]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/scsi/hpsa.c
[SCSI] hpsa: Fix hpsa_find_scsi_entry so that it doesn't try to dereference NULL...
[mv-sheeva.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp_lock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "1.0.0"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68         HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76                 "Allow hpsa driver to access unknown HP Smart Array hardware");
77
78 /* define the PCI info for the cards we can control */
79 static const struct pci_device_id hpsa_pci_device_id[] = {
80         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
81         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
82         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
83         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
88 #define PCI_DEVICE_ID_HP_CISSF 0x333f
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x333F},
90         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
91                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
92         {0,}
93 };
94
95 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
96
97 /*  board_id = Subsystem Device ID & Vendor ID
98  *  product = Marketing Name for the board
99  *  access = Address of the struct of function pointers
100  */
101 static struct board_type products[] = {
102         {0x3241103C, "Smart Array P212", &SA5_access},
103         {0x3243103C, "Smart Array P410", &SA5_access},
104         {0x3245103C, "Smart Array P410i", &SA5_access},
105         {0x3247103C, "Smart Array P411", &SA5_access},
106         {0x3249103C, "Smart Array P812", &SA5_access},
107         {0x324a103C, "Smart Array P712m", &SA5_access},
108         {0x324b103C, "Smart Array P711m", &SA5_access},
109         {0x3233103C, "StorageWorks P1210m", &SA5_access},
110         {0x333F103C, "StorageWorks P1210m", &SA5_access},
111         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
112 };
113
114 static int number_of_controllers;
115
116 static irqreturn_t do_hpsa_intr(int irq, void *dev_id);
117 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
118 static void start_io(struct ctlr_info *h);
119
120 #ifdef CONFIG_COMPAT
121 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
122 #endif
123
124 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
125 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
126 static struct CommandList *cmd_alloc(struct ctlr_info *h);
127 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
128 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
129         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
130         int cmd_type);
131
132 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
133                 void (*done)(struct scsi_cmnd *));
134 static void hpsa_scan_start(struct Scsi_Host *);
135 static int hpsa_scan_finished(struct Scsi_Host *sh,
136         unsigned long elapsed_time);
137
138 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
139 static int hpsa_slave_alloc(struct scsi_device *sdev);
140 static void hpsa_slave_destroy(struct scsi_device *sdev);
141
142 static ssize_t raid_level_show(struct device *dev,
143         struct device_attribute *attr, char *buf);
144 static ssize_t lunid_show(struct device *dev,
145         struct device_attribute *attr, char *buf);
146 static ssize_t unique_id_show(struct device *dev,
147         struct device_attribute *attr, char *buf);
148 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
149 static ssize_t host_store_rescan(struct device *dev,
150          struct device_attribute *attr, const char *buf, size_t count);
151 static int check_for_unit_attention(struct ctlr_info *h,
152         struct CommandList *c);
153 static void check_ioctl_unit_attention(struct ctlr_info *h,
154         struct CommandList *c);
155 /* performant mode helper functions */
156 static void calc_bucket_map(int *bucket, int num_buckets,
157         int nsgs, int *bucket_map);
158 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
159 static inline u32 next_command(struct ctlr_info *h);
160
161 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
162 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
163 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
164 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
165
166 static struct device_attribute *hpsa_sdev_attrs[] = {
167         &dev_attr_raid_level,
168         &dev_attr_lunid,
169         &dev_attr_unique_id,
170         NULL,
171 };
172
173 static struct device_attribute *hpsa_shost_attrs[] = {
174         &dev_attr_rescan,
175         NULL,
176 };
177
178 static struct scsi_host_template hpsa_driver_template = {
179         .module                 = THIS_MODULE,
180         .name                   = "hpsa",
181         .proc_name              = "hpsa",
182         .queuecommand           = hpsa_scsi_queue_command,
183         .scan_start             = hpsa_scan_start,
184         .scan_finished          = hpsa_scan_finished,
185         .this_id                = -1,
186         .sg_tablesize           = MAXSGENTRIES,
187         .use_clustering         = ENABLE_CLUSTERING,
188         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
189         .ioctl                  = hpsa_ioctl,
190         .slave_alloc            = hpsa_slave_alloc,
191         .slave_destroy          = hpsa_slave_destroy,
192 #ifdef CONFIG_COMPAT
193         .compat_ioctl           = hpsa_compat_ioctl,
194 #endif
195         .sdev_attrs = hpsa_sdev_attrs,
196         .shost_attrs = hpsa_shost_attrs,
197 };
198
199 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
200 {
201         unsigned long *priv = shost_priv(sdev->host);
202         return (struct ctlr_info *) *priv;
203 }
204
205 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
206 {
207         unsigned long *priv = shost_priv(sh);
208         return (struct ctlr_info *) *priv;
209 }
210
211 static struct task_struct *hpsa_scan_thread;
212 static DEFINE_MUTEX(hpsa_scan_mutex);
213 static LIST_HEAD(hpsa_scan_q);
214 static int hpsa_scan_func(void *data);
215
216 /**
217  * add_to_scan_list() - add controller to rescan queue
218  * @h:                Pointer to the controller.
219  *
220  * Adds the controller to the rescan queue if not already on the queue.
221  *
222  * returns 1 if added to the queue, 0 if skipped (could be on the
223  * queue already, or the controller could be initializing or shutting
224  * down).
225  **/
226 static int add_to_scan_list(struct ctlr_info *h)
227 {
228         struct ctlr_info *test_h;
229         int found = 0;
230         int ret = 0;
231
232         if (h->busy_initializing)
233                 return 0;
234
235         /*
236          * If we don't get the lock, it means the driver is unloading
237          * and there's no point in scheduling a new scan.
238          */
239         if (!mutex_trylock(&h->busy_shutting_down))
240                 return 0;
241
242         mutex_lock(&hpsa_scan_mutex);
243         list_for_each_entry(test_h, &hpsa_scan_q, scan_list) {
244                 if (test_h == h) {
245                         found = 1;
246                         break;
247                 }
248         }
249         if (!found && !h->busy_scanning) {
250                 INIT_COMPLETION(h->scan_wait);
251                 list_add_tail(&h->scan_list, &hpsa_scan_q);
252                 ret = 1;
253         }
254         mutex_unlock(&hpsa_scan_mutex);
255         mutex_unlock(&h->busy_shutting_down);
256
257         return ret;
258 }
259
260 /**
261  * remove_from_scan_list() - remove controller from rescan queue
262  * @h:                     Pointer to the controller.
263  *
264  * Removes the controller from the rescan queue if present. Blocks if
265  * the controller is currently conducting a rescan.  The controller
266  * can be in one of three states:
267  * 1. Doesn't need a scan
268  * 2. On the scan list, but not scanning yet (we remove it)
269  * 3. Busy scanning (and not on the list). In this case we want to wait for
270  *    the scan to complete to make sure the scanning thread for this
271  *    controller is completely idle.
272  **/
273 static void remove_from_scan_list(struct ctlr_info *h)
274 {
275         struct ctlr_info *test_h, *tmp_h;
276
277         mutex_lock(&hpsa_scan_mutex);
278         list_for_each_entry_safe(test_h, tmp_h, &hpsa_scan_q, scan_list) {
279                 if (test_h == h) { /* state 2. */
280                         list_del(&h->scan_list);
281                         complete_all(&h->scan_wait);
282                         mutex_unlock(&hpsa_scan_mutex);
283                         return;
284                 }
285         }
286         if (h->busy_scanning) { /* state 3. */
287                 mutex_unlock(&hpsa_scan_mutex);
288                 wait_for_completion(&h->scan_wait);
289         } else { /* state 1, nothing to do. */
290                 mutex_unlock(&hpsa_scan_mutex);
291         }
292 }
293
294 /* hpsa_scan_func() - kernel thread used to rescan controllers
295  * @data:        Ignored.
296  *
297  * A kernel thread used scan for drive topology changes on
298  * controllers. The thread processes only one controller at a time
299  * using a queue.  Controllers are added to the queue using
300  * add_to_scan_list() and removed from the queue either after done
301  * processing or using remove_from_scan_list().
302  *
303  * returns 0.
304  **/
305 static int hpsa_scan_func(__attribute__((unused)) void *data)
306 {
307         struct ctlr_info *h;
308         int host_no;
309
310         while (1) {
311                 set_current_state(TASK_INTERRUPTIBLE);
312                 schedule();
313                 if (kthread_should_stop())
314                         break;
315
316                 while (1) {
317                         mutex_lock(&hpsa_scan_mutex);
318                         if (list_empty(&hpsa_scan_q)) {
319                                 mutex_unlock(&hpsa_scan_mutex);
320                                 break;
321                         }
322                         h = list_entry(hpsa_scan_q.next, struct ctlr_info,
323                                         scan_list);
324                         list_del(&h->scan_list);
325                         h->busy_scanning = 1;
326                         mutex_unlock(&hpsa_scan_mutex);
327                         host_no = h->scsi_host ?  h->scsi_host->host_no : -1;
328                         hpsa_scan_start(h->scsi_host);
329                         complete_all(&h->scan_wait);
330                         mutex_lock(&hpsa_scan_mutex);
331                         h->busy_scanning = 0;
332                         mutex_unlock(&hpsa_scan_mutex);
333                 }
334         }
335         return 0;
336 }
337
338 static int check_for_unit_attention(struct ctlr_info *h,
339         struct CommandList *c)
340 {
341         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
342                 return 0;
343
344         switch (c->err_info->SenseInfo[12]) {
345         case STATE_CHANGED:
346                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
347                         "detected, command retried\n", h->ctlr);
348                 break;
349         case LUN_FAILED:
350                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
351                         "detected, action required\n", h->ctlr);
352                 break;
353         case REPORT_LUNS_CHANGED:
354                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
355                         "changed\n", h->ctlr);
356         /*
357          * Here, we could call add_to_scan_list and wake up the scan thread,
358          * except that it's quite likely that we will get more than one
359          * REPORT_LUNS_CHANGED condition in quick succession, which means
360          * that those which occur after the first one will likely happen
361          * *during* the hpsa_scan_thread's rescan.  And the rescan code is not
362          * robust enough to restart in the middle, undoing what it has already
363          * done, and it's not clear that it's even possible to do this, since
364          * part of what it does is notify the SCSI mid layer, which starts
365          * doing it's own i/o to read partition tables and so on, and the
366          * driver doesn't have visibility to know what might need undoing.
367          * In any event, if possible, it is horribly complicated to get right
368          * so we just don't do it for now.
369          *
370          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
371          */
372                 break;
373         case POWER_OR_RESET:
374                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
375                         "or device reset detected\n", h->ctlr);
376                 break;
377         case UNIT_ATTENTION_CLEARED:
378                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
379                     "cleared by another initiator\n", h->ctlr);
380                 break;
381         default:
382                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
383                         "unit attention detected\n", h->ctlr);
384                 break;
385         }
386         return 1;
387 }
388
389 static ssize_t host_store_rescan(struct device *dev,
390                                  struct device_attribute *attr,
391                                  const char *buf, size_t count)
392 {
393         struct ctlr_info *h;
394         struct Scsi_Host *shost = class_to_shost(dev);
395         h = shost_to_hba(shost);
396         if (add_to_scan_list(h)) {
397                 wake_up_process(hpsa_scan_thread);
398                 wait_for_completion_interruptible(&h->scan_wait);
399         }
400         return count;
401 }
402
403 /* Enqueuing and dequeuing functions for cmdlists. */
404 static inline void addQ(struct hlist_head *list, struct CommandList *c)
405 {
406         hlist_add_head(&c->list, list);
407 }
408
409 static inline u32 next_command(struct ctlr_info *h)
410 {
411         u32 a;
412
413         if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
414                 return h->access.command_completed(h);
415
416         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
417                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
418                 (h->reply_pool_head)++;
419                 h->commands_outstanding--;
420         } else {
421                 a = FIFO_EMPTY;
422         }
423         /* Check for wraparound */
424         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
425                 h->reply_pool_head = h->reply_pool;
426                 h->reply_pool_wraparound ^= 1;
427         }
428         return a;
429 }
430
431 /* set_performant_mode: Modify the tag for cciss performant
432  * set bit 0 for pull model, bits 3-1 for block fetch
433  * register number
434  */
435 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
436 {
437         if (likely(h->transMethod == CFGTBL_Trans_Performant))
438                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
439 }
440
441 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
442         struct CommandList *c)
443 {
444         unsigned long flags;
445
446         set_performant_mode(h, c);
447         spin_lock_irqsave(&h->lock, flags);
448         addQ(&h->reqQ, c);
449         h->Qdepth++;
450         start_io(h);
451         spin_unlock_irqrestore(&h->lock, flags);
452 }
453
454 static inline void removeQ(struct CommandList *c)
455 {
456         if (WARN_ON(hlist_unhashed(&c->list)))
457                 return;
458         hlist_del_init(&c->list);
459 }
460
461 static inline int is_hba_lunid(unsigned char scsi3addr[])
462 {
463         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
464 }
465
466 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
467 {
468         return (scsi3addr[3] & 0xC0) == 0x40;
469 }
470
471 static inline int is_scsi_rev_5(struct ctlr_info *h)
472 {
473         if (!h->hba_inquiry_data)
474                 return 0;
475         if ((h->hba_inquiry_data[2] & 0x07) == 5)
476                 return 1;
477         return 0;
478 }
479
480 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
481         "UNKNOWN"
482 };
483 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
484
485 static ssize_t raid_level_show(struct device *dev,
486              struct device_attribute *attr, char *buf)
487 {
488         ssize_t l = 0;
489         unsigned char rlevel;
490         struct ctlr_info *h;
491         struct scsi_device *sdev;
492         struct hpsa_scsi_dev_t *hdev;
493         unsigned long flags;
494
495         sdev = to_scsi_device(dev);
496         h = sdev_to_hba(sdev);
497         spin_lock_irqsave(&h->lock, flags);
498         hdev = sdev->hostdata;
499         if (!hdev) {
500                 spin_unlock_irqrestore(&h->lock, flags);
501                 return -ENODEV;
502         }
503
504         /* Is this even a logical drive? */
505         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
506                 spin_unlock_irqrestore(&h->lock, flags);
507                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
508                 return l;
509         }
510
511         rlevel = hdev->raid_level;
512         spin_unlock_irqrestore(&h->lock, flags);
513         if (rlevel > RAID_UNKNOWN)
514                 rlevel = RAID_UNKNOWN;
515         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
516         return l;
517 }
518
519 static ssize_t lunid_show(struct device *dev,
520              struct device_attribute *attr, char *buf)
521 {
522         struct ctlr_info *h;
523         struct scsi_device *sdev;
524         struct hpsa_scsi_dev_t *hdev;
525         unsigned long flags;
526         unsigned char lunid[8];
527
528         sdev = to_scsi_device(dev);
529         h = sdev_to_hba(sdev);
530         spin_lock_irqsave(&h->lock, flags);
531         hdev = sdev->hostdata;
532         if (!hdev) {
533                 spin_unlock_irqrestore(&h->lock, flags);
534                 return -ENODEV;
535         }
536         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
537         spin_unlock_irqrestore(&h->lock, flags);
538         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
539                 lunid[0], lunid[1], lunid[2], lunid[3],
540                 lunid[4], lunid[5], lunid[6], lunid[7]);
541 }
542
543 static ssize_t unique_id_show(struct device *dev,
544              struct device_attribute *attr, char *buf)
545 {
546         struct ctlr_info *h;
547         struct scsi_device *sdev;
548         struct hpsa_scsi_dev_t *hdev;
549         unsigned long flags;
550         unsigned char sn[16];
551
552         sdev = to_scsi_device(dev);
553         h = sdev_to_hba(sdev);
554         spin_lock_irqsave(&h->lock, flags);
555         hdev = sdev->hostdata;
556         if (!hdev) {
557                 spin_unlock_irqrestore(&h->lock, flags);
558                 return -ENODEV;
559         }
560         memcpy(sn, hdev->device_id, sizeof(sn));
561         spin_unlock_irqrestore(&h->lock, flags);
562         return snprintf(buf, 16 * 2 + 2,
563                         "%02X%02X%02X%02X%02X%02X%02X%02X"
564                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
565                         sn[0], sn[1], sn[2], sn[3],
566                         sn[4], sn[5], sn[6], sn[7],
567                         sn[8], sn[9], sn[10], sn[11],
568                         sn[12], sn[13], sn[14], sn[15]);
569 }
570
571 static int hpsa_find_target_lun(struct ctlr_info *h,
572         unsigned char scsi3addr[], int bus, int *target, int *lun)
573 {
574         /* finds an unused bus, target, lun for a new physical device
575          * assumes h->devlock is held
576          */
577         int i, found = 0;
578         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
579
580         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
581
582         for (i = 0; i < h->ndevices; i++) {
583                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
584                         set_bit(h->dev[i]->target, lun_taken);
585         }
586
587         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
588                 if (!test_bit(i, lun_taken)) {
589                         /* *bus = 1; */
590                         *target = i;
591                         *lun = 0;
592                         found = 1;
593                         break;
594                 }
595         }
596         return !found;
597 }
598
599 /* Add an entry into h->dev[] array. */
600 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
601                 struct hpsa_scsi_dev_t *device,
602                 struct hpsa_scsi_dev_t *added[], int *nadded)
603 {
604         /* assumes h->devlock is held */
605         int n = h->ndevices;
606         int i;
607         unsigned char addr1[8], addr2[8];
608         struct hpsa_scsi_dev_t *sd;
609
610         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
611                 dev_err(&h->pdev->dev, "too many devices, some will be "
612                         "inaccessible.\n");
613                 return -1;
614         }
615
616         /* physical devices do not have lun or target assigned until now. */
617         if (device->lun != -1)
618                 /* Logical device, lun is already assigned. */
619                 goto lun_assigned;
620
621         /* If this device a non-zero lun of a multi-lun device
622          * byte 4 of the 8-byte LUN addr will contain the logical
623          * unit no, zero otherise.
