]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/scsi/hpsa.c
hpsa: get rid of cmd_special_alloc and cmd_special_free
[karo-tx-linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
59 #define HPSA_DRIVER_VERSION "3.4.4-1"
60 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
61 #define HPSA "hpsa"
62
63 /* How long to wait (in milliseconds) for board to go into simple mode */
64 #define MAX_CONFIG_WAIT 30000
65 #define MAX_IOCTL_CONFIG_WAIT 1000
66
67 /*define how many times we will try a command because of bus resets */
68 #define MAX_CMD_RETRIES 3
69
70 /* Embedded module documentation macros - see modules.h */
71 MODULE_AUTHOR("Hewlett-Packard Company");
72 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
73         HPSA_DRIVER_VERSION);
74 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
75 MODULE_VERSION(HPSA_DRIVER_VERSION);
76 MODULE_LICENSE("GPL");
77
78 static int hpsa_allow_any;
79 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
80 MODULE_PARM_DESC(hpsa_allow_any,
81                 "Allow hpsa driver to access unknown HP Smart Array hardware");
82 static int hpsa_simple_mode;
83 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
84 MODULE_PARM_DESC(hpsa_simple_mode,
85         "Use 'simple mode' rather than 'performant mode'");
86
87 /* define the PCI info for the cards we can control */
88 static const struct pci_device_id hpsa_pci_device_id[] = {
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
129         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
130         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
131         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
132         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
133         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
134         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
135                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
136         {0,}
137 };
138
139 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
140
141 /*  board_id = Subsystem Device ID & Vendor ID
142  *  product = Marketing Name for the board
143  *  access = Address of the struct of function pointers
144  */
145 static struct board_type products[] = {
146         {0x3241103C, "Smart Array P212", &SA5_access},
147         {0x3243103C, "Smart Array P410", &SA5_access},
148         {0x3245103C, "Smart Array P410i", &SA5_access},
149         {0x3247103C, "Smart Array P411", &SA5_access},
150         {0x3249103C, "Smart Array P812", &SA5_access},
151         {0x324A103C, "Smart Array P712m", &SA5_access},
152         {0x324B103C, "Smart Array P711m", &SA5_access},
153         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
154         {0x3350103C, "Smart Array P222", &SA5_access},
155         {0x3351103C, "Smart Array P420", &SA5_access},
156         {0x3352103C, "Smart Array P421", &SA5_access},
157         {0x3353103C, "Smart Array P822", &SA5_access},
158         {0x3354103C, "Smart Array P420i", &SA5_access},
159         {0x3355103C, "Smart Array P220i", &SA5_access},
160         {0x3356103C, "Smart Array P721m", &SA5_access},
161         {0x1921103C, "Smart Array P830i", &SA5_access},
162         {0x1922103C, "Smart Array P430", &SA5_access},
163         {0x1923103C, "Smart Array P431", &SA5_access},
164         {0x1924103C, "Smart Array P830", &SA5_access},
165         {0x1926103C, "Smart Array P731m", &SA5_access},
166         {0x1928103C, "Smart Array P230i", &SA5_access},
167         {0x1929103C, "Smart Array P530", &SA5_access},
168         {0x21BD103C, "Smart Array", &SA5_access},
169         {0x21BE103C, "Smart Array", &SA5_access},
170         {0x21BF103C, "Smart Array", &SA5_access},
171         {0x21C0103C, "Smart Array", &SA5_access},
172         {0x21C1103C, "Smart Array", &SA5_access},
173         {0x21C2103C, "Smart Array", &SA5_access},
174         {0x21C3103C, "Smart Array", &SA5_access},
175         {0x21C4103C, "Smart Array", &SA5_access},
176         {0x21C5103C, "Smart Array", &SA5_access},
177         {0x21C6103C, "Smart Array", &SA5_access},
178         {0x21C7103C, "Smart Array", &SA5_access},
179         {0x21C8103C, "Smart Array", &SA5_access},
180         {0x21C9103C, "Smart Array", &SA5_access},
181         {0x21CA103C, "Smart Array", &SA5_access},
182         {0x21CB103C, "Smart Array", &SA5_access},
183         {0x21CC103C, "Smart Array", &SA5_access},
184         {0x21CD103C, "Smart Array", &SA5_access},
185         {0x21CE103C, "Smart Array", &SA5_access},
186         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
187         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
188         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
189         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
190         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
191         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
192 };
193
194 static int number_of_controllers;
195
196 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
197 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
198 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
199 static void lock_and_start_io(struct ctlr_info *h);
200 static void start_io(struct ctlr_info *h, unsigned long *flags);
201
202 #ifdef CONFIG_COMPAT
203 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
204         void __user *arg);
205 #endif
206
207 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
208 static struct CommandList *cmd_alloc(struct ctlr_info *h);
209 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
210         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
211         int cmd_type);
212 static void hpsa_free_cmd_pool(struct ctlr_info *h);
213 #define VPD_PAGE (1 << 8)
214
215 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
216 static void hpsa_scan_start(struct Scsi_Host *);
217 static int hpsa_scan_finished(struct Scsi_Host *sh,
218         unsigned long elapsed_time);
219 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
220
221 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
222 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
223 static int hpsa_slave_alloc(struct scsi_device *sdev);
224 static void hpsa_slave_destroy(struct scsi_device *sdev);
225
226 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
227 static int check_for_unit_attention(struct ctlr_info *h,
228         struct CommandList *c);
229 static void check_ioctl_unit_attention(struct ctlr_info *h,
230         struct CommandList *c);
231 /* performant mode helper functions */
232 static void calc_bucket_map(int *bucket, int num_buckets,
233         int nsgs, int min_blocks, u32 *bucket_map);
234 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
235 static inline u32 next_command(struct ctlr_info *h, u8 q);
236 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
237                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
238                                u64 *cfg_offset);
239 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
240                                     unsigned long *memory_bar);
241 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
242 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
243                                      int wait_for_ready);
244 static inline void finish_cmd(struct CommandList *c);
245 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
246 #define BOARD_NOT_READY 0
247 #define BOARD_READY 1
248 static void hpsa_drain_accel_commands(struct ctlr_info *h);
249 static void hpsa_flush_cache(struct ctlr_info *h);
250 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
251         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
252         u8 *scsi3addr);
253
254 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
255 {
256         unsigned long *priv = shost_priv(sdev->host);
257         return (struct ctlr_info *) *priv;
258 }
259
260 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
261 {
262         unsigned long *priv = shost_priv(sh);
263         return (struct ctlr_info *) *priv;
264 }
265
266 static int check_for_unit_attention(struct ctlr_info *h,
267         struct CommandList *c)
268 {
269         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
270                 return 0;
271
272         switch (c->err_info->SenseInfo[12]) {
273         case STATE_CHANGED:
274                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
275                         "detected, command retried\n", h->ctlr);
276                 break;
277         case LUN_FAILED:
278                 dev_warn(&h->pdev->dev,
279                         HPSA "%d: LUN failure detected\n", h->ctlr);
280                 break;
281         case REPORT_LUNS_CHANGED:
282                 dev_warn(&h->pdev->dev,
283                         HPSA "%d: report LUN data changed\n", h->ctlr);
284         /*
285          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
286          * target (array) devices.
287          */
288                 break;
289         case POWER_OR_RESET:
290                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
291                         "or device reset detected\n", h->ctlr);
292                 break;
293         case UNIT_ATTENTION_CLEARED:
294                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
295                     "cleared by another initiator\n", h->ctlr);
296                 break;
297         default:
298                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
299                         "unit attention detected\n", h->ctlr);
300                 break;
301         }
302         return 1;
303 }
304
305 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
306 {
307         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
308                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
309                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
310                 return 0;
311         dev_warn(&h->pdev->dev, HPSA "device busy");
312         return 1;
313 }
314
315 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
316                                          struct device_attribute *attr,
317                                          const char *buf, size_t count)
318 {
319         int status, len;
320         struct ctlr_info *h;
321         struct Scsi_Host *shost = class_to_shost(dev);
322         char tmpbuf[10];
323
324         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
325                 return -EACCES;
326         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
327         strncpy(tmpbuf, buf, len);
328         tmpbuf[len] = '\0';
329         if (sscanf(tmpbuf, "%d", &status) != 1)
330                 return -EINVAL;
331         h = shost_to_hba(shost);
332         h->acciopath_status = !!status;
333         dev_warn(&h->pdev->dev,
334                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
335                 h->acciopath_status ? "enabled" : "disabled");
336         return count;
337 }
338
339 static ssize_t host_store_raid_offload_debug(struct device *dev,
340                                          struct device_attribute *attr,
341                                          const char *buf, size_t count)
342 {
343         int debug_level, len;
344         struct ctlr_info *h;
345         struct Scsi_Host *shost = class_to_shost(dev);
346         char tmpbuf[10];
347
348         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
349                 return -EACCES;
350         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
351         strncpy(tmpbuf, buf, len);
352         tmpbuf[len] = '\0';
353         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
354                 return -EINVAL;
355         if (debug_level < 0)
356                 debug_level = 0;
357         h = shost_to_hba(shost);
358         h->raid_offload_debug = debug_level;
359         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
360                 h->raid_offload_debug);
361         return count;
362 }
363
364 static ssize_t host_store_rescan(struct device *dev,
365                                  struct device_attribute *attr,
366                                  const char *buf, size_t count)
367 {
368         struct ctlr_info *h;
369         struct Scsi_Host *shost = class_to_shost(dev);
370         h = shost_to_hba(shost);
371         hpsa_scan_start(h->scsi_host);
372         return count;
373 }
374
375 static ssize_t host_show_firmware_revision(struct device *dev,
376              struct device_attribute *attr, char *buf)
377 {
378         struct ctlr_info *h;
379         struct Scsi_Host *shost = class_to_shost(dev);
380         unsigned char *fwrev;
381
382         h = shost_to_hba(shost);
383         if (!h->hba_inquiry_data)
384                 return 0;
385         fwrev = &h->hba_inquiry_data[32];
386         return snprintf(buf, 20, "%c%c%c%c\n",
387                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
388 }
389
390 static ssize_t host_show_commands_outstanding(struct device *dev,
391              struct device_attribute *attr, char *buf)
392 {
393         struct Scsi_Host *shost = class_to_shost(dev);
394         struct ctlr_info *h = shost_to_hba(shost);
395
396         return snprintf(buf, 20, "%d\n",
397                         atomic_read(&h->commands_outstanding));
398 }
399
400 static ssize_t host_show_transport_mode(struct device *dev,
401         struct device_attribute *attr, char *buf)
402 {
403         struct ctlr_info *h;
404         struct Scsi_Host *shost = class_to_shost(dev);
405
406         h = shost_to_hba(shost);
407         return snprintf(buf, 20, "%s\n",
408                 h->transMethod & CFGTBL_Trans_Performant ?
409                         "performant" : "simple");
410 }
411
412 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
413         struct device_attribute *attr, char *buf)
414 {
415         struct ctlr_info *h;
416         struct Scsi_Host *shost = class_to_shost(dev);
417
418         h = shost_to_hba(shost);
419         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
420                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
421 }
422
423 /* List of controllers which cannot be hard reset on kexec with reset_devices */
424 static u32 unresettable_controller[] = {
425         0x324a103C, /* Smart Array P712m */
426         0x324b103C, /* SmartArray P711m */
427         0x3223103C, /* Smart Array P800 */
428         0x3234103C, /* Smart Array P400 */
429         0x3235103C, /* Smart Array P400i */
430         0x3211103C, /* Smart Array E200i */
431         0x3212103C, /* Smart Array E200 */
432         0x3213103C, /* Smart Array E200i */
433         0x3214103C, /* Smart Array E200i */
434         0x3215103C, /* Smart Array E200i */
435         0x3237103C, /* Smart Array E500 */
436         0x323D103C, /* Smart Array P700m */
437         0x40800E11, /* Smart Array 5i */
438         0x409C0E11, /* Smart Array 6400 */
439         0x409D0E11, /* Smart Array 6400 EM */
440         0x40700E11, /* Smart Array 5300 */
441         0x40820E11, /* Smart Array 532 */
442         0x40830E11, /* Smart Array 5312 */
443         0x409A0E11, /* Smart Array 641 */
444         0x409B0E11, /* Smart Array 642 */
445         0x40910E11, /* Smart Array 6i */
446 };
447
448 /* List of controllers which cannot even be soft reset */
449 static u32 soft_unresettable_controller[] = {
450         0x40800E11, /* Smart Array 5i */
451         0x40700E11, /* Smart Array 5300 */
452         0x40820E11, /* Smart Array 532 */
453         0x40830E11, /* Smart Array 5312 */
454         0x409A0E11, /* Smart Array 641 */
455         0x409B0E11, /* Smart Array 642 */
456         0x40910E11, /* Smart Array 6i */
457         /* Exclude 640x boards.  These are two pci devices in one slot
458          * which share a battery backed cache module.  One controls the
459          * cache, the other accesses the cache through the one that controls
460          * it.  If we reset the one controlling the cache, the other will
461          * likely not be happy.  Just forbid resetting this conjoined mess.
462          * The 640x isn't really supported by hpsa anyway.
463          */
464         0x409C0E11, /* Smart Array 6400 */
465         0x409D0E11, /* Smart Array 6400 EM */
466 };
467
468 static int ctlr_is_hard_resettable(u32 board_id)
469 {
470         int i;
471
472         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
473                 if (unresettable_controller[i] == board_id)
474                         return 0;
475         return 1;
476 }
477
478 static int ctlr_is_soft_resettable(u32 board_id)
479 {
480         int i;
481
482         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
483                 if (soft_unresettable_controller[i] == board_id)
484                         return 0;
485         return 1;
486 }
487
488 static int ctlr_is_resettable(u32 board_id)
489 {
490         return ctlr_is_hard_resettable(board_id) ||
491                 ctlr_is_soft_resettable(board_id);
492 }
493
494 static ssize_t host_show_resettable(struct device *dev,
495         struct device_attribute *attr, char *buf)
496 {
497         struct ctlr_info *h;
498         struct Scsi_Host *shost = class_to_shost(dev);
499
500         h = shost_to_hba(shost);
501         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
502 }
503
504 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
505 {
506         return (scsi3addr[3] & 0xC0) == 0x40;
507 }
508
509 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
510         "1(+0)ADM", "UNKNOWN"
511 };
512 #define HPSA_RAID_0     0
513 #define HPSA_RAID_4     1
514 #define HPSA_RAID_1     2       /* also used for RAID 10 */
515 #define HPSA_RAID_5     3       /* also used for RAID 50 */
516 #define HPSA_RAID_51    4
517 #define HPSA_RAID_6     5       /* also used for RAID 60 */
518 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
519 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
520
521 static ssize_t raid_level_show(struct device *dev,
522              struct device_attribute *attr, char *buf)
523 {
524         ssize_t l = 0;
525         unsigned char rlevel;
526         struct ctlr_info *h;
527         struct scsi_device *sdev;
528         struct hpsa_scsi_dev_t *hdev;
529         unsigned long flags;
530
531         sdev = to_scsi_device(dev);
532         h = sdev_to_hba(sdev);
533         spin_lock_irqsave(&h->lock, flags);
534         hdev = sdev->hostdata;
535         if (!hdev) {
536                 spin_unlock_irqrestore(&h->lock, flags);
537                 return -ENODEV;
538         }
539
540         /* Is this even a logical drive? */
541         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
542                 spin_unlock_irqrestore(&h->lock, flags);
543                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
544                 return l;
545         }
546
547         rlevel = hdev->raid_level;
548         spin_unlock_irqrestore(&h->lock, flags);
549         if (rlevel > RAID_UNKNOWN)
550                 rlevel = RAID_UNKNOWN;
551         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
552         return l;
553 }
554
555 static ssize_t lunid_show(struct device *dev,
556              struct device_attribute *attr, char *buf)
557 {
558         struct ctlr_info *h;
559         struct scsi_device *sdev;
560         struct hpsa_scsi_dev_t *hdev;
561         unsigned long flags;
562         unsigned char lunid[8];
563
564         sdev = to_scsi_device(dev);
565         h = sdev_to_hba(sdev);
566         spin_lock_irqsave(&h->lock, flags);
567         hdev = sdev->hostdata;
568         if (!hdev) {
569                 spin_unlock_irqrestore(&h->lock, flags);
570                 return -ENODEV;
571         }
572         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
573         spin_unlock_irqrestore(&h->lock, flags);
574         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
575                 lunid[0], lunid[1], lunid[2], lunid[3],
576                 lunid[4], lunid[5], lunid[6], lunid[7]);
577 }
578
579 static ssize_t unique_id_show(struct device *dev,
580              struct device_attribute *attr, char *buf)
581 {
582         struct ctlr_info *h;
583         struct scsi_device *sdev;
584         struct hpsa_scsi_dev_t *hdev;
585         unsigned long flags;
586         unsigned char sn[16];
587
588         sdev = to_scsi_device(dev);
589         h = sdev_to_hba(sdev);
590         spin_lock_irqsave(&h->lock, flags);
591         hdev = sdev->hostdata;
592         if (!hdev) {
593                 spin_unlock_irqrestore(&h->lock, flags);
594                 return -ENODEV;
595         }
596         memcpy(sn, hdev->device_id, sizeof(sn));
597         spin_unlock_irqrestore(&h->lock, flags);
598         return snprintf(buf, 16 * 2 + 2,
599                         "%02X%02X%02X%02X%02X%02X%02X%02X"
600                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
601                         sn[0], sn[1], sn[2], sn[3],
602                         sn[4], sn[5], sn[6], sn[7],
603                         sn[8], sn[9], sn[10], sn[11],
604                         sn[12], sn[13], sn[14], sn[15]);
605 }
606
607 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
608              struct device_attribute *attr, char *buf)
609 {
610         struct ctlr_info *h;
611         struct scsi_device *sdev;
612         struct hpsa_scsi_dev_t *hdev;
613         unsigned long flags;
614         int offload_enabled;
615
616         sdev = to_scsi_device(dev);
617         h = sdev_to_hba(sdev);
618         spin_lock_irqsave(&h->lock, flags);
619         hdev = sdev->hostdata;
620         if (!hdev) {
621                 spin_unlock_irqrestore(&h->lock, flags);
622                 return -ENODEV;
623         }
624         offload_enabled = hdev->offload_enabled;
625         spin_unlock_irqrestore(&h->lock, flags);
626         return snprintf(buf, 20, "%d\n", offload_enabled);
627 }
628
629 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
630 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
631 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
632 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
633 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
634                         host_show_hp_ssd_smart_path_enabled, NULL);
635 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
636                 host_show_hp_ssd_smart_path_status,
637                 host_store_hp_ssd_smart_path_status);
638 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
639                         host_store_raid_offload_debug);
640 static DEVICE_ATTR(firmware_revision, S_IRUGO,
641         host_show_firmware_revision, NULL);
642 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
643         host_show_commands_outstanding, NULL);
644 static DEVICE_ATTR(transport_mode, S_IRUGO,
645         host_show_transport_mode, NULL);
646 static DEVICE_ATTR(resettable, S_IRUGO,
647         host_show_resettable, NULL);
648
649 static struct device_attribute *hpsa_sdev_attrs[] = {
650         &dev_attr_raid_level,
651         &dev_attr_lunid,
652         &dev_attr_unique_id,
653         &dev_attr_hp_ssd_smart_path_enabled,
654         NULL,
655 };
656
657 static struct device_attribute *hpsa_shost_attrs[] = {
658         &dev_attr_rescan,
659         &dev_attr_firmware_revision,
660         &dev_attr_commands_outstanding,
661         &dev_attr_transport_mode,
662         &dev_attr_resettable,
663         &dev_attr_hp_ssd_smart_path_status,
664         &dev_attr_raid_offload_debug,
665         NULL,
666 };
667
668 static struct scsi_host_template hpsa_driver_template = {
669         .module                 = THIS_MODULE,
670         .name                   = HPSA,
671         .proc_name              = HPSA,
672         .queuecommand           = hpsa_scsi_queue_command,
673         .scan_start             = hpsa_scan_start,
674         .scan_finished          = hpsa_scan_finished,
675         .change_queue_depth     = hpsa_change_queue_depth,
676         .this_id                = -1,
677         .use_clustering         = ENABLE_CLUSTERING,
678         .eh_abort_handler       = hpsa_eh_abort_handler,
679         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
680         .ioctl                  = hpsa_ioctl,
681         .slave_alloc            = hpsa_slave_alloc,
682         .slave_destroy          = hpsa_slave_destroy,
683 #ifdef CONFIG_COMPAT
684         .compat_ioctl           = hpsa_compat_ioctl,
685 #endif
686         .sdev_attrs = hpsa_sdev_attrs,
687         .shost_attrs = hpsa_shost_attrs,
688         .max_sectors = 8192,
689         .no_write_same = 1,
690 };
691
692
693 /* Enqueuing and dequeuing functions for cmdlists. */
694 static inline void addQ(struct list_head *list, struct CommandList *c)
695 {
696         list_add_tail(&c->list, list);
697 }
698
699 static inline u32 next_command(struct ctlr_info *h, u8 q)
700 {
701         u32 a;
702         struct reply_queue_buffer *rq = &h->reply_queue[q];
703
704         if (h->transMethod & CFGTBL_Trans_io_accel1)
705                 return h->access.command_completed(h, q);
706
707         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
708                 return h->access.command_completed(h, q);
709
710         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
711                 a = rq->head[rq->current_entry];
712                 rq->current_entry++;
713                 atomic_dec(&h->commands_outstanding);
714         } else {
715                 a = FIFO_EMPTY;
716         }
717         /* Check for wraparound */
718         if (rq->current_entry == h->max_commands) {
719                 rq->current_entry = 0;
720                 rq->wraparound ^= 1;
721         }
722         return a;
723 }
724
725 /*
726  * There are some special bits in the bus address of the
727  * command that we have to set for the controller to know
728  * how to process the command:
729  *
730  * Normal performant mode:
731  * bit 0: 1 means performant mode, 0 means simple mode.
732  * bits 1-3 = block fetch table entry
733  * bits 4-6 = command type (== 0)
734  *
735  * ioaccel1 mode:
736  * bit 0 = "performant mode" bit.
737  * bits 1-3 = block fetch table entry
738  * bits 4-6 = command type (== 110)
739  * (command type is needed because ioaccel1 mode
740  * commands are submitted through the same register as normal
741  * mode commands, so this is how the controller knows whether
742  * the command is normal mode or ioaccel1 mode.)
743  *
744  * ioaccel2 mode:
745  * bit 0 = "performant mode" bit.
746  * bits 1-4 = block fetch table entry (note extra bit)
747  * bits 4-6 = not needed, because ioaccel2 mode has
748  * a separate special register for submitting commands.
749  */
750
751 /* set_performant_mode: Modify the tag for cciss performant
752  * set bit 0 for pull model, bits 3-1 for block fetch
753  * register number
754  */
755 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
756 {
757         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
758                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
759                 if (likely(h->msix_vector > 0))
760                         c->Header.ReplyQueue =
761                                 raw_smp_processor_id() % h->nreply_queues;
762         }
763 }
764
765 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
766                                                 struct CommandList *c)
767 {
768         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
769
770         /* Tell the controller to post the reply to the queue for this
771          * processor.  This seems to give the best I/O throughput.
772          */
773         cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
774         /* Set the bits in the address sent down to include:
775          *  - performant mode bit (bit 0)
776          *  - pull count (bits 1-3)
777          *  - command type (bits 4-6)
778          */
779         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
780                                         IOACCEL1_BUSADDR_CMDTYPE;
781 }
782
783 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
784                                                 struct CommandList *c)
785 {
786         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
787
788         /* Tell the controller to post the reply to the queue for this
789          * processor.  This seems to give the best I/O throughput.
790          */
791         cp->reply_queue = smp_processor_id() % h->nreply_queues;
792         /* Set the bits in the address sent down to include:
793          *  - performant mode bit not used in ioaccel mode 2
794          *  - pull count (bits 0-3)
795          *  - command type isn't needed for ioaccel2
796          */
797         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
798 }
799
800 static int is_firmware_flash_cmd(u8 *cdb)
801 {
802         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
803 }
804
805 /*
806  * During firmware flash, the heartbeat register may not update as frequently
807  * as it should.  So we dial down lockup detection during firmware flash. and
808  * dial it back up when firmware flash completes.
