]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/scsi/hpsa.c
Merge tag 'iommu-fixes-v4.11-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88                 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92         "Use 'simple mode' rather than 'performant mode'");
93
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
148                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149         {0,}
150 };
151
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
153
154 /*  board_id = Subsystem Device ID & Vendor ID
155  *  product = Marketing Name for the board
156  *  access = Address of the struct of function pointers
157  */
158 static struct board_type products[] = {
159         {0x3241103C, "Smart Array P212", &SA5_access},
160         {0x3243103C, "Smart Array P410", &SA5_access},
161         {0x3245103C, "Smart Array P410i", &SA5_access},
162         {0x3247103C, "Smart Array P411", &SA5_access},
163         {0x3249103C, "Smart Array P812", &SA5_access},
164         {0x324A103C, "Smart Array P712m", &SA5_access},
165         {0x324B103C, "Smart Array P711m", &SA5_access},
166         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167         {0x3350103C, "Smart Array P222", &SA5_access},
168         {0x3351103C, "Smart Array P420", &SA5_access},
169         {0x3352103C, "Smart Array P421", &SA5_access},
170         {0x3353103C, "Smart Array P822", &SA5_access},
171         {0x3354103C, "Smart Array P420i", &SA5_access},
172         {0x3355103C, "Smart Array P220i", &SA5_access},
173         {0x3356103C, "Smart Array P721m", &SA5_access},
174         {0x1921103C, "Smart Array P830i", &SA5_access},
175         {0x1922103C, "Smart Array P430", &SA5_access},
176         {0x1923103C, "Smart Array P431", &SA5_access},
177         {0x1924103C, "Smart Array P830", &SA5_access},
178         {0x1926103C, "Smart Array P731m", &SA5_access},
179         {0x1928103C, "Smart Array P230i", &SA5_access},
180         {0x1929103C, "Smart Array P530", &SA5_access},
181         {0x21BD103C, "Smart Array P244br", &SA5_access},
182         {0x21BE103C, "Smart Array P741m", &SA5_access},
183         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
184         {0x21C0103C, "Smart Array P440ar", &SA5_access},
185         {0x21C1103C, "Smart Array P840ar", &SA5_access},
186         {0x21C2103C, "Smart Array P440", &SA5_access},
187         {0x21C3103C, "Smart Array P441", &SA5_access},
188         {0x21C4103C, "Smart Array", &SA5_access},
189         {0x21C5103C, "Smart Array P841", &SA5_access},
190         {0x21C6103C, "Smart HBA H244br", &SA5_access},
191         {0x21C7103C, "Smart HBA H240", &SA5_access},
192         {0x21C8103C, "Smart HBA H241", &SA5_access},
193         {0x21C9103C, "Smart Array", &SA5_access},
194         {0x21CA103C, "Smart Array P246br", &SA5_access},
195         {0x21CB103C, "Smart Array P840", &SA5_access},
196         {0x21CC103C, "Smart Array", &SA5_access},
197         {0x21CD103C, "Smart Array", &SA5_access},
198         {0x21CE103C, "Smart HBA", &SA5_access},
199         {0x05809005, "SmartHBA-SA", &SA5_access},
200         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
201         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
203         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
204         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
211 };
212
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217                         struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221                 struct sas_rphy *rphy);
222
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
228
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
232
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235         void __user *arg);
236 #endif
237
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242                                             struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245         int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
249
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253         unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
255
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
261
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264         struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266         struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269         int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275                                u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277                                     unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int wait_for_device_to_become_ready(struct ctlr_info *h,
280                                            unsigned char lunaddr[],
281                                            int reply_queue);
282 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
283                                      int wait_for_ready);
284 static inline void finish_cmd(struct CommandList *c);
285 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
286 #define BOARD_NOT_READY 0
287 #define BOARD_READY 1
288 static void hpsa_drain_accel_commands(struct ctlr_info *h);
289 static void hpsa_flush_cache(struct ctlr_info *h);
290 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
291         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
292         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
293 static void hpsa_command_resubmit_worker(struct work_struct *work);
294 static u32 lockup_detected(struct ctlr_info *h);
295 static int detect_controller_lockup(struct ctlr_info *h);
296 static void hpsa_disable_rld_caching(struct ctlr_info *h);
297 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
298         struct ReportExtendedLUNdata *buf, int bufsize);
299 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
300         unsigned char scsi3addr[], u8 page);
301 static int hpsa_luns_changed(struct ctlr_info *h);
302 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
303                                struct hpsa_scsi_dev_t *dev,
304                                unsigned char *scsi3addr);
305
306 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
307 {
308         unsigned long *priv = shost_priv(sdev->host);
309         return (struct ctlr_info *) *priv;
310 }
311
312 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
313 {
314         unsigned long *priv = shost_priv(sh);
315         return (struct ctlr_info *) *priv;
316 }
317
318 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
319 {
320         return c->scsi_cmd == SCSI_CMD_IDLE;
321 }
322
323 static inline bool hpsa_is_pending_event(struct CommandList *c)
324 {
325         return c->abort_pending || c->reset_pending;
326 }
327
328 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
329 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
330                         u8 *sense_key, u8 *asc, u8 *ascq)
331 {
332         struct scsi_sense_hdr sshdr;
333         bool rc;
334
335         *sense_key = -1;
336         *asc = -1;
337         *ascq = -1;
338
339         if (sense_data_len < 1)
340                 return;
341
342         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
343         if (rc) {
344                 *sense_key = sshdr.sense_key;
345                 *asc = sshdr.asc;
346                 *ascq = sshdr.ascq;
347         }
348 }
349
350 static int check_for_unit_attention(struct ctlr_info *h,
351         struct CommandList *c)
352 {
353         u8 sense_key, asc, ascq;
354         int sense_len;
355
356         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
357                 sense_len = sizeof(c->err_info->SenseInfo);
358         else
359                 sense_len = c->err_info->SenseLen;
360
361         decode_sense_data(c->err_info->SenseInfo, sense_len,
362                                 &sense_key, &asc, &ascq);
363         if (sense_key != UNIT_ATTENTION || asc == 0xff)
364                 return 0;
365
366         switch (asc) {
367         case STATE_CHANGED:
368                 dev_warn(&h->pdev->dev,
369                         "%s: a state change detected, command retried\n",
370                         h->devname);
371                 break;
372         case LUN_FAILED:
373                 dev_warn(&h->pdev->dev,
374                         "%s: LUN failure detected\n", h->devname);
375                 break;
376         case REPORT_LUNS_CHANGED:
377                 dev_warn(&h->pdev->dev,
378                         "%s: report LUN data changed\n", h->devname);
379         /*
380          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
381          * target (array) devices.
382          */
383                 break;
384         case POWER_OR_RESET:
385                 dev_warn(&h->pdev->dev,
386                         "%s: a power on or device reset detected\n",
387                         h->devname);
388                 break;
389         case UNIT_ATTENTION_CLEARED:
390                 dev_warn(&h->pdev->dev,
391                         "%s: unit attention cleared by another initiator\n",
392                         h->devname);
393                 break;
394         default:
395                 dev_warn(&h->pdev->dev,
396                         "%s: unknown unit attention detected\n",
397                         h->devname);
398                 break;
399         }
400         return 1;
401 }
402
403 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
404 {
405         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
406                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
407                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
408                 return 0;
409         dev_warn(&h->pdev->dev, HPSA "device busy");
410         return 1;
411 }
412
413 static u32 lockup_detected(struct ctlr_info *h);
414 static ssize_t host_show_lockup_detected(struct device *dev,
415                 struct device_attribute *attr, char *buf)
416 {
417         int ld;
418         struct ctlr_info *h;
419         struct Scsi_Host *shost = class_to_shost(dev);
420
421         h = shost_to_hba(shost);
422         ld = lockup_detected(h);
423
424         return sprintf(buf, "ld=%d\n", ld);
425 }
426
427 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
428                                          struct device_attribute *attr,
429                                          const char *buf, size_t count)
430 {
431         int status, len;
432         struct ctlr_info *h;
433         struct Scsi_Host *shost = class_to_shost(dev);
434         char tmpbuf[10];
435
436         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
437                 return -EACCES;
438         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
439         strncpy(tmpbuf, buf, len);
440         tmpbuf[len] = '\0';
441         if (sscanf(tmpbuf, "%d", &status) != 1)
442                 return -EINVAL;
443         h = shost_to_hba(shost);
444         h->acciopath_status = !!status;
445         dev_warn(&h->pdev->dev,
446                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
447                 h->acciopath_status ? "enabled" : "disabled");
448         return count;
449 }
450
451 static ssize_t host_store_raid_offload_debug(struct device *dev,
452                                          struct device_attribute *attr,
453                                          const char *buf, size_t count)
454 {
455         int debug_level, len;
456         struct ctlr_info *h;
457         struct Scsi_Host *shost = class_to_shost(dev);
458         char tmpbuf[10];
459
460         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461                 return -EACCES;
462         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463         strncpy(tmpbuf, buf, len);
464         tmpbuf[len] = '\0';
465         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
466                 return -EINVAL;
467         if (debug_level < 0)
468                 debug_level = 0;
469         h = shost_to_hba(shost);
470         h->raid_offload_debug = debug_level;
471         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
472                 h->raid_offload_debug);
473         return count;
474 }
475
476 static ssize_t host_store_rescan(struct device *dev,
477                                  struct device_attribute *attr,
478                                  const char *buf, size_t count)
479 {
480         struct ctlr_info *h;
481         struct Scsi_Host *shost = class_to_shost(dev);
482         h = shost_to_hba(shost);
483         hpsa_scan_start(h->scsi_host);
484         return count;
485 }
486
487 static ssize_t host_show_firmware_revision(struct device *dev,
488              struct device_attribute *attr, char *buf)
489 {
490         struct ctlr_info *h;
491         struct Scsi_Host *shost = class_to_shost(dev);
492         unsigned char *fwrev;
493
494         h = shost_to_hba(shost);
495         if (!h->hba_inquiry_data)
496                 return 0;
497         fwrev = &h->hba_inquiry_data[32];
498         return snprintf(buf, 20, "%c%c%c%c\n",
499                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
500 }
501
502 static ssize_t host_show_commands_outstanding(struct device *dev,
503              struct device_attribute *attr, char *buf)
504 {
505         struct Scsi_Host *shost = class_to_shost(dev);
506         struct ctlr_info *h = shost_to_hba(shost);
507
508         return snprintf(buf, 20, "%d\n",
509                         atomic_read(&h->commands_outstanding));
510 }
511
512 static ssize_t host_show_transport_mode(struct device *dev,
513         struct device_attribute *attr, char *buf)
514 {
515         struct ctlr_info *h;
516         struct Scsi_Host *shost = class_to_shost(dev);
517
518         h = shost_to_hba(shost);
519         return snprintf(buf, 20, "%s\n",
520                 h->transMethod & CFGTBL_Trans_Performant ?
521                         "performant" : "simple");
522 }
523
524 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
525         struct device_attribute *attr, char *buf)
526 {
527         struct ctlr_info *h;
528         struct Scsi_Host *shost = class_to_shost(dev);
529
530         h = shost_to_hba(shost);
531         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
532                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
533 }
534
535 /* List of controllers which cannot be hard reset on kexec with reset_devices */
536 static u32 unresettable_controller[] = {
537         0x324a103C, /* Smart Array P712m */
538         0x324b103C, /* Smart Array P711m */
539         0x3223103C, /* Smart Array P800 */
540         0x3234103C, /* Smart Array P400 */
541         0x3235103C, /* Smart Array P400i */
542         0x3211103C, /* Smart Array E200i */
543         0x3212103C, /* Smart Array E200 */
544         0x3213103C, /* Smart Array E200i */
545         0x3214103C, /* Smart Array E200i */
546         0x3215103C, /* Smart Array E200i */
547         0x3237103C, /* Smart Array E500 */
548         0x323D103C, /* Smart Array P700m */
549         0x40800E11, /* Smart Array 5i */
550         0x409C0E11, /* Smart Array 6400 */
551         0x409D0E11, /* Smart Array 6400 EM */
552         0x40700E11, /* Smart Array 5300 */
553         0x40820E11, /* Smart Array 532 */
554         0x40830E11, /* Smart Array 5312 */
555         0x409A0E11, /* Smart Array 641 */
556         0x409B0E11, /* Smart Array 642 */
557         0x40910E11, /* Smart Array 6i */
558 };
559
560 /* List of controllers which cannot even be soft reset */
561 static u32 soft_unresettable_controller[] = {
562         0x40800E11, /* Smart Array 5i */
563         0x40700E11, /* Smart Array 5300 */
564         0x40820E11, /* Smart Array 532 */
565         0x40830E11, /* Smart Array 5312 */
566         0x409A0E11, /* Smart Array 641 */
567         0x409B0E11, /* Smart Array 642 */
568         0x40910E11, /* Smart Array 6i */
569         /* Exclude 640x boards.  These are two pci devices in one slot
570          * which share a battery backed cache module.  One controls the
571          * cache, the other accesses the cache through the one that controls
572          * it.  If we reset the one controlling the cache, the other will
573          * likely not be happy.  Just forbid resetting this conjoined mess.
574          * The 640x isn't really supported by hpsa anyway.
575          */
576         0x409C0E11, /* Smart Array 6400 */
577         0x409D0E11, /* Smart Array 6400 EM */
578 };
579
580 static u32 needs_abort_tags_swizzled[] = {
581         0x323D103C, /* Smart Array P700m */
582         0x324a103C, /* Smart Array P712m */
583         0x324b103C, /* SmartArray P711m */
584 };
585
586 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
587 {
588         int i;
589
590         for (i = 0; i < nelems; i++)
591                 if (a[i] == board_id)
592                         return 1;
593         return 0;
594 }
595
596 static int ctlr_is_hard_resettable(u32 board_id)
597 {
598         return !board_id_in_array(unresettable_controller,
599                         ARRAY_SIZE(unresettable_controller), board_id);
600 }
601
602 static int ctlr_is_soft_resettable(u32 board_id)
603 {
604         return !board_id_in_array(soft_unresettable_controller,
605                         ARRAY_SIZE(soft_unresettable_controller), board_id);
606 }
607
608 static int ctlr_is_resettable(u32 board_id)
609 {
610         return ctlr_is_hard_resettable(board_id) ||
611                 ctlr_is_soft_resettable(board_id);
612 }
613
614 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
615 {
616         return board_id_in_array(needs_abort_tags_swizzled,
617                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
618 }
619
620 static ssize_t host_show_resettable(struct device *dev,
621         struct device_attribute *attr, char *buf)
622 {
623         struct ctlr_info *h;
624         struct Scsi_Host *shost = class_to_shost(dev);
625
626         h = shost_to_hba(shost);
627         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
628 }
629
630 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
631 {
632         return (scsi3addr[3] & 0xC0) == 0x40;
633 }
634
635 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
636         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
637 };
638 #define HPSA_RAID_0     0
639 #define HPSA_RAID_4     1
640 #define HPSA_RAID_1     2       /* also used for RAID 10 */
641 #define HPSA_RAID_5     3       /* also used for RAID 50 */
642 #define HPSA_RAID_51    4
643 #define HPSA_RAID_6     5       /* also used for RAID 60 */
644 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
645 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
646 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
647
648 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
649 {
650         return !device->physical_device;
651 }
652
653 static ssize_t raid_level_show(struct device *dev,
654              struct device_attribute *attr, char *buf)
655 {
656         ssize_t l = 0;
657         unsigned char rlevel;
658         struct ctlr_info *h;
659         struct scsi_device *sdev;
660         struct hpsa_scsi_dev_t *hdev;
661         unsigned long flags;
662
663         sdev = to_scsi_device(dev);
664         h = sdev_to_hba(sdev);
665         spin_lock_irqsave(&h->lock, flags);
666         hdev = sdev->hostdata;
667         if (!hdev) {
668                 spin_unlock_irqrestore(&h->lock, flags);
669                 return -ENODEV;
670         }
671
672         /* Is this even a logical drive? */
673         if (!is_logical_device(hdev)) {
674                 spin_unlock_irqrestore(&h->lock, flags);
675                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
676                 return l;
677         }
678
679         rlevel = hdev->raid_level;
680         spin_unlock_irqrestore(&h->lock, flags);
681         if (rlevel > RAID_UNKNOWN)
682                 rlevel = RAID_UNKNOWN;
683         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
684         return l;
685 }
686
687 static ssize_t lunid_show(struct device *dev,
688              struct device_attribute *attr, char *buf)
689 {
690         struct ctlr_info *h;
691         struct scsi_device *sdev;
692         struct hpsa_scsi_dev_t *hdev;
693         unsigned long flags;
694         unsigned char lunid[8];
695
696         sdev = to_scsi_device(dev);
697         h = sdev_to_hba(sdev);
698         spin_lock_irqsave(&h->lock, flags);
699         hdev = sdev->hostdata;
700         if (!hdev) {
701                 spin_unlock_irqrestore(&h->lock, flags);
702                 return -ENODEV;
703         }
704         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
705         spin_unlock_irqrestore(&h->lock, flags);
706         return snprintf(buf, 20, "0x%8phN\n", lunid);
707 }
708
709 static ssize_t unique_id_show(struct device *dev,
710              struct device_attribute *attr, char *buf)
711 {
712         struct ctlr_info *h;
713         struct scsi_device *sdev;
714         struct hpsa_scsi_dev_t *hdev;
715         unsigned long flags;
716         unsigned char sn[16];
717
718         sdev = to_scsi_device(dev);
719         h = sdev_to_hba(sdev);
720         spin_lock_irqsave(&h->lock, flags);
721         hdev = sdev->hostdata;
722         if (!hdev) {
723                 spin_unlock_irqrestore(&h->lock, flags);
724                 return -ENODEV;
725         }
726         memcpy(sn, hdev->device_id, sizeof(sn));
727         spin_unlock_irqrestore(&h->lock, flags);
728         return snprintf(buf, 16 * 2 + 2,
729                         "%02X%02X%02X%02X%02X%02X%02X%02X"
730                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
731                         sn[0], sn[1], sn[2], sn[3],
732                         sn[4], sn[5], sn[6], sn[7],
733                         sn[8], sn[9], sn[10], sn[11],
734                         sn[12], sn[13], sn[14], sn[15]);
735 }
736
737 static ssize_t sas_address_show(struct device *dev,
738               struct device_attribute *attr, char *buf)
739 {
740         struct ctlr_info *h;
741         struct scsi_device *sdev;
742         struct hpsa_scsi_dev_t *hdev;
743         unsigned long flags;
744         u64 sas_address;
745
746         sdev = to_scsi_device(dev);
747         h = sdev_to_hba(sdev);
748         spin_lock_irqsave(&h->lock, flags);
749         hdev = sdev->hostdata;
750         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
751                 spin_unlock_irqrestore(&h->lock, flags);
752                 return -ENODEV;
753         }
754         sas_address = hdev->sas_address;
755         spin_unlock_irqrestore(&h->lock, flags);
756
757         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
758 }
759
760 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
761              struct device_attribute *attr, char *buf)
762 {
763         struct ctlr_info *h;
764         struct scsi_device *sdev;
765         struct hpsa_scsi_dev_t *hdev;
766         unsigned long flags;
767         int offload_enabled;
768
769         sdev = to_scsi_device(dev);
770         h = sdev_to_hba(sdev);
771         spin_lock_irqsave(&h->lock, flags);
772         hdev = sdev->hostdata;
773         if (!hdev) {
774                 spin_unlock_irqrestore(&h->lock, flags);
775                 return -ENODEV;
776         }
777         offload_enabled = hdev->offload_enabled;
778         spin_unlock_irqrestore(&h->lock, flags);
779         return snprintf(buf, 20, "%d\n", offload_enabled);
780 }
781
782 #define MAX_PATHS 8
783 static ssize_t path_info_show(struct device *dev,
784              struct device_attribute *attr, char *buf)
785 {
786         struct ctlr_info *h;
787         struct scsi_device *sdev;
788         struct hpsa_scsi_dev_t *hdev;
789         unsigned long flags;
790         int i;
791         int output_len = 0;
792         u8 box;
793         u8 bay;
794         u8 path_map_index = 0;
795         char *active;
796         unsigned char phys_connector[2];
797
798         sdev = to_scsi_device(dev);
799         h = sdev_to_hba(sdev);
800         spin_lock_irqsave(&h->devlock, flags);
801         hdev = sdev->hostdata;
802         if (!hdev) {
803                 spin_unlock_irqrestore(&h->devlock, flags);
804                 return -ENODEV;
805         }
806
807         bay = hdev->bay;
808         for (i = 0; i < MAX_PATHS; i++) {
809                 path_map_index = 1<<i;
810                 if (i == hdev->active_path_index)
811                         active = "Active";
812                 else if (hdev->path_map & path_map_index)
813                         active = "Inactive";
814                 else
815                         continue;
816
817                 output_len += scnprintf(buf + output_len,
818                                 PAGE_SIZE - output_len,
819                                 "[%d:%d:%d:%d] %20.20s ",
820                                 h->scsi_host->host_no,
821                                 hdev->bus, hdev->target, hdev->lun,
822                                 scsi_device_type(hdev->devtype));
823
824                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
825                         output_len += scnprintf(buf + output_len,
826                                                 PAGE_SIZE - output_len,
827                                                 "%s\n", active);
828                         continue;
829                 }
830
831                 box = hdev->box[i];
832                 memcpy(&phys_connector, &hdev->phys_connector[i],
833                         sizeof(phys_connector));
834                 if (phys_connector[0] < '0')
835                         phys_connector[0] = '0';
836                 if (phys_connector[1] < '0')
837                         phys_connector[1] = '0';
838                 output_len += scnprintf(buf + output_len,
839                                 PAGE_SIZE - output_len,
840                                 "PORT: %.2s ",
841                                 phys_connector);
842                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
843                         hdev->expose_device) {
844                         if (box == 0 || box == 0xFF) {
845                                 output_len += scnprintf(buf + output_len,
846                                         PAGE_SIZE - output_len,
847                                         "BAY: %hhu %s\n",
848                                         bay, active);
849                         } else {
850                                 output_len += scnprintf(buf + output_len,
851                                         PAGE_SIZE - output_len,
852                                         "BOX: %hhu BAY: %hhu %s\n",
853                                         box, bay, active);
854                         }
855                 } else if (box != 0 && box != 0xFF) {
856                         output_len += scnprintf(buf + output_len,
857                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
858                                 box, active);
859                 } else
860                         output_len += scnprintf(buf + output_len,
861                                 PAGE_SIZE - output_len, "%s\n", active);
862         }
863
864         spin_unlock_irqrestore(&h->devlock, flags);
865         return output_len;
866 }
867
868 static ssize_t host_show_ctlr_num(struct device *dev,
869         struct device_attribute *attr, char *buf)
870 {
871         struct ctlr_info *h;
872         struct Scsi_Host *shost = class_to_shost(dev);
873
874         h = shost_to_hba(shost);
875         return snprintf(buf, 20, "%d\n", h->ctlr);
876 }
877
878 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
879 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
880 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
881 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
882 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
883 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
884                         host_show_hp_ssd_smart_path_enabled, NULL);
885 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
886 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
887                 host_show_hp_ssd_smart_path_status,
888                 host_store_hp_ssd_smart_path_status);
889 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
890                         host_store_raid_offload_debug);
891 static DEVICE_ATTR(firmware_revision, S_IRUGO,
892         host_show_firmware_revision, NULL);
893 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
894         host_show_commands_outstanding, NULL);
895 static DEVICE_ATTR(transport_mode, S_IRUGO,
896         host_show_transport_mode, NULL);
897 static DEVICE_ATTR(resettable, S_IRUGO,
898         host_show_resettable, NULL);
899 static DEVICE_ATTR(lockup_detected, S_IRUGO,
900         host_show_lockup_detected, NULL);
901 static DEVICE_ATTR(ctlr_num, S_IRUGO,
902         host_show_ctlr_num, NULL);
903
904 static struct device_attribute *hpsa_sdev_attrs[] = {
905         &dev_attr_raid_level,
906         &dev_attr_lunid,
907         &dev_attr_unique_id,
908         &dev_attr_hp_ssd_smart_path_enabled,
909         &dev_attr_path_info,
910         &dev_attr_sas_address,
911         NULL,
912 };
913
914 static struct device_attribute *hpsa_shost_attrs[] = {
915         &dev_attr_rescan,
916         &dev_attr_firmware_revision,
917         &dev_attr_commands_outstanding,
918         &dev_attr_transport_mode,
919         &dev_attr_resettable,
920         &dev_attr_hp_ssd_smart_path_status,
921         &dev_attr_raid_offload_debug,
922         &dev_attr_lockup_detected,
923         &dev_attr_ctlr_num,
924         NULL,
925 };
926
927 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
928                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
929
930 static struct scsi_host_template hpsa_driver_template = {
931         .module                 = THIS_MODULE,
932         .name                   = HPSA,
933         .proc_name              = HPSA,
934         .queuecommand           = hpsa_scsi_queue_command,
935         .scan_start             = hpsa_scan_start,
936         .scan_finished          = hpsa_scan_finished,
937         .change_queue_depth     = hpsa_change_queue_depth,
938         .this_id                = -1,
939         .use_clustering         = ENABLE_CLUSTERING,
940         .eh_abort_handler       = hpsa_eh_abort_handler,
941         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
942         .ioctl                  = hpsa_ioctl,
943         .slave_alloc            = hpsa_slave_alloc,
944         .slave_configure        = hpsa_slave_configure,
945         .slave_destroy          = hpsa_slave_destroy,
946 #ifdef CONFIG_COMPAT
947         .compat_ioctl           = hpsa_compat_ioctl,
948 #endif
949         .sdev_attrs = hpsa_sdev_attrs,
950         .shost_attrs = hpsa_shost_attrs,
951         .max_sectors = 8192,
952         .no_write_same = 1,
953 };
954
955 static inline u32 next_command(struct ctlr_info *h, u8 q)
956 {
957         u32 a;
958         struct reply_queue_buffer *rq = &h->reply_queue[q];
959
960         if (h->transMethod & CFGTBL_Trans_io_accel1)
961                 return h->access.command_completed(h, q);
962
963         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
964                 return h->access.command_completed(h, q);
965
966         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
967                 a = rq->head[rq->current_entry];
968                 rq->current_entry++;
969                 atomic_dec(&h->commands_outstanding);
970         } else {
971                 a = FIFO_EMPTY;
972         }
973         /* Check for wraparound */
974         if (rq->current_entry == h->max_commands) {
975                 rq->current_entry = 0;
976                 rq->wraparound ^= 1;
977         }
978         return a;
979 }
980
981 /*
982  * There are some special bits in the bus address of the
983  * command that we have to set for the controller to know
984  * how to process the command:
985  *
986  * Normal performant mode:
987  * bit 0: 1 means performant mode, 0 means simple mode.
988  * bits 1-3 = block fetch table entry
989  * bits 4-6 = command type (== 0)
990  *
991  * ioaccel1 mode:
992  * bit 0 = "performant mode" bit.
993  * bits 1-3 = block fetch table entry
994  * bits 4-6 = command type (== 110)
995  * (command type is needed because ioaccel1 mode
996  * commands are submitted through the same register as normal
997  * mode commands, so this is how the controller knows whether
998  * the command is normal mode or ioaccel1 mode.)
999  *
1000  * ioaccel2 mode:
1001  * bit 0 = "performant mode" bit.
1002  * bits 1-4 = block fetch table entry (note extra bit)
1003  * bits 4-6 = not needed, because ioaccel2 mode has
1004  * a separate special register for submitting commands.
1005  */
1006
1007 /*
1008  * set_performant_mode: Modify the tag for cciss performant
1009  * set bit 0 for pull model, bits 3-1 for block fetch
1010  * register number
1011  */
1012 #define DEFAULT_REPLY_QUEUE (-1)
1013 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1014                                         int reply_queue)
1015 {
1016         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1017                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1018                 if (unlikely(!h->msix_vectors))
1019                         return;
1020                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1021                         c->Header.ReplyQueue =
1022                                 raw_smp_processor_id() % h->nreply_queues;
1023                 else
1024                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1025         }
1026 }
1027
1028 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1029                                                 struct CommandList *c,
1030                                                 int reply_queue)
1031 {
1032         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1033
1034         /*
1035          * Tell the controller to post the reply to the queue for this
1036          * processor.  This seems to give the best I/O throughput.
1037          */
1038         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1039                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1040         else
1041                 cp->ReplyQueue = reply_queue % h->nreply_queues;
1042         /*
1043          * Set the bits in the address sent down to include:
1044          *  - performant mode bit (bit 0)
1045          *  - pull count (bits 1-3)
1046          *  - command type (bits 4-6)
1047          */
1048         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1049                                         IOACCEL1_BUSADDR_CMDTYPE;
1050 }
1051
1052 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1053                                                 struct CommandList *c,
1054                                                 int reply_queue)
1055 {
1056         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1057                 &h->ioaccel2_cmd_pool[c->cmdindex];
1058
1059         /* Tell the controller to post the reply to the queue for this
1060          * processor.  This seems to give the best I/O throughput.
1061          */
1062         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1063                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1064         else
1065                 cp->reply_queue = reply_queue % h->nreply_queues;
1066         /* Set the bits in the address sent down to include:
1067          *  - performant mode bit not used in ioaccel mode 2
1068          *  - pull count (bits 0-3)
1069          *  - command type isn't needed for ioaccel2
1070          */
1071         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1072 }
1073
1074 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1075                                                 struct CommandList *c,
1076                                                 int reply_queue)
1077 {
1078         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1079
1080         /*
1081          * Tell the controller to post the reply to the queue for this
1082          * processor.  This seems to give the best I/O throughput.
1083          */
1084         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1085                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1086         else
1087                 cp->reply_queue = reply_queue % h->nreply_queues;
1088         /*
1089          * Set the bits in the address sent down to include:
1090          *  - performant mode bit not used in ioaccel mode 2
1091          *  - pull count (bits 0-3)
1092          *  - command type isn't needed for ioaccel2
1093          */
1094         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1095 }
1096
1097 static int is_firmware_flash_cmd(u8 *cdb)
1098 {
1099         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1100 }
1101
1102 /*
1103  * During firmware flash, the heartbeat register may not update as frequently
1104  * as it should.  So we dial down lockup detection during firmware flash. and
1105  * dial it back up when firmware flash completes.
1106  */
1107 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1108 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1109 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1110                 struct CommandList *c)
1111 {
1112         if (!is_firmware_flash_cmd(c->Request.CDB))
1113                 return;
1114         atomic_inc(&h->firmware_flash_in_progress);
1115         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1116 }
1117
1118 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1119                 struct CommandList *c)
1120 {
1121         if (is_firmware_flash_cmd(c->Request.CDB) &&
1122                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1123                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1124 }
1125
1126 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1127         struct CommandList *c, int reply_queue)
1128 {
1129         dial_down_lockup_detection_during_fw_flash(h, c);
1130         atomic_inc(&h->commands_outstanding);
1131         switch (c->cmd_type) {
1132         case CMD_IOACCEL1:
1133                 set_ioaccel1_performant_mode(h, c, reply_queue);
1134                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1135                 break;
1136         case CMD_IOACCEL2:
1137                 set_ioaccel2_performant_mode(h, c, reply_queue);
1138                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1139                 break;
1140         case IOACCEL2_TMF:
1141                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1142                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1143                 break;
1144         default:
1145                 set_performant_mode(h, c, reply_queue);
1146                 h->access.submit_command(h, c);
1147         }
1148 }
1149
1150 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1151 {
1152         if (unlikely(hpsa_is_pending_event(c)))
1153                 return finish_cmd(c);
1154
1155         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1156 }
1157
1158 static inline int is_hba_lunid(unsigned char scsi3addr[])
1159 {
1160         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1161 }
1162
1163 static inline int is_scsi_rev_5(struct ctlr_info *h)
1164 {
1165         if (!h->hba_inquiry_data)
1166                 return 0;
1167         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1168                 return 1;
1169         return 0;
1170 }
1171
1172 static int hpsa_find_target_lun(struct ctlr_info *h,
1173         unsigned char scsi3addr[], int bus, int *target, int *lun)
1174 {
1175         /* finds an unused bus, target, lun for a new physical device
1176          * assumes h->devlock is held
1177          */
1178         int i, found = 0;
1179         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1180
1181         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1182
1183         for (i = 0; i < h->ndevices; i++) {
1184                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1185                         __set_bit(h->dev[i]->target, lun_taken);
1186         }
1187
1188         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1189         if (i < HPSA_MAX_DEVICES) {
1190                 /* *bus = 1; */
1191                 *target = i;
1192                 *lun = 0;
1193                 found = 1;
1194         }
1195         return !found;
1196 }
1197
1198 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1199         struct hpsa_scsi_dev_t *dev, char *description)
1200 {
1201 #define LABEL_SIZE 25
1202         char label[LABEL_SIZE];
1203
1204         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1205                 return;
1206
1207         switch (dev->devtype) {
1208         case TYPE_RAID:
1209                 snprintf(label, LABEL_SIZE, "controller");
1210                 break;
1211         case TYPE_ENCLOSURE:
1212                 snprintf(label, LABEL_SIZE, "enclosure");
1213                 break;
1214         case TYPE_DISK:
1215         case TYPE_ZBC:
1216                 if (dev->external)
1217                         snprintf(label, LABEL_SIZE, "external");
1218                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1219                         snprintf(label, LABEL_SIZE, "%s",
1220                                 raid_label[PHYSICAL_DRIVE]);
1221                 else
1222                         snprintf(label, LABEL_SIZE, "RAID-%s",
1223                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1224                                 raid_label[dev->raid_level]);
1225                 break;
1226         case TYPE_ROM:
1227                 snprintf(label, LABEL_SIZE, "rom");
1228                 break;
1229         case TYPE_TAPE:
1230                 snprintf(label, LABEL_SIZE, "tape");
1231                 break;
1232         case TYPE_MEDIUM_CHANGER:
1233                 snprintf(label, LABEL_SIZE, "changer");
1234                 break;
1235         default:
1236                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1237                 break;
1238         }
1239
1240         dev_printk(level, &h->pdev->dev,
1241                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1242                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1243                         description,
1244                         scsi_device_type(dev->devtype),
1245                         dev->vendor,
1246                         dev->model,
1247                         label,
1248                         dev->offload_config ? '+' : '-',
1249                         dev->offload_enabled ? '+' : '-',
1250                         dev->expose_device);
1251 }
1252
1253 /* Add an entry into h->dev[] array. */
1254 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1255                 struct hpsa_scsi_dev_t *device,
1256                 struct hpsa_scsi_dev_t *added[], int *nadded)
1257 {
1258         /* assumes h->devlock is held */
1259         int n = h->ndevices;
1260         int i;
1261         unsigned char addr1[8], addr2[8];
1262         struct hpsa_scsi_dev_t *sd;
1263
1264         if (n >= HPSA_MAX_DEVICES) {
1265                 dev_err(&h->pdev->dev, "too many devices, some will be "
1266                         "inaccessible.\n");
1267                 return -1;
1268         }
1269
1270         /* physical devices do not have lun or target assigned until now. */
1271         if (device->lun != -1)
1272                 /* Logical device, lun is already assigned. */
1273                 goto lun_assigned;
1274
1275         /* If this device a non-zero lun of a multi-lun device
1276          * byte 4 of the 8-byte LUN addr will contain the logical
1277          * unit no, zero otherwise.
1278          */
1279         if (device->scsi3addr[4] == 0) {
1280                 /* This is not a non-zero lun of a multi-lun device */
1281                 if (hpsa_find_target_lun(h, device->scsi3addr,
1282                         device->bus, &device->target, &device->lun) != 0)
1283                         return -1;
1284                 goto lun_assigned;
1285         }
1286
1287         /* This is a non-zero lun of a multi-lun device.
1288          * Search through our list and find the device which
1289          * has the same 8 byte LUN address, excepting byte 4 and 5.
1290          * Assign the same bus and target for this new LUN.
1291          * Use the logical unit number from the firmware.
1292          */
1293         memcpy(addr1, device->scsi3addr, 8);
1294         addr1[4] = 0;
1295         addr1[5] = 0;
1296         for (i = 0; i < n; i++) {
1297                 sd = h->dev[i];
1298                 memcpy(addr2, sd->scsi3addr, 8);
1299                 addr2[4] = 0;
1300                 addr2[5] = 0;
1301                 /* differ only in byte 4 and 5? */
1302                 if (memcmp(addr1, addr2, 8) == 0) {
1303                         device->bus = sd->bus;
1304                         device->target = sd->target;
1305                         device->lun = device->scsi3addr[4];
1306                         break;
1307                 }
1308         }
1309         if (device->lun == -1) {
1310                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1311                         " suspect firmware bug or unsupported hardware "
1312                         "configuration.\n");
1313                         return -1;
1314         }
1315
1316 lun_assigned:
1317
1318         h->dev[n] = device;
1319         h->ndevices++;
1320         added[*nadded] = device;
1321         (*nadded)++;
1322         hpsa_show_dev_msg(KERN_INFO, h, device,
1323                 device->expose_device ? "added" : "masked");
1324         device->offload_to_be_enabled = device->offload_enabled;
1325         device->offload_enabled = 0;
1326         return 0;
1327 }
1328
1329 /* Update an entry in h->dev[] array. */
1330 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1331         int entry, struct hpsa_scsi_dev_t *new_entry)
1332 {
1333         int offload_enabled;
1334         /* assumes h->devlock is held */
1335         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1336
1337         /* Raid level changed. */
1338         h->dev[entry]->raid_level = new_entry->raid_level;
1339
1340         /* Raid offload parameters changed.  Careful about the ordering. */
1341         if (new_entry->offload_config && new_entry->offload_enabled) {
1342                 /*
1343                  * if drive is newly offload_enabled, we want to copy the
1344                  * raid map data first.  If previously offload_enabled and
1345                  * offload_config were set, raid map data had better be
1346                  * the same as it was before.  if raid map data is changed
1347                  * then it had better be the case that
1348                  * h->dev[entry]->offload_enabled is currently 0.
1349                  */
1350                 h->dev[entry]->raid_map = new_entry->raid_map;
1351                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1352         }
1353         if (new_entry->hba_ioaccel_enabled) {
1354                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1355                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1356         }
1357         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1358         h->dev[entry]->offload_config = new_entry->offload_config;
1359         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1360         h->dev[entry]->queue_depth = new_entry->queue_depth;
1361
1362         /*
1363          * We can turn off ioaccel offload now, but need to delay turning
1364          * it on until we can update h->dev[entry]->phys_disk[], but we
1365          * can't do that until all the devices are updated.