624          */
625         if (device->scsi3addr[4] == 0) {
626                 /* This is not a non-zero lun of a multi-lun device */
627                 if (hpsa_find_target_lun(h, device->scsi3addr,
628                         device->bus, &device->target, &device->lun) != 0)
629                         return -1;
630                 goto lun_assigned;
631         }
632
633         /* This is a non-zero lun of a multi-lun device.
634          * Search through our list and find the device which
635          * has the same 8 byte LUN address, excepting byte 4.
636          * Assign the same bus and target for this new LUN.
637          * Use the logical unit number from the firmware.
638          */
639         memcpy(addr1, device->scsi3addr, 8);
640         addr1[4] = 0;
641         for (i = 0; i < n; i++) {
642                 sd = h->dev[i];
643                 memcpy(addr2, sd->scsi3addr, 8);
644                 addr2[4] = 0;
645                 /* differ only in byte 4? */
646                 if (memcmp(addr1, addr2, 8) == 0) {
647                         device->bus = sd->bus;
648                         device->target = sd->target;
649                         device->lun = device->scsi3addr[4];
650                         break;
651                 }
652         }
653         if (device->lun == -1) {
654                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
655                         " suspect firmware bug or unsupported hardware "
656                         "configuration.\n");
657                         return -1;
658         }
659
660 lun_assigned:
661
662         h->dev[n] = device;
663         h->ndevices++;
664         added[*nadded] = device;
665         (*nadded)++;
666
667         /* initially, (before registering with scsi layer) we don't
668          * know our hostno and we don't want to print anything first
669          * time anyway (the scsi layer's inquiries will show that info)
670          */
671         /* if (hostno != -1) */
672                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
673                         scsi_device_type(device->devtype), hostno,
674                         device->bus, device->target, device->lun);
675         return 0;
676 }
677
678 /* Remove an entry from h->dev[] array. */
679 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
680         struct hpsa_scsi_dev_t *removed[], int *nremoved)
681 {
682         /* assumes h->devlock is held */
683         int i;
684         struct hpsa_scsi_dev_t *sd;
685
686         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
687
688         sd = h->dev[entry];
689         removed[*nremoved] = h->dev[entry];
690         (*nremoved)++;
691
692         for (i = entry; i < h->ndevices-1; i++)
693                 h->dev[i] = h->dev[i+1];
694         h->ndevices--;
695         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
696                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
697                 sd->lun);
698 }
699
700 #define SCSI3ADDR_EQ(a, b) ( \
701         (a)[7] == (b)[7] && \
702         (a)[6] == (b)[6] && \
703         (a)[5] == (b)[5] && \
704         (a)[4] == (b)[4] && \
705         (a)[3] == (b)[3] && \
706         (a)[2] == (b)[2] && \
707         (a)[1] == (b)[1] && \
708         (a)[0] == (b)[0])
709
710 static void fixup_botched_add(struct ctlr_info *h,
711         struct hpsa_scsi_dev_t *added)
712 {
713         /* called when scsi_add_device fails in order to re-adjust
714          * h->dev[] to match the mid layer's view.
715          */
716         unsigned long flags;
717         int i, j;
718
719         spin_lock_irqsave(&h->lock, flags);
720         for (i = 0; i < h->ndevices; i++) {
721                 if (h->dev[i] == added) {
722                         for (j = i; j < h->ndevices-1; j++)
723                                 h->dev[j] = h->dev[j+1];
724                         h->ndevices--;
725                         break;
726                 }
727         }
728         spin_unlock_irqrestore(&h->lock, flags);
729         kfree(added);
730 }
731
732 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
733         struct hpsa_scsi_dev_t *dev2)
734 {
735         if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
736                 (dev1->lun != -1 && dev2->lun != -1)) &&
737                 dev1->devtype != 0x0C)
738                 return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
739
740         /* we compare everything except lun and target as these
741          * are not yet assigned.  Compare parts likely
742          * to differ first
743          */
744         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
745                 sizeof(dev1->scsi3addr)) != 0)
746                 return 0;
747         if (memcmp(dev1->device_id, dev2->device_id,
748                 sizeof(dev1->device_id)) != 0)
749                 return 0;
750         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
751                 return 0;
752         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
753                 return 0;
754         if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
755                 return 0;
756         if (dev1->devtype != dev2->devtype)
757                 return 0;
758         if (dev1->raid_level != dev2->raid_level)
759                 return 0;
760         if (dev1->bus != dev2->bus)
761                 return 0;
762         return 1;
763 }
764
765 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
766  * and return needle location in *index.  If scsi3addr matches, but not
767  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
768  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
769  */
770 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
771         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
772         int *index)
773 {
774         int i;
775 #define DEVICE_NOT_FOUND 0
776 #define DEVICE_CHANGED 1
777 #define DEVICE_SAME 2
778         for (i = 0; i < haystack_size; i++) {
779                 if (haystack[i] == NULL) /* previously removed. */
780                         continue;
781                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
782                         *index = i;
783                         if (device_is_the_same(needle, haystack[i]))
784                                 return DEVICE_SAME;
785                         else
786                                 return DEVICE_CHANGED;
787                 }
788         }
789         *index = -1;
790         return DEVICE_NOT_FOUND;
791 }
792
793 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
794         struct hpsa_scsi_dev_t *sd[], int nsds)
795 {
796         /* sd contains scsi3 addresses and devtypes, and inquiry
797          * data.  This function takes what's in sd to be the current
798          * reality and updates h->dev[] to reflect that reality.
799          */
800         int i, entry, device_change, changes = 0;
801         struct hpsa_scsi_dev_t *csd;
802         unsigned long flags;
803         struct hpsa_scsi_dev_t **added, **removed;
804         int nadded, nremoved;
805         struct Scsi_Host *sh = NULL;
806
807         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
808                 GFP_KERNEL);
809         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
810                 GFP_KERNEL);
811
812         if (!added || !removed) {
813                 dev_warn(&h->pdev->dev, "out of memory in "
814                         "adjust_hpsa_scsi_table\n");
815                 goto free_and_out;
816         }
817
818         spin_lock_irqsave(&h->devlock, flags);
819
820         /* find any devices in h->dev[] that are not in
821          * sd[] and remove them from h->dev[], and for any
822          * devices which have changed, remove the old device
823          * info and add the new device info.
824          */
825         i = 0;
826         nremoved = 0;
827         nadded = 0;
828         while (i < h->ndevices) {
829                 csd = h->dev[i];
830                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
831                 if (device_change == DEVICE_NOT_FOUND) {
832                         changes++;
833                         hpsa_scsi_remove_entry(h, hostno, i,
834                                 removed, &nremoved);
835                         continue; /* remove ^^^, hence i not incremented */
836                 } else if (device_change == DEVICE_CHANGED) {
837                         changes++;
838                         hpsa_scsi_remove_entry(h, hostno, i,
839                                 removed, &nremoved);
840                         (void) hpsa_scsi_add_entry(h, hostno, sd[entry],
841                                 added, &nadded);
842                         /* add can't fail, we just removed one. */
843
844                         /* Set it to NULL to prevent it from being freed
845                          * at the bottom of hpsa_update_scsi_devices()
846                          */
847                         sd[entry] = NULL;
848                 }
849                 i++;
850         }
851
852         /* Now, make sure every device listed in sd[] is also
853          * listed in h->dev[], adding them if they aren't found
854          */
855
856         for (i = 0; i < nsds; i++) {
857                 if (!sd[i]) /* if already added above. */
858                         continue;
859                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
860                                         h->ndevices, &entry);
861                 if (device_change == DEVICE_NOT_FOUND) {
862                         changes++;
863                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
864                                 added, &nadded) != 0)
865                                 break;
866                         sd[i] = NULL; /* prevent from being freed later. */
867                 } else if (device_change == DEVICE_CHANGED) {
868                         /* should never happen... */
869                         changes++;
870                         dev_warn(&h->pdev->dev,
871                                 "device unexpectedly changed.\n");
872                         /* but if it does happen, we just ignore that device */
873                 }
874         }
875         spin_unlock_irqrestore(&h->devlock, flags);
876
877         /* Don't notify scsi mid layer of any changes the first time through
878          * (or if there are no changes) scsi_scan_host will do it later the
879          * first time through.
880          */
881         if (hostno == -1 || !changes)
882                 goto free_and_out;
883
884         sh = h->scsi_host;
885         /* Notify scsi mid layer of any removed devices */
886         for (i = 0; i < nremoved; i++) {
887                 struct scsi_device *sdev =
888                         scsi_device_lookup(sh, removed[i]->bus,
889                                 removed[i]->target, removed[i]->lun);
890                 if (sdev != NULL) {
891                         scsi_remove_device(sdev);
892                         scsi_device_put(sdev);
893                 } else {
894                         /* We don't expect to get here.
895                          * future cmds to this device will get selection
896                          * timeout as if the device was gone.
897                          */
898                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
899                                 " for removal.", hostno, removed[i]->bus,
900                                 removed[i]->target, removed[i]->lun);
901                 }
902                 kfree(removed[i]);
903                 removed[i] = NULL;
904         }
905
906         /* Notify scsi mid layer of any added devices */
907         for (i = 0; i < nadded; i++) {
908                 if (scsi_add_device(sh, added[i]->bus,
909                         added[i]->target, added[i]->lun) == 0)
910                         continue;
911                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
912                         "device not added.\n", hostno, added[i]->bus,
913                         added[i]->target, added[i]->lun);
914                 /* now we have to remove it from h->dev,
915                  * since it didn't get added to scsi mid layer
916                  */
917                 fixup_botched_add(h, added[i]);
918         }
919
920 free_and_out:
921         kfree(added);
922         kfree(removed);
923 }
924
925 /*
926  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
927  * Assume's h->devlock is held.
928  */
929 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
930         int bus, int target, int lun)
931 {
932         int i;
933         struct hpsa_scsi_dev_t *sd;
934
935         for (i = 0; i < h->ndevices; i++) {
936                 sd = h->dev[i];
937                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
938                         return sd;
939         }
940         return NULL;
941 }
942
943 /* link sdev->hostdata to our per-device structure. */
944 static int hpsa_slave_alloc(struct scsi_device *sdev)
945 {
946         struct hpsa_scsi_dev_t *sd;
947         unsigned long flags;
948         struct ctlr_info *h;
949
950         h = sdev_to_hba(sdev);
951         spin_lock_irqsave(&h->devlock, flags);
952         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
953                 sdev_id(sdev), sdev->lun);
954         if (sd != NULL)
955                 sdev->hostdata = sd;
956         spin_unlock_irqrestore(&h->devlock, flags);
957         return 0;
958 }
959
960 static void hpsa_slave_destroy(struct scsi_device *sdev)
961 {
962         /* nothing to do. */
963 }
964
965 static void hpsa_scsi_setup(struct ctlr_info *h)
966 {
967         h->ndevices = 0;
968         h->scsi_host = NULL;
969         spin_lock_init(&h->devlock);
970 }
971
972 static void complete_scsi_command(struct CommandList *cp,
973         int timeout, u32 tag)
974 {
975         struct scsi_cmnd *cmd;
976         struct ctlr_info *h;
977         struct ErrorInfo *ei;
978
979         unsigned char sense_key;
980         unsigned char asc;      /* additional sense code */
981         unsigned char ascq;     /* additional sense code qualifier */
982
983         ei = cp->err_info;
984         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
985         h = cp->h;
986
987         scsi_dma_unmap(cmd); /* undo the DMA mappings */
988
989         cmd->result = (DID_OK << 16);           /* host byte */
990         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
991         cmd->result |= (ei->ScsiStatus << 1);
992
993         /* copy the sense data whether we need to or not. */
994         memcpy(cmd->sense_buffer, ei->SenseInfo,
995                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
996                         SCSI_SENSE_BUFFERSIZE :
997                         ei->SenseLen);
998         scsi_set_resid(cmd, ei->ResidualCnt);
999
1000         if (ei->CommandStatus == 0) {
1001                 cmd->scsi_done(cmd);
1002                 cmd_free(h, cp);
1003                 return;
1004         }
1005
1006         /* an error has occurred */
1007         switch (ei->CommandStatus) {
1008
1009         case CMD_TARGET_STATUS:
1010                 if (ei->ScsiStatus) {
1011                         /* Get sense key */
1012                         sense_key = 0xf & ei->SenseInfo[2];
1013                         /* Get additional sense code */
1014                         asc = ei->SenseInfo[12];
1015                         /* Get addition sense code qualifier */
1016                         ascq = ei->SenseInfo[13];
1017                 }
1018
1019                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1020                         if (check_for_unit_attention(h, cp)) {
1021                                 cmd->result = DID_SOFT_ERROR << 16;
1022                                 break;
1023                         }
1024                         if (sense_key == ILLEGAL_REQUEST) {
1025                                 /*
1026                                  * SCSI REPORT_LUNS is commonly unsupported on
1027                                  * Smart Array.  Suppress noisy complaint.