809  */
810 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
811 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
812 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
813                 struct CommandList *c)
814 {
815         if (!is_firmware_flash_cmd(c->Request.CDB))
816                 return;
817         atomic_inc(&h->firmware_flash_in_progress);
818         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
819 }
820
821 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
822                 struct CommandList *c)
823 {
824         if (is_firmware_flash_cmd(c->Request.CDB) &&
825                 atomic_dec_and_test(&h->firmware_flash_in_progress))
826                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
827 }
828
829 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
830         struct CommandList *c)
831 {
832         unsigned long flags;
833
834         switch (c->cmd_type) {
835         case CMD_IOACCEL1:
836                 set_ioaccel1_performant_mode(h, c);
837                 break;
838         case CMD_IOACCEL2:
839                 set_ioaccel2_performant_mode(h, c);
840                 break;
841         default:
842                 set_performant_mode(h, c);
843         }
844         dial_down_lockup_detection_during_fw_flash(h, c);
845         spin_lock_irqsave(&h->lock, flags);
846         addQ(&h->reqQ, c);
847         h->Qdepth++;
848         start_io(h, &flags);
849         spin_unlock_irqrestore(&h->lock, flags);
850 }
851
852 static inline void removeQ(struct CommandList *c)
853 {
854         if (WARN_ON(list_empty(&c->list)))
855                 return;
856         list_del_init(&c->list);
857 }
858
859 static inline int is_hba_lunid(unsigned char scsi3addr[])
860 {
861         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
862 }
863
864 static inline int is_scsi_rev_5(struct ctlr_info *h)
865 {
866         if (!h->hba_inquiry_data)
867                 return 0;
868         if ((h->hba_inquiry_data[2] & 0x07) == 5)
869                 return 1;
870         return 0;
871 }
872
873 static int hpsa_find_target_lun(struct ctlr_info *h,
874         unsigned char scsi3addr[], int bus, int *target, int *lun)
875 {
876         /* finds an unused bus, target, lun for a new physical device
877          * assumes h->devlock is held
878          */
879         int i, found = 0;
880         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
881
882         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
883
884         for (i = 0; i < h->ndevices; i++) {
885                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
886                         __set_bit(h->dev[i]->target, lun_taken);
887         }
888
889         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
890         if (i < HPSA_MAX_DEVICES) {
891                 /* *bus = 1; */
892                 *target = i;
893                 *lun = 0;
894                 found = 1;
895         }
896         return !found;
897 }
898
899 /* Add an entry into h->dev[] array. */
900 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
901                 struct hpsa_scsi_dev_t *device,
902                 struct hpsa_scsi_dev_t *added[], int *nadded)
903 {
904         /* assumes h->devlock is held */
905         int n = h->ndevices;
906         int i;
907         unsigned char addr1[8], addr2[8];
908         struct hpsa_scsi_dev_t *sd;
909
910         if (n >= HPSA_MAX_DEVICES) {
911                 dev_err(&h->pdev->dev, "too many devices, some will be "
912                         "inaccessible.\n");
913                 return -1;
914         }
915
916         /* physical devices do not have lun or target assigned until now. */
917         if (device->lun != -1)
918                 /* Logical device, lun is already assigned. */
919                 goto lun_assigned;
920
921         /* If this device a non-zero lun of a multi-lun device
922          * byte 4 of the 8-byte LUN addr will contain the logical
923          * unit no, zero otherwise.
924          */
925         if (device->scsi3addr[4] == 0) {
926                 /* This is not a non-zero lun of a multi-lun device */
927                 if (hpsa_find_target_lun(h, device->scsi3addr,
928                         device->bus, &device->target, &device->lun) != 0)
929                         return -1;
930                 goto lun_assigned;
931         }
932
933         /* This is a non-zero lun of a multi-lun device.
934          * Search through our list and find the device which
935          * has the same 8 byte LUN address, excepting byte 4.
936          * Assign the same bus and target for this new LUN.
937          * Use the logical unit number from the firmware.
938          */
939         memcpy(addr1, device->scsi3addr, 8);
940         addr1[4] = 0;
941         for (i = 0; i < n; i++) {
942                 sd = h->dev[i];
943                 memcpy(addr2, sd->scsi3addr, 8);
944                 addr2[4] = 0;
945                 /* differ only in byte 4? */
946                 if (memcmp(addr1, addr2, 8) == 0) {
947                         device->bus = sd->bus;
948                         device->target = sd->target;
949                         device->lun = device->scsi3addr[4];
950                         break;
951                 }
952         }
953         if (device->lun == -1) {
954                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
955                         " suspect firmware bug or unsupported hardware "
956                         "configuration.\n");
957                         return -1;
958         }
959
960 lun_assigned:
961
962         h->dev[n] = device;
963         h->ndevices++;
964         added[*nadded] = device;
965         (*nadded)++;
966
967         /* initially, (before registering with scsi layer) we don't
968          * know our hostno and we don't want to print anything first
969          * time anyway (the scsi layer's inquiries will show that info)
970          */
971         /* if (hostno != -1) */
972                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
973                         scsi_device_type(device->devtype), hostno,
974                         device->bus, device->target, device->lun);
975         return 0;
976 }
977
978 /* Update an entry in h->dev[] array. */
979 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
980         int entry, struct hpsa_scsi_dev_t *new_entry)
981 {
982         /* assumes h->devlock is held */
983         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
984
985         /* Raid level changed. */
986         h->dev[entry]->raid_level = new_entry->raid_level;
987
988         /* Raid offload parameters changed. */
989         h->dev[entry]->offload_config = new_entry->offload_config;
990         h->dev[entry]->offload_enabled = new_entry->offload_enabled;
991         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
992         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
993         h->dev[entry]->raid_map = new_entry->raid_map;
994
995         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
996                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
997                 new_entry->target, new_entry->lun);
998 }
999
1000 /* Replace an entry from h->dev[] array. */
1001 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1002         int entry, struct hpsa_scsi_dev_t *new_entry,
1003         struct hpsa_scsi_dev_t *added[], int *nadded,
1004         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1005 {
1006         /* assumes h->devlock is held */
1007         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1008         removed[*nremoved] = h->dev[entry];
1009         (*nremoved)++;
1010
1011         /*
1012          * New physical devices won't have target/lun assigned yet
1013          * so we need to preserve the values in the slot we are replacing.
1014          */
1015         if (new_entry->target == -1) {
1016                 new_entry->target = h->dev[entry]->target;
1017                 new_entry->lun = h->dev[entry]->lun;
1018         }
1019
1020         h->dev[entry] = new_entry;
1021         added[*nadded] = new_entry;
1022         (*nadded)++;
1023         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1024                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1025                         new_entry->target, new_entry->lun);
1026 }
1027
1028 /* Remove an entry from h->dev[] array. */
1029 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1030         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1031 {
1032         /* assumes h->devlock is held */
1033         int i;
1034         struct hpsa_scsi_dev_t *sd;
1035
1036         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1037
1038         sd = h->dev[entry];
1039         removed[*nremoved] = h->dev[entry];
1040         (*nremoved)++;
1041
1042         for (i = entry; i < h->ndevices-1; i++)
1043                 h->dev[i] = h->dev[i+1];
1044         h->ndevices--;
1045         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1046                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1047                 sd->lun);
1048 }
1049
1050 #define SCSI3ADDR_EQ(a, b) ( \
1051         (a)[7] == (b)[7] && \
1052         (a)[6] == (b)[6] && \
1053         (a)[5] == (b)[5] && \
1054         (a)[4] == (b)[4] && \
1055         (a)[3] == (b)[3] && \
1056         (a)[2] == (b)[2] && \
1057         (a)[1] == (b)[1] && \
1058         (a)[0] == (b)[0])
1059
1060 static void fixup_botched_add(struct ctlr_info *h,
1061         struct hpsa_scsi_dev_t *added)
1062 {
1063         /* called when scsi_add_device fails in order to re-adjust
1064          * h->dev[] to match the mid layer's view.
1065          */
1066         unsigned long flags;
1067         int i, j;
1068
1069         spin_lock_irqsave(&h->lock, flags);
1070         for (i = 0; i < h->ndevices; i++) {
1071                 if (h->dev[i] == added) {
1072                         for (j = i; j < h->ndevices-1; j++)
1073                                 h->dev[j] = h->dev[j+1];
1074                         h->ndevices--;
1075                         break;
1076                 }
1077         }
1078         spin_unlock_irqrestore(&h->lock, flags);
1079         kfree(added);
1080 }
1081
1082 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1083         struct hpsa_scsi_dev_t *dev2)
1084 {
1085         /* we compare everything except lun and target as these
1086          * are not yet assigned.  Compare parts likely
1087          * to differ first
1088          */
1089         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1090                 sizeof(dev1->scsi3addr)) != 0)
1091                 return 0;
1092         if (memcmp(dev1->device_id, dev2->device_id,
1093                 sizeof(dev1->device_id)) != 0)
1094                 return 0;
1095         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1096                 return 0;
1097         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1098                 return 0;
1099         if (dev1->devtype != dev2->devtype)
1100                 return 0;
1101         if (dev1->bus != dev2->bus)
1102                 return 0;
1103         return 1;
1104 }
1105
1106 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1107         struct hpsa_scsi_dev_t *dev2)
1108 {
1109         /* Device attributes that can change, but don't mean
1110          * that the device is a different device, nor that the OS
1111          * needs to be told anything about the change.
1112          */
1113         if (dev1->raid_level != dev2->raid_level)
1114                 return 1;
1115         if (dev1->offload_config != dev2->offload_config)
1116                 return 1;
1117         if (dev1->offload_enabled != dev2->offload_enabled)
1118                 return 1;
1119         return 0;
1120 }
1121
1122 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1123  * and return needle location in *index.  If scsi3addr matches, but not
1124  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1125  * location in *index.
1126  * In the case of a minor device attribute change, such as RAID level, just
1127  * return DEVICE_UPDATED, along with the updated device's location in index.
1128  * If needle not found, return DEVICE_NOT_FOUND.
1129  */
1130 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1131         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1132         int *index)
1133 {
1134         int i;
1135 #define DEVICE_NOT_FOUND 0
1136 #define DEVICE_CHANGED 1
1137 #define DEVICE_SAME 2
1138 #define DEVICE_UPDATED 3
1139         for (i = 0; i < haystack_size; i++) {
1140                 if (haystack[i] == NULL) /* previously removed. */
1141                         continue;
1142                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1143                         *index = i;
1144                         if (device_is_the_same(needle, haystack[i])) {
1145                                 if (device_updated(needle, haystack[i]))
1146                                         return DEVICE_UPDATED;
1147                                 return DEVICE_SAME;
1148                         } else {
1149                                 /* Keep offline devices offline */
1150                                 if (needle->volume_offline)
1151                                         return DEVICE_NOT_FOUND;
1152                                 return DEVICE_CHANGED;
1153                         }
1154                 }
1155         }
1156         *index = -1;
1157         return DEVICE_NOT_FOUND;
1158 }
1159
1160 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1161                                         unsigned char scsi3addr[])
1162 {
1163         struct offline_device_entry *device;
1164         unsigned long flags;
1165
1166         /* Check to see if device is already on the list */
1167         spin_lock_irqsave(&h->offline_device_lock, flags);
1168         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1169                 if (memcmp(device->scsi3addr, scsi3addr,
1170                         sizeof(device->scsi3addr)) == 0) {
1171                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1172                         return;
1173                 }
1174         }
1175         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1176
1177         /* Device is not on the list, add it. */
1178         device = kmalloc(sizeof(*device), GFP_KERNEL);
1179         if (!device) {
1180                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1181                 return;
1182         }
1183         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1184         spin_lock_irqsave(&h->offline_device_lock, flags);
1185         list_add_tail(&device->offline_list, &h->offline_device_list);
1186         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1187 }
1188
1189 /* Print a message explaining various offline volume states */
1190 static void hpsa_show_volume_status(struct ctlr_info *h,
1191         struct hpsa_scsi_dev_t *sd)
1192 {
1193         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1194                 dev_info(&h->pdev->dev,
1195                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1196                         h->scsi_host->host_no,
1197                         sd->bus, sd->target, sd->lun);
1198         switch (sd->volume_offline) {
1199         case HPSA_LV_OK:
1200                 break;
1201         case HPSA_LV_UNDERGOING_ERASE:
1202                 dev_info(&h->pdev->dev,
1203                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1204                         h->scsi_host->host_no,
1205                         sd->bus, sd->target, sd->lun);
1206                 break;
1207         case HPSA_LV_UNDERGOING_RPI:
1208                 dev_info(&h->pdev->dev,
1209                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1210                         h->scsi_host->host_no,
1211                         sd->bus, sd->target, sd->lun);
1212                 break;
1213         case HPSA_LV_PENDING_RPI:
1214                 dev_info(&h->pdev->dev,
1215                                 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1216                                 h->scsi_host->host_no,
1217                                 sd->bus, sd->target, sd->lun);
1218                 break;
1219         case HPSA_LV_ENCRYPTED_NO_KEY:
1220                 dev_info(&h->pdev->dev,
1221                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1222                         h->scsi_host->host_no,
1223                         sd->bus, sd->target, sd->lun);
1224                 break;
1225         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1226                 dev_info(&h->pdev->dev,
1227                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1228                         h->scsi_host->host_no,
1229                         sd->bus, sd->target, sd->lun);
1230                 break;
1231         case HPSA_LV_UNDERGOING_ENCRYPTION:
1232                 dev_info(&h->pdev->dev,
1233                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1234                         h->scsi_host->host_no,
1235                         sd->bus, sd->target, sd->lun);
1236                 break;
1237         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1238                 dev_info(&h->pdev->dev,
1239                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1240                         h->scsi_host->host_no,
1241                         sd->bus, sd->target, sd->lun);
1242                 break;
1243         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1244                 dev_info(&h->pdev->dev,
1245                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1246                         h->scsi_host->host_no,
1247                         sd->bus, sd->target, sd->lun);
1248                 break;
1249         case HPSA_LV_PENDING_ENCRYPTION:
1250                 dev_info(&h->pdev->dev,
1251                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1252                         h->scsi_host->host_no,
1253                         sd->bus, sd->target, sd->lun);
1254                 break;
1255         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1256                 dev_info(&h->pdev->dev,
1257                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1258                         h->scsi_host->host_no,
1259                         sd->bus, sd->target, sd->lun);
1260                 break;
1261         }
1262 }
1263
1264 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1265         struct hpsa_scsi_dev_t *sd[], int nsds)
1266 {
1267         /* sd contains scsi3 addresses and devtypes, and inquiry
1268          * data.  This function takes what's in sd to be the current
1269          * reality and updates h->dev[] to reflect that reality.
1270          */
1271         int i, entry, device_change, changes = 0;
1272         struct hpsa_scsi_dev_t *csd;
1273         unsigned long flags;
1274         struct hpsa_scsi_dev_t **added, **removed;
1275         int nadded, nremoved;
1276         struct Scsi_Host *sh = NULL;
1277
1278         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1279         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1280
1281         if (!added || !removed) {
1282                 dev_warn(&h->pdev->dev, "out of memory in "
1283                         "adjust_hpsa_scsi_table\n");
1284                 goto free_and_out;
1285         }
1286
1287         spin_lock_irqsave(&h->devlock, flags);
1288
1289         /* find any devices in h->dev[] that are not in
1290          * sd[] and remove them from h->dev[], and for any
1291          * devices which have changed, remove the old device
1292          * info and add the new device info.
1293          * If minor device attributes change, just update
1294          * the existing device structure.
1295          */
1296         i = 0;
1297         nremoved = 0;
1298         nadded = 0;
1299         while (i < h->ndevices) {
1300                 csd = h->dev[i];
1301                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1302                 if (device_change == DEVICE_NOT_FOUND) {
1303                         changes++;
1304                         hpsa_scsi_remove_entry(h, hostno, i,
1305                                 removed, &nremoved);
1306                         continue; /* remove ^^^, hence i not incremented */
1307                 } else if (device_change == DEVICE_CHANGED) {
1308                         changes++;
1309                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1310                                 added, &nadded, removed, &nremoved);
1311                         /* Set it to NULL to prevent it from being freed
1312                          * at the bottom of hpsa_update_scsi_devices()
1313                          */
1314                         sd[entry] = NULL;
1315                 } else if (device_change == DEVICE_UPDATED) {
1316                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1317                 }
1318                 i++;
1319         }
1320
1321         /* Now, make sure every device listed in sd[] is also
1322          * listed in h->dev[], adding them if they aren't found
1323          */
1324
1325         for (i = 0; i < nsds; i++) {
1326                 if (!sd[i]) /* if already added above. */
1327                         continue;
1328
1329                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1330                  * as the SCSI mid-layer does not handle such devices well.
1331                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1332                  * at 160Hz, and prevents the system from coming up.
1333                  */
1334                 if (sd[i]->volume_offline) {
1335                         hpsa_show_volume_status(h, sd[i]);
1336                         dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1337                                 h->scsi_host->host_no,
1338                                 sd[i]->bus, sd[i]->target, sd[i]->lun);
1339                         continue;
1340                 }
1341
1342                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1343                                         h->ndevices, &entry);
1344                 if (device_change == DEVICE_NOT_FOUND) {
1345                         changes++;
1346                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
1347                                 added, &nadded) != 0)
1348                                 break;
1349                         sd[i] = NULL; /* prevent from being freed later. */
1350                 } else if (device_change == DEVICE_CHANGED) {
1351                         /* should never happen... */
1352                         changes++;
1353                         dev_warn(&h->pdev->dev,
1354                                 "device unexpectedly changed.\n");
1355                         /* but if it does happen, we just ignore that device */
1356                 }
1357         }
1358         spin_unlock_irqrestore(&h->devlock, flags);
1359
1360         /* Monitor devices which are in one of several NOT READY states to be
1361          * brought online later. This must be done without holding h->devlock,
1362          * so don't touch h->dev[]
1363          */
1364         for (i = 0; i < nsds; i++) {
1365                 if (!sd[i]) /* if already added above. */
1366                         continue;
1367                 if (sd[i]->volume_offline)
1368                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1369         }
1370
1371         /* Don't notify scsi mid layer of any changes the first time through
1372          * (or if there are no changes) scsi_scan_host will do it later the
1373          * first time through.
1374          */
1375         if (hostno == -1 || !changes)
1376                 goto free_and_out;
1377
1378         sh = h->scsi_host;
1379         /* Notify scsi mid layer of any removed devices */
1380         for (i = 0; i < nremoved; i++) {
1381                 struct scsi_device *sdev =
1382                         scsi_device_lookup(sh, removed[i]->bus,
1383                                 removed[i]->target, removed[i]->lun);
1384                 if (sdev != NULL) {
1385                         scsi_remove_device(sdev);
1386                         scsi_device_put(sdev);
1387                 } else {
1388                         /* We don't expect to get here.
1389                          * future cmds to this device will get selection
1390                          * timeout as if the device was gone.
1391                          */
1392                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1393                                 " for removal.", hostno, removed[i]->bus,
1394                                 removed[i]->target, removed[i]->lun);
1395                 }
1396                 kfree(removed[i]);
1397                 removed[i] = NULL;
1398         }
1399
1400         /* Notify scsi mid layer of any added devices */
1401         for (i = 0; i < nadded; i++) {
1402                 if (scsi_add_device(sh, added[i]->bus,
1403                         added[i]->target, added[i]->lun) == 0)
1404                         continue;
1405                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1406                         "device not added.\n", hostno, added[i]->bus,
1407                         added[i]->target, added[i]->lun);
1408                 /* now we have to remove it from h->dev,
1409                  * since it didn't get added to scsi mid layer
1410                  */
1411                 fixup_botched_add(h, added[i]);
1412         }
1413
1414 free_and_out:
1415         kfree(added);
1416         kfree(removed);
1417 }
1418
1419 /*
1420  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1421  * Assume's h->devlock is held.
1422  */
1423 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1424         int bus, int target, int lun)
1425 {
1426         int i;
1427         struct hpsa_scsi_dev_t *sd;
1428
1429         for (i = 0; i < h->ndevices; i++) {
1430                 sd = h->dev[i];
1431                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1432                         return sd;
1433         }
1434         return NULL;
1435 }
1436
1437 /* link sdev->hostdata to our per-device structure. */
1438 static int hpsa_slave_alloc(struct scsi_device *sdev)
1439 {
1440         struct hpsa_scsi_dev_t *sd;
1441         unsigned long flags;
1442         struct ctlr_info *h;
1443
1444         h = sdev_to_hba(sdev);
1445         spin_lock_irqsave(&h->devlock, flags);
1446         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1447                 sdev_id(sdev), sdev->lun);
1448         if (sd != NULL)
1449                 sdev->hostdata = sd;
1450         spin_unlock_irqrestore(&h->devlock, flags);
1451         return 0;
1452 }
1453
1454 static void hpsa_slave_destroy(struct scsi_device *sdev)
1455 {
1456         /* nothing to do. */
1457 }
1458
1459 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1460 {
1461         int i;
1462
1463         if (!h->cmd_sg_list)
1464                 return;
1465         for (i = 0; i < h->nr_cmds; i++) {
1466                 kfree(h->cmd_sg_list[i]);
1467                 h->cmd_sg_list[i] = NULL;
1468         }
1469         kfree(h->cmd_sg_list);
1470         h->cmd_sg_list = NULL;
1471 }
1472
1473 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1474 {
1475         int i;
1476
1477         if (h->chainsize <= 0)
1478                 return 0;
1479
1480         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1481                                 GFP_KERNEL);
1482         if (!h->cmd_sg_list) {
1483                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1484                 return -ENOMEM;
1485         }
1486         for (i = 0; i < h->nr_cmds; i++) {
1487                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1488                                                 h->chainsize, GFP_KERNEL);
1489                 if (!h->cmd_sg_list[i]) {
1490                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1491                         goto clean;
1492                 }
1493         }
1494         return 0;
1495
1496 clean:
1497         hpsa_free_sg_chain_blocks(h);
1498         return -ENOMEM;
1499 }
1500
1501 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1502         struct CommandList *c)
1503 {
1504         struct SGDescriptor *chain_sg, *chain_block;
1505         u64 temp64;
1506         u32 chain_len;
1507
1508         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1509         chain_block = h->cmd_sg_list[c->cmdindex];
1510         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1511         chain_len = sizeof(*chain_sg) *
1512                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1513         chain_sg->Len = cpu_to_le32(chain_len);
1514         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1515                                 PCI_DMA_TODEVICE);
1516         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1517                 /* prevent subsequent unmapping */
1518                 chain_sg->Addr = cpu_to_le64(0);
1519                 return -1;
1520         }
1521         chain_sg->Addr = cpu_to_le64(temp64);
1522         return 0;
1523 }
1524
1525 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1526         struct CommandList *c)
1527 {
1528         struct SGDescriptor *chain_sg;
1529
1530         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1531                 return;
1532
1533         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1534         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1535                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1536 }
1537
1538
1539 /* Decode the various types of errors on ioaccel2 path.
1540  * Return 1 for any error that should generate a RAID path retry.
1541  * Return 0 for errors that don't require a RAID path retry.
1542  */
1543 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1544                                         struct CommandList *c,
1545                                         struct scsi_cmnd *cmd,
1546                                         struct io_accel2_cmd *c2)
1547 {
1548         int data_len;
1549         int retry = 0;
1550
1551         switch (c2->error_data.serv_response) {
1552         case IOACCEL2_SERV_RESPONSE_COMPLETE:
1553                 switch (c2->error_data.status) {
1554                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1555                         break;
1556                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1557                         dev_warn(&h->pdev->dev,
1558                                 "%s: task complete with check condition.\n",
1559                                 "HP SSD Smart Path");
1560                         cmd->result |= SAM_STAT_CHECK_CONDITION;
1561                         if (c2->error_data.data_present !=
1562                                         IOACCEL2_SENSE_DATA_PRESENT) {
1563                                 memset(cmd->sense_buffer, 0,
1564                                         SCSI_SENSE_BUFFERSIZE);
1565                                 break;
1566                         }
1567                         /* copy the sense data */
1568                         data_len = c2->error_data.sense_data_len;
1569                         if (data_len > SCSI_SENSE_BUFFERSIZE)
1570                                 data_len = SCSI_SENSE_BUFFERSIZE;
1571                         if (data_len > sizeof(c2->error_data.sense_data_buff))
1572                                 data_len =
1573                                         sizeof(c2->error_data.sense_data_buff);
1574                         memcpy(cmd->sense_buffer,
1575                                 c2->error_data.sense_data_buff, data_len);
1576                         retry = 1;
1577                         break;
1578                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1579                         dev_warn(&h->pdev->dev,
1580                                 "%s: task complete with BUSY status.\n",
1581                                 "HP SSD Smart Path");
1582                         retry = 1;
1583                         break;
1584                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1585                         dev_warn(&h->pdev->dev,
1586                                 "%s: task complete with reservation conflict.\n",
1587                                 "HP SSD Smart Path");
1588                         retry = 1;
1589                         break;
1590                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1591                         /* Make scsi midlayer do unlimited retries */
1592                         cmd->result = DID_IMM_RETRY << 16;
1593                         break;
1594                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1595                         dev_warn(&h->pdev->dev,
1596                                 "%s: task complete with aborted status.\n",
1597                                 "HP SSD Smart Path");
1598                         retry = 1;
1599                         break;
1600                 default:
1601                         dev_warn(&h->pdev->dev,
1602                                 "%s: task complete with unrecognized status: 0x%02x\n",
1603                                 "HP SSD Smart Path", c2->error_data.status);
1604                         retry = 1;
1605                         break;
1606                 }
1607                 break;
1608         case IOACCEL2_SERV_RESPONSE_FAILURE:
1609                 /* don't expect to get here. */
1610                 dev_warn(&h->pdev->dev,
1611                         "unexpected delivery or target failure, status = 0x%02x\n",
1612                         c2->error_data.status);
1613                 retry = 1;
1614                 break;
1615         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1616                 break;
1617         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1618                 break;
1619         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1620                 dev_warn(&h->pdev->dev, "task management function rejected.\n");
1621                 retry = 1;
1622                 break;
1623         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1624                 dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1625                 break;
1626         default:
1627                 dev_warn(&h->pdev->dev,
1628                         "%s: Unrecognized server response: 0x%02x\n",
1629                         "HP SSD Smart Path",
1630                         c2->error_data.serv_response);
1631                 retry = 1;
1632                 break;
1633         }
1634
1635         return retry;   /* retry on raid path? */
1636 }
1637
1638 static void process_ioaccel2_completion(struct ctlr_info *h,
1639                 struct CommandList *c, struct scsi_cmnd *cmd,
1640                 struct hpsa_scsi_dev_t *dev)
1641 {
1642         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1643         int raid_retry = 0;
1644
1645         /* check for good status */
1646         if (likely(c2->error_data.serv_response == 0 &&
1647                         c2->error_data.status == 0)) {
1648                 cmd_free(h, c);
1649                 cmd->scsi_done(cmd);
1650                 return;
1651         }
1652
1653         /* Any RAID offload error results in retry which will use
1654          * the normal I/O path so the controller can handle whatever's
1655          * wrong.