1366          */
1367         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1368         if (!new_entry->offload_enabled)
1369                 h->dev[entry]->offload_enabled = 0;
1370
1371         offload_enabled = h->dev[entry]->offload_enabled;
1372         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1373         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1374         h->dev[entry]->offload_enabled = offload_enabled;
1375 }
1376
1377 /* Replace an entry from h->dev[] array. */
1378 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1379         int entry, struct hpsa_scsi_dev_t *new_entry,
1380         struct hpsa_scsi_dev_t *added[], int *nadded,
1381         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1382 {
1383         /* assumes h->devlock is held */
1384         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1385         removed[*nremoved] = h->dev[entry];
1386         (*nremoved)++;
1387
1388         /*
1389          * New physical devices won't have target/lun assigned yet
1390          * so we need to preserve the values in the slot we are replacing.
1391          */
1392         if (new_entry->target == -1) {
1393                 new_entry->target = h->dev[entry]->target;
1394                 new_entry->lun = h->dev[entry]->lun;
1395         }
1396
1397         h->dev[entry] = new_entry;
1398         added[*nadded] = new_entry;
1399         (*nadded)++;
1400         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1401         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1402         new_entry->offload_enabled = 0;
1403 }
1404
1405 /* Remove an entry from h->dev[] array. */
1406 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1407         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1408 {
1409         /* assumes h->devlock is held */
1410         int i;
1411         struct hpsa_scsi_dev_t *sd;
1412
1413         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1414
1415         sd = h->dev[entry];
1416         removed[*nremoved] = h->dev[entry];
1417         (*nremoved)++;
1418
1419         for (i = entry; i < h->ndevices-1; i++)
1420                 h->dev[i] = h->dev[i+1];
1421         h->ndevices--;
1422         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1423 }
1424
1425 #define SCSI3ADDR_EQ(a, b) ( \
1426         (a)[7] == (b)[7] && \
1427         (a)[6] == (b)[6] && \
1428         (a)[5] == (b)[5] && \
1429         (a)[4] == (b)[4] && \
1430         (a)[3] == (b)[3] && \
1431         (a)[2] == (b)[2] && \
1432         (a)[1] == (b)[1] && \
1433         (a)[0] == (b)[0])
1434
1435 static void fixup_botched_add(struct ctlr_info *h,
1436         struct hpsa_scsi_dev_t *added)
1437 {
1438         /* called when scsi_add_device fails in order to re-adjust
1439          * h->dev[] to match the mid layer's view.
1440          */
1441         unsigned long flags;
1442         int i, j;
1443
1444         spin_lock_irqsave(&h->lock, flags);
1445         for (i = 0; i < h->ndevices; i++) {
1446                 if (h->dev[i] == added) {
1447                         for (j = i; j < h->ndevices-1; j++)
1448                                 h->dev[j] = h->dev[j+1];
1449                         h->ndevices--;
1450                         break;
1451                 }
1452         }
1453         spin_unlock_irqrestore(&h->lock, flags);
1454         kfree(added);
1455 }
1456
1457 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1458         struct hpsa_scsi_dev_t *dev2)
1459 {
1460         /* we compare everything except lun and target as these
1461          * are not yet assigned.  Compare parts likely
1462          * to differ first
1463          */
1464         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1465                 sizeof(dev1->scsi3addr)) != 0)
1466                 return 0;
1467         if (memcmp(dev1->device_id, dev2->device_id,
1468                 sizeof(dev1->device_id)) != 0)
1469                 return 0;
1470         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1471                 return 0;
1472         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1473                 return 0;
1474         if (dev1->devtype != dev2->devtype)
1475                 return 0;
1476         if (dev1->bus != dev2->bus)
1477                 return 0;
1478         return 1;
1479 }
1480
1481 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1482         struct hpsa_scsi_dev_t *dev2)
1483 {
1484         /* Device attributes that can change, but don't mean
1485          * that the device is a different device, nor that the OS
1486          * needs to be told anything about the change.
1487          */
1488         if (dev1->raid_level != dev2->raid_level)
1489                 return 1;
1490         if (dev1->offload_config != dev2->offload_config)
1491                 return 1;
1492         if (dev1->offload_enabled != dev2->offload_enabled)
1493                 return 1;
1494         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1495                 if (dev1->queue_depth != dev2->queue_depth)
1496                         return 1;
1497         return 0;
1498 }
1499
1500 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1501  * and return needle location in *index.  If scsi3addr matches, but not
1502  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1503  * location in *index.
1504  * In the case of a minor device attribute change, such as RAID level, just
1505  * return DEVICE_UPDATED, along with the updated device's location in index.
1506  * If needle not found, return DEVICE_NOT_FOUND.
1507  */
1508 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1509         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1510         int *index)
1511 {
1512         int i;
1513 #define DEVICE_NOT_FOUND 0
1514 #define DEVICE_CHANGED 1
1515 #define DEVICE_SAME 2
1516 #define DEVICE_UPDATED 3
1517         if (needle == NULL)
1518                 return DEVICE_NOT_FOUND;
1519
1520         for (i = 0; i < haystack_size; i++) {
1521                 if (haystack[i] == NULL) /* previously removed. */
1522                         continue;
1523                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1524                         *index = i;
1525                         if (device_is_the_same(needle, haystack[i])) {
1526                                 if (device_updated(needle, haystack[i]))
1527                                         return DEVICE_UPDATED;
1528                                 return DEVICE_SAME;
1529                         } else {
1530                                 /* Keep offline devices offline */
1531                                 if (needle->volume_offline)
1532                                         return DEVICE_NOT_FOUND;
1533                                 return DEVICE_CHANGED;
1534                         }
1535                 }
1536         }
1537         *index = -1;
1538         return DEVICE_NOT_FOUND;
1539 }
1540
1541 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1542                                         unsigned char scsi3addr[])
1543 {
1544         struct offline_device_entry *device;
1545         unsigned long flags;
1546
1547         /* Check to see if device is already on the list */
1548         spin_lock_irqsave(&h->offline_device_lock, flags);
1549         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1550                 if (memcmp(device->scsi3addr, scsi3addr,
1551                         sizeof(device->scsi3addr)) == 0) {
1552                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1553                         return;
1554                 }
1555         }
1556         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1557
1558         /* Device is not on the list, add it. */
1559         device = kmalloc(sizeof(*device), GFP_KERNEL);
1560         if (!device)
1561                 return;
1562
1563         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1564         spin_lock_irqsave(&h->offline_device_lock, flags);
1565         list_add_tail(&device->offline_list, &h->offline_device_list);
1566         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1567 }
1568
1569 /* Print a message explaining various offline volume states */
1570 static void hpsa_show_volume_status(struct ctlr_info *h,
1571         struct hpsa_scsi_dev_t *sd)
1572 {
1573         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1574                 dev_info(&h->pdev->dev,
1575                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1576                         h->scsi_host->host_no,
1577                         sd->bus, sd->target, sd->lun);
1578         switch (sd->volume_offline) {
1579         case HPSA_LV_OK:
1580                 break;
1581         case HPSA_LV_UNDERGOING_ERASE:
1582                 dev_info(&h->pdev->dev,
1583                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1584                         h->scsi_host->host_no,
1585                         sd->bus, sd->target, sd->lun);
1586                 break;
1587         case HPSA_LV_NOT_AVAILABLE:
1588                 dev_info(&h->pdev->dev,
1589                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1590                         h->scsi_host->host_no,
1591                         sd->bus, sd->target, sd->lun);
1592                 break;
1593         case HPSA_LV_UNDERGOING_RPI:
1594                 dev_info(&h->pdev->dev,
1595                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1596                         h->scsi_host->host_no,
1597                         sd->bus, sd->target, sd->lun);
1598                 break;
1599         case HPSA_LV_PENDING_RPI:
1600                 dev_info(&h->pdev->dev,
1601                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1602                         h->scsi_host->host_no,
1603                         sd->bus, sd->target, sd->lun);
1604                 break;
1605         case HPSA_LV_ENCRYPTED_NO_KEY:
1606                 dev_info(&h->pdev->dev,
1607                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1608                         h->scsi_host->host_no,
1609                         sd->bus, sd->target, sd->lun);
1610                 break;
1611         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1612                 dev_info(&h->pdev->dev,
1613                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1614                         h->scsi_host->host_no,
1615                         sd->bus, sd->target, sd->lun);
1616                 break;
1617         case HPSA_LV_UNDERGOING_ENCRYPTION:
1618                 dev_info(&h->pdev->dev,
1619                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1620                         h->scsi_host->host_no,
1621                         sd->bus, sd->target, sd->lun);
1622                 break;
1623         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1624                 dev_info(&h->pdev->dev,
1625                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1626                         h->scsi_host->host_no,
1627                         sd->bus, sd->target, sd->lun);
1628                 break;
1629         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1630                 dev_info(&h->pdev->dev,
1631                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1632                         h->scsi_host->host_no,
1633                         sd->bus, sd->target, sd->lun);
1634                 break;
1635         case HPSA_LV_PENDING_ENCRYPTION:
1636                 dev_info(&h->pdev->dev,
1637                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1638                         h->scsi_host->host_no,
1639                         sd->bus, sd->target, sd->lun);
1640                 break;
1641         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1642                 dev_info(&h->pdev->dev,
1643                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1644                         h->scsi_host->host_no,
1645                         sd->bus, sd->target, sd->lun);
1646                 break;
1647         }
1648 }
1649
1650 /*
1651  * Figure the list of physical drive pointers for a logical drive with
1652  * raid offload configured.
1653  */
1654 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1655                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1656                                 struct hpsa_scsi_dev_t *logical_drive)
1657 {
1658         struct raid_map_data *map = &logical_drive->raid_map;
1659         struct raid_map_disk_data *dd = &map->data[0];
1660         int i, j;
1661         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1662                                 le16_to_cpu(map->metadata_disks_per_row);
1663         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1664                                 le16_to_cpu(map->layout_map_count) *
1665                                 total_disks_per_row;
1666         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1667                                 total_disks_per_row;
1668         int qdepth;
1669
1670         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1671                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1672
1673         logical_drive->nphysical_disks = nraid_map_entries;
1674
1675         qdepth = 0;
1676         for (i = 0; i < nraid_map_entries; i++) {
1677                 logical_drive->phys_disk[i] = NULL;
1678                 if (!logical_drive->offload_config)
1679                         continue;
1680                 for (j = 0; j < ndevices; j++) {
1681                         if (dev[j] == NULL)
1682                                 continue;
1683                         if (dev[j]->devtype != TYPE_DISK &&
1684                             dev[j]->devtype != TYPE_ZBC)
1685                                 continue;
1686                         if (is_logical_device(dev[j]))
1687                                 continue;
1688                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1689                                 continue;
1690
1691                         logical_drive->phys_disk[i] = dev[j];
1692                         if (i < nphys_disk)
1693                                 qdepth = min(h->nr_cmds, qdepth +
1694                                     logical_drive->phys_disk[i]->queue_depth);
1695                         break;
1696                 }
1697
1698                 /*
1699                  * This can happen if a physical drive is removed and
1700                  * the logical drive is degraded.  In that case, the RAID
1701                  * map data will refer to a physical disk which isn't actually
1702                  * present.  And in that case offload_enabled should already
1703                  * be 0, but we'll turn it off here just in case
1704                  */
1705                 if (!logical_drive->phys_disk[i]) {
1706                         logical_drive->offload_enabled = 0;
1707                         logical_drive->offload_to_be_enabled = 0;
1708                         logical_drive->queue_depth = 8;
1709                 }
1710         }
1711         if (nraid_map_entries)
1712                 /*
1713                  * This is correct for reads, too high for full stripe writes,
1714                  * way too high for partial stripe writes
1715                  */
1716                 logical_drive->queue_depth = qdepth;
1717         else
1718                 logical_drive->queue_depth = h->nr_cmds;
1719 }
1720
1721 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1722                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1723 {
1724         int i;
1725
1726         for (i = 0; i < ndevices; i++) {
1727                 if (dev[i] == NULL)
1728                         continue;
1729                 if (dev[i]->devtype != TYPE_DISK &&
1730                     dev[i]->devtype != TYPE_ZBC)
1731                         continue;
1732                 if (!is_logical_device(dev[i]))
1733                         continue;
1734
1735                 /*
1736                  * If offload is currently enabled, the RAID map and
1737                  * phys_disk[] assignment *better* not be changing
1738                  * and since it isn't changing, we do not need to
1739                  * update it.
1740                  */
1741                 if (dev[i]->offload_enabled)
1742                         continue;
1743
1744                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1745         }
1746 }
1747
1748 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1749 {
1750         int rc = 0;
1751
1752         if (!h->scsi_host)
1753                 return 1;
1754
1755         if (is_logical_device(device)) /* RAID */
1756                 rc = scsi_add_device(h->scsi_host, device->bus,
1757                                         device->target, device->lun);
1758         else /* HBA */
1759                 rc = hpsa_add_sas_device(h->sas_host, device);
1760
1761         return rc;
1762 }
1763
1764 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1765                                                 struct hpsa_scsi_dev_t *dev)
1766 {
1767         int i;
1768         int count = 0;
1769
1770         for (i = 0; i < h->nr_cmds; i++) {
1771                 struct CommandList *c = h->cmd_pool + i;
1772                 int refcount = atomic_inc_return(&c->refcount);
1773
1774                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1775                                 dev->scsi3addr)) {
1776                         unsigned long flags;
1777
1778                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1779                         if (!hpsa_is_cmd_idle(c))
1780                                 ++count;
1781                         spin_unlock_irqrestore(&h->lock, flags);
1782                 }
1783
1784                 cmd_free(h, c);
1785         }
1786
1787         return count;
1788 }
1789
1790 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1791                                                 struct hpsa_scsi_dev_t *device)
1792 {
1793         int cmds = 0;
1794         int waits = 0;
1795
1796         while (1) {
1797                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1798                 if (cmds == 0)
1799                         break;
1800                 if (++waits > 20)
1801                         break;
1802                 dev_warn(&h->pdev->dev,
1803                         "%s: removing device with %d outstanding commands!\n",
1804                         __func__, cmds);
1805                 msleep(1000);
1806         }
1807 }
1808
1809 static void hpsa_remove_device(struct ctlr_info *h,
1810                         struct hpsa_scsi_dev_t *device)
1811 {
1812         struct scsi_device *sdev = NULL;
1813
1814         if (!h->scsi_host)
1815                 return;
1816
1817         if (is_logical_device(device)) { /* RAID */
1818                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1819                                                 device->target, device->lun);
1820                 if (sdev) {
1821                         scsi_remove_device(sdev);
1822                         scsi_device_put(sdev);
1823                 } else {
1824                         /*
1825                          * We don't expect to get here.  Future commands
1826                          * to this device will get a selection timeout as
1827                          * if the device were gone.
1828                          */
1829                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1830                                         "didn't find device for removal.");
1831                 }
1832         } else { /* HBA */
1833
1834                 device->removed = 1;
1835                 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1836
1837                 hpsa_remove_sas_device(device);
1838         }
1839 }
1840
1841 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1842         struct hpsa_scsi_dev_t *sd[], int nsds)
1843 {
1844         /* sd contains scsi3 addresses and devtypes, and inquiry
1845          * data.  This function takes what's in sd to be the current
1846          * reality and updates h->dev[] to reflect that reality.
1847          */
1848         int i, entry, device_change, changes = 0;
1849         struct hpsa_scsi_dev_t *csd;
1850         unsigned long flags;
1851         struct hpsa_scsi_dev_t **added, **removed;
1852         int nadded, nremoved;
1853
1854         /*
1855          * A reset can cause a device status to change
1856          * re-schedule the scan to see what happened.
1857          */
1858         if (h->reset_in_progress) {
1859                 h->drv_req_rescan = 1;
1860                 return;
1861         }
1862
1863         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1864         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1865
1866         if (!added || !removed) {
1867                 dev_warn(&h->pdev->dev, "out of memory in "
1868                         "adjust_hpsa_scsi_table\n");
1869                 goto free_and_out;
1870         }
1871
1872         spin_lock_irqsave(&h->devlock, flags);
1873
1874         /* find any devices in h->dev[] that are not in
1875          * sd[] and remove them from h->dev[], and for any
1876          * devices which have changed, remove the old device
1877          * info and add the new device info.
1878          * If minor device attributes change, just update
1879          * the existing device structure.
1880          */
1881         i = 0;
1882         nremoved = 0;
1883         nadded = 0;
1884         while (i < h->ndevices) {
1885                 csd = h->dev[i];
1886                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1887                 if (device_change == DEVICE_NOT_FOUND) {
1888                         changes++;
1889                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1890                         continue; /* remove ^^^, hence i not incremented */
1891                 } else if (device_change == DEVICE_CHANGED) {
1892                         changes++;
1893                         hpsa_scsi_replace_entry(h, i, sd[entry],
1894                                 added, &nadded, removed, &nremoved);
1895                         /* Set it to NULL to prevent it from being freed
1896                          * at the bottom of hpsa_update_scsi_devices()
1897                          */
1898                         sd[entry] = NULL;
1899                 } else if (device_change == DEVICE_UPDATED) {
1900                         hpsa_scsi_update_entry(h, i, sd[entry]);
1901                 }
1902                 i++;
1903         }
1904
1905         /* Now, make sure every device listed in sd[] is also
1906          * listed in h->dev[], adding them if they aren't found
1907          */
1908
1909         for (i = 0; i < nsds; i++) {
1910                 if (!sd[i]) /* if already added above. */
1911                         continue;
1912
1913                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1914                  * as the SCSI mid-layer does not handle such devices well.
1915                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1916                  * at 160Hz, and prevents the system from coming up.
1917                  */
1918                 if (sd[i]->volume_offline) {
1919                         hpsa_show_volume_status(h, sd[i]);
1920                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1921                         continue;
1922                 }
1923
1924                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1925                                         h->ndevices, &entry);
1926                 if (device_change == DEVICE_NOT_FOUND) {
1927                         changes++;
1928                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1929                                 break;
1930                         sd[i] = NULL; /* prevent from being freed later. */
1931                 } else if (device_change == DEVICE_CHANGED) {
1932                         /* should never happen... */
1933                         changes++;
1934                         dev_warn(&h->pdev->dev,
1935                                 "device unexpectedly changed.\n");
1936                         /* but if it does happen, we just ignore that device */
1937                 }
1938         }
1939         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1940
1941         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1942          * any logical drives that need it enabled.
1943          */
1944         for (i = 0; i < h->ndevices; i++) {
1945                 if (h->dev[i] == NULL)
1946                         continue;
1947                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1948         }
1949
1950         spin_unlock_irqrestore(&h->devlock, flags);
1951
1952         /* Monitor devices which are in one of several NOT READY states to be
1953          * brought online later. This must be done without holding h->devlock,
1954          * so don't touch h->dev[]
1955          */
1956         for (i = 0; i < nsds; i++) {
1957                 if (!sd[i]) /* if already added above. */
1958                         continue;
1959                 if (sd[i]->volume_offline)
1960                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1961         }
1962
1963         /* Don't notify scsi mid layer of any changes the first time through
1964          * (or if there are no changes) scsi_scan_host will do it later the
1965          * first time through.
1966          */
1967         if (!changes)
1968                 goto free_and_out;
1969
1970         /* Notify scsi mid layer of any removed devices */
1971         for (i = 0; i < nremoved; i++) {
1972                 if (removed[i] == NULL)
1973                         continue;
1974                 if (removed[i]->expose_device)
1975                         hpsa_remove_device(h, removed[i]);
1976                 kfree(removed[i]);
1977                 removed[i] = NULL;
1978         }
1979
1980         /* Notify scsi mid layer of any added devices */
1981         for (i = 0; i < nadded; i++) {
1982                 int rc = 0;
1983
1984                 if (added[i] == NULL)
1985                         continue;
1986                 if (!(added[i]->expose_device))
1987                         continue;
1988                 rc = hpsa_add_device(h, added[i]);
1989                 if (!rc)
1990                         continue;
1991                 dev_warn(&h->pdev->dev,
1992                         "addition failed %d, device not added.", rc);
1993                 /* now we have to remove it from h->dev,
1994                  * since it didn't get added to scsi mid layer
1995                  */
1996                 fixup_botched_add(h, added[i]);
1997                 h->drv_req_rescan = 1;
1998         }
1999
2000 free_and_out:
2001         kfree(added);
2002         kfree(removed);
2003 }
2004
2005 /*
2006  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2007  * Assume's h->devlock is held.
2008  */
2009 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2010         int bus, int target, int lun)
2011 {
2012         int i;
2013         struct hpsa_scsi_dev_t *sd;
2014
2015         for (i = 0; i < h->ndevices; i++) {
2016                 sd = h->dev[i];
2017                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2018                         return sd;
2019         }
2020         return NULL;
2021 }
2022
2023 static int hpsa_slave_alloc(struct scsi_device *sdev)
2024 {
2025         struct hpsa_scsi_dev_t *sd = NULL;
2026         unsigned long flags;
2027         struct ctlr_info *h;
2028
2029         h = sdev_to_hba(sdev);
2030         spin_lock_irqsave(&h->devlock, flags);
2031         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2032                 struct scsi_target *starget;
2033                 struct sas_rphy *rphy;
2034
2035                 starget = scsi_target(sdev);
2036                 rphy = target_to_rphy(starget);
2037                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2038                 if (sd) {
2039                         sd->target = sdev_id(sdev);
2040                         sd->lun = sdev->lun;
2041                 }
2042         }
2043         if (!sd)
2044                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2045                                         sdev_id(sdev), sdev->lun);
2046
2047         if (sd && sd->expose_device) {
2048                 atomic_set(&sd->ioaccel_cmds_out, 0);
2049                 sdev->hostdata = sd;
2050         } else
2051                 sdev->hostdata = NULL;
2052         spin_unlock_irqrestore(&h->devlock, flags);
2053         return 0;
2054 }
2055
2056 /* configure scsi device based on internal per-device structure */
2057 static int hpsa_slave_configure(struct scsi_device *sdev)
2058 {
2059         struct hpsa_scsi_dev_t *sd;
2060         int queue_depth;
2061
2062         sd = sdev->hostdata;
2063         sdev->no_uld_attach = !sd || !sd->expose_device;
2064
2065         if (sd)
2066                 queue_depth = sd->queue_depth != 0 ?
2067                         sd->queue_depth : sdev->host->can_queue;
2068         else
2069                 queue_depth = sdev->host->can_queue;
2070
2071         scsi_change_queue_depth(sdev, queue_depth);
2072
2073         return 0;
2074 }
2075
2076 static void hpsa_slave_destroy(struct scsi_device *sdev)
2077 {
2078         /* nothing to do. */
2079 }
2080
2081 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2082 {
2083         int i;
2084
2085         if (!h->ioaccel2_cmd_sg_list)
2086                 return;
2087         for (i = 0; i < h->nr_cmds; i++) {
2088                 kfree(h->ioaccel2_cmd_sg_list[i]);
2089                 h->ioaccel2_cmd_sg_list[i] = NULL;
2090         }
2091         kfree(h->ioaccel2_cmd_sg_list);
2092         h->ioaccel2_cmd_sg_list = NULL;
2093 }
2094
2095 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2096 {
2097         int i;
2098
2099         if (h->chainsize <= 0)
2100                 return 0;
2101
2102         h->ioaccel2_cmd_sg_list =
2103                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2104                                         GFP_KERNEL);
2105         if (!h->ioaccel2_cmd_sg_list)
2106                 return -ENOMEM;
2107         for (i = 0; i < h->nr_cmds; i++) {
2108                 h->ioaccel2_cmd_sg_list[i] =
2109                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2110                                         h->maxsgentries, GFP_KERNEL);
2111                 if (!h->ioaccel2_cmd_sg_list[i])
2112                         goto clean;
2113         }
2114         return 0;
2115
2116 clean:
2117         hpsa_free_ioaccel2_sg_chain_blocks(h);
2118         return -ENOMEM;
2119 }
2120
2121 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2122 {
2123         int i;
2124
2125         if (!h->cmd_sg_list)
2126                 return;
2127         for (i = 0; i < h->nr_cmds; i++) {
2128                 kfree(h->cmd_sg_list[i]);
2129                 h->cmd_sg_list[i] = NULL;
2130         }
2131         kfree(h->cmd_sg_list);
2132         h->cmd_sg_list = NULL;
2133 }
2134
2135 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2136 {
2137         int i;
2138
2139         if (h->chainsize <= 0)
2140                 return 0;
2141
2142         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2143                                 GFP_KERNEL);
2144         if (!h->cmd_sg_list)
2145                 return -ENOMEM;
2146
2147         for (i = 0; i < h->nr_cmds; i++) {
2148                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2149                                                 h->chainsize, GFP_KERNEL);
2150                 if (!h->cmd_sg_list[i])
2151                         goto clean;
2152
2153         }
2154         return 0;
2155
2156 clean:
2157         hpsa_free_sg_chain_blocks(h);
2158         return -ENOMEM;
2159 }
2160
2161 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2162         struct io_accel2_cmd *cp, struct CommandList *c)
2163 {
2164         struct ioaccel2_sg_element *chain_block;
2165         u64 temp64;
2166         u32 chain_size;
2167
2168         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2169         chain_size = le32_to_cpu(cp->sg[0].length);
2170         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2171                                 PCI_DMA_TODEVICE);
2172         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2173                 /* prevent subsequent unmapping */
2174                 cp->sg->address = 0;
2175                 return -1;
2176         }
2177         cp->sg->address = cpu_to_le64(temp64);
2178         return 0;
2179 }
2180
2181 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2182         struct io_accel2_cmd *cp)
2183 {
2184         struct ioaccel2_sg_element *chain_sg;
2185         u64 temp64;
2186         u32 chain_size;
2187
2188         chain_sg = cp->sg;
2189         temp64 = le64_to_cpu(chain_sg->address);
2190         chain_size = le32_to_cpu(cp->sg[0].length);
2191         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2192 }
2193
2194 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2195         struct CommandList *c)
2196 {
2197         struct SGDescriptor *chain_sg, *chain_block;
2198         u64 temp64;
2199         u32 chain_len;
2200
2201         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2202         chain_block = h->cmd_sg_list[c->cmdindex];
2203         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2204         chain_len = sizeof(*chain_sg) *
2205                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2206         chain_sg->Len = cpu_to_le32(chain_len);
2207         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2208                                 PCI_DMA_TODEVICE);
2209         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2210                 /* prevent subsequent unmapping */
2211                 chain_sg->Addr = cpu_to_le64(0);
2212                 return -1;
2213         }
2214         chain_sg->Addr = cpu_to_le64(temp64);
2215         return 0;
2216 }
2217
2218 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2219         struct CommandList *c)
2220 {
2221         struct SGDescriptor *chain_sg;
2222
2223         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2224                 return;
2225
2226         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2227         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2228                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2229 }
2230
2231
2232 /* Decode the various types of errors on ioaccel2 path.
2233  * Return 1 for any error that should generate a RAID path retry.
2234  * Return 0 for errors that don't require a RAID path retry.
2235  */
2236 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2237                                         struct CommandList *c,
2238                                         struct scsi_cmnd *cmd,
2239                                         struct io_accel2_cmd *c2,
2240                                         struct hpsa_scsi_dev_t *dev)
2241 {
2242         int data_len;
2243         int retry = 0;
2244         u32 ioaccel2_resid = 0;
2245
2246         switch (c2->error_data.serv_response) {
2247         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2248                 switch (c2->error_data.status) {
2249                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2250                         break;
2251                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2252                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2253                         if (c2->error_data.data_present !=
2254                                         IOACCEL2_SENSE_DATA_PRESENT) {
2255                                 memset(cmd->sense_buffer, 0,
2256                                         SCSI_SENSE_BUFFERSIZE);
2257                                 break;
2258                         }
2259                         /* copy the sense data */
2260                         data_len = c2->error_data.sense_data_len;
2261                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2262                                 data_len = SCSI_SENSE_BUFFERSIZE;
2263                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2264                                 data_len =
2265                                         sizeof(c2->error_data.sense_data_buff);
2266                         memcpy(cmd->sense_buffer,
2267                                 c2->error_data.sense_data_buff, data_len);
2268                         retry = 1;
2269                         break;
2270                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2271                         retry = 1;
2272                         break;
2273                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2274                         retry = 1;
2275                         break;
2276                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2277                         retry = 1;
2278                         break;
2279                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2280                         retry = 1;
2281                         break;
2282                 default:
2283                         retry = 1;
2284                         break;
2285                 }
2286                 break;
2287         case IOACCEL2_SERV_RESPONSE_FAILURE:
2288                 switch (c2->error_data.status) {
2289                 case IOACCEL2_STATUS_SR_IO_ERROR:
2290                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2291                 case IOACCEL2_STATUS_SR_OVERRUN:
2292                         retry = 1;
2293                         break;
2294                 case IOACCEL2_STATUS_SR_UNDERRUN:
2295                         cmd->result = (DID_OK << 16);           /* host byte */
2296                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2297                         ioaccel2_resid = get_unaligned_le32(
2298                                                 &c2->error_data.resid_cnt[0]);
2299                         scsi_set_resid(cmd, ioaccel2_resid);
2300                         break;
2301                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2302                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2303                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2304                         /*
2305                          * Did an HBA disk disappear? We will eventually
2306                          * get a state change event from the controller but
2307                          * in the meantime, we need to tell the OS that the
2308                          * HBA disk is no longer there and stop I/O
2309                          * from going down. This allows the potential re-insert
2310                          * of the disk to get the same device node.
2311                          */
2312                         if (dev->physical_device && dev->expose_device) {
2313                                 cmd->result = DID_NO_CONNECT << 16;
2314                                 dev->removed = 1;
2315                                 h->drv_req_rescan = 1;
2316                                 dev_warn(&h->pdev->dev,
2317                                         "%s: device is gone!\n", __func__);
2318                         } else
2319                                 /*
2320                                  * Retry by sending down the RAID path.
2321                                  * We will get an event from ctlr to
2322                                  * trigger rescan regardless.
2323                                  */
2324                                 retry = 1;
2325                         break;
2326                 default:
2327                         retry = 1;
2328                 }
2329                 break;
2330         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2331                 break;
2332         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2333                 break;
2334         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2335                 retry = 1;
2336                 break;
2337         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2338                 break;
2339         default:
2340                 retry = 1;
2341                 break;
2342         }
2343
2344         return retry;   /* retry on raid path? */
2345 }
2346
2347 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2348                 struct CommandList *c)
2349 {
2350         bool do_wake = false;
2351
2352         /*
2353          * Prevent the following race in the abort handler:
2354          *
2355          * 1. LLD is requested to abort a SCSI command
2356          * 2. The SCSI command completes
2357          * 3. The struct CommandList associated with step 2 is made available
2358          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2359          * 5. Abort handler follows scsi_cmnd->host_scribble and
2360          *    finds struct CommandList and tries to aborts it
2361          * Now we have aborted the wrong command.
2362          *
2363          * Reset c->scsi_cmd here so that the abort or reset handler will know
2364          * this command has completed.  Then, check to see if the handler is
2365          * waiting for this command, and, if so, wake it.
2366          */
2367         c->scsi_cmd = SCSI_CMD_IDLE;
2368         mb();   /* Declare command idle before checking for pending events. */
2369         if (c->abort_pending) {
2370                 do_wake = true;
2371                 c->abort_pending = false;
2372         }
2373         if (c->reset_pending) {
2374                 unsigned long flags;
2375                 struct hpsa_scsi_dev_t *dev;
2376
2377                 /*
2378                  * There appears to be a reset pending; lock the lock and
2379                  * reconfirm.  If so, then decrement the count of outstanding
2380                  * commands and wake the reset command if this is the last one.
2381                  */
2382                 spin_lock_irqsave(&h->lock, flags);
2383                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2384                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2385                         do_wake = true;
2386                 c->reset_pending = NULL;
2387                 spin_unlock_irqrestore(&h->lock, flags);
2388         }
2389
2390         if (do_wake)
2391                 wake_up_all(&h->event_sync_wait_queue);
2392 }
2393
2394 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2395                                       struct CommandList *c)
2396 {
2397         hpsa_cmd_resolve_events(h, c);
2398         cmd_tagged_free(h, c);
2399 }
2400
2401 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2402                 struct CommandList *c, struct scsi_cmnd *cmd)
2403 {
2404         hpsa_cmd_resolve_and_free(h, c);
2405         if (cmd && cmd->scsi_done)
2406                 cmd->scsi_done(cmd);
2407 }
2408
2409 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2410 {
2411         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2412         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2413 }
2414
2415 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2416 {
2417         cmd->result = DID_ABORT << 16;
2418 }
2419
2420 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2421                                     struct scsi_cmnd *cmd)
2422 {
2423         hpsa_set_scsi_cmd_aborted(cmd);
2424         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2425                          c->Request.CDB, c->err_info->ScsiStatus);
2426         hpsa_cmd_resolve_and_free(h, c);
2427 }
2428
2429 static void process_ioaccel2_completion(struct ctlr_info *h,
2430                 struct CommandList *c, struct scsi_cmnd *cmd,
2431                 struct hpsa_scsi_dev_t *dev)
2432 {
2433         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2434
2435         /* check for good status */
2436         if (likely(c2->error_data.serv_response == 0 &&
2437                         c2->error_data.status == 0))
2438                 return hpsa_cmd_free_and_done(h, c, cmd);
2439
2440         /*
2441          * Any RAID offload error results in retry which will use
2442          * the normal I/O path so the controller can handle whatever's
2443          * wrong.
2444          */
2445         if (is_logical_device(dev) &&
2446                 c2->error_data.serv_response ==
2447                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2448                 if (c2->error_data.status ==
2449                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2450                         dev->offload_enabled = 0;
2451                         dev->offload_to_be_enabled = 0;
2452                 }
2453
2454                 return hpsa_retry_cmd(h, c);
2455         }
2456
2457         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2458                 return hpsa_retry_cmd(h, c);
2459
2460         return hpsa_cmd_free_and_done(h, c, cmd);
2461 }
2462
2463 /* Returns 0 on success, < 0 otherwise. */
2464 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2465                                         struct CommandList *cp)
2466 {
2467         u8 tmf_status = cp->err_info->ScsiStatus;
2468
2469         switch (tmf_status) {
2470         case CISS_TMF_COMPLETE:
2471                 /*
2472                  * CISS_TMF_COMPLETE never happens, instead,
2473                  * ei->CommandStatus == 0 for this case.
2474                  */
2475         case CISS_TMF_SUCCESS:
2476                 return 0;
2477         case CISS_TMF_INVALID_FRAME:
2478         case CISS_TMF_NOT_SUPPORTED:
2479         case CISS_TMF_FAILED:
2480         case CISS_TMF_WRONG_LUN:
2481         case CISS_TMF_OVERLAPPED_TAG:
2482                 break;
2483         default:
2484                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2485                                 tmf_status);
2486                 break;
2487         }
2488         return -tmf_status;
2489 }
2490
2491 static void complete_scsi_command(struct CommandList *cp)
2492 {
2493         struct scsi_cmnd *cmd;
2494         struct ctlr_info *h;
2495         struct ErrorInfo *ei;
2496         struct hpsa_scsi_dev_t *dev;
2497         struct io_accel2_cmd *c2;
2498
2499         u8 sense_key;
2500         u8 asc;      /* additional sense code */
2501         u8 ascq;     /* additional sense code qualifier */
2502         unsigned long sense_data_size;
2503
2504         ei = cp->err_info;
2505         cmd = cp->scsi_cmd;
2506         h = cp->h;
2507
2508         if (!cmd->device) {
2509                 cmd->result = DID_NO_CONNECT << 16;
2510                 return hpsa_cmd_free_and_done(h, cp, cmd);
2511         }
2512
2513         dev = cmd->device->hostdata;
2514         if (!dev) {
2515                 cmd->result = DID_NO_CONNECT << 16;
2516                 return hpsa_cmd_free_and_done(h, cp, cmd);
2517         }
2518         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2519
2520         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2521         if ((cp->cmd_type == CMD_SCSI) &&
2522                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2523                 hpsa_unmap_sg_chain_block(h, cp);
2524
2525         if ((cp->cmd_type == CMD_IOACCEL2) &&
2526                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2527                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2528
2529         cmd->result = (DID_OK << 16);           /* host byte */
2530         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2531
2532         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2533                 if (dev->physical_device && dev->expose_device &&
2534                         dev->removed) {
2535                         cmd->result = DID_NO_CONNECT << 16;
2536                         return hpsa_cmd_free_and_done(h, cp, cmd);
2537                 }
2538                 if (likely(cp->phys_disk != NULL))
2539                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2540         }
2541
2542         /*
2543          * We check for lockup status here as it may be set for
2544          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2545          * fail_all_oustanding_cmds()
2546          */
2547         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2548                 /* DID_NO_CONNECT will prevent a retry */
2549                 cmd->result = DID_NO_CONNECT << 16;
2550                 return hpsa_cmd_free_and_done(h, cp, cmd);
2551         }
2552
2553         if ((unlikely(hpsa_is_pending_event(cp)))) {
2554                 if (cp->reset_pending)
2555                         return hpsa_cmd_free_and_done(h, cp, cmd);
2556                 if (cp->abort_pending)
2557                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2558         }
2559
2560         if (cp->cmd_type == CMD_IOACCEL2)
2561                 return process_ioaccel2_completion(h, cp, cmd, dev);
2562
2563         scsi_set_resid(cmd, ei->ResidualCnt);
2564         if (ei->CommandStatus == 0)
2565                 return hpsa_cmd_free_and_done(h, cp, cmd);
2566
2567         /* For I/O accelerator commands, copy over some fields to the normal
2568          * CISS header used below for error handling.
2569          */
2570         if (cp->cmd_type == CMD_IOACCEL1) {
2571                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2572                 cp->Header.SGList = scsi_sg_count(cmd);
2573                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2574                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2575                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2576                 cp->Header.tag = c->tag;
2577                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2578                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2579
2580                 /* Any RAID offload error results in retry which will use
2581                  * the normal I/O path so the controller can handle whatever's
2582                  * wrong.
2583                  */
2584                 if (is_logical_device(dev)) {
2585                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2586                                 dev->offload_enabled = 0;
2587                         return hpsa_retry_cmd(h, cp);
2588                 }
2589         }
2590
2591         /* an error has occurred */
2592         switch (ei->CommandStatus) {
2593
2594         case CMD_TARGET_STATUS:
2595                 cmd->result |= ei->ScsiStatus;
2596                 /* copy the sense data */
2597                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2598                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2599                 else
2600                         sense_data_size = sizeof(ei->SenseInfo);
2601                 if (ei->SenseLen < sense_data_size)
2602                         sense_data_size = ei->SenseLen;
2603                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2604                 if (ei->ScsiStatus)
2605                         decode_sense_data(ei->SenseInfo, sense_data_size,
2606                                 &sense_key, &asc, &ascq);
2607                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2608                         if (sense_key == ABORTED_COMMAND) {
2609                                 cmd->result |= DID_SOFT_ERROR << 16;
2610                                 break;
2611                         }
2612                         break;
2613                 }
2614                 /* Problem was not a check condition
2615                  * Pass it up to the upper layers...