1028                                  */
1029                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1030                                         break;
1031
1032                                 /* If ASC/ASCQ indicate Logical Unit
1033                                  * Not Supported condition,
1034                                  */
1035                                 if ((asc == 0x25) && (ascq == 0x0)) {
1036                                         dev_warn(&h->pdev->dev, "cp %p "
1037                                                 "has check condition\n", cp);
1038                                         break;
1039                                 }
1040                         }
1041
1042                         if (sense_key == NOT_READY) {
1043                                 /* If Sense is Not Ready, Logical Unit
1044                                  * Not ready, Manual Intervention
1045                                  * required
1046                                  */
1047                                 if ((asc == 0x04) && (ascq == 0x03)) {
1048                                         dev_warn(&h->pdev->dev, "cp %p "
1049                                                 "has check condition: unit "
1050                                                 "not ready, manual "
1051                                                 "intervention required\n", cp);
1052                                         break;
1053                                 }
1054                         }
1055                         if (sense_key == ABORTED_COMMAND) {
1056                                 /* Aborted command is retryable */
1057                                 dev_warn(&h->pdev->dev, "cp %p "
1058                                         "has check condition: aborted command: "
1059                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1060                                         cp, asc, ascq);
1061                                 cmd->result = DID_SOFT_ERROR << 16;
1062                                 break;
1063                         }
1064                         /* Must be some other type of check condition */
1065                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1066                                         "unknown type: "
1067                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1068                                         "Returning result: 0x%x, "
1069                                         "cmd=[%02x %02x %02x %02x %02x "
1070                                         "%02x %02x %02x %02x %02x %02x "
1071                                         "%02x %02x %02x %02x %02x]\n",
1072                                         cp, sense_key, asc, ascq,
1073                                         cmd->result,
1074                                         cmd->cmnd[0], cmd->cmnd[1],
1075                                         cmd->cmnd[2], cmd->cmnd[3],
1076                                         cmd->cmnd[4], cmd->cmnd[5],
1077                                         cmd->cmnd[6], cmd->cmnd[7],
1078                                         cmd->cmnd[8], cmd->cmnd[9],
1079                                         cmd->cmnd[10], cmd->cmnd[11],
1080                                         cmd->cmnd[12], cmd->cmnd[13],
1081                                         cmd->cmnd[14], cmd->cmnd[15]);
1082                         break;
1083                 }
1084
1085
1086                 /* Problem was not a check condition
1087                  * Pass it up to the upper layers...
1088                  */
1089                 if (ei->ScsiStatus) {
1090                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1091                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1092                                 "Returning result: 0x%x\n",
1093                                 cp, ei->ScsiStatus,
1094                                 sense_key, asc, ascq,
1095                                 cmd->result);
1096                 } else {  /* scsi status is zero??? How??? */
1097                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1098                                 "Returning no connection.\n", cp),
1099
1100                         /* Ordinarily, this case should never happen,
1101                          * but there is a bug in some released firmware
1102                          * revisions that allows it to happen if, for
1103                          * example, a 4100 backplane loses power and
1104                          * the tape drive is in it.  We assume that
1105                          * it's a fatal error of some kind because we
1106                          * can't show that it wasn't. We will make it
1107                          * look like selection timeout since that is
1108                          * the most common reason for this to occur,
1109                          * and it's severe enough.
1110                          */
1111
1112                         cmd->result = DID_NO_CONNECT << 16;
1113                 }
1114                 break;
1115
1116         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1117                 break;
1118         case CMD_DATA_OVERRUN:
1119                 dev_warn(&h->pdev->dev, "cp %p has"
1120                         " completed with data overrun "
1121                         "reported\n", cp);
1122                 break;
1123         case CMD_INVALID: {
1124                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1125                 print_cmd(cp); */
1126                 /* We get CMD_INVALID if you address a non-existent device
1127                  * instead of a selection timeout (no response).  You will
1128                  * see this if you yank out a drive, then try to access it.
1129                  * This is kind of a shame because it means that any other
1130                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1131                  * missing target. */
1132                 cmd->result = DID_NO_CONNECT << 16;
1133         }
1134                 break;
1135         case CMD_PROTOCOL_ERR:
1136                 dev_warn(&h->pdev->dev, "cp %p has "
1137                         "protocol error \n", cp);
1138                 break;
1139         case CMD_HARDWARE_ERR:
1140                 cmd->result = DID_ERROR << 16;
1141                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1142                 break;
1143         case CMD_CONNECTION_LOST:
1144                 cmd->result = DID_ERROR << 16;
1145                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1146                 break;
1147         case CMD_ABORTED:
1148                 cmd->result = DID_ABORT << 16;
1149                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1150                                 cp, ei->ScsiStatus);
1151                 break;
1152         case CMD_ABORT_FAILED:
1153                 cmd->result = DID_ERROR << 16;
1154                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1155                 break;
1156         case CMD_UNSOLICITED_ABORT:
1157                 cmd->result = DID_RESET << 16;
1158                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1159                         "abort\n", cp);
1160                 break;
1161         case CMD_TIMEOUT:
1162                 cmd->result = DID_TIME_OUT << 16;
1163                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1164                 break;
1165         default:
1166                 cmd->result = DID_ERROR << 16;
1167                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1168                                 cp, ei->CommandStatus);
1169         }
1170         cmd->scsi_done(cmd);
1171         cmd_free(h, cp);
1172 }
1173
1174 static int hpsa_scsi_detect(struct ctlr_info *h)
1175 {
1176         struct Scsi_Host *sh;
1177         int error;
1178
1179         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1180         if (sh == NULL)
1181                 goto fail;
1182
1183         sh->io_port = 0;
1184         sh->n_io_port = 0;
1185         sh->this_id = -1;
1186         sh->max_channel = 3;
1187         sh->max_cmd_len = MAX_COMMAND_SIZE;
1188         sh->max_lun = HPSA_MAX_LUN;
1189         sh->max_id = HPSA_MAX_LUN;
1190         sh->can_queue = h->nr_cmds;
1191         sh->cmd_per_lun = h->nr_cmds;
1192         h->scsi_host = sh;
1193         sh->hostdata[0] = (unsigned long) h;
1194         sh->irq = h->intr[PERF_MODE_INT];
1195         sh->unique_id = sh->irq;
1196         error = scsi_add_host(sh, &h->pdev->dev);
1197         if (error)
1198                 goto fail_host_put;
1199         scsi_scan_host(sh);
1200         return 0;
1201
1202  fail_host_put:
1203         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1204                 " failed for controller %d\n", h->ctlr);
1205         scsi_host_put(sh);
1206         return error;
1207  fail:
1208         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1209                 " failed for controller %d\n", h->ctlr);
1210         return -ENOMEM;
1211 }
1212
1213 static void hpsa_pci_unmap(struct pci_dev *pdev,
1214         struct CommandList *c, int sg_used, int data_direction)
1215 {
1216         int i;
1217         union u64bit addr64;
1218
1219         for (i = 0; i < sg_used; i++) {
1220                 addr64.val32.lower = c->SG[i].Addr.lower;
1221                 addr64.val32.upper = c->SG[i].Addr.upper;
1222                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1223                         data_direction);
1224         }
1225 }
1226
1227 static void hpsa_map_one(struct pci_dev *pdev,
1228                 struct CommandList *cp,
1229                 unsigned char *buf,
1230                 size_t buflen,
1231                 int data_direction)
1232 {
1233         u64 addr64;
1234
1235         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1236                 cp->Header.SGList = 0;
1237                 cp->Header.SGTotal = 0;
1238                 return;
1239         }
1240
1241         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1242         cp->SG[0].Addr.lower =
1243           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1244         cp->SG[0].Addr.upper =
1245           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1246         cp->SG[0].Len = buflen;
1247         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1248         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1249 }
1250
1251 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1252         struct CommandList *c)
1253 {
1254         DECLARE_COMPLETION_ONSTACK(wait);
1255
1256         c->waiting = &wait;
1257         enqueue_cmd_and_start_io(h, c);
1258         wait_for_completion(&wait);
1259 }
1260
1261 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1262         struct CommandList *c, int data_direction)
1263 {
1264         int retry_count = 0;
1265
1266         do {
1267                 memset(c->err_info, 0, sizeof(c->err_info));
1268                 hpsa_scsi_do_simple_cmd_core(h, c);
1269                 retry_count++;
1270         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1271         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1272 }
1273
1274 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1275 {
1276         struct ErrorInfo *ei;
1277         struct device *d = &cp->h->pdev->dev;
1278
1279         ei = cp->err_info;
1280         switch (ei->CommandStatus) {
1281         case CMD_TARGET_STATUS:
1282                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1283                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1284                                 ei->ScsiStatus);
1285                 if (ei->ScsiStatus == 0)
1286                         dev_warn(d, "SCSI status is abnormally zero.  "
1287                         "(probably indicates selection timeout "
1288                         "reported incorrectly due to a known "
1289                         "firmware bug, circa July, 2001.)\n");
1290                 break;
1291         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1292                         dev_info(d, "UNDERRUN\n");
1293                 break;
1294         case CMD_DATA_OVERRUN:
1295                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1296                 break;
1297         case CMD_INVALID: {
1298                 /* controller unfortunately reports SCSI passthru's
1299                  * to non-existent targets as invalid commands.
1300                  */
1301                 dev_warn(d, "cp %p is reported invalid (probably means "
1302                         "target device no longer present)\n", cp);
1303                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1304                 print_cmd(cp);  */
1305                 }
1306                 break;
1307         case CMD_PROTOCOL_ERR:
1308                 dev_warn(d, "cp %p has protocol error \n", cp);
1309                 break;
1310         case CMD_HARDWARE_ERR:
1311                 /* cmd->result = DID_ERROR << 16; */
1312                 dev_warn(d, "cp %p had hardware error\n", cp);
1313                 break;
1314         case CMD_CONNECTION_LOST:
1315                 dev_warn(d, "cp %p had connection lost\n", cp);
1316                 break;
1317         case CMD_ABORTED:
1318                 dev_warn(d, "cp %p was aborted\n", cp);
1319                 break;
1320         case CMD_ABORT_FAILED:
1321                 dev_warn(d, "cp %p reports abort failed\n", cp);
1322                 break;
1323         case CMD_UNSOLICITED_ABORT:
1324                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1325                 break;
1326         case CMD_TIMEOUT:
1327                 dev_warn(d, "cp %p timed out\n", cp);
1328                 break;
1329         default:
1330                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1331                                 ei->CommandStatus);
1332         }
1333 }
1334
1335 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1336                         unsigned char page, unsigned char *buf,
1337                         unsigned char bufsize)
1338 {
1339         int rc = IO_OK;
1340         struct CommandList *c;
1341         struct ErrorInfo *ei;
1342
1343         c = cmd_special_alloc(h);
1344
1345         if (c == NULL) {                        /* trouble... */
1346                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1347                 return -ENOMEM;
1348         }
1349
1350         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1351         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1352         ei = c->err_info;
1353         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1354                 hpsa_scsi_interpret_error(c);
1355                 rc = -1;
1356         }
1357         cmd_special_free(h, c);
1358         return rc;
1359 }
1360
1361 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1362 {
1363         int rc = IO_OK;
1364         struct CommandList *c;
1365         struct ErrorInfo *ei;
1366
1367         c = cmd_special_alloc(h);
1368
1369         if (c == NULL) {                        /* trouble... */
1370                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1371                 return -1;
1372         }
1373
1374         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1375         hpsa_scsi_do_simple_cmd_core(h, c);
1376         /* no unmap needed here because no data xfer. */
1377
1378         ei = c->err_info;
1379         if (ei->CommandStatus != 0) {
1380                 hpsa_scsi_interpret_error(c);
1381                 rc = -1;
1382         }
1383         cmd_special_free(h, c);
1384         return rc;
1385 }
1386
1387 static void hpsa_get_raid_level(struct ctlr_info *h,
1388         unsigned char *scsi3addr, unsigned char *raid_level)
1389 {
1390         int rc;
1391         unsigned char *buf;
1392
1393         *raid_level = RAID_UNKNOWN;
1394         buf = kzalloc(64, GFP_KERNEL);
1395         if (!buf)
1396                 return;
1397         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1398         if (rc == 0)
1399                 *raid_level = buf[8];
1400         if (*raid_level > RAID_UNKNOWN)
1401                 *raid_level = RAID_UNKNOWN;
1402         kfree(buf);
1403         return;
1404 }
1405
1406 /* Get the device id from inquiry page 0x83 */
1407 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1408         unsigned char *device_id, int buflen)
1409 {
1410         int rc;
1411         unsigned char *buf;
1412
1413         if (buflen > 16)
1414                 buflen = 16;
1415         buf = kzalloc(64, GFP_KERNEL);
1416         if (!buf)
1417                 return -1;
1418         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1419         if (rc == 0)
1420                 memcpy(device_id, &buf[8], buflen);
1421         kfree(buf);
1422         return rc != 0;
1423 }
1424
1425 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1426                 struct ReportLUNdata *buf, int bufsize,
1427                 int extended_response)
1428 {
1429         int rc = IO_OK;
1430         struct CommandList *c;
1431         unsigned char scsi3addr[8];
1432         struct ErrorInfo *ei;
1433
1434         c = cmd_special_alloc(h);
1435         if (c == NULL) {                        /* trouble... */
1436                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1437                 return -1;
1438         }
1439         /* address the controller */
1440         memset(scsi3addr, 0, sizeof(scsi3addr));
1441         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1442                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1443         if (extended_response)
1444                 c->Request.CDB[1] = extended_response;
1445         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1446         ei = c->err_info;
1447         if (ei->CommandStatus != 0 &&
1448             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1449                 hpsa_scsi_interpret_error(c);
1450                 rc = -1;
1451         }
1452         cmd_special_free(h, c);
1453         return rc;
1454 }
1455
1456 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1457                 struct ReportLUNdata *buf,
1458                 int bufsize, int extended_response)
1459 {
1460         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1461 }
1462
1463 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1464                 struct ReportLUNdata *buf, int bufsize)
1465 {
1466         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1467 }
1468
1469 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1470         int bus, int target, int lun)
1471 {
1472         device->bus = bus;
1473         device->target = target;
1474         device->lun = lun;
1475 }
1476
1477 static int hpsa_update_device_info(struct ctlr_info *h,
1478         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1479 {
1480 #define OBDR_TAPE_INQ_SIZE 49
1481         unsigned char *inq_buff;
1482
1483         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1484         if (!inq_buff)
1485                 goto bail_out;
1486
1487         /* Do an inquiry to the device to see what it is. */
1488         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1489                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1490                 /* Inquiry failed (msg printed already) */
1491                 dev_err(&h->pdev->dev,
1492                         "hpsa_update_device_info: inquiry failed\n");
1493                 goto bail_out;
1494         }
1495
1496         /* As a side effect, record the firmware version number
1497          * if we happen to be talking to the RAID controller.
1498          */
1499         if (is_hba_lunid(scsi3addr))
1500                 memcpy(h->firm_ver, &inq_buff[32], 4);
1501
1502         this_device->devtype = (inq_buff[0] & 0x1f);
1503         memcpy(this_device->scsi3addr, scsi3addr, 8);
1504         memcpy(this_device->vendor, &inq_buff[8],
1505                 sizeof(this_device->vendor));
1506         memcpy(this_device->model, &inq_buff[16],
1507                 sizeof(this_device->model));
1508         memcpy(this_device->revision, &inq_buff[32],
1509                 sizeof(this_device->revision));
1510         memset(this_device->device_id, 0,
1511                 sizeof(this_device->device_id));
1512         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1513                 sizeof(this_device->device_id));
1514
1515         if (this_device->devtype == TYPE_DISK &&
1516                 is_logical_dev_addr_mode(scsi3addr))
1517                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1518         else
1519                 this_device->raid_level = RAID_UNKNOWN;
1520
1521         kfree(inq_buff);
1522         return 0;
1523
1524 bail_out:
1525         kfree(inq_buff);
1526         return 1;
1527 }
1528
1529 static unsigned char *msa2xxx_model[] = {
1530         "MSA2012",
1531         "MSA2024",
1532         "MSA2312",
1533         "MSA2324",
1534         NULL,
1535 };
1536
1537 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1538 {
1539         int i;
1540
1541         for (i = 0; msa2xxx_model[i]; i++)
1542                 if (strncmp(device->model, msa2xxx_model[i],
1543                         strlen(msa2xxx_model[i])) == 0)
1544                         return 1;
1545         return 0;
1546 }
1547
1548 /* Helper function to assign bus, target, lun mapping of devices.