1656          */
1657         if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1658                 c2->error_data.serv_response ==
1659                         IOACCEL2_SERV_RESPONSE_FAILURE) {
1660                 dev->offload_enabled = 0;
1661                 h->drv_req_rescan = 1;  /* schedule controller for a rescan */
1662                 cmd->result = DID_SOFT_ERROR << 16;
1663                 cmd_free(h, c);
1664                 cmd->scsi_done(cmd);
1665                 return;
1666         }
1667         raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
1668         /* If error found, disable Smart Path, schedule a rescan,
1669          * and force a retry on the standard path.
1670          */
1671         if (raid_retry) {
1672                 dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
1673                         "HP SSD Smart Path");
1674                 dev->offload_enabled = 0; /* Disable Smart Path */
1675                 h->drv_req_rescan = 1;    /* schedule controller rescan */
1676                 cmd->result = DID_SOFT_ERROR << 16;
1677         }
1678         cmd_free(h, c);
1679         cmd->scsi_done(cmd);
1680 }
1681
1682 static void complete_scsi_command(struct CommandList *cp)
1683 {
1684         struct scsi_cmnd *cmd;
1685         struct ctlr_info *h;
1686         struct ErrorInfo *ei;
1687         struct hpsa_scsi_dev_t *dev;
1688
1689         unsigned char sense_key;
1690         unsigned char asc;      /* additional sense code */
1691         unsigned char ascq;     /* additional sense code qualifier */
1692         unsigned long sense_data_size;
1693
1694         ei = cp->err_info;
1695         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1696         h = cp->h;
1697         dev = cmd->device->hostdata;
1698
1699         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1700         if ((cp->cmd_type == CMD_SCSI) &&
1701                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
1702                 hpsa_unmap_sg_chain_block(h, cp);
1703
1704         cmd->result = (DID_OK << 16);           /* host byte */
1705         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1706
1707         if (cp->cmd_type == CMD_IOACCEL2)
1708                 return process_ioaccel2_completion(h, cp, cmd, dev);
1709
1710         cmd->result |= ei->ScsiStatus;
1711
1712         scsi_set_resid(cmd, ei->ResidualCnt);
1713         if (ei->CommandStatus == 0) {
1714                 cmd_free(h, cp);
1715                 cmd->scsi_done(cmd);
1716                 return;
1717         }
1718
1719         /* copy the sense data */
1720         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1721                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1722         else
1723                 sense_data_size = sizeof(ei->SenseInfo);
1724         if (ei->SenseLen < sense_data_size)
1725                 sense_data_size = ei->SenseLen;
1726
1727         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1728
1729         /* For I/O accelerator commands, copy over some fields to the normal
1730          * CISS header used below for error handling.
1731          */
1732         if (cp->cmd_type == CMD_IOACCEL1) {
1733                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1734                 cp->Header.SGList = scsi_sg_count(cmd);
1735                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
1736                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
1737                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
1738                 cp->Header.tag = c->tag;
1739                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1740                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1741
1742                 /* Any RAID offload error results in retry which will use
1743                  * the normal I/O path so the controller can handle whatever's
1744                  * wrong.
1745                  */
1746                 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1747                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1748                                 dev->offload_enabled = 0;
1749                         cmd->result = DID_SOFT_ERROR << 16;
1750                         cmd_free(h, cp);
1751                         cmd->scsi_done(cmd);
1752                         return;
1753                 }
1754         }
1755
1756         /* an error has occurred */
1757         switch (ei->CommandStatus) {
1758
1759         case CMD_TARGET_STATUS:
1760                 if (ei->ScsiStatus) {
1761                         /* Get sense key */
1762                         sense_key = 0xf & ei->SenseInfo[2];
1763                         /* Get additional sense code */
1764                         asc = ei->SenseInfo[12];
1765                         /* Get addition sense code qualifier */
1766                         ascq = ei->SenseInfo[13];
1767                 }
1768                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1769                         if (sense_key == ABORTED_COMMAND) {
1770                                 cmd->result |= DID_SOFT_ERROR << 16;
1771                                 break;
1772                         }
1773                         break;
1774                 }
1775                 /* Problem was not a check condition
1776                  * Pass it up to the upper layers...
1777                  */
1778                 if (ei->ScsiStatus) {
1779                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1780                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1781                                 "Returning result: 0x%x\n",
1782                                 cp, ei->ScsiStatus,
1783                                 sense_key, asc, ascq,
1784                                 cmd->result);
1785                 } else {  /* scsi status is zero??? How??? */
1786                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1787                                 "Returning no connection.\n", cp),
1788
1789                         /* Ordinarily, this case should never happen,
1790                          * but there is a bug in some released firmware
1791                          * revisions that allows it to happen if, for
1792                          * example, a 4100 backplane loses power and
1793                          * the tape drive is in it.  We assume that
1794                          * it's a fatal error of some kind because we
1795                          * can't show that it wasn't. We will make it
1796                          * look like selection timeout since that is
1797                          * the most common reason for this to occur,
1798                          * and it's severe enough.
1799                          */
1800
1801                         cmd->result = DID_NO_CONNECT << 16;
1802                 }
1803                 break;
1804
1805         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1806                 break;
1807         case CMD_DATA_OVERRUN:
1808                 dev_warn(&h->pdev->dev, "cp %p has"
1809                         " completed with data overrun "
1810                         "reported\n", cp);
1811                 break;
1812         case CMD_INVALID: {
1813                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1814                 print_cmd(cp); */
1815                 /* We get CMD_INVALID if you address a non-existent device
1816                  * instead of a selection timeout (no response).  You will
1817                  * see this if you yank out a drive, then try to access it.
1818                  * This is kind of a shame because it means that any other
1819                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1820                  * missing target. */
1821                 cmd->result = DID_NO_CONNECT << 16;
1822         }
1823                 break;
1824         case CMD_PROTOCOL_ERR:
1825                 cmd->result = DID_ERROR << 16;
1826                 dev_warn(&h->pdev->dev, "cp %p has "
1827                         "protocol error\n", cp);
1828                 break;
1829         case CMD_HARDWARE_ERR:
1830                 cmd->result = DID_ERROR << 16;
1831                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1832                 break;
1833         case CMD_CONNECTION_LOST:
1834                 cmd->result = DID_ERROR << 16;
1835                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1836                 break;
1837         case CMD_ABORTED:
1838                 cmd->result = DID_ABORT << 16;
1839                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1840                                 cp, ei->ScsiStatus);
1841                 break;
1842         case CMD_ABORT_FAILED:
1843                 cmd->result = DID_ERROR << 16;
1844                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1845                 break;
1846         case CMD_UNSOLICITED_ABORT:
1847                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1848                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1849                         "abort\n", cp);
1850                 break;
1851         case CMD_TIMEOUT:
1852                 cmd->result = DID_TIME_OUT << 16;
1853                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1854                 break;
1855         case CMD_UNABORTABLE:
1856                 cmd->result = DID_ERROR << 16;
1857                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1858                 break;
1859         case CMD_IOACCEL_DISABLED:
1860                 /* This only handles the direct pass-through case since RAID
1861                  * offload is handled above.  Just attempt a retry.
1862                  */
1863                 cmd->result = DID_SOFT_ERROR << 16;
1864                 dev_warn(&h->pdev->dev,
1865                                 "cp %p had HP SSD Smart Path error\n", cp);
1866                 break;
1867         default:
1868                 cmd->result = DID_ERROR << 16;
1869                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1870                                 cp, ei->CommandStatus);
1871         }
1872         cmd_free(h, cp);
1873         cmd->scsi_done(cmd);
1874 }
1875
1876 static void hpsa_pci_unmap(struct pci_dev *pdev,
1877         struct CommandList *c, int sg_used, int data_direction)
1878 {
1879         int i;
1880
1881         for (i = 0; i < sg_used; i++)
1882                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
1883                                 le32_to_cpu(c->SG[i].Len),
1884                                 data_direction);
1885 }
1886
1887 static int hpsa_map_one(struct pci_dev *pdev,
1888                 struct CommandList *cp,
1889                 unsigned char *buf,
1890                 size_t buflen,
1891                 int data_direction)
1892 {
1893         u64 addr64;
1894
1895         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1896                 cp->Header.SGList = 0;
1897                 cp->Header.SGTotal = cpu_to_le16(0);
1898                 return 0;
1899         }
1900
1901         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
1902         if (dma_mapping_error(&pdev->dev, addr64)) {
1903                 /* Prevent subsequent unmap of something never mapped */
1904                 cp->Header.SGList = 0;
1905                 cp->Header.SGTotal = cpu_to_le16(0);
1906                 return -1;
1907         }
1908         cp->SG[0].Addr = cpu_to_le64(addr64);
1909         cp->SG[0].Len = cpu_to_le32(buflen);
1910         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
1911         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
1912         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
1913         return 0;
1914 }
1915
1916 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1917         struct CommandList *c)
1918 {
1919         DECLARE_COMPLETION_ONSTACK(wait);
1920
1921         c->waiting = &wait;
1922         enqueue_cmd_and_start_io(h, c);
1923         wait_for_completion(&wait);
1924 }
1925
1926 static u32 lockup_detected(struct ctlr_info *h)
1927 {
1928         int cpu;
1929         u32 rc, *lockup_detected;
1930
1931         cpu = get_cpu();
1932         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
1933         rc = *lockup_detected;
1934         put_cpu();
1935         return rc;
1936 }
1937
1938 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1939         struct CommandList *c)
1940 {
1941         /* If controller lockup detected, fake a hardware error. */
1942         if (unlikely(lockup_detected(h)))
1943                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1944         else
1945                 hpsa_scsi_do_simple_cmd_core(h, c);
1946 }
1947
1948 #define MAX_DRIVER_CMD_RETRIES 25
1949 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1950         struct CommandList *c, int data_direction)
1951 {
1952         int backoff_time = 10, retry_count = 0;
1953
1954         do {
1955                 memset(c->err_info, 0, sizeof(*c->err_info));
1956                 hpsa_scsi_do_simple_cmd_core(h, c);
1957                 retry_count++;
1958                 if (retry_count > 3) {
1959                         msleep(backoff_time);
1960                         if (backoff_time < 1000)
1961                                 backoff_time *= 2;
1962                 }
1963         } while ((check_for_unit_attention(h, c) ||
1964                         check_for_busy(h, c)) &&
1965                         retry_count <= MAX_DRIVER_CMD_RETRIES);
1966         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1967 }
1968
1969 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
1970                                 struct CommandList *c)
1971 {
1972         const u8 *cdb = c->Request.CDB;
1973         const u8 *lun = c->Header.LUN.LunAddrBytes;
1974
1975         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
1976         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1977                 txt, lun[0], lun[1], lun[2], lun[3],
1978                 lun[4], lun[5], lun[6], lun[7],
1979                 cdb[0], cdb[1], cdb[2], cdb[3],
1980                 cdb[4], cdb[5], cdb[6], cdb[7],
1981                 cdb[8], cdb[9], cdb[10], cdb[11],
1982                 cdb[12], cdb[13], cdb[14], cdb[15]);
1983 }
1984
1985 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
1986                         struct CommandList *cp)
1987 {
1988         const struct ErrorInfo *ei = cp->err_info;
1989         struct device *d = &cp->h->pdev->dev;
1990         const u8 *sd = ei->SenseInfo;
1991
1992         switch (ei->CommandStatus) {
1993         case CMD_TARGET_STATUS:
1994                 hpsa_print_cmd(h, "SCSI status", cp);
1995                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
1996                         dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
1997                                 sd[2] & 0x0f, sd[12], sd[13]);
1998                 else
1999                         dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
2000                 if (ei->ScsiStatus == 0)
2001                         dev_warn(d, "SCSI status is abnormally zero.  "
2002                         "(probably indicates selection timeout "
2003                         "reported incorrectly due to a known "
2004                         "firmware bug, circa July, 2001.)\n");
2005                 break;
2006         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2007                 break;
2008         case CMD_DATA_OVERRUN:
2009                 hpsa_print_cmd(h, "overrun condition", cp);
2010                 break;
2011         case CMD_INVALID: {
2012                 /* controller unfortunately reports SCSI passthru's
2013                  * to non-existent targets as invalid commands.
2014                  */
2015                 hpsa_print_cmd(h, "invalid command", cp);
2016                 dev_warn(d, "probably means device no longer present\n");
2017                 }
2018                 break;
2019         case CMD_PROTOCOL_ERR:
2020                 hpsa_print_cmd(h, "protocol error", cp);
2021                 break;
2022         case CMD_HARDWARE_ERR:
2023                 hpsa_print_cmd(h, "hardware error", cp);
2024                 break;
2025         case CMD_CONNECTION_LOST:
2026                 hpsa_print_cmd(h, "connection lost", cp);
2027                 break;
2028         case CMD_ABORTED:
2029                 hpsa_print_cmd(h, "aborted", cp);
2030                 break;
2031         case CMD_ABORT_FAILED:
2032                 hpsa_print_cmd(h, "abort failed", cp);
2033                 break;
2034         case CMD_UNSOLICITED_ABORT:
2035                 hpsa_print_cmd(h, "unsolicited abort", cp);
2036                 break;
2037         case CMD_TIMEOUT:
2038                 hpsa_print_cmd(h, "timed out", cp);
2039                 break;
2040         case CMD_UNABORTABLE:
2041                 hpsa_print_cmd(h, "unabortable", cp);
2042                 break;
2043         default:
2044                 hpsa_print_cmd(h, "unknown status", cp);
2045                 dev_warn(d, "Unknown command status %x\n",
2046                                 ei->CommandStatus);
2047         }
2048 }
2049
2050 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2051                         u16 page, unsigned char *buf,
2052                         unsigned char bufsize)
2053 {
2054         int rc = IO_OK;
2055         struct CommandList *c;
2056         struct ErrorInfo *ei;
2057
2058         c = cmd_alloc(h);
2059
2060         if (c == NULL) {                        /* trouble... */
2061                 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2062                 return -ENOMEM;
2063         }
2064
2065         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2066                         page, scsi3addr, TYPE_CMD)) {
2067                 rc = -1;
2068                 goto out;
2069         }
2070         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2071         ei = c->err_info;
2072         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2073                 hpsa_scsi_interpret_error(h, c);
2074                 rc = -1;
2075         }
2076 out:
2077         cmd_free(h, c);
2078         return rc;
2079 }
2080
2081 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2082                 unsigned char *scsi3addr, unsigned char page,
2083                 struct bmic_controller_parameters *buf, size_t bufsize)
2084 {
2085         int rc = IO_OK;
2086         struct CommandList *c;
2087         struct ErrorInfo *ei;
2088
2089         c = cmd_alloc(h);
2090         if (c == NULL) {                        /* trouble... */
2091                 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2092                 return -ENOMEM;
2093         }
2094
2095         if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2096                         page, scsi3addr, TYPE_CMD)) {
2097                 rc = -1;
2098                 goto out;
2099         }
2100         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2101         ei = c->err_info;
2102         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2103                 hpsa_scsi_interpret_error(h, c);
2104                 rc = -1;
2105         }
2106 out:
2107         cmd_free(h, c);
2108         return rc;
2109         }
2110
2111 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2112         u8 reset_type)
2113 {
2114         int rc = IO_OK;
2115         struct CommandList *c;
2116         struct ErrorInfo *ei;
2117
2118         c = cmd_alloc(h);
2119
2120         if (c == NULL) {                        /* trouble... */
2121                 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2122                 return -ENOMEM;
2123         }
2124
2125         /* fill_cmd can't fail here, no data buffer to map. */
2126         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2127                         scsi3addr, TYPE_MSG);
2128         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2129         hpsa_scsi_do_simple_cmd_core(h, c);
2130         /* no unmap needed here because no data xfer. */
2131
2132         ei = c->err_info;
2133         if (ei->CommandStatus != 0) {
2134                 hpsa_scsi_interpret_error(h, c);
2135                 rc = -1;
2136         }
2137         cmd_free(h, c);
2138         return rc;
2139 }
2140
2141 static void hpsa_get_raid_level(struct ctlr_info *h,
2142         unsigned char *scsi3addr, unsigned char *raid_level)
2143 {
2144         int rc;
2145         unsigned char *buf;
2146
2147         *raid_level = RAID_UNKNOWN;
2148         buf = kzalloc(64, GFP_KERNEL);
2149         if (!buf)
2150                 return;
2151         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2152         if (rc == 0)
2153                 *raid_level = buf[8];
2154         if (*raid_level > RAID_UNKNOWN)
2155                 *raid_level = RAID_UNKNOWN;
2156         kfree(buf);
2157         return;
2158 }
2159
2160 #define HPSA_MAP_DEBUG
2161 #ifdef HPSA_MAP_DEBUG
2162 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2163                                 struct raid_map_data *map_buff)
2164 {
2165         struct raid_map_disk_data *dd = &map_buff->data[0];
2166         int map, row, col;
2167         u16 map_cnt, row_cnt, disks_per_row;
2168
2169         if (rc != 0)
2170                 return;
2171
2172         /* Show details only if debugging has been activated. */
2173         if (h->raid_offload_debug < 2)
2174                 return;
2175
2176         dev_info(&h->pdev->dev, "structure_size = %u\n",
2177                                 le32_to_cpu(map_buff->structure_size));
2178         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2179                         le32_to_cpu(map_buff->volume_blk_size));
2180         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2181                         le64_to_cpu(map_buff->volume_blk_cnt));
2182         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2183                         map_buff->phys_blk_shift);
2184         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2185                         map_buff->parity_rotation_shift);
2186         dev_info(&h->pdev->dev, "strip_size = %u\n",
2187                         le16_to_cpu(map_buff->strip_size));
2188         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2189                         le64_to_cpu(map_buff->disk_starting_blk));
2190         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2191                         le64_to_cpu(map_buff->disk_blk_cnt));
2192         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2193                         le16_to_cpu(map_buff->data_disks_per_row));
2194         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2195                         le16_to_cpu(map_buff->metadata_disks_per_row));
2196         dev_info(&h->pdev->dev, "row_cnt = %u\n",
2197                         le16_to_cpu(map_buff->row_cnt));
2198         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2199                         le16_to_cpu(map_buff->layout_map_count));
2200         dev_info(&h->pdev->dev, "flags = 0x%x\n",
2201                         le16_to_cpu(map_buff->flags));
2202         dev_info(&h->pdev->dev, "encrypytion = %s\n",
2203                         le16_to_cpu(map_buff->flags) &
2204                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2205         dev_info(&h->pdev->dev, "dekindex = %u\n",
2206                         le16_to_cpu(map_buff->dekindex));
2207         map_cnt = le16_to_cpu(map_buff->layout_map_count);
2208         for (map = 0; map < map_cnt; map++) {
2209                 dev_info(&h->pdev->dev, "Map%u:\n", map);
2210                 row_cnt = le16_to_cpu(map_buff->row_cnt);
2211                 for (row = 0; row < row_cnt; row++) {
2212                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
2213                         disks_per_row =
2214                                 le16_to_cpu(map_buff->data_disks_per_row);
2215                         for (col = 0; col < disks_per_row; col++, dd++)
2216                                 dev_info(&h->pdev->dev,
2217                                         "    D%02u: h=0x%04x xor=%u,%u\n",
2218                                         col, dd->ioaccel_handle,
2219                                         dd->xor_mult[0], dd->xor_mult[1]);
2220                         disks_per_row =
2221                                 le16_to_cpu(map_buff->metadata_disks_per_row);
2222                         for (col = 0; col < disks_per_row; col++, dd++)
2223                                 dev_info(&h->pdev->dev,
2224                                         "    M%02u: h=0x%04x xor=%u,%u\n",
2225                                         col, dd->ioaccel_handle,
2226                                         dd->xor_mult[0], dd->xor_mult[1]);
2227                 }
2228         }
2229 }
2230 #else
2231 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2232                         __attribute__((unused)) int rc,
2233                         __attribute__((unused)) struct raid_map_data *map_buff)
2234 {
2235 }
2236 #endif
2237
2238 static int hpsa_get_raid_map(struct ctlr_info *h,
2239         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2240 {
2241         int rc = 0;
2242         struct CommandList *c;
2243         struct ErrorInfo *ei;
2244
2245         c = cmd_alloc(h);
2246         if (c == NULL) {
2247                 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2248                 return -ENOMEM;
2249         }
2250         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2251                         sizeof(this_device->raid_map), 0,
2252                         scsi3addr, TYPE_CMD)) {
2253                 dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2254                 cmd_free(h, c);
2255                 return -ENOMEM;
2256         }
2257         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2258         ei = c->err_info;
2259         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2260                 hpsa_scsi_interpret_error(h, c);
2261                 cmd_free(h, c);
2262                 return -1;
2263         }
2264         cmd_free(h, c);
2265
2266         /* @todo in the future, dynamically allocate RAID map memory */
2267         if (le32_to_cpu(this_device->raid_map.structure_size) >
2268                                 sizeof(this_device->raid_map)) {
2269                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2270                 rc = -1;
2271         }
2272         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2273         return rc;
2274 }
2275
2276 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2277         unsigned char scsi3addr[], u8 page)
2278 {
2279         int rc;
2280         int i;
2281         int pages;
2282         unsigned char *buf, bufsize;
2283
2284         buf = kzalloc(256, GFP_KERNEL);
2285         if (!buf)
2286                 return 0;
2287
2288         /* Get the size of the page list first */
2289         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2290                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2291                                 buf, HPSA_VPD_HEADER_SZ);
2292         if (rc != 0)
2293                 goto exit_unsupported;
2294         pages = buf[3];
2295         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2296                 bufsize = pages + HPSA_VPD_HEADER_SZ;
2297         else
2298                 bufsize = 255;
2299
2300         /* Get the whole VPD page list */
2301         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2302                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2303                                 buf, bufsize);
2304         if (rc != 0)
2305                 goto exit_unsupported;
2306
2307         pages = buf[3];
2308         for (i = 1; i <= pages; i++)
2309                 if (buf[3 + i] == page)
2310                         goto exit_supported;
2311 exit_unsupported:
2312         kfree(buf);
2313         return 0;
2314 exit_supported:
2315         kfree(buf);
2316         return 1;
2317 }
2318
2319 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2320         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2321 {
2322         int rc;
2323         unsigned char *buf;
2324         u8 ioaccel_status;
2325
2326         this_device->offload_config = 0;
2327         this_device->offload_enabled = 0;
2328
2329         buf = kzalloc(64, GFP_KERNEL);
2330         if (!buf)
2331                 return;
2332         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2333                 goto out;
2334         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2335                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2336         if (rc != 0)
2337                 goto out;
2338
2339 #define IOACCEL_STATUS_BYTE 4
2340 #define OFFLOAD_CONFIGURED_BIT 0x01
2341 #define OFFLOAD_ENABLED_BIT 0x02
2342         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2343         this_device->offload_config =
2344                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2345         if (this_device->offload_config) {
2346                 this_device->offload_enabled =
2347                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2348                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
2349                         this_device->offload_enabled = 0;
2350         }
2351 out:
2352         kfree(buf);
2353         return;
2354 }
2355
2356 /* Get the device id from inquiry page 0x83 */
2357 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2358         unsigned char *device_id, int buflen)
2359 {
2360         int rc;
2361         unsigned char *buf;
2362
2363         if (buflen > 16)
2364                 buflen = 16;
2365         buf = kzalloc(64, GFP_KERNEL);
2366         if (!buf)
2367                 return -ENOMEM;
2368         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2369         if (rc == 0)
2370                 memcpy(device_id, &buf[8], buflen);
2371         kfree(buf);
2372         return rc != 0;
2373 }
2374
2375 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2376                 struct ReportLUNdata *buf, int bufsize,
2377                 int extended_response)
2378 {
2379         int rc = IO_OK;
2380         struct CommandList *c;
2381         unsigned char scsi3addr[8];
2382         struct ErrorInfo *ei;
2383
2384         c = cmd_alloc(h);
2385         if (c == NULL) {                        /* trouble... */
2386                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2387                 return -1;
2388         }
2389         /* address the controller */
2390         memset(scsi3addr, 0, sizeof(scsi3addr));
2391         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2392                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2393                 rc = -1;
2394                 goto out;
2395         }
2396         if (extended_response)
2397                 c->Request.CDB[1] = extended_response;
2398         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2399         ei = c->err_info;
2400         if (ei->CommandStatus != 0 &&
2401             ei->CommandStatus != CMD_DATA_UNDERRUN) {
2402                 hpsa_scsi_interpret_error(h, c);
2403                 rc = -1;
2404         } else {
2405                 if (buf->extended_response_flag != extended_response) {
2406                         dev_err(&h->pdev->dev,
2407                                 "report luns requested format %u, got %u\n",
2408                                 extended_response,
2409                                 buf->extended_response_flag);
2410                         rc = -1;
2411                 }
2412         }
2413 out:
2414         cmd_free(h, c);
2415         return rc;
2416 }
2417
2418 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2419                 struct ReportLUNdata *buf,
2420                 int bufsize, int extended_response)
2421 {
2422         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
2423 }
2424
2425 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2426                 struct ReportLUNdata *buf, int bufsize)
2427 {
2428         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2429 }
2430
2431 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2432         int bus, int target, int lun)
2433 {
2434         device->bus = bus;
2435         device->target = target;
2436         device->lun = lun;
2437 }
2438
2439 /* Use VPD inquiry to get details of volume status */
2440 static int hpsa_get_volume_status(struct ctlr_info *h,
2441                                         unsigned char scsi3addr[])
2442 {
2443         int rc;
2444         int status;
2445         int size;
2446         unsigned char *buf;
2447
2448         buf = kzalloc(64, GFP_KERNEL);
2449         if (!buf)
2450                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2451
2452         /* Does controller have VPD for logical volume status? */
2453         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2454                 goto exit_failed;
2455
2456         /* Get the size of the VPD return buffer */
2457         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2458                                         buf, HPSA_VPD_HEADER_SZ);
2459         if (rc != 0)
2460                 goto exit_failed;
2461         size = buf[3];
2462
2463         /* Now get the whole VPD buffer */
2464         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2465                                         buf, size + HPSA_VPD_HEADER_SZ);
2466         if (rc != 0)
2467                 goto exit_failed;
2468         status = buf[4]; /* status byte */
2469
2470         kfree(buf);
2471         return status;
2472 exit_failed:
2473         kfree(buf);
2474         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2475 }
2476
2477 /* Determine offline status of a volume.