2616                  */
2617                 if (ei->ScsiStatus) {
2618                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2619                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2620                                 "Returning result: 0x%x\n",
2621                                 cp, ei->ScsiStatus,
2622                                 sense_key, asc, ascq,
2623                                 cmd->result);
2624                 } else {  /* scsi status is zero??? How??? */
2625                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2626                                 "Returning no connection.\n", cp),
2627
2628                         /* Ordinarily, this case should never happen,
2629                          * but there is a bug in some released firmware
2630                          * revisions that allows it to happen if, for
2631                          * example, a 4100 backplane loses power and
2632                          * the tape drive is in it.  We assume that
2633                          * it's a fatal error of some kind because we
2634                          * can't show that it wasn't. We will make it
2635                          * look like selection timeout since that is
2636                          * the most common reason for this to occur,
2637                          * and it's severe enough.
2638                          */
2639
2640                         cmd->result = DID_NO_CONNECT << 16;
2641                 }
2642                 break;
2643
2644         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2645                 break;
2646         case CMD_DATA_OVERRUN:
2647                 dev_warn(&h->pdev->dev,
2648                         "CDB %16phN data overrun\n", cp->Request.CDB);
2649                 break;
2650         case CMD_INVALID: {
2651                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2652                 print_cmd(cp); */
2653                 /* We get CMD_INVALID if you address a non-existent device
2654                  * instead of a selection timeout (no response).  You will
2655                  * see this if you yank out a drive, then try to access it.
2656                  * This is kind of a shame because it means that any other
2657                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2658                  * missing target. */
2659                 cmd->result = DID_NO_CONNECT << 16;
2660         }
2661                 break;
2662         case CMD_PROTOCOL_ERR:
2663                 cmd->result = DID_ERROR << 16;
2664                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2665                                 cp->Request.CDB);
2666                 break;
2667         case CMD_HARDWARE_ERR:
2668                 cmd->result = DID_ERROR << 16;
2669                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2670                         cp->Request.CDB);
2671                 break;
2672         case CMD_CONNECTION_LOST:
2673                 cmd->result = DID_ERROR << 16;
2674                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2675                         cp->Request.CDB);
2676                 break;
2677         case CMD_ABORTED:
2678                 /* Return now to avoid calling scsi_done(). */
2679                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2680         case CMD_ABORT_FAILED:
2681                 cmd->result = DID_ERROR << 16;
2682                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2683                         cp->Request.CDB);
2684                 break;
2685         case CMD_UNSOLICITED_ABORT:
2686                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2687                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2688                         cp->Request.CDB);
2689                 break;
2690         case CMD_TIMEOUT:
2691                 cmd->result = DID_TIME_OUT << 16;
2692                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2693                         cp->Request.CDB);
2694                 break;
2695         case CMD_UNABORTABLE:
2696                 cmd->result = DID_ERROR << 16;
2697                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2698                 break;
2699         case CMD_TMF_STATUS:
2700                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2701                         cmd->result = DID_ERROR << 16;
2702                 break;
2703         case CMD_IOACCEL_DISABLED:
2704                 /* This only handles the direct pass-through case since RAID
2705                  * offload is handled above.  Just attempt a retry.
2706                  */
2707                 cmd->result = DID_SOFT_ERROR << 16;
2708                 dev_warn(&h->pdev->dev,
2709                                 "cp %p had HP SSD Smart Path error\n", cp);
2710                 break;
2711         default:
2712                 cmd->result = DID_ERROR << 16;
2713                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2714                                 cp, ei->CommandStatus);
2715         }
2716
2717         return hpsa_cmd_free_and_done(h, cp, cmd);
2718 }
2719
2720 static void hpsa_pci_unmap(struct pci_dev *pdev,
2721         struct CommandList *c, int sg_used, int data_direction)
2722 {
2723         int i;
2724
2725         for (i = 0; i < sg_used; i++)
2726                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2727                                 le32_to_cpu(c->SG[i].Len),
2728                                 data_direction);
2729 }
2730
2731 static int hpsa_map_one(struct pci_dev *pdev,
2732                 struct CommandList *cp,
2733                 unsigned char *buf,
2734                 size_t buflen,
2735                 int data_direction)
2736 {
2737         u64 addr64;
2738
2739         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2740                 cp->Header.SGList = 0;
2741                 cp->Header.SGTotal = cpu_to_le16(0);
2742                 return 0;
2743         }
2744
2745         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2746         if (dma_mapping_error(&pdev->dev, addr64)) {
2747                 /* Prevent subsequent unmap of something never mapped */
2748                 cp->Header.SGList = 0;
2749                 cp->Header.SGTotal = cpu_to_le16(0);
2750                 return -1;
2751         }
2752         cp->SG[0].Addr = cpu_to_le64(addr64);
2753         cp->SG[0].Len = cpu_to_le32(buflen);
2754         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2755         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2756         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2757         return 0;
2758 }
2759
2760 #define NO_TIMEOUT ((unsigned long) -1)
2761 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2762 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2763         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2764 {
2765         DECLARE_COMPLETION_ONSTACK(wait);
2766
2767         c->waiting = &wait;
2768         __enqueue_cmd_and_start_io(h, c, reply_queue);
2769         if (timeout_msecs == NO_TIMEOUT) {
2770                 /* TODO: get rid of this no-timeout thing */
2771                 wait_for_completion_io(&wait);
2772                 return IO_OK;
2773         }
2774         if (!wait_for_completion_io_timeout(&wait,
2775                                         msecs_to_jiffies(timeout_msecs))) {
2776                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2777                 return -ETIMEDOUT;
2778         }
2779         return IO_OK;
2780 }
2781
2782 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2783                                    int reply_queue, unsigned long timeout_msecs)
2784 {
2785         if (unlikely(lockup_detected(h))) {
2786                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2787                 return IO_OK;
2788         }
2789         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2790 }
2791
2792 static u32 lockup_detected(struct ctlr_info *h)
2793 {
2794         int cpu;
2795         u32 rc, *lockup_detected;
2796
2797         cpu = get_cpu();
2798         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2799         rc = *lockup_detected;
2800         put_cpu();
2801         return rc;
2802 }
2803
2804 #define MAX_DRIVER_CMD_RETRIES 25
2805 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2806         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2807 {
2808         int backoff_time = 10, retry_count = 0;
2809         int rc;
2810
2811         do {
2812                 memset(c->err_info, 0, sizeof(*c->err_info));
2813                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2814                                                   timeout_msecs);
2815                 if (rc)
2816                         break;
2817                 retry_count++;
2818                 if (retry_count > 3) {
2819                         msleep(backoff_time);
2820                         if (backoff_time < 1000)
2821                                 backoff_time *= 2;
2822                 }
2823         } while ((check_for_unit_attention(h, c) ||
2824                         check_for_busy(h, c)) &&
2825                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2826         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2827         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2828                 rc = -EIO;
2829         return rc;
2830 }
2831
2832 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2833                                 struct CommandList *c)
2834 {
2835         const u8 *cdb = c->Request.CDB;
2836         const u8 *lun = c->Header.LUN.LunAddrBytes;
2837
2838         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2839                  txt, lun, cdb);
2840 }
2841
2842 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2843                         struct CommandList *cp)
2844 {
2845         const struct ErrorInfo *ei = cp->err_info;
2846         struct device *d = &cp->h->pdev->dev;
2847         u8 sense_key, asc, ascq;
2848         int sense_len;
2849
2850         switch (ei->CommandStatus) {
2851         case CMD_TARGET_STATUS:
2852                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2853                         sense_len = sizeof(ei->SenseInfo);
2854                 else
2855                         sense_len = ei->SenseLen;
2856                 decode_sense_data(ei->SenseInfo, sense_len,
2857                                         &sense_key, &asc, &ascq);
2858                 hpsa_print_cmd(h, "SCSI status", cp);
2859                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2860                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2861                                 sense_key, asc, ascq);
2862                 else
2863                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2864                 if (ei->ScsiStatus == 0)
2865                         dev_warn(d, "SCSI status is abnormally zero.  "
2866                         "(probably indicates selection timeout "
2867                         "reported incorrectly due to a known "
2868                         "firmware bug, circa July, 2001.)\n");
2869                 break;
2870         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2871                 break;
2872         case CMD_DATA_OVERRUN:
2873                 hpsa_print_cmd(h, "overrun condition", cp);
2874                 break;
2875         case CMD_INVALID: {
2876                 /* controller unfortunately reports SCSI passthru's
2877                  * to non-existent targets as invalid commands.
2878                  */
2879                 hpsa_print_cmd(h, "invalid command", cp);
2880                 dev_warn(d, "probably means device no longer present\n");
2881                 }
2882                 break;
2883         case CMD_PROTOCOL_ERR:
2884                 hpsa_print_cmd(h, "protocol error", cp);
2885                 break;
2886         case CMD_HARDWARE_ERR:
2887                 hpsa_print_cmd(h, "hardware error", cp);
2888                 break;
2889         case CMD_CONNECTION_LOST:
2890                 hpsa_print_cmd(h, "connection lost", cp);
2891                 break;
2892         case CMD_ABORTED:
2893                 hpsa_print_cmd(h, "aborted", cp);
2894                 break;
2895         case CMD_ABORT_FAILED:
2896                 hpsa_print_cmd(h, "abort failed", cp);
2897                 break;
2898         case CMD_UNSOLICITED_ABORT:
2899                 hpsa_print_cmd(h, "unsolicited abort", cp);
2900                 break;
2901         case CMD_TIMEOUT:
2902                 hpsa_print_cmd(h, "timed out", cp);
2903                 break;
2904         case CMD_UNABORTABLE:
2905                 hpsa_print_cmd(h, "unabortable", cp);
2906                 break;
2907         case CMD_CTLR_LOCKUP:
2908                 hpsa_print_cmd(h, "controller lockup detected", cp);
2909                 break;
2910         default:
2911                 hpsa_print_cmd(h, "unknown status", cp);
2912                 dev_warn(d, "Unknown command status %x\n",
2913                                 ei->CommandStatus);
2914         }
2915 }
2916
2917 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2918                         u16 page, unsigned char *buf,
2919                         unsigned char bufsize)
2920 {
2921         int rc = IO_OK;
2922         struct CommandList *c;
2923         struct ErrorInfo *ei;
2924
2925         c = cmd_alloc(h);
2926
2927         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2928                         page, scsi3addr, TYPE_CMD)) {
2929                 rc = -1;
2930                 goto out;
2931         }
2932         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2933                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2934         if (rc)
2935                 goto out;
2936         ei = c->err_info;
2937         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2938                 hpsa_scsi_interpret_error(h, c);
2939                 rc = -1;
2940         }
2941 out:
2942         cmd_free(h, c);
2943         return rc;
2944 }
2945
2946 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2947         u8 reset_type, int reply_queue)
2948 {
2949         int rc = IO_OK;
2950         struct CommandList *c;
2951         struct ErrorInfo *ei;
2952
2953         c = cmd_alloc(h);
2954
2955
2956         /* fill_cmd can't fail here, no data buffer to map. */
2957         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2958                         scsi3addr, TYPE_MSG);
2959         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2960         if (rc) {
2961                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2962                 goto out;
2963         }
2964         /* no unmap needed here because no data xfer. */
2965
2966         ei = c->err_info;
2967         if (ei->CommandStatus != 0) {
2968                 hpsa_scsi_interpret_error(h, c);
2969                 rc = -1;
2970         }
2971 out:
2972         cmd_free(h, c);
2973         return rc;
2974 }
2975
2976 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2977                                struct hpsa_scsi_dev_t *dev,
2978                                unsigned char *scsi3addr)
2979 {
2980         int i;
2981         bool match = false;
2982         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2983         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2984
2985         if (hpsa_is_cmd_idle(c))
2986                 return false;
2987
2988         switch (c->cmd_type) {
2989         case CMD_SCSI:
2990         case CMD_IOCTL_PEND:
2991                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2992                                 sizeof(c->Header.LUN.LunAddrBytes));
2993                 break;
2994
2995         case CMD_IOACCEL1:
2996         case CMD_IOACCEL2:
2997                 if (c->phys_disk == dev) {
2998                         /* HBA mode match */
2999                         match = true;
3000                 } else {
3001                         /* Possible RAID mode -- check each phys dev. */
3002                         /* FIXME:  Do we need to take out a lock here?  If
3003                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3004                          * instead. */
3005                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3006                                 /* FIXME: an alternate test might be
3007                                  *
3008                                  * match = dev->phys_disk[i]->ioaccel_handle
3009                                  *              == c2->scsi_nexus;      */
3010                                 match = dev->phys_disk[i] == c->phys_disk;
3011                         }
3012                 }
3013                 break;
3014
3015         case IOACCEL2_TMF:
3016                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3017                         match = dev->phys_disk[i]->ioaccel_handle ==
3018                                         le32_to_cpu(ac->it_nexus);
3019                 }
3020                 break;
3021
3022         case 0:         /* The command is in the middle of being initialized. */
3023                 match = false;
3024                 break;
3025
3026         default:
3027                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3028                         c->cmd_type);
3029                 BUG();
3030         }
3031
3032         return match;
3033 }
3034
3035 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3036         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3037 {
3038         int i;
3039         int rc = 0;
3040
3041         /* We can really only handle one reset at a time */
3042         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3043                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3044                 return -EINTR;
3045         }
3046
3047         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3048
3049         for (i = 0; i < h->nr_cmds; i++) {
3050                 struct CommandList *c = h->cmd_pool + i;
3051                 int refcount = atomic_inc_return(&c->refcount);
3052
3053                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3054                         unsigned long flags;
3055
3056                         /*
3057                          * Mark the target command as having a reset pending,
3058                          * then lock a lock so that the command cannot complete
3059                          * while we're considering it.  If the command is not
3060                          * idle then count it; otherwise revoke the event.
3061                          */
3062                         c->reset_pending = dev;
3063                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3064                         if (!hpsa_is_cmd_idle(c))
3065                                 atomic_inc(&dev->reset_cmds_out);
3066                         else
3067                                 c->reset_pending = NULL;
3068                         spin_unlock_irqrestore(&h->lock, flags);
3069                 }
3070
3071                 cmd_free(h, c);
3072         }
3073
3074         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3075         if (!rc)
3076                 wait_event(h->event_sync_wait_queue,
3077                         atomic_read(&dev->reset_cmds_out) == 0 ||
3078                         lockup_detected(h));
3079
3080         if (unlikely(lockup_detected(h))) {
3081                 dev_warn(&h->pdev->dev,
3082                          "Controller lockup detected during reset wait\n");
3083                 rc = -ENODEV;
3084         }
3085
3086         if (unlikely(rc))
3087                 atomic_set(&dev->reset_cmds_out, 0);
3088         else
3089                 wait_for_device_to_become_ready(h, scsi3addr, 0);
3090
3091         mutex_unlock(&h->reset_mutex);
3092         return rc;
3093 }
3094
3095 static void hpsa_get_raid_level(struct ctlr_info *h,
3096         unsigned char *scsi3addr, unsigned char *raid_level)
3097 {
3098         int rc;
3099         unsigned char *buf;
3100
3101         *raid_level = RAID_UNKNOWN;
3102         buf = kzalloc(64, GFP_KERNEL);
3103         if (!buf)
3104                 return;
3105
3106         if (!hpsa_vpd_page_supported(h, scsi3addr,
3107                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3108                 goto exit;
3109
3110         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3111                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3112
3113         if (rc == 0)
3114                 *raid_level = buf[8];
3115         if (*raid_level > RAID_UNKNOWN)
3116                 *raid_level = RAID_UNKNOWN;
3117 exit:
3118         kfree(buf);
3119         return;
3120 }
3121
3122 #define HPSA_MAP_DEBUG
3123 #ifdef HPSA_MAP_DEBUG
3124 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3125                                 struct raid_map_data *map_buff)
3126 {
3127         struct raid_map_disk_data *dd = &map_buff->data[0];
3128         int map, row, col;
3129         u16 map_cnt, row_cnt, disks_per_row;
3130
3131         if (rc != 0)
3132                 return;
3133
3134         /* Show details only if debugging has been activated. */
3135         if (h->raid_offload_debug < 2)
3136                 return;
3137
3138         dev_info(&h->pdev->dev, "structure_size = %u\n",
3139                                 le32_to_cpu(map_buff->structure_size));
3140         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3141                         le32_to_cpu(map_buff->volume_blk_size));
3142         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3143                         le64_to_cpu(map_buff->volume_blk_cnt));
3144         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3145                         map_buff->phys_blk_shift);
3146         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3147                         map_buff->parity_rotation_shift);
3148         dev_info(&h->pdev->dev, "strip_size = %u\n",
3149                         le16_to_cpu(map_buff->strip_size));
3150         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3151                         le64_to_cpu(map_buff->disk_starting_blk));
3152         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3153                         le64_to_cpu(map_buff->disk_blk_cnt));
3154         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3155                         le16_to_cpu(map_buff->data_disks_per_row));
3156         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3157                         le16_to_cpu(map_buff->metadata_disks_per_row));
3158         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3159                         le16_to_cpu(map_buff->row_cnt));
3160         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3161                         le16_to_cpu(map_buff->layout_map_count));
3162         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3163                         le16_to_cpu(map_buff->flags));
3164         dev_info(&h->pdev->dev, "encrypytion = %s\n",
3165                         le16_to_cpu(map_buff->flags) &
3166                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3167         dev_info(&h->pdev->dev, "dekindex = %u\n",
3168                         le16_to_cpu(map_buff->dekindex));
3169         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3170         for (map = 0; map < map_cnt; map++) {
3171                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3172                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3173                 for (row = 0; row < row_cnt; row++) {
3174                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3175                         disks_per_row =
3176                                 le16_to_cpu(map_buff->data_disks_per_row);
3177                         for (col = 0; col < disks_per_row; col++, dd++)
3178                                 dev_info(&h->pdev->dev,
3179                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3180                                         col, dd->ioaccel_handle,
3181                                         dd->xor_mult[0], dd->xor_mult[1]);
3182                         disks_per_row =
3183                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3184                         for (col = 0; col < disks_per_row; col++, dd++)
3185                                 dev_info(&h->pdev->dev,
3186                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3187                                         col, dd->ioaccel_handle,
3188                                         dd->xor_mult[0], dd->xor_mult[1]);
3189                 }
3190         }
3191 }
3192 #else
3193 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3194                         __attribute__((unused)) int rc,
3195                         __attribute__((unused)) struct raid_map_data *map_buff)
3196 {
3197 }
3198 #endif
3199
3200 static int hpsa_get_raid_map(struct ctlr_info *h,
3201         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3202 {
3203         int rc = 0;
3204         struct CommandList *c;
3205         struct ErrorInfo *ei;
3206
3207         c = cmd_alloc(h);
3208
3209         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3210                         sizeof(this_device->raid_map), 0,
3211                         scsi3addr, TYPE_CMD)) {
3212                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3213                 cmd_free(h, c);
3214                 return -1;
3215         }
3216         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3217                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3218         if (rc)
3219                 goto out;
3220         ei = c->err_info;
3221         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3222                 hpsa_scsi_interpret_error(h, c);
3223                 rc = -1;
3224                 goto out;
3225         }
3226         cmd_free(h, c);
3227
3228         /* @todo in the future, dynamically allocate RAID map memory */
3229         if (le32_to_cpu(this_device->raid_map.structure_size) >
3230                                 sizeof(this_device->raid_map)) {
3231                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3232                 rc = -1;
3233         }
3234         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3235         return rc;
3236 out:
3237         cmd_free(h, c);
3238         return rc;
3239 }
3240
3241 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3242                 unsigned char scsi3addr[], u16 bmic_device_index,
3243                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3244 {
3245         int rc = IO_OK;
3246         struct CommandList *c;
3247         struct ErrorInfo *ei;
3248
3249         c = cmd_alloc(h);
3250
3251         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3252                 0, RAID_CTLR_LUNID, TYPE_CMD);
3253         if (rc)
3254                 goto out;
3255
3256         c->Request.CDB[2] = bmic_device_index & 0xff;
3257         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3258
3259         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3260                                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3261         if (rc)
3262                 goto out;
3263         ei = c->err_info;
3264         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3265                 hpsa_scsi_interpret_error(h, c);
3266                 rc = -1;
3267         }
3268 out:
3269         cmd_free(h, c);
3270         return rc;
3271 }
3272
3273 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3274         struct bmic_identify_controller *buf, size_t bufsize)
3275 {
3276         int rc = IO_OK;
3277         struct CommandList *c;
3278         struct ErrorInfo *ei;
3279
3280         c = cmd_alloc(h);
3281
3282         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3283                 0, RAID_CTLR_LUNID, TYPE_CMD);
3284         if (rc)
3285                 goto out;
3286
3287         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3288                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3289         if (rc)
3290                 goto out;
3291         ei = c->err_info;
3292         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3293                 hpsa_scsi_interpret_error(h, c);
3294                 rc = -1;
3295         }
3296 out:
3297         cmd_free(h, c);
3298         return rc;
3299 }
3300
3301 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3302                 unsigned char scsi3addr[], u16 bmic_device_index,
3303                 struct bmic_identify_physical_device *buf, size_t bufsize)
3304 {
3305         int rc = IO_OK;
3306         struct CommandList *c;
3307         struct ErrorInfo *ei;
3308
3309         c = cmd_alloc(h);
3310         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3311                 0, RAID_CTLR_LUNID, TYPE_CMD);
3312         if (rc)
3313                 goto out;
3314
3315         c->Request.CDB[2] = bmic_device_index & 0xff;
3316         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3317
3318         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3319                                                 DEFAULT_TIMEOUT);
3320         ei = c->err_info;
3321         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3322                 hpsa_scsi_interpret_error(h, c);
3323                 rc = -1;
3324         }
3325 out:
3326         cmd_free(h, c);
3327
3328         return rc;
3329 }
3330
3331 /*
3332  * get enclosure information
3333  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3334  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3335  * Uses id_physical_device to determine the box_index.
3336  */
3337 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3338                         unsigned char *scsi3addr,
3339                         struct ReportExtendedLUNdata *rlep, int rle_index,
3340                         struct hpsa_scsi_dev_t *encl_dev)
3341 {
3342         int rc = -1;
3343         struct CommandList *c = NULL;
3344         struct ErrorInfo *ei = NULL;
3345         struct bmic_sense_storage_box_params *bssbp = NULL;
3346         struct bmic_identify_physical_device *id_phys = NULL;
3347         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3348         u16 bmic_device_index = 0;
3349
3350         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3351
3352         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3353                 rc = IO_OK;
3354                 goto out;
3355         }
3356
3357         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3358         if (!bssbp)
3359                 goto out;
3360
3361         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3362         if (!id_phys)
3363                 goto out;
3364
3365         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3366                                                 id_phys, sizeof(*id_phys));
3367         if (rc) {
3368                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3369                         __func__, encl_dev->external, bmic_device_index);
3370                 goto out;
3371         }
3372
3373         c = cmd_alloc(h);
3374
3375         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3376                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3377
3378         if (rc)
3379                 goto out;
3380
3381         if (id_phys->phys_connector[1] == 'E')
3382                 c->Request.CDB[5] = id_phys->box_index;
3383         else
3384                 c->Request.CDB[5] = 0;
3385
3386         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3387                                                 DEFAULT_TIMEOUT);
3388         if (rc)
3389                 goto out;
3390
3391         ei = c->err_info;
3392         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3393                 rc = -1;
3394                 goto out;
3395         }
3396
3397         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3398         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3399                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3400
3401         rc = IO_OK;
3402 out:
3403         kfree(bssbp);
3404         kfree(id_phys);
3405
3406         if (c)
3407                 cmd_free(h, c);
3408
3409         if (rc != IO_OK)
3410                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3411                         "Error, could not get enclosure information\n");
3412 }
3413
3414 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3415                                                 unsigned char *scsi3addr)
3416 {
3417         struct ReportExtendedLUNdata *physdev;
3418         u32 nphysicals;
3419         u64 sa = 0;
3420         int i;
3421
3422         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3423         if (!physdev)
3424                 return 0;
3425
3426         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3427                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3428                 kfree(physdev);
3429                 return 0;
3430         }
3431         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3432
3433         for (i = 0; i < nphysicals; i++)
3434                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3435                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3436                         break;
3437                 }
3438
3439         kfree(physdev);
3440
3441         return sa;
3442 }
3443
3444 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3445                                         struct hpsa_scsi_dev_t *dev)
3446 {
3447         int rc;
3448         u64 sa = 0;
3449
3450         if (is_hba_lunid(scsi3addr)) {
3451                 struct bmic_sense_subsystem_info *ssi;
3452
3453                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3454                 if (!ssi)
3455                         return;
3456
3457                 rc = hpsa_bmic_sense_subsystem_information(h,
3458                                         scsi3addr, 0, ssi, sizeof(*ssi));
3459                 if (rc == 0) {
3460                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3461                         h->sas_address = sa;
3462                 }
3463
3464                 kfree(ssi);
3465         } else
3466                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3467
3468         dev->sas_address = sa;
3469 }
3470
3471 /* Get a device id from inquiry page 0x83 */
3472 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3473         unsigned char scsi3addr[], u8 page)
3474 {
3475         int rc;
3476         int i;
3477         int pages;
3478         unsigned char *buf, bufsize;
3479
3480         buf = kzalloc(256, GFP_KERNEL);
3481         if (!buf)
3482                 return false;
3483
3484         /* Get the size of the page list first */
3485         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3486                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3487                                 buf, HPSA_VPD_HEADER_SZ);
3488         if (rc != 0)
3489                 goto exit_unsupported;
3490         pages = buf[3];
3491         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3492                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3493         else
3494                 bufsize = 255;
3495
3496         /* Get the whole VPD page list */
3497         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3498                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3499                                 buf, bufsize);
3500         if (rc != 0)
3501                 goto exit_unsupported;
3502
3503         pages = buf[3];
3504         for (i = 1; i <= pages; i++)
3505                 if (buf[3 + i] == page)
3506                         goto exit_supported;
3507 exit_unsupported:
3508         kfree(buf);
3509         return false;
3510 exit_supported:
3511         kfree(buf);
3512         return true;
3513 }
3514
3515 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3516         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3517 {
3518         int rc;
3519         unsigned char *buf;
3520         u8 ioaccel_status;
3521
3522         this_device->offload_config = 0;
3523         this_device->offload_enabled = 0;
3524         this_device->offload_to_be_enabled = 0;
3525
3526         buf = kzalloc(64, GFP_KERNEL);
3527         if (!buf)
3528                 return;
3529         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3530                 goto out;
3531         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3532                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3533         if (rc != 0)
3534                 goto out;
3535
3536 #define IOACCEL_STATUS_BYTE 4
3537 #define OFFLOAD_CONFIGURED_BIT 0x01
3538 #define OFFLOAD_ENABLED_BIT 0x02
3539         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3540         this_device->offload_config =
3541                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3542         if (this_device->offload_config) {
3543                 this_device->offload_enabled =
3544                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3545                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3546                         this_device->offload_enabled = 0;
3547         }
3548         this_device->offload_to_be_enabled = this_device->offload_enabled;
3549 out:
3550         kfree(buf);
3551         return;
3552 }
3553
3554 /* Get the device id from inquiry page 0x83 */
3555 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3556         unsigned char *device_id, int index, int buflen)
3557 {
3558         int rc;
3559         unsigned char *buf;
3560
3561         /* Does controller have VPD for device id? */
3562         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3563                 return 1; /* not supported */
3564
3565         buf = kzalloc(64, GFP_KERNEL);
3566         if (!buf)
3567                 return -ENOMEM;
3568
3569         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3570                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3571         if (rc == 0) {
3572                 if (buflen > 16)
3573                         buflen = 16;
3574                 memcpy(device_id, &buf[8], buflen);
3575         }
3576
3577         kfree(buf);
3578
3579         return rc; /*0 - got id,  otherwise, didn't */
3580 }
3581
3582 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3583                 void *buf, int bufsize,
3584                 int extended_response)
3585 {
3586         int rc = IO_OK;
3587         struct CommandList *c;
3588         unsigned char scsi3addr[8];
3589         struct ErrorInfo *ei;
3590
3591         c = cmd_alloc(h);
3592
3593         /* address the controller */
3594         memset(scsi3addr, 0, sizeof(scsi3addr));
3595         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3596                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3597                 rc = -1;
3598                 goto out;
3599         }
3600         if (extended_response)
3601                 c->Request.CDB[1] = extended_response;
3602         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3603                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3604         if (rc)
3605                 goto out;
3606         ei = c->err_info;
3607         if (ei->CommandStatus != 0 &&
3608             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3609                 hpsa_scsi_interpret_error(h, c);
3610                 rc = -1;
3611         } else {
3612                 struct ReportLUNdata *rld = buf;
3613
3614                 if (rld->extended_response_flag != extended_response) {
3615                         dev_err(&h->pdev->dev,
3616                                 "report luns requested format %u, got %u\n",
3617                                 extended_response,
3618                                 rld->extended_response_flag);
3619                         rc = -1;
3620                 }
3621         }
3622 out:
3623         cmd_free(h, c);
3624         return rc;
3625 }
3626
3627 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3628                 struct ReportExtendedLUNdata *buf, int bufsize)
3629 {
3630         int rc;
3631         struct ReportLUNdata *lbuf;
3632
3633         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3634                                       HPSA_REPORT_PHYS_EXTENDED);
3635         if (!rc || !hpsa_allow_any)
3636                 return rc;
3637
3638         /* REPORT PHYS EXTENDED is not supported */
3639         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3640         if (!lbuf)
3641                 return -ENOMEM;
3642
3643         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3644         if (!rc) {
3645                 int i;
3646                 u32 nphys;
3647
3648                 /* Copy ReportLUNdata header */
3649                 memcpy(buf, lbuf, 8);
3650                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3651                 for (i = 0; i < nphys; i++)
3652                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3653         }
3654         kfree(lbuf);
3655         return rc;
3656 }
3657
3658 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3659                 struct ReportLUNdata *buf, int bufsize)
3660 {
3661         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3662 }
3663
3664 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3665         int bus, int target, int lun)
3666 {
3667         device->bus = bus;
3668         device->target = target;
3669         device->lun = lun;
3670 }
3671
3672 /* Use VPD inquiry to get details of volume status */
3673 static int hpsa_get_volume_status(struct ctlr_info *h,
3674                                         unsigned char scsi3addr[])
3675 {
3676         int rc;
3677         int status;
3678         int size;
3679         unsigned char *buf;
3680
3681         buf = kzalloc(64, GFP_KERNEL);
3682         if (!buf)
3683                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3684
3685         /* Does controller have VPD for logical volume status? */
3686         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3687                 goto exit_failed;
3688
3689         /* Get the size of the VPD return buffer */
3690         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3691                                         buf, HPSA_VPD_HEADER_SZ);
3692         if (rc != 0)
3693                 goto exit_failed;
3694         size = buf[3];
3695
3696         /* Now get the whole VPD buffer */
3697         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3698                                         buf, size + HPSA_VPD_HEADER_SZ);
3699         if (rc != 0)
3700                 goto exit_failed;
3701         status = buf[4]; /* status byte */
3702
3703         kfree(buf);
3704         return status;
3705 exit_failed:
3706         kfree(buf);
3707         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3708 }
3709
3710 /* Determine offline status of a volume.
3711  * Return either:
3712  *  0 (not offline)
3713  *  0xff (offline for unknown reasons)
3714  *  # (integer code indicating one of several NOT READY states
3715  *     describing why a volume is to be kept offline)
3716  */
3717 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3718                                         unsigned char scsi3addr[])
3719 {
3720         struct CommandList *c;
3721         unsigned char *sense;
3722         u8 sense_key, asc, ascq;
3723         int sense_len;
3724         int rc, ldstat = 0;
3725         u16 cmd_status;
3726         u8 scsi_status;
3727 #define ASC_LUN_NOT_READY 0x04
3728 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3729 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3730
3731         c = cmd_alloc(h);
3732
3733         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3734         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3735                                         DEFAULT_TIMEOUT);
3736         if (rc) {
3737                 cmd_free(h, c);
3738                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3739         }
3740         sense = c->err_info->SenseInfo;
3741         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3742                 sense_len = sizeof(c->err_info->SenseInfo);
3743         else
3744                 sense_len = c->err_info->SenseLen;
3745         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3746         cmd_status = c->err_info->CommandStatus;
3747         scsi_status = c->err_info->ScsiStatus;
3748         cmd_free(h, c);
3749
3750         /* Determine the reason for not ready state */
3751         ldstat = hpsa_get_volume_status(h, scsi3addr);
3752
3753         /* Keep volume offline in certain cases: */
3754         switch (ldstat) {
3755         case HPSA_LV_FAILED:
3756         case HPSA_LV_UNDERGOING_ERASE:
3757         case HPSA_LV_NOT_AVAILABLE:
3758         case HPSA_LV_UNDERGOING_RPI:
3759         case HPSA_LV_PENDING_RPI:
3760         case HPSA_LV_ENCRYPTED_NO_KEY:
3761         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3762         case HPSA_LV_UNDERGOING_ENCRYPTION:
3763         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3764         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3765                 return ldstat;
3766         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3767                 /* If VPD status page isn't available,
3768                  * use ASC/ASCQ to determine state
3769                  */
3770                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3771                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3772                         return ldstat;
3773                 break;
3774         default:
3775                 break;
3776         }
3777         return HPSA_LV_OK;
3778 }
3779
3780 /*
3781  * Find out if a logical device supports aborts by simply trying one.
3782  * Smart Array may claim not to support aborts on logical drives, but
3783  * if a MSA2000 * is connected, the drives on that will be presented
3784  * by the Smart Array as logical drives, and aborts may be sent to
3785  * those devices successfully.  So the simplest way to find out is
3786  * to simply try an abort and see how the device responds.
3787  */
3788 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3789                                         unsigned char *scsi3addr)
3790 {
3791         struct CommandList *c;
3792         struct ErrorInfo *ei;
3793         int rc = 0;
3794
3795         u64 tag = (u64) -1; /* bogus tag */
3796
3797         /* Assume that physical devices support aborts */
3798         if (!is_logical_dev_addr_mode(scsi3addr))
3799                 return 1;
3800
3801         c = cmd_alloc(h);
3802
3803         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3804         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3805                                         DEFAULT_TIMEOUT);
3806         /* no unmap needed here because no data xfer. */
3807         ei = c->err_info;
3808         switch (ei->CommandStatus) {
3809         case CMD_INVALID:
3810                 rc = 0;
3811                 break;
3812         case CMD_UNABORTABLE:
3813         case CMD_ABORT_FAILED:
3814                 rc = 1;
3815                 break;
3816         case CMD_TMF_STATUS:
3817                 rc = hpsa_evaluate_tmf_status(h, c);
3818                 break;
3819         default:
3820                 rc = 0;
3821                 break;
3822         }
3823         cmd_free(h, c);
3824         return rc;
3825 }
3826
3827 static int hpsa_update_device_info(struct ctlr_info *h,
3828         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3829         unsigned char *is_OBDR_device)
3830 {
3831
3832 #define OBDR_SIG_OFFSET 43
3833 #define OBDR_TAPE_SIG "$DR-10"
3834 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3835 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3836
3837         unsigned char *inq_buff;
3838         unsigned char *obdr_sig;
3839         int rc = 0;
3840
3841         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3842         if (!inq_buff) {
3843                 rc = -ENOMEM;
3844                 goto bail_out;
3845         }
3846
3847         /* Do an inquiry to the device to see what it is. */
3848         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3849                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3850                 dev_err(&h->pdev->dev,
3851                         "%s: inquiry failed, device will be skipped.\n",
3852                         __func__);
3853                 rc = HPSA_INQUIRY_FAILED;
3854                 goto bail_out;
3855         }
3856
3857         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3858         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3859
3860         this_device->devtype = (inq_buff[0] & 0x1f);
3861         memcpy(this_device->scsi3addr, scsi3addr, 8);
3862         memcpy(this_device->vendor, &inq_buff[8],
3863                 sizeof(this_device->vendor));
3864         memcpy(this_device->model, &inq_buff[16],
3865                 sizeof(this_device->model));
3866         this_device->rev = inq_buff[2];
3867         memset(this_device->device_id, 0,
3868                 sizeof(this_device->device_id));
3869         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3870                 sizeof(this_device->device_id)))
3871                 dev_err(&h->pdev->dev,
3872                         "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3873                         h->ctlr, __func__,
3874                         h->scsi_host->host_no,
3875                         this_device->target, this_device->lun,
3876                         scsi_device_type(this_device->devtype),
3877                         this_device->model);
3878
3879         if ((this_device->devtype == TYPE_DISK ||
3880                 this_device->devtype == TYPE_ZBC) &&
3881                 is_logical_dev_addr_mode(scsi3addr)) {
3882                 unsigned char volume_offline;
3883
3884                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3885                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3886                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3887                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3888                 if (volume_offline == HPSA_LV_FAILED) {
3889                         rc = HPSA_LV_FAILED;
3890                         dev_err(&h->pdev->dev,
3891                                 "%s: LV failed, device will be skipped.\n",
3892                                 __func__);
3893                         goto bail_out;
3894                 }
3895         } else {
3896                 this_device->raid_level = RAID_UNKNOWN;
3897                 this_device->offload_config = 0;
3898                 this_device->offload_enabled = 0;
3899                 this_device->offload_to_be_enabled = 0;
3900                 this_device->hba_ioaccel_enabled = 0;
3901                 this_device->volume_offline = 0;
3902                 this_device->queue_depth = h->nr_cmds;
3903         }
3904
3905         if (is_OBDR_device) {
3906                 /* See if this is a One-Button-Disaster-Recovery device
3907                  * by looking for "$DR-10" at offset 43 in inquiry data.
3908                  */
3909                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3910                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3911                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3912                                                 OBDR_SIG_LEN) == 0);
3913         }
3914         kfree(inq_buff);
3915         return 0;
3916
3917 bail_out:
3918         kfree(inq_buff);
3919         return rc;
3920 }
3921
3922 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3923                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3924 {
3925         unsigned long flags;
3926         int rc, entry;
3927         /*
3928          * See if this device supports aborts.  If we already know
3929          * the device, we already know if it supports aborts, otherwise
3930          * we have to find out if it supports aborts by trying one.