1549  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1550  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1551  * Logical drive target and lun are assigned at this time, but
1552  * physical device lun and target assignment are deferred (assigned
1553  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1554  */
1555 static void figure_bus_target_lun(struct ctlr_info *h,
1556         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1557         struct hpsa_scsi_dev_t *device)
1558 {
1559         u32 lunid;
1560
1561         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1562                 /* logical device */
1563                 if (unlikely(is_scsi_rev_5(h))) {
1564                         /* p1210m, logical drives lun assignments
1565                          * match SCSI REPORT LUNS data.
1566                          */
1567                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1568                         *bus = 0;
1569                         *target = 0;
1570                         *lun = (lunid & 0x3fff) + 1;
1571                 } else {
1572                         /* not p1210m... */
1573                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1574                         if (is_msa2xxx(h, device)) {
1575                                 /* msa2xxx way, put logicals on bus 1
1576                                  * and match target/lun numbers box
1577                                  * reports.
1578                                  */
1579                                 *bus = 1;
1580                                 *target = (lunid >> 16) & 0x3fff;
1581                                 *lun = lunid & 0x00ff;
1582                         } else {
1583                                 /* Traditional smart array way. */
1584                                 *bus = 0;
1585                                 *lun = 0;
1586                                 *target = lunid & 0x3fff;
1587                         }
1588                 }
1589         } else {
1590                 /* physical device */
1591                 if (is_hba_lunid(lunaddrbytes))
1592                         if (unlikely(is_scsi_rev_5(h))) {
1593                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1594                                 *target = 0;
1595                                 *lun = 0;
1596                                 return;
1597                         } else
1598                                 *bus = 3; /* traditional smartarray */
1599                 else
1600                         *bus = 2; /* physical disk */
1601                 *target = -1;
1602                 *lun = -1; /* we will fill these in later. */
1603         }
1604 }
1605
1606 /*
1607  * If there is no lun 0 on a target, linux won't find any devices.
1608  * For the MSA2xxx boxes, we have to manually detect the enclosure
1609  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1610  * it for some reason.  *tmpdevice is the target we're adding,
1611  * this_device is a pointer into the current element of currentsd[]
1612  * that we're building up in update_scsi_devices(), below.
1613  * lunzerobits is a bitmap that tracks which targets already have a
1614  * lun 0 assigned.
1615  * Returns 1 if an enclosure was added, 0 if not.
1616  */
1617 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1618         struct hpsa_scsi_dev_t *tmpdevice,
1619         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1620         int bus, int target, int lun, unsigned long lunzerobits[],
1621         int *nmsa2xxx_enclosures)
1622 {
1623         unsigned char scsi3addr[8];
1624
1625         if (test_bit(target, lunzerobits))
1626                 return 0; /* There is already a lun 0 on this target. */
1627
1628         if (!is_logical_dev_addr_mode(lunaddrbytes))
1629                 return 0; /* It's the logical targets that may lack lun 0. */
1630
1631         if (!is_msa2xxx(h, tmpdevice))
1632                 return 0; /* It's only the MSA2xxx that have this problem. */
1633
1634         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1635                 return 0;
1636
1637         if (is_hba_lunid(scsi3addr))
1638                 return 0; /* Don't add the RAID controller here. */
1639
1640         if (is_scsi_rev_5(h))
1641                 return 0; /* p1210m doesn't need to do this. */
1642
1643 #define MAX_MSA2XXX_ENCLOSURES 32
1644         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1645                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1646                         "enclosures exceeded.  Check your hardware "
1647                         "configuration.");
1648                 return 0;
1649         }
1650
1651         memset(scsi3addr, 0, 8);
1652         scsi3addr[3] = target;
1653         if (hpsa_update_device_info(h, scsi3addr, this_device))
1654                 return 0;
1655         (*nmsa2xxx_enclosures)++;
1656         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1657         set_bit(target, lunzerobits);
1658         return 1;
1659 }
1660
1661 /*
1662  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1663  * logdev.  The number of luns in physdev and logdev are returned in
1664  * *nphysicals and *nlogicals, respectively.
1665  * Returns 0 on success, -1 otherwise.
1666  */
1667 static int hpsa_gather_lun_info(struct ctlr_info *h,
1668         int reportlunsize,
1669         struct ReportLUNdata *physdev, u32 *nphysicals,
1670         struct ReportLUNdata *logdev, u32 *nlogicals)
1671 {
1672         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1673                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1674                 return -1;
1675         }
1676         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1677         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1678                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1679                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1680                         *nphysicals - HPSA_MAX_PHYS_LUN);
1681                 *nphysicals = HPSA_MAX_PHYS_LUN;
1682         }
1683         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1684                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1685                 return -1;
1686         }
1687         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1688         /* Reject Logicals in excess of our max capability. */
1689         if (*nlogicals > HPSA_MAX_LUN) {
1690                 dev_warn(&h->pdev->dev,
1691                         "maximum logical LUNs (%d) exceeded.  "
1692                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1693                         *nlogicals - HPSA_MAX_LUN);
1694                         *nlogicals = HPSA_MAX_LUN;
1695         }
1696         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1697                 dev_warn(&h->pdev->dev,
1698                         "maximum logical + physical LUNs (%d) exceeded. "
1699                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1700                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1701                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1702         }
1703         return 0;
1704 }
1705
1706 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1707         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1708         struct ReportLUNdata *logdev_list)
1709 {
1710         /* Helper function, figure out where the LUN ID info is coming from
1711          * given index i, lists of physical and logical devices, where in
1712          * the list the raid controller is supposed to appear (first or last)
1713          */
1714
1715         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1716         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1717
1718         if (i == raid_ctlr_position)
1719                 return RAID_CTLR_LUNID;
1720
1721         if (i < logicals_start)
1722                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1723
1724         if (i < last_device)
1725                 return &logdev_list->LUN[i - nphysicals -
1726                         (raid_ctlr_position == 0)][0];
1727         BUG();
1728         return NULL;
1729 }
1730
1731 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1732 {
1733         /* the idea here is we could get notified
1734          * that some devices have changed, so we do a report
1735          * physical luns and report logical luns cmd, and adjust
1736          * our list of devices accordingly.
1737          *
1738          * The scsi3addr's of devices won't change so long as the
1739          * adapter is not reset.  That means we can rescan and
1740          * tell which devices we already know about, vs. new
1741          * devices, vs.  disappearing devices.
1742          */
1743         struct ReportLUNdata *physdev_list = NULL;
1744         struct ReportLUNdata *logdev_list = NULL;
1745         unsigned char *inq_buff = NULL;
1746         u32 nphysicals = 0;
1747         u32 nlogicals = 0;
1748         u32 ndev_allocated = 0;
1749         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1750         int ncurrent = 0;
1751         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1752         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1753         int bus, target, lun;
1754         int raid_ctlr_position;
1755         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1756
1757         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1758                 GFP_KERNEL);
1759         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1760         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1761         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1762         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1763
1764         if (!currentsd || !physdev_list || !logdev_list ||
1765                 !inq_buff || !tmpdevice) {
1766                 dev_err(&h->pdev->dev, "out of memory\n");
1767                 goto out;
1768         }
1769         memset(lunzerobits, 0, sizeof(lunzerobits));
1770
1771         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1772                         logdev_list, &nlogicals))
1773                 goto out;
1774
1775         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1776          * but each of them 4 times through different paths.  The plus 1
1777          * is for the RAID controller.
1778          */
1779         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1780
1781         /* Allocate the per device structures */
1782         for (i = 0; i < ndevs_to_allocate; i++) {
1783                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1784                 if (!currentsd[i]) {
1785                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1786                                 __FILE__, __LINE__);
1787                         goto out;
1788                 }
1789                 ndev_allocated++;
1790         }
1791
1792         if (unlikely(is_scsi_rev_5(h)))
1793                 raid_ctlr_position = 0;
1794         else
1795                 raid_ctlr_position = nphysicals + nlogicals;
1796
1797         /* adjust our table of devices */
1798         nmsa2xxx_enclosures = 0;
1799         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1800                 u8 *lunaddrbytes;
1801
1802                 /* Figure out where the LUN ID info is coming from */
1803                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1804                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1805                 /* skip masked physical devices. */
1806                 if (lunaddrbytes[3] & 0xC0 &&
1807                         i < nphysicals + (raid_ctlr_position == 0))
1808                         continue;
1809
1810                 /* Get device type, vendor, model, device id */
1811                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1812                         continue; /* skip it if we can't talk to it. */
1813                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1814                         tmpdevice);
1815                 this_device = currentsd[ncurrent];
1816
1817                 /*
1818                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1819                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1820                  * is nonetheless an enclosure device there.  We have to
1821                  * present that otherwise linux won't find anything if
1822                  * there is no lun 0.
1823                  */
1824                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1825                                 lunaddrbytes, bus, target, lun, lunzerobits,
1826                                 &nmsa2xxx_enclosures)) {
1827                         ncurrent++;
1828                         this_device = currentsd[ncurrent];
1829                 }
1830
1831                 *this_device = *tmpdevice;
1832                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1833
1834                 switch (this_device->devtype) {
1835                 case TYPE_ROM: {
1836                         /* We don't *really* support actual CD-ROM devices,
1837                          * just "One Button Disaster Recovery" tape drive
1838                          * which temporarily pretends to be a CD-ROM drive.
1839                          * So we check that the device is really an OBDR tape
1840                          * device by checking for "$DR-10" in bytes 43-48 of
1841                          * the inquiry data.
1842                          */
1843                                 char obdr_sig[7];
1844 #define OBDR_TAPE_SIG "$DR-10"
1845                                 strncpy(obdr_sig, &inq_buff[43], 6);
1846                                 obdr_sig[6] = '\0';
1847                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1848                                         /* Not OBDR device, ignore it. */
1849                                         break;
1850                         }
1851                         ncurrent++;
1852                         break;
1853                 case TYPE_DISK:
1854                         if (i < nphysicals)
1855                                 break;
1856                         ncurrent++;
1857                         break;
1858                 case TYPE_TAPE:
1859                 case TYPE_MEDIUM_CHANGER:
1860                         ncurrent++;
1861                         break;
1862                 case TYPE_RAID:
1863                         /* Only present the Smartarray HBA as a RAID controller.
1864                          * If it's a RAID controller other than the HBA itself
1865                          * (an external RAID controller, MSA500 or similar)
1866                          * don't present it.
1867                          */
1868                         if (!is_hba_lunid(lunaddrbytes))
1869                                 break;
1870                         ncurrent++;
1871                         break;
1872                 default:
1873                         break;
1874                 }
1875                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1876                         break;
1877         }
1878         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1879 out:
1880         kfree(tmpdevice);
1881         for (i = 0; i < ndev_allocated; i++)
1882                 kfree(currentsd[i]);
1883         kfree(currentsd);
1884         kfree(inq_buff);
1885         kfree(physdev_list);
1886         kfree(logdev_list);
1887 }
1888
1889 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1890  * dma mapping  and fills in the scatter gather entries of the
1891  * hpsa command, cp.
1892  */
1893 static int hpsa_scatter_gather(struct pci_dev *pdev,
1894                 struct CommandList *cp,
1895                 struct scsi_cmnd *cmd)
1896 {
1897         unsigned int len;
1898         struct scatterlist *sg;
1899         u64 addr64;
1900         int use_sg, i;
1901
1902         BUG_ON(scsi_sg_count(cmd) > MAXSGENTRIES);
1903
1904         use_sg = scsi_dma_map(cmd);
1905         if (use_sg < 0)
1906                 return use_sg;
1907
1908         if (!use_sg)
1909                 goto sglist_finished;
1910
1911         scsi_for_each_sg(cmd, sg, use_sg, i) {
1912                 addr64 = (u64) sg_dma_address(sg);
1913                 len  = sg_dma_len(sg);
1914                 cp->SG[i].Addr.lower =
1915                         (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1916                 cp->SG[i].Addr.upper =
1917                         (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1918                 cp->SG[i].Len = len;
1919                 cp->SG[i].Ext = 0;  /* we are not chaining */
1920         }
1921
1922 sglist_finished:
1923
1924         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1925         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1926         return 0;
1927 }
1928
1929
1930 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
1931         void (*done)(struct scsi_cmnd *))
1932 {
1933         struct ctlr_info *h;
1934         struct hpsa_scsi_dev_t *dev;
1935         unsigned char scsi3addr[8];
1936         struct CommandList *c;
1937         unsigned long flags;
1938
1939         /* Get the ptr to our adapter structure out of cmd->host. */
1940         h = sdev_to_hba(cmd->device);
1941         dev = cmd->device->hostdata;
1942         if (!dev) {
1943                 cmd->result = DID_NO_CONNECT << 16;
1944                 done(cmd);
1945                 return 0;
1946         }
1947         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1948
1949         /* Need a lock as this is being allocated from the pool */
1950         spin_lock_irqsave(&h->lock, flags);
1951         c = cmd_alloc(h);
1952         spin_unlock_irqrestore(&h->lock, flags);
1953         if (c == NULL) {                        /* trouble... */
1954                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1955                 return SCSI_MLQUEUE_HOST_BUSY;
1956         }
1957
1958         /* Fill in the command list header */
1959
1960         cmd->scsi_done = done;    /* save this for use by completion code */
1961
1962         /* save c in case we have to abort it  */
1963         cmd->host_scribble = (unsigned char *) c;
1964
1965         c->cmd_type = CMD_SCSI;
1966         c->scsi_cmd = cmd;
1967         c->Header.ReplyQueue = 0;  /* unused in simple mode */
1968         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1969         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1970         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1971
1972         /* Fill in the request block... */
1973
1974         c->Request.Timeout = 0;
1975         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1976         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1977         c->Request.CDBLen = cmd->cmd_len;
1978         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1979         c->Request.Type.Type = TYPE_CMD;
1980         c->Request.Type.Attribute = ATTR_SIMPLE;
1981         switch (cmd->sc_data_direction) {
1982         case DMA_TO_DEVICE:
1983                 c->Request.Type.Direction = XFER_WRITE;
1984                 break;
1985         case DMA_FROM_DEVICE:
1986                 c->Request.Type.Direction = XFER_READ;
1987                 break;
1988         case DMA_NONE:
1989                 c->Request.Type.Direction = XFER_NONE;
1990                 break;
1991         case DMA_BIDIRECTIONAL:
1992                 /* This can happen if a buggy application does a scsi passthru
1993                  * and sets both inlen and outlen to non-zero. ( see
1994                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1995                  */
1996
1997                 c->Request.Type.Direction = XFER_RSVD;
1998                 /* This is technically wrong, and hpsa controllers should
1999                  * reject it with CMD_INVALID, which is the most correct
2000                  * response, but non-fibre backends appear to let it
2001                  * slide by, and give the same results as if this field
2002                  * were set correctly.  Either way is acceptable for
2003                  * our purposes here.