2478  * Return either:
2479  *  0 (not offline)
2480  *  0xff (offline for unknown reasons)
2481  *  # (integer code indicating one of several NOT READY states
2482  *     describing why a volume is to be kept offline)
2483  */
2484 static int hpsa_volume_offline(struct ctlr_info *h,
2485                                         unsigned char scsi3addr[])
2486 {
2487         struct CommandList *c;
2488         unsigned char *sense, sense_key, asc, ascq;
2489         int ldstat = 0;
2490         u16 cmd_status;
2491         u8 scsi_status;
2492 #define ASC_LUN_NOT_READY 0x04
2493 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2494 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2495
2496         c = cmd_alloc(h);
2497         if (!c)
2498                 return 0;
2499         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2500         hpsa_scsi_do_simple_cmd_core(h, c);
2501         sense = c->err_info->SenseInfo;
2502         sense_key = sense[2];
2503         asc = sense[12];
2504         ascq = sense[13];
2505         cmd_status = c->err_info->CommandStatus;
2506         scsi_status = c->err_info->ScsiStatus;
2507         cmd_free(h, c);
2508         /* Is the volume 'not ready'? */
2509         if (cmd_status != CMD_TARGET_STATUS ||
2510                 scsi_status != SAM_STAT_CHECK_CONDITION ||
2511                 sense_key != NOT_READY ||
2512                 asc != ASC_LUN_NOT_READY)  {
2513                 return 0;
2514         }
2515
2516         /* Determine the reason for not ready state */
2517         ldstat = hpsa_get_volume_status(h, scsi3addr);
2518
2519         /* Keep volume offline in certain cases: */
2520         switch (ldstat) {
2521         case HPSA_LV_UNDERGOING_ERASE:
2522         case HPSA_LV_UNDERGOING_RPI:
2523         case HPSA_LV_PENDING_RPI:
2524         case HPSA_LV_ENCRYPTED_NO_KEY:
2525         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2526         case HPSA_LV_UNDERGOING_ENCRYPTION:
2527         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2528         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2529                 return ldstat;
2530         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2531                 /* If VPD status page isn't available,
2532                  * use ASC/ASCQ to determine state
2533                  */
2534                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2535                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2536                         return ldstat;
2537                 break;
2538         default:
2539                 break;
2540         }
2541         return 0;
2542 }
2543
2544 static int hpsa_update_device_info(struct ctlr_info *h,
2545         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2546         unsigned char *is_OBDR_device)
2547 {
2548
2549 #define OBDR_SIG_OFFSET 43
2550 #define OBDR_TAPE_SIG "$DR-10"
2551 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2552 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2553
2554         unsigned char *inq_buff;
2555         unsigned char *obdr_sig;
2556
2557         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2558         if (!inq_buff)
2559                 goto bail_out;
2560
2561         /* Do an inquiry to the device to see what it is. */
2562         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2563                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2564                 /* Inquiry failed (msg printed already) */
2565                 dev_err(&h->pdev->dev,
2566                         "hpsa_update_device_info: inquiry failed\n");
2567                 goto bail_out;
2568         }
2569
2570         this_device->devtype = (inq_buff[0] & 0x1f);
2571         memcpy(this_device->scsi3addr, scsi3addr, 8);
2572         memcpy(this_device->vendor, &inq_buff[8],
2573                 sizeof(this_device->vendor));
2574         memcpy(this_device->model, &inq_buff[16],
2575                 sizeof(this_device->model));
2576         memset(this_device->device_id, 0,
2577                 sizeof(this_device->device_id));
2578         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2579                 sizeof(this_device->device_id));
2580
2581         if (this_device->devtype == TYPE_DISK &&
2582                 is_logical_dev_addr_mode(scsi3addr)) {
2583                 int volume_offline;
2584
2585                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2586                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2587                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2588                 volume_offline = hpsa_volume_offline(h, scsi3addr);
2589                 if (volume_offline < 0 || volume_offline > 0xff)
2590                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
2591                 this_device->volume_offline = volume_offline & 0xff;
2592         } else {
2593                 this_device->raid_level = RAID_UNKNOWN;
2594                 this_device->offload_config = 0;
2595                 this_device->offload_enabled = 0;
2596                 this_device->volume_offline = 0;
2597         }
2598
2599         if (is_OBDR_device) {
2600                 /* See if this is a One-Button-Disaster-Recovery device
2601                  * by looking for "$DR-10" at offset 43 in inquiry data.
2602                  */
2603                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2604                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2605                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
2606                                                 OBDR_SIG_LEN) == 0);
2607         }
2608
2609         kfree(inq_buff);
2610         return 0;
2611
2612 bail_out:
2613         kfree(inq_buff);
2614         return 1;
2615 }
2616
2617 static unsigned char *ext_target_model[] = {
2618         "MSA2012",
2619         "MSA2024",
2620         "MSA2312",
2621         "MSA2324",
2622         "P2000 G3 SAS",
2623         "MSA 2040 SAS",
2624         NULL,
2625 };
2626
2627 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2628 {
2629         int i;
2630
2631         for (i = 0; ext_target_model[i]; i++)
2632                 if (strncmp(device->model, ext_target_model[i],
2633                         strlen(ext_target_model[i])) == 0)
2634                         return 1;
2635         return 0;
2636 }
2637
2638 /* Helper function to assign bus, target, lun mapping of devices.
2639  * Puts non-external target logical volumes on bus 0, external target logical
2640  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2641  * Logical drive target and lun are assigned at this time, but
2642  * physical device lun and target assignment are deferred (assigned
2643  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2644  */
2645 static void figure_bus_target_lun(struct ctlr_info *h,
2646         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2647 {
2648         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2649
2650         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2651                 /* physical device, target and lun filled in later */
2652                 if (is_hba_lunid(lunaddrbytes))
2653                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2654                 else
2655                         /* defer target, lun assignment for physical devices */
2656                         hpsa_set_bus_target_lun(device, 2, -1, -1);
2657                 return;
2658         }
2659         /* It's a logical device */
2660         if (is_ext_target(h, device)) {
2661                 /* external target way, put logicals on bus 1
2662                  * and match target/lun numbers box
2663                  * reports, other smart array, bus 0, target 0, match lunid
2664                  */
2665                 hpsa_set_bus_target_lun(device,
2666                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2667                 return;
2668         }
2669         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2670 }
2671
2672 /*
2673  * If there is no lun 0 on a target, linux won't find any devices.
2674  * For the external targets (arrays), we have to manually detect the enclosure
2675  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2676  * it for some reason.  *tmpdevice is the target we're adding,
2677  * this_device is a pointer into the current element of currentsd[]
2678  * that we're building up in update_scsi_devices(), below.
2679  * lunzerobits is a bitmap that tracks which targets already have a
2680  * lun 0 assigned.
2681  * Returns 1 if an enclosure was added, 0 if not.
2682  */
2683 static int add_ext_target_dev(struct ctlr_info *h,
2684         struct hpsa_scsi_dev_t *tmpdevice,
2685         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2686         unsigned long lunzerobits[], int *n_ext_target_devs)
2687 {
2688         unsigned char scsi3addr[8];
2689
2690         if (test_bit(tmpdevice->target, lunzerobits))
2691                 return 0; /* There is already a lun 0 on this target. */
2692
2693         if (!is_logical_dev_addr_mode(lunaddrbytes))
2694                 return 0; /* It's the logical targets that may lack lun 0. */
2695
2696         if (!is_ext_target(h, tmpdevice))
2697                 return 0; /* Only external target devices have this problem. */
2698
2699         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2700                 return 0;
2701
2702         memset(scsi3addr, 0, 8);
2703         scsi3addr[3] = tmpdevice->target;
2704         if (is_hba_lunid(scsi3addr))
2705                 return 0; /* Don't add the RAID controller here. */
2706
2707         if (is_scsi_rev_5(h))
2708                 return 0; /* p1210m doesn't need to do this. */
2709
2710         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2711                 dev_warn(&h->pdev->dev, "Maximum number of external "
2712                         "target devices exceeded.  Check your hardware "
2713                         "configuration.");
2714                 return 0;
2715         }
2716
2717         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2718                 return 0;
2719         (*n_ext_target_devs)++;
2720         hpsa_set_bus_target_lun(this_device,
2721                                 tmpdevice->bus, tmpdevice->target, 0);
2722         set_bit(tmpdevice->target, lunzerobits);
2723         return 1;
2724 }
2725
2726 /*
2727  * Get address of physical disk used for an ioaccel2 mode command:
2728  *      1. Extract ioaccel2 handle from the command.
2729  *      2. Find a matching ioaccel2 handle from list of physical disks.
2730  *      3. Return:
2731  *              1 and set scsi3addr to address of matching physical
2732  *              0 if no matching physical disk was found.
2733  */
2734 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2735         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2736 {
2737         struct ReportExtendedLUNdata *physicals = NULL;
2738         int responsesize = 24;  /* size of physical extended response */
2739         int extended = 2;       /* flag forces reporting 'other dev info'. */
2740         int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2741         u32 nphysicals = 0;     /* number of reported physical devs */
2742         int found = 0;          /* found match (1) or not (0) */
2743         u32 find;               /* handle we need to match */
2744         int i;
2745         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
2746         struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2747         struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2748         __le32 it_nexus;        /* 4 byte device handle for the ioaccel2 cmd */
2749         __le32 scsi_nexus;      /* 4 byte device handle for the ioaccel2 cmd */
2750
2751         if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2752                 return 0; /* no match */
2753
2754         /* point to the ioaccel2 device handle */
2755         c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2756         if (c2a == NULL)
2757                 return 0; /* no match */
2758
2759         scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2760         if (scmd == NULL)
2761                 return 0; /* no match */
2762
2763         d = scmd->device->hostdata;
2764         if (d == NULL)
2765                 return 0; /* no match */
2766
2767         it_nexus = cpu_to_le32(d->ioaccel_handle);
2768         scsi_nexus = c2a->scsi_nexus;
2769         find = le32_to_cpu(c2a->scsi_nexus);
2770
2771         if (h->raid_offload_debug > 0)
2772                 dev_info(&h->pdev->dev,
2773                         "%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2774                         __func__, scsi_nexus,
2775                         d->device_id[0], d->device_id[1], d->device_id[2],
2776                         d->device_id[3], d->device_id[4], d->device_id[5],
2777                         d->device_id[6], d->device_id[7], d->device_id[8],
2778                         d->device_id[9], d->device_id[10], d->device_id[11],
2779                         d->device_id[12], d->device_id[13], d->device_id[14],
2780                         d->device_id[15]);
2781
2782         /* Get the list of physical devices */
2783         physicals = kzalloc(reportsize, GFP_KERNEL);
2784         if (physicals == NULL)
2785                 return 0;
2786         if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
2787                 reportsize, extended)) {
2788                 dev_err(&h->pdev->dev,
2789                         "Can't lookup %s device handle: report physical LUNs failed.\n",
2790                         "HP SSD Smart Path");
2791                 kfree(physicals);
2792                 return 0;
2793         }
2794         nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2795                                                         responsesize;
2796
2797         /* find ioaccel2 handle in list of physicals: */
2798         for (i = 0; i < nphysicals; i++) {
2799                 struct ext_report_lun_entry *entry = &physicals->LUN[i];
2800
2801                 /* handle is in bytes 28-31 of each lun */
2802                 if (entry->ioaccel_handle != find)
2803                         continue; /* didn't match */
2804                 found = 1;
2805                 memcpy(scsi3addr, entry->lunid, 8);
2806                 if (h->raid_offload_debug > 0)
2807                         dev_info(&h->pdev->dev,
2808                                 "%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2809                                 __func__, find,
2810                                 entry->ioaccel_handle, scsi3addr);
2811                 break; /* found it */
2812         }
2813
2814         kfree(physicals);
2815         if (found)
2816                 return 1;
2817         else
2818                 return 0;
2819
2820 }
2821 /*
2822  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
2823  * logdev.  The number of luns in physdev and logdev are returned in
2824  * *nphysicals and *nlogicals, respectively.
2825  * Returns 0 on success, -1 otherwise.
2826  */
2827 static int hpsa_gather_lun_info(struct ctlr_info *h,
2828         int reportphyslunsize, int reportloglunsize,
2829         struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2830         struct ReportLUNdata *logdev, u32 *nlogicals)
2831 {
2832         int physical_entry_size = 8;
2833
2834         *physical_mode = 0;
2835
2836         /* For I/O accelerator mode we need to read physical device handles */
2837         if (h->transMethod & CFGTBL_Trans_io_accel1 ||
2838                 h->transMethod & CFGTBL_Trans_io_accel2) {
2839                 *physical_mode = HPSA_REPORT_PHYS_EXTENDED;
2840                 physical_entry_size = 24;
2841         }
2842         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportphyslunsize,
2843                                                         *physical_mode)) {
2844                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2845                 return -1;
2846         }
2847         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
2848                                                         physical_entry_size;
2849         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2850                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
2851                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2852                         *nphysicals - HPSA_MAX_PHYS_LUN);
2853                 *nphysicals = HPSA_MAX_PHYS_LUN;
2854         }
2855         if (hpsa_scsi_do_report_log_luns(h, logdev, reportloglunsize)) {
2856                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2857                 return -1;
2858         }
2859         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2860         /* Reject Logicals in excess of our max capability. */
2861         if (*nlogicals > HPSA_MAX_LUN) {
2862                 dev_warn(&h->pdev->dev,
2863                         "maximum logical LUNs (%d) exceeded.  "
2864                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
2865                         *nlogicals - HPSA_MAX_LUN);
2866                         *nlogicals = HPSA_MAX_LUN;
2867         }
2868         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2869                 dev_warn(&h->pdev->dev,
2870                         "maximum logical + physical LUNs (%d) exceeded. "
2871                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2872                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2873                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2874         }
2875         return 0;
2876 }
2877
2878 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
2879         int i, int nphysicals, int nlogicals,
2880         struct ReportExtendedLUNdata *physdev_list,
2881         struct ReportLUNdata *logdev_list)
2882 {
2883         /* Helper function, figure out where the LUN ID info is coming from
2884          * given index i, lists of physical and logical devices, where in
2885          * the list the raid controller is supposed to appear (first or last)
2886          */
2887
2888         int logicals_start = nphysicals + (raid_ctlr_position == 0);
2889         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2890
2891         if (i == raid_ctlr_position)
2892                 return RAID_CTLR_LUNID;
2893
2894         if (i < logicals_start)
2895                 return &physdev_list->LUN[i -
2896                                 (raid_ctlr_position == 0)].lunid[0];
2897
2898         if (i < last_device)
2899                 return &logdev_list->LUN[i - nphysicals -
2900                         (raid_ctlr_position == 0)][0];
2901         BUG();
2902         return NULL;
2903 }
2904
2905 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
2906 {
2907         int rc;
2908         int hba_mode_enabled;
2909         struct bmic_controller_parameters *ctlr_params;
2910         ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
2911                 GFP_KERNEL);
2912
2913         if (!ctlr_params)
2914                 return -ENOMEM;
2915         rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
2916                 sizeof(struct bmic_controller_parameters));
2917         if (rc) {
2918                 kfree(ctlr_params);
2919                 return rc;
2920         }
2921
2922         hba_mode_enabled =
2923                 ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
2924         kfree(ctlr_params);
2925         return hba_mode_enabled;
2926 }
2927
2928 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
2929 {
2930         /* the idea here is we could get notified
2931          * that some devices have changed, so we do a report
2932          * physical luns and report logical luns cmd, and adjust
2933          * our list of devices accordingly.
2934          *
2935          * The scsi3addr's of devices won't change so long as the
2936          * adapter is not reset.  That means we can rescan and
2937          * tell which devices we already know about, vs. new
2938          * devices, vs.  disappearing devices.
2939          */
2940         struct ReportExtendedLUNdata *physdev_list = NULL;
2941         struct ReportLUNdata *logdev_list = NULL;
2942         u32 nphysicals = 0;
2943         u32 nlogicals = 0;
2944         int physical_mode = 0;
2945         u32 ndev_allocated = 0;
2946         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
2947         int ncurrent = 0;
2948         int i, n_ext_target_devs, ndevs_to_allocate;
2949         int raid_ctlr_position;
2950         int rescan_hba_mode;
2951         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
2952
2953         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
2954         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
2955         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
2956         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
2957
2958         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
2959                 dev_err(&h->pdev->dev, "out of memory\n");
2960                 goto out;
2961         }
2962         memset(lunzerobits, 0, sizeof(lunzerobits));
2963
2964         rescan_hba_mode = hpsa_hba_mode_enabled(h);
2965         if (rescan_hba_mode < 0)
2966                 goto out;
2967
2968         if (!h->hba_mode_enabled && rescan_hba_mode)
2969                 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
2970         else if (h->hba_mode_enabled && !rescan_hba_mode)
2971                 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
2972
2973         h->hba_mode_enabled = rescan_hba_mode;
2974
2975         if (hpsa_gather_lun_info(h,
2976                         sizeof(*physdev_list), sizeof(*logdev_list),
2977                         (struct ReportLUNdata *) physdev_list, &nphysicals,
2978                         &physical_mode, logdev_list, &nlogicals))
2979                 goto out;
2980
2981         /* We might see up to the maximum number of logical and physical disks
2982          * plus external target devices, and a device for the local RAID
2983          * controller.
2984          */
2985         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2986
2987         /* Allocate the per device structures */
2988         for (i = 0; i < ndevs_to_allocate; i++) {
2989                 if (i >= HPSA_MAX_DEVICES) {
2990                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
2991                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
2992                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
2993                         break;
2994                 }
2995
2996                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
2997                 if (!currentsd[i]) {
2998                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
2999                                 __FILE__, __LINE__);
3000                         goto out;
3001                 }
3002                 ndev_allocated++;
3003         }
3004
3005         if (is_scsi_rev_5(h))
3006                 raid_ctlr_position = 0;
3007         else
3008                 raid_ctlr_position = nphysicals + nlogicals;
3009
3010         /* adjust our table of devices */
3011         n_ext_target_devs = 0;
3012         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3013                 u8 *lunaddrbytes, is_OBDR = 0;
3014
3015                 /* Figure out where the LUN ID info is coming from */
3016                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3017                         i, nphysicals, nlogicals, physdev_list, logdev_list);
3018                 /* skip masked physical devices. */
3019                 if (lunaddrbytes[3] & 0xC0 &&
3020                         i < nphysicals + (raid_ctlr_position == 0))
3021                         continue;
3022
3023                 /* Get device type, vendor, model, device id */
3024                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3025                                                         &is_OBDR))
3026                         continue; /* skip it if we can't talk to it. */
3027                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3028                 this_device = currentsd[ncurrent];
3029
3030                 /*
3031                  * For external target devices, we have to insert a LUN 0 which
3032                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3033                  * is nonetheless an enclosure device there.  We have to
3034                  * present that otherwise linux won't find anything if
3035                  * there is no lun 0.
3036                  */
3037                 if (add_ext_target_dev(h, tmpdevice, this_device,
3038                                 lunaddrbytes, lunzerobits,
3039                                 &n_ext_target_devs)) {
3040                         ncurrent++;
3041                         this_device = currentsd[ncurrent];
3042                 }
3043
3044                 *this_device = *tmpdevice;
3045
3046                 switch (this_device->devtype) {
3047                 case TYPE_ROM:
3048                         /* We don't *really* support actual CD-ROM devices,
3049                          * just "One Button Disaster Recovery" tape drive
3050                          * which temporarily pretends to be a CD-ROM drive.
3051                          * So we check that the device is really an OBDR tape
3052                          * device by checking for "$DR-10" in bytes 43-48 of
3053                          * the inquiry data.
3054                          */
3055                         if (is_OBDR)
3056                                 ncurrent++;
3057                         break;
3058                 case TYPE_DISK:
3059                         if (h->hba_mode_enabled) {
3060                                 /* never use raid mapper in HBA mode */
3061                                 this_device->offload_enabled = 0;
3062                                 ncurrent++;
3063                                 break;
3064                         } else if (h->acciopath_status) {
3065                                 if (i >= nphysicals) {
3066                                         ncurrent++;
3067                                         break;
3068                                 }
3069                         } else {
3070                                 if (i < nphysicals)
3071                                         break;
3072                                 ncurrent++;
3073                                 break;
3074                         }
3075                         if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
3076                                 memcpy(&this_device->ioaccel_handle,
3077                                         &lunaddrbytes[20],
3078                                         sizeof(this_device->ioaccel_handle));
3079                                 ncurrent++;
3080                         }
3081                         break;
3082                 case TYPE_TAPE:
3083                 case TYPE_MEDIUM_CHANGER:
3084                         ncurrent++;
3085                         break;
3086                 case TYPE_RAID:
3087                         /* Only present the Smartarray HBA as a RAID controller.
3088                          * If it's a RAID controller other than the HBA itself
3089                          * (an external RAID controller, MSA500 or similar)
3090                          * don't present it.
3091                          */
3092                         if (!is_hba_lunid(lunaddrbytes))
3093                                 break;
3094                         ncurrent++;
3095                         break;
3096                 default:
3097                         break;
3098                 }
3099                 if (ncurrent >= HPSA_MAX_DEVICES)
3100                         break;
3101         }
3102         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3103 out:
3104         kfree(tmpdevice);
3105         for (i = 0; i < ndev_allocated; i++)
3106                 kfree(currentsd[i]);
3107         kfree(currentsd);
3108         kfree(physdev_list);
3109         kfree(logdev_list);
3110 }
3111
3112 /*
3113  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3114  * dma mapping  and fills in the scatter gather entries of the
3115  * hpsa command, cp.