3931          */
3932         spin_lock_irqsave(&h->devlock, flags);
3933         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3934         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3935                 entry >= 0 && entry < h->ndevices) {
3936                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3937                 spin_unlock_irqrestore(&h->devlock, flags);
3938         } else {
3939                 spin_unlock_irqrestore(&h->devlock, flags);
3940                 dev->supports_aborts =
3941                                 hpsa_device_supports_aborts(h, scsi3addr);
3942                 if (dev->supports_aborts < 0)
3943                         dev->supports_aborts = 0;
3944         }
3945 }
3946
3947 /*
3948  * Helper function to assign bus, target, lun mapping of devices.
3949  * Logical drive target and lun are assigned at this time, but
3950  * physical device lun and target assignment are deferred (assigned
3951  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3952 */
3953 static void figure_bus_target_lun(struct ctlr_info *h,
3954         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3955 {
3956         u32 lunid = get_unaligned_le32(lunaddrbytes);
3957
3958         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3959                 /* physical device, target and lun filled in later */
3960                 if (is_hba_lunid(lunaddrbytes)) {
3961                         int bus = HPSA_HBA_BUS;
3962
3963                         if (!device->rev)
3964                                 bus = HPSA_LEGACY_HBA_BUS;
3965                         hpsa_set_bus_target_lun(device,
3966                                         bus, 0, lunid & 0x3fff);
3967                 } else
3968                         /* defer target, lun assignment for physical devices */
3969                         hpsa_set_bus_target_lun(device,
3970                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3971                 return;
3972         }
3973         /* It's a logical device */
3974         if (device->external) {
3975                 hpsa_set_bus_target_lun(device,
3976                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3977                         lunid & 0x00ff);
3978                 return;
3979         }
3980         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3981                                 0, lunid & 0x3fff);
3982 }
3983
3984
3985 /*
3986  * Get address of physical disk used for an ioaccel2 mode command:
3987  *      1. Extract ioaccel2 handle from the command.
3988  *      2. Find a matching ioaccel2 handle from list of physical disks.
3989  *      3. Return:
3990  *              1 and set scsi3addr to address of matching physical
3991  *              0 if no matching physical disk was found.
3992  */
3993 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3994         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3995 {
3996         struct io_accel2_cmd *c2 =
3997                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3998         unsigned long flags;
3999         int i;
4000
4001         spin_lock_irqsave(&h->devlock, flags);
4002         for (i = 0; i < h->ndevices; i++)
4003                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
4004                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
4005                                 sizeof(h->dev[i]->scsi3addr));
4006                         spin_unlock_irqrestore(&h->devlock, flags);
4007                         return 1;
4008                 }
4009         spin_unlock_irqrestore(&h->devlock, flags);
4010         return 0;
4011 }
4012
4013 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4014         int i, int nphysicals, int nlocal_logicals)
4015 {
4016         /* In report logicals, local logicals are listed first,
4017         * then any externals.
4018         */
4019         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4020
4021         if (i == raid_ctlr_position)
4022                 return 0;
4023
4024         if (i < logicals_start)
4025                 return 0;
4026
4027         /* i is in logicals range, but still within local logicals */
4028         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4029                 return 0;
4030
4031         return 1; /* it's an external lun */
4032 }
4033
4034 /*
4035  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4036  * logdev.  The number of luns in physdev and logdev are returned in
4037  * *nphysicals and *nlogicals, respectively.
4038  * Returns 0 on success, -1 otherwise.
4039  */
4040 static int hpsa_gather_lun_info(struct ctlr_info *h,
4041         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4042         struct ReportLUNdata *logdev, u32 *nlogicals)
4043 {
4044         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4045                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4046                 return -1;
4047         }
4048         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4049         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4050                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4051                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4052                 *nphysicals = HPSA_MAX_PHYS_LUN;
4053         }
4054         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4055                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4056                 return -1;
4057         }
4058         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4059         /* Reject Logicals in excess of our max capability. */
4060         if (*nlogicals > HPSA_MAX_LUN) {
4061                 dev_warn(&h->pdev->dev,
4062                         "maximum logical LUNs (%d) exceeded.  "
4063                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4064                         *nlogicals - HPSA_MAX_LUN);
4065                         *nlogicals = HPSA_MAX_LUN;
4066         }
4067         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4068                 dev_warn(&h->pdev->dev,
4069                         "maximum logical + physical LUNs (%d) exceeded. "
4070                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4071                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4072                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4073         }
4074         return 0;
4075 }
4076
4077 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4078         int i, int nphysicals, int nlogicals,
4079         struct ReportExtendedLUNdata *physdev_list,
4080         struct ReportLUNdata *logdev_list)
4081 {
4082         /* Helper function, figure out where the LUN ID info is coming from
4083          * given index i, lists of physical and logical devices, where in
4084          * the list the raid controller is supposed to appear (first or last)
4085          */
4086
4087         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4088         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4089
4090         if (i == raid_ctlr_position)
4091                 return RAID_CTLR_LUNID;
4092
4093         if (i < logicals_start)
4094                 return &physdev_list->LUN[i -
4095                                 (raid_ctlr_position == 0)].lunid[0];
4096
4097         if (i < last_device)
4098                 return &logdev_list->LUN[i - nphysicals -
4099                         (raid_ctlr_position == 0)][0];
4100         BUG();
4101         return NULL;
4102 }
4103
4104 /* get physical drive ioaccel handle and queue depth */
4105 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4106                 struct hpsa_scsi_dev_t *dev,
4107                 struct ReportExtendedLUNdata *rlep, int rle_index,
4108                 struct bmic_identify_physical_device *id_phys)
4109 {
4110         int rc;
4111         struct ext_report_lun_entry *rle;
4112
4113         /*
4114          * external targets don't support BMIC
4115          */
4116         if (dev->external) {
4117                 dev->queue_depth = 7;
4118                 return;
4119         }
4120
4121         rle = &rlep->LUN[rle_index];
4122
4123         dev->ioaccel_handle = rle->ioaccel_handle;
4124         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4125                 dev->hba_ioaccel_enabled = 1;
4126         memset(id_phys, 0, sizeof(*id_phys));
4127         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4128                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4129                         sizeof(*id_phys));
4130         if (!rc)
4131                 /* Reserve space for FW operations */
4132 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4133 #define DRIVE_QUEUE_DEPTH 7
4134                 dev->queue_depth =
4135                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4136                                 DRIVE_CMDS_RESERVED_FOR_FW;
4137         else
4138                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4139 }
4140
4141 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4142         struct ReportExtendedLUNdata *rlep, int rle_index,
4143         struct bmic_identify_physical_device *id_phys)
4144 {
4145         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4146
4147         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4148                 this_device->hba_ioaccel_enabled = 1;
4149
4150         memcpy(&this_device->active_path_index,
4151                 &id_phys->active_path_number,
4152                 sizeof(this_device->active_path_index));
4153         memcpy(&this_device->path_map,
4154                 &id_phys->redundant_path_present_map,
4155                 sizeof(this_device->path_map));
4156         memcpy(&this_device->box,
4157                 &id_phys->alternate_paths_phys_box_on_port,
4158                 sizeof(this_device->box));
4159         memcpy(&this_device->phys_connector,
4160                 &id_phys->alternate_paths_phys_connector,
4161                 sizeof(this_device->phys_connector));
4162         memcpy(&this_device->bay,
4163                 &id_phys->phys_bay_in_box,
4164                 sizeof(this_device->bay));
4165 }
4166
4167 /* get number of local logical disks. */
4168 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4169         struct bmic_identify_controller *id_ctlr,
4170         u32 *nlocals)
4171 {
4172         int rc;
4173
4174         if (!id_ctlr) {
4175                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4176                         __func__);
4177                 return -ENOMEM;
4178         }
4179         memset(id_ctlr, 0, sizeof(*id_ctlr));
4180         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4181         if (!rc)
4182                 if (id_ctlr->configured_logical_drive_count < 256)
4183                         *nlocals = id_ctlr->configured_logical_drive_count;
4184                 else
4185                         *nlocals = le16_to_cpu(
4186                                         id_ctlr->extended_logical_unit_count);
4187         else
4188                 *nlocals = -1;
4189         return rc;
4190 }
4191
4192 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4193 {
4194         struct bmic_identify_physical_device *id_phys;
4195         bool is_spare = false;
4196         int rc;
4197
4198         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4199         if (!id_phys)
4200                 return false;
4201
4202         rc = hpsa_bmic_id_physical_device(h,
4203                                         lunaddrbytes,
4204                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4205                                         id_phys, sizeof(*id_phys));
4206         if (rc == 0)
4207                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4208
4209         kfree(id_phys);
4210         return is_spare;
4211 }
4212
4213 #define RPL_DEV_FLAG_NON_DISK                           0x1
4214 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4215 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4216
4217 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4218
4219 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4220                                 struct ext_report_lun_entry *rle)
4221 {
4222         u8 device_flags;
4223         u8 device_type;
4224
4225         if (!MASKED_DEVICE(lunaddrbytes))
4226                 return false;
4227
4228         device_flags = rle->device_flags;
4229         device_type = rle->device_type;
4230
4231         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4232                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4233                         return false;
4234                 return true;
4235         }
4236
4237         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4238                 return false;
4239
4240         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4241                 return false;
4242
4243         /*
4244          * Spares may be spun down, we do not want to
4245          * do an Inquiry to a RAID set spare drive as
4246          * that would have them spun up, that is a
4247          * performance hit because I/O to the RAID device
4248          * stops while the spin up occurs which can take
4249          * over 50 seconds.
4250          */
4251         if (hpsa_is_disk_spare(h, lunaddrbytes))
4252                 return true;
4253
4254         return false;
4255 }
4256
4257 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4258 {
4259         /* the idea here is we could get notified
4260          * that some devices have changed, so we do a report
4261          * physical luns and report logical luns cmd, and adjust
4262          * our list of devices accordingly.
4263          *
4264          * The scsi3addr's of devices won't change so long as the
4265          * adapter is not reset.  That means we can rescan and
4266          * tell which devices we already know about, vs. new
4267          * devices, vs.  disappearing devices.
4268          */
4269         struct ReportExtendedLUNdata *physdev_list = NULL;
4270         struct ReportLUNdata *logdev_list = NULL;
4271         struct bmic_identify_physical_device *id_phys = NULL;
4272         struct bmic_identify_controller *id_ctlr = NULL;
4273         u32 nphysicals = 0;
4274         u32 nlogicals = 0;
4275         u32 nlocal_logicals = 0;
4276         u32 ndev_allocated = 0;
4277         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4278         int ncurrent = 0;
4279         int i, n_ext_target_devs, ndevs_to_allocate;
4280         int raid_ctlr_position;
4281         bool physical_device;
4282         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4283
4284         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4285         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4286         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4287         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4288         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4289         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4290
4291         if (!currentsd || !physdev_list || !logdev_list ||
4292                 !tmpdevice || !id_phys || !id_ctlr) {
4293                 dev_err(&h->pdev->dev, "out of memory\n");
4294                 goto out;
4295         }
4296         memset(lunzerobits, 0, sizeof(lunzerobits));
4297
4298         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4299
4300         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4301                         logdev_list, &nlogicals)) {
4302                 h->drv_req_rescan = 1;
4303                 goto out;
4304         }
4305
4306         /* Set number of local logicals (non PTRAID) */
4307         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4308                 dev_warn(&h->pdev->dev,
4309                         "%s: Can't determine number of local logical devices.\n",
4310                         __func__);
4311         }
4312
4313         /* We might see up to the maximum number of logical and physical disks
4314          * plus external target devices, and a device for the local RAID
4315          * controller.
4316          */
4317         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4318
4319         /* Allocate the per device structures */
4320         for (i = 0; i < ndevs_to_allocate; i++) {
4321                 if (i >= HPSA_MAX_DEVICES) {
4322                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4323                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4324                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4325                         break;
4326                 }
4327
4328                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4329                 if (!currentsd[i]) {
4330                         h->drv_req_rescan = 1;
4331                         goto out;
4332                 }
4333                 ndev_allocated++;
4334         }
4335
4336         if (is_scsi_rev_5(h))
4337                 raid_ctlr_position = 0;
4338         else
4339                 raid_ctlr_position = nphysicals + nlogicals;
4340
4341         /* adjust our table of devices */
4342         n_ext_target_devs = 0;
4343         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4344                 u8 *lunaddrbytes, is_OBDR = 0;
4345                 int rc = 0;
4346                 int phys_dev_index = i - (raid_ctlr_position == 0);
4347                 bool skip_device = false;
4348
4349                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4350
4351                 /* Figure out where the LUN ID info is coming from */
4352                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4353                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4354
4355                 /* Determine if this is a lun from an external target array */
4356                 tmpdevice->external =
4357                         figure_external_status(h, raid_ctlr_position, i,
4358                                                 nphysicals, nlocal_logicals);
4359
4360                 /*
4361                  * Skip over some devices such as a spare.
4362                  */
4363                 if (!tmpdevice->external && physical_device) {
4364                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4365                                         &physdev_list->LUN[phys_dev_index]);
4366                         if (skip_device)
4367                                 continue;
4368                 }
4369
4370                 /* Get device type, vendor, model, device id */
4371                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4372                                                         &is_OBDR);
4373                 if (rc == -ENOMEM) {
4374                         dev_warn(&h->pdev->dev,
4375                                 "Out of memory, rescan deferred.\n");
4376                         h->drv_req_rescan = 1;
4377                         goto out;
4378                 }
4379                 if (rc) {
4380                         h->drv_req_rescan = 1;
4381                         continue;
4382                 }
4383
4384                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4385                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4386                 this_device = currentsd[ncurrent];
4387
4388                 /* Turn on discovery_polling if there are ext target devices.
4389                  * Event-based change notification is unreliable for those.
4390                  */
4391                 if (!h->discovery_polling) {
4392                         if (tmpdevice->external) {
4393                                 h->discovery_polling = 1;
4394                                 dev_info(&h->pdev->dev,
4395                                         "External target, activate discovery polling.\n");
4396                         }
4397                 }
4398
4399
4400                 *this_device = *tmpdevice;
4401                 this_device->physical_device = physical_device;
4402
4403                 /*
4404                  * Expose all devices except for physical devices that
4405                  * are masked.
4406                  */
4407                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4408                         this_device->expose_device = 0;
4409                 else
4410                         this_device->expose_device = 1;
4411
4412
4413                 /*
4414                  * Get the SAS address for physical devices that are exposed.
4415                  */
4416                 if (this_device->physical_device && this_device->expose_device)
4417                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4418
4419                 switch (this_device->devtype) {
4420                 case TYPE_ROM:
4421                         /* We don't *really* support actual CD-ROM devices,
4422                          * just "One Button Disaster Recovery" tape drive
4423                          * which temporarily pretends to be a CD-ROM drive.
4424                          * So we check that the device is really an OBDR tape
4425                          * device by checking for "$DR-10" in bytes 43-48 of
4426                          * the inquiry data.
4427                          */
4428                         if (is_OBDR)
4429                                 ncurrent++;
4430                         break;
4431                 case TYPE_DISK:
4432                 case TYPE_ZBC:
4433                         if (this_device->physical_device) {
4434                                 /* The disk is in HBA mode. */
4435                                 /* Never use RAID mapper in HBA mode. */
4436                                 this_device->offload_enabled = 0;
4437                                 hpsa_get_ioaccel_drive_info(h, this_device,
4438                                         physdev_list, phys_dev_index, id_phys);
4439                                 hpsa_get_path_info(this_device,
4440                                         physdev_list, phys_dev_index, id_phys);
4441                         }
4442                         ncurrent++;
4443                         break;
4444                 case TYPE_TAPE:
4445                 case TYPE_MEDIUM_CHANGER:
4446                         ncurrent++;
4447                         break;
4448                 case TYPE_ENCLOSURE:
4449                         if (!this_device->external)
4450                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4451                                                 physdev_list, phys_dev_index,
4452                                                 this_device);
4453                         ncurrent++;
4454                         break;
4455                 case TYPE_RAID:
4456                         /* Only present the Smartarray HBA as a RAID controller.
4457                          * If it's a RAID controller other than the HBA itself
4458                          * (an external RAID controller, MSA500 or similar)
4459                          * don't present it.
4460                          */
4461                         if (!is_hba_lunid(lunaddrbytes))
4462                                 break;
4463                         ncurrent++;
4464                         break;
4465                 default:
4466                         break;
4467                 }
4468                 if (ncurrent >= HPSA_MAX_DEVICES)
4469                         break;
4470         }
4471
4472         if (h->sas_host == NULL) {
4473                 int rc = 0;
4474
4475                 rc = hpsa_add_sas_host(h);
4476                 if (rc) {
4477                         dev_warn(&h->pdev->dev,
4478                                 "Could not add sas host %d\n", rc);
4479                         goto out;
4480                 }
4481         }
4482
4483         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4484 out:
4485         kfree(tmpdevice);
4486         for (i = 0; i < ndev_allocated; i++)
4487                 kfree(currentsd[i]);
4488         kfree(currentsd);
4489         kfree(physdev_list);
4490         kfree(logdev_list);
4491         kfree(id_ctlr);
4492         kfree(id_phys);
4493 }
4494
4495 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4496                                    struct scatterlist *sg)
4497 {
4498         u64 addr64 = (u64) sg_dma_address(sg);
4499         unsigned int len = sg_dma_len(sg);
4500
4501         desc->Addr = cpu_to_le64(addr64);
4502         desc->Len = cpu_to_le32(len);
4503         desc->Ext = 0;
4504 }
4505
4506 /*
4507  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4508  * dma mapping  and fills in the scatter gather entries of the
4509  * hpsa command, cp.
4510  */
4511 static int hpsa_scatter_gather(struct ctlr_info *h,
4512                 struct CommandList *cp,
4513                 struct scsi_cmnd *cmd)
4514 {
4515         struct scatterlist *sg;
4516         int use_sg, i, sg_limit, chained, last_sg;
4517         struct SGDescriptor *curr_sg;
4518
4519         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4520
4521         use_sg = scsi_dma_map(cmd);
4522         if (use_sg < 0)
4523                 return use_sg;
4524
4525         if (!use_sg)
4526                 goto sglist_finished;
4527
4528         /*
4529          * If the number of entries is greater than the max for a single list,
4530          * then we have a chained list; we will set up all but one entry in the
4531          * first list (the last entry is saved for link information);
4532          * otherwise, we don't have a chained list and we'll set up at each of
4533          * the entries in the one list.
4534          */
4535         curr_sg = cp->SG;
4536         chained = use_sg > h->max_cmd_sg_entries;
4537         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4538         last_sg = scsi_sg_count(cmd) - 1;
4539         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4540                 hpsa_set_sg_descriptor(curr_sg, sg);
4541                 curr_sg++;
4542         }
4543
4544         if (chained) {
4545                 /*
4546                  * Continue with the chained list.  Set curr_sg to the chained
4547                  * list.  Modify the limit to the total count less the entries
4548                  * we've already set up.  Resume the scan at the list entry
4549                  * where the previous loop left off.
4550                  */
4551                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4552                 sg_limit = use_sg - sg_limit;
4553                 for_each_sg(sg, sg, sg_limit, i) {
4554                         hpsa_set_sg_descriptor(curr_sg, sg);
4555                         curr_sg++;
4556                 }
4557         }
4558
4559         /* Back the pointer up to the last entry and mark it as "last". */
4560         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4561
4562         if (use_sg + chained > h->maxSG)
4563                 h->maxSG = use_sg + chained;
4564
4565         if (chained) {
4566                 cp->Header.SGList = h->max_cmd_sg_entries;
4567                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4568                 if (hpsa_map_sg_chain_block(h, cp)) {
4569                         scsi_dma_unmap(cmd);
4570                         return -1;
4571                 }
4572                 return 0;
4573         }
4574
4575 sglist_finished:
4576
4577         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4578         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4579         return 0;
4580 }
4581
4582 #define IO_ACCEL_INELIGIBLE (1)
4583 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4584 {
4585         int is_write = 0;
4586         u32 block;
4587         u32 block_cnt;
4588
4589         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4590         switch (cdb[0]) {
4591         case WRITE_6:
4592         case WRITE_12:
4593                 is_write = 1;
4594         case READ_6:
4595         case READ_12:
4596                 if (*cdb_len == 6) {
4597                         block = (((cdb[1] & 0x1F) << 16) |
4598                                 (cdb[2] << 8) |
4599                                 cdb[3]);
4600                         block_cnt = cdb[4];
4601                         if (block_cnt == 0)
4602                                 block_cnt = 256;
4603                 } else {
4604                         BUG_ON(*cdb_len != 12);
4605                         block = get_unaligned_be32(&cdb[2]);
4606                         block_cnt = get_unaligned_be32(&cdb[6]);
4607                 }
4608                 if (block_cnt > 0xffff)
4609                         return IO_ACCEL_INELIGIBLE;
4610
4611                 cdb[0] = is_write ? WRITE_10 : READ_10;
4612                 cdb[1] = 0;
4613                 cdb[2] = (u8) (block >> 24);
4614                 cdb[3] = (u8) (block >> 16);
4615                 cdb[4] = (u8) (block >> 8);
4616                 cdb[5] = (u8) (block);
4617                 cdb[6] = 0;
4618                 cdb[7] = (u8) (block_cnt >> 8);
4619                 cdb[8] = (u8) (block_cnt);
4620                 cdb[9] = 0;
4621                 *cdb_len = 10;
4622                 break;
4623         }
4624         return 0;
4625 }
4626
4627 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4628         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4629         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4630 {
4631         struct scsi_cmnd *cmd = c->scsi_cmd;
4632         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4633         unsigned int len;
4634         unsigned int total_len = 0;
4635         struct scatterlist *sg;
4636         u64 addr64;
4637         int use_sg, i;
4638         struct SGDescriptor *curr_sg;
4639         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4640
4641         /* TODO: implement chaining support */
4642         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4643                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4644                 return IO_ACCEL_INELIGIBLE;
4645         }
4646
4647         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4648
4649         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4650                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4651                 return IO_ACCEL_INELIGIBLE;
4652         }
4653
4654         c->cmd_type = CMD_IOACCEL1;
4655
4656         /* Adjust the DMA address to point to the accelerated command buffer */
4657         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4658                                 (c->cmdindex * sizeof(*cp));
4659         BUG_ON(c->busaddr & 0x0000007F);
4660
4661         use_sg = scsi_dma_map(cmd);
4662         if (use_sg < 0) {
4663                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4664                 return use_sg;
4665         }
4666
4667         if (use_sg) {
4668                 curr_sg = cp->SG;
4669                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4670                         addr64 = (u64) sg_dma_address(sg);
4671                         len  = sg_dma_len(sg);
4672                         total_len += len;
4673                         curr_sg->Addr = cpu_to_le64(addr64);
4674                         curr_sg->Len = cpu_to_le32(len);
4675                         curr_sg->Ext = cpu_to_le32(0);
4676                         curr_sg++;
4677                 }
4678                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4679
4680                 switch (cmd->sc_data_direction) {
4681                 case DMA_TO_DEVICE:
4682                         control |= IOACCEL1_CONTROL_DATA_OUT;
4683                         break;
4684                 case DMA_FROM_DEVICE:
4685                         control |= IOACCEL1_CONTROL_DATA_IN;
4686                         break;
4687                 case DMA_NONE:
4688                         control |= IOACCEL1_CONTROL_NODATAXFER;
4689                         break;
4690                 default:
4691                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4692                         cmd->sc_data_direction);
4693                         BUG();
4694                         break;
4695                 }
4696         } else {
4697                 control |= IOACCEL1_CONTROL_NODATAXFER;
4698         }
4699
4700         c->Header.SGList = use_sg;
4701         /* Fill out the command structure to submit */
4702         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4703         cp->transfer_len = cpu_to_le32(total_len);
4704         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4705                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4706         cp->control = cpu_to_le32(control);
4707         memcpy(cp->CDB, cdb, cdb_len);
4708         memcpy(cp->CISS_LUN, scsi3addr, 8);
4709         /* Tag was already set at init time. */
4710         enqueue_cmd_and_start_io(h, c);
4711         return 0;
4712 }
4713
4714 /*
4715  * Queue a command directly to a device behind the controller using the
4716  * I/O accelerator path.
4717  */
4718 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4719         struct CommandList *c)
4720 {
4721         struct scsi_cmnd *cmd = c->scsi_cmd;
4722         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4723
4724         if (!dev)
4725                 return -1;
4726
4727         c->phys_disk = dev;
4728
4729         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4730                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4731 }
4732
4733 /*
4734  * Set encryption parameters for the ioaccel2 request
4735  */
4736 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4737         struct CommandList *c, struct io_accel2_cmd *cp)
4738 {
4739         struct scsi_cmnd *cmd = c->scsi_cmd;
4740         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4741         struct raid_map_data *map = &dev->raid_map;
4742         u64 first_block;
4743
4744         /* Are we doing encryption on this device */
4745         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4746                 return;
4747         /* Set the data encryption key index. */
4748         cp->dekindex = map->dekindex;
4749
4750         /* Set the encryption enable flag, encoded into direction field. */
4751         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4752
4753         /* Set encryption tweak values based on logical block address
4754          * If block size is 512, tweak value is LBA.
4755          * For other block sizes, tweak is (LBA * block size)/ 512)
4756          */
4757         switch (cmd->cmnd[0]) {
4758         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4759         case READ_6:
4760         case WRITE_6:
4761                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4762                                 (cmd->cmnd[2] << 8) |
4763                                 cmd->cmnd[3]);
4764                 break;
4765         case WRITE_10:
4766         case READ_10:
4767         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4768         case WRITE_12:
4769         case READ_12:
4770                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4771                 break;
4772         case WRITE_16:
4773         case READ_16:
4774                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4775                 break;
4776         default:
4777                 dev_err(&h->pdev->dev,
4778                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4779                         __func__, cmd->cmnd[0]);
4780                 BUG();
4781                 break;
4782         }
4783
4784         if (le32_to_cpu(map->volume_blk_size) != 512)
4785                 first_block = first_block *
4786                                 le32_to_cpu(map->volume_blk_size)/512;
4787
4788         cp->tweak_lower = cpu_to_le32(first_block);
4789         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4790 }
4791
4792 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4793         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4794         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4795 {
4796         struct scsi_cmnd *cmd = c->scsi_cmd;
4797         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4798         struct ioaccel2_sg_element *curr_sg;
4799         int use_sg, i;
4800         struct scatterlist *sg;
4801         u64 addr64;
4802         u32 len;
4803         u32 total_len = 0;
4804
4805         if (!cmd->device)
4806                 return -1;
4807
4808         if (!cmd->device->hostdata)
4809                 return -1;
4810
4811         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4812
4813         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4814                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4815                 return IO_ACCEL_INELIGIBLE;
4816         }
4817
4818         c->cmd_type = CMD_IOACCEL2;
4819         /* Adjust the DMA address to point to the accelerated command buffer */
4820         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4821                                 (c->cmdindex * sizeof(*cp));
4822         BUG_ON(c->busaddr & 0x0000007F);
4823
4824         memset(cp, 0, sizeof(*cp));
4825         cp->IU_type = IOACCEL2_IU_TYPE;
4826
4827         use_sg = scsi_dma_map(cmd);
4828         if (use_sg < 0) {
4829                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4830                 return use_sg;
4831         }
4832
4833         if (use_sg) {
4834                 curr_sg = cp->sg;
4835                 if (use_sg > h->ioaccel_maxsg) {
4836                         addr64 = le64_to_cpu(
4837                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4838                         curr_sg->address = cpu_to_le64(addr64);
4839                         curr_sg->length = 0;
4840                         curr_sg->reserved[0] = 0;
4841                         curr_sg->reserved[1] = 0;
4842                         curr_sg->reserved[2] = 0;
4843                         curr_sg->chain_indicator = 0x80;
4844
4845                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4846                 }
4847                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4848                         addr64 = (u64) sg_dma_address(sg);
4849                         len  = sg_dma_len(sg);
4850                         total_len += len;
4851                         curr_sg->address = cpu_to_le64(addr64);
4852                         curr_sg->length = cpu_to_le32(len);
4853                         curr_sg->reserved[0] = 0;
4854                         curr_sg->reserved[1] = 0;
4855                         curr_sg->reserved[2] = 0;
4856                         curr_sg->chain_indicator = 0;
4857                         curr_sg++;
4858                 }
4859
4860                 switch (cmd->sc_data_direction) {
4861                 case DMA_TO_DEVICE:
4862                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4863                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4864                         break;
4865                 case DMA_FROM_DEVICE:
4866                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4867                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4868                         break;
4869                 case DMA_NONE:
4870                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4871                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4872                         break;
4873                 default:
4874                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4875                                 cmd->sc_data_direction);
4876                         BUG();
4877                         break;
4878                 }
4879         } else {
4880                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4881                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4882         }
4883
4884         /* Set encryption parameters, if necessary */
4885         set_encrypt_ioaccel2(h, c, cp);
4886
4887         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4888         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4889         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4890
4891         cp->data_len = cpu_to_le32(total_len);
4892         cp->err_ptr = cpu_to_le64(c->busaddr +
4893                         offsetof(struct io_accel2_cmd, error_data));
4894         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4895
4896         /* fill in sg elements */
4897         if (use_sg > h->ioaccel_maxsg) {
4898                 cp->sg_count = 1;
4899                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4900                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4901                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4902                         scsi_dma_unmap(cmd);
4903                         return -1;
4904                 }
4905         } else
4906                 cp->sg_count = (u8) use_sg;
4907
4908         enqueue_cmd_and_start_io(h, c);
4909         return 0;
4910 }
4911
4912 /*
4913  * Queue a command to the correct I/O accelerator path.
4914  */
4915 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4916         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4917         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4918 {
4919         if (!c->scsi_cmd->device)
4920                 return -1;
4921
4922         if (!c->scsi_cmd->device->hostdata)
4923                 return -1;
4924
4925         /* Try to honor the device's queue depth */
4926         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4927                                         phys_disk->queue_depth) {
4928                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4929                 return IO_ACCEL_INELIGIBLE;
4930         }
4931         if (h->transMethod & CFGTBL_Trans_io_accel1)
4932                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4933                                                 cdb, cdb_len, scsi3addr,
4934                                                 phys_disk);
4935         else
4936                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4937                                                 cdb, cdb_len, scsi3addr,
4938                                                 phys_disk);
4939 }
4940
4941 static void raid_map_helper(struct raid_map_data *map,
4942                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4943 {
4944         if (offload_to_mirror == 0)  {
4945                 /* use physical disk in the first mirrored group. */
4946                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4947                 return;
4948         }
4949         do {
4950                 /* determine mirror group that *map_index indicates */
4951                 *current_group = *map_index /
4952                         le16_to_cpu(map->data_disks_per_row);
4953                 if (offload_to_mirror == *current_group)
4954                         continue;
4955                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4956                         /* select map index from next group */
4957                         *map_index += le16_to_cpu(map->data_disks_per_row);
4958                         (*current_group)++;
4959                 } else {
4960                         /* select map index from first group */
4961                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4962                         *current_group = 0;
4963                 }
4964         } while (offload_to_mirror != *current_group);
4965 }
4966
4967 /*
4968  * Attempt to perform offload RAID mapping for a logical volume I/O.
4969  */
4970 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4971         struct CommandList *c)
4972 {
4973         struct scsi_cmnd *cmd = c->scsi_cmd;
4974         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4975         struct raid_map_data *map = &dev->raid_map;
4976         struct raid_map_disk_data *dd = &map->data[0];
4977         int is_write = 0;
4978         u32 map_index;
4979         u64 first_block, last_block;
4980         u32 block_cnt;
4981         u32 blocks_per_row;
4982         u64 first_row, last_row;
4983         u32 first_row_offset, last_row_offset;
4984         u32 first_column, last_column;
4985         u64 r0_first_row, r0_last_row;
4986         u32 r5or6_blocks_per_row;
4987         u64 r5or6_first_row, r5or6_last_row;
4988         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4989         u32 r5or6_first_column, r5or6_last_column;
4990         u32 total_disks_per_row;
4991         u32 stripesize;
4992         u32 first_group, last_group, current_group;
4993         u32 map_row;
4994         u32 disk_handle;
4995         u64 disk_block;
4996         u32 disk_block_cnt;
4997         u8 cdb[16];
4998         u8 cdb_len;
4999         u16 strip_size;
5000 #if BITS_PER_LONG == 32
5001         u64 tmpdiv;
5002 #endif
5003         int offload_to_mirror;
5004
5005         if (!dev)
5006                 return -1;
5007
5008         /* check for valid opcode, get LBA and block count */
5009         switch (cmd->cmnd[0]) {
5010         case WRITE_6:
5011                 is_write = 1;
5012         case READ_6:
5013                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5014                                 (cmd->cmnd[2] << 8) |
5015                                 cmd->cmnd[3]);
5016                 block_cnt = cmd->cmnd[4];
5017                 if (block_cnt == 0)
5018                         block_cnt = 256;
5019                 break;
5020         case WRITE_10:
5021                 is_write = 1;
5022         case READ_10:
5023                 first_block =
5024                         (((u64) cmd->cmnd[2]) << 24) |
5025                         (((u64) cmd->cmnd[3]) << 16) |
5026                         (((u64) cmd->cmnd[4]) << 8) |
5027                         cmd->cmnd[5];
5028                 block_cnt =
5029                         (((u32) cmd->cmnd[7]) << 8) |
5030                         cmd->cmnd[8];
5031                 break;
5032         case WRITE_12:
5033                 is_write = 1;
5034         case READ_12:
5035                 first_block =
5036                         (((u64) cmd->cmnd[2]) << 24) |
5037                         (((u64) cmd->cmnd[3]) << 16) |
5038                         (((u64) cmd->cmnd[4]) << 8) |
5039                         cmd->cmnd[5];
5040                 block_cnt =
5041                         (((u32) cmd->cmnd[6]) << 24) |
5042                         (((u32) cmd->cmnd[7]) << 16) |
5043                         (((u32) cmd->cmnd[8]) << 8) |
5044                 cmd->cmnd[9];
5045                 break;
5046         case WRITE_16:
5047                 is_write = 1;
5048         case READ_16:
5049                 first_block =
5050                         (((u64) cmd->cmnd[2]) << 56) |
5051                         (((u64) cmd->cmnd[3]) << 48) |
5052                         (((u64) cmd->cmnd[4]) << 40) |
5053                         (((u64) cmd->cmnd[5]) << 32) |
5054                         (((u64) cmd->cmnd[6]) << 24) |
5055                         (((u64) cmd->cmnd[7]) << 16) |
5056                         (((u64) cmd->cmnd[8]) << 8) |
5057                         cmd->cmnd[9];
5058                 block_cnt =
5059                         (((u32) cmd->cmnd[10]) << 24) |
5060                         (((u32) cmd->cmnd[11]) << 16) |
5061                         (((u32) cmd->cmnd[12]) << 8) |
5062                         cmd->cmnd[13];
5063                 break;
5064         default:
5065                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5066         }
5067         last_block = first_block + block_cnt - 1;
5068
5069         /* check for write to non-RAID-0 */
5070         if (is_write && dev->raid_level != 0)
5071                 return IO_ACCEL_INELIGIBLE;
5072
5073         /* check for invalid block or wraparound */
5074         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5075                 last_block < first_block)
5076                 return IO_ACCEL_INELIGIBLE;
5077
5078         /* calculate stripe information for the request */
5079         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5080                                 le16_to_cpu(map->strip_size);
5081         strip_size = le16_to_cpu(map->strip_size);
5082 #if BITS_PER_LONG == 32
5083         tmpdiv = first_block;
5084         (void) do_div(tmpdiv, blocks_per_row);
5085         first_row = tmpdiv;
5086         tmpdiv = last_block;
5087         (void) do_div(tmpdiv, blocks_per_row);
5088         last_row = tmpdiv;
5089         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5090         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5091         tmpdiv = first_row_offset;
5092         (void) do_div(tmpdiv, strip_size);
5093         first_column = tmpdiv;
5094         tmpdiv = last_row_offset;
5095         (void) do_div(tmpdiv, strip_size);
5096         last_column = tmpdiv;
5097 #else
5098         first_row = first_block / blocks_per_row;
5099         last_row = last_block / blocks_per_row;
5100         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5101         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5102         first_column = first_row_offset / strip_size;
5103         last_column = last_row_offset / strip_size;
5104 #endif
5105
5106         /* if this isn't a single row/column then give to the controller */
5107         if ((first_row != last_row) || (first_column != last_column))
5108                 return IO_ACCEL_INELIGIBLE;
5109
5110         /* proceeding with driver mapping */
5111         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5112                                 le16_to_cpu(map->metadata_disks_per_row);
5113         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5114                                 le16_to_cpu(map->row_cnt);
5115         map_index = (map_row * total_disks_per_row) + first_column;
5116
5117         switch (dev->raid_level) {
5118         case HPSA_RAID_0:
5119                 break; /* nothing special to do */
5120         case HPSA_RAID_1:
5121                 /* Handles load balance across RAID 1 members.
5122                  * (2-drive R1 and R10 with even # of drives.)
5123                  * Appropriate for SSDs, not optimal for HDDs
5124                  */
5125                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5126                 if (dev->offload_to_mirror)
5127                         map_index += le16_to_cpu(map->data_disks_per_row);
5128                 dev->offload_to_mirror = !dev->offload_to_mirror;
5129                 break;
5130         case HPSA_RAID_ADM:
5131                 /* Handles N-way mirrors  (R1-ADM)
5132                  * and R10 with # of drives divisible by 3.)
5133                  */
5134                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5135
5136                 offload_to_mirror = dev->offload_to_mirror;
5137                 raid_map_helper(map, offload_to_mirror,
5138                                 &map_index, &current_group);
5139                 /* set mirror group to use next time */
5140                 offload_to_mirror =
5141                         (offload_to_mirror >=
5142                         le16_to_cpu(map->layout_map_count) - 1)
5143                         ? 0 : offload_to_mirror + 1;
5144                 dev->offload_to_mirror = offload_to_mirror;
5145                 /* Avoid direct use of dev->offload_to_mirror within this
5146                  * function since multiple threads might simultaneously
5147                  * increment it beyond the range of dev->layout_map_count -1.