2004                  */
2005
2006                 break;
2007
2008         default:
2009                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2010                         cmd->sc_data_direction);
2011                 BUG();
2012                 break;
2013         }
2014
2015         if (hpsa_scatter_gather(h->pdev, c, cmd) < 0) { /* Fill SG list */
2016                 cmd_free(h, c);
2017                 return SCSI_MLQUEUE_HOST_BUSY;
2018         }
2019         enqueue_cmd_and_start_io(h, c);
2020         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2021         return 0;
2022 }
2023
2024 static void hpsa_scan_start(struct Scsi_Host *sh)
2025 {
2026         struct ctlr_info *h = shost_to_hba(sh);
2027         unsigned long flags;
2028
2029         /* wait until any scan already in progress is finished. */
2030         while (1) {
2031                 spin_lock_irqsave(&h->scan_lock, flags);
2032                 if (h->scan_finished)
2033                         break;
2034                 spin_unlock_irqrestore(&h->scan_lock, flags);
2035                 wait_event(h->scan_wait_queue, h->scan_finished);
2036                 /* Note: We don't need to worry about a race between this
2037                  * thread and driver unload because the midlayer will
2038                  * have incremented the reference count, so unload won't
2039                  * happen if we're in here.
2040                  */
2041         }
2042         h->scan_finished = 0; /* mark scan as in progress */
2043         spin_unlock_irqrestore(&h->scan_lock, flags);
2044
2045         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2046
2047         spin_lock_irqsave(&h->scan_lock, flags);
2048         h->scan_finished = 1; /* mark scan as finished. */
2049         wake_up_all(&h->scan_wait_queue);
2050         spin_unlock_irqrestore(&h->scan_lock, flags);
2051 }
2052
2053 static int hpsa_scan_finished(struct Scsi_Host *sh,
2054         unsigned long elapsed_time)
2055 {
2056         struct ctlr_info *h = shost_to_hba(sh);
2057         unsigned long flags;
2058         int finished;
2059
2060         spin_lock_irqsave(&h->scan_lock, flags);
2061         finished = h->scan_finished;
2062         spin_unlock_irqrestore(&h->scan_lock, flags);
2063         return finished;
2064 }
2065
2066 static void hpsa_unregister_scsi(struct ctlr_info *h)
2067 {
2068         /* we are being forcibly unloaded, and may not refuse. */
2069         scsi_remove_host(h->scsi_host);
2070         scsi_host_put(h->scsi_host);
2071         h->scsi_host = NULL;
2072 }
2073
2074 static int hpsa_register_scsi(struct ctlr_info *h)
2075 {
2076         int rc;
2077
2078         rc = hpsa_scsi_detect(h);
2079         if (rc != 0)
2080                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2081                         " hpsa_scsi_detect(), rc is %d\n", rc);
2082         return rc;
2083 }
2084
2085 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2086         unsigned char lunaddr[])
2087 {
2088         int rc = 0;
2089         int count = 0;
2090         int waittime = 1; /* seconds */
2091         struct CommandList *c;
2092
2093         c = cmd_special_alloc(h);
2094         if (!c) {
2095                 dev_warn(&h->pdev->dev, "out of memory in "
2096                         "wait_for_device_to_become_ready.\n");
2097                 return IO_ERROR;
2098         }
2099
2100         /* Send test unit ready until device ready, or give up. */
2101         while (count < HPSA_TUR_RETRY_LIMIT) {
2102
2103                 /* Wait for a bit.  do this first, because if we send
2104                  * the TUR right away, the reset will just abort it.
2105                  */
2106                 msleep(1000 * waittime);
2107                 count++;
2108
2109                 /* Increase wait time with each try, up to a point. */
2110                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2111                         waittime = waittime * 2;
2112
2113                 /* Send the Test Unit Ready */
2114                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2115                 hpsa_scsi_do_simple_cmd_core(h, c);
2116                 /* no unmap needed here because no data xfer. */
2117
2118                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2119                         break;
2120
2121                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2122                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2123                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2124                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2125                         break;
2126
2127                 dev_warn(&h->pdev->dev, "waiting %d secs "
2128                         "for device to become ready.\n", waittime);
2129                 rc = 1; /* device not ready. */
2130         }
2131
2132         if (rc)
2133                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2134         else
2135                 dev_warn(&h->pdev->dev, "device is ready.\n");
2136
2137         cmd_special_free(h, c);
2138         return rc;
2139 }
2140
2141 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2142  * complaining.  Doing a host- or bus-reset can't do anything good here.
2143  */
2144 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2145 {
2146         int rc;
2147         struct ctlr_info *h;
2148         struct hpsa_scsi_dev_t *dev;
2149
2150         /* find the controller to which the command to be aborted was sent */
2151         h = sdev_to_hba(scsicmd->device);
2152         if (h == NULL) /* paranoia */
2153                 return FAILED;
2154         dev = scsicmd->device->hostdata;
2155         if (!dev) {
2156                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2157                         "device lookup failed.\n");
2158                 return FAILED;
2159         }
2160         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2161                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2162         /* send a reset to the SCSI LUN which the command was sent to */
2163         rc = hpsa_send_reset(h, dev->scsi3addr);
2164         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2165                 return SUCCESS;
2166
2167         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2168         return FAILED;
2169 }
2170
2171 /*
2172  * For operations that cannot sleep, a command block is allocated at init,
2173  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2174  * which ones are free or in use.  Lock must be held when calling this.
2175  * cmd_free() is the complement.
2176  */
2177 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2178 {
2179         struct CommandList *c;
2180         int i;
2181         union u64bit temp64;
2182         dma_addr_t cmd_dma_handle, err_dma_handle;
2183
2184         do {
2185                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2186                 if (i == h->nr_cmds)
2187                         return NULL;
2188         } while (test_and_set_bit
2189                  (i & (BITS_PER_LONG - 1),
2190                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2191         c = h->cmd_pool + i;
2192         memset(c, 0, sizeof(*c));
2193         cmd_dma_handle = h->cmd_pool_dhandle
2194             + i * sizeof(*c);
2195         c->err_info = h->errinfo_pool + i;
2196         memset(c->err_info, 0, sizeof(*c->err_info));
2197         err_dma_handle = h->errinfo_pool_dhandle
2198             + i * sizeof(*c->err_info);
2199         h->nr_allocs++;
2200
2201         c->cmdindex = i;
2202
2203         INIT_HLIST_NODE(&c->list);
2204         c->busaddr = (u32) cmd_dma_handle;
2205         temp64.val = (u64) err_dma_handle;
2206         c->ErrDesc.Addr.lower = temp64.val32.lower;
2207         c->ErrDesc.Addr.upper = temp64.val32.upper;
2208         c->ErrDesc.Len = sizeof(*c->err_info);
2209
2210         c->h = h;
2211         return c;
2212 }
2213
2214 /* For operations that can wait for kmalloc to possibly sleep,
2215  * this routine can be called. Lock need not be held to call
2216  * cmd_special_alloc. cmd_special_free() is the complement.
2217  */
2218 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2219 {
2220         struct CommandList *c;
2221         union u64bit temp64;
2222         dma_addr_t cmd_dma_handle, err_dma_handle;
2223
2224         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2225         if (c == NULL)
2226                 return NULL;
2227         memset(c, 0, sizeof(*c));
2228
2229         c->cmdindex = -1;
2230
2231         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2232                     &err_dma_handle);
2233
2234         if (c->err_info == NULL) {
2235                 pci_free_consistent(h->pdev,
2236                         sizeof(*c), c, cmd_dma_handle);
2237                 return NULL;
2238         }
2239         memset(c->err_info, 0, sizeof(*c->err_info));
2240
2241         INIT_HLIST_NODE(&c->list);
2242         c->busaddr = (u32) cmd_dma_handle;
2243         temp64.val = (u64) err_dma_handle;
2244         c->ErrDesc.Addr.lower = temp64.val32.lower;
2245         c->ErrDesc.Addr.upper = temp64.val32.upper;
2246         c->ErrDesc.Len = sizeof(*c->err_info);
2247
2248         c->h = h;
2249         return c;
2250 }
2251
2252 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2253 {
2254         int i;
2255
2256         i = c - h->cmd_pool;
2257         clear_bit(i & (BITS_PER_LONG - 1),
2258                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2259         h->nr_frees++;
2260 }
2261
2262 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2263 {
2264         union u64bit temp64;
2265
2266         temp64.val32.lower = c->ErrDesc.Addr.lower;
2267         temp64.val32.upper = c->ErrDesc.Addr.upper;
2268         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2269                             c->err_info, (dma_addr_t) temp64.val);
2270         pci_free_consistent(h->pdev, sizeof(*c),
2271                             c, (dma_addr_t) c->busaddr);
2272 }
2273
2274 #ifdef CONFIG_COMPAT
2275
2276 static int do_ioctl(struct scsi_device *dev, int cmd, void *arg)
2277 {
2278         int ret;
2279
2280         lock_kernel();
2281         ret = hpsa_ioctl(dev, cmd, arg);
2282         unlock_kernel();
2283         return ret;
2284 }
2285
2286 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg);
2287 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2288         int cmd, void *arg);
2289
2290 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2291 {
2292         switch (cmd) {
2293         case CCISS_GETPCIINFO:
2294         case CCISS_GETINTINFO:
2295         case CCISS_SETINTINFO:
2296         case CCISS_GETNODENAME:
2297         case CCISS_SETNODENAME:
2298         case CCISS_GETHEARTBEAT:
2299         case CCISS_GETBUSTYPES:
2300         case CCISS_GETFIRMVER:
2301         case CCISS_GETDRIVVER:
2302         case CCISS_REVALIDVOLS:
2303         case CCISS_DEREGDISK:
2304         case CCISS_REGNEWDISK:
2305         case CCISS_REGNEWD:
2306         case CCISS_RESCANDISK:
2307         case CCISS_GETLUNINFO:
2308                 return do_ioctl(dev, cmd, arg);
2309
2310         case CCISS_PASSTHRU32:
2311                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2312         case CCISS_BIG_PASSTHRU32:
2313                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2314
2315         default:
2316                 return -ENOIOCTLCMD;
2317         }
2318 }
2319
2320 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2321 {
2322         IOCTL32_Command_struct __user *arg32 =
2323             (IOCTL32_Command_struct __user *) arg;
2324         IOCTL_Command_struct arg64;
2325         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2326         int err;
2327         u32 cp;
2328
2329         err = 0;
2330         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2331                            sizeof(arg64.LUN_info));
2332         err |= copy_from_user(&arg64.Request, &arg32->Request,
2333                            sizeof(arg64.Request));
2334         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2335                            sizeof(arg64.error_info));
2336         err |= get_user(arg64.buf_size, &arg32->buf_size);
2337         err |= get_user(cp, &arg32->buf);
2338         arg64.buf = compat_ptr(cp);
2339         err |= copy_to_user(p, &arg64, sizeof(arg64));
2340
2341         if (err)
2342                 return -EFAULT;
2343
2344         err = do_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2345         if (err)
2346                 return err;
2347         err |= copy_in_user(&arg32->error_info, &p->error_info,
2348                          sizeof(arg32->error_info));
2349         if (err)
2350                 return -EFAULT;
2351         return err;
2352 }
2353
2354 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2355         int cmd, void *arg)
2356 {
2357         BIG_IOCTL32_Command_struct __user *arg32 =
2358             (BIG_IOCTL32_Command_struct __user *) arg;
2359         BIG_IOCTL_Command_struct arg64;
2360         BIG_IOCTL_Command_struct __user *p =
2361             compat_alloc_user_space(sizeof(arg64));
2362         int err;
2363         u32 cp;
2364
2365         err = 0;
2366         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2367                            sizeof(arg64.LUN_info));
2368         err |= copy_from_user(&arg64.Request, &arg32->Request,
2369                            sizeof(arg64.Request));
2370         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2371                            sizeof(arg64.error_info));
2372         err |= get_user(arg64.buf_size, &arg32->buf_size);
2373         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2374         err |= get_user(cp, &arg32->buf);
2375         arg64.buf = compat_ptr(cp);
2376         err |= copy_to_user(p, &arg64, sizeof(arg64));
2377
2378         if (err)
2379                 return -EFAULT;
2380
2381         err = do_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2382         if (err)
2383                 return err;
2384         err |= copy_in_user(&arg32->error_info, &p->error_info,
2385                          sizeof(arg32->error_info));
2386         if (err)
2387                 return -EFAULT;
2388         return err;
2389 }
2390 #endif
2391
2392 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2393 {
2394         struct hpsa_pci_info pciinfo;
2395
2396         if (!argp)
2397                 return -EINVAL;
2398         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2399         pciinfo.bus = h->pdev->bus->number;
2400         pciinfo.dev_fn = h->pdev->devfn;
2401         pciinfo.board_id = h->board_id;
2402         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2403                 return -EFAULT;
2404         return 0;
2405 }
2406
2407 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2408 {
2409         DriverVer_type DriverVer;
2410         unsigned char vmaj, vmin, vsubmin;
2411         int rc;
2412
2413         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2414                 &vmaj, &vmin, &vsubmin);
2415         if (rc != 3) {
2416                 dev_info(&h->pdev->dev, "driver version string '%s' "
2417                         "unrecognized.", HPSA_DRIVER_VERSION);
2418                 vmaj = 0;
2419                 vmin = 0;
2420                 vsubmin = 0;
2421         }
2422         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2423         if (!argp)
2424                 return -EINVAL;
2425         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2426                 return -EFAULT;
2427         return 0;
2428 }
2429
2430 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2431 {
2432         IOCTL_Command_struct iocommand;
2433         struct CommandList *c;
2434         char *buff = NULL;
2435         union u64bit temp64;
2436
2437         if (!argp)
2438                 return -EINVAL;
2439         if (!capable(CAP_SYS_RAWIO))
2440                 return -EPERM;
2441         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2442                 return -EFAULT;
2443         if ((iocommand.buf_size < 1) &&
2444             (iocommand.Request.Type.Direction != XFER_NONE)) {
2445                 return -EINVAL;
2446         }
2447         if (iocommand.buf_size > 0) {
2448                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2449                 if (buff == NULL)
2450                         return -EFAULT;
2451         }
2452         if (iocommand.Request.Type.Direction == XFER_WRITE) {
2453                 /* Copy the data into the buffer we created */
2454                 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2455                         kfree(buff);
2456                         return -EFAULT;
2457                 }
2458         } else
2459                 memset(buff, 0, iocommand.buf_size);
2460         c = cmd_special_alloc(h);
2461         if (c == NULL) {
2462                 kfree(buff);
2463                 return -ENOMEM;
2464         }
2465         /* Fill in the command type */
2466         c->cmd_type = CMD_IOCTL_PEND;
2467         /* Fill in Command Header */
2468         c->Header.ReplyQueue = 0; /* unused in simple mode */
2469         if (iocommand.buf_size > 0) {   /* buffer to fill */
2470                 c->Header.SGList = 1;
2471                 c->Header.SGTotal = 1;
2472         } else  { /* no buffers to fill */
2473                 c->Header.SGList = 0;
2474                 c->Header.SGTotal = 0;
2475         }
2476         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2477         /* use the kernel address the cmd block for tag */
2478         c->Header.Tag.lower = c->busaddr;
2479
2480         /* Fill in Request block */
2481         memcpy(&c->Request, &iocommand.Request,
2482                 sizeof(c->Request));
2483
2484         /* Fill in the scatter gather information */
2485         if (iocommand.buf_size > 0) {
2486                 temp64.val = pci_map_single(h->pdev, buff,
2487                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2488                 c->SG[0].Addr.lower = temp64.val32.lower;
2489                 c->SG[0].Addr.upper = temp64.val32.upper;
2490                 c->SG[0].Len = iocommand.buf_size;
2491                 c->SG[0].Ext = 0; /* we are not chaining*/
2492         }
2493         hpsa_scsi_do_simple_cmd_core(h, c);
2494         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2495         check_ioctl_unit_attention(h, c);
2496
2497         /* Copy the error information out */
2498         memcpy(&iocommand.error_info, c->err_info,
2499                 sizeof(iocommand.error_info));
2500         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2501                 kfree(buff);