3116  */
3117 static int hpsa_scatter_gather(struct ctlr_info *h,
3118                 struct CommandList *cp,
3119                 struct scsi_cmnd *cmd)
3120 {
3121         unsigned int len;
3122         struct scatterlist *sg;
3123         u64 addr64;
3124         int use_sg, i, sg_index, chained;
3125         struct SGDescriptor *curr_sg;
3126
3127         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3128
3129         use_sg = scsi_dma_map(cmd);
3130         if (use_sg < 0)
3131                 return use_sg;
3132
3133         if (!use_sg)
3134                 goto sglist_finished;
3135
3136         curr_sg = cp->SG;
3137         chained = 0;
3138         sg_index = 0;
3139         scsi_for_each_sg(cmd, sg, use_sg, i) {
3140                 if (i == h->max_cmd_sg_entries - 1 &&
3141                         use_sg > h->max_cmd_sg_entries) {
3142                         chained = 1;
3143                         curr_sg = h->cmd_sg_list[cp->cmdindex];
3144                         sg_index = 0;
3145                 }
3146                 addr64 = (u64) sg_dma_address(sg);
3147                 len  = sg_dma_len(sg);
3148                 curr_sg->Addr = cpu_to_le64(addr64);
3149                 curr_sg->Len = cpu_to_le32(len);
3150                 curr_sg->Ext = cpu_to_le32(0);
3151                 curr_sg++;
3152         }
3153         (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3154
3155         if (use_sg + chained > h->maxSG)
3156                 h->maxSG = use_sg + chained;
3157
3158         if (chained) {
3159                 cp->Header.SGList = h->max_cmd_sg_entries;
3160                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3161                 if (hpsa_map_sg_chain_block(h, cp)) {
3162                         scsi_dma_unmap(cmd);
3163                         return -1;
3164                 }
3165                 return 0;
3166         }
3167
3168 sglist_finished:
3169
3170         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3171         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3172         return 0;
3173 }
3174
3175 #define IO_ACCEL_INELIGIBLE (1)
3176 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3177 {
3178         int is_write = 0;
3179         u32 block;
3180         u32 block_cnt;
3181
3182         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3183         switch (cdb[0]) {
3184         case WRITE_6:
3185         case WRITE_12:
3186                 is_write = 1;
3187         case READ_6:
3188         case READ_12:
3189                 if (*cdb_len == 6) {
3190                         block = (((u32) cdb[2]) << 8) | cdb[3];
3191                         block_cnt = cdb[4];
3192                 } else {
3193                         BUG_ON(*cdb_len != 12);
3194                         block = (((u32) cdb[2]) << 24) |
3195                                 (((u32) cdb[3]) << 16) |
3196                                 (((u32) cdb[4]) << 8) |
3197                                 cdb[5];
3198                         block_cnt =
3199                                 (((u32) cdb[6]) << 24) |
3200                                 (((u32) cdb[7]) << 16) |
3201                                 (((u32) cdb[8]) << 8) |
3202                                 cdb[9];
3203                 }
3204                 if (block_cnt > 0xffff)
3205                         return IO_ACCEL_INELIGIBLE;
3206
3207                 cdb[0] = is_write ? WRITE_10 : READ_10;
3208                 cdb[1] = 0;
3209                 cdb[2] = (u8) (block >> 24);
3210                 cdb[3] = (u8) (block >> 16);
3211                 cdb[4] = (u8) (block >> 8);
3212                 cdb[5] = (u8) (block);
3213                 cdb[6] = 0;
3214                 cdb[7] = (u8) (block_cnt >> 8);
3215                 cdb[8] = (u8) (block_cnt);
3216                 cdb[9] = 0;
3217                 *cdb_len = 10;
3218                 break;
3219         }
3220         return 0;
3221 }
3222
3223 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3224         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3225         u8 *scsi3addr)
3226 {
3227         struct scsi_cmnd *cmd = c->scsi_cmd;
3228         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3229         unsigned int len;
3230         unsigned int total_len = 0;
3231         struct scatterlist *sg;
3232         u64 addr64;
3233         int use_sg, i;
3234         struct SGDescriptor *curr_sg;
3235         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3236
3237         /* TODO: implement chaining support */
3238         if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3239                 return IO_ACCEL_INELIGIBLE;
3240
3241         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3242
3243         if (fixup_ioaccel_cdb(cdb, &cdb_len))
3244                 return IO_ACCEL_INELIGIBLE;
3245
3246         c->cmd_type = CMD_IOACCEL1;
3247
3248         /* Adjust the DMA address to point to the accelerated command buffer */
3249         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3250                                 (c->cmdindex * sizeof(*cp));
3251         BUG_ON(c->busaddr & 0x0000007F);
3252
3253         use_sg = scsi_dma_map(cmd);
3254         if (use_sg < 0)
3255                 return use_sg;
3256
3257         if (use_sg) {
3258                 curr_sg = cp->SG;
3259                 scsi_for_each_sg(cmd, sg, use_sg, i) {
3260                         addr64 = (u64) sg_dma_address(sg);
3261                         len  = sg_dma_len(sg);
3262                         total_len += len;
3263                         curr_sg->Addr = cpu_to_le64(addr64);
3264                         curr_sg->Len = cpu_to_le32(len);
3265                         curr_sg->Ext = cpu_to_le32(0);
3266                         curr_sg++;
3267                 }
3268                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3269
3270                 switch (cmd->sc_data_direction) {
3271                 case DMA_TO_DEVICE:
3272                         control |= IOACCEL1_CONTROL_DATA_OUT;
3273                         break;
3274                 case DMA_FROM_DEVICE:
3275                         control |= IOACCEL1_CONTROL_DATA_IN;
3276                         break;
3277                 case DMA_NONE:
3278                         control |= IOACCEL1_CONTROL_NODATAXFER;
3279                         break;
3280                 default:
3281                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3282                         cmd->sc_data_direction);
3283                         BUG();
3284                         break;
3285                 }
3286         } else {
3287                 control |= IOACCEL1_CONTROL_NODATAXFER;
3288         }
3289
3290         c->Header.SGList = use_sg;
3291         /* Fill out the command structure to submit */
3292         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
3293         cp->transfer_len = cpu_to_le32(total_len);
3294         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
3295                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
3296         cp->control = cpu_to_le32(control);
3297         memcpy(cp->CDB, cdb, cdb_len);
3298         memcpy(cp->CISS_LUN, scsi3addr, 8);
3299         /* Tag was already set at init time. */
3300         enqueue_cmd_and_start_io(h, c);
3301         return 0;
3302 }
3303
3304 /*
3305  * Queue a command directly to a device behind the controller using the
3306  * I/O accelerator path.
3307  */
3308 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3309         struct CommandList *c)
3310 {
3311         struct scsi_cmnd *cmd = c->scsi_cmd;
3312         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3313
3314         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3315                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
3316 }
3317
3318 /*
3319  * Set encryption parameters for the ioaccel2 request
3320  */
3321 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3322         struct CommandList *c, struct io_accel2_cmd *cp)
3323 {
3324         struct scsi_cmnd *cmd = c->scsi_cmd;
3325         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3326         struct raid_map_data *map = &dev->raid_map;
3327         u64 first_block;
3328
3329         BUG_ON(!(dev->offload_config && dev->offload_enabled));
3330
3331         /* Are we doing encryption on this device */
3332         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3333                 return;
3334         /* Set the data encryption key index. */
3335         cp->dekindex = map->dekindex;
3336
3337         /* Set the encryption enable flag, encoded into direction field. */
3338         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3339
3340         /* Set encryption tweak values based on logical block address
3341          * If block size is 512, tweak value is LBA.
3342          * For other block sizes, tweak is (LBA * block size)/ 512)
3343          */
3344         switch (cmd->cmnd[0]) {
3345         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3346         case WRITE_6:
3347         case READ_6:
3348                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
3349                 break;
3350         case WRITE_10:
3351         case READ_10:
3352         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3353         case WRITE_12:
3354         case READ_12:
3355                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
3356                 break;
3357         case WRITE_16:
3358         case READ_16:
3359                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
3360                 break;
3361         default:
3362                 dev_err(&h->pdev->dev,
3363                         "ERROR: %s: size (0x%x) not supported for encryption\n",
3364                         __func__, cmd->cmnd[0]);
3365                 BUG();
3366                 break;
3367         }
3368
3369         if (le32_to_cpu(map->volume_blk_size) != 512)
3370                 first_block = first_block *
3371                                 le32_to_cpu(map->volume_blk_size)/512;
3372
3373         cp->tweak_lower = cpu_to_le32(first_block);
3374         cp->tweak_upper = cpu_to_le32(first_block >> 32);
3375 }
3376
3377 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3378         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3379         u8 *scsi3addr)
3380 {
3381         struct scsi_cmnd *cmd = c->scsi_cmd;
3382         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3383         struct ioaccel2_sg_element *curr_sg;
3384         int use_sg, i;
3385         struct scatterlist *sg;
3386         u64 addr64;
3387         u32 len;
3388         u32 total_len = 0;
3389
3390         if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3391                 return IO_ACCEL_INELIGIBLE;
3392
3393         if (fixup_ioaccel_cdb(cdb, &cdb_len))
3394                 return IO_ACCEL_INELIGIBLE;
3395         c->cmd_type = CMD_IOACCEL2;
3396         /* Adjust the DMA address to point to the accelerated command buffer */
3397         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3398                                 (c->cmdindex * sizeof(*cp));
3399         BUG_ON(c->busaddr & 0x0000007F);
3400
3401         memset(cp, 0, sizeof(*cp));
3402         cp->IU_type = IOACCEL2_IU_TYPE;
3403
3404         use_sg = scsi_dma_map(cmd);
3405         if (use_sg < 0)
3406                 return use_sg;
3407
3408         if (use_sg) {
3409                 BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3410                 curr_sg = cp->sg;
3411                 scsi_for_each_sg(cmd, sg, use_sg, i) {
3412                         addr64 = (u64) sg_dma_address(sg);
3413                         len  = sg_dma_len(sg);
3414                         total_len += len;
3415                         curr_sg->address = cpu_to_le64(addr64);
3416                         curr_sg->length = cpu_to_le32(len);
3417                         curr_sg->reserved[0] = 0;
3418                         curr_sg->reserved[1] = 0;
3419                         curr_sg->reserved[2] = 0;
3420                         curr_sg->chain_indicator = 0;
3421                         curr_sg++;
3422                 }
3423
3424                 switch (cmd->sc_data_direction) {
3425                 case DMA_TO_DEVICE:
3426                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3427                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
3428                         break;
3429                 case DMA_FROM_DEVICE:
3430                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3431                         cp->direction |= IOACCEL2_DIR_DATA_IN;
3432                         break;
3433                 case DMA_NONE:
3434                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3435                         cp->direction |= IOACCEL2_DIR_NO_DATA;
3436                         break;
3437                 default:
3438                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3439                                 cmd->sc_data_direction);
3440                         BUG();
3441                         break;
3442                 }
3443         } else {
3444                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3445                 cp->direction |= IOACCEL2_DIR_NO_DATA;
3446         }
3447
3448         /* Set encryption parameters, if necessary */
3449         set_encrypt_ioaccel2(h, c, cp);
3450
3451         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
3452         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT |
3453                                 DIRECT_LOOKUP_BIT);
3454         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3455
3456         /* fill in sg elements */
3457         cp->sg_count = (u8) use_sg;
3458
3459         cp->data_len = cpu_to_le32(total_len);
3460         cp->err_ptr = cpu_to_le64(c->busaddr +
3461                         offsetof(struct io_accel2_cmd, error_data));
3462         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3463
3464         enqueue_cmd_and_start_io(h, c);
3465         return 0;
3466 }
3467
3468 /*
3469  * Queue a command to the correct I/O accelerator path.
3470  */
3471 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3472         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3473         u8 *scsi3addr)
3474 {
3475         if (h->transMethod & CFGTBL_Trans_io_accel1)
3476                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3477                                                 cdb, cdb_len, scsi3addr);
3478         else
3479                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3480                                                 cdb, cdb_len, scsi3addr);
3481 }
3482
3483 static void raid_map_helper(struct raid_map_data *map,
3484                 int offload_to_mirror, u32 *map_index, u32 *current_group)
3485 {
3486         if (offload_to_mirror == 0)  {
3487                 /* use physical disk in the first mirrored group. */
3488                 *map_index %= le16_to_cpu(map->data_disks_per_row);
3489                 return;
3490         }
3491         do {
3492                 /* determine mirror group that *map_index indicates */
3493                 *current_group = *map_index /
3494                         le16_to_cpu(map->data_disks_per_row);
3495                 if (offload_to_mirror == *current_group)
3496                         continue;
3497                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
3498                         /* select map index from next group */
3499                         *map_index += le16_to_cpu(map->data_disks_per_row);
3500                         (*current_group)++;
3501                 } else {
3502                         /* select map index from first group */
3503                         *map_index %= le16_to_cpu(map->data_disks_per_row);
3504                         *current_group = 0;
3505                 }
3506         } while (offload_to_mirror != *current_group);
3507 }
3508
3509 /*
3510  * Attempt to perform offload RAID mapping for a logical volume I/O.
3511  */
3512 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3513         struct CommandList *c)
3514 {
3515         struct scsi_cmnd *cmd = c->scsi_cmd;
3516         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3517         struct raid_map_data *map = &dev->raid_map;
3518         struct raid_map_disk_data *dd = &map->data[0];
3519         int is_write = 0;
3520         u32 map_index;
3521         u64 first_block, last_block;
3522         u32 block_cnt;
3523         u32 blocks_per_row;
3524         u64 first_row, last_row;
3525         u32 first_row_offset, last_row_offset;
3526         u32 first_column, last_column;
3527         u64 r0_first_row, r0_last_row;
3528         u32 r5or6_blocks_per_row;
3529         u64 r5or6_first_row, r5or6_last_row;
3530         u32 r5or6_first_row_offset, r5or6_last_row_offset;
3531         u32 r5or6_first_column, r5or6_last_column;
3532         u32 total_disks_per_row;
3533         u32 stripesize;
3534         u32 first_group, last_group, current_group;
3535         u32 map_row;
3536         u32 disk_handle;
3537         u64 disk_block;
3538         u32 disk_block_cnt;
3539         u8 cdb[16];
3540         u8 cdb_len;
3541         u16 strip_size;
3542 #if BITS_PER_LONG == 32
3543         u64 tmpdiv;
3544 #endif
3545         int offload_to_mirror;
3546
3547         BUG_ON(!(dev->offload_config && dev->offload_enabled));
3548
3549         /* check for valid opcode, get LBA and block count */
3550         switch (cmd->cmnd[0]) {
3551         case WRITE_6:
3552                 is_write = 1;
3553         case READ_6:
3554                 first_block =
3555                         (((u64) cmd->cmnd[2]) << 8) |
3556                         cmd->cmnd[3];
3557                 block_cnt = cmd->cmnd[4];
3558                 if (block_cnt == 0)
3559                         block_cnt = 256;
3560                 break;
3561         case WRITE_10:
3562                 is_write = 1;
3563         case READ_10:
3564                 first_block =
3565                         (((u64) cmd->cmnd[2]) << 24) |
3566                         (((u64) cmd->cmnd[3]) << 16) |
3567                         (((u64) cmd->cmnd[4]) << 8) |
3568                         cmd->cmnd[5];
3569                 block_cnt =
3570                         (((u32) cmd->cmnd[7]) << 8) |
3571                         cmd->cmnd[8];
3572                 break;
3573         case WRITE_12:
3574                 is_write = 1;
3575         case READ_12:
3576                 first_block =
3577                         (((u64) cmd->cmnd[2]) << 24) |
3578                         (((u64) cmd->cmnd[3]) << 16) |
3579                         (((u64) cmd->cmnd[4]) << 8) |
3580                         cmd->cmnd[5];
3581                 block_cnt =
3582                         (((u32) cmd->cmnd[6]) << 24) |
3583                         (((u32) cmd->cmnd[7]) << 16) |
3584                         (((u32) cmd->cmnd[8]) << 8) |
3585                 cmd->cmnd[9];
3586                 break;
3587         case WRITE_16:
3588                 is_write = 1;
3589         case READ_16:
3590                 first_block =
3591                         (((u64) cmd->cmnd[2]) << 56) |
3592                         (((u64) cmd->cmnd[3]) << 48) |
3593                         (((u64) cmd->cmnd[4]) << 40) |
3594                         (((u64) cmd->cmnd[5]) << 32) |
3595                         (((u64) cmd->cmnd[6]) << 24) |
3596                         (((u64) cmd->cmnd[7]) << 16) |
3597                         (((u64) cmd->cmnd[8]) << 8) |
3598                         cmd->cmnd[9];
3599                 block_cnt =
3600                         (((u32) cmd->cmnd[10]) << 24) |
3601                         (((u32) cmd->cmnd[11]) << 16) |
3602                         (((u32) cmd->cmnd[12]) << 8) |
3603                         cmd->cmnd[13];
3604                 break;
3605         default:
3606                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3607         }
3608         last_block = first_block + block_cnt - 1;
3609
3610         /* check for write to non-RAID-0 */
3611         if (is_write && dev->raid_level != 0)
3612                 return IO_ACCEL_INELIGIBLE;
3613
3614         /* check for invalid block or wraparound */
3615         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
3616                 last_block < first_block)
3617                 return IO_ACCEL_INELIGIBLE;
3618
3619         /* calculate stripe information for the request */
3620         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
3621                                 le16_to_cpu(map->strip_size);
3622         strip_size = le16_to_cpu(map->strip_size);
3623 #if BITS_PER_LONG == 32
3624         tmpdiv = first_block;
3625         (void) do_div(tmpdiv, blocks_per_row);
3626         first_row = tmpdiv;
3627         tmpdiv = last_block;
3628         (void) do_div(tmpdiv, blocks_per_row);
3629         last_row = tmpdiv;
3630         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3631         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3632         tmpdiv = first_row_offset;
3633         (void) do_div(tmpdiv, strip_size);
3634         first_column = tmpdiv;
3635         tmpdiv = last_row_offset;
3636         (void) do_div(tmpdiv, strip_size);
3637         last_column = tmpdiv;
3638 #else
3639         first_row = first_block / blocks_per_row;
3640         last_row = last_block / blocks_per_row;
3641         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3642         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3643         first_column = first_row_offset / strip_size;
3644         last_column = last_row_offset / strip_size;
3645 #endif
3646
3647         /* if this isn't a single row/column then give to the controller */
3648         if ((first_row != last_row) || (first_column != last_column))
3649                 return IO_ACCEL_INELIGIBLE;
3650
3651         /* proceeding with driver mapping */
3652         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
3653                                 le16_to_cpu(map->metadata_disks_per_row);
3654         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3655                                 le16_to_cpu(map->row_cnt);
3656         map_index = (map_row * total_disks_per_row) + first_column;
3657
3658         switch (dev->raid_level) {
3659         case HPSA_RAID_0:
3660                 break; /* nothing special to do */
3661         case HPSA_RAID_1:
3662                 /* Handles load balance across RAID 1 members.
3663                  * (2-drive R1 and R10 with even # of drives.)
3664                  * Appropriate for SSDs, not optimal for HDDs
3665                  */
3666                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
3667                 if (dev->offload_to_mirror)
3668                         map_index += le16_to_cpu(map->data_disks_per_row);
3669                 dev->offload_to_mirror = !dev->offload_to_mirror;
3670                 break;
3671         case HPSA_RAID_ADM:
3672                 /* Handles N-way mirrors  (R1-ADM)
3673                  * and R10 with # of drives divisible by 3.)
3674                  */
3675                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
3676
3677                 offload_to_mirror = dev->offload_to_mirror;
3678                 raid_map_helper(map, offload_to_mirror,
3679                                 &map_index, &current_group);
3680                 /* set mirror group to use next time */
3681                 offload_to_mirror =
3682                         (offload_to_mirror >=
3683                         le16_to_cpu(map->layout_map_count) - 1)
3684                         ? 0 : offload_to_mirror + 1;
3685                 dev->offload_to_mirror = offload_to_mirror;
3686                 /* Avoid direct use of dev->offload_to_mirror within this
3687                  * function since multiple threads might simultaneously
3688                  * increment it beyond the range of dev->layout_map_count -1.
3689                  */
3690                 break;
3691         case HPSA_RAID_5:
3692         case HPSA_RAID_6:
3693                 if (le16_to_cpu(map->layout_map_count) <= 1)
3694                         break;
3695
3696                 /* Verify first and last block are in same RAID group */
3697                 r5or6_blocks_per_row =
3698                         le16_to_cpu(map->strip_size) *
3699                         le16_to_cpu(map->data_disks_per_row);
3700                 BUG_ON(r5or6_blocks_per_row == 0);
3701                 stripesize = r5or6_blocks_per_row *
3702                         le16_to_cpu(map->layout_map_count);
3703 #if BITS_PER_LONG == 32
3704                 tmpdiv = first_block;
3705                 first_group = do_div(tmpdiv, stripesize);
3706                 tmpdiv = first_group;
3707                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3708                 first_group = tmpdiv;
3709                 tmpdiv = last_block;
3710                 last_group = do_div(tmpdiv, stripesize);
3711                 tmpdiv = last_group;
3712                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3713                 last_group = tmpdiv;
3714 #else
3715                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3716                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3717 #endif
3718                 if (first_group != last_group)
3719                         return IO_ACCEL_INELIGIBLE;
3720
3721                 /* Verify request is in a single row of RAID 5/6 */
3722 #if BITS_PER_LONG == 32
3723                 tmpdiv = first_block;
3724                 (void) do_div(tmpdiv, stripesize);
3725                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
3726                 tmpdiv = last_block;
3727                 (void) do_div(tmpdiv, stripesize);
3728                 r5or6_last_row = r0_last_row = tmpdiv;
3729 #else
3730                 first_row = r5or6_first_row = r0_first_row =
3731                                                 first_block / stripesize;
3732                 r5or6_last_row = r0_last_row = last_block / stripesize;
3733 #endif
3734                 if (r5or6_first_row != r5or6_last_row)
3735                         return IO_ACCEL_INELIGIBLE;
3736
3737
3738                 /* Verify request is in a single column */
3739 #if BITS_PER_LONG == 32
3740                 tmpdiv = first_block;
3741                 first_row_offset = do_div(tmpdiv, stripesize);
3742                 tmpdiv = first_row_offset;
3743                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3744                 r5or6_first_row_offset = first_row_offset;
3745                 tmpdiv = last_block;
3746                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3747                 tmpdiv = r5or6_last_row_offset;
3748                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3749                 tmpdiv = r5or6_first_row_offset;
3750                 (void) do_div(tmpdiv, map->strip_size);
3751                 first_column = r5or6_first_column = tmpdiv;
3752                 tmpdiv = r5or6_last_row_offset;
3753                 (void) do_div(tmpdiv, map->strip_size);
3754                 r5or6_last_column = tmpdiv;
3755 #else
3756                 first_row_offset = r5or6_first_row_offset =
3757                         (u32)((first_block % stripesize) %
3758                                                 r5or6_blocks_per_row);
3759
3760                 r5or6_last_row_offset =
3761                         (u32)((last_block % stripesize) %
3762                                                 r5or6_blocks_per_row);
3763
3764                 first_column = r5or6_first_column =
3765                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
3766                 r5or6_last_column =
3767                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
3768 #endif
3769                 if (r5or6_first_column != r5or6_last_column)
3770                         return IO_ACCEL_INELIGIBLE;
3771
3772                 /* Request is eligible */
3773                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3774                         le16_to_cpu(map->row_cnt);
3775
3776                 map_index = (first_group *
3777                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
3778                         (map_row * total_disks_per_row) + first_column;
3779                 break;
3780         default:
3781                 return IO_ACCEL_INELIGIBLE;
3782         }
3783
3784         disk_handle = dd[map_index].ioaccel_handle;
3785         disk_block = le64_to_cpu(map->disk_starting_blk) +
3786                         first_row * le16_to_cpu(map->strip_size) +
3787                         (first_row_offset - first_column *
3788                         le16_to_cpu(map->strip_size));
3789         disk_block_cnt = block_cnt;
3790
3791         /* handle differing logical/physical block sizes */
3792         if (map->phys_blk_shift) {
3793                 disk_block <<= map->phys_blk_shift;
3794                 disk_block_cnt <<= map->phys_blk_shift;
3795         }
3796         BUG_ON(disk_block_cnt > 0xffff);
3797
3798         /* build the new CDB for the physical disk I/O */
3799         if (disk_block > 0xffffffff) {
3800                 cdb[0] = is_write ? WRITE_16 : READ_16;
3801                 cdb[1] = 0;
3802                 cdb[2] = (u8) (disk_block >> 56);
3803                 cdb[3] = (u8) (disk_block >> 48);
3804                 cdb[4] = (u8) (disk_block >> 40);
3805                 cdb[5] = (u8) (disk_block >> 32);
3806                 cdb[6] = (u8) (disk_block >> 24);
3807                 cdb[7] = (u8) (disk_block >> 16);
3808                 cdb[8] = (u8) (disk_block >> 8);
3809                 cdb[9] = (u8) (disk_block);
3810                 cdb[10] = (u8) (disk_block_cnt >> 24);
3811                 cdb[11] = (u8) (disk_block_cnt >> 16);
3812                 cdb[12] = (u8) (disk_block_cnt >> 8);
3813                 cdb[13] = (u8) (disk_block_cnt);
3814                 cdb[14] = 0;
3815                 cdb[15] = 0;
3816                 cdb_len = 16;
3817         } else {
3818                 cdb[0] = is_write ? WRITE_10 : READ_10;
3819                 cdb[1] = 0;
3820                 cdb[2] = (u8) (disk_block >> 24);
3821                 cdb[3] = (u8) (disk_block >> 16);
3822                 cdb[4] = (u8) (disk_block >> 8);
3823                 cdb[5] = (u8) (disk_block);
3824                 cdb[6] = 0;
3825                 cdb[7] = (u8) (disk_block_cnt >> 8);
3826                 cdb[8] = (u8) (disk_block_cnt);
3827                 cdb[9] = 0;
3828                 cdb_len = 10;
3829         }
3830         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3831                                                 dev->scsi3addr);
3832 }
3833
3834 /*
3835  * Running in struct Scsi_Host->host_lock less mode using LLD internal
3836  * struct ctlr_info *h->lock w/ spin_lock_irqsave() protection.
3837  */
3838 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
3839 {
3840         struct ctlr_info *h;
3841         struct hpsa_scsi_dev_t *dev;
3842         unsigned char scsi3addr[8];
3843         struct CommandList *c;
3844         int rc = 0;
3845
3846         /* Get the ptr to our adapter structure out of cmd->host. */
3847         h = sdev_to_hba(cmd->device);
3848         dev = cmd->device->hostdata;
3849         if (!dev) {
3850                 cmd->result = DID_NO_CONNECT << 16;
3851                 cmd->scsi_done(cmd);
3852                 return 0;
3853         }
3854         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
3855
3856         if (unlikely(lockup_detected(h))) {
3857                 cmd->result = DID_ERROR << 16;
3858                 cmd->scsi_done(cmd);
3859                 return 0;
3860         }
3861         c = cmd_alloc(h);
3862         if (c == NULL) {                        /* trouble... */
3863                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
3864                 return SCSI_MLQUEUE_HOST_BUSY;
3865         }
3866
3867         /* Fill in the command list header */
3868         /* save c in case we have to abort it  */
3869         cmd->host_scribble = (unsigned char *) c;
3870
3871         c->cmd_type = CMD_SCSI;
3872         c->scsi_cmd = cmd;
3873
3874         /* Call alternate submit routine for I/O accelerated commands.
3875          * Retries always go down the normal I/O path.