5148                  */
5149                 break;
5150         case HPSA_RAID_5:
5151         case HPSA_RAID_6:
5152                 if (le16_to_cpu(map->layout_map_count) <= 1)
5153                         break;
5154
5155                 /* Verify first and last block are in same RAID group */
5156                 r5or6_blocks_per_row =
5157                         le16_to_cpu(map->strip_size) *
5158                         le16_to_cpu(map->data_disks_per_row);
5159                 BUG_ON(r5or6_blocks_per_row == 0);
5160                 stripesize = r5or6_blocks_per_row *
5161                         le16_to_cpu(map->layout_map_count);
5162 #if BITS_PER_LONG == 32
5163                 tmpdiv = first_block;
5164                 first_group = do_div(tmpdiv, stripesize);
5165                 tmpdiv = first_group;
5166                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5167                 first_group = tmpdiv;
5168                 tmpdiv = last_block;
5169                 last_group = do_div(tmpdiv, stripesize);
5170                 tmpdiv = last_group;
5171                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5172                 last_group = tmpdiv;
5173 #else
5174                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5175                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5176 #endif
5177                 if (first_group != last_group)
5178                         return IO_ACCEL_INELIGIBLE;
5179
5180                 /* Verify request is in a single row of RAID 5/6 */
5181 #if BITS_PER_LONG == 32
5182                 tmpdiv = first_block;
5183                 (void) do_div(tmpdiv, stripesize);
5184                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5185                 tmpdiv = last_block;
5186                 (void) do_div(tmpdiv, stripesize);
5187                 r5or6_last_row = r0_last_row = tmpdiv;
5188 #else
5189                 first_row = r5or6_first_row = r0_first_row =
5190                                                 first_block / stripesize;
5191                 r5or6_last_row = r0_last_row = last_block / stripesize;
5192 #endif
5193                 if (r5or6_first_row != r5or6_last_row)
5194                         return IO_ACCEL_INELIGIBLE;
5195
5196
5197                 /* Verify request is in a single column */
5198 #if BITS_PER_LONG == 32
5199                 tmpdiv = first_block;
5200                 first_row_offset = do_div(tmpdiv, stripesize);
5201                 tmpdiv = first_row_offset;
5202                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5203                 r5or6_first_row_offset = first_row_offset;
5204                 tmpdiv = last_block;
5205                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5206                 tmpdiv = r5or6_last_row_offset;
5207                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5208                 tmpdiv = r5or6_first_row_offset;
5209                 (void) do_div(tmpdiv, map->strip_size);
5210                 first_column = r5or6_first_column = tmpdiv;
5211                 tmpdiv = r5or6_last_row_offset;
5212                 (void) do_div(tmpdiv, map->strip_size);
5213                 r5or6_last_column = tmpdiv;
5214 #else
5215                 first_row_offset = r5or6_first_row_offset =
5216                         (u32)((first_block % stripesize) %
5217                                                 r5or6_blocks_per_row);
5218
5219                 r5or6_last_row_offset =
5220                         (u32)((last_block % stripesize) %
5221                                                 r5or6_blocks_per_row);
5222
5223                 first_column = r5or6_first_column =
5224                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5225                 r5or6_last_column =
5226                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5227 #endif
5228                 if (r5or6_first_column != r5or6_last_column)
5229                         return IO_ACCEL_INELIGIBLE;
5230
5231                 /* Request is eligible */
5232                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5233                         le16_to_cpu(map->row_cnt);
5234
5235                 map_index = (first_group *
5236                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5237                         (map_row * total_disks_per_row) + first_column;
5238                 break;
5239         default:
5240                 return IO_ACCEL_INELIGIBLE;
5241         }
5242
5243         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5244                 return IO_ACCEL_INELIGIBLE;
5245
5246         c->phys_disk = dev->phys_disk[map_index];
5247         if (!c->phys_disk)
5248                 return IO_ACCEL_INELIGIBLE;
5249
5250         disk_handle = dd[map_index].ioaccel_handle;
5251         disk_block = le64_to_cpu(map->disk_starting_blk) +
5252                         first_row * le16_to_cpu(map->strip_size) +
5253                         (first_row_offset - first_column *
5254                         le16_to_cpu(map->strip_size));
5255         disk_block_cnt = block_cnt;
5256
5257         /* handle differing logical/physical block sizes */
5258         if (map->phys_blk_shift) {
5259                 disk_block <<= map->phys_blk_shift;
5260                 disk_block_cnt <<= map->phys_blk_shift;
5261         }
5262         BUG_ON(disk_block_cnt > 0xffff);
5263
5264         /* build the new CDB for the physical disk I/O */
5265         if (disk_block > 0xffffffff) {
5266                 cdb[0] = is_write ? WRITE_16 : READ_16;
5267                 cdb[1] = 0;
5268                 cdb[2] = (u8) (disk_block >> 56);
5269                 cdb[3] = (u8) (disk_block >> 48);
5270                 cdb[4] = (u8) (disk_block >> 40);
5271                 cdb[5] = (u8) (disk_block >> 32);
5272                 cdb[6] = (u8) (disk_block >> 24);
5273                 cdb[7] = (u8) (disk_block >> 16);
5274                 cdb[8] = (u8) (disk_block >> 8);
5275                 cdb[9] = (u8) (disk_block);
5276                 cdb[10] = (u8) (disk_block_cnt >> 24);
5277                 cdb[11] = (u8) (disk_block_cnt >> 16);
5278                 cdb[12] = (u8) (disk_block_cnt >> 8);
5279                 cdb[13] = (u8) (disk_block_cnt);
5280                 cdb[14] = 0;
5281                 cdb[15] = 0;
5282                 cdb_len = 16;
5283         } else {
5284                 cdb[0] = is_write ? WRITE_10 : READ_10;
5285                 cdb[1] = 0;
5286                 cdb[2] = (u8) (disk_block >> 24);
5287                 cdb[3] = (u8) (disk_block >> 16);
5288                 cdb[4] = (u8) (disk_block >> 8);
5289                 cdb[5] = (u8) (disk_block);
5290                 cdb[6] = 0;
5291                 cdb[7] = (u8) (disk_block_cnt >> 8);
5292                 cdb[8] = (u8) (disk_block_cnt);
5293                 cdb[9] = 0;
5294                 cdb_len = 10;
5295         }
5296         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5297                                                 dev->scsi3addr,
5298                                                 dev->phys_disk[map_index]);
5299 }
5300
5301 /*
5302  * Submit commands down the "normal" RAID stack path
5303  * All callers to hpsa_ciss_submit must check lockup_detected
5304  * beforehand, before (opt.) and after calling cmd_alloc
5305  */
5306 static int hpsa_ciss_submit(struct ctlr_info *h,
5307         struct CommandList *c, struct scsi_cmnd *cmd,
5308         unsigned char scsi3addr[])
5309 {
5310         cmd->host_scribble = (unsigned char *) c;
5311         c->cmd_type = CMD_SCSI;
5312         c->scsi_cmd = cmd;
5313         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5314         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5315         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5316
5317         /* Fill in the request block... */
5318
5319         c->Request.Timeout = 0;
5320         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5321         c->Request.CDBLen = cmd->cmd_len;
5322         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5323         switch (cmd->sc_data_direction) {
5324         case DMA_TO_DEVICE:
5325                 c->Request.type_attr_dir =
5326                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5327                 break;
5328         case DMA_FROM_DEVICE:
5329                 c->Request.type_attr_dir =
5330                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5331                 break;
5332         case DMA_NONE:
5333                 c->Request.type_attr_dir =
5334                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5335                 break;
5336         case DMA_BIDIRECTIONAL:
5337                 /* This can happen if a buggy application does a scsi passthru
5338                  * and sets both inlen and outlen to non-zero. ( see
5339                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5340                  */
5341
5342                 c->Request.type_attr_dir =
5343                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5344                 /* This is technically wrong, and hpsa controllers should
5345                  * reject it with CMD_INVALID, which is the most correct
5346                  * response, but non-fibre backends appear to let it
5347                  * slide by, and give the same results as if this field
5348                  * were set correctly.  Either way is acceptable for
5349                  * our purposes here.
5350                  */
5351
5352                 break;
5353
5354         default:
5355                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5356                         cmd->sc_data_direction);
5357                 BUG();
5358                 break;
5359         }
5360
5361         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5362                 hpsa_cmd_resolve_and_free(h, c);
5363                 return SCSI_MLQUEUE_HOST_BUSY;
5364         }
5365         enqueue_cmd_and_start_io(h, c);
5366         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5367         return 0;
5368 }
5369
5370 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5371                                 struct CommandList *c)
5372 {
5373         dma_addr_t cmd_dma_handle, err_dma_handle;
5374
5375         /* Zero out all of commandlist except the last field, refcount */
5376         memset(c, 0, offsetof(struct CommandList, refcount));
5377         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5378         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5379         c->err_info = h->errinfo_pool + index;
5380         memset(c->err_info, 0, sizeof(*c->err_info));
5381         err_dma_handle = h->errinfo_pool_dhandle
5382             + index * sizeof(*c->err_info);
5383         c->cmdindex = index;
5384         c->busaddr = (u32) cmd_dma_handle;
5385         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5386         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5387         c->h = h;
5388         c->scsi_cmd = SCSI_CMD_IDLE;
5389 }
5390
5391 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5392 {
5393         int i;
5394
5395         for (i = 0; i < h->nr_cmds; i++) {
5396                 struct CommandList *c = h->cmd_pool + i;
5397
5398                 hpsa_cmd_init(h, i, c);
5399                 atomic_set(&c->refcount, 0);
5400         }
5401 }
5402
5403 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5404                                 struct CommandList *c)
5405 {
5406         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5407
5408         BUG_ON(c->cmdindex != index);
5409
5410         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5411         memset(c->err_info, 0, sizeof(*c->err_info));
5412         c->busaddr = (u32) cmd_dma_handle;
5413 }
5414
5415 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5416                 struct CommandList *c, struct scsi_cmnd *cmd,
5417                 unsigned char *scsi3addr)
5418 {
5419         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5420         int rc = IO_ACCEL_INELIGIBLE;
5421
5422         if (!dev)
5423                 return SCSI_MLQUEUE_HOST_BUSY;
5424
5425         cmd->host_scribble = (unsigned char *) c;
5426
5427         if (dev->offload_enabled) {
5428                 hpsa_cmd_init(h, c->cmdindex, c);
5429                 c->cmd_type = CMD_SCSI;
5430                 c->scsi_cmd = cmd;
5431                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5432                 if (rc < 0)     /* scsi_dma_map failed. */
5433                         rc = SCSI_MLQUEUE_HOST_BUSY;
5434         } else if (dev->hba_ioaccel_enabled) {
5435                 hpsa_cmd_init(h, c->cmdindex, c);
5436                 c->cmd_type = CMD_SCSI;
5437                 c->scsi_cmd = cmd;
5438                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5439                 if (rc < 0)     /* scsi_dma_map failed. */
5440                         rc = SCSI_MLQUEUE_HOST_BUSY;
5441         }
5442         return rc;
5443 }
5444
5445 static void hpsa_command_resubmit_worker(struct work_struct *work)
5446 {
5447         struct scsi_cmnd *cmd;
5448         struct hpsa_scsi_dev_t *dev;
5449         struct CommandList *c = container_of(work, struct CommandList, work);
5450
5451         cmd = c->scsi_cmd;
5452         dev = cmd->device->hostdata;
5453         if (!dev) {
5454                 cmd->result = DID_NO_CONNECT << 16;
5455                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5456         }
5457         if (c->reset_pending)
5458                 return hpsa_cmd_resolve_and_free(c->h, c);
5459         if (c->abort_pending)
5460                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5461         if (c->cmd_type == CMD_IOACCEL2) {
5462                 struct ctlr_info *h = c->h;
5463                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5464                 int rc;
5465
5466                 if (c2->error_data.serv_response ==
5467                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5468                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5469                         if (rc == 0)
5470                                 return;
5471                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5472                                 /*
5473                                  * If we get here, it means dma mapping failed.
5474                                  * Try again via scsi mid layer, which will
5475                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5476                                  */
5477                                 cmd->result = DID_IMM_RETRY << 16;
5478                                 return hpsa_cmd_free_and_done(h, c, cmd);
5479                         }
5480                         /* else, fall thru and resubmit down CISS path */
5481                 }
5482         }
5483         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5484         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5485                 /*
5486                  * If we get here, it means dma mapping failed. Try
5487                  * again via scsi mid layer, which will then get
5488                  * SCSI_MLQUEUE_HOST_BUSY.
5489                  *
5490                  * hpsa_ciss_submit will have already freed c
5491                  * if it encountered a dma mapping failure.
5492                  */
5493                 cmd->result = DID_IMM_RETRY << 16;
5494                 cmd->scsi_done(cmd);
5495         }
5496 }
5497
5498 /* Running in struct Scsi_Host->host_lock less mode */
5499 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5500 {
5501         struct ctlr_info *h;
5502         struct hpsa_scsi_dev_t *dev;
5503         unsigned char scsi3addr[8];
5504         struct CommandList *c;
5505         int rc = 0;
5506
5507         /* Get the ptr to our adapter structure out of cmd->host. */
5508         h = sdev_to_hba(cmd->device);
5509
5510         BUG_ON(cmd->request->tag < 0);
5511
5512         dev = cmd->device->hostdata;
5513         if (!dev) {
5514                 cmd->result = DID_NO_CONNECT << 16;
5515                 cmd->scsi_done(cmd);
5516                 return 0;
5517         }
5518
5519         if (dev->removed) {
5520                 cmd->result = DID_NO_CONNECT << 16;
5521                 cmd->scsi_done(cmd);
5522                 return 0;
5523         }
5524
5525         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5526
5527         if (unlikely(lockup_detected(h))) {
5528                 cmd->result = DID_NO_CONNECT << 16;
5529                 cmd->scsi_done(cmd);
5530                 return 0;
5531         }
5532         c = cmd_tagged_alloc(h, cmd);
5533
5534         /*
5535          * Call alternate submit routine for I/O accelerated commands.
5536          * Retries always go down the normal I/O path.
5537          */
5538         if (likely(cmd->retries == 0 &&
5539                         !blk_rq_is_passthrough(cmd->request) &&
5540                         h->acciopath_status)) {
5541                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5542                 if (rc == 0)
5543                         return 0;
5544                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5545                         hpsa_cmd_resolve_and_free(h, c);
5546                         return SCSI_MLQUEUE_HOST_BUSY;
5547                 }
5548         }
5549         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5550 }
5551
5552 static void hpsa_scan_complete(struct ctlr_info *h)
5553 {
5554         unsigned long flags;
5555
5556         spin_lock_irqsave(&h->scan_lock, flags);
5557         h->scan_finished = 1;
5558         wake_up(&h->scan_wait_queue);
5559         spin_unlock_irqrestore(&h->scan_lock, flags);
5560 }
5561
5562 static void hpsa_scan_start(struct Scsi_Host *sh)
5563 {
5564         struct ctlr_info *h = shost_to_hba(sh);
5565         unsigned long flags;
5566
5567         /*
5568          * Don't let rescans be initiated on a controller known to be locked
5569          * up.  If the controller locks up *during* a rescan, that thread is
5570          * probably hosed, but at least we can prevent new rescan threads from
5571          * piling up on a locked up controller.
5572          */
5573         if (unlikely(lockup_detected(h)))
5574                 return hpsa_scan_complete(h);
5575
5576         /*
5577          * If a scan is already waiting to run, no need to add another
5578          */
5579         spin_lock_irqsave(&h->scan_lock, flags);
5580         if (h->scan_waiting) {
5581                 spin_unlock_irqrestore(&h->scan_lock, flags);
5582                 return;
5583         }
5584
5585         spin_unlock_irqrestore(&h->scan_lock, flags);
5586
5587         /* wait until any scan already in progress is finished. */
5588         while (1) {
5589                 spin_lock_irqsave(&h->scan_lock, flags);
5590                 if (h->scan_finished)
5591                         break;
5592                 h->scan_waiting = 1;
5593                 spin_unlock_irqrestore(&h->scan_lock, flags);
5594                 wait_event(h->scan_wait_queue, h->scan_finished);
5595                 /* Note: We don't need to worry about a race between this
5596                  * thread and driver unload because the midlayer will
5597                  * have incremented the reference count, so unload won't
5598                  * happen if we're in here.
5599                  */
5600         }
5601         h->scan_finished = 0; /* mark scan as in progress */
5602         h->scan_waiting = 0;
5603         spin_unlock_irqrestore(&h->scan_lock, flags);
5604
5605         if (unlikely(lockup_detected(h)))
5606                 return hpsa_scan_complete(h);
5607
5608         /*
5609          * Do the scan after a reset completion
5610          */
5611         if (h->reset_in_progress) {
5612                 h->drv_req_rescan = 1;
5613                 return;
5614         }
5615
5616         hpsa_update_scsi_devices(h);
5617
5618         hpsa_scan_complete(h);
5619 }
5620
5621 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5622 {
5623         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5624
5625         if (!logical_drive)
5626                 return -ENODEV;
5627
5628         if (qdepth < 1)
5629                 qdepth = 1;
5630         else if (qdepth > logical_drive->queue_depth)
5631                 qdepth = logical_drive->queue_depth;
5632
5633         return scsi_change_queue_depth(sdev, qdepth);
5634 }
5635
5636 static int hpsa_scan_finished(struct Scsi_Host *sh,
5637         unsigned long elapsed_time)
5638 {
5639         struct ctlr_info *h = shost_to_hba(sh);
5640         unsigned long flags;
5641         int finished;
5642
5643         spin_lock_irqsave(&h->scan_lock, flags);
5644         finished = h->scan_finished;
5645         spin_unlock_irqrestore(&h->scan_lock, flags);
5646         return finished;
5647 }
5648
5649 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5650 {
5651         struct Scsi_Host *sh;
5652
5653         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5654         if (sh == NULL) {
5655                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5656                 return -ENOMEM;
5657         }
5658
5659         sh->io_port = 0;
5660         sh->n_io_port = 0;
5661         sh->this_id = -1;
5662         sh->max_channel = 3;
5663         sh->max_cmd_len = MAX_COMMAND_SIZE;
5664         sh->max_lun = HPSA_MAX_LUN;
5665         sh->max_id = HPSA_MAX_LUN;
5666         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5667         sh->cmd_per_lun = sh->can_queue;
5668         sh->sg_tablesize = h->maxsgentries;
5669         sh->transportt = hpsa_sas_transport_template;
5670         sh->hostdata[0] = (unsigned long) h;
5671         sh->irq = pci_irq_vector(h->pdev, 0);
5672         sh->unique_id = sh->irq;
5673
5674         h->scsi_host = sh;
5675         return 0;
5676 }
5677
5678 static int hpsa_scsi_add_host(struct ctlr_info *h)
5679 {
5680         int rv;
5681
5682         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5683         if (rv) {
5684                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5685                 return rv;
5686         }
5687         scsi_scan_host(h->scsi_host);
5688         return 0;
5689 }
5690
5691 /*
5692  * The block layer has already gone to the trouble of picking out a unique,
5693  * small-integer tag for this request.  We use an offset from that value as
5694  * an index to select our command block.  (The offset allows us to reserve the
5695  * low-numbered entries for our own uses.)
5696  */
5697 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5698 {
5699         int idx = scmd->request->tag;
5700
5701         if (idx < 0)
5702                 return idx;
5703
5704         /* Offset to leave space for internal cmds. */
5705         return idx += HPSA_NRESERVED_CMDS;
5706 }
5707
5708 /*
5709  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5710  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5711  */
5712 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5713                                 struct CommandList *c, unsigned char lunaddr[],
5714                                 int reply_queue)
5715 {
5716         int rc;
5717
5718         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5719         (void) fill_cmd(c, TEST_UNIT_READY, h,
5720                         NULL, 0, 0, lunaddr, TYPE_CMD);
5721         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5722         if (rc)
5723                 return rc;
5724         /* no unmap needed here because no data xfer. */
5725
5726         /* Check if the unit is already ready. */
5727         if (c->err_info->CommandStatus == CMD_SUCCESS)
5728                 return 0;
5729
5730         /*
5731          * The first command sent after reset will receive "unit attention" to
5732          * indicate that the LUN has been reset...this is actually what we're
5733          * looking for (but, success is good too).
5734          */
5735         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5736                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5737                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5738                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5739                 return 0;
5740
5741         return 1;
5742 }
5743
5744 /*
5745  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5746  * returns zero when the unit is ready, and non-zero when giving up.
5747  */
5748 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5749                                 struct CommandList *c,
5750                                 unsigned char lunaddr[], int reply_queue)
5751 {
5752         int rc;
5753         int count = 0;
5754         int waittime = 1; /* seconds */
5755
5756         /* Send test unit ready until device ready, or give up. */
5757         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5758
5759                 /*
5760                  * Wait for a bit.  do this first, because if we send
5761                  * the TUR right away, the reset will just abort it.
5762                  */
5763                 msleep(1000 * waittime);
5764
5765                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5766                 if (!rc)
5767                         break;
5768
5769                 /* Increase wait time with each try, up to a point. */
5770                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5771                         waittime *= 2;
5772
5773                 dev_warn(&h->pdev->dev,
5774                          "waiting %d secs for device to become ready.\n",
5775                          waittime);
5776         }
5777
5778         return rc;
5779 }
5780
5781 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5782                                            unsigned char lunaddr[],
5783                                            int reply_queue)
5784 {
5785         int first_queue;
5786         int last_queue;
5787         int rq;
5788         int rc = 0;
5789         struct CommandList *c;
5790
5791         c = cmd_alloc(h);
5792
5793         /*
5794          * If no specific reply queue was requested, then send the TUR
5795          * repeatedly, requesting a reply on each reply queue; otherwise execute
5796          * the loop exactly once using only the specified queue.
5797          */
5798         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5799                 first_queue = 0;
5800                 last_queue = h->nreply_queues - 1;
5801         } else {
5802                 first_queue = reply_queue;
5803                 last_queue = reply_queue;
5804         }
5805
5806         for (rq = first_queue; rq <= last_queue; rq++) {
5807                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5808                 if (rc)
5809                         break;
5810         }
5811
5812         if (rc)
5813                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5814         else
5815                 dev_warn(&h->pdev->dev, "device is ready.\n");
5816
5817         cmd_free(h, c);
5818         return rc;
5819 }
5820
5821 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5822  * complaining.  Doing a host- or bus-reset can't do anything good here.
5823  */
5824 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5825 {
5826         int rc;
5827         struct ctlr_info *h;
5828         struct hpsa_scsi_dev_t *dev;
5829         u8 reset_type;
5830         char msg[48];
5831
5832         /* find the controller to which the command to be aborted was sent */
5833         h = sdev_to_hba(scsicmd->device);
5834         if (h == NULL) /* paranoia */
5835                 return FAILED;
5836
5837         if (lockup_detected(h))
5838                 return FAILED;
5839
5840         dev = scsicmd->device->hostdata;
5841         if (!dev) {
5842                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5843                 return FAILED;
5844         }
5845
5846         /* if controller locked up, we can guarantee command won't complete */
5847         if (lockup_detected(h)) {
5848                 snprintf(msg, sizeof(msg),
5849                          "cmd %d RESET FAILED, lockup detected",
5850                          hpsa_get_cmd_index(scsicmd));
5851                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5852                 return FAILED;
5853         }
5854
5855         /* this reset request might be the result of a lockup; check */
5856         if (detect_controller_lockup(h)) {
5857                 snprintf(msg, sizeof(msg),
5858                          "cmd %d RESET FAILED, new lockup detected",
5859                          hpsa_get_cmd_index(scsicmd));
5860                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5861                 return FAILED;
5862         }
5863
5864         /* Do not attempt on controller */
5865         if (is_hba_lunid(dev->scsi3addr))
5866                 return SUCCESS;
5867
5868         if (is_logical_dev_addr_mode(dev->scsi3addr))
5869                 reset_type = HPSA_DEVICE_RESET_MSG;
5870         else
5871                 reset_type = HPSA_PHYS_TARGET_RESET;
5872
5873         sprintf(msg, "resetting %s",
5874                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5875         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5876
5877         h->reset_in_progress = 1;
5878
5879         /* send a reset to the SCSI LUN which the command was sent to */
5880         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5881                            DEFAULT_REPLY_QUEUE);
5882         sprintf(msg, "reset %s %s",
5883                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5884                 rc == 0 ? "completed successfully" : "failed");
5885         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5886         h->reset_in_progress = 0;
5887         return rc == 0 ? SUCCESS : FAILED;
5888 }
5889
5890 static void swizzle_abort_tag(u8 *tag)
5891 {
5892         u8 original_tag[8];
5893
5894         memcpy(original_tag, tag, 8);
5895         tag[0] = original_tag[3];
5896         tag[1] = original_tag[2];
5897         tag[2] = original_tag[1];
5898         tag[3] = original_tag[0];
5899         tag[4] = original_tag[7];
5900         tag[5] = original_tag[6];
5901         tag[6] = original_tag[5];
5902         tag[7] = original_tag[4];
5903 }
5904
5905 static void hpsa_get_tag(struct ctlr_info *h,
5906         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5907 {
5908         u64 tag;
5909         if (c->cmd_type == CMD_IOACCEL1) {
5910                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5911                         &h->ioaccel_cmd_pool[c->cmdindex];
5912                 tag = le64_to_cpu(cm1->tag);
5913                 *tagupper = cpu_to_le32(tag >> 32);
5914                 *taglower = cpu_to_le32(tag);
5915                 return;
5916         }
5917         if (c->cmd_type == CMD_IOACCEL2) {
5918                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5919                         &h->ioaccel2_cmd_pool[c->cmdindex];
5920                 /* upper tag not used in ioaccel2 mode */
5921                 memset(tagupper, 0, sizeof(*tagupper));
5922                 *taglower = cm2->Tag;
5923                 return;
5924         }
5925         tag = le64_to_cpu(c->Header.tag);
5926         *tagupper = cpu_to_le32(tag >> 32);
5927         *taglower = cpu_to_le32(tag);
5928 }
5929
5930 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5931         struct CommandList *abort, int reply_queue)
5932 {
5933         int rc = IO_OK;
5934         struct CommandList *c;
5935         struct ErrorInfo *ei;
5936         __le32 tagupper, taglower;
5937
5938         c = cmd_alloc(h);
5939
5940         /* fill_cmd can't fail here, no buffer to map */
5941         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5942                 0, 0, scsi3addr, TYPE_MSG);
5943         if (h->needs_abort_tags_swizzled)
5944                 swizzle_abort_tag(&c->Request.CDB[4]);
5945         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5946         hpsa_get_tag(h, abort, &taglower, &tagupper);
5947         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5948                 __func__, tagupper, taglower);
5949         /* no unmap needed here because no data xfer. */
5950
5951         ei = c->err_info;
5952         switch (ei->CommandStatus) {
5953         case CMD_SUCCESS:
5954                 break;
5955         case CMD_TMF_STATUS:
5956                 rc = hpsa_evaluate_tmf_status(h, c);
5957                 break;
5958         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5959                 rc = -1;
5960                 break;
5961         default:
5962                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5963                         __func__, tagupper, taglower);
5964                 hpsa_scsi_interpret_error(h, c);
5965                 rc = -1;
5966                 break;
5967         }
5968         cmd_free(h, c);
5969         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5970                 __func__, tagupper, taglower);
5971         return rc;
5972 }
5973
5974 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5975         struct CommandList *command_to_abort, int reply_queue)
5976 {
5977         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5978         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5979         struct io_accel2_cmd *c2a =
5980                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5981         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5982         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5983
5984         if (!dev)
5985                 return;
5986
5987         /*
5988          * We're overlaying struct hpsa_tmf_struct on top of something which
5989          * was allocated as a struct io_accel2_cmd, so we better be sure it
5990          * actually fits, and doesn't overrun the error info space.
5991          */
5992         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5993                         sizeof(struct io_accel2_cmd));
5994         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5995                         offsetof(struct hpsa_tmf_struct, error_len) +
5996                                 sizeof(ac->error_len));
5997
5998         c->cmd_type = IOACCEL2_TMF;
5999         c->scsi_cmd = SCSI_CMD_BUSY;
6000
6001         /* Adjust the DMA address to point to the accelerated command buffer */
6002         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
6003                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
6004         BUG_ON(c->busaddr & 0x0000007F);
6005
6006         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
6007         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
6008         ac->reply_queue = reply_queue;
6009         ac->tmf = IOACCEL2_TMF_ABORT;
6010         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
6011         memset(ac->lun_id, 0, sizeof(ac->lun_id));
6012         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
6013         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
6014         ac->error_ptr = cpu_to_le64(c->busaddr +
6015                         offsetof(struct io_accel2_cmd, error_data));
6016         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
6017 }
6018
6019 /* ioaccel2 path firmware cannot handle abort task requests.
6020  * Change abort requests to physical target reset, and send to the
6021  * address of the physical disk used for the ioaccel 2 command.
6022  * Return 0 on success (IO_OK)
6023  *       -1 on failure
6024  */
6025
6026 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
6027         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
6028 {
6029         int rc = IO_OK;
6030         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
6031         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
6032         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
6033         unsigned char *psa = &phys_scsi3addr[0];
6034
6035         /* Get a pointer to the hpsa logical device. */
6036         scmd = abort->scsi_cmd;
6037         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
6038         if (dev == NULL) {
6039                 dev_warn(&h->pdev->dev,
6040                         "Cannot abort: no device pointer for command.\n");
6041                         return -1; /* not abortable */
6042         }
6043
6044         if (h->raid_offload_debug > 0)
6045                 dev_info(&h->pdev->dev,
6046                         "scsi %d:%d:%d:%d %s scsi3addr 0x%8phN\n",
6047                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
6048                         "Reset as abort", scsi3addr);
6049
6050         if (!dev->offload_enabled) {
6051                 dev_warn(&h->pdev->dev,
6052                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
6053                 return -1; /* not abortable */
6054         }
6055
6056         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
6057         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
6058                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
6059                 return -1; /* not abortable */
6060         }
6061
6062         /* send the reset */
6063         if (h->raid_offload_debug > 0)
6064                 dev_info(&h->pdev->dev,
6065                         "Reset as abort: Resetting physical device at scsi3addr 0x%8phN\n",
6066                         psa);
6067         rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue);
6068         if (rc != 0) {
6069                 dev_warn(&h->pdev->dev,
6070                         "Reset as abort: Failed on physical device at scsi3addr 0x%8phN\n",
6071                         psa);
6072                 return rc; /* failed to reset */
6073         }
6074
6075         /* wait for device to recover */
6076         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
6077                 dev_warn(&h->pdev->dev,
6078                         "Reset as abort: Failed: Device never recovered from reset: 0x%8phN\n",
6079                         psa);
6080                 return -1;  /* failed to recover */
6081         }
6082
6083         /* device recovered */
6084         dev_info(&h->pdev->dev,
6085                 "Reset as abort: Device recovered from reset: scsi3addr 0x%8phN\n",
6086                 psa);
6087
6088         return rc; /* success */
6089 }
6090
6091 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
6092         struct CommandList *abort, int reply_queue)
6093 {
6094         int rc = IO_OK;
6095         struct CommandList *c;
6096         __le32 taglower, tagupper;
6097         struct hpsa_scsi_dev_t *dev;
6098         struct io_accel2_cmd *c2;
6099
6100         dev = abort->scsi_cmd->device->hostdata;
6101         if (!dev)
6102                 return -1;
6103
6104         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
6105                 return -1;
6106
6107         c = cmd_alloc(h);
6108         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
6109         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
6110         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
6111         hpsa_get_tag(h, abort, &taglower, &tagupper);
6112         dev_dbg(&h->pdev->dev,
6113                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
6114                 __func__, tagupper, taglower);
6115         /* no unmap needed here because no data xfer. */
6116
6117         dev_dbg(&h->pdev->dev,
6118                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6119                 __func__, tagupper, taglower, c2->error_data.serv_response);
6120         switch (c2->error_data.serv_response) {
6121         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
6122         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
6123                 rc = 0;
6124                 break;
6125         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
6126         case IOACCEL2_SERV_RESPONSE_FAILURE:
6127         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
6128                 rc = -1;
6129                 break;
6130         default:
6131                 dev_warn(&h->pdev->dev,
6132                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6133                         __func__, tagupper, taglower,
6134                         c2->error_data.serv_response);
6135                 rc = -1;
6136         }
6137         cmd_free(h, c);
6138         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6139                 tagupper, taglower);
6140         return rc;
6141 }
6142
6143 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
6144         struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6145 {
6146         /*
6147          * ioccelerator mode 2 commands should be aborted via the
6148          * accelerated path, since RAID path is unaware of these commands,
6149          * but not all underlying firmware can handle abort TMF.
6150          * Change abort to physical device reset when abort TMF is unsupported.
6151          */
6152         if (abort->cmd_type == CMD_IOACCEL2) {
6153                 if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6154                         dev->physical_device)
6155                         return hpsa_send_abort_ioaccel2(h, abort,
6156                                                 reply_queue);
6157                 else
6158                         return hpsa_send_reset_as_abort_ioaccel2(h,
6159                                                         dev->scsi3addr,
6160                                                         abort, reply_queue);
6161         }
6162         return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
6163 }
6164
6165 /* Find out which reply queue a command was meant to return on */
6166 static int hpsa_extract_reply_queue(struct ctlr_info *h,
6167                                         struct CommandList *c)
6168 {
6169         if (c->cmd_type == CMD_IOACCEL2)
6170                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6171         return c->Header.ReplyQueue;
6172 }
6173
6174 /*
6175  * Limit concurrency of abort commands to prevent
6176  * over-subscription of commands
6177  */
6178 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6179 {
6180 #define ABORT_CMD_WAIT_MSECS 5000
6181         return !wait_event_timeout(h->abort_cmd_wait_queue,
6182                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6183                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6184 }
6185
6186 /* Send an abort for the specified command.
6187  *      If the device and controller support it,
6188  *              send a task abort request.
6189  */
6190 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6191 {
6192
6193         int rc;
6194         struct ctlr_info *h;
6195         struct hpsa_scsi_dev_t *dev;
6196         struct CommandList *abort; /* pointer to command to be aborted */
6197         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
6198         char msg[256];          /* For debug messaging. */
6199         int ml = 0;
6200         __le32 tagupper, taglower;
6201         int refcount, reply_queue;
6202
6203         if (sc == NULL)
6204                 return FAILED;
6205
6206         if (sc->device == NULL)
6207                 return FAILED;
6208
6209         /* Find the controller of the command to be aborted */
6210         h = sdev_to_hba(sc->device);
6211         if (h == NULL)
6212                 return FAILED;
6213
6214         /* Find the device of the command to be aborted */
6215         dev = sc->device->hostdata;
6216         if (!dev) {
6217                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6218                                 msg);
6219                 return FAILED;
6220         }
6221
6222         /* If controller locked up, we can guarantee command won't complete */
6223         if (lockup_detected(h)) {
6224                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6225                                         "ABORT FAILED, lockup detected");
6226                 return FAILED;
6227         }
6228
6229         /* This is a good time to check if controller lockup has occurred */
6230         if (detect_controller_lockup(h)) {
6231                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6232                                         "ABORT FAILED, new lockup detected");
6233                 return FAILED;
6234         }
6235
6236         /* Check that controller supports some kind of task abort */
6237         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6238                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6239                 return FAILED;
6240
6241         memset(msg, 0, sizeof(msg));
6242         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6243                 h->scsi_host->host_no, sc->device->channel,
6244                 sc->device->id, sc->device->lun,
6245                 "Aborting command", sc);
6246
6247         /* Get SCSI command to be aborted */
6248         abort = (struct CommandList *) sc->host_scribble;
6249         if (abort == NULL) {
6250                 /* This can happen if the command already completed. */
6251                 return SUCCESS;
6252         }
6253         refcount = atomic_inc_return(&abort->refcount);
6254         if (refcount == 1) { /* Command is done already. */
6255                 cmd_free(h, abort);
6256                 return SUCCESS;
6257         }
6258
6259         /* Don't bother trying the abort if we know it won't work. */
6260         if (abort->cmd_type != CMD_IOACCEL2 &&
6261                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6262                 cmd_free(h, abort);
6263                 return FAILED;
6264         }
6265
6266         /*
6267          * Check that we're aborting the right command.
6268          * It's possible the CommandList already completed and got re-used.
6269          */
6270         if (abort->scsi_cmd != sc) {
6271                 cmd_free(h, abort);
6272                 return SUCCESS;
6273         }
6274
6275         abort->abort_pending = true;
6276         hpsa_get_tag(h, abort, &taglower, &tagupper);
6277         reply_queue = hpsa_extract_reply_queue(h, abort);
6278         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6279         as  = abort->scsi_cmd;
6280         if (as != NULL)
6281                 ml += sprintf(msg+ml,
6282                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6283                         as->cmd_len, as->cmnd[0], as->cmnd[1],
6284                         as->serial_number);
6285         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6286         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6287
6288         /*
6289          * Command is in flight, or possibly already completed
6290          * by the firmware (but not to the scsi mid layer) but we can't
6291          * distinguish which.  Send the abort down.
6292          */
6293         if (wait_for_available_abort_cmd(h)) {
6294                 dev_warn(&h->pdev->dev,
6295                         "%s FAILED, timeout waiting for an abort command to become available.\n",
6296                         msg);
6297                 cmd_free(h, abort);
6298                 return FAILED;
6299         }
6300         rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6301         atomic_inc(&h->abort_cmds_available);
6302         wake_up_all(&h->abort_cmd_wait_queue);
6303         if (rc != 0) {
6304                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6305                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6306                                 "FAILED to abort command");
6307                 cmd_free(h, abort);
6308                 return FAILED;
6309         }
6310         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6311         wait_event(h->event_sync_wait_queue,
6312                    abort->scsi_cmd != sc || lockup_detected(h));
6313         cmd_free(h, abort);
6314         return !lockup_detected(h) ? SUCCESS : FAILED;
6315 }
6316
6317 /*
6318  * For operations with an associated SCSI command, a command block is allocated
6319  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6320  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6321  * the complement, although cmd_free() may be called instead.
6322  */
6323 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6324                                             struct scsi_cmnd *scmd)
6325 {
6326         int idx = hpsa_get_cmd_index(scmd);
6327         struct CommandList *c = h->cmd_pool + idx;
6328
6329         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6330                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6331                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6332                 /* The index value comes from the block layer, so if it's out of
6333                  * bounds, it's probably not our bug.
6334                  */
6335                 BUG();
6336         }
6337
6338         atomic_inc(&c->refcount);
6339         if (unlikely(!hpsa_is_cmd_idle(c))) {
6340                 /*
6341                  * We expect that the SCSI layer will hand us a unique tag
6342                  * value.  Thus, there should never be a collision here between
6343                  * two requests...because if the selected command isn't idle
6344                  * then someone is going to be very disappointed.