2502                 cmd_special_free(h, c);
2503                 return -EFAULT;
2504         }
2505
2506         if (iocommand.Request.Type.Direction == XFER_READ) {
2507                 /* Copy the data out of the buffer we created */
2508                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2509                         kfree(buff);
2510                         cmd_special_free(h, c);
2511                         return -EFAULT;
2512                 }
2513         }
2514         kfree(buff);
2515         cmd_special_free(h, c);
2516         return 0;
2517 }
2518
2519 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2520 {
2521         BIG_IOCTL_Command_struct *ioc;
2522         struct CommandList *c;
2523         unsigned char **buff = NULL;
2524         int *buff_size = NULL;
2525         union u64bit temp64;
2526         BYTE sg_used = 0;
2527         int status = 0;
2528         int i;
2529         u32 left;
2530         u32 sz;
2531         BYTE __user *data_ptr;
2532
2533         if (!argp)
2534                 return -EINVAL;
2535         if (!capable(CAP_SYS_RAWIO))
2536                 return -EPERM;
2537         ioc = (BIG_IOCTL_Command_struct *)
2538             kmalloc(sizeof(*ioc), GFP_KERNEL);
2539         if (!ioc) {
2540                 status = -ENOMEM;
2541                 goto cleanup1;
2542         }
2543         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2544                 status = -EFAULT;
2545                 goto cleanup1;
2546         }
2547         if ((ioc->buf_size < 1) &&
2548             (ioc->Request.Type.Direction != XFER_NONE)) {
2549                 status = -EINVAL;
2550                 goto cleanup1;
2551         }
2552         /* Check kmalloc limits  using all SGs */
2553         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2554                 status = -EINVAL;
2555                 goto cleanup1;
2556         }
2557         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2558                 status = -EINVAL;
2559                 goto cleanup1;
2560         }
2561         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2562         if (!buff) {
2563                 status = -ENOMEM;
2564                 goto cleanup1;
2565         }
2566         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2567         if (!buff_size) {
2568                 status = -ENOMEM;
2569                 goto cleanup1;
2570         }
2571         left = ioc->buf_size;
2572         data_ptr = ioc->buf;
2573         while (left) {
2574                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2575                 buff_size[sg_used] = sz;
2576                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2577                 if (buff[sg_used] == NULL) {
2578                         status = -ENOMEM;
2579                         goto cleanup1;
2580                 }
2581                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2582                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2583                                 status = -ENOMEM;
2584                                 goto cleanup1;
2585                         }
2586                 } else
2587                         memset(buff[sg_used], 0, sz);
2588                 left -= sz;
2589                 data_ptr += sz;
2590                 sg_used++;
2591         }
2592         c = cmd_special_alloc(h);
2593         if (c == NULL) {
2594                 status = -ENOMEM;
2595                 goto cleanup1;
2596         }
2597         c->cmd_type = CMD_IOCTL_PEND;
2598         c->Header.ReplyQueue = 0;
2599
2600         if (ioc->buf_size > 0) {
2601                 c->Header.SGList = sg_used;
2602                 c->Header.SGTotal = sg_used;
2603         } else {
2604                 c->Header.SGList = 0;
2605                 c->Header.SGTotal = 0;
2606         }
2607         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2608         c->Header.Tag.lower = c->busaddr;
2609         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2610         if (ioc->buf_size > 0) {
2611                 int i;
2612                 for (i = 0; i < sg_used; i++) {
2613                         temp64.val = pci_map_single(h->pdev, buff[i],
2614                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2615                         c->SG[i].Addr.lower = temp64.val32.lower;
2616                         c->SG[i].Addr.upper = temp64.val32.upper;
2617                         c->SG[i].Len = buff_size[i];
2618                         /* we are not chaining */
2619                         c->SG[i].Ext = 0;
2620                 }
2621         }
2622         hpsa_scsi_do_simple_cmd_core(h, c);
2623         hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2624         check_ioctl_unit_attention(h, c);
2625         /* Copy the error information out */
2626         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2627         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2628                 cmd_special_free(h, c);
2629                 status = -EFAULT;
2630                 goto cleanup1;
2631         }
2632         if (ioc->Request.Type.Direction == XFER_READ) {
2633                 /* Copy the data out of the buffer we created */
2634                 BYTE __user *ptr = ioc->buf;
2635                 for (i = 0; i < sg_used; i++) {
2636                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2637                                 cmd_special_free(h, c);
2638                                 status = -EFAULT;
2639                                 goto cleanup1;
2640                         }
2641                         ptr += buff_size[i];
2642                 }
2643         }
2644         cmd_special_free(h, c);
2645         status = 0;
2646 cleanup1:
2647         if (buff) {
2648                 for (i = 0; i < sg_used; i++)
2649                         kfree(buff[i]);
2650                 kfree(buff);
2651         }
2652         kfree(buff_size);
2653         kfree(ioc);
2654         return status;
2655 }
2656
2657 static void check_ioctl_unit_attention(struct ctlr_info *h,
2658         struct CommandList *c)
2659 {
2660         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2661                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2662                 (void) check_for_unit_attention(h, c);
2663 }
2664 /*
2665  * ioctl
2666  */
2667 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2668 {
2669         struct ctlr_info *h;
2670         void __user *argp = (void __user *)arg;
2671
2672         h = sdev_to_hba(dev);
2673
2674         switch (cmd) {
2675         case CCISS_DEREGDISK:
2676         case CCISS_REGNEWDISK:
2677         case CCISS_REGNEWD:
2678                 hpsa_scan_start(h->scsi_host);
2679                 return 0;
2680         case CCISS_GETPCIINFO:
2681                 return hpsa_getpciinfo_ioctl(h, argp);
2682         case CCISS_GETDRIVVER:
2683                 return hpsa_getdrivver_ioctl(h, argp);
2684         case CCISS_PASSTHRU:
2685                 return hpsa_passthru_ioctl(h, argp);
2686         case CCISS_BIG_PASSTHRU:
2687                 return hpsa_big_passthru_ioctl(h, argp);
2688         default:
2689                 return -ENOTTY;
2690         }
2691 }
2692
2693 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2694         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2695         int cmd_type)
2696 {
2697         int pci_dir = XFER_NONE;
2698
2699         c->cmd_type = CMD_IOCTL_PEND;
2700         c->Header.ReplyQueue = 0;
2701         if (buff != NULL && size > 0) {
2702                 c->Header.SGList = 1;
2703                 c->Header.SGTotal = 1;
2704         } else {
2705                 c->Header.SGList = 0;
2706                 c->Header.SGTotal = 0;
2707         }
2708         c->Header.Tag.lower = c->busaddr;
2709         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2710
2711         c->Request.Type.Type = cmd_type;
2712         if (cmd_type == TYPE_CMD) {
2713                 switch (cmd) {
2714                 case HPSA_INQUIRY:
2715                         /* are we trying to read a vital product page */
2716                         if (page_code != 0) {
2717                                 c->Request.CDB[1] = 0x01;
2718                                 c->Request.CDB[2] = page_code;
2719                         }
2720                         c->Request.CDBLen = 6;
2721                         c->Request.Type.Attribute = ATTR_SIMPLE;
2722                         c->Request.Type.Direction = XFER_READ;
2723                         c->Request.Timeout = 0;
2724                         c->Request.CDB[0] = HPSA_INQUIRY;
2725                         c->Request.CDB[4] = size & 0xFF;
2726                         break;
2727                 case HPSA_REPORT_LOG:
2728                 case HPSA_REPORT_PHYS:
2729                         /* Talking to controller so It's a physical command
2730                            mode = 00 target = 0.  Nothing to write.
2731                          */
2732                         c->Request.CDBLen = 12;
2733                         c->Request.Type.Attribute = ATTR_SIMPLE;
2734                         c->Request.Type.Direction = XFER_READ;
2735                         c->Request.Timeout = 0;
2736                         c->Request.CDB[0] = cmd;
2737                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2738                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2739                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2740                         c->Request.CDB[9] = size & 0xFF;
2741                         break;
2742
2743                 case HPSA_READ_CAPACITY:
2744                         c->Request.CDBLen = 10;
2745                         c->Request.Type.Attribute = ATTR_SIMPLE;
2746                         c->Request.Type.Direction = XFER_READ;
2747                         c->Request.Timeout = 0;
2748                         c->Request.CDB[0] = cmd;
2749                         break;
2750                 case HPSA_CACHE_FLUSH:
2751                         c->Request.CDBLen = 12;
2752                         c->Request.Type.Attribute = ATTR_SIMPLE;
2753                         c->Request.Type.Direction = XFER_WRITE;
2754                         c->Request.Timeout = 0;
2755                         c->Request.CDB[0] = BMIC_WRITE;
2756                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2757                         break;
2758                 case TEST_UNIT_READY:
2759                         c->Request.CDBLen = 6;
2760                         c->Request.Type.Attribute = ATTR_SIMPLE;
2761                         c->Request.Type.Direction = XFER_NONE;
2762                         c->Request.Timeout = 0;
2763                         break;
2764                 default:
2765                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2766                         BUG();
2767                         return;
2768                 }
2769         } else if (cmd_type == TYPE_MSG) {
2770                 switch (cmd) {
2771
2772                 case  HPSA_DEVICE_RESET_MSG:
2773                         c->Request.CDBLen = 16;
2774                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2775                         c->Request.Type.Attribute = ATTR_SIMPLE;
2776                         c->Request.Type.Direction = XFER_NONE;
2777                         c->Request.Timeout = 0; /* Don't time out */
2778                         c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2779                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2780                         /* If bytes 4-7 are zero, it means reset the */
2781                         /* LunID device */
2782                         c->Request.CDB[4] = 0x00;
2783                         c->Request.CDB[5] = 0x00;
2784                         c->Request.CDB[6] = 0x00;
2785                         c->Request.CDB[7] = 0x00;
2786                 break;
2787
2788                 default:
2789                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2790                                 cmd);
2791                         BUG();
2792                 }
2793         } else {
2794                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2795                 BUG();
2796         }
2797
2798         switch (c->Request.Type.Direction) {
2799         case XFER_READ:
2800                 pci_dir = PCI_DMA_FROMDEVICE;
2801                 break;
2802         case XFER_WRITE:
2803                 pci_dir = PCI_DMA_TODEVICE;
2804                 break;
2805         case XFER_NONE:
2806                 pci_dir = PCI_DMA_NONE;
2807                 break;
2808         default:
2809                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2810         }
2811
2812         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2813
2814         return;
2815 }
2816
2817 /*
2818  * Map (physical) PCI mem into (virtual) kernel space
2819  */
2820 static void __iomem *remap_pci_mem(ulong base, ulong size)
2821 {
2822         ulong page_base = ((ulong) base) & PAGE_MASK;
2823         ulong page_offs = ((ulong) base) - page_base;
2824         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2825
2826         return page_remapped ? (page_remapped + page_offs) : NULL;
2827 }
2828
2829 /* Takes cmds off the submission queue and sends them to the hardware,
2830  * then puts them on the queue of cmds waiting for completion.
2831  */
2832 static void start_io(struct ctlr_info *h)
2833 {
2834         struct CommandList *c;
2835
2836         while (!hlist_empty(&h->reqQ)) {
2837                 c = hlist_entry(h->reqQ.first, struct CommandList, list);
2838                 /* can't do anything if fifo is full */
2839                 if ((h->access.fifo_full(h))) {
2840                         dev_warn(&h->pdev->dev, "fifo full\n");
2841                         break;
2842                 }
2843
2844                 /* Get the first entry from the Request Q */
2845                 removeQ(c);
2846                 h->Qdepth--;
2847
2848                 /* Tell the controller execute command */
2849                 h->access.submit_command(h, c);
2850
2851                 /* Put job onto the completed Q */
2852                 addQ(&h->cmpQ, c);
2853         }
2854 }
2855
2856 static inline unsigned long get_next_completion(struct ctlr_info *h)
2857 {
2858         return h->access.command_completed(h);
2859 }
2860
2861 static inline bool interrupt_pending(struct ctlr_info *h)
2862 {
2863         return h->access.intr_pending(h);
2864 }
2865
2866 static inline long interrupt_not_for_us(struct ctlr_info *h)
2867 {
2868         return !(h->msi_vector || h->msix_vector) &&
2869                 ((h->access.intr_pending(h) == 0) ||
2870                 (h->interrupts_enabled == 0));
2871 }
2872
2873 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2874         u32 raw_tag)
2875 {
2876         if (unlikely(tag_index >= h->nr_cmds)) {
2877                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2878                 return 1;
2879         }
2880         return 0;
2881 }
2882
2883 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2884 {
2885         removeQ(c);
2886         if (likely(c->cmd_type == CMD_SCSI))
2887                 complete_scsi_command(c, 0, raw_tag);
2888         else if (c->cmd_type == CMD_IOCTL_PEND)
2889                 complete(c->waiting);
2890 }
2891
2892 static inline u32 hpsa_tag_contains_index(u32 tag)
2893 {
2894 #define DIRECT_LOOKUP_BIT 0x10
2895         return tag & DIRECT_LOOKUP_BIT;
2896 }
2897
2898 static inline u32 hpsa_tag_to_index(u32 tag)
2899 {
2900 #define DIRECT_LOOKUP_SHIFT 5
2901         return tag >> DIRECT_LOOKUP_SHIFT;
2902 }
2903
2904 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2905 {
2906 #define HPSA_ERROR_BITS 0x03
2907         return tag & ~HPSA_ERROR_BITS;
2908 }
2909
2910 /* process completion of an indexed ("direct lookup") command */
2911 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2912         u32 raw_tag)
2913 {
2914         u32 tag_index;
2915         struct CommandList *c;
2916
2917         tag_index = hpsa_tag_to_index(raw_tag);
2918         if (bad_tag(h, tag_index, raw_tag))
2919                 return next_command(h);
2920         c = h->cmd_pool + tag_index;
2921         finish_cmd(c, raw_tag);
2922         return next_command(h);
2923 }
2924
2925 /* process completion of a non-indexed command */
2926 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2927         u32 raw_tag)
2928 {
2929         u32 tag;
2930         struct CommandList *c = NULL;
2931         struct hlist_node *tmp;
2932
2933         tag = hpsa_tag_discard_error_bits(raw_tag);
2934         hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2935                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2936                         finish_cmd(c, raw_tag);
2937                         return next_command(h);
2938                 }
2939         }
2940         bad_tag(h, h->nr_cmds + 1, raw_tag);
2941         return next_command(h);
2942 }
2943
2944 static irqreturn_t do_hpsa_intr(int irq, void *dev_id)
2945 {
2946         struct ctlr_info *h = dev_id;
2947         unsigned long flags;
2948         u32 raw_tag;
2949
2950         if (interrupt_not_for_us(h))
2951                 return IRQ_NONE;
2952         spin_lock_irqsave(&h->lock, flags);
2953         raw_tag = get_next_completion(h);
2954         while (raw_tag != FIFO_EMPTY) {
2955                 if (hpsa_tag_contains_index(raw_tag))
2956                         raw_tag = process_indexed_cmd(h, raw_tag);
2957                 else
2958                         raw_tag = process_nonindexed_cmd(h, raw_tag);
2959         }
2960         spin_unlock_irqrestore(&h->lock, flags);
2961         return IRQ_HANDLED;
2962 }
2963
2964 /* Send a message CDB to the firmwart. */
2965 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2966                                                 unsigned char type)
2967 {
2968         struct Command {
2969                 struct CommandListHeader CommandHeader;
2970                 struct RequestBlock Request;
2971                 struct ErrDescriptor ErrorDescriptor;
2972         };
2973         struct Command *cmd;
2974         static const size_t cmd_sz = sizeof(*cmd) +
2975                                         sizeof(cmd->ErrorDescriptor);
2976         dma_addr_t paddr64;
2977         uint32_t paddr32, tag;
2978         void __iomem *vaddr;
2979         int i, err;
2980
2981         vaddr = pci_ioremap_bar(pdev, 0);
2982         if (vaddr == NULL)
2983                 return -ENOMEM;
2984
2985         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
2986          * CCISS commands, so they must be allocated from the lower 4GiB of
2987          * memory.