3876          */
3877         if (likely(cmd->retries == 0 &&
3878                 cmd->request->cmd_type == REQ_TYPE_FS &&
3879                 h->acciopath_status)) {
3880                 if (dev->offload_enabled) {
3881                         rc = hpsa_scsi_ioaccel_raid_map(h, c);
3882                         if (rc == 0)
3883                                 return 0; /* Sent on ioaccel path */
3884                         if (rc < 0) {   /* scsi_dma_map failed. */
3885                                 cmd_free(h, c);
3886                                 return SCSI_MLQUEUE_HOST_BUSY;
3887                         }
3888                 } else if (dev->ioaccel_handle) {
3889                         rc = hpsa_scsi_ioaccel_direct_map(h, c);
3890                         if (rc == 0)
3891                                 return 0; /* Sent on direct map path */
3892                         if (rc < 0) {   /* scsi_dma_map failed. */
3893                                 cmd_free(h, c);
3894                                 return SCSI_MLQUEUE_HOST_BUSY;
3895                         }
3896                 }
3897         }
3898
3899         c->Header.ReplyQueue = 0;  /* unused in simple mode */
3900         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
3901         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3902                                         DIRECT_LOOKUP_BIT);
3903
3904         /* Fill in the request block... */
3905
3906         c->Request.Timeout = 0;
3907         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
3908         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
3909         c->Request.CDBLen = cmd->cmd_len;
3910         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
3911         switch (cmd->sc_data_direction) {
3912         case DMA_TO_DEVICE:
3913                 c->Request.type_attr_dir =
3914                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
3915                 break;
3916         case DMA_FROM_DEVICE:
3917                 c->Request.type_attr_dir =
3918                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
3919                 break;
3920         case DMA_NONE:
3921                 c->Request.type_attr_dir =
3922                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
3923                 break;
3924         case DMA_BIDIRECTIONAL:
3925                 /* This can happen if a buggy application does a scsi passthru
3926                  * and sets both inlen and outlen to non-zero. ( see
3927                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
3928                  */
3929
3930                 c->Request.type_attr_dir =
3931                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
3932                 /* This is technically wrong, and hpsa controllers should
3933                  * reject it with CMD_INVALID, which is the most correct
3934                  * response, but non-fibre backends appear to let it
3935                  * slide by, and give the same results as if this field
3936                  * were set correctly.  Either way is acceptable for
3937                  * our purposes here.
3938                  */
3939
3940                 break;
3941
3942         default:
3943                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3944                         cmd->sc_data_direction);
3945                 BUG();
3946                 break;
3947         }
3948
3949         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
3950                 cmd_free(h, c);
3951                 return SCSI_MLQUEUE_HOST_BUSY;
3952         }
3953         enqueue_cmd_and_start_io(h, c);
3954         /* the cmd'll come back via intr handler in complete_scsi_command()  */
3955         return 0;
3956 }
3957
3958 static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
3959 {
3960         unsigned long flags;
3961
3962         /*
3963          * Don't let rescans be initiated on a controller known
3964          * to be locked up.  If the controller locks up *during*
3965          * a rescan, that thread is probably hosed, but at least
3966          * we can prevent new rescan threads from piling up on a
3967          * locked up controller.
3968          */
3969         if (unlikely(lockup_detected(h))) {
3970                 spin_lock_irqsave(&h->scan_lock, flags);
3971                 h->scan_finished = 1;
3972                 wake_up_all(&h->scan_wait_queue);
3973                 spin_unlock_irqrestore(&h->scan_lock, flags);
3974                 return 1;
3975         }
3976         return 0;
3977 }
3978
3979 static void hpsa_scan_start(struct Scsi_Host *sh)
3980 {
3981         struct ctlr_info *h = shost_to_hba(sh);
3982         unsigned long flags;
3983
3984         if (do_not_scan_if_controller_locked_up(h))
3985                 return;
3986
3987         /* wait until any scan already in progress is finished. */
3988         while (1) {
3989                 spin_lock_irqsave(&h->scan_lock, flags);
3990                 if (h->scan_finished)
3991                         break;
3992                 spin_unlock_irqrestore(&h->scan_lock, flags);
3993                 wait_event(h->scan_wait_queue, h->scan_finished);
3994                 /* Note: We don't need to worry about a race between this
3995                  * thread and driver unload because the midlayer will
3996                  * have incremented the reference count, so unload won't
3997                  * happen if we're in here.
3998                  */
3999         }
4000         h->scan_finished = 0; /* mark scan as in progress */
4001         spin_unlock_irqrestore(&h->scan_lock, flags);
4002
4003         if (do_not_scan_if_controller_locked_up(h))
4004                 return;
4005
4006         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4007
4008         spin_lock_irqsave(&h->scan_lock, flags);
4009         h->scan_finished = 1; /* mark scan as finished. */
4010         wake_up_all(&h->scan_wait_queue);
4011         spin_unlock_irqrestore(&h->scan_lock, flags);
4012 }
4013
4014 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4015 {
4016         struct ctlr_info *h = sdev_to_hba(sdev);
4017
4018         if (qdepth < 1)
4019                 qdepth = 1;
4020         else
4021                 if (qdepth > h->nr_cmds)
4022                         qdepth = h->nr_cmds;
4023         scsi_change_queue_depth(sdev, qdepth);
4024         return sdev->queue_depth;
4025 }
4026
4027 static int hpsa_scan_finished(struct Scsi_Host *sh,
4028         unsigned long elapsed_time)
4029 {
4030         struct ctlr_info *h = shost_to_hba(sh);
4031         unsigned long flags;
4032         int finished;
4033
4034         spin_lock_irqsave(&h->scan_lock, flags);
4035         finished = h->scan_finished;
4036         spin_unlock_irqrestore(&h->scan_lock, flags);
4037         return finished;
4038 }
4039
4040 static void hpsa_unregister_scsi(struct ctlr_info *h)
4041 {
4042         /* we are being forcibly unloaded, and may not refuse. */
4043         scsi_remove_host(h->scsi_host);
4044         scsi_host_put(h->scsi_host);
4045         h->scsi_host = NULL;
4046 }
4047
4048 static int hpsa_register_scsi(struct ctlr_info *h)
4049 {
4050         struct Scsi_Host *sh;
4051         int error;
4052
4053         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4054         if (sh == NULL)
4055                 goto fail;
4056
4057         sh->io_port = 0;
4058         sh->n_io_port = 0;
4059         sh->this_id = -1;
4060         sh->max_channel = 3;
4061         sh->max_cmd_len = MAX_COMMAND_SIZE;
4062         sh->max_lun = HPSA_MAX_LUN;
4063         sh->max_id = HPSA_MAX_LUN;
4064         sh->can_queue = h->nr_cmds -
4065                         HPSA_CMDS_RESERVED_FOR_ABORTS -
4066                         HPSA_CMDS_RESERVED_FOR_DRIVER -
4067                         HPSA_MAX_CONCURRENT_PASSTHRUS;
4068         if (h->hba_mode_enabled)
4069                 sh->cmd_per_lun = 7;
4070         else
4071                 sh->cmd_per_lun = sh->can_queue;
4072         sh->sg_tablesize = h->maxsgentries;
4073         h->scsi_host = sh;
4074         sh->hostdata[0] = (unsigned long) h;
4075         sh->irq = h->intr[h->intr_mode];
4076         sh->unique_id = sh->irq;
4077         error = scsi_add_host(sh, &h->pdev->dev);
4078         if (error)
4079                 goto fail_host_put;
4080         scsi_scan_host(sh);
4081         return 0;
4082
4083  fail_host_put:
4084         dev_err(&h->pdev->dev, "%s: scsi_add_host"
4085                 " failed for controller %d\n", __func__, h->ctlr);
4086         scsi_host_put(sh);
4087         return error;
4088  fail:
4089         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4090                 " failed for controller %d\n", __func__, h->ctlr);
4091         return -ENOMEM;
4092 }
4093
4094 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4095         unsigned char lunaddr[])
4096 {
4097         int rc;
4098         int count = 0;
4099         int waittime = 1; /* seconds */
4100         struct CommandList *c;
4101
4102         c = cmd_alloc(h);
4103         if (!c) {
4104                 dev_warn(&h->pdev->dev, "out of memory in "
4105                         "wait_for_device_to_become_ready.\n");
4106                 return IO_ERROR;
4107         }
4108
4109         /* Send test unit ready until device ready, or give up. */
4110         while (count < HPSA_TUR_RETRY_LIMIT) {
4111
4112                 /* Wait for a bit.  do this first, because if we send
4113                  * the TUR right away, the reset will just abort it.
4114                  */
4115                 msleep(1000 * waittime);
4116                 count++;
4117                 rc = 0; /* Device ready. */
4118
4119                 /* Increase wait time with each try, up to a point. */
4120                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4121                         waittime = waittime * 2;
4122
4123                 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4124                 (void) fill_cmd(c, TEST_UNIT_READY, h,
4125                                 NULL, 0, 0, lunaddr, TYPE_CMD);
4126                 hpsa_scsi_do_simple_cmd_core(h, c);
4127                 /* no unmap needed here because no data xfer. */
4128
4129                 if (c->err_info->CommandStatus == CMD_SUCCESS)
4130                         break;
4131
4132                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4133                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4134                         (c->err_info->SenseInfo[2] == NO_SENSE ||
4135                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4136                         break;
4137
4138                 dev_warn(&h->pdev->dev, "waiting %d secs "
4139                         "for device to become ready.\n", waittime);
4140                 rc = 1; /* device not ready. */
4141         }
4142
4143         if (rc)
4144                 dev_warn(&h->pdev->dev, "giving up on device.\n");
4145         else
4146                 dev_warn(&h->pdev->dev, "device is ready.\n");
4147
4148         cmd_free(h, c);
4149         return rc;
4150 }
4151
4152 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4153  * complaining.  Doing a host- or bus-reset can't do anything good here.
4154  */
4155 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4156 {
4157         int rc;
4158         struct ctlr_info *h;
4159         struct hpsa_scsi_dev_t *dev;
4160
4161         /* find the controller to which the command to be aborted was sent */
4162         h = sdev_to_hba(scsicmd->device);
4163         if (h == NULL) /* paranoia */
4164                 return FAILED;
4165         dev = scsicmd->device->hostdata;
4166         if (!dev) {
4167                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4168                         "device lookup failed.\n");
4169                 return FAILED;
4170         }
4171         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4172                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4173         /* send a reset to the SCSI LUN which the command was sent to */
4174         rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4175         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4176                 return SUCCESS;
4177
4178         dev_warn(&h->pdev->dev, "resetting device failed.\n");
4179         return FAILED;
4180 }
4181
4182 static void swizzle_abort_tag(u8 *tag)
4183 {
4184         u8 original_tag[8];
4185
4186         memcpy(original_tag, tag, 8);
4187         tag[0] = original_tag[3];
4188         tag[1] = original_tag[2];
4189         tag[2] = original_tag[1];
4190         tag[3] = original_tag[0];
4191         tag[4] = original_tag[7];
4192         tag[5] = original_tag[6];
4193         tag[6] = original_tag[5];
4194         tag[7] = original_tag[4];
4195 }
4196
4197 static void hpsa_get_tag(struct ctlr_info *h,
4198         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
4199 {
4200         u64 tag;
4201         if (c->cmd_type == CMD_IOACCEL1) {
4202                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4203                         &h->ioaccel_cmd_pool[c->cmdindex];
4204                 tag = le64_to_cpu(cm1->tag);
4205                 *tagupper = cpu_to_le32(tag >> 32);
4206                 *taglower = cpu_to_le32(tag);
4207                 return;
4208         }
4209         if (c->cmd_type == CMD_IOACCEL2) {
4210                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4211                         &h->ioaccel2_cmd_pool[c->cmdindex];
4212                 /* upper tag not used in ioaccel2 mode */
4213                 memset(tagupper, 0, sizeof(*tagupper));
4214                 *taglower = cm2->Tag;
4215                 return;
4216         }
4217         tag = le64_to_cpu(c->Header.tag);
4218         *tagupper = cpu_to_le32(tag >> 32);
4219         *taglower = cpu_to_le32(tag);
4220 }
4221
4222 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4223         struct CommandList *abort, int swizzle)
4224 {
4225         int rc = IO_OK;
4226         struct CommandList *c;
4227         struct ErrorInfo *ei;
4228         __le32 tagupper, taglower;
4229
4230         c = cmd_alloc(h);
4231         if (c == NULL) {        /* trouble... */
4232                 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
4233                 return -ENOMEM;
4234         }
4235
4236         /* fill_cmd can't fail here, no buffer to map */
4237         (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4238                 0, 0, scsi3addr, TYPE_MSG);
4239         if (swizzle)
4240                 swizzle_abort_tag(&c->Request.CDB[4]);
4241         hpsa_scsi_do_simple_cmd_core(h, c);
4242         hpsa_get_tag(h, abort, &taglower, &tagupper);
4243         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4244                 __func__, tagupper, taglower);
4245         /* no unmap needed here because no data xfer. */
4246
4247         ei = c->err_info;
4248         switch (ei->CommandStatus) {
4249         case CMD_SUCCESS:
4250                 break;
4251         case CMD_UNABORTABLE: /* Very common, don't make noise. */
4252                 rc = -1;
4253                 break;
4254         default:
4255                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4256                         __func__, tagupper, taglower);
4257                 hpsa_scsi_interpret_error(h, c);
4258                 rc = -1;
4259                 break;
4260         }
4261         cmd_free(h, c);
4262         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4263                 __func__, tagupper, taglower);
4264         return rc;
4265 }
4266
4267 /*
4268  * hpsa_find_cmd_in_queue
4269  *
4270  * Used to determine whether a command (find) is still present
4271  * in queue_head.   Optionally excludes the last element of queue_head.
4272  *
4273  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
4274  * not yet been submitted, and so can be aborted by the driver without
4275  * sending an abort to the hardware.
4276  *
4277  * Returns pointer to command if found in queue, NULL otherwise.
4278  */
4279 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
4280                         struct scsi_cmnd *find, struct list_head *queue_head)
4281 {
4282         unsigned long flags;
4283         struct CommandList *c = NULL;   /* ptr into cmpQ */
4284
4285         if (!find)
4286                 return NULL;
4287         spin_lock_irqsave(&h->lock, flags);
4288         list_for_each_entry(c, queue_head, list) {
4289                 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
4290                         continue;
4291                 if (c->scsi_cmd == find) {
4292                         spin_unlock_irqrestore(&h->lock, flags);
4293                         return c;
4294                 }
4295         }
4296         spin_unlock_irqrestore(&h->lock, flags);
4297         return NULL;
4298 }
4299
4300 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
4301                                         u8 *tag, struct list_head *queue_head)
4302 {
4303         unsigned long flags;
4304         struct CommandList *c;
4305
4306         spin_lock_irqsave(&h->lock, flags);
4307         list_for_each_entry(c, queue_head, list) {
4308                 if (memcmp(&c->Header.tag, tag, 8) != 0)
4309                         continue;
4310                 spin_unlock_irqrestore(&h->lock, flags);
4311                 return c;
4312         }
4313         spin_unlock_irqrestore(&h->lock, flags);
4314         return NULL;
4315 }
4316
4317 /* ioaccel2 path firmware cannot handle abort task requests.
4318  * Change abort requests to physical target reset, and send to the
4319  * address of the physical disk used for the ioaccel 2 command.
4320  * Return 0 on success (IO_OK)
4321  *       -1 on failure
4322  */
4323
4324 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4325         unsigned char *scsi3addr, struct CommandList *abort)
4326 {
4327         int rc = IO_OK;
4328         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4329         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4330         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4331         unsigned char *psa = &phys_scsi3addr[0];
4332
4333         /* Get a pointer to the hpsa logical device. */
4334         scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4335         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4336         if (dev == NULL) {
4337                 dev_warn(&h->pdev->dev,
4338                         "Cannot abort: no device pointer for command.\n");
4339                         return -1; /* not abortable */
4340         }
4341
4342         if (h->raid_offload_debug > 0)
4343                 dev_info(&h->pdev->dev,
4344                         "Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4345                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4346                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4347                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4348
4349         if (!dev->offload_enabled) {
4350                 dev_warn(&h->pdev->dev,
4351                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4352                 return -1; /* not abortable */
4353         }
4354
4355         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
4356         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4357                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4358                 return -1; /* not abortable */
4359         }
4360
4361         /* send the reset */
4362         if (h->raid_offload_debug > 0)
4363                 dev_info(&h->pdev->dev,
4364                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4365                         psa[0], psa[1], psa[2], psa[3],
4366                         psa[4], psa[5], psa[6], psa[7]);
4367         rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4368         if (rc != 0) {
4369                 dev_warn(&h->pdev->dev,
4370                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4371                         psa[0], psa[1], psa[2], psa[3],
4372                         psa[4], psa[5], psa[6], psa[7]);
4373                 return rc; /* failed to reset */
4374         }
4375
4376         /* wait for device to recover */
4377         if (wait_for_device_to_become_ready(h, psa) != 0) {
4378                 dev_warn(&h->pdev->dev,
4379                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4380                         psa[0], psa[1], psa[2], psa[3],
4381                         psa[4], psa[5], psa[6], psa[7]);
4382                 return -1;  /* failed to recover */
4383         }
4384
4385         /* device recovered */
4386         dev_info(&h->pdev->dev,
4387                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4388                 psa[0], psa[1], psa[2], psa[3],
4389                 psa[4], psa[5], psa[6], psa[7]);
4390
4391         return rc; /* success */
4392 }
4393
4394 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
4395  * tell which kind we're dealing with, so we send the abort both ways.  There
4396  * shouldn't be any collisions between swizzled and unswizzled tags due to the
4397  * way we construct our tags but we check anyway in case the assumptions which
4398  * make this true someday become false.
4399  */
4400 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4401         unsigned char *scsi3addr, struct CommandList *abort)
4402 {
4403         u8 swizzled_tag[8];
4404         struct CommandList *c;
4405         int rc = 0, rc2 = 0;
4406
4407         /* ioccelerator mode 2 commands should be aborted via the
4408          * accelerated path, since RAID path is unaware of these commands,
4409          * but underlying firmware can't handle abort TMF.
4410          * Change abort to physical device reset.
4411          */
4412         if (abort->cmd_type == CMD_IOACCEL2)
4413                 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4414
4415         /* we do not expect to find the swizzled tag in our queue, but
4416          * check anyway just to be sure the assumptions which make this
4417          * the case haven't become wrong.
4418          */
4419         memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
4420         swizzle_abort_tag(swizzled_tag);
4421         c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
4422         if (c != NULL) {
4423                 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
4424                 return hpsa_send_abort(h, scsi3addr, abort, 0);
4425         }
4426         rc = hpsa_send_abort(h, scsi3addr, abort, 0);
4427
4428         /* if the command is still in our queue, we can't conclude that it was
4429          * aborted (it might have just completed normally) but in any case
4430          * we don't need to try to abort it another way.
4431          */
4432         c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
4433         if (c)
4434                 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
4435         return rc && rc2;
4436 }
4437
4438 /* Send an abort for the specified command.
4439  *      If the device and controller support it,
4440  *              send a task abort request.
4441  */
4442 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4443 {
4444
4445         int i, rc;
4446         struct ctlr_info *h;
4447         struct hpsa_scsi_dev_t *dev;
4448         struct CommandList *abort; /* pointer to command to be aborted */
4449         struct CommandList *found;
4450         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
4451         char msg[256];          /* For debug messaging. */
4452         int ml = 0;
4453         __le32 tagupper, taglower;
4454
4455         /* Find the controller of the command to be aborted */
4456         h = sdev_to_hba(sc->device);
4457         if (WARN(h == NULL,
4458                         "ABORT REQUEST FAILED, Controller lookup failed.\n"))
4459                 return FAILED;
4460
4461         /* Check that controller supports some kind of task abort */
4462         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4463                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4464                 return FAILED;
4465
4466         memset(msg, 0, sizeof(msg));
4467         ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
4468                 h->scsi_host->host_no, sc->device->channel,
4469                 sc->device->id, sc->device->lun);
4470
4471         /* Find the device of the command to be aborted */
4472         dev = sc->device->hostdata;
4473         if (!dev) {
4474                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4475                                 msg);
4476                 return FAILED;
4477         }
4478
4479         /* Get SCSI command to be aborted */
4480         abort = (struct CommandList *) sc->host_scribble;
4481         if (abort == NULL) {
4482                 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
4483                                 msg);
4484                 return FAILED;
4485         }
4486         hpsa_get_tag(h, abort, &taglower, &tagupper);
4487         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4488         as  = (struct scsi_cmnd *) abort->scsi_cmd;
4489         if (as != NULL)
4490                 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4491                         as->cmnd[0], as->serial_number);
4492         dev_dbg(&h->pdev->dev, "%s\n", msg);
4493         dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4494                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4495
4496         /* Search reqQ to See if command is queued but not submitted,
4497          * if so, complete the command with aborted status and remove
4498          * it from the reqQ.
4499          */
4500         found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
4501         if (found) {
4502                 found->err_info->CommandStatus = CMD_ABORTED;
4503                 finish_cmd(found);
4504                 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
4505                                 msg);
4506                 return SUCCESS;
4507         }
4508
4509         /* not in reqQ, if also not in cmpQ, must have already completed */
4510         found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4511         if (!found)  {
4512                 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
4513                                 msg);
4514                 return SUCCESS;
4515         }
4516
4517         /*
4518          * Command is in flight, or possibly already completed
4519          * by the firmware (but not to the scsi mid layer) but we can't
4520          * distinguish which.  Send the abort down.
4521          */
4522         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4523         if (rc != 0) {
4524                 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4525                 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4526                         h->scsi_host->host_no,
4527                         dev->bus, dev->target, dev->lun);
4528                 return FAILED;
4529         }
4530         dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4531
4532         /* If the abort(s) above completed and actually aborted the
4533          * command, then the command to be aborted should already be
4534          * completed.  If not, wait around a bit more to see if they
4535          * manage to complete normally.
4536          */
4537 #define ABORT_COMPLETE_WAIT_SECS 30
4538         for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4539                 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4540                 if (!found)
4541                         return SUCCESS;
4542                 msleep(100);
4543         }
4544         dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4545                 msg, ABORT_COMPLETE_WAIT_SECS);
4546         return FAILED;
4547 }
4548
4549
4550 /*
4551  * For operations that cannot sleep, a command block is allocated at init,
4552  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4553  * which ones are free or in use.  Lock must be held when calling this.
4554  * cmd_free() is the complement.
4555  */
4556 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4557 {
4558         struct CommandList *c;
4559         int i;
4560         union u64bit temp64;
4561         dma_addr_t cmd_dma_handle, err_dma_handle;
4562         int loopcount;
4563
4564         /* There is some *extremely* small but non-zero chance that that
4565          * multiple threads could get in here, and one thread could
4566          * be scanning through the list of bits looking for a free
4567          * one, but the free ones are always behind him, and other
4568          * threads sneak in behind him and eat them before he can
4569          * get to them, so that while there is always a free one, a
4570          * very unlucky thread might be starved anyway, never able to
4571          * beat the other threads.  In reality, this happens so
4572          * infrequently as to be indistinguishable from never.