6345                  */
6346                 dev_err(&h->pdev->dev,
6347                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6348                         idx);
6349                 if (c->scsi_cmd != NULL)
6350                         scsi_print_command(c->scsi_cmd);
6351                 scsi_print_command(scmd);
6352         }
6353
6354         hpsa_cmd_partial_init(h, idx, c);
6355         return c;
6356 }
6357
6358 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6359 {
6360         /*
6361          * Release our reference to the block.  We don't need to do anything
6362          * else to free it, because it is accessed by index.  (There's no point
6363          * in checking the result of the decrement, since we cannot guarantee
6364          * that there isn't a concurrent abort which is also accessing it.)
6365          */
6366         (void)atomic_dec(&c->refcount);
6367 }
6368
6369 /*
6370  * For operations that cannot sleep, a command block is allocated at init,
6371  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6372  * which ones are free or in use.  Lock must be held when calling this.
6373  * cmd_free() is the complement.
6374  * This function never gives up and returns NULL.  If it hangs,
6375  * another thread must call cmd_free() to free some tags.
6376  */
6377
6378 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6379 {
6380         struct CommandList *c;
6381         int refcount, i;
6382         int offset = 0;
6383
6384         /*
6385          * There is some *extremely* small but non-zero chance that that
6386          * multiple threads could get in here, and one thread could
6387          * be scanning through the list of bits looking for a free
6388          * one, but the free ones are always behind him, and other
6389          * threads sneak in behind him and eat them before he can
6390          * get to them, so that while there is always a free one, a
6391          * very unlucky thread might be starved anyway, never able to
6392          * beat the other threads.  In reality, this happens so
6393          * infrequently as to be indistinguishable from never.
6394          *
6395          * Note that we start allocating commands before the SCSI host structure
6396          * is initialized.  Since the search starts at bit zero, this
6397          * all works, since we have at least one command structure available;
6398          * however, it means that the structures with the low indexes have to be
6399          * reserved for driver-initiated requests, while requests from the block
6400          * layer will use the higher indexes.
6401          */
6402
6403         for (;;) {
6404                 i = find_next_zero_bit(h->cmd_pool_bits,
6405                                         HPSA_NRESERVED_CMDS,
6406                                         offset);
6407                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6408                         offset = 0;
6409                         continue;
6410                 }
6411                 c = h->cmd_pool + i;
6412                 refcount = atomic_inc_return(&c->refcount);
6413                 if (unlikely(refcount > 1)) {
6414                         cmd_free(h, c); /* already in use */
6415                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6416                         continue;
6417                 }
6418                 set_bit(i & (BITS_PER_LONG - 1),
6419                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6420                 break; /* it's ours now. */
6421         }
6422         hpsa_cmd_partial_init(h, i, c);
6423         return c;
6424 }
6425
6426 /*
6427  * This is the complementary operation to cmd_alloc().  Note, however, in some
6428  * corner cases it may also be used to free blocks allocated by
6429  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6430  * the clear-bit is harmless.
6431  */
6432 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6433 {
6434         if (atomic_dec_and_test(&c->refcount)) {
6435                 int i;
6436
6437                 i = c - h->cmd_pool;
6438                 clear_bit(i & (BITS_PER_LONG - 1),
6439                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6440         }
6441 }
6442
6443 #ifdef CONFIG_COMPAT
6444
6445 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6446         void __user *arg)
6447 {
6448         IOCTL32_Command_struct __user *arg32 =
6449             (IOCTL32_Command_struct __user *) arg;
6450         IOCTL_Command_struct arg64;
6451         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6452         int err;
6453         u32 cp;
6454
6455         memset(&arg64, 0, sizeof(arg64));
6456         err = 0;
6457         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6458                            sizeof(arg64.LUN_info));
6459         err |= copy_from_user(&arg64.Request, &arg32->Request,
6460                            sizeof(arg64.Request));
6461         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6462                            sizeof(arg64.error_info));
6463         err |= get_user(arg64.buf_size, &arg32->buf_size);
6464         err |= get_user(cp, &arg32->buf);
6465         arg64.buf = compat_ptr(cp);
6466         err |= copy_to_user(p, &arg64, sizeof(arg64));
6467
6468         if (err)
6469                 return -EFAULT;
6470
6471         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6472         if (err)
6473                 return err;
6474         err |= copy_in_user(&arg32->error_info, &p->error_info,
6475                          sizeof(arg32->error_info));
6476         if (err)
6477                 return -EFAULT;
6478         return err;
6479 }
6480
6481 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6482         int cmd, void __user *arg)
6483 {
6484         BIG_IOCTL32_Command_struct __user *arg32 =
6485             (BIG_IOCTL32_Command_struct __user *) arg;
6486         BIG_IOCTL_Command_struct arg64;
6487         BIG_IOCTL_Command_struct __user *p =
6488             compat_alloc_user_space(sizeof(arg64));
6489         int err;
6490         u32 cp;
6491
6492         memset(&arg64, 0, sizeof(arg64));
6493         err = 0;
6494         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6495                            sizeof(arg64.LUN_info));
6496         err |= copy_from_user(&arg64.Request, &arg32->Request,
6497                            sizeof(arg64.Request));
6498         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6499                            sizeof(arg64.error_info));
6500         err |= get_user(arg64.buf_size, &arg32->buf_size);
6501         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6502         err |= get_user(cp, &arg32->buf);
6503         arg64.buf = compat_ptr(cp);
6504         err |= copy_to_user(p, &arg64, sizeof(arg64));
6505
6506         if (err)
6507                 return -EFAULT;
6508
6509         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6510         if (err)
6511                 return err;
6512         err |= copy_in_user(&arg32->error_info, &p->error_info,
6513                          sizeof(arg32->error_info));
6514         if (err)
6515                 return -EFAULT;
6516         return err;
6517 }
6518
6519 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6520 {
6521         switch (cmd) {
6522         case CCISS_GETPCIINFO:
6523         case CCISS_GETINTINFO:
6524         case CCISS_SETINTINFO:
6525         case CCISS_GETNODENAME:
6526         case CCISS_SETNODENAME:
6527         case CCISS_GETHEARTBEAT:
6528         case CCISS_GETBUSTYPES:
6529         case CCISS_GETFIRMVER:
6530         case CCISS_GETDRIVVER:
6531         case CCISS_REVALIDVOLS:
6532         case CCISS_DEREGDISK:
6533         case CCISS_REGNEWDISK:
6534         case CCISS_REGNEWD:
6535         case CCISS_RESCANDISK:
6536         case CCISS_GETLUNINFO:
6537                 return hpsa_ioctl(dev, cmd, arg);
6538
6539         case CCISS_PASSTHRU32:
6540                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6541         case CCISS_BIG_PASSTHRU32:
6542                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6543
6544         default:
6545                 return -ENOIOCTLCMD;
6546         }
6547 }
6548 #endif
6549
6550 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6551 {
6552         struct hpsa_pci_info pciinfo;
6553
6554         if (!argp)
6555                 return -EINVAL;
6556         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6557         pciinfo.bus = h->pdev->bus->number;
6558         pciinfo.dev_fn = h->pdev->devfn;
6559         pciinfo.board_id = h->board_id;
6560         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6561                 return -EFAULT;
6562         return 0;
6563 }
6564
6565 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6566 {
6567         DriverVer_type DriverVer;
6568         unsigned char vmaj, vmin, vsubmin;
6569         int rc;
6570
6571         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6572                 &vmaj, &vmin, &vsubmin);
6573         if (rc != 3) {
6574                 dev_info(&h->pdev->dev, "driver version string '%s' "
6575                         "unrecognized.", HPSA_DRIVER_VERSION);
6576                 vmaj = 0;
6577                 vmin = 0;
6578                 vsubmin = 0;
6579         }
6580         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6581         if (!argp)
6582                 return -EINVAL;
6583         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6584                 return -EFAULT;
6585         return 0;
6586 }
6587
6588 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6589 {
6590         IOCTL_Command_struct iocommand;
6591         struct CommandList *c;
6592         char *buff = NULL;
6593         u64 temp64;
6594         int rc = 0;
6595
6596         if (!argp)
6597                 return -EINVAL;
6598         if (!capable(CAP_SYS_RAWIO))
6599                 return -EPERM;
6600         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6601                 return -EFAULT;
6602         if ((iocommand.buf_size < 1) &&
6603             (iocommand.Request.Type.Direction != XFER_NONE)) {
6604                 return -EINVAL;
6605         }
6606         if (iocommand.buf_size > 0) {
6607                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6608                 if (buff == NULL)
6609                         return -ENOMEM;
6610                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6611                         /* Copy the data into the buffer we created */
6612                         if (copy_from_user(buff, iocommand.buf,
6613                                 iocommand.buf_size)) {
6614                                 rc = -EFAULT;
6615                                 goto out_kfree;
6616                         }
6617                 } else {
6618                         memset(buff, 0, iocommand.buf_size);
6619                 }
6620         }
6621         c = cmd_alloc(h);
6622
6623         /* Fill in the command type */
6624         c->cmd_type = CMD_IOCTL_PEND;
6625         c->scsi_cmd = SCSI_CMD_BUSY;
6626         /* Fill in Command Header */
6627         c->Header.ReplyQueue = 0; /* unused in simple mode */
6628         if (iocommand.buf_size > 0) {   /* buffer to fill */
6629                 c->Header.SGList = 1;
6630                 c->Header.SGTotal = cpu_to_le16(1);
6631         } else  { /* no buffers to fill */
6632                 c->Header.SGList = 0;
6633                 c->Header.SGTotal = cpu_to_le16(0);
6634         }
6635         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6636
6637         /* Fill in Request block */
6638         memcpy(&c->Request, &iocommand.Request,
6639                 sizeof(c->Request));
6640
6641         /* Fill in the scatter gather information */
6642         if (iocommand.buf_size > 0) {
6643                 temp64 = pci_map_single(h->pdev, buff,
6644                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6645                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6646                         c->SG[0].Addr = cpu_to_le64(0);
6647                         c->SG[0].Len = cpu_to_le32(0);
6648                         rc = -ENOMEM;
6649                         goto out;
6650                 }
6651                 c->SG[0].Addr = cpu_to_le64(temp64);
6652                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6653                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6654         }
6655         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6656                                         NO_TIMEOUT);
6657         if (iocommand.buf_size > 0)
6658                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6659         check_ioctl_unit_attention(h, c);
6660         if (rc) {
6661                 rc = -EIO;
6662                 goto out;
6663         }
6664
6665         /* Copy the error information out */
6666         memcpy(&iocommand.error_info, c->err_info,
6667                 sizeof(iocommand.error_info));
6668         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6669                 rc = -EFAULT;
6670                 goto out;
6671         }
6672         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6673                 iocommand.buf_size > 0) {
6674                 /* Copy the data out of the buffer we created */
6675                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6676                         rc = -EFAULT;
6677                         goto out;
6678                 }
6679         }
6680 out:
6681         cmd_free(h, c);
6682 out_kfree:
6683         kfree(buff);
6684         return rc;
6685 }
6686
6687 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6688 {
6689         BIG_IOCTL_Command_struct *ioc;
6690         struct CommandList *c;
6691         unsigned char **buff = NULL;
6692         int *buff_size = NULL;
6693         u64 temp64;
6694         BYTE sg_used = 0;
6695         int status = 0;
6696         u32 left;
6697         u32 sz;
6698         BYTE __user *data_ptr;
6699
6700         if (!argp)
6701                 return -EINVAL;
6702         if (!capable(CAP_SYS_RAWIO))
6703                 return -EPERM;
6704         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6705         if (!ioc) {
6706                 status = -ENOMEM;
6707                 goto cleanup1;
6708         }
6709         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6710                 status = -EFAULT;
6711                 goto cleanup1;
6712         }
6713         if ((ioc->buf_size < 1) &&
6714             (ioc->Request.Type.Direction != XFER_NONE)) {
6715                 status = -EINVAL;
6716                 goto cleanup1;
6717         }
6718         /* Check kmalloc limits  using all SGs */
6719         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6720                 status = -EINVAL;
6721                 goto cleanup1;
6722         }
6723         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6724                 status = -EINVAL;
6725                 goto cleanup1;
6726         }
6727         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6728         if (!buff) {
6729                 status = -ENOMEM;
6730                 goto cleanup1;
6731         }
6732         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6733         if (!buff_size) {
6734                 status = -ENOMEM;
6735                 goto cleanup1;
6736         }
6737         left = ioc->buf_size;
6738         data_ptr = ioc->buf;
6739         while (left) {
6740                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6741                 buff_size[sg_used] = sz;
6742                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6743                 if (buff[sg_used] == NULL) {
6744                         status = -ENOMEM;
6745                         goto cleanup1;
6746                 }
6747                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6748                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6749                                 status = -EFAULT;
6750                                 goto cleanup1;
6751                         }
6752                 } else
6753                         memset(buff[sg_used], 0, sz);
6754                 left -= sz;
6755                 data_ptr += sz;
6756                 sg_used++;
6757         }
6758         c = cmd_alloc(h);
6759
6760         c->cmd_type = CMD_IOCTL_PEND;
6761         c->scsi_cmd = SCSI_CMD_BUSY;
6762         c->Header.ReplyQueue = 0;
6763         c->Header.SGList = (u8) sg_used;
6764         c->Header.SGTotal = cpu_to_le16(sg_used);
6765         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6766         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6767         if (ioc->buf_size > 0) {
6768                 int i;
6769                 for (i = 0; i < sg_used; i++) {
6770                         temp64 = pci_map_single(h->pdev, buff[i],
6771                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6772                         if (dma_mapping_error(&h->pdev->dev,
6773                                                         (dma_addr_t) temp64)) {
6774                                 c->SG[i].Addr = cpu_to_le64(0);
6775                                 c->SG[i].Len = cpu_to_le32(0);
6776                                 hpsa_pci_unmap(h->pdev, c, i,
6777                                         PCI_DMA_BIDIRECTIONAL);
6778                                 status = -ENOMEM;
6779                                 goto cleanup0;
6780                         }
6781                         c->SG[i].Addr = cpu_to_le64(temp64);
6782                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6783                         c->SG[i].Ext = cpu_to_le32(0);
6784                 }
6785                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6786         }
6787         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6788                                                 NO_TIMEOUT);
6789         if (sg_used)
6790                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6791         check_ioctl_unit_attention(h, c);
6792         if (status) {
6793                 status = -EIO;
6794                 goto cleanup0;
6795         }
6796
6797         /* Copy the error information out */
6798         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6799         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6800                 status = -EFAULT;
6801                 goto cleanup0;
6802         }
6803         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6804                 int i;
6805
6806                 /* Copy the data out of the buffer we created */
6807                 BYTE __user *ptr = ioc->buf;
6808                 for (i = 0; i < sg_used; i++) {
6809                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6810                                 status = -EFAULT;
6811                                 goto cleanup0;
6812                         }
6813                         ptr += buff_size[i];
6814                 }
6815         }
6816         status = 0;
6817 cleanup0:
6818         cmd_free(h, c);
6819 cleanup1:
6820         if (buff) {
6821                 int i;
6822
6823                 for (i = 0; i < sg_used; i++)
6824                         kfree(buff[i]);
6825                 kfree(buff);
6826         }
6827         kfree(buff_size);
6828         kfree(ioc);
6829         return status;
6830 }
6831
6832 static void check_ioctl_unit_attention(struct ctlr_info *h,
6833         struct CommandList *c)
6834 {
6835         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6836                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6837                 (void) check_for_unit_attention(h, c);
6838 }
6839
6840 /*
6841  * ioctl
6842  */
6843 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6844 {
6845         struct ctlr_info *h;
6846         void __user *argp = (void __user *)arg;
6847         int rc;
6848
6849         h = sdev_to_hba(dev);
6850
6851         switch (cmd) {
6852         case CCISS_DEREGDISK:
6853         case CCISS_REGNEWDISK:
6854         case CCISS_REGNEWD:
6855                 hpsa_scan_start(h->scsi_host);
6856                 return 0;
6857         case CCISS_GETPCIINFO:
6858                 return hpsa_getpciinfo_ioctl(h, argp);
6859         case CCISS_GETDRIVVER:
6860                 return hpsa_getdrivver_ioctl(h, argp);
6861         case CCISS_PASSTHRU:
6862                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6863                         return -EAGAIN;
6864                 rc = hpsa_passthru_ioctl(h, argp);
6865                 atomic_inc(&h->passthru_cmds_avail);
6866                 return rc;
6867         case CCISS_BIG_PASSTHRU:
6868                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6869                         return -EAGAIN;
6870                 rc = hpsa_big_passthru_ioctl(h, argp);
6871                 atomic_inc(&h->passthru_cmds_avail);
6872                 return rc;
6873         default:
6874                 return -ENOTTY;
6875         }
6876 }
6877
6878 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6879                                 u8 reset_type)
6880 {
6881         struct CommandList *c;
6882
6883         c = cmd_alloc(h);
6884
6885         /* fill_cmd can't fail here, no data buffer to map */
6886         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6887                 RAID_CTLR_LUNID, TYPE_MSG);
6888         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6889         c->waiting = NULL;
6890         enqueue_cmd_and_start_io(h, c);
6891         /* Don't wait for completion, the reset won't complete.  Don't free
6892          * the command either.  This is the last command we will send before
6893          * re-initializing everything, so it doesn't matter and won't leak.
6894          */
6895         return;
6896 }
6897
6898 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6899         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6900         int cmd_type)
6901 {
6902         int pci_dir = XFER_NONE;
6903         u64 tag; /* for commands to be aborted */
6904
6905         c->cmd_type = CMD_IOCTL_PEND;
6906         c->scsi_cmd = SCSI_CMD_BUSY;
6907         c->Header.ReplyQueue = 0;
6908         if (buff != NULL && size > 0) {
6909                 c->Header.SGList = 1;
6910                 c->Header.SGTotal = cpu_to_le16(1);
6911         } else {
6912                 c->Header.SGList = 0;
6913                 c->Header.SGTotal = cpu_to_le16(0);
6914         }
6915         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6916
6917         if (cmd_type == TYPE_CMD) {
6918                 switch (cmd) {
6919                 case HPSA_INQUIRY:
6920                         /* are we trying to read a vital product page */
6921                         if (page_code & VPD_PAGE) {
6922                                 c->Request.CDB[1] = 0x01;
6923                                 c->Request.CDB[2] = (page_code & 0xff);
6924                         }
6925                         c->Request.CDBLen = 6;
6926                         c->Request.type_attr_dir =
6927                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6928                         c->Request.Timeout = 0;
6929                         c->Request.CDB[0] = HPSA_INQUIRY;
6930                         c->Request.CDB[4] = size & 0xFF;
6931                         break;
6932                 case HPSA_REPORT_LOG:
6933                 case HPSA_REPORT_PHYS:
6934                         /* Talking to controller so It's a physical command
6935                            mode = 00 target = 0.  Nothing to write.
6936                          */
6937                         c->Request.CDBLen = 12;
6938                         c->Request.type_attr_dir =
6939                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6940                         c->Request.Timeout = 0;
6941                         c->Request.CDB[0] = cmd;
6942                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6943                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6944                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6945                         c->Request.CDB[9] = size & 0xFF;
6946                         break;
6947                 case BMIC_SENSE_DIAG_OPTIONS:
6948                         c->Request.CDBLen = 16;
6949                         c->Request.type_attr_dir =
6950                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6951                         c->Request.Timeout = 0;
6952                         /* Spec says this should be BMIC_WRITE */
6953                         c->Request.CDB[0] = BMIC_READ;
6954                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6955                         break;
6956                 case BMIC_SET_DIAG_OPTIONS:
6957                         c->Request.CDBLen = 16;
6958                         c->Request.type_attr_dir =
6959                                         TYPE_ATTR_DIR(cmd_type,
6960                                                 ATTR_SIMPLE, XFER_WRITE);
6961                         c->Request.Timeout = 0;
6962                         c->Request.CDB[0] = BMIC_WRITE;
6963                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6964                         break;
6965                 case HPSA_CACHE_FLUSH:
6966                         c->Request.CDBLen = 12;
6967                         c->Request.type_attr_dir =
6968                                         TYPE_ATTR_DIR(cmd_type,
6969                                                 ATTR_SIMPLE, XFER_WRITE);
6970                         c->Request.Timeout = 0;
6971                         c->Request.CDB[0] = BMIC_WRITE;
6972                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6973                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6974                         c->Request.CDB[8] = size & 0xFF;
6975                         break;
6976                 case TEST_UNIT_READY:
6977                         c->Request.CDBLen = 6;
6978                         c->Request.type_attr_dir =
6979                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6980                         c->Request.Timeout = 0;
6981                         break;
6982                 case HPSA_GET_RAID_MAP:
6983                         c->Request.CDBLen = 12;
6984                         c->Request.type_attr_dir =
6985                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6986                         c->Request.Timeout = 0;
6987                         c->Request.CDB[0] = HPSA_CISS_READ;
6988                         c->Request.CDB[1] = cmd;
6989                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6990                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6991                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6992                         c->Request.CDB[9] = size & 0xFF;
6993                         break;
6994                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6995                         c->Request.CDBLen = 10;
6996                         c->Request.type_attr_dir =
6997                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6998                         c->Request.Timeout = 0;
6999                         c->Request.CDB[0] = BMIC_READ;
7000                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
7001                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7002                         c->Request.CDB[8] = (size >> 8) & 0xFF;
7003                         break;
7004                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
7005                         c->Request.CDBLen = 10;
7006                         c->Request.type_attr_dir =
7007                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7008                         c->Request.Timeout = 0;
7009                         c->Request.CDB[0] = BMIC_READ;
7010                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
7011                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7012                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7013                         break;
7014                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
7015                         c->Request.CDBLen = 10;
7016                         c->Request.type_attr_dir =
7017                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7018                         c->Request.Timeout = 0;
7019                         c->Request.CDB[0] = BMIC_READ;
7020                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
7021                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7022                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7023                         break;
7024                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
7025                         c->Request.CDBLen = 10;
7026                         c->Request.type_attr_dir =
7027                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7028                         c->Request.Timeout = 0;
7029                         c->Request.CDB[0] = BMIC_READ;
7030                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
7031                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7032                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7033                         break;
7034                 case BMIC_IDENTIFY_CONTROLLER:
7035                         c->Request.CDBLen = 10;
7036                         c->Request.type_attr_dir =
7037                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7038                         c->Request.Timeout = 0;
7039                         c->Request.CDB[0] = BMIC_READ;
7040                         c->Request.CDB[1] = 0;
7041                         c->Request.CDB[2] = 0;
7042                         c->Request.CDB[3] = 0;
7043                         c->Request.CDB[4] = 0;
7044                         c->Request.CDB[5] = 0;
7045                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
7046                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7047                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7048                         c->Request.CDB[9] = 0;
7049                         break;
7050                 default:
7051                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
7052                         BUG();
7053                         return -1;
7054                 }
7055         } else if (cmd_type == TYPE_MSG) {
7056                 switch (cmd) {
7057
7058                 case  HPSA_PHYS_TARGET_RESET:
7059                         c->Request.CDBLen = 16;
7060                         c->Request.type_attr_dir =
7061                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7062                         c->Request.Timeout = 0; /* Don't time out */
7063                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7064                         c->Request.CDB[0] = HPSA_RESET;
7065                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
7066                         /* Physical target reset needs no control bytes 4-7*/
7067                         c->Request.CDB[4] = 0x00;
7068                         c->Request.CDB[5] = 0x00;
7069                         c->Request.CDB[6] = 0x00;
7070                         c->Request.CDB[7] = 0x00;
7071                         break;
7072                 case  HPSA_DEVICE_RESET_MSG:
7073                         c->Request.CDBLen = 16;
7074                         c->Request.type_attr_dir =
7075                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7076                         c->Request.Timeout = 0; /* Don't time out */
7077                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7078                         c->Request.CDB[0] =  cmd;
7079                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
7080                         /* If bytes 4-7 are zero, it means reset the */
7081                         /* LunID device */
7082                         c->Request.CDB[4] = 0x00;
7083                         c->Request.CDB[5] = 0x00;
7084                         c->Request.CDB[6] = 0x00;
7085                         c->Request.CDB[7] = 0x00;
7086                         break;
7087                 case  HPSA_ABORT_MSG:
7088                         memcpy(&tag, buff, sizeof(tag));
7089                         dev_dbg(&h->pdev->dev,
7090                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
7091                                 tag, c->Header.tag);
7092                         c->Request.CDBLen = 16;
7093                         c->Request.type_attr_dir =
7094                                         TYPE_ATTR_DIR(cmd_type,
7095                                                 ATTR_SIMPLE, XFER_WRITE);
7096                         c->Request.Timeout = 0; /* Don't time out */
7097                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
7098                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
7099                         c->Request.CDB[2] = 0x00; /* reserved */
7100                         c->Request.CDB[3] = 0x00; /* reserved */
7101                         /* Tag to abort goes in CDB[4]-CDB[11] */
7102                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
7103                         c->Request.CDB[12] = 0x00; /* reserved */
7104                         c->Request.CDB[13] = 0x00; /* reserved */
7105                         c->Request.CDB[14] = 0x00; /* reserved */
7106                         c->Request.CDB[15] = 0x00; /* reserved */
7107                 break;
7108                 default:
7109                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
7110                                 cmd);
7111                         BUG();
7112                 }
7113         } else {
7114                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
7115                 BUG();
7116         }
7117
7118         switch (GET_DIR(c->Request.type_attr_dir)) {
7119         case XFER_READ:
7120                 pci_dir = PCI_DMA_FROMDEVICE;
7121                 break;
7122         case XFER_WRITE:
7123                 pci_dir = PCI_DMA_TODEVICE;
7124                 break;
7125         case XFER_NONE:
7126                 pci_dir = PCI_DMA_NONE;
7127                 break;
7128         default:
7129                 pci_dir = PCI_DMA_BIDIRECTIONAL;
7130         }
7131         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7132                 return -1;
7133         return 0;
7134 }
7135
7136 /*
7137  * Map (physical) PCI mem into (virtual) kernel space
7138  */
7139 static void __iomem *remap_pci_mem(ulong base, ulong size)
7140 {
7141         ulong page_base = ((ulong) base) & PAGE_MASK;
7142         ulong page_offs = ((ulong) base) - page_base;
7143         void __iomem *page_remapped = ioremap_nocache(page_base,
7144                 page_offs + size);
7145
7146         return page_remapped ? (page_remapped + page_offs) : NULL;
7147 }
7148
7149 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
7150 {
7151         return h->access.command_completed(h, q);
7152 }
7153
7154 static inline bool interrupt_pending(struct ctlr_info *h)
7155 {
7156         return h->access.intr_pending(h);
7157 }
7158
7159 static inline long interrupt_not_for_us(struct ctlr_info *h)
7160 {
7161         return (h->access.intr_pending(h) == 0) ||
7162                 (h->interrupts_enabled == 0);
7163 }
7164
7165 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7166         u32 raw_tag)
7167 {
7168         if (unlikely(tag_index >= h->nr_cmds)) {
7169                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7170                 return 1;
7171         }
7172         return 0;
7173 }
7174
7175 static inline void finish_cmd(struct CommandList *c)
7176 {
7177         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
7178         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7179                         || c->cmd_type == CMD_IOACCEL2))
7180                 complete_scsi_command(c);
7181         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
7182                 complete(c->waiting);
7183 }
7184
7185 /* process completion of an indexed ("direct lookup") command */
7186 static inline void process_indexed_cmd(struct ctlr_info *h,
7187         u32 raw_tag)
7188 {
7189         u32 tag_index;
7190         struct CommandList *c;
7191
7192         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
7193         if (!bad_tag(h, tag_index, raw_tag)) {
7194                 c = h->cmd_pool + tag_index;
7195                 finish_cmd(c);
7196         }
7197 }
7198
7199 /* Some controllers, like p400, will give us one interrupt
7200  * after a soft reset, even if we turned interrupts off.
7201  * Only need to check for this in the hpsa_xxx_discard_completions
7202  * functions.
7203  */
7204 static int ignore_bogus_interrupt(struct ctlr_info *h)
7205 {
7206         if (likely(!reset_devices))
7207                 return 0;
7208
7209         if (likely(h->interrupts_enabled))
7210                 return 0;
7211
7212         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7213                 "(known firmware bug.)  Ignoring.\n");
7214
7215         return 1;
7216 }
7217
7218 /*
7219  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7220  * Relies on (h-q[x] == x) being true for x such that
7221  * 0 <= x < MAX_REPLY_QUEUES.
7222  */
7223 static struct ctlr_info *queue_to_hba(u8 *queue)
7224 {
7225         return container_of((queue - *queue), struct ctlr_info, q[0]);
7226 }
7227
7228 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7229 {
7230         struct ctlr_info *h = queue_to_hba(queue);
7231         u8 q = *(u8 *) queue;
7232         u32 raw_tag;
7233
7234         if (ignore_bogus_interrupt(h))
7235                 return IRQ_NONE;
7236
7237         if (interrupt_not_for_us(h))
7238                 return IRQ_NONE;
7239         h->last_intr_timestamp = get_jiffies_64();
7240         while (interrupt_pending(h)) {
7241                 raw_tag = get_next_completion(h, q);
7242                 while (raw_tag != FIFO_EMPTY)
7243                         raw_tag = next_command(h, q);
7244         }
7245         return IRQ_HANDLED;
7246 }
7247
7248 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7249 {
7250         struct ctlr_info *h = queue_to_hba(queue);
7251         u32 raw_tag;
7252         u8 q = *(u8 *) queue;
7253
7254         if (ignore_bogus_interrupt(h))
7255                 return IRQ_NONE;
7256
7257         h->last_intr_timestamp = get_jiffies_64();
7258         raw_tag = get_next_completion(h, q);
7259         while (raw_tag != FIFO_EMPTY)
7260                 raw_tag = next_command(h, q);
7261         return IRQ_HANDLED;
7262 }
7263
7264 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7265 {
7266         struct ctlr_info *h = queue_to_hba((u8 *) queue);
7267         u32 raw_tag;
7268         u8 q = *(u8 *) queue;
7269
7270         if (interrupt_not_for_us(h))
7271                 return IRQ_NONE;
7272         h->last_intr_timestamp = get_jiffies_64();
7273         while (interrupt_pending(h)) {
7274                 raw_tag = get_next_completion(h, q);
7275                 while (raw_tag != FIFO_EMPTY) {
7276                         process_indexed_cmd(h, raw_tag);
7277                         raw_tag = next_command(h, q);
7278                 }
7279         }
7280         return IRQ_HANDLED;
7281 }
7282
7283 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7284 {
7285         struct ctlr_info *h = queue_to_hba(queue);
7286         u32 raw_tag;
7287         u8 q = *(u8 *) queue;
7288
7289         h->last_intr_timestamp = get_jiffies_64();
7290         raw_tag = get_next_completion(h, q);
7291         while (raw_tag != FIFO_EMPTY) {
7292                 process_indexed_cmd(h, raw_tag);
7293                 raw_tag = next_command(h, q);
7294         }
7295         return IRQ_HANDLED;
7296 }
7297
7298 /* Send a message CDB to the firmware. Careful, this only works
7299  * in simple mode, not performant mode due to the tag lookup.
7300  * We only ever use this immediately after a controller reset.
7301  */
7302 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7303                         unsigned char type)
7304 {
7305         struct Command {
7306                 struct CommandListHeader CommandHeader;
7307                 struct RequestBlock Request;
7308                 struct ErrDescriptor ErrorDescriptor;
7309         };
7310         struct Command *cmd;
7311         static const size_t cmd_sz = sizeof(*cmd) +
7312                                         sizeof(cmd->ErrorDescriptor);
7313         dma_addr_t paddr64;
7314         __le32 paddr32;
7315         u32 tag;
7316         void __iomem *vaddr;
7317         int i, err;
7318
7319         vaddr = pci_ioremap_bar(pdev, 0);
7320         if (vaddr == NULL)
7321                 return -ENOMEM;
7322
7323         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7324          * CCISS commands, so they must be allocated from the lower 4GiB of
7325          * memory.
7326          */
7327         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7328         if (err) {
7329                 iounmap(vaddr);
7330                 return err;
7331         }
7332
7333         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7334         if (cmd == NULL) {
7335                 iounmap(vaddr);
7336                 return -ENOMEM;
7337         }
7338
7339         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7340          * although there's no guarantee, we assume that the address is at
7341          * least 4-byte aligned (most likely, it's page-aligned).
7342          */
7343         paddr32 = cpu_to_le32(paddr64);
7344
7345         cmd->CommandHeader.ReplyQueue = 0;
7346         cmd->CommandHeader.SGList = 0;
7347         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7348         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7349         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7350
7351         cmd->Request.CDBLen = 16;
7352         cmd->Request.type_attr_dir =
7353                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7354         cmd->Request.Timeout = 0; /* Don't time out */
7355         cmd->Request.CDB[0] = opcode;
7356         cmd->Request.CDB[1] = type;
7357         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7358         cmd->ErrorDescriptor.Addr =
7359                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7360         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7361
7362         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7363
7364         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7365                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7366                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7367                         break;
7368                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7369         }
7370
7371         iounmap(vaddr);
7372
7373         /* we leak the DMA buffer here ... no choice since the controller could
7374          *  still complete the command.
7375          */
7376         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7377                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7378                         opcode, type);
7379                 return -ETIMEDOUT;
7380         }
7381
7382         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7383
7384         if (tag & HPSA_ERROR_BIT) {
7385                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7386                         opcode, type);
7387                 return -EIO;
7388         }
7389
7390         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7391                 opcode, type);
7392         return 0;
7393 }
7394
7395 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7396
7397 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7398         void __iomem *vaddr, u32 use_doorbell)
7399 {
7400
7401         if (use_doorbell) {
7402                 /* For everything after the P600, the PCI power state method
7403                  * of resetting the controller doesn't work, so we have this
7404                  * other way using the doorbell register.
7405                  */
7406                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7407                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7408
7409                 /* PMC hardware guys tell us we need a 10 second delay after
7410                  * doorbell reset and before any attempt to talk to the board
7411                  * at all to ensure that this actually works and doesn't fall
7412                  * over in some weird corner cases.
7413                  */
7414                 msleep(10000);
7415         } else { /* Try to do it the PCI power state way */
7416
7417                 /* Quoting from the Open CISS Specification: "The Power
7418                  * Management Control/Status Register (CSR) controls the power
7419                  * state of the device.  The normal operating state is D0,
7420                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7421                  * the controller, place the interface device in D3 then to D0,
7422                  * this causes a secondary PCI reset which will reset the
7423                  * controller." */
7424
7425                 int rc = 0;
7426
7427                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7428
7429                 /* enter the D3hot power management state */
7430                 rc = pci_set_power_state(pdev, PCI_D3hot);
7431                 if (rc)
7432                         return rc;
7433
7434                 msleep(500);
7435
7436                 /* enter the D0 power management state */
7437                 rc = pci_set_power_state(pdev, PCI_D0);
7438                 if (rc)
7439                         return rc;
7440
7441                 /*
7442                  * The P600 requires a small delay when changing states.
7443                  * Otherwise we may think the board did not reset and we bail.
7444                  * This for kdump only and is particular to the P600.
7445                  */
7446                 msleep(500);
7447         }
7448         return 0;
7449 }
7450
7451 static void init_driver_version(char *driver_version, int len)
7452 {
7453         memset(driver_version, 0, len);
7454         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7455 }
7456
7457 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7458 {
7459         char *driver_version;
7460         int i, size = sizeof(cfgtable->driver_version);
7461
7462         driver_version = kmalloc(size, GFP_KERNEL);
7463         if (!driver_version)
7464                 return -ENOMEM;
7465
7466         init_driver_version(driver_version, size);
7467         for (i = 0; i < size; i++)
7468                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7469         kfree(driver_version);
7470         return 0;
7471 }
7472
7473 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7474                                           unsigned char *driver_ver)
7475 {
7476         int i;
7477
7478         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7479                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7480 }
7481
7482 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7483 {
7484
7485         char *driver_ver, *old_driver_ver;
7486         int rc, size = sizeof(cfgtable->driver_version);
7487
7488         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7489         if (!old_driver_ver)
7490                 return -ENOMEM;
7491         driver_ver = old_driver_ver + size;
7492
7493         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7494          * should have been changed, otherwise we know the reset failed.
7495          */
7496         init_driver_version(old_driver_ver, size);
7497         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7498         rc = !memcmp(driver_ver, old_driver_ver, size);
7499         kfree(old_driver_ver);
7500         return rc;
7501 }
7502 /* This does a hard reset of the controller using PCI power management
7503  * states or the using the doorbell register.
7504  */
7505 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7506 {
7507         u64 cfg_offset;
7508         u32 cfg_base_addr;
7509         u64 cfg_base_addr_index;
7510         void __iomem *vaddr;
7511         unsigned long paddr;
7512         u32 misc_fw_support;
7513         int rc;
7514         struct CfgTable __iomem *cfgtable;
7515         u32 use_doorbell;
7516         u16 command_register;
7517
7518         /* For controllers as old as the P600, this is very nearly
7519          * the same thing as
7520          *
7521          * pci_save_state(pci_dev);
7522          * pci_set_power_state(pci_dev, PCI_D3hot);
7523          * pci_set_power_state(pci_dev, PCI_D0);
7524          * pci_restore_state(pci_dev);
7525          *
7526          * For controllers newer than the P600, the pci power state
7527          * method of resetting doesn't work so we have another way
7528          * using the doorbell register.
7529          */
7530
7531         if (!ctlr_is_resettable(board_id)) {
7532                 dev_warn(&pdev->dev, "Controller not resettable\n");
7533                 return -ENODEV;
7534         }
7535
7536         /* if controller is soft- but not hard resettable... */
7537         if (!ctlr_is_hard_resettable(board_id))
7538                 return -ENOTSUPP; /* try soft reset later. */
7539
7540         /* Save the PCI command register */
7541         pci_read_config_word(pdev, 4, &command_register);
7542         pci_save_state(pdev);
7543
7544         /* find the first memory BAR, so we can find the cfg table */
7545         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7546         if (rc)
7547                 return rc;
7548         vaddr = remap_pci_mem(paddr, 0x250);
7549         if (!vaddr)
7550                 return -ENOMEM;
7551
7552         /* find cfgtable in order to check if reset via doorbell is supported */
7553         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7554                                         &cfg_base_addr_index, &cfg_offset);
7555         if (rc)
7556                 goto unmap_vaddr;
7557         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7558                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7559         if (!cfgtable) {
7560                 rc = -ENOMEM;
7561                 goto unmap_vaddr;
7562         }
7563         rc = write_driver_ver_to_cfgtable(cfgtable);
7564         if (rc)
7565                 goto unmap_cfgtable;
7566
7567         /* If reset via doorbell register is supported, use that.
7568          * There are two such methods.  Favor the newest method.