2988          */
2989         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2990         if (err) {
2991                 iounmap(vaddr);
2992                 return -ENOMEM;
2993         }
2994
2995         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2996         if (cmd == NULL) {
2997                 iounmap(vaddr);
2998                 return -ENOMEM;
2999         }
3000
3001         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3002          * although there's no guarantee, we assume that the address is at
3003          * least 4-byte aligned (most likely, it's page-aligned).
3004          */
3005         paddr32 = paddr64;
3006
3007         cmd->CommandHeader.ReplyQueue = 0;
3008         cmd->CommandHeader.SGList = 0;
3009         cmd->CommandHeader.SGTotal = 0;
3010         cmd->CommandHeader.Tag.lower = paddr32;
3011         cmd->CommandHeader.Tag.upper = 0;
3012         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3013
3014         cmd->Request.CDBLen = 16;
3015         cmd->Request.Type.Type = TYPE_MSG;
3016         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3017         cmd->Request.Type.Direction = XFER_NONE;
3018         cmd->Request.Timeout = 0; /* Don't time out */
3019         cmd->Request.CDB[0] = opcode;
3020         cmd->Request.CDB[1] = type;
3021         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3022         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3023         cmd->ErrorDescriptor.Addr.upper = 0;
3024         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3025
3026         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3027
3028         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3029                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3030                 if (hpsa_tag_discard_error_bits(tag) == paddr32)
3031                         break;
3032                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3033         }
3034
3035         iounmap(vaddr);
3036
3037         /* we leak the DMA buffer here ... no choice since the controller could
3038          *  still complete the command.
3039          */
3040         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3041                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3042                         opcode, type);
3043                 return -ETIMEDOUT;
3044         }
3045
3046         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3047
3048         if (tag & HPSA_ERROR_BIT) {
3049                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3050                         opcode, type);
3051                 return -EIO;
3052         }
3053
3054         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3055                 opcode, type);
3056         return 0;
3057 }
3058
3059 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3060 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3061
3062 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
3063 {
3064 /* the #defines are stolen from drivers/pci/msi.h. */
3065 #define msi_control_reg(base)           (base + PCI_MSI_FLAGS)
3066 #define PCI_MSIX_FLAGS_ENABLE           (1 << 15)
3067
3068         int pos;
3069         u16 control = 0;
3070
3071         pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3072         if (pos) {
3073                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3074                 if (control & PCI_MSI_FLAGS_ENABLE) {
3075                         dev_info(&pdev->dev, "resetting MSI\n");
3076                         pci_write_config_word(pdev, msi_control_reg(pos),
3077                                         control & ~PCI_MSI_FLAGS_ENABLE);
3078                 }
3079         }
3080
3081         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3082         if (pos) {
3083                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3084                 if (control & PCI_MSIX_FLAGS_ENABLE) {
3085                         dev_info(&pdev->dev, "resetting MSI-X\n");
3086                         pci_write_config_word(pdev, msi_control_reg(pos),
3087                                         control & ~PCI_MSIX_FLAGS_ENABLE);
3088                 }
3089         }
3090
3091         return 0;
3092 }
3093
3094 /* This does a hard reset of the controller using PCI power management
3095  * states.
3096  */
3097 static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev)
3098 {
3099         u16 pmcsr, saved_config_space[32];
3100         int i, pos;
3101
3102         dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3103
3104         /* This is very nearly the same thing as
3105          *
3106          * pci_save_state(pci_dev);
3107          * pci_set_power_state(pci_dev, PCI_D3hot);
3108          * pci_set_power_state(pci_dev, PCI_D0);
3109          * pci_restore_state(pci_dev);
3110          *
3111          * but we can't use these nice canned kernel routines on
3112          * kexec, because they also check the MSI/MSI-X state in PCI
3113          * configuration space and do the wrong thing when it is
3114          * set/cleared.  Also, the pci_save/restore_state functions
3115          * violate the ordering requirements for restoring the
3116          * configuration space from the CCISS document (see the
3117          * comment below).  So we roll our own ....
3118          */
3119
3120         for (i = 0; i < 32; i++)
3121                 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3122
3123         pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3124         if (pos == 0) {
3125                 dev_err(&pdev->dev,
3126                         "hpsa_reset_controller: PCI PM not supported\n");
3127                 return -ENODEV;
3128         }
3129
3130         /* Quoting from the Open CISS Specification: "The Power
3131          * Management Control/Status Register (CSR) controls the power
3132          * state of the device.  The normal operating state is D0,
3133          * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3134          * the controller, place the interface device in D3 then to
3135          * D0, this causes a secondary PCI reset which will reset the
3136          * controller."
3137          */
3138
3139         /* enter the D3hot power management state */
3140         pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3141         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3142         pmcsr |= PCI_D3hot;
3143         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3144
3145         msleep(500);
3146
3147         /* enter the D0 power management state */
3148         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3149         pmcsr |= PCI_D0;
3150         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3151
3152         msleep(500);
3153
3154         /* Restore the PCI configuration space.  The Open CISS
3155          * Specification says, "Restore the PCI Configuration
3156          * Registers, offsets 00h through 60h. It is important to
3157          * restore the command register, 16-bits at offset 04h,
3158          * last. Do not restore the configuration status register,
3159          * 16-bits at offset 06h."  Note that the offset is 2*i.
3160          */
3161         for (i = 0; i < 32; i++) {
3162                 if (i == 2 || i == 3)
3163                         continue;
3164                 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3165         }
3166         wmb();
3167         pci_write_config_word(pdev, 4, saved_config_space[2]);
3168
3169         return 0;
3170 }
3171
3172 /*
3173  *  We cannot read the structure directly, for portability we must use
3174  *   the io functions.
3175  *   This is for debug only.
3176  */
3177 #ifdef HPSA_DEBUG
3178 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3179 {
3180         int i;
3181         char temp_name[17];
3182
3183         dev_info(dev, "Controller Configuration information\n");
3184         dev_info(dev, "------------------------------------\n");
3185         for (i = 0; i < 4; i++)
3186                 temp_name[i] = readb(&(tb->Signature[i]));
3187         temp_name[4] = '\0';
3188         dev_info(dev, "   Signature = %s\n", temp_name);
3189         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3190         dev_info(dev, "   Transport methods supported = 0x%x\n",
3191                readl(&(tb->TransportSupport)));
3192         dev_info(dev, "   Transport methods active = 0x%x\n",
3193                readl(&(tb->TransportActive)));
3194         dev_info(dev, "   Requested transport Method = 0x%x\n",
3195                readl(&(tb->HostWrite.TransportRequest)));
3196         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3197                readl(&(tb->HostWrite.CoalIntDelay)));
3198         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3199                readl(&(tb->HostWrite.CoalIntCount)));
3200         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3201                readl(&(tb->CmdsOutMax)));
3202         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3203         for (i = 0; i < 16; i++)
3204                 temp_name[i] = readb(&(tb->ServerName[i]));
3205         temp_name[16] = '\0';
3206         dev_info(dev, "   Server Name = %s\n", temp_name);
3207         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3208                 readl(&(tb->HeartBeat)));
3209 }
3210 #endif                          /* HPSA_DEBUG */
3211
3212 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3213 {
3214         int i, offset, mem_type, bar_type;
3215
3216         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3217                 return 0;
3218         offset = 0;
3219         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3220                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3221                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3222                         offset += 4;
3223                 else {
3224                         mem_type = pci_resource_flags(pdev, i) &
3225                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3226                         switch (mem_type) {
3227                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3228                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3229                                 offset += 4;    /* 32 bit */
3230                                 break;
3231                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3232                                 offset += 8;
3233                                 break;
3234                         default:        /* reserved in PCI 2.2 */
3235                                 dev_warn(&pdev->dev,
3236                                        "base address is invalid\n");
3237                                 return -1;
3238                                 break;
3239                         }
3240                 }
3241                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3242                         return i + 1;
3243         }
3244         return -1;
3245 }
3246
3247 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3248  * controllers that are capable. If not, we use IO-APIC mode.
3249  */
3250
3251 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h,
3252                                            struct pci_dev *pdev, u32 board_id)
3253 {
3254 #ifdef CONFIG_PCI_MSI
3255         int err;
3256         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3257         {0, 2}, {0, 3}
3258         };
3259
3260         /* Some boards advertise MSI but don't really support it */
3261         if ((board_id == 0x40700E11) ||
3262             (board_id == 0x40800E11) ||
3263             (board_id == 0x40820E11) || (board_id == 0x40830E11))
3264                 goto default_int_mode;
3265         if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3266                 dev_info(&pdev->dev, "MSIX\n");
3267                 err = pci_enable_msix(pdev, hpsa_msix_entries, 4);
3268                 if (!err) {
3269                         h->intr[0] = hpsa_msix_entries[0].vector;
3270                         h->intr[1] = hpsa_msix_entries[1].vector;
3271                         h->intr[2] = hpsa_msix_entries[2].vector;
3272                         h->intr[3] = hpsa_msix_entries[3].vector;
3273                         h->msix_vector = 1;
3274                         return;
3275                 }
3276                 if (err > 0) {
3277                         dev_warn(&pdev->dev, "only %d MSI-X vectors "
3278                                "available\n", err);
3279                         goto default_int_mode;
3280                 } else {
3281                         dev_warn(&pdev->dev, "MSI-X init failed %d\n",
3282                                err);
3283                         goto default_int_mode;
3284                 }
3285         }
3286         if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3287                 dev_info(&pdev->dev, "MSI\n");
3288                 if (!pci_enable_msi(pdev))
3289                         h->msi_vector = 1;
3290                 else
3291                         dev_warn(&pdev->dev, "MSI init failed\n");
3292         }
3293 default_int_mode:
3294 #endif                          /* CONFIG_PCI_MSI */
3295         /* if we get here we're going to use the default interrupt mode */
3296         h->intr[PERF_MODE_INT] = pdev->irq;
3297 }
3298
3299 static int hpsa_pci_init(struct ctlr_info *h, struct pci_dev *pdev)
3300 {
3301         ushort subsystem_vendor_id, subsystem_device_id, command;
3302         u32 board_id, scratchpad = 0;
3303         u64 cfg_offset;
3304         u32 cfg_base_addr;
3305         u64 cfg_base_addr_index;
3306         u32 trans_offset;
3307         int i, prod_index, err;
3308
3309         subsystem_vendor_id = pdev->subsystem_vendor;
3310         subsystem_device_id = pdev->subsystem_device;
3311         board_id = (((u32) (subsystem_device_id << 16) & 0xffff0000) |
3312                     subsystem_vendor_id);
3313
3314         for (i = 0; i < ARRAY_SIZE(products); i++)
3315                 if (board_id == products[i].board_id)
3316                         break;
3317
3318         prod_index = i;
3319
3320         if (prod_index == ARRAY_SIZE(products)) {
3321                 prod_index--;
3322                 if (subsystem_vendor_id != PCI_VENDOR_ID_HP ||
3323                                 !hpsa_allow_any) {
3324                         dev_warn(&pdev->dev, "unrecognized board ID:"
3325                                 " 0x%08lx, ignoring.\n",
3326                                 (unsigned long) board_id);
3327                         return -ENODEV;
3328                 }
3329         }
3330         /* check to see if controller has been disabled
3331          * BEFORE trying to enable it
3332          */
3333         (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3334         if (!(command & 0x02)) {
3335                 dev_warn(&pdev->dev, "controller appears to be disabled\n");
3336                 return -ENODEV;
3337         }
3338
3339         err = pci_enable_device(pdev);
3340         if (err) {
3341                 dev_warn(&pdev->dev, "unable to enable PCI device\n");
3342                 return err;
3343         }
3344
3345         err = pci_request_regions(pdev, "hpsa");
3346         if (err) {
3347                 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
3348                 return err;
3349         }
3350
3351         /* If the kernel supports MSI/MSI-X we will try to enable that,
3352          * else we use the IO-APIC interrupt assigned to us by system ROM.
3353          */
3354         hpsa_interrupt_mode(h, pdev, board_id);
3355
3356         /* find the memory BAR */
3357         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3358                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3359                         break;
3360         }
3361         if (i == DEVICE_COUNT_RESOURCE) {
3362                 dev_warn(&pdev->dev, "no memory BAR found\n");
3363                 err = -ENODEV;
3364                 goto err_out_free_res;
3365         }
3366
3367         h->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3368                                                  * already removed
3369                                                  */
3370
3371         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3372
3373         /* Wait for the board to become ready.  */
3374         for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3375                 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3376                 if (scratchpad == HPSA_FIRMWARE_READY)
3377                         break;
3378                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3379         }
3380         if (scratchpad != HPSA_FIRMWARE_READY) {
3381                 dev_warn(&pdev->dev, "board not ready, timed out.\n");
3382                 err = -ENODEV;
3383                 goto err_out_free_res;
3384         }
3385
3386         /* get the address index number */
3387         cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET);
3388         cfg_base_addr &= (u32) 0x0000ffff;
3389         cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3390         if (cfg_base_addr_index == -1) {
3391                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3392                 err = -ENODEV;
3393                 goto err_out_free_res;
3394         }
3395
3396         cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET);
3397         h->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3398                                cfg_base_addr_index) + cfg_offset,
3399                                 sizeof(h->cfgtable));
3400         /* Find performant mode table. */
3401         trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3402         h->transtable = remap_pci_mem(pci_resource_start(pdev,
3403                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3404                                 sizeof(*h->transtable));
3405
3406         h->board_id = board_id;
3407         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3408         h->product_name = products[prod_index].product_name;
3409         h->access = *(products[prod_index].access);
3410         /* Allow room for some ioctls */
3411         h->nr_cmds = h->max_commands - 4;
3412
3413         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3414             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3415             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3416             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3417                 dev_warn(&pdev->dev, "not a valid CISS config table\n");
3418                 err = -ENODEV;
3419                 goto err_out_free_res;
3420         }
3421 #ifdef CONFIG_X86
3422         {
3423                 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3424                 u32 prefetch;
3425                 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3426                 prefetch |= 0x100;
3427                 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3428         }
3429 #endif
3430
3431         /* Disabling DMA prefetch for the P600
3432          * An ASIC bug may result in a prefetch beyond
3433          * physical memory.
3434          */
3435         if (board_id == 0x3225103C) {
3436                 u32 dma_prefetch;
3437                 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3438                 dma_prefetch |= 0x8000;
3439                 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3440         }
3441
3442         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3443         /* Update the field, and then ring the doorbell */
3444         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3445         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3446
3447         /* under certain very rare conditions, this can take awhile.
3448          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3449          * as we enter this code.)
