038
10039 module_init(hpsa_init);
10040 module_exit(hpsa_cleanup);