7569          */
7570         misc_fw_support = readl(&cfgtable->misc_fw_support);
7571         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7572         if (use_doorbell) {
7573                 use_doorbell = DOORBELL_CTLR_RESET2;
7574         } else {
7575                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7576                 if (use_doorbell) {
7577                         dev_warn(&pdev->dev,
7578                                 "Soft reset not supported. Firmware update is required.\n");
7579                         rc = -ENOTSUPP; /* try soft reset */
7580                         goto unmap_cfgtable;
7581                 }
7582         }
7583
7584         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7585         if (rc)
7586                 goto unmap_cfgtable;
7587
7588         pci_restore_state(pdev);
7589         pci_write_config_word(pdev, 4, command_register);
7590
7591         /* Some devices (notably the HP Smart Array 5i Controller)
7592            need a little pause here */
7593         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7594
7595         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7596         if (rc) {
7597                 dev_warn(&pdev->dev,
7598                         "Failed waiting for board to become ready after hard reset\n");
7599                 goto unmap_cfgtable;
7600         }
7601
7602         rc = controller_reset_failed(vaddr);
7603         if (rc < 0)
7604                 goto unmap_cfgtable;
7605         if (rc) {
7606                 dev_warn(&pdev->dev, "Unable to successfully reset "
7607                         "controller. Will try soft reset.\n");
7608                 rc = -ENOTSUPP;
7609         } else {
7610                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7611         }
7612
7613 unmap_cfgtable:
7614         iounmap(cfgtable);
7615
7616 unmap_vaddr:
7617         iounmap(vaddr);
7618         return rc;
7619 }
7620
7621 /*
7622  *  We cannot read the structure directly, for portability we must use
7623  *   the io functions.
7624  *   This is for debug only.
7625  */
7626 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7627 {
7628 #ifdef HPSA_DEBUG
7629         int i;
7630         char temp_name[17];
7631
7632         dev_info(dev, "Controller Configuration information\n");
7633         dev_info(dev, "------------------------------------\n");
7634         for (i = 0; i < 4; i++)
7635                 temp_name[i] = readb(&(tb->Signature[i]));
7636         temp_name[4] = '\0';
7637         dev_info(dev, "   Signature = %s\n", temp_name);
7638         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7639         dev_info(dev, "   Transport methods supported = 0x%x\n",
7640                readl(&(tb->TransportSupport)));
7641         dev_info(dev, "   Transport methods active = 0x%x\n",
7642                readl(&(tb->TransportActive)));
7643         dev_info(dev, "   Requested transport Method = 0x%x\n",
7644                readl(&(tb->HostWrite.TransportRequest)));
7645         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7646                readl(&(tb->HostWrite.CoalIntDelay)));
7647         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7648                readl(&(tb->HostWrite.CoalIntCount)));
7649         dev_info(dev, "   Max outstanding commands = %d\n",
7650                readl(&(tb->CmdsOutMax)));
7651         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7652         for (i = 0; i < 16; i++)
7653                 temp_name[i] = readb(&(tb->ServerName[i]));
7654         temp_name[16] = '\0';
7655         dev_info(dev, "   Server Name = %s\n", temp_name);
7656         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7657                 readl(&(tb->HeartBeat)));
7658 #endif                          /* HPSA_DEBUG */
7659 }
7660
7661 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7662 {
7663         int i, offset, mem_type, bar_type;
7664
7665         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7666                 return 0;
7667         offset = 0;
7668         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7669                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7670                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7671                         offset += 4;
7672                 else {
7673                         mem_type = pci_resource_flags(pdev, i) &
7674                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7675                         switch (mem_type) {
7676                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7677                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7678                                 offset += 4;    /* 32 bit */
7679                                 break;
7680                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7681                                 offset += 8;
7682                                 break;
7683                         default:        /* reserved in PCI 2.2 */
7684                                 dev_warn(&pdev->dev,
7685                                        "base address is invalid\n");
7686                                 return -1;
7687                                 break;
7688                         }
7689                 }
7690                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7691                         return i + 1;
7692         }
7693         return -1;
7694 }
7695
7696 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7697 {
7698         pci_free_irq_vectors(h->pdev);
7699         h->msix_vectors = 0;
7700 }
7701
7702 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7703  * controllers that are capable. If not, we use legacy INTx mode.
7704  */
7705 static int hpsa_interrupt_mode(struct ctlr_info *h)
7706 {
7707         unsigned int flags = PCI_IRQ_LEGACY;
7708         int ret;
7709
7710         /* Some boards advertise MSI but don't really support it */
7711         switch (h->board_id) {
7712         case 0x40700E11:
7713         case 0x40800E11:
7714         case 0x40820E11:
7715         case 0x40830E11:
7716                 break;
7717         default:
7718                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7719                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7720                 if (ret > 0) {
7721                         h->msix_vectors = ret;
7722                         return 0;
7723                 }
7724
7725                 flags |= PCI_IRQ_MSI;
7726                 break;
7727         }
7728
7729         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7730         if (ret < 0)
7731                 return ret;
7732         return 0;
7733 }
7734
7735 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7736 {
7737         int i;
7738         u32 subsystem_vendor_id, subsystem_device_id;
7739
7740         subsystem_vendor_id = pdev->subsystem_vendor;
7741         subsystem_device_id = pdev->subsystem_device;
7742         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7743                     subsystem_vendor_id;
7744
7745         for (i = 0; i < ARRAY_SIZE(products); i++)
7746                 if (*board_id == products[i].board_id)
7747                         return i;
7748
7749         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7750                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7751                 !hpsa_allow_any) {
7752                 dev_warn(&pdev->dev, "unrecognized board ID: "
7753                         "0x%08x, ignoring.\n", *board_id);
7754                         return -ENODEV;
7755         }
7756         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7757 }
7758
7759 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7760                                     unsigned long *memory_bar)
7761 {
7762         int i;
7763
7764         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7765                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7766                         /* addressing mode bits already removed */
7767                         *memory_bar = pci_resource_start(pdev, i);
7768                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7769                                 *memory_bar);
7770                         return 0;
7771                 }
7772         dev_warn(&pdev->dev, "no memory BAR found\n");
7773         return -ENODEV;
7774 }
7775
7776 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7777                                      int wait_for_ready)
7778 {
7779         int i, iterations;
7780         u32 scratchpad;
7781         if (wait_for_ready)
7782                 iterations = HPSA_BOARD_READY_ITERATIONS;
7783         else
7784                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7785
7786         for (i = 0; i < iterations; i++) {
7787                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7788                 if (wait_for_ready) {
7789                         if (scratchpad == HPSA_FIRMWARE_READY)
7790                                 return 0;
7791                 } else {
7792                         if (scratchpad != HPSA_FIRMWARE_READY)
7793                                 return 0;
7794                 }
7795                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7796         }
7797         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7798         return -ENODEV;
7799 }
7800
7801 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7802                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7803                                u64 *cfg_offset)
7804 {
7805         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7806         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7807         *cfg_base_addr &= (u32) 0x0000ffff;
7808         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7809         if (*cfg_base_addr_index == -1) {
7810                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7811                 return -ENODEV;
7812         }
7813         return 0;
7814 }
7815
7816 static void hpsa_free_cfgtables(struct ctlr_info *h)
7817 {
7818         if (h->transtable) {
7819                 iounmap(h->transtable);
7820                 h->transtable = NULL;
7821         }
7822         if (h->cfgtable) {
7823                 iounmap(h->cfgtable);
7824                 h->cfgtable = NULL;
7825         }
7826 }
7827
7828 /* Find and map CISS config table and transfer table
7829 + * several items must be unmapped (freed) later
7830 + * */
7831 static int hpsa_find_cfgtables(struct ctlr_info *h)
7832 {
7833         u64 cfg_offset;
7834         u32 cfg_base_addr;
7835         u64 cfg_base_addr_index;
7836         u32 trans_offset;
7837         int rc;
7838
7839         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7840                 &cfg_base_addr_index, &cfg_offset);
7841         if (rc)
7842                 return rc;
7843         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7844                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7845         if (!h->cfgtable) {
7846                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7847                 return -ENOMEM;
7848         }
7849         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7850         if (rc)
7851                 return rc;
7852         /* Find performant mode table. */
7853         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7854         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7855                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7856                                 sizeof(*h->transtable));
7857         if (!h->transtable) {
7858                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7859                 hpsa_free_cfgtables(h);
7860                 return -ENOMEM;
7861         }
7862         return 0;
7863 }
7864
7865 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7866 {
7867 #define MIN_MAX_COMMANDS 16
7868         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7869
7870         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7871
7872         /* Limit commands in memory limited kdump scenario. */
7873         if (reset_devices && h->max_commands > 32)
7874                 h->max_commands = 32;
7875
7876         if (h->max_commands < MIN_MAX_COMMANDS) {
7877                 dev_warn(&h->pdev->dev,
7878                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7879                         h->max_commands,
7880                         MIN_MAX_COMMANDS);
7881                 h->max_commands = MIN_MAX_COMMANDS;
7882         }
7883 }
7884
7885 /* If the controller reports that the total max sg entries is greater than 512,
7886  * then we know that chained SG blocks work.  (Original smart arrays did not
7887  * support chained SG blocks and would return zero for max sg entries.)
7888  */
7889 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7890 {
7891         return h->maxsgentries > 512;
7892 }
7893
7894 /* Interrogate the hardware for some limits:
7895  * max commands, max SG elements without chaining, and with chaining,
7896  * SG chain block size, etc.
7897  */
7898 static void hpsa_find_board_params(struct ctlr_info *h)
7899 {
7900         hpsa_get_max_perf_mode_cmds(h);
7901         h->nr_cmds = h->max_commands;
7902         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7903         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7904         if (hpsa_supports_chained_sg_blocks(h)) {
7905                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7906                 h->max_cmd_sg_entries = 32;
7907                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7908                 h->maxsgentries--; /* save one for chain pointer */
7909         } else {
7910                 /*
7911                  * Original smart arrays supported at most 31 s/g entries
7912                  * embedded inline in the command (trying to use more
7913                  * would lock up the controller)
7914                  */
7915                 h->max_cmd_sg_entries = 31;
7916                 h->maxsgentries = 31; /* default to traditional values */
7917                 h->chainsize = 0;
7918         }
7919
7920         /* Find out what task management functions are supported and cache */
7921         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7922         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7923                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7924         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7925                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7926         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7927                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7928 }
7929
7930 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7931 {
7932         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7933                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7934                 return false;
7935         }
7936         return true;
7937 }
7938
7939 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7940 {
7941         u32 driver_support;
7942
7943         driver_support = readl(&(h->cfgtable->driver_support));
7944         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7945 #ifdef CONFIG_X86
7946         driver_support |= ENABLE_SCSI_PREFETCH;
7947 #endif
7948         driver_support |= ENABLE_UNIT_ATTN;
7949         writel(driver_support, &(h->cfgtable->driver_support));
7950 }
7951
7952 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7953  * in a prefetch beyond physical memory.
7954  */
7955 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7956 {
7957         u32 dma_prefetch;
7958
7959         if (h->board_id != 0x3225103C)
7960                 return;
7961         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7962         dma_prefetch |= 0x8000;
7963         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7964 }
7965
7966 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7967 {
7968         int i;
7969         u32 doorbell_value;
7970         unsigned long flags;
7971         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7972         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7973                 spin_lock_irqsave(&h->lock, flags);
7974                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7975                 spin_unlock_irqrestore(&h->lock, flags);
7976                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7977                         goto done;
7978                 /* delay and try again */
7979                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7980         }
7981         return -ENODEV;
7982 done:
7983         return 0;
7984 }
7985
7986 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7987 {
7988         int i;
7989         u32 doorbell_value;
7990         unsigned long flags;
7991
7992         /* under certain very rare conditions, this can take awhile.
7993          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7994          * as we enter this code.)
7995          */
7996         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7997                 if (h->remove_in_progress)
7998                         goto done;
7999                 spin_lock_irqsave(&h->lock, flags);
8000                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
8001                 spin_unlock_irqrestore(&h->lock, flags);
8002                 if (!(doorbell_value & CFGTBL_ChangeReq))
8003                         goto done;
8004                 /* delay and try again */
8005                 msleep(MODE_CHANGE_WAIT_INTERVAL);
8006         }
8007         return -ENODEV;
8008 done:
8009         return 0;
8010 }
8011
8012 /* return -ENODEV or other reason on error, 0 on success */
8013 static int hpsa_enter_simple_mode(struct ctlr_info *h)
8014 {
8015         u32 trans_support;
8016
8017         trans_support = readl(&(h->cfgtable->TransportSupport));
8018         if (!(trans_support & SIMPLE_MODE))
8019                 return -ENOTSUPP;
8020
8021         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
8022
8023         /* Update the field, and then ring the doorbell */
8024         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
8025         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8026         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8027         if (hpsa_wait_for_mode_change_ack(h))
8028                 goto error;
8029         print_cfg_table(&h->pdev->dev, h->cfgtable);
8030         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
8031                 goto error;
8032         h->transMethod = CFGTBL_Trans_Simple;
8033         return 0;
8034 error:
8035         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
8036         return -ENODEV;
8037 }
8038
8039 /* free items allocated or mapped by hpsa_pci_init */
8040 static void hpsa_free_pci_init(struct ctlr_info *h)
8041 {
8042         hpsa_free_cfgtables(h);                 /* pci_init 4 */
8043         iounmap(h->vaddr);                      /* pci_init 3 */
8044         h->vaddr = NULL;
8045         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8046         /*
8047          * call pci_disable_device before pci_release_regions per
8048          * Documentation/PCI/pci.txt
8049          */
8050         pci_disable_device(h->pdev);            /* pci_init 1 */
8051         pci_release_regions(h->pdev);           /* pci_init 2 */
8052 }
8053
8054 /* several items must be freed later */
8055 static int hpsa_pci_init(struct ctlr_info *h)
8056 {
8057         int prod_index, err;
8058
8059         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
8060         if (prod_index < 0)
8061                 return prod_index;
8062         h->product_name = products[prod_index].product_name;
8063         h->access = *(products[prod_index].access);
8064
8065         h->needs_abort_tags_swizzled =
8066                 ctlr_needs_abort_tags_swizzled(h->board_id);
8067
8068         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
8069                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
8070
8071         err = pci_enable_device(h->pdev);
8072         if (err) {
8073                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
8074                 pci_disable_device(h->pdev);
8075                 return err;
8076         }
8077
8078         err = pci_request_regions(h->pdev, HPSA);
8079         if (err) {
8080                 dev_err(&h->pdev->dev,
8081                         "failed to obtain PCI resources\n");
8082                 pci_disable_device(h->pdev);
8083                 return err;
8084         }
8085
8086         pci_set_master(h->pdev);
8087
8088         err = hpsa_interrupt_mode(h);
8089         if (err)
8090                 goto clean1;
8091         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
8092         if (err)
8093                 goto clean2;    /* intmode+region, pci */
8094         h->vaddr = remap_pci_mem(h->paddr, 0x250);
8095         if (!h->vaddr) {
8096                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
8097                 err = -ENOMEM;
8098                 goto clean2;    /* intmode+region, pci */
8099         }
8100         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8101         if (err)
8102                 goto clean3;    /* vaddr, intmode+region, pci */
8103         err = hpsa_find_cfgtables(h);
8104         if (err)
8105                 goto clean3;    /* vaddr, intmode+region, pci */
8106         hpsa_find_board_params(h);
8107
8108         if (!hpsa_CISS_signature_present(h)) {
8109                 err = -ENODEV;
8110                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
8111         }
8112         hpsa_set_driver_support_bits(h);
8113         hpsa_p600_dma_prefetch_quirk(h);
8114         err = hpsa_enter_simple_mode(h);
8115         if (err)
8116                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
8117         return 0;
8118
8119 clean4: /* cfgtables, vaddr, intmode+region, pci */
8120         hpsa_free_cfgtables(h);
8121 clean3: /* vaddr, intmode+region, pci */
8122         iounmap(h->vaddr);
8123         h->vaddr = NULL;
8124 clean2: /* intmode+region, pci */
8125         hpsa_disable_interrupt_mode(h);
8126 clean1:
8127         /*
8128          * call pci_disable_device before pci_release_regions per
8129          * Documentation/PCI/pci.txt
8130          */
8131         pci_disable_device(h->pdev);
8132         pci_release_regions(h->pdev);
8133         return err;
8134 }
8135
8136 static void hpsa_hba_inquiry(struct ctlr_info *h)
8137 {
8138         int rc;
8139
8140 #define HBA_INQUIRY_BYTE_COUNT 64
8141         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8142         if (!h->hba_inquiry_data)
8143                 return;
8144         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8145                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8146         if (rc != 0) {
8147                 kfree(h->hba_inquiry_data);
8148                 h->hba_inquiry_data = NULL;
8149         }
8150 }
8151
8152 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
8153 {
8154         int rc, i;
8155         void __iomem *vaddr;
8156
8157         if (!reset_devices)
8158                 return 0;
8159
8160         /* kdump kernel is loading, we don't know in which state is
8161          * the pci interface. The dev->enable_cnt is equal zero
8162          * so we call enable+disable, wait a while and switch it on.
8163          */
8164         rc = pci_enable_device(pdev);
8165         if (rc) {
8166                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8167                 return -ENODEV;
8168         }
8169         pci_disable_device(pdev);
8170         msleep(260);                    /* a randomly chosen number */
8171         rc = pci_enable_device(pdev);
8172         if (rc) {
8173                 dev_warn(&pdev->dev, "failed to enable device.\n");
8174                 return -ENODEV;
8175         }
8176
8177         pci_set_master(pdev);
8178
8179         vaddr = pci_ioremap_bar(pdev, 0);
8180         if (vaddr == NULL) {
8181                 rc = -ENOMEM;
8182                 goto out_disable;
8183         }
8184         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8185         iounmap(vaddr);
8186
8187         /* Reset the controller with a PCI power-cycle or via doorbell */
8188         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8189
8190         /* -ENOTSUPP here means we cannot reset the controller
8191          * but it's already (and still) up and running in
8192          * "performant mode".  Or, it might be 640x, which can't reset
8193          * due to concerns about shared bbwc between 6402/6404 pair.
8194          */
8195         if (rc)
8196                 goto out_disable;
8197
8198         /* Now try to get the controller to respond to a no-op */
8199         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8200         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8201                 if (hpsa_noop(pdev) == 0)
8202                         break;
8203                 else
8204                         dev_warn(&pdev->dev, "no-op failed%s\n",
8205                                         (i < 11 ? "; re-trying" : ""));
8206         }
8207
8208 out_disable:
8209
8210         pci_disable_device(pdev);
8211         return rc;
8212 }
8213
8214 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8215 {
8216         kfree(h->cmd_pool_bits);
8217         h->cmd_pool_bits = NULL;
8218         if (h->cmd_pool) {
8219                 pci_free_consistent(h->pdev,
8220                                 h->nr_cmds * sizeof(struct CommandList),
8221                                 h->cmd_pool,
8222                                 h->cmd_pool_dhandle);
8223                 h->cmd_pool = NULL;
8224                 h->cmd_pool_dhandle = 0;
8225         }
8226         if (h->errinfo_pool) {
8227                 pci_free_consistent(h->pdev,
8228                                 h->nr_cmds * sizeof(struct ErrorInfo),
8229                                 h->errinfo_pool,
8230                                 h->errinfo_pool_dhandle);
8231                 h->errinfo_pool = NULL;
8232                 h->errinfo_pool_dhandle = 0;
8233         }
8234 }
8235
8236 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8237 {
8238         h->cmd_pool_bits = kzalloc(
8239                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8240                 sizeof(unsigned long), GFP_KERNEL);
8241         h->cmd_pool = pci_alloc_consistent(h->pdev,
8242                     h->nr_cmds * sizeof(*h->cmd_pool),
8243                     &(h->cmd_pool_dhandle));
8244         h->errinfo_pool = pci_alloc_consistent(h->pdev,
8245                     h->nr_cmds * sizeof(*h->errinfo_pool),
8246                     &(h->errinfo_pool_dhandle));
8247         if ((h->cmd_pool_bits == NULL)
8248             || (h->cmd_pool == NULL)
8249             || (h->errinfo_pool == NULL)) {
8250                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8251                 goto clean_up;
8252         }
8253         hpsa_preinitialize_commands(h);
8254         return 0;
8255 clean_up:
8256         hpsa_free_cmd_pool(h);
8257         return -ENOMEM;
8258 }
8259
8260 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8261 static void hpsa_free_irqs(struct ctlr_info *h)
8262 {
8263         int i;
8264
8265         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8266                 /* Single reply queue, only one irq to free */
8267                 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
8268                 h->q[h->intr_mode] = 0;
8269                 return;
8270         }
8271
8272         for (i = 0; i < h->msix_vectors; i++) {
8273                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8274                 h->q[i] = 0;
8275         }
8276         for (; i < MAX_REPLY_QUEUES; i++)
8277                 h->q[i] = 0;
8278 }
8279
8280 /* returns 0 on success; cleans up and returns -Enn on error */
8281 static int hpsa_request_irqs(struct ctlr_info *h,
8282         irqreturn_t (*msixhandler)(int, void *),
8283         irqreturn_t (*intxhandler)(int, void *))
8284 {
8285         int rc, i;
8286
8287         /*
8288          * initialize h->q[x] = x so that interrupt handlers know which
8289          * queue to process.
8290          */
8291         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8292                 h->q[i] = (u8) i;
8293
8294         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8295                 /* If performant mode and MSI-X, use multiple reply queues */
8296                 for (i = 0; i < h->msix_vectors; i++) {
8297                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8298                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8299                                         0, h->intrname[i],
8300                                         &h->q[i]);
8301                         if (rc) {
8302                                 int j;
8303
8304                                 dev_err(&h->pdev->dev,
8305                                         "failed to get irq %d for %s\n",
8306                                        pci_irq_vector(h->pdev, i), h->devname);
8307                                 for (j = 0; j < i; j++) {
8308                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8309                                         h->q[j] = 0;
8310                                 }
8311                                 for (; j < MAX_REPLY_QUEUES; j++)
8312                                         h->q[j] = 0;
8313                                 return rc;
8314                         }
8315                 }
8316         } else {
8317                 /* Use single reply pool */
8318                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8319                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8320                                 h->msix_vectors ? "x" : "");
8321                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8322                                 msixhandler, 0,
8323                                 h->intrname[0],
8324                                 &h->q[h->intr_mode]);
8325                 } else {
8326                         sprintf(h->intrname[h->intr_mode],
8327                                 "%s-intx", h->devname);
8328                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8329                                 intxhandler, IRQF_SHARED,
8330                                 h->intrname[0],
8331                                 &h->q[h->intr_mode]);
8332                 }
8333         }
8334         if (rc) {
8335                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8336                        pci_irq_vector(h->pdev, 0), h->devname);
8337                 hpsa_free_irqs(h);
8338                 return -ENODEV;
8339         }
8340         return 0;
8341 }
8342
8343 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8344 {
8345         int rc;
8346         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8347
8348         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8349         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8350         if (rc) {
8351                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8352                 return rc;
8353         }
8354
8355         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8356         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8357         if (rc) {
8358                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8359                         "after soft reset.\n");
8360                 return rc;
8361         }
8362
8363         return 0;
8364 }
8365
8366 static void hpsa_free_reply_queues(struct ctlr_info *h)
8367 {
8368         int i;
8369
8370         for (i = 0; i < h->nreply_queues; i++) {
8371                 if (!h->reply_queue[i].head)
8372                         continue;
8373                 pci_free_consistent(h->pdev,
8374                                         h->reply_queue_size,
8375                                         h->reply_queue[i].head,
8376                                         h->reply_queue[i].busaddr);
8377                 h->reply_queue[i].head = NULL;
8378                 h->reply_queue[i].busaddr = 0;
8379         }
8380         h->reply_queue_size = 0;
8381 }
8382
8383 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8384 {
8385         hpsa_free_performant_mode(h);           /* init_one 7 */
8386         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8387         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8388         hpsa_free_irqs(h);                      /* init_one 4 */
8389         scsi_host_put(h->scsi_host);            /* init_one 3 */
8390         h->scsi_host = NULL;                    /* init_one 3 */
8391         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8392         free_percpu(h->lockup_detected);        /* init_one 2 */
8393         h->lockup_detected = NULL;              /* init_one 2 */
8394         if (h->resubmit_wq) {
8395                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8396                 h->resubmit_wq = NULL;
8397         }
8398         if (h->rescan_ctlr_wq) {
8399                 destroy_workqueue(h->rescan_ctlr_wq);
8400                 h->rescan_ctlr_wq = NULL;
8401         }
8402         kfree(h);                               /* init_one 1 */
8403 }
8404
8405 /* Called when controller lockup detected. */
8406 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8407 {
8408         int i, refcount;
8409         struct CommandList *c;
8410         int failcount = 0;
8411
8412         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8413         for (i = 0; i < h->nr_cmds; i++) {
8414                 c = h->cmd_pool + i;
8415                 refcount = atomic_inc_return(&c->refcount);
8416                 if (refcount > 1) {
8417                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8418                         finish_cmd(c);
8419                         atomic_dec(&h->commands_outstanding);
8420                         failcount++;
8421                 }
8422                 cmd_free(h, c);
8423         }
8424         dev_warn(&h->pdev->dev,
8425                 "failed %d commands in fail_all\n", failcount);
8426 }
8427
8428 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8429 {
8430         int cpu;
8431
8432         for_each_online_cpu(cpu) {
8433                 u32 *lockup_detected;
8434                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8435                 *lockup_detected = value;
8436         }
8437         wmb(); /* be sure the per-cpu variables are out to memory */
8438 }
8439
8440 static void controller_lockup_detected(struct ctlr_info *h)
8441 {
8442         unsigned long flags;
8443         u32 lockup_detected;
8444
8445         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8446         spin_lock_irqsave(&h->lock, flags);
8447         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8448         if (!lockup_detected) {
8449                 /* no heartbeat, but controller gave us a zero. */
8450                 dev_warn(&h->pdev->dev,
8451                         "lockup detected after %d but scratchpad register is zero\n",
8452                         h->heartbeat_sample_interval / HZ);
8453                 lockup_detected = 0xffffffff;
8454         }
8455         set_lockup_detected_for_all_cpus(h, lockup_detected);
8456         spin_unlock_irqrestore(&h->lock, flags);
8457         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8458                         lockup_detected, h->heartbeat_sample_interval / HZ);
8459         pci_disable_device(h->pdev);
8460         fail_all_outstanding_cmds(h);
8461 }
8462
8463 static int detect_controller_lockup(struct ctlr_info *h)
8464 {
8465         u64 now;
8466         u32 heartbeat;
8467         unsigned long flags;
8468
8469         now = get_jiffies_64();
8470         /* If we've received an interrupt recently, we're ok. */
8471         if (time_after64(h->last_intr_timestamp +
8472                                 (h->heartbeat_sample_interval), now))
8473                 return false;
8474
8475         /*
8476          * If we've already checked the heartbeat recently, we're ok.
8477          * This could happen if someone sends us a signal. We
8478          * otherwise don't care about signals in this thread.
8479          */
8480         if (time_after64(h->last_heartbeat_timestamp +
8481                                 (h->heartbeat_sample_interval), now))
8482                 return false;
8483
8484         /* If heartbeat has not changed since we last looked, we're not ok. */
8485         spin_lock_irqsave(&h->lock, flags);
8486         heartbeat = readl(&h->cfgtable->HeartBeat);
8487         spin_unlock_irqrestore(&h->lock, flags);
8488         if (h->last_heartbeat == heartbeat) {
8489                 controller_lockup_detected(h);
8490                 return true;
8491         }
8492
8493         /* We're ok. */
8494         h->last_heartbeat = heartbeat;
8495         h->last_heartbeat_timestamp = now;
8496         return false;
8497 }
8498
8499 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8500 {
8501         int i;
8502         char *event_type;
8503
8504         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8505                 return;
8506
8507         /* Ask the controller to clear the events we're handling. */
8508         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8509                         | CFGTBL_Trans_io_accel2)) &&
8510                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8511                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8512
8513                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8514                         event_type = "state change";
8515                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8516                         event_type = "configuration change";
8517                 /* Stop sending new RAID offload reqs via the IO accelerator */
8518                 scsi_block_requests(h->scsi_host);
8519                 for (i = 0; i < h->ndevices; i++) {
8520                         h->dev[i]->offload_enabled = 0;
8521                         h->dev[i]->offload_to_be_enabled = 0;
8522                 }
8523                 hpsa_drain_accel_commands(h);
8524                 /* Set 'accelerator path config change' bit */
8525                 dev_warn(&h->pdev->dev,
8526                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8527                         h->events, event_type);
8528                 writel(h->events, &(h->cfgtable->clear_event_notify));
8529                 /* Set the "clear event notify field update" bit 6 */
8530                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8531                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8532                 hpsa_wait_for_clear_event_notify_ack(h);
8533                 scsi_unblock_requests(h->scsi_host);
8534         } else {
8535                 /* Acknowledge controller notification events. */
8536                 writel(h->events, &(h->cfgtable->clear_event_notify));
8537                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8538                 hpsa_wait_for_clear_event_notify_ack(h);
8539 #if 0
8540                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8541                 hpsa_wait_for_mode_change_ack(h);
8542 #endif
8543         }
8544         return;
8545 }
8546
8547 /* Check a register on the controller to see if there are configuration
8548  * changes (added/changed/removed logical drives, etc.) which mean that
8549  * we should rescan the controller for devices.
8550  * Also check flag for driver-initiated rescan.
8551  */
8552 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8553 {
8554         if (h->drv_req_rescan) {
8555                 h->drv_req_rescan = 0;
8556                 return 1;
8557         }
8558
8559         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8560                 return 0;
8561
8562         h->events = readl(&(h->cfgtable->event_notify));
8563         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8564 }
8565
8566 /*
8567  * Check if any of the offline devices have become ready
8568  */
8569 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8570 {
8571         unsigned long flags;
8572         struct offline_device_entry *d;
8573         struct list_head *this, *tmp;
8574
8575         spin_lock_irqsave(&h->offline_device_lock, flags);
8576         list_for_each_safe(this, tmp, &h->offline_device_list) {
8577                 d = list_entry(this, struct offline_device_entry,
8578                                 offline_list);
8579                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8580                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8581                         spin_lock_irqsave(&h->offline_device_lock, flags);
8582                         list_del(&d->offline_list);
8583                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8584                         return 1;
8585                 }
8586                 spin_lock_irqsave(&h->offline_device_lock, flags);
8587         }
8588         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8589         return 0;
8590 }
8591
8592 static int hpsa_luns_changed(struct ctlr_info *h)
8593 {
8594         int rc = 1; /* assume there are changes */
8595         struct ReportLUNdata *logdev = NULL;
8596
8597         /* if we can't find out if lun data has changed,
8598          * assume that it has.
8599          */
8600
8601         if (!h->lastlogicals)
8602                 return rc;
8603
8604         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8605         if (!logdev)
8606                 return rc;
8607
8608         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8609                 dev_warn(&h->pdev->dev,
8610                         "report luns failed, can't track lun changes.\n");
8611                 goto out;
8612         }
8613         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8614                 dev_info(&h->pdev->dev,
8615                         "Lun changes detected.\n");
8616                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8617                 goto out;
8618         } else
8619                 rc = 0; /* no changes detected. */
8620 out:
8621         kfree(logdev);
8622         return rc;
8623 }
8624
8625 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8626 {
8627         unsigned long flags;
8628         struct ctlr_info *h = container_of(to_delayed_work(work),
8629                                         struct ctlr_info, rescan_ctlr_work);
8630
8631
8632         if (h->remove_in_progress)
8633                 return;
8634
8635         /*
8636          * Do the scan after the reset
8637          */
8638         if (h->reset_in_progress) {
8639                 h->drv_req_rescan = 1;
8640                 return;
8641         }
8642
8643         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8644                 scsi_host_get(h->scsi_host);
8645                 hpsa_ack_ctlr_events(h);
8646                 hpsa_scan_start(h->scsi_host);
8647                 scsi_host_put(h->scsi_host);
8648         } else if (h->discovery_polling) {
8649                 hpsa_disable_rld_caching(h);
8650                 if (hpsa_luns_changed(h)) {
8651                         struct Scsi_Host *sh = NULL;
8652
8653                         dev_info(&h->pdev->dev,
8654                                 "driver discovery polling rescan.\n");
8655                         sh = scsi_host_get(h->scsi_host);
8656                         if (sh != NULL) {
8657                                 hpsa_scan_start(sh);
8658                                 scsi_host_put(sh);
8659                         }
8660                 }
8661         }
8662         spin_lock_irqsave(&h->lock, flags);
8663         if (!h->remove_in_progress)
8664                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8665                                 h->heartbeat_sample_interval);
8666         spin_unlock_irqrestore(&h->lock, flags);
8667 }
8668
8669 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8670 {
8671         unsigned long flags;
8672         struct ctlr_info *h = container_of(to_delayed_work(work),
8673                                         struct ctlr_info, monitor_ctlr_work);
8674
8675         detect_controller_lockup(h);
8676         if (lockup_detected(h))
8677                 return;
8678
8679         spin_lock_irqsave(&h->lock, flags);
8680         if (!h->remove_in_progress)
8681                 schedule_delayed_work(&h->monitor_ctlr_work,
8682                                 h->heartbeat_sample_interval);
8683         spin_unlock_irqrestore(&h->lock, flags);
8684 }
8685
8686 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8687                                                 char *name)
8688 {
8689         struct workqueue_struct *wq = NULL;
8690
8691         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8692         if (!wq)
8693                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8694
8695         return wq;
8696 }
8697
8698 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8699 {
8700         int dac, rc;
8701         struct ctlr_info *h;
8702         int try_soft_reset = 0;
8703         unsigned long flags;
8704         u32 board_id;
8705
8706         if (number_of_controllers == 0)
8707                 printk(KERN_INFO DRIVER_NAME "\n");
8708
8709         rc = hpsa_lookup_board_id(pdev, &board_id);
8710         if (rc < 0) {
8711                 dev_warn(&pdev->dev, "Board ID not found\n");
8712                 return rc;
8713         }
8714
8715         rc = hpsa_init_reset_devices(pdev, board_id);
8716         if (rc) {
8717                 if (rc != -ENOTSUPP)
8718                         return rc;
8719                 /* If the reset fails in a particular way (it has no way to do
8720                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8721                  * a soft reset once we get the controller configured up to the
8722                  * point that it can accept a command.
8723                  */
8724                 try_soft_reset = 1;
8725                 rc = 0;
8726         }
8727
8728 reinit_after_soft_reset:
8729
8730         /* Command structures must be aligned on a 32-byte boundary because
8731          * the 5 lower bits of the address are used by the hardware. and by
8732          * the driver.  See comments in hpsa.h for more info.
8733          */
8734         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8735         h = kzalloc(sizeof(*h), GFP_KERNEL);
8736         if (!h) {
8737                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8738                 return -ENOMEM;
8739         }
8740
8741         h->pdev = pdev;
8742
8743         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8744         INIT_LIST_HEAD(&h->offline_device_list);
8745         spin_lock_init(&h->lock);
8746         spin_lock_init(&h->offline_device_lock);
8747         spin_lock_init(&h->scan_lock);
8748         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8749         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8750
8751         /* Allocate and clear per-cpu variable lockup_detected */
8752         h->lockup_detected = alloc_percpu(u32);
8753         if (!h->lockup_detected) {
8754                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8755                 rc = -ENOMEM;
8756                 goto clean1;    /* aer/h */
8757         }
8758         set_lockup_detected_for_all_cpus(h, 0);
8759
8760         rc = hpsa_pci_init(h);
8761         if (rc)
8762                 goto clean2;    /* lu, aer/h */
8763
8764         /* relies on h-> settings made by hpsa_pci_init, including
8765          * interrupt_mode h->intr */
8766         rc = hpsa_scsi_host_alloc(h);
8767         if (rc)
8768                 goto clean2_5;  /* pci, lu, aer/h */
8769
8770         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8771         h->ctlr = number_of_controllers;
8772         number_of_controllers++;
8773
8774         /* configure PCI DMA stuff */
8775         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8776         if (rc == 0) {
8777                 dac = 1;
8778         } else {
8779                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8780                 if (rc == 0) {
8781                         dac = 0;
8782                 } else {
8783                         dev_err(&pdev->dev, "no suitable DMA available\n");
8784                         goto clean3;    /* shost, pci, lu, aer/h */
8785                 }
8786         }
8787
8788         /* make sure the board interrupts are off */
8789         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8790
8791         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8792         if (rc)
8793                 goto clean3;    /* shost, pci, lu, aer/h */
8794         rc = hpsa_alloc_cmd_pool(h);
8795         if (rc)
8796                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8797         rc = hpsa_alloc_sg_chain_blocks(h);
8798         if (rc)
8799                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8800         init_waitqueue_head(&h->scan_wait_queue);
8801         init_waitqueue_head(&h->abort_cmd_wait_queue);
8802         init_waitqueue_head(&h->event_sync_wait_queue);
8803         mutex_init(&h->reset_mutex);
8804         h->scan_finished = 1; /* no scan currently in progress */
8805         h->scan_waiting = 0;
8806
8807         pci_set_drvdata(pdev, h);
8808         h->ndevices = 0;
8809
8810         spin_lock_init(&h->devlock);
8811         rc = hpsa_put_ctlr_into_performant_mode(h);
8812         if (rc)
8813                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8814
8815         /* create the resubmit workqueue */
8816         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8817         if (!h->rescan_ctlr_wq) {
8818                 rc = -ENOMEM;
8819                 goto clean7;
8820         }
8821
8822         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8823         if (!h->resubmit_wq) {
8824                 rc = -ENOMEM;
8825                 goto clean7;    /* aer/h */
8826         }
8827
8828         /*
8829          * At this point, the controller is ready to take commands.
8830          * Now, if reset_devices and the hard reset didn't work, try
8831          * the soft reset and see if that works.
8832          */
8833         if (try_soft_reset) {
8834
8835                 /* This is kind of gross.  We may or may not get a completion
8836                  * from the soft reset command, and if we do, then the value
8837                  * from the fifo may or may not be valid.  So, we wait 10 secs
8838                  * after the reset throwing away any completions we get during
8839                  * that time.  Unregister the interrupt handler and register
8840                  * fake ones to scoop up any residual completions.