4573          */
4574
4575         loopcount = 0;
4576         do {
4577                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4578                 if (i == h->nr_cmds)
4579                         i = 0;
4580                 loopcount++;
4581         } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
4582                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0 &&
4583                 loopcount < 10);
4584
4585         /* Thread got starved?  We do not expect this to ever happen. */
4586         if (loopcount >= 10)
4587                 return NULL;
4588
4589         c = h->cmd_pool + i;
4590         memset(c, 0, sizeof(*c));
4591         cmd_dma_handle = h->cmd_pool_dhandle
4592             + i * sizeof(*c);
4593         c->err_info = h->errinfo_pool + i;
4594         memset(c->err_info, 0, sizeof(*c->err_info));
4595         err_dma_handle = h->errinfo_pool_dhandle
4596             + i * sizeof(*c->err_info);
4597
4598         c->cmdindex = i;
4599
4600         INIT_LIST_HEAD(&c->list);
4601         c->busaddr = (u32) cmd_dma_handle;
4602         temp64.val = (u64) err_dma_handle;
4603         c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4604         c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
4605
4606         c->h = h;
4607         return c;
4608 }
4609
4610 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4611 {
4612         int i;
4613
4614         i = c - h->cmd_pool;
4615         clear_bit(i & (BITS_PER_LONG - 1),
4616                   h->cmd_pool_bits + (i / BITS_PER_LONG));
4617 }
4618
4619 #ifdef CONFIG_COMPAT
4620
4621 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
4622         void __user *arg)
4623 {
4624         IOCTL32_Command_struct __user *arg32 =
4625             (IOCTL32_Command_struct __user *) arg;
4626         IOCTL_Command_struct arg64;
4627         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4628         int err;
4629         u32 cp;
4630
4631         memset(&arg64, 0, sizeof(arg64));
4632         err = 0;
4633         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4634                            sizeof(arg64.LUN_info));
4635         err |= copy_from_user(&arg64.Request, &arg32->Request,
4636                            sizeof(arg64.Request));
4637         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4638                            sizeof(arg64.error_info));
4639         err |= get_user(arg64.buf_size, &arg32->buf_size);
4640         err |= get_user(cp, &arg32->buf);
4641         arg64.buf = compat_ptr(cp);
4642         err |= copy_to_user(p, &arg64, sizeof(arg64));
4643
4644         if (err)
4645                 return -EFAULT;
4646
4647         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
4648         if (err)
4649                 return err;
4650         err |= copy_in_user(&arg32->error_info, &p->error_info,
4651                          sizeof(arg32->error_info));
4652         if (err)
4653                 return -EFAULT;
4654         return err;
4655 }
4656
4657 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4658         int cmd, void __user *arg)
4659 {
4660         BIG_IOCTL32_Command_struct __user *arg32 =
4661             (BIG_IOCTL32_Command_struct __user *) arg;
4662         BIG_IOCTL_Command_struct arg64;
4663         BIG_IOCTL_Command_struct __user *p =
4664             compat_alloc_user_space(sizeof(arg64));
4665         int err;
4666         u32 cp;
4667
4668         memset(&arg64, 0, sizeof(arg64));
4669         err = 0;
4670         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4671                            sizeof(arg64.LUN_info));
4672         err |= copy_from_user(&arg64.Request, &arg32->Request,
4673                            sizeof(arg64.Request));
4674         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4675                            sizeof(arg64.error_info));
4676         err |= get_user(arg64.buf_size, &arg32->buf_size);
4677         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4678         err |= get_user(cp, &arg32->buf);
4679         arg64.buf = compat_ptr(cp);
4680         err |= copy_to_user(p, &arg64, sizeof(arg64));
4681
4682         if (err)
4683                 return -EFAULT;
4684
4685         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
4686         if (err)
4687                 return err;
4688         err |= copy_in_user(&arg32->error_info, &p->error_info,
4689                          sizeof(arg32->error_info));
4690         if (err)
4691                 return -EFAULT;
4692         return err;
4693 }
4694
4695 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4696 {
4697         switch (cmd) {
4698         case CCISS_GETPCIINFO:
4699         case CCISS_GETINTINFO:
4700         case CCISS_SETINTINFO:
4701         case CCISS_GETNODENAME:
4702         case CCISS_SETNODENAME:
4703         case CCISS_GETHEARTBEAT:
4704         case CCISS_GETBUSTYPES:
4705         case CCISS_GETFIRMVER:
4706         case CCISS_GETDRIVVER:
4707         case CCISS_REVALIDVOLS:
4708         case CCISS_DEREGDISK:
4709         case CCISS_REGNEWDISK:
4710         case CCISS_REGNEWD:
4711         case CCISS_RESCANDISK:
4712         case CCISS_GETLUNINFO:
4713                 return hpsa_ioctl(dev, cmd, arg);
4714
4715         case CCISS_PASSTHRU32:
4716                 return hpsa_ioctl32_passthru(dev, cmd, arg);
4717         case CCISS_BIG_PASSTHRU32:
4718                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4719
4720         default:
4721                 return -ENOIOCTLCMD;
4722         }
4723 }
4724 #endif
4725
4726 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4727 {
4728         struct hpsa_pci_info pciinfo;
4729
4730         if (!argp)
4731                 return -EINVAL;
4732         pciinfo.domain = pci_domain_nr(h->pdev->bus);
4733         pciinfo.bus = h->pdev->bus->number;
4734         pciinfo.dev_fn = h->pdev->devfn;
4735         pciinfo.board_id = h->board_id;
4736         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4737                 return -EFAULT;
4738         return 0;
4739 }
4740
4741 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4742 {
4743         DriverVer_type DriverVer;
4744         unsigned char vmaj, vmin, vsubmin;
4745         int rc;
4746
4747         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4748                 &vmaj, &vmin, &vsubmin);
4749         if (rc != 3) {
4750                 dev_info(&h->pdev->dev, "driver version string '%s' "
4751                         "unrecognized.", HPSA_DRIVER_VERSION);
4752                 vmaj = 0;
4753                 vmin = 0;
4754                 vsubmin = 0;
4755         }
4756         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4757         if (!argp)
4758                 return -EINVAL;
4759         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4760                 return -EFAULT;
4761         return 0;
4762 }
4763
4764 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4765 {
4766         IOCTL_Command_struct iocommand;
4767         struct CommandList *c;
4768         char *buff = NULL;
4769         u64 temp64;
4770         int rc = 0;
4771
4772         if (!argp)
4773                 return -EINVAL;
4774         if (!capable(CAP_SYS_RAWIO))
4775                 return -EPERM;
4776         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4777                 return -EFAULT;
4778         if ((iocommand.buf_size < 1) &&
4779             (iocommand.Request.Type.Direction != XFER_NONE)) {
4780                 return -EINVAL;
4781         }
4782         if (iocommand.buf_size > 0) {
4783                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4784                 if (buff == NULL)
4785                         return -EFAULT;
4786                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
4787                         /* Copy the data into the buffer we created */
4788                         if (copy_from_user(buff, iocommand.buf,
4789                                 iocommand.buf_size)) {
4790                                 rc = -EFAULT;
4791                                 goto out_kfree;
4792                         }
4793                 } else {
4794                         memset(buff, 0, iocommand.buf_size);
4795                 }
4796         }
4797         c = cmd_alloc(h);
4798         if (c == NULL) {
4799                 rc = -ENOMEM;
4800                 goto out_kfree;
4801         }
4802         /* Fill in the command type */
4803         c->cmd_type = CMD_IOCTL_PEND;
4804         /* Fill in Command Header */
4805         c->Header.ReplyQueue = 0; /* unused in simple mode */
4806         if (iocommand.buf_size > 0) {   /* buffer to fill */
4807                 c->Header.SGList = 1;
4808                 c->Header.SGTotal = cpu_to_le16(1);
4809         } else  { /* no buffers to fill */
4810                 c->Header.SGList = 0;
4811                 c->Header.SGTotal = cpu_to_le16(0);
4812         }
4813         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4814         /* use the kernel address the cmd block for tag */
4815         c->Header.tag = cpu_to_le64(c->busaddr);
4816
4817         /* Fill in Request block */
4818         memcpy(&c->Request, &iocommand.Request,
4819                 sizeof(c->Request));
4820
4821         /* Fill in the scatter gather information */
4822         if (iocommand.buf_size > 0) {
4823                 temp64 = pci_map_single(h->pdev, buff,
4824                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4825                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
4826                         c->SG[0].Addr = cpu_to_le64(0);
4827                         c->SG[0].Len = cpu_to_le32(0);
4828                         rc = -ENOMEM;
4829                         goto out;
4830                 }
4831                 c->SG[0].Addr = cpu_to_le64(temp64);
4832                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
4833                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
4834         }
4835         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4836         if (iocommand.buf_size > 0)
4837                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4838         check_ioctl_unit_attention(h, c);
4839
4840         /* Copy the error information out */
4841         memcpy(&iocommand.error_info, c->err_info,
4842                 sizeof(iocommand.error_info));
4843         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
4844                 rc = -EFAULT;
4845                 goto out;
4846         }
4847         if ((iocommand.Request.Type.Direction & XFER_READ) &&
4848                 iocommand.buf_size > 0) {
4849                 /* Copy the data out of the buffer we created */
4850                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
4851                         rc = -EFAULT;
4852                         goto out;
4853                 }
4854         }
4855 out:
4856         cmd_free(h, c);
4857 out_kfree:
4858         kfree(buff);
4859         return rc;
4860 }
4861
4862 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4863 {
4864         BIG_IOCTL_Command_struct *ioc;
4865         struct CommandList *c;
4866         unsigned char **buff = NULL;
4867         int *buff_size = NULL;
4868         u64 temp64;
4869         BYTE sg_used = 0;
4870         int status = 0;
4871         u32 left;
4872         u32 sz;
4873         BYTE __user *data_ptr;
4874
4875         if (!argp)
4876                 return -EINVAL;
4877         if (!capable(CAP_SYS_RAWIO))
4878                 return -EPERM;
4879         ioc = (BIG_IOCTL_Command_struct *)
4880             kmalloc(sizeof(*ioc), GFP_KERNEL);
4881         if (!ioc) {
4882                 status = -ENOMEM;
4883                 goto cleanup1;
4884         }
4885         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
4886                 status = -EFAULT;
4887                 goto cleanup1;
4888         }
4889         if ((ioc->buf_size < 1) &&
4890             (ioc->Request.Type.Direction != XFER_NONE)) {
4891                 status = -EINVAL;
4892                 goto cleanup1;
4893         }
4894         /* Check kmalloc limits  using all SGs */
4895         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
4896                 status = -EINVAL;
4897                 goto cleanup1;
4898         }
4899         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
4900                 status = -EINVAL;
4901                 goto cleanup1;
4902         }
4903         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
4904         if (!buff) {
4905                 status = -ENOMEM;
4906                 goto cleanup1;
4907         }
4908         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
4909         if (!buff_size) {
4910                 status = -ENOMEM;
4911                 goto cleanup1;
4912         }
4913         left = ioc->buf_size;
4914         data_ptr = ioc->buf;
4915         while (left) {
4916                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
4917                 buff_size[sg_used] = sz;
4918                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
4919                 if (buff[sg_used] == NULL) {
4920                         status = -ENOMEM;
4921                         goto cleanup1;
4922                 }
4923                 if (ioc->Request.Type.Direction & XFER_WRITE) {
4924                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
4925                                 status = -EFAULT;
4926                                 goto cleanup1;
4927                         }
4928                 } else
4929                         memset(buff[sg_used], 0, sz);
4930                 left -= sz;
4931                 data_ptr += sz;
4932                 sg_used++;
4933         }
4934         c = cmd_alloc(h);
4935         if (c == NULL) {
4936                 status = -ENOMEM;
4937                 goto cleanup1;
4938         }
4939         c->cmd_type = CMD_IOCTL_PEND;
4940         c->Header.ReplyQueue = 0;
4941         c->Header.SGList = (u8) sg_used;
4942         c->Header.SGTotal = cpu_to_le16(sg_used);
4943         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
4944         c->Header.tag = cpu_to_le64(c->busaddr);
4945         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
4946         if (ioc->buf_size > 0) {
4947                 int i;
4948                 for (i = 0; i < sg_used; i++) {
4949                         temp64 = pci_map_single(h->pdev, buff[i],
4950                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
4951                         if (dma_mapping_error(&h->pdev->dev,
4952                                                         (dma_addr_t) temp64)) {
4953                                 c->SG[i].Addr = cpu_to_le64(0);
4954                                 c->SG[i].Len = cpu_to_le32(0);
4955                                 hpsa_pci_unmap(h->pdev, c, i,
4956                                         PCI_DMA_BIDIRECTIONAL);
4957                                 status = -ENOMEM;
4958                                 goto cleanup0;
4959                         }
4960                         c->SG[i].Addr = cpu_to_le64(temp64);
4961                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
4962                         c->SG[i].Ext = cpu_to_le32(0);
4963                 }
4964                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
4965         }
4966         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4967         if (sg_used)
4968                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
4969         check_ioctl_unit_attention(h, c);
4970         /* Copy the error information out */
4971         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
4972         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
4973                 status = -EFAULT;
4974                 goto cleanup0;
4975         }
4976         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
4977                 int i;
4978
4979                 /* Copy the data out of the buffer we created */
4980                 BYTE __user *ptr = ioc->buf;
4981                 for (i = 0; i < sg_used; i++) {
4982                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
4983                                 status = -EFAULT;
4984                                 goto cleanup0;
4985                         }
4986                         ptr += buff_size[i];
4987                 }
4988         }
4989         status = 0;
4990 cleanup0:
4991         cmd_free(h, c);
4992 cleanup1:
4993         if (buff) {
4994                 int i;
4995
4996                 for (i = 0; i < sg_used; i++)
4997                         kfree(buff[i]);
4998                 kfree(buff);
4999         }
5000         kfree(buff_size);
5001         kfree(ioc);
5002         return status;
5003 }
5004
5005 static void check_ioctl_unit_attention(struct ctlr_info *h,
5006         struct CommandList *c)
5007 {
5008         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5009                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5010                 (void) check_for_unit_attention(h, c);
5011 }
5012
5013 static int increment_passthru_count(struct ctlr_info *h)
5014 {
5015         unsigned long flags;
5016
5017         spin_lock_irqsave(&h->passthru_count_lock, flags);
5018         if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
5019                 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5020                 return -1;
5021         }
5022         h->passthru_count++;
5023         spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5024         return 0;
5025 }
5026
5027 static void decrement_passthru_count(struct ctlr_info *h)
5028 {
5029         unsigned long flags;
5030
5031         spin_lock_irqsave(&h->passthru_count_lock, flags);
5032         if (h->passthru_count <= 0) {
5033                 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5034                 /* not expecting to get here. */
5035                 dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
5036                 return;
5037         }
5038         h->passthru_count--;
5039         spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5040 }
5041
5042 /*
5043  * ioctl
5044  */
5045 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5046 {
5047         struct ctlr_info *h;
5048         void __user *argp = (void __user *)arg;
5049         int rc;
5050
5051         h = sdev_to_hba(dev);
5052
5053         switch (cmd) {
5054         case CCISS_DEREGDISK:
5055         case CCISS_REGNEWDISK:
5056         case CCISS_REGNEWD:
5057                 hpsa_scan_start(h->scsi_host);
5058                 return 0;
5059         case CCISS_GETPCIINFO:
5060                 return hpsa_getpciinfo_ioctl(h, argp);
5061         case CCISS_GETDRIVVER:
5062                 return hpsa_getdrivver_ioctl(h, argp);
5063         case CCISS_PASSTHRU:
5064                 if (increment_passthru_count(h))
5065                         return -EAGAIN;
5066                 rc = hpsa_passthru_ioctl(h, argp);
5067                 decrement_passthru_count(h);
5068                 return rc;
5069         case CCISS_BIG_PASSTHRU:
5070                 if (increment_passthru_count(h))
5071                         return -EAGAIN;
5072                 rc = hpsa_big_passthru_ioctl(h, argp);
5073                 decrement_passthru_count(h);
5074                 return rc;
5075         default:
5076                 return -ENOTTY;
5077         }
5078 }
5079
5080 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5081                                 u8 reset_type)
5082 {
5083         struct CommandList *c;
5084
5085         c = cmd_alloc(h);
5086         if (!c)
5087                 return -ENOMEM;
5088         /* fill_cmd can't fail here, no data buffer to map */
5089         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5090                 RAID_CTLR_LUNID, TYPE_MSG);
5091         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5092         c->waiting = NULL;
5093         enqueue_cmd_and_start_io(h, c);
5094         /* Don't wait for completion, the reset won't complete.  Don't free
5095          * the command either.  This is the last command we will send before
5096          * re-initializing everything, so it doesn't matter and won't leak.
5097          */
5098         return 0;
5099 }
5100
5101 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5102         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5103         int cmd_type)
5104 {
5105         int pci_dir = XFER_NONE;
5106         struct CommandList *a; /* for commands to be aborted */
5107
5108         c->cmd_type = CMD_IOCTL_PEND;
5109         c->Header.ReplyQueue = 0;
5110         if (buff != NULL && size > 0) {
5111                 c->Header.SGList = 1;
5112                 c->Header.SGTotal = cpu_to_le16(1);
5113         } else {
5114                 c->Header.SGList = 0;
5115                 c->Header.SGTotal = cpu_to_le16(0);
5116         }
5117         c->Header.tag = cpu_to_le64(c->busaddr);
5118         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5119
5120         if (cmd_type == TYPE_CMD) {
5121                 switch (cmd) {
5122                 case HPSA_INQUIRY:
5123                         /* are we trying to read a vital product page */
5124                         if (page_code & VPD_PAGE) {
5125                                 c->Request.CDB[1] = 0x01;
5126                                 c->Request.CDB[2] = (page_code & 0xff);
5127                         }
5128                         c->Request.CDBLen = 6;
5129                         c->Request.type_attr_dir =
5130                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5131                         c->Request.Timeout = 0;
5132                         c->Request.CDB[0] = HPSA_INQUIRY;
5133                         c->Request.CDB[4] = size & 0xFF;
5134                         break;
5135                 case HPSA_REPORT_LOG:
5136                 case HPSA_REPORT_PHYS:
5137                         /* Talking to controller so It's a physical command
5138                            mode = 00 target = 0.  Nothing to write.
5139                          */
5140                         c->Request.CDBLen = 12;
5141                         c->Request.type_attr_dir =
5142                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5143                         c->Request.Timeout = 0;
5144                         c->Request.CDB[0] = cmd;
5145                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5146                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5147                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5148                         c->Request.CDB[9] = size & 0xFF;
5149                         break;
5150                 case HPSA_CACHE_FLUSH:
5151                         c->Request.CDBLen = 12;
5152                         c->Request.type_attr_dir =
5153                                         TYPE_ATTR_DIR(cmd_type,
5154                                                 ATTR_SIMPLE, XFER_WRITE);
5155                         c->Request.Timeout = 0;
5156                         c->Request.CDB[0] = BMIC_WRITE;
5157                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5158                         c->Request.CDB[7] = (size >> 8) & 0xFF;
5159                         c->Request.CDB[8] = size & 0xFF;
5160                         break;
5161                 case TEST_UNIT_READY:
5162                         c->Request.CDBLen = 6;
5163                         c->Request.type_attr_dir =
5164                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5165                         c->Request.Timeout = 0;
5166                         break;
5167                 case HPSA_GET_RAID_MAP:
5168                         c->Request.CDBLen = 12;
5169                         c->Request.type_attr_dir =
5170                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5171                         c->Request.Timeout = 0;
5172                         c->Request.CDB[0] = HPSA_CISS_READ;
5173                         c->Request.CDB[1] = cmd;
5174                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5175                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5176                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5177                         c->Request.CDB[9] = size & 0xFF;
5178                         break;
5179                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
5180                         c->Request.CDBLen = 10;
5181                         c->Request.type_attr_dir =
5182                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5183                         c->Request.Timeout = 0;
5184                         c->Request.CDB[0] = BMIC_READ;
5185                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5186                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5187                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5188                         break;
5189                 default:
5190                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5191                         BUG();
5192                         return -1;
5193                 }
5194         } else if (cmd_type == TYPE_MSG) {
5195                 switch (cmd) {
5196
5197                 case  HPSA_DEVICE_RESET_MSG:
5198                         c->Request.CDBLen = 16;
5199                         c->Request.type_attr_dir =
5200                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5201                         c->Request.Timeout = 0; /* Don't time out */
5202                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5203                         c->Request.CDB[0] =  cmd;
5204                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5205                         /* If bytes 4-7 are zero, it means reset the */
5206                         /* LunID device */
5207                         c->Request.CDB[4] = 0x00;
5208                         c->Request.CDB[5] = 0x00;
5209                         c->Request.CDB[6] = 0x00;
5210                         c->Request.CDB[7] = 0x00;
5211                         break;
5212                 case  HPSA_ABORT_MSG:
5213                         a = buff;       /* point to command to be aborted */
5214                         dev_dbg(&h->pdev->dev,
5215                                 "Abort Tag:0x%016llx request Tag:0x%016llx",
5216                                 a->Header.tag, c->Header.tag);
5217                         c->Request.CDBLen = 16;
5218                         c->Request.type_attr_dir =
5219                                         TYPE_ATTR_DIR(cmd_type,
5220                                                 ATTR_SIMPLE, XFER_WRITE);
5221                         c->Request.Timeout = 0; /* Don't time out */
5222                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5223                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5224                         c->Request.CDB[2] = 0x00; /* reserved */
5225                         c->Request.CDB[3] = 0x00; /* reserved */
5226                         /* Tag to abort goes in CDB[4]-CDB[11] */
5227                         memcpy(&c->Request.CDB[4], &a->Header.tag,
5228                                 sizeof(a->Header.tag));
5229                         c->Request.CDB[12] = 0x00; /* reserved */
5230                         c->Request.CDB[13] = 0x00; /* reserved */
5231                         c->Request.CDB[14] = 0x00; /* reserved */
5232                         c->Request.CDB[15] = 0x00; /* reserved */
5233                 break;
5234                 default:
5235                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
5236                                 cmd);
5237                         BUG();
5238                 }
5239         } else {
5240                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5241                 BUG();
5242         }
5243
5244         switch (GET_DIR(c->Request.type_attr_dir)) {
5245         case XFER_READ:
5246                 pci_dir = PCI_DMA_FROMDEVICE;
5247                 break;
5248         case XFER_WRITE:
5249                 pci_dir = PCI_DMA_TODEVICE;
5250                 break;
5251         case XFER_NONE:
5252                 pci_dir = PCI_DMA_NONE;
5253                 break;
5254         default:
5255                 pci_dir = PCI_DMA_BIDIRECTIONAL;
5256         }
5257         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5258                 return -1;
5259         return 0;
5260 }
5261
5262 /*
5263  * Map (physical) PCI mem into (virtual) kernel space
5264  */
5265 static void __iomem *remap_pci_mem(ulong base, ulong size)
5266 {
5267         ulong page_base = ((ulong) base) & PAGE_MASK;
5268         ulong page_offs = ((ulong) base) - page_base;
5269         void __iomem *page_remapped = ioremap_nocache(page_base,
5270                 page_offs + size);
5271
5272         return page_remapped ? (page_remapped + page_offs) : NULL;
5273 }
5274
5275 /* Takes cmds off the submission queue and sends them to the hardware,
5276  * then puts them on the queue of cmds waiting for completion.
5277  * Assumes h->lock is held
5278  */
5279 static void start_io(struct ctlr_info *h, unsigned long *flags)
5280 {
5281         struct CommandList *c;
5282
5283         while (!list_empty(&h->reqQ)) {
5284                 c = list_entry(h->reqQ.next, struct CommandList, list);
5285                 /* can't do anything if fifo is full */
5286                 if ((h->access.fifo_full(h))) {
5287                         h->fifo_recently_full = 1;
5288                         dev_warn(&h->pdev->dev, "fifo full\n");
5289                         break;
5290                 }
5291                 h->fifo_recently_full = 0;
5292
5293                 /* Get the first entry from the Request Q */
5294                 removeQ(c);
5295                 h->Qdepth--;
5296
5297                 /* Put job onto the completed Q */
5298                 addQ(&h->cmpQ, c);
5299                 atomic_inc(&h->commands_outstanding);
5300                 spin_unlock_irqrestore(&h->lock, *flags);
5301                 /* Tell the controller execute command */
5302                 h->access.submit_command(h, c);
5303                 spin_lock_irqsave(&h->lock, *flags);
5304         }
5305 }
5306
5307 static void lock_and_start_io(struct ctlr_info *h)
5308 {
5309         unsigned long flags;
5310
5311         spin_lock_irqsave(&h->lock, flags);
5312         start_io(h, &flags);
5313         spin_unlock_irqrestore(&h->lock, flags);
5314 }
5315
5316 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5317 {
5318         return h->access.command_completed(h, q);
5319 }
5320
5321 static inline bool interrupt_pending(struct ctlr_info *h)
5322 {
5323         return h->access.intr_pending(h);
5324 }
5325
5326 static inline long interrupt_not_for_us(struct ctlr_info *h)
5327 {
5328         return (h->access.intr_pending(h) == 0) ||
5329                 (h->interrupts_enabled == 0);
5330 }
5331
5332 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5333         u32 raw_tag)
5334 {
5335         if (unlikely(tag_index >= h->nr_cmds)) {
5336                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5337                 return 1;
5338         }
5339         return 0;
5340 }
5341
5342 static inline void finish_cmd(struct CommandList *c)
5343 {
5344         unsigned long flags;
5345         int io_may_be_stalled = 0;
5346         struct ctlr_info *h = c->h;
5347         int count;
5348
5349         spin_lock_irqsave(&h->lock, flags);
5350         removeQ(c);
5351
5352         /*
5353          * Check for possibly stalled i/o.
5354          *
5355          * If a fifo_full condition is encountered, requests will back up
5356          * in h->reqQ.  This queue is only emptied out by start_io which is
5357          * only called when a new i/o request comes in.  If no i/o's are
5358          * forthcoming, the i/o's in h->reqQ can get stuck.  So we call
5359          * start_io from here if we detect such a danger.
5360          *
5361          * Normally, we shouldn't hit this case, but pounding on the
5362          * CCISS_PASSTHRU ioctl can provoke it.  Only call start_io if
5363          * commands_outstanding is low.  We want to avoid calling
5364          * start_io from in here as much as possible, and esp. don't
5365          * want to get in a cycle where we call start_io every time
5366          * through here.
5367          */
5368         count = atomic_read(&h->commands_outstanding);
5369         spin_unlock_irqrestore(&h->lock, flags);
5370         if (unlikely(h->fifo_recently_full) && count < 5)
5371                 io_may_be_stalled = 1;
5372
5373         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5374         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5375                         || c->cmd_type == CMD_IOACCEL2))
5376                 complete_scsi_command(c);
5377         else if (c->cmd_type == CMD_IOCTL_PEND)
5378                 complete(c->waiting);
5379         if (unlikely(io_may_be_stalled))
5380                 lock_and_start_io(h);
5381 }
5382
5383 static inline u32 hpsa_tag_contains_index(u32 tag)
5384 {
5385         return tag & DIRECT_LOOKUP_BIT;
5386 }
5387
5388 static inline u32 hpsa_tag_to_index(u32 tag)
5389 {
5390         return tag >> DIRECT_LOOKUP_SHIFT;
5391 }
5392
5393
5394 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5395 {
5396 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5397 #define HPSA_SIMPLE_ERROR_BITS 0x03
5398         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5399                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
5400         return tag & ~HPSA_PERF_ERROR_BITS;
5401 }
5402
5403 /* process completion of an indexed ("direct lookup") command */
5404 static inline void process_indexed_cmd(struct ctlr_info *h,
5405         u32 raw_tag)
5406 {
5407         u32 tag_index;
5408         struct CommandList *c;
5409
5410         tag_index = hpsa_tag_to_index(raw_tag);
5411         if (!bad_tag(h, tag_index, raw_tag)) {
5412                 c = h->cmd_pool + tag_index;
5413                 finish_cmd(c);
5414         }
5415 }
5416
5417 /* process completion of a non-indexed command */
5418 static inline void process_nonindexed_cmd(struct ctlr_info *h,
5419         u32 raw_tag)
5420 {
5421         u32 tag;
5422         struct CommandList *c = NULL;
5423         unsigned long flags;
5424
5425         tag = hpsa_tag_discard_error_bits(h, raw_tag);
5426         spin_lock_irqsave(&h->lock, flags);
5427         list_for_each_entry(c, &h->cmpQ, list) {
5428                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
5429                         spin_unlock_irqrestore(&h->lock, flags);
5430                         finish_cmd(c);
5431                         return;
5432                 }
5433         }
5434         spin_unlock_irqrestore(&h->lock, flags);
5435         bad_tag(h, h->nr_cmds + 1, raw_tag);
5436 }
5437
5438 /* Some controllers, like p400, will give us one interrupt
5439  * after a soft reset, even if we turned interrupts off.