3450          */
3451         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3452                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3453                         break;
3454                 /* delay and try again */
3455                 msleep(10);
3456         }
3457
3458 #ifdef HPSA_DEBUG
3459         print_cfg_table(&pdev->dev, h->cfgtable);
3460 #endif                          /* HPSA_DEBUG */
3461
3462         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3463                 dev_warn(&pdev->dev, "unable to get board into simple mode\n");
3464                 err = -ENODEV;
3465                 goto err_out_free_res;
3466         }
3467         return 0;
3468
3469 err_out_free_res:
3470         /*
3471          * Deliberately omit pci_disable_device(): it does something nasty to
3472          * Smart Array controllers that pci_enable_device does not undo
3473          */
3474         pci_release_regions(pdev);
3475         return err;
3476 }
3477
3478 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3479 {
3480         int rc;
3481
3482 #define HBA_INQUIRY_BYTE_COUNT 64
3483         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3484         if (!h->hba_inquiry_data)
3485                 return;
3486         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3487                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3488         if (rc != 0) {
3489                 kfree(h->hba_inquiry_data);
3490                 h->hba_inquiry_data = NULL;
3491         }
3492 }
3493
3494 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3495                                     const struct pci_device_id *ent)
3496 {
3497         int i, rc;
3498         int dac;
3499         struct ctlr_info *h;
3500
3501         if (number_of_controllers == 0)
3502                 printk(KERN_INFO DRIVER_NAME "\n");
3503         if (reset_devices) {
3504                 /* Reset the controller with a PCI power-cycle */
3505                 if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev))
3506                         return -ENODEV;
3507
3508                 /* Some devices (notably the HP Smart Array 5i Controller)
3509                    need a little pause here */
3510                 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3511
3512                 /* Now try to get the controller to respond to a no-op */
3513                 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3514                         if (hpsa_noop(pdev) == 0)
3515                                 break;
3516                         else
3517                                 dev_warn(&pdev->dev, "no-op failed%s\n",
3518                                                 (i < 11 ? "; re-trying" : ""));
3519                 }
3520         }
3521
3522         /* Command structures must be aligned on a 32-byte boundary because
3523          * the 5 lower bits of the address are used by the hardware. and by
3524          * the driver.  See comments in hpsa.h for more info.
3525          */
3526 #define COMMANDLIST_ALIGNMENT 32
3527         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3528         h = kzalloc(sizeof(*h), GFP_KERNEL);
3529         if (!h)
3530                 return -ENOMEM;
3531
3532         h->busy_initializing = 1;
3533         INIT_HLIST_HEAD(&h->cmpQ);
3534         INIT_HLIST_HEAD(&h->reqQ);
3535         mutex_init(&h->busy_shutting_down);
3536         init_completion(&h->scan_wait);
3537         rc = hpsa_pci_init(h, pdev);
3538         if (rc != 0)
3539                 goto clean1;
3540
3541         sprintf(h->devname, "hpsa%d", number_of_controllers);
3542         h->ctlr = number_of_controllers;
3543         number_of_controllers++;
3544         h->pdev = pdev;
3545
3546         /* configure PCI DMA stuff */
3547         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3548         if (rc == 0) {
3549                 dac = 1;
3550         } else {
3551                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3552                 if (rc == 0) {
3553                         dac = 0;
3554                 } else {
3555                         dev_err(&pdev->dev, "no suitable DMA available\n");
3556                         goto clean1;
3557                 }
3558         }
3559
3560         /* make sure the board interrupts are off */
3561         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3562         rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr,
3563                         IRQF_DISABLED, h->devname, h);
3564         if (rc) {
3565                 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3566                        h->intr[PERF_MODE_INT], h->devname);
3567                 goto clean2;
3568         }
3569
3570         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3571                h->devname, pdev->device,
3572                h->intr[PERF_MODE_INT], dac ? "" : " not");
3573
3574         h->cmd_pool_bits =
3575             kmalloc(((h->nr_cmds + BITS_PER_LONG -
3576                       1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3577         h->cmd_pool = pci_alloc_consistent(h->pdev,
3578                     h->nr_cmds * sizeof(*h->cmd_pool),
3579                     &(h->cmd_pool_dhandle));
3580         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3581                     h->nr_cmds * sizeof(*h->errinfo_pool),
3582                     &(h->errinfo_pool_dhandle));
3583         if ((h->cmd_pool_bits == NULL)
3584             || (h->cmd_pool == NULL)
3585             || (h->errinfo_pool == NULL)) {
3586                 dev_err(&pdev->dev, "out of memory");
3587                 rc = -ENOMEM;
3588                 goto clean4;
3589         }
3590         spin_lock_init(&h->lock);
3591         spin_lock_init(&h->scan_lock);
3592         init_waitqueue_head(&h->scan_wait_queue);
3593         h->scan_finished = 1; /* no scan currently in progress */
3594
3595         pci_set_drvdata(pdev, h);
3596         memset(h->cmd_pool_bits, 0,
3597                ((h->nr_cmds + BITS_PER_LONG -
3598                  1) / BITS_PER_LONG) * sizeof(unsigned long));
3599
3600         hpsa_scsi_setup(h);
3601
3602         /* Turn the interrupts on so we can service requests */
3603         h->access.set_intr_mask(h, HPSA_INTR_ON);
3604
3605         hpsa_put_ctlr_into_performant_mode(h);
3606         hpsa_hba_inquiry(h);
3607         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
3608         h->busy_initializing = 0;
3609         return 1;
3610
3611 clean4:
3612         kfree(h->cmd_pool_bits);
3613         if (h->cmd_pool)
3614                 pci_free_consistent(h->pdev,
3615                             h->nr_cmds * sizeof(struct CommandList),
3616                             h->cmd_pool, h->cmd_pool_dhandle);
3617         if (h->errinfo_pool)
3618                 pci_free_consistent(h->pdev,
3619                             h->nr_cmds * sizeof(struct ErrorInfo),
3620                             h->errinfo_pool,
3621                             h->errinfo_pool_dhandle);
3622         free_irq(h->intr[PERF_MODE_INT], h);
3623 clean2:
3624 clean1:
3625         h->busy_initializing = 0;
3626         kfree(h);
3627         return rc;
3628 }
3629
3630 static void hpsa_flush_cache(struct ctlr_info *h)
3631 {
3632         char *flush_buf;
3633         struct CommandList *c;
3634
3635         flush_buf = kzalloc(4, GFP_KERNEL);
3636         if (!flush_buf)
3637                 return;
3638
3639         c = cmd_special_alloc(h);
3640         if (!c) {
3641                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3642                 goto out_of_memory;
3643         }
3644         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3645                 RAID_CTLR_LUNID, TYPE_CMD);
3646         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3647         if (c->err_info->CommandStatus != 0)
3648                 dev_warn(&h->pdev->dev,
3649                         "error flushing cache on controller\n");
3650         cmd_special_free(h, c);
3651 out_of_memory:
3652         kfree(flush_buf);
3653 }
3654
3655 static void hpsa_shutdown(struct pci_dev *pdev)
3656 {
3657         struct ctlr_info *h;
3658
3659         h = pci_get_drvdata(pdev);
3660         /* Turn board interrupts off  and send the flush cache command
3661          * sendcmd will turn off interrupt, and send the flush...
3662          * To write all data in the battery backed cache to disks
3663          */
3664         hpsa_flush_cache(h);
3665         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3666         free_irq(h->intr[PERF_MODE_INT], h);
3667 #ifdef CONFIG_PCI_MSI
3668         if (h->msix_vector)
3669                 pci_disable_msix(h->pdev);
3670         else if (h->msi_vector)
3671                 pci_disable_msi(h->pdev);
3672 #endif                          /* CONFIG_PCI_MSI */
3673 }
3674
3675 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3676 {
3677         struct ctlr_info *h;
3678
3679         if (pci_get_drvdata(pdev) == NULL) {
3680                 dev_err(&pdev->dev, "unable to remove device \n");
3681                 return;
3682         }
3683         h = pci_get_drvdata(pdev);
3684         mutex_lock(&h->busy_shutting_down);
3685         remove_from_scan_list(h);
3686         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
3687         hpsa_shutdown(pdev);
3688         iounmap(h->vaddr);
3689         pci_free_consistent(h->pdev,
3690                 h->nr_cmds * sizeof(struct CommandList),
3691                 h->cmd_pool, h->cmd_pool_dhandle);
3692         pci_free_consistent(h->pdev,
3693                 h->nr_cmds * sizeof(struct ErrorInfo),
3694                 h->errinfo_pool, h->errinfo_pool_dhandle);
3695         pci_free_consistent(h->pdev, h->reply_pool_size,
3696                 h->reply_pool, h->reply_pool_dhandle);
3697         kfree(h->cmd_pool_bits);
3698         kfree(h->blockFetchTable);
3699         kfree(h->hba_inquiry_data);
3700         /*
3701          * Deliberately omit pci_disable_device(): it does something nasty to
3702          * Smart Array controllers that pci_enable_device does not undo
3703          */
3704         pci_release_regions(pdev);
3705         pci_set_drvdata(pdev, NULL);
3706         mutex_unlock(&h->busy_shutting_down);
3707         kfree(h);
3708 }
3709
3710 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3711         __attribute__((unused)) pm_message_t state)
3712 {
3713         return -ENOSYS;
3714 }
3715
3716 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3717 {
3718         return -ENOSYS;
3719 }
3720
3721 static struct pci_driver hpsa_pci_driver = {
3722         .name = "hpsa",
3723         .probe = hpsa_init_one,
3724         .remove = __devexit_p(hpsa_remove_one),
3725         .id_table = hpsa_pci_device_id, /* id_table */
3726         .shutdown = hpsa_shutdown,
3727         .suspend = hpsa_suspend,
3728         .resume = hpsa_resume,
3729 };
3730
3731 /* Fill in bucket_map[], given nsgs (the max number of
3732  * scatter gather elements supported) and bucket[],
3733  * which is an array of 8 integers.  The bucket[] array
3734  * contains 8 different DMA transfer sizes (in 16
3735  * byte increments) which the controller uses to fetch
3736  * commands.  This function fills in bucket_map[], which
3737  * maps a given number of scatter gather elements to one of
3738  * the 8 DMA transfer sizes.  The point of it is to allow the
3739  * controller to only do as much DMA as needed to fetch the
3740  * command, with the DMA transfer size encoded in the lower
3741  * bits of the command address.
3742  */
3743 static void  calc_bucket_map(int bucket[], int num_buckets,
3744         int nsgs, int *bucket_map)
3745 {
3746         int i, j, b, size;
3747
3748         /* even a command with 0 SGs requires 4 blocks */
3749 #define MINIMUM_TRANSFER_BLOCKS 4
3750 #define NUM_BUCKETS 8
3751         /* Note, bucket_map must have nsgs+1 entries. */
3752         for (i = 0; i <= nsgs; i++) {
3753                 /* Compute size of a command with i SG entries */
3754                 size = i + MINIMUM_TRANSFER_BLOCKS;
3755                 b = num_buckets; /* Assume the biggest bucket */
3756                 /* Find the bucket that is just big enough */
3757                 for (j = 0; j < 8; j++) {
3758                         if (bucket[j] >= size) {
3759                                 b = j;
3760                                 break;
3761                         }
3762                 }
3763                 /* for a command with i SG entries, use bucket b. */
3764                 bucket_map[i] = b;
3765         }
3766 }
3767
3768 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
3769 {
3770         u32 trans_support;
3771         u64 trans_offset;
3772         /*  5 = 1 s/g entry or 4k
3773          *  6 = 2 s/g entry or 8k
3774          *  8 = 4 s/g entry or 16k
3775          * 10 = 6 s/g entry or 24k
3776          */
3777         int bft[8] = {5, 6, 8, 10, 12, 20, 28, 35}; /* for scatter/gathers */
3778         int i = 0;
3779         int l = 0;
3780         unsigned long register_value;
3781
3782         trans_support = readl(&(h->cfgtable->TransportSupport));
3783         if (!(trans_support & PERFORMANT_MODE))
3784                 return;
3785
3786         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3787         h->max_sg_entries = 32;
3788         /* Performant mode ring buffer and supporting data structures */
3789         h->reply_pool_size = h->max_commands * sizeof(u64);
3790         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
3791                                 &(h->reply_pool_dhandle));
3792
3793         /* Need a block fetch table for performant mode */
3794         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
3795                                 sizeof(u32)), GFP_KERNEL);
3796
3797         if ((h->reply_pool == NULL)
3798                 || (h->blockFetchTable == NULL))
3799                 goto clean_up;
3800
3801         h->reply_pool_wraparound = 1; /* spec: init to 1 */
3802
3803         /* Controller spec: zero out this buffer. */
3804         memset(h->reply_pool, 0, h->reply_pool_size);
3805         h->reply_pool_head = h->reply_pool;
3806
3807         trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3808         bft[7] = h->max_sg_entries + 4;
3809         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
3810         for (i = 0; i < 8; i++)
3811                 writel(bft[i], &h->transtable->BlockFetch[i]);
3812
3813         /* size of controller ring buffer */
3814         writel(h->max_commands, &h->transtable->RepQSize);
3815         writel(1, &h->transtable->RepQCount);
3816         writel(0, &h->transtable->RepQCtrAddrLow32);
3817         writel(0, &h->transtable->RepQCtrAddrHigh32);
3818         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3819         writel(0, &h->transtable->RepQAddr0High32);
3820         writel(CFGTBL_Trans_Performant,
3821                 &(h->cfgtable->HostWrite.TransportRequest));
3822         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3823         /* under certain very rare conditions, this can take awhile.
3824          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3825          * as we enter this code.) */
3826         for (l = 0; l < MAX_CONFIG_WAIT; l++) {
3827                 register_value = readl(h->vaddr + SA5_DOORBELL);
3828                 if (!(register_value & CFGTBL_ChangeReq))
3829                         break;
3830                 /* delay and try again */
3831                 set_current_state(TASK_INTERRUPTIBLE);
3832                 schedule_timeout(10);
3833         }
3834         register_value = readl(&(h->cfgtable->TransportActive));
3835         if (!(register_value & CFGTBL_Trans_Performant)) {
3836                 dev_warn(&h->pdev->dev, "unable to get board into"
3837                                         " performant mode\n");
3838                 return;
3839         }
3840
3841         /* Change the access methods to the performant access methods */
3842         h->access = SA5_performant_access;
3843         h->transMethod = CFGTBL_Trans_Performant;
3844
3845         return;
3846
3847 clean_up:
3848         if (h->reply_pool)
3849                 pci_free_consistent(h->pdev, h->reply_pool_size,
3850                         h->reply_pool, h->reply_pool_dhandle);
3851         kfree(h->blockFetchTable);
3852 }
3853
3854 /*
3855  *  This is it.  Register the PCI driver information for the cards we control
3856  *  the OS will call our registered routines when it finds one of our cards.
3857  */
3858 static int __init hpsa_init(void)
3859 {
3860         int err;
3861         /* Start the scan thread */
3862         hpsa_scan_thread = kthread_run(hpsa_scan_func, NULL, "hpsa_scan");
3863         if (IS_ERR(hpsa_scan_thread)) {
3864                 err = PTR_ERR(hpsa_scan_thread);
3865                 return -ENODEV;
3866         }
3867         err = pci_register_driver(&hpsa_pci_driver);
3868         if (err)
3869                 kthread_stop(hpsa_scan_thread);
3870         return err;
3871 }
3872
3873 static void __exit hpsa_cleanup(void)
3874 {
3875         pci_unregister_driver(&hpsa_pci_driver);
3876         kthread_stop(hpsa_scan_thread);
3877 }
3878
3879 module_init(hpsa_init);
3880 module_exit(hpsa_cleanup);