8841                  */
8842                 spin_lock_irqsave(&h->lock, flags);
8843                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8844                 spin_unlock_irqrestore(&h->lock, flags);
8845                 hpsa_free_irqs(h);
8846                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8847                                         hpsa_intx_discard_completions);
8848                 if (rc) {
8849                         dev_warn(&h->pdev->dev,
8850                                 "Failed to request_irq after soft reset.\n");
8851                         /*
8852                          * cannot goto clean7 or free_irqs will be called
8853                          * again. Instead, do its work
8854                          */
8855                         hpsa_free_performant_mode(h);   /* clean7 */
8856                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8857                         hpsa_free_cmd_pool(h);          /* clean5 */
8858                         /*
8859                          * skip hpsa_free_irqs(h) clean4 since that
8860                          * was just called before request_irqs failed
8861                          */
8862                         goto clean3;
8863                 }
8864
8865                 rc = hpsa_kdump_soft_reset(h);
8866                 if (rc)
8867                         /* Neither hard nor soft reset worked, we're hosed. */
8868                         goto clean7;
8869
8870                 dev_info(&h->pdev->dev, "Board READY.\n");
8871                 dev_info(&h->pdev->dev,
8872                         "Waiting for stale completions to drain.\n");
8873                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8874                 msleep(10000);
8875                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8876
8877                 rc = controller_reset_failed(h->cfgtable);
8878                 if (rc)
8879                         dev_info(&h->pdev->dev,
8880                                 "Soft reset appears to have failed.\n");
8881
8882                 /* since the controller's reset, we have to go back and re-init
8883                  * everything.  Easiest to just forget what we've done and do it
8884                  * all over again.
8885                  */
8886                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8887                 try_soft_reset = 0;
8888                 if (rc)
8889                         /* don't goto clean, we already unallocated */
8890                         return -ENODEV;
8891
8892                 goto reinit_after_soft_reset;
8893         }
8894
8895         /* Enable Accelerated IO path at driver layer */
8896         h->acciopath_status = 1;
8897         /* Disable discovery polling.*/
8898         h->discovery_polling = 0;
8899
8900
8901         /* Turn the interrupts on so we can service requests */
8902         h->access.set_intr_mask(h, HPSA_INTR_ON);
8903
8904         hpsa_hba_inquiry(h);
8905
8906         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8907         if (!h->lastlogicals)
8908                 dev_info(&h->pdev->dev,
8909                         "Can't track change to report lun data\n");
8910
8911         /* hook into SCSI subsystem */
8912         rc = hpsa_scsi_add_host(h);
8913         if (rc)
8914                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8915
8916         /* Monitor the controller for firmware lockups */
8917         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8918         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8919         schedule_delayed_work(&h->monitor_ctlr_work,
8920                                 h->heartbeat_sample_interval);
8921         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8922         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8923                                 h->heartbeat_sample_interval);
8924         return 0;
8925
8926 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8927         hpsa_free_performant_mode(h);
8928         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8929 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8930         hpsa_free_sg_chain_blocks(h);
8931 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8932         hpsa_free_cmd_pool(h);
8933 clean4: /* irq, shost, pci, lu, aer/h */
8934         hpsa_free_irqs(h);
8935 clean3: /* shost, pci, lu, aer/h */
8936         scsi_host_put(h->scsi_host);
8937         h->scsi_host = NULL;
8938 clean2_5: /* pci, lu, aer/h */
8939         hpsa_free_pci_init(h);
8940 clean2: /* lu, aer/h */
8941         if (h->lockup_detected) {
8942                 free_percpu(h->lockup_detected);
8943                 h->lockup_detected = NULL;
8944         }
8945 clean1: /* wq/aer/h */
8946         if (h->resubmit_wq) {
8947                 destroy_workqueue(h->resubmit_wq);
8948                 h->resubmit_wq = NULL;
8949         }
8950         if (h->rescan_ctlr_wq) {
8951                 destroy_workqueue(h->rescan_ctlr_wq);
8952                 h->rescan_ctlr_wq = NULL;
8953         }
8954         kfree(h);
8955         return rc;
8956 }
8957
8958 static void hpsa_flush_cache(struct ctlr_info *h)
8959 {
8960         char *flush_buf;
8961         struct CommandList *c;
8962         int rc;
8963
8964         if (unlikely(lockup_detected(h)))
8965                 return;
8966         flush_buf = kzalloc(4, GFP_KERNEL);
8967         if (!flush_buf)
8968                 return;
8969
8970         c = cmd_alloc(h);
8971
8972         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8973                 RAID_CTLR_LUNID, TYPE_CMD)) {
8974                 goto out;
8975         }
8976         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8977                                         PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8978         if (rc)
8979                 goto out;
8980         if (c->err_info->CommandStatus != 0)
8981 out:
8982                 dev_warn(&h->pdev->dev,
8983                         "error flushing cache on controller\n");
8984         cmd_free(h, c);
8985         kfree(flush_buf);
8986 }
8987
8988 /* Make controller gather fresh report lun data each time we
8989  * send down a report luns request
8990  */
8991 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8992 {
8993         u32 *options;
8994         struct CommandList *c;
8995         int rc;
8996
8997         /* Don't bother trying to set diag options if locked up */
8998         if (unlikely(h->lockup_detected))
8999                 return;
9000
9001         options = kzalloc(sizeof(*options), GFP_KERNEL);
9002         if (!options)
9003                 return;
9004
9005         c = cmd_alloc(h);
9006
9007         /* first, get the current diag options settings */
9008         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9009                 RAID_CTLR_LUNID, TYPE_CMD))
9010                 goto errout;
9011
9012         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9013                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9014         if ((rc != 0) || (c->err_info->CommandStatus != 0))
9015                 goto errout;
9016
9017         /* Now, set the bit for disabling the RLD caching */
9018         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
9019
9020         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
9021                 RAID_CTLR_LUNID, TYPE_CMD))
9022                 goto errout;
9023
9024         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9025                 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
9026         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9027                 goto errout;
9028
9029         /* Now verify that it got set: */
9030         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9031                 RAID_CTLR_LUNID, TYPE_CMD))
9032                 goto errout;
9033
9034         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9035                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9036         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9037                 goto errout;
9038
9039         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9040                 goto out;
9041
9042 errout:
9043         dev_err(&h->pdev->dev,
9044                         "Error: failed to disable report lun data caching.\n");
9045 out:
9046         cmd_free(h, c);
9047         kfree(options);
9048 }
9049
9050 static void hpsa_shutdown(struct pci_dev *pdev)
9051 {
9052         struct ctlr_info *h;
9053
9054         h = pci_get_drvdata(pdev);
9055         /* Turn board interrupts off  and send the flush cache command
9056          * sendcmd will turn off interrupt, and send the flush...
9057          * To write all data in the battery backed cache to disks
9058          */
9059         hpsa_flush_cache(h);
9060         h->access.set_intr_mask(h, HPSA_INTR_OFF);
9061         hpsa_free_irqs(h);                      /* init_one 4 */
9062         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
9063 }
9064
9065 static void hpsa_free_device_info(struct ctlr_info *h)
9066 {
9067         int i;
9068
9069         for (i = 0; i < h->ndevices; i++) {
9070                 kfree(h->dev[i]);
9071                 h->dev[i] = NULL;
9072         }
9073 }
9074
9075 static void hpsa_remove_one(struct pci_dev *pdev)
9076 {
9077         struct ctlr_info *h;
9078         unsigned long flags;
9079
9080         if (pci_get_drvdata(pdev) == NULL) {
9081                 dev_err(&pdev->dev, "unable to remove device\n");
9082                 return;
9083         }
9084         h = pci_get_drvdata(pdev);
9085
9086         /* Get rid of any controller monitoring work items */
9087         spin_lock_irqsave(&h->lock, flags);
9088         h->remove_in_progress = 1;
9089         spin_unlock_irqrestore(&h->lock, flags);
9090         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9091         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9092         destroy_workqueue(h->rescan_ctlr_wq);
9093         destroy_workqueue(h->resubmit_wq);
9094
9095         /*
9096          * Call before disabling interrupts.
9097          * scsi_remove_host can trigger I/O operations especially
9098          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9099          * operations which cannot complete and will hang the system.
9100          */
9101         if (h->scsi_host)
9102                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9103         /* includes hpsa_free_irqs - init_one 4 */
9104         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9105         hpsa_shutdown(pdev);
9106
9107         hpsa_free_device_info(h);               /* scan */
9108
9109         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9110         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9111         hpsa_free_ioaccel2_sg_chain_blocks(h);
9112         hpsa_free_performant_mode(h);                   /* init_one 7 */
9113         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9114         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9115         kfree(h->lastlogicals);
9116
9117         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9118
9119         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9120         h->scsi_host = NULL;                            /* init_one 3 */
9121
9122         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9123         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9124
9125         free_percpu(h->lockup_detected);                /* init_one 2 */
9126         h->lockup_detected = NULL;                      /* init_one 2 */
9127         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9128
9129         hpsa_delete_sas_host(h);
9130
9131         kfree(h);                                       /* init_one 1 */
9132 }
9133
9134 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9135         __attribute__((unused)) pm_message_t state)
9136 {
9137         return -ENOSYS;
9138 }
9139
9140 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9141 {
9142         return -ENOSYS;
9143 }
9144
9145 static struct pci_driver hpsa_pci_driver = {
9146         .name = HPSA,
9147         .probe = hpsa_init_one,
9148         .remove = hpsa_remove_one,
9149         .id_table = hpsa_pci_device_id, /* id_table */
9150         .shutdown = hpsa_shutdown,
9151         .suspend = hpsa_suspend,
9152         .resume = hpsa_resume,
9153 };
9154
9155 /* Fill in bucket_map[], given nsgs (the max number of
9156  * scatter gather elements supported) and bucket[],
9157  * which is an array of 8 integers.  The bucket[] array
9158  * contains 8 different DMA transfer sizes (in 16
9159  * byte increments) which the controller uses to fetch
9160  * commands.  This function fills in bucket_map[], which
9161  * maps a given number of scatter gather elements to one of
9162  * the 8 DMA transfer sizes.  The point of it is to allow the
9163  * controller to only do as much DMA as needed to fetch the
9164  * command, with the DMA transfer size encoded in the lower
9165  * bits of the command address.
9166  */
9167 static void  calc_bucket_map(int bucket[], int num_buckets,
9168         int nsgs, int min_blocks, u32 *bucket_map)
9169 {
9170         int i, j, b, size;
9171
9172         /* Note, bucket_map must have nsgs+1 entries. */
9173         for (i = 0; i <= nsgs; i++) {
9174                 /* Compute size of a command with i SG entries */
9175                 size = i + min_blocks;
9176                 b = num_buckets; /* Assume the biggest bucket */
9177                 /* Find the bucket that is just big enough */
9178                 for (j = 0; j < num_buckets; j++) {
9179                         if (bucket[j] >= size) {
9180                                 b = j;
9181                                 break;
9182                         }
9183                 }
9184                 /* for a command with i SG entries, use bucket b. */
9185                 bucket_map[i] = b;
9186         }
9187 }
9188
9189 /*
9190  * return -ENODEV on err, 0 on success (or no action)
9191  * allocates numerous items that must be freed later
9192  */
9193 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9194 {
9195         int i;
9196         unsigned long register_value;
9197         unsigned long transMethod = CFGTBL_Trans_Performant |
9198                         (trans_support & CFGTBL_Trans_use_short_tags) |
9199                                 CFGTBL_Trans_enable_directed_msix |
9200                         (trans_support & (CFGTBL_Trans_io_accel1 |
9201                                 CFGTBL_Trans_io_accel2));
9202         struct access_method access = SA5_performant_access;
9203
9204         /* This is a bit complicated.  There are 8 registers on
9205          * the controller which we write to to tell it 8 different
9206          * sizes of commands which there may be.  It's a way of
9207          * reducing the DMA done to fetch each command.  Encoded into
9208          * each command's tag are 3 bits which communicate to the controller
9209          * which of the eight sizes that command fits within.  The size of
9210          * each command depends on how many scatter gather entries there are.
9211          * Each SG entry requires 16 bytes.  The eight registers are programmed
9212          * with the number of 16-byte blocks a command of that size requires.
9213          * The smallest command possible requires 5 such 16 byte blocks.
9214          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9215          * blocks.  Note, this only extends to the SG entries contained
9216          * within the command block, and does not extend to chained blocks
9217          * of SG elements.   bft[] contains the eight values we write to
9218          * the registers.  They are not evenly distributed, but have more
9219          * sizes for small commands, and fewer sizes for larger commands.
9220          */
9221         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9222 #define MIN_IOACCEL2_BFT_ENTRY 5
9223 #define HPSA_IOACCEL2_HEADER_SZ 4
9224         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9225                         13, 14, 15, 16, 17, 18, 19,
9226                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9227         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9228         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9229         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9230                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9231         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9232         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9233         /*  5 = 1 s/g entry or 4k
9234          *  6 = 2 s/g entry or 8k
9235          *  8 = 4 s/g entry or 16k
9236          * 10 = 6 s/g entry or 24k
9237          */
9238
9239         /* If the controller supports either ioaccel method then
9240          * we can also use the RAID stack submit path that does not
9241          * perform the superfluous readl() after each command submission.
9242          */
9243         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9244                 access = SA5_performant_access_no_read;
9245
9246         /* Controller spec: zero out this buffer. */
9247         for (i = 0; i < h->nreply_queues; i++)
9248                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9249
9250         bft[7] = SG_ENTRIES_IN_CMD + 4;
9251         calc_bucket_map(bft, ARRAY_SIZE(bft),
9252                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9253         for (i = 0; i < 8; i++)
9254                 writel(bft[i], &h->transtable->BlockFetch[i]);
9255
9256         /* size of controller ring buffer */
9257         writel(h->max_commands, &h->transtable->RepQSize);
9258         writel(h->nreply_queues, &h->transtable->RepQCount);
9259         writel(0, &h->transtable->RepQCtrAddrLow32);
9260         writel(0, &h->transtable->RepQCtrAddrHigh32);
9261
9262         for (i = 0; i < h->nreply_queues; i++) {
9263                 writel(0, &h->transtable->RepQAddr[i].upper);
9264                 writel(h->reply_queue[i].busaddr,
9265                         &h->transtable->RepQAddr[i].lower);
9266         }
9267
9268         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9269         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9270         /*
9271          * enable outbound interrupt coalescing in accelerator mode;
9272          */
9273         if (trans_support & CFGTBL_Trans_io_accel1) {
9274                 access = SA5_ioaccel_mode1_access;
9275                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9276                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9277         } else
9278                 if (trans_support & CFGTBL_Trans_io_accel2)
9279                         access = SA5_ioaccel_mode2_access;
9280         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9281         if (hpsa_wait_for_mode_change_ack(h)) {
9282                 dev_err(&h->pdev->dev,
9283                         "performant mode problem - doorbell timeout\n");
9284                 return -ENODEV;
9285         }
9286         register_value = readl(&(h->cfgtable->TransportActive));
9287         if (!(register_value & CFGTBL_Trans_Performant)) {
9288                 dev_err(&h->pdev->dev,
9289                         "performant mode problem - transport not active\n");
9290                 return -ENODEV;
9291         }
9292         /* Change the access methods to the performant access methods */
9293         h->access = access;
9294         h->transMethod = transMethod;
9295
9296         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9297                 (trans_support & CFGTBL_Trans_io_accel2)))
9298                 return 0;
9299
9300         if (trans_support & CFGTBL_Trans_io_accel1) {
9301                 /* Set up I/O accelerator mode */
9302                 for (i = 0; i < h->nreply_queues; i++) {
9303                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9304                         h->reply_queue[i].current_entry =
9305                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9306                 }
9307                 bft[7] = h->ioaccel_maxsg + 8;
9308                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9309                                 h->ioaccel1_blockFetchTable);
9310
9311                 /* initialize all reply queue entries to unused */
9312                 for (i = 0; i < h->nreply_queues; i++)
9313                         memset(h->reply_queue[i].head,
9314                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9315                                 h->reply_queue_size);
9316
9317                 /* set all the constant fields in the accelerator command
9318                  * frames once at init time to save CPU cycles later.
9319                  */
9320                 for (i = 0; i < h->nr_cmds; i++) {
9321                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9322
9323                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9324                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9325                                         (i * sizeof(struct ErrorInfo)));
9326                         cp->err_info_len = sizeof(struct ErrorInfo);
9327                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9328                         cp->host_context_flags =
9329                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9330                         cp->timeout_sec = 0;
9331                         cp->ReplyQueue = 0;
9332                         cp->tag =
9333                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9334                         cp->host_addr =
9335                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9336                                         (i * sizeof(struct io_accel1_cmd)));
9337                 }
9338         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9339                 u64 cfg_offset, cfg_base_addr_index;
9340                 u32 bft2_offset, cfg_base_addr;
9341                 int rc;
9342
9343                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9344                         &cfg_base_addr_index, &cfg_offset);
9345                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9346                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9347                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9348                                 4, h->ioaccel2_blockFetchTable);
9349                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9350                 BUILD_BUG_ON(offsetof(struct CfgTable,
9351                                 io_accel_request_size_offset) != 0xb8);
9352                 h->ioaccel2_bft2_regs =
9353                         remap_pci_mem(pci_resource_start(h->pdev,
9354                                         cfg_base_addr_index) +
9355                                         cfg_offset + bft2_offset,
9356                                         ARRAY_SIZE(bft2) *
9357                                         sizeof(*h->ioaccel2_bft2_regs));
9358                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9359                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9360         }
9361         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9362         if (hpsa_wait_for_mode_change_ack(h)) {
9363                 dev_err(&h->pdev->dev,
9364                         "performant mode problem - enabling ioaccel mode\n");
9365                 return -ENODEV;
9366         }
9367         return 0;
9368 }
9369
9370 /* Free ioaccel1 mode command blocks and block fetch table */
9371 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9372 {
9373         if (h->ioaccel_cmd_pool) {
9374                 pci_free_consistent(h->pdev,
9375                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9376                         h->ioaccel_cmd_pool,
9377                         h->ioaccel_cmd_pool_dhandle);
9378                 h->ioaccel_cmd_pool = NULL;
9379                 h->ioaccel_cmd_pool_dhandle = 0;
9380         }
9381         kfree(h->ioaccel1_blockFetchTable);
9382         h->ioaccel1_blockFetchTable = NULL;
9383 }
9384
9385 /* Allocate ioaccel1 mode command blocks and block fetch table */
9386 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9387 {
9388         h->ioaccel_maxsg =
9389                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9390         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9391                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9392
9393         /* Command structures must be aligned on a 128-byte boundary
9394          * because the 7 lower bits of the address are used by the
9395          * hardware.
9396          */
9397         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9398                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9399         h->ioaccel_cmd_pool =
9400                 pci_alloc_consistent(h->pdev,
9401                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9402                         &(h->ioaccel_cmd_pool_dhandle));
9403
9404         h->ioaccel1_blockFetchTable =
9405                 kmalloc(((h->ioaccel_maxsg + 1) *
9406                                 sizeof(u32)), GFP_KERNEL);
9407
9408         if ((h->ioaccel_cmd_pool == NULL) ||
9409                 (h->ioaccel1_blockFetchTable == NULL))
9410                 goto clean_up;
9411
9412         memset(h->ioaccel_cmd_pool, 0,
9413                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9414         return 0;
9415
9416 clean_up:
9417         hpsa_free_ioaccel1_cmd_and_bft(h);
9418         return -ENOMEM;
9419 }
9420
9421 /* Free ioaccel2 mode command blocks and block fetch table */
9422 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9423 {
9424         hpsa_free_ioaccel2_sg_chain_blocks(h);
9425
9426         if (h->ioaccel2_cmd_pool) {
9427                 pci_free_consistent(h->pdev,
9428                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9429                         h->ioaccel2_cmd_pool,
9430                         h->ioaccel2_cmd_pool_dhandle);
9431                 h->ioaccel2_cmd_pool = NULL;
9432                 h->ioaccel2_cmd_pool_dhandle = 0;
9433         }
9434         kfree(h->ioaccel2_blockFetchTable);
9435         h->ioaccel2_blockFetchTable = NULL;
9436 }
9437
9438 /* Allocate ioaccel2 mode command blocks and block fetch table */
9439 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9440 {
9441         int rc;
9442
9443         /* Allocate ioaccel2 mode command blocks and block fetch table */
9444
9445         h->ioaccel_maxsg =
9446                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9447         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9448                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9449
9450         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9451                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9452         h->ioaccel2_cmd_pool =
9453                 pci_alloc_consistent(h->pdev,
9454                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9455                         &(h->ioaccel2_cmd_pool_dhandle));
9456
9457         h->ioaccel2_blockFetchTable =
9458                 kmalloc(((h->ioaccel_maxsg + 1) *
9459                                 sizeof(u32)), GFP_KERNEL);
9460
9461         if ((h->ioaccel2_cmd_pool == NULL) ||
9462                 (h->ioaccel2_blockFetchTable == NULL)) {
9463                 rc = -ENOMEM;
9464                 goto clean_up;
9465         }
9466
9467         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9468         if (rc)
9469                 goto clean_up;
9470
9471         memset(h->ioaccel2_cmd_pool, 0,
9472                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9473         return 0;
9474
9475 clean_up:
9476         hpsa_free_ioaccel2_cmd_and_bft(h);
9477         return rc;
9478 }
9479
9480 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9481 static void hpsa_free_performant_mode(struct ctlr_info *h)
9482 {
9483         kfree(h->blockFetchTable);
9484         h->blockFetchTable = NULL;
9485         hpsa_free_reply_queues(h);
9486         hpsa_free_ioaccel1_cmd_and_bft(h);
9487         hpsa_free_ioaccel2_cmd_and_bft(h);
9488 }
9489
9490 /* return -ENODEV on error, 0 on success (or no action)
9491  * allocates numerous items that must be freed later
9492  */
9493 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9494 {
9495         u32 trans_support;
9496         unsigned long transMethod = CFGTBL_Trans_Performant |
9497                                         CFGTBL_Trans_use_short_tags;
9498         int i, rc;
9499
9500         if (hpsa_simple_mode)
9501                 return 0;
9502
9503         trans_support = readl(&(h->cfgtable->TransportSupport));
9504         if (!(trans_support & PERFORMANT_MODE))
9505                 return 0;
9506
9507         /* Check for I/O accelerator mode support */
9508         if (trans_support & CFGTBL_Trans_io_accel1) {
9509                 transMethod |= CFGTBL_Trans_io_accel1 |
9510                                 CFGTBL_Trans_enable_directed_msix;
9511                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9512                 if (rc)
9513                         return rc;
9514         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9515                 transMethod |= CFGTBL_Trans_io_accel2 |
9516                                 CFGTBL_Trans_enable_directed_msix;
9517                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9518                 if (rc)
9519                         return rc;
9520         }
9521
9522         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9523         hpsa_get_max_perf_mode_cmds(h);
9524         /* Performant mode ring buffer and supporting data structures */
9525         h->reply_queue_size = h->max_commands * sizeof(u64);
9526
9527         for (i = 0; i < h->nreply_queues; i++) {
9528                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9529                                                 h->reply_queue_size,
9530                                                 &(h->reply_queue[i].busaddr));
9531                 if (!h->reply_queue[i].head) {
9532                         rc = -ENOMEM;
9533                         goto clean1;    /* rq, ioaccel */
9534                 }
9535                 h->reply_queue[i].size = h->max_commands;
9536                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9537                 h->reply_queue[i].current_entry = 0;
9538         }
9539
9540         /* Need a block fetch table for performant mode */
9541         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9542                                 sizeof(u32)), GFP_KERNEL);
9543         if (!h->blockFetchTable) {
9544                 rc = -ENOMEM;
9545                 goto clean1;    /* rq, ioaccel */
9546         }
9547
9548         rc = hpsa_enter_performant_mode(h, trans_support);
9549         if (rc)
9550                 goto clean2;    /* bft, rq, ioaccel */
9551         return 0;
9552
9553 clean2: /* bft, rq, ioaccel */
9554         kfree(h->blockFetchTable);
9555         h->blockFetchTable = NULL;
9556 clean1: /* rq, ioaccel */
9557         hpsa_free_reply_queues(h);
9558         hpsa_free_ioaccel1_cmd_and_bft(h);
9559         hpsa_free_ioaccel2_cmd_and_bft(h);
9560         return rc;
9561 }
9562
9563 static int is_accelerated_cmd(struct CommandList *c)
9564 {
9565         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9566 }
9567
9568 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9569 {
9570         struct CommandList *c = NULL;
9571         int i, accel_cmds_out;
9572         int refcount;
9573
9574         do { /* wait for all outstanding ioaccel commands to drain out */
9575                 accel_cmds_out = 0;
9576                 for (i = 0; i < h->nr_cmds; i++) {
9577                         c = h->cmd_pool + i;
9578                         refcount = atomic_inc_return(&c->refcount);
9579                         if (refcount > 1) /* Command is allocated */
9580                                 accel_cmds_out += is_accelerated_cmd(c);
9581                         cmd_free(h, c);
9582                 }
9583                 if (accel_cmds_out <= 0)
9584                         break;
9585                 msleep(100);
9586         } while (1);
9587 }
9588
9589 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9590                                 struct hpsa_sas_port *hpsa_sas_port)
9591 {
9592         struct hpsa_sas_phy *hpsa_sas_phy;
9593         struct sas_phy *phy;
9594
9595         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9596         if (!hpsa_sas_phy)
9597                 return NULL;
9598
9599         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9600                 hpsa_sas_port->next_phy_index);
9601         if (!phy) {
9602                 kfree(hpsa_sas_phy);
9603                 return NULL;
9604         }
9605
9606         hpsa_sas_port->next_phy_index++;
9607         hpsa_sas_phy->phy = phy;
9608         hpsa_sas_phy->parent_port = hpsa_sas_port;
9609
9610         return hpsa_sas_phy;
9611 }
9612
9613 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9614 {
9615         struct sas_phy *phy = hpsa_sas_phy->phy;
9616
9617         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9618         sas_phy_free(phy);
9619         if (hpsa_sas_phy->added_to_port)
9620                 list_del(&hpsa_sas_phy->phy_list_entry);
9621         kfree(hpsa_sas_phy);
9622 }
9623
9624 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9625 {
9626         int rc;
9627         struct hpsa_sas_port *hpsa_sas_port;
9628         struct sas_phy *phy;
9629         struct sas_identify *identify;
9630
9631         hpsa_sas_port = hpsa_sas_phy->parent_port;
9632         phy = hpsa_sas_phy->phy;
9633
9634         identify = &phy->identify;
9635         memset(identify, 0, sizeof(*identify));
9636         identify->sas_address = hpsa_sas_port->sas_address;
9637         identify->device_type = SAS_END_DEVICE;
9638         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9639         identify->target_port_protocols = SAS_PROTOCOL_STP;
9640         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9641         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9642         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9643         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9644         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9645
9646         rc = sas_phy_add(hpsa_sas_phy->phy);
9647         if (rc)
9648                 return rc;
9649
9650         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9651         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9652                         &hpsa_sas_port->phy_list_head);
9653         hpsa_sas_phy->added_to_port = true;
9654
9655         return 0;
9656 }
9657
9658 static int
9659         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9660                                 struct sas_rphy *rphy)
9661 {
9662         struct sas_identify *identify;
9663
9664         identify = &rphy->identify;
9665         identify->sas_address = hpsa_sas_port->sas_address;
9666         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9667         identify->target_port_protocols = SAS_PROTOCOL_STP;
9668
9669         return sas_rphy_add(rphy);
9670 }
9671
9672 static struct hpsa_sas_port
9673         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9674                                 u64 sas_address)
9675 {
9676         int rc;
9677         struct hpsa_sas_port *hpsa_sas_port;
9678         struct sas_port *port;
9679
9680         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9681         if (!hpsa_sas_port)
9682                 return NULL;
9683
9684         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9685         hpsa_sas_port->parent_node = hpsa_sas_node;
9686
9687         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9688         if (!port)
9689                 goto free_hpsa_port;
9690
9691         rc = sas_port_add(port);
9692         if (rc)
9693                 goto free_sas_port;
9694
9695         hpsa_sas_port->port = port;
9696         hpsa_sas_port->sas_address = sas_address;
9697         list_add_tail(&hpsa_sas_port->port_list_entry,
9698                         &hpsa_sas_node->port_list_head);
9699
9700         return hpsa_sas_port;
9701
9702 free_sas_port:
9703         sas_port_free(port);
9704 free_hpsa_port:
9705         kfree(hpsa_sas_port);
9706
9707         return NULL;
9708 }
9709
9710 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9711 {
9712         struct hpsa_sas_phy *hpsa_sas_phy;
9713         struct hpsa_sas_phy *next;
9714
9715         list_for_each_entry_safe(hpsa_sas_phy, next,
9716                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9717                 hpsa_free_sas_phy(hpsa_sas_phy);
9718
9719         sas_port_delete(hpsa_sas_port->port);
9720         list_del(&hpsa_sas_port->port_list_entry);
9721         kfree(hpsa_sas_port);
9722 }
9723
9724 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9725 {
9726         struct hpsa_sas_node *hpsa_sas_node;
9727
9728         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9729         if (hpsa_sas_node) {
9730                 hpsa_sas_node->parent_dev = parent_dev;
9731                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9732         }
9733
9734         return hpsa_sas_node;
9735 }
9736
9737 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9738 {
9739         struct hpsa_sas_port *hpsa_sas_port;
9740         struct hpsa_sas_port *next;
9741
9742         if (!hpsa_sas_node)
9743                 return;
9744
9745         list_for_each_entry_safe(hpsa_sas_port, next,
9746                         &hpsa_sas_node->port_list_head, port_list_entry)
9747                 hpsa_free_sas_port(hpsa_sas_port);
9748
9749         kfree(hpsa_sas_node);
9750 }
9751
9752 static struct hpsa_scsi_dev_t
9753         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9754                                         struct sas_rphy *rphy)
9755 {
9756         int i;
9757         struct hpsa_scsi_dev_t *device;
9758
9759         for (i = 0; i < h->ndevices; i++) {
9760                 device = h->dev[i];
9761                 if (!device->sas_port)
9762                         continue;
9763                 if (device->sas_port->rphy == rphy)
9764                         return device;
9765         }
9766
9767         return NULL;
9768 }
9769
9770 static int hpsa_add_sas_host(struct ctlr_info *h)
9771 {
9772         int rc;
9773         struct device *parent_dev;
9774         struct hpsa_sas_node *hpsa_sas_node;
9775         struct hpsa_sas_port *hpsa_sas_port;
9776         struct hpsa_sas_phy *hpsa_sas_phy;
9777
9778         parent_dev = &h->scsi_host->shost_gendev;
9779
9780         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9781         if (!hpsa_sas_node)
9782                 return -ENOMEM;
9783
9784         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9785         if (!hpsa_sas_port) {
9786                 rc = -ENODEV;
9787                 goto free_sas_node;
9788         }
9789
9790         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9791         if (!hpsa_sas_phy) {
9792                 rc = -ENODEV;
9793                 goto free_sas_port;
9794         }
9795
9796         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9797         if (rc)
9798                 goto free_sas_phy;
9799
9800         h->sas_host = hpsa_sas_node;
9801
9802         return 0;
9803
9804 free_sas_phy:
9805         hpsa_free_sas_phy(hpsa_sas_phy);
9806 free_sas_port:
9807         hpsa_free_sas_port(hpsa_sas_port);
9808 free_sas_node:
9809         hpsa_free_sas_node(hpsa_sas_node);
9810
9811         return rc;
9812 }
9813
9814 static void hpsa_delete_sas_host(struct ctlr_info *h)
9815 {
9816         hpsa_free_sas_node(h->sas_host);
9817 }
9818
9819 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9820                                 struct hpsa_scsi_dev_t *device)
9821 {
9822         int rc;
9823         struct hpsa_sas_port *hpsa_sas_port;
9824         struct sas_rphy *rphy;
9825
9826         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9827         if (!hpsa_sas_port)
9828                 return -ENOMEM;
9829
9830         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9831         if (!rphy) {
9832                 rc = -ENODEV;
9833                 goto free_sas_port;
9834         }
9835
9836         hpsa_sas_port->rphy = rphy;
9837         device->sas_port = hpsa_sas_port;
9838
9839         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9840         if (rc)
9841                 goto free_sas_port;
9842
9843         return 0;
9844
9845 free_sas_port:
9846         hpsa_free_sas_port(hpsa_sas_port);
9847         device->sas_port = NULL;
9848
9849         return rc;
9850 }
9851
9852 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9853 {
9854         if (device->sas_port) {
9855                 hpsa_free_sas_port(device->sas_port);
9856                 device->sas_port = NULL;
9857         }
9858 }
9859
9860 static int
9861 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9862 {
9863         return 0;
9864 }
9865
9866 static int
9867 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9868 {
9869         *identifier = 0;
9870         return 0;
9871 }
9872
9873 static int
9874 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9875 {
9876         return -ENXIO;
9877 }
9878
9879 static int
9880 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9881 {
9882         return 0;
9883 }
9884
9885 static int
9886 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9887 {
9888         return 0;
9889 }
9890
9891 static int
9892 hpsa_sas_phy_setup(struct sas_phy *phy)
9893 {
9894         return 0;
9895 }
9896
9897 static void
9898 hpsa_sas_phy_release(struct sas_phy *phy)
9899 {
9900 }
9901
9902 static int
9903 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9904 {
9905         return -EINVAL;
9906 }
9907
9908 /* SMP = Serial Management Protocol */
9909 static int
9910 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9911 struct request *req)
9912 {
9913         return -EINVAL;
9914 }
9915
9916 static struct sas_function_template hpsa_sas_transport_functions = {
9917         .get_linkerrors = hpsa_sas_get_linkerrors,
9918         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9919         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9920         .phy_reset = hpsa_sas_phy_reset,
9921         .phy_enable = hpsa_sas_phy_enable,
9922         .phy_setup = hpsa_sas_phy_setup,
9923         .phy_release = hpsa_sas_phy_release,
9924         .set_phy_speed = hpsa_sas_phy_speed,
9925         .smp_handler = hpsa_sas_smp_handler,
9926 };
9927
9928 /*
9929  *  This is it.  Register the PCI driver information for the cards we control
9930  *  the OS will call our registered routines when it finds one of our cards.
9931  */
9932 static int __init hpsa_init(void)
9933 {
9934         int rc;
9935
9936         hpsa_sas_transport_template =
9937                 sas_attach_transport(&hpsa_sas_transport_functions);
9938         if (!hpsa_sas_transport_template)
9939                 return -ENODEV;
9940
9941         rc = pci_register_driver(&hpsa_pci_driver);
9942
9943         if (rc)
9944                 sas_release_transport(hpsa_sas_transport_template);
9945
9946         return rc;
9947 }
9948
9949 static void __exit hpsa_cleanup(void)
9950 {
9951         pci_unregister_driver(&hpsa_pci_driver);
9952         sas_release_transport(hpsa_sas_transport_template);
9953 }
9954
9955 static void __attribute__((unused)) verify_offsets(void)
9956 {
9957 #define VERIFY_OFFSET(member, offset) \
9958         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9959
9960         VERIFY_OFFSET(structure_size, 0);
9961         VERIFY_OFFSET(volume_blk_size, 4);
9962         VERIFY_OFFSET(volume_blk_cnt, 8);
9963         VERIFY_OFFSET(phys_blk_shift, 16);
9964         VERIFY_OFFSET(parity_rotation_shift, 17);
9965         VERIFY_OFFSET(strip_size, 18);
9966         VERIFY_OFFSET(disk_starting_blk, 20);
9967         VERIFY_OFFSET(disk_blk_cnt, 28);
9968         VERIFY_OFFSET(data_disks_per_row, 36);
9969         VERIFY_OFFSET(metadata_disks_per_row, 38);
9970         VERIFY_OFFSET(row_cnt, 40);
9971         VERIFY_OFFSET(layout_map_count, 42);
9972         VERIFY_OFFSET(flags, 44);
9973         VERIFY_OFFSET(dekindex, 46);
9974         /* VERIFY_OFFSET(reserved, 48 */
9975         VERIFY_OFFSET(data, 64);
9976
9977 #undef VERIFY_OFFSET
9978
9979 #define VERIFY_OFFSET(member, offset) \
9980         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9981
9982         VERIFY_OFFSET(IU_type, 0);
9983         VERIFY_OFFSET(direction, 1);
9984         VERIFY_OFFSET(reply_queue, 2);
9985         /* VERIFY_OFFSET(reserved1, 3);  */
9986         VERIFY_OFFSET(scsi_nexus, 4);
9987         VERIFY_OFFSET(Tag, 8);
9988         VERIFY_OFFSET(cdb, 16);
9989         VERIFY_OFFSET(cciss_lun, 32);
9990         VERIFY_OFFSET(data_len, 40);
9991         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9992         VERIFY_OFFSET(sg_count, 45);
9993         /* VERIFY_OFFSET(reserved3 */
9994         VERIFY_OFFSET(err_ptr, 48);
9995         VERIFY_OFFSET(err_len, 56);
9996         /* VERIFY_OFFSET(reserved4  */
9997         VERIFY_OFFSET(sg, 64);
9998
9999 #undef VERIFY_OFFSET
10000
10001 #define VERIFY_OFFSET(member, offset) \
10002         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
10003
10004         VERIFY_OFFSET(dev_handle, 0x00);
10005         VERIFY_OFFSET(reserved1, 0x02);
10006         VERIFY_OFFSET(function, 0x03);
10007         VERIFY_OFFSET(reserved2, 0x04);
10008         VERIFY_OFFSET(err_info, 0x0C);
10009         VERIFY_OFFSET(reserved3, 0x10);
10010         VERIFY_OFFSET(err_info_len, 0x12);
10011         VERIFY_OFFSET(reserved4, 0x13);
10012         VERIFY_OFFSET(sgl_offset, 0x14);
10013         VERIFY_OFFSET(reserved5, 0x15);
10014         VERIFY_OFFSET(transfer_len, 0x1C);
10015         VERIFY_OFFSET(reserved6, 0x20);
10016         VERIFY_OFFSET(io_flags, 0x24);
10017         VERIFY_OFFSET(reserved7, 0x26);
10018         VERIFY_OFFSET(LUN, 0x34);
10019         VERIFY_OFFSET(control, 0x3C);
10020         VERIFY_OFFSET(CDB, 0x40);
10021         VERIFY_OFFSET(reserved8, 0x50);
10022         VERIFY_OFFSET(host_context_flags, 0x60);
10023         VERIFY_OFFSET(timeout_sec, 0x62);
10024         VERIFY_OFFSET(ReplyQueue, 0x64);
10025         VERIFY_OFFSET(reserved9, 0x65);
10026         VERIFY_OFFSET(tag, 0x68);
10027         VERIFY_OFFSET(host_addr, 0x70);
10028         VERIFY_OFFSET(CISS_LUN, 0x78);
10029         VERIFY_OFFSET(SG, 0x78 + 8);
10030 #undef VERIFY_OFFSET
10031 }
10032
10033 module_init(hpsa_init);
10034 module_exit(hpsa_cleanup);