5440  * Only need to check for this in the hpsa_xxx_discard_completions
5441  * functions.
5442  */
5443 static int ignore_bogus_interrupt(struct ctlr_info *h)
5444 {
5445         if (likely(!reset_devices))
5446                 return 0;
5447
5448         if (likely(h->interrupts_enabled))
5449                 return 0;
5450
5451         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5452                 "(known firmware bug.)  Ignoring.\n");
5453
5454         return 1;
5455 }
5456
5457 /*
5458  * Convert &h->q[x] (passed to interrupt handlers) back to h.
5459  * Relies on (h-q[x] == x) being true for x such that
5460  * 0 <= x < MAX_REPLY_QUEUES.
5461  */
5462 static struct ctlr_info *queue_to_hba(u8 *queue)
5463 {
5464         return container_of((queue - *queue), struct ctlr_info, q[0]);
5465 }
5466
5467 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5468 {
5469         struct ctlr_info *h = queue_to_hba(queue);
5470         u8 q = *(u8 *) queue;
5471         u32 raw_tag;
5472
5473         if (ignore_bogus_interrupt(h))
5474                 return IRQ_NONE;
5475
5476         if (interrupt_not_for_us(h))
5477                 return IRQ_NONE;
5478         h->last_intr_timestamp = get_jiffies_64();
5479         while (interrupt_pending(h)) {
5480                 raw_tag = get_next_completion(h, q);
5481                 while (raw_tag != FIFO_EMPTY)
5482                         raw_tag = next_command(h, q);
5483         }
5484         return IRQ_HANDLED;
5485 }
5486
5487 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5488 {
5489         struct ctlr_info *h = queue_to_hba(queue);
5490         u32 raw_tag;
5491         u8 q = *(u8 *) queue;
5492
5493         if (ignore_bogus_interrupt(h))
5494                 return IRQ_NONE;
5495
5496         h->last_intr_timestamp = get_jiffies_64();
5497         raw_tag = get_next_completion(h, q);
5498         while (raw_tag != FIFO_EMPTY)
5499                 raw_tag = next_command(h, q);
5500         return IRQ_HANDLED;
5501 }
5502
5503 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5504 {
5505         struct ctlr_info *h = queue_to_hba((u8 *) queue);
5506         u32 raw_tag;
5507         u8 q = *(u8 *) queue;
5508
5509         if (interrupt_not_for_us(h))
5510                 return IRQ_NONE;
5511         h->last_intr_timestamp = get_jiffies_64();
5512         while (interrupt_pending(h)) {
5513                 raw_tag = get_next_completion(h, q);
5514                 while (raw_tag != FIFO_EMPTY) {
5515                         if (likely(hpsa_tag_contains_index(raw_tag)))
5516                                 process_indexed_cmd(h, raw_tag);
5517                         else
5518                                 process_nonindexed_cmd(h, raw_tag);
5519                         raw_tag = next_command(h, q);
5520                 }
5521         }
5522         return IRQ_HANDLED;
5523 }
5524
5525 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5526 {
5527         struct ctlr_info *h = queue_to_hba(queue);
5528         u32 raw_tag;
5529         u8 q = *(u8 *) queue;
5530
5531         h->last_intr_timestamp = get_jiffies_64();
5532         raw_tag = get_next_completion(h, q);
5533         while (raw_tag != FIFO_EMPTY) {
5534                 if (likely(hpsa_tag_contains_index(raw_tag)))
5535                         process_indexed_cmd(h, raw_tag);
5536                 else
5537                         process_nonindexed_cmd(h, raw_tag);
5538                 raw_tag = next_command(h, q);
5539         }
5540         return IRQ_HANDLED;
5541 }
5542
5543 /* Send a message CDB to the firmware. Careful, this only works
5544  * in simple mode, not performant mode due to the tag lookup.
5545  * We only ever use this immediately after a controller reset.
5546  */
5547 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5548                         unsigned char type)
5549 {
5550         struct Command {
5551                 struct CommandListHeader CommandHeader;
5552                 struct RequestBlock Request;
5553                 struct ErrDescriptor ErrorDescriptor;
5554         };
5555         struct Command *cmd;
5556         static const size_t cmd_sz = sizeof(*cmd) +
5557                                         sizeof(cmd->ErrorDescriptor);
5558         dma_addr_t paddr64;
5559         __le32 paddr32;
5560         u32 tag;
5561         void __iomem *vaddr;
5562         int i, err;
5563
5564         vaddr = pci_ioremap_bar(pdev, 0);
5565         if (vaddr == NULL)
5566                 return -ENOMEM;
5567
5568         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
5569          * CCISS commands, so they must be allocated from the lower 4GiB of
5570          * memory.
5571          */
5572         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5573         if (err) {
5574                 iounmap(vaddr);
5575                 return err;
5576         }
5577
5578         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5579         if (cmd == NULL) {
5580                 iounmap(vaddr);
5581                 return -ENOMEM;
5582         }
5583
5584         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
5585          * although there's no guarantee, we assume that the address is at
5586          * least 4-byte aligned (most likely, it's page-aligned).
5587          */
5588         paddr32 = cpu_to_le32(paddr64);
5589
5590         cmd->CommandHeader.ReplyQueue = 0;
5591         cmd->CommandHeader.SGList = 0;
5592         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
5593         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
5594         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5595
5596         cmd->Request.CDBLen = 16;
5597         cmd->Request.type_attr_dir =
5598                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
5599         cmd->Request.Timeout = 0; /* Don't time out */
5600         cmd->Request.CDB[0] = opcode;
5601         cmd->Request.CDB[1] = type;
5602         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5603         cmd->ErrorDescriptor.Addr =
5604                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
5605         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
5606
5607         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
5608
5609         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5610                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5611                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
5612                         break;
5613                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5614         }
5615
5616         iounmap(vaddr);
5617
5618         /* we leak the DMA buffer here ... no choice since the controller could
5619          *  still complete the command.
5620          */
5621         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5622                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5623                         opcode, type);
5624                 return -ETIMEDOUT;
5625         }
5626
5627         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5628
5629         if (tag & HPSA_ERROR_BIT) {
5630                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5631                         opcode, type);
5632                 return -EIO;
5633         }
5634
5635         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5636                 opcode, type);
5637         return 0;
5638 }
5639
5640 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5641
5642 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5643         void __iomem *vaddr, u32 use_doorbell)
5644 {
5645
5646         if (use_doorbell) {
5647                 /* For everything after the P600, the PCI power state method
5648                  * of resetting the controller doesn't work, so we have this
5649                  * other way using the doorbell register.
5650                  */
5651                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
5652                 writel(use_doorbell, vaddr + SA5_DOORBELL);
5653
5654                 /* PMC hardware guys tell us we need a 10 second delay after
5655                  * doorbell reset and before any attempt to talk to the board
5656                  * at all to ensure that this actually works and doesn't fall
5657                  * over in some weird corner cases.
5658                  */
5659                 msleep(10000);
5660         } else { /* Try to do it the PCI power state way */
5661
5662                 /* Quoting from the Open CISS Specification: "The Power
5663                  * Management Control/Status Register (CSR) controls the power
5664                  * state of the device.  The normal operating state is D0,
5665                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
5666                  * the controller, place the interface device in D3 then to D0,
5667                  * this causes a secondary PCI reset which will reset the
5668                  * controller." */
5669
5670                 int rc = 0;
5671
5672                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5673
5674                 /* enter the D3hot power management state */
5675                 rc = pci_set_power_state(pdev, PCI_D3hot);
5676                 if (rc)
5677                         return rc;
5678
5679                 msleep(500);
5680
5681                 /* enter the D0 power management state */
5682                 rc = pci_set_power_state(pdev, PCI_D0);
5683                 if (rc)
5684                         return rc;
5685
5686                 /*
5687                  * The P600 requires a small delay when changing states.
5688                  * Otherwise we may think the board did not reset and we bail.
5689                  * This for kdump only and is particular to the P600.
5690                  */
5691                 msleep(500);
5692         }
5693         return 0;
5694 }
5695
5696 static void init_driver_version(char *driver_version, int len)
5697 {
5698         memset(driver_version, 0, len);
5699         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5700 }
5701
5702 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5703 {
5704         char *driver_version;
5705         int i, size = sizeof(cfgtable->driver_version);
5706
5707         driver_version = kmalloc(size, GFP_KERNEL);
5708         if (!driver_version)
5709                 return -ENOMEM;
5710
5711         init_driver_version(driver_version, size);
5712         for (i = 0; i < size; i++)
5713                 writeb(driver_version[i], &cfgtable->driver_version[i]);
5714         kfree(driver_version);
5715         return 0;
5716 }
5717
5718 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5719                                           unsigned char *driver_ver)
5720 {
5721         int i;
5722
5723         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5724                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
5725 }
5726
5727 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5728 {
5729
5730         char *driver_ver, *old_driver_ver;
5731         int rc, size = sizeof(cfgtable->driver_version);
5732
5733         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5734         if (!old_driver_ver)
5735                 return -ENOMEM;
5736         driver_ver = old_driver_ver + size;
5737
5738         /* After a reset, the 32 bytes of "driver version" in the cfgtable
5739          * should have been changed, otherwise we know the reset failed.
5740          */
5741         init_driver_version(old_driver_ver, size);
5742         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5743         rc = !memcmp(driver_ver, old_driver_ver, size);
5744         kfree(old_driver_ver);
5745         return rc;
5746 }
5747 /* This does a hard reset of the controller using PCI power management
5748  * states or the using the doorbell register.
5749  */
5750 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5751 {
5752         u64 cfg_offset;
5753         u32 cfg_base_addr;
5754         u64 cfg_base_addr_index;
5755         void __iomem *vaddr;
5756         unsigned long paddr;
5757         u32 misc_fw_support;
5758         int rc;
5759         struct CfgTable __iomem *cfgtable;
5760         u32 use_doorbell;
5761         u32 board_id;
5762         u16 command_register;
5763
5764         /* For controllers as old as the P600, this is very nearly
5765          * the same thing as
5766          *
5767          * pci_save_state(pci_dev);
5768          * pci_set_power_state(pci_dev, PCI_D3hot);
5769          * pci_set_power_state(pci_dev, PCI_D0);
5770          * pci_restore_state(pci_dev);
5771          *
5772          * For controllers newer than the P600, the pci power state
5773          * method of resetting doesn't work so we have another way
5774          * using the doorbell register.
5775          */
5776
5777         rc = hpsa_lookup_board_id(pdev, &board_id);
5778         if (rc < 0) {
5779                 dev_warn(&pdev->dev, "Board ID not found\n");
5780                 return rc;
5781         }
5782         if (!ctlr_is_resettable(board_id)) {
5783                 dev_warn(&pdev->dev, "Controller not resettable\n");
5784                 return -ENODEV;
5785         }
5786
5787         /* if controller is soft- but not hard resettable... */
5788         if (!ctlr_is_hard_resettable(board_id))
5789                 return -ENOTSUPP; /* try soft reset later. */
5790
5791         /* Save the PCI command register */
5792         pci_read_config_word(pdev, 4, &command_register);
5793         pci_save_state(pdev);
5794
5795         /* find the first memory BAR, so we can find the cfg table */
5796         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5797         if (rc)
5798                 return rc;
5799         vaddr = remap_pci_mem(paddr, 0x250);
5800         if (!vaddr)
5801                 return -ENOMEM;
5802
5803         /* find cfgtable in order to check if reset via doorbell is supported */
5804         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5805                                         &cfg_base_addr_index, &cfg_offset);
5806         if (rc)
5807                 goto unmap_vaddr;
5808         cfgtable = remap_pci_mem(pci_resource_start(pdev,
5809                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5810         if (!cfgtable) {
5811                 rc = -ENOMEM;
5812                 goto unmap_vaddr;
5813         }
5814         rc = write_driver_ver_to_cfgtable(cfgtable);
5815         if (rc)
5816                 goto unmap_cfgtable;
5817
5818         /* If reset via doorbell register is supported, use that.
5819          * There are two such methods.  Favor the newest method.
5820          */
5821         misc_fw_support = readl(&cfgtable->misc_fw_support);
5822         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5823         if (use_doorbell) {
5824                 use_doorbell = DOORBELL_CTLR_RESET2;
5825         } else {
5826                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
5827                 if (use_doorbell) {
5828                         dev_warn(&pdev->dev,
5829                                 "Soft reset not supported. Firmware update is required.\n");
5830                         rc = -ENOTSUPP; /* try soft reset */
5831                         goto unmap_cfgtable;
5832                 }
5833         }
5834
5835         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
5836         if (rc)
5837                 goto unmap_cfgtable;
5838
5839         pci_restore_state(pdev);
5840         pci_write_config_word(pdev, 4, command_register);
5841
5842         /* Some devices (notably the HP Smart Array 5i Controller)
5843            need a little pause here */
5844         msleep(HPSA_POST_RESET_PAUSE_MSECS);
5845
5846         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
5847         if (rc) {
5848                 dev_warn(&pdev->dev,
5849                         "Failed waiting for board to become ready after hard reset\n");
5850                 goto unmap_cfgtable;
5851         }
5852
5853         rc = controller_reset_failed(vaddr);
5854         if (rc < 0)
5855                 goto unmap_cfgtable;
5856         if (rc) {
5857                 dev_warn(&pdev->dev, "Unable to successfully reset "
5858                         "controller. Will try soft reset.\n");
5859                 rc = -ENOTSUPP;
5860         } else {
5861                 dev_info(&pdev->dev, "board ready after hard reset.\n");
5862         }
5863
5864 unmap_cfgtable:
5865         iounmap(cfgtable);
5866
5867 unmap_vaddr:
5868         iounmap(vaddr);
5869         return rc;
5870 }
5871
5872 /*
5873  *  We cannot read the structure directly, for portability we must use
5874  *   the io functions.
5875  *   This is for debug only.
5876  */
5877 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
5878 {
5879 #ifdef HPSA_DEBUG
5880         int i;
5881         char temp_name[17];
5882
5883         dev_info(dev, "Controller Configuration information\n");
5884         dev_info(dev, "------------------------------------\n");
5885         for (i = 0; i < 4; i++)
5886                 temp_name[i] = readb(&(tb->Signature[i]));
5887         temp_name[4] = '\0';
5888         dev_info(dev, "   Signature = %s\n", temp_name);
5889         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
5890         dev_info(dev, "   Transport methods supported = 0x%x\n",
5891                readl(&(tb->TransportSupport)));
5892         dev_info(dev, "   Transport methods active = 0x%x\n",
5893                readl(&(tb->TransportActive)));
5894         dev_info(dev, "   Requested transport Method = 0x%x\n",
5895                readl(&(tb->HostWrite.TransportRequest)));
5896         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
5897                readl(&(tb->HostWrite.CoalIntDelay)));
5898         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
5899                readl(&(tb->HostWrite.CoalIntCount)));
5900         dev_info(dev, "   Max outstanding commands = %d\n",
5901                readl(&(tb->CmdsOutMax)));
5902         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
5903         for (i = 0; i < 16; i++)
5904                 temp_name[i] = readb(&(tb->ServerName[i]));
5905         temp_name[16] = '\0';
5906         dev_info(dev, "   Server Name = %s\n", temp_name);
5907         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
5908                 readl(&(tb->HeartBeat)));
5909 #endif                          /* HPSA_DEBUG */
5910 }
5911
5912 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
5913 {
5914         int i, offset, mem_type, bar_type;
5915
5916         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
5917                 return 0;
5918         offset = 0;
5919         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5920                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
5921                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
5922                         offset += 4;
5923                 else {
5924                         mem_type = pci_resource_flags(pdev, i) &
5925                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
5926                         switch (mem_type) {
5927                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
5928                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
5929                                 offset += 4;    /* 32 bit */
5930                                 break;
5931                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
5932                                 offset += 8;
5933                                 break;
5934                         default:        /* reserved in PCI 2.2 */
5935                                 dev_warn(&pdev->dev,
5936                                        "base address is invalid\n");
5937                                 return -1;
5938                                 break;
5939                         }
5940                 }
5941                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
5942                         return i + 1;
5943         }
5944         return -1;
5945 }
5946
5947 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
5948  * controllers that are capable. If not, we use legacy INTx mode.
5949  */
5950
5951 static void hpsa_interrupt_mode(struct ctlr_info *h)
5952 {
5953 #ifdef CONFIG_PCI_MSI
5954         int err, i;
5955         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
5956
5957         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
5958                 hpsa_msix_entries[i].vector = 0;
5959                 hpsa_msix_entries[i].entry = i;
5960         }
5961
5962         /* Some boards advertise MSI but don't really support it */
5963         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
5964             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
5965                 goto default_int_mode;
5966         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
5967                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
5968                 h->msix_vector = MAX_REPLY_QUEUES;
5969                 if (h->msix_vector > num_online_cpus())
5970                         h->msix_vector = num_online_cpus();
5971                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
5972                                             1, h->msix_vector);
5973                 if (err < 0) {
5974                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
5975                         h->msix_vector = 0;
5976                         goto single_msi_mode;
5977                 } else if (err < h->msix_vector) {
5978                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
5979                                "available\n", err);
5980                 }
5981                 h->msix_vector = err;
5982                 for (i = 0; i < h->msix_vector; i++)
5983                         h->intr[i] = hpsa_msix_entries[i].vector;
5984                 return;
5985         }
5986 single_msi_mode:
5987         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
5988                 dev_info(&h->pdev->dev, "MSI capable controller\n");
5989                 if (!pci_enable_msi(h->pdev))
5990                         h->msi_vector = 1;
5991                 else
5992                         dev_warn(&h->pdev->dev, "MSI init failed\n");
5993         }
5994 default_int_mode:
5995 #endif                          /* CONFIG_PCI_MSI */
5996         /* if we get here we're going to use the default interrupt mode */
5997         h->intr[h->intr_mode] = h->pdev->irq;
5998 }
5999
6000 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6001 {
6002         int i;
6003         u32 subsystem_vendor_id, subsystem_device_id;
6004
6005         subsystem_vendor_id = pdev->subsystem_vendor;
6006         subsystem_device_id = pdev->subsystem_device;
6007         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6008                     subsystem_vendor_id;
6009
6010         for (i = 0; i < ARRAY_SIZE(products); i++)
6011                 if (*board_id == products[i].board_id)
6012                         return i;
6013
6014         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6015                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6016                 !hpsa_allow_any) {
6017                 dev_warn(&pdev->dev, "unrecognized board ID: "
6018                         "0x%08x, ignoring.\n", *board_id);
6019                         return -ENODEV;
6020         }
6021         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6022 }
6023
6024 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6025                                     unsigned long *memory_bar)
6026 {
6027         int i;
6028
6029         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6030                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6031                         /* addressing mode bits already removed */
6032                         *memory_bar = pci_resource_start(pdev, i);
6033                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6034                                 *memory_bar);
6035                         return 0;
6036                 }
6037         dev_warn(&pdev->dev, "no memory BAR found\n");
6038         return -ENODEV;
6039 }
6040
6041 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6042                                      int wait_for_ready)
6043 {
6044         int i, iterations;
6045         u32 scratchpad;
6046         if (wait_for_ready)
6047                 iterations = HPSA_BOARD_READY_ITERATIONS;
6048         else
6049                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6050
6051         for (i = 0; i < iterations; i++) {
6052                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6053                 if (wait_for_ready) {
6054                         if (scratchpad == HPSA_FIRMWARE_READY)
6055                                 return 0;
6056                 } else {
6057                         if (scratchpad != HPSA_FIRMWARE_READY)
6058                                 return 0;
6059                 }
6060                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6061         }
6062         dev_warn(&pdev->dev, "board not ready, timed out.\n");
6063         return -ENODEV;
6064 }
6065
6066 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6067                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6068                                u64 *cfg_offset)
6069 {
6070         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6071         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6072         *cfg_base_addr &= (u32) 0x0000ffff;
6073         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6074         if (*cfg_base_addr_index == -1) {
6075                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6076                 return -ENODEV;
6077         }
6078         return 0;
6079 }
6080
6081 static int hpsa_find_cfgtables(struct ctlr_info *h)
6082 {
6083         u64 cfg_offset;
6084         u32 cfg_base_addr;
6085         u64 cfg_base_addr_index;
6086         u32 trans_offset;
6087         int rc;
6088
6089         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6090                 &cfg_base_addr_index, &cfg_offset);
6091         if (rc)
6092                 return rc;
6093         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6094                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6095         if (!h->cfgtable) {
6096                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
6097                 return -ENOMEM;
6098         }
6099         rc = write_driver_ver_to_cfgtable(h->cfgtable);
6100         if (rc)
6101                 return rc;
6102         /* Find performant mode table. */
6103         trans_offset = readl(&h->cfgtable->TransMethodOffset);
6104         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6105                                 cfg_base_addr_index)+cfg_offset+trans_offset,
6106                                 sizeof(*h->transtable));
6107         if (!h->transtable)
6108                 return -ENOMEM;
6109         return 0;
6110 }
6111
6112 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6113 {
6114         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6115
6116         /* Limit commands in memory limited kdump scenario. */
6117         if (reset_devices && h->max_commands > 32)
6118                 h->max_commands = 32;
6119
6120         if (h->max_commands < 16) {
6121                 dev_warn(&h->pdev->dev, "Controller reports "
6122                         "max supported commands of %d, an obvious lie. "
6123                         "Using 16.  Ensure that firmware is up to date.\n",
6124                         h->max_commands);
6125                 h->max_commands = 16;
6126         }
6127 }
6128
6129 /* If the controller reports that the total max sg entries is greater than 512,
6130  * then we know that chained SG blocks work.  (Original smart arrays did not
6131  * support chained SG blocks and would return zero for max sg entries.)
6132  */
6133 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
6134 {
6135         return h->maxsgentries > 512;
6136 }
6137
6138 /* Interrogate the hardware for some limits:
6139  * max commands, max SG elements without chaining, and with chaining,
6140  * SG chain block size, etc.
6141  */
6142 static void hpsa_find_board_params(struct ctlr_info *h)
6143 {
6144         hpsa_get_max_perf_mode_cmds(h);
6145         h->nr_cmds = h->max_commands;
6146         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6147         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6148         if (hpsa_supports_chained_sg_blocks(h)) {
6149                 /* Limit in-command s/g elements to 32 save dma'able memory. */
6150                 h->max_cmd_sg_entries = 32;
6151                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6152                 h->maxsgentries--; /* save one for chain pointer */
6153         } else {
6154                 /*
6155                  * Original smart arrays supported at most 31 s/g entries
6156                  * embedded inline in the command (trying to use more
6157                  * would lock up the controller)
6158                  */
6159                 h->max_cmd_sg_entries = 31;
6160                 h->maxsgentries = 31; /* default to traditional values */
6161                 h->chainsize = 0;
6162         }
6163
6164         /* Find out what task management functions are supported and cache */
6165         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6166         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6167                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6168         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6169                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6170 }
6171
6172 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6173 {
6174         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6175                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
6176                 return false;
6177         }
6178         return true;
6179 }
6180
6181 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6182 {
6183         u32 driver_support;
6184
6185         driver_support = readl(&(h->cfgtable->driver_support));
6186         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
6187 #ifdef CONFIG_X86
6188         driver_support |= ENABLE_SCSI_PREFETCH;
6189 #endif
6190         driver_support |= ENABLE_UNIT_ATTN;
6191         writel(driver_support, &(h->cfgtable->driver_support));
6192 }
6193
6194 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
6195  * in a prefetch beyond physical memory.
6196  */
6197 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6198 {
6199         u32 dma_prefetch;
6200
6201         if (h->board_id != 0x3225103C)
6202                 return;
6203         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6204         dma_prefetch |= 0x8000;
6205         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6206 }
6207
6208 static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6209 {
6210         int i;
6211         u32 doorbell_value;
6212         unsigned long flags;
6213         /* wait until the clear_event_notify bit 6 is cleared by controller. */
6214         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6215                 spin_lock_irqsave(&h->lock, flags);
6216                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6217                 spin_unlock_irqrestore(&h->lock, flags);
6218                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6219                         break;
6220                 /* delay and try again */
6221                 msleep(20);
6222         }
6223 }
6224
6225 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6226 {
6227         int i;
6228         u32 doorbell_value;
6229         unsigned long flags;
6230
6231         /* under certain very rare conditions, this can take awhile.
6232          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6233          * as we enter this code.)
6234          */
6235         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6236                 spin_lock_irqsave(&h->lock, flags);
6237                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6238                 spin_unlock_irqrestore(&h->lock, flags);
6239                 if (!(doorbell_value & CFGTBL_ChangeReq))
6240                         break;
6241                 /* delay and try again */
6242                 usleep_range(10000, 20000);
6243         }
6244 }
6245
6246 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6247 {
6248         u32 trans_support;
6249
6250         trans_support = readl(&(h->cfgtable->TransportSupport));
6251         if (!(trans_support & SIMPLE_MODE))
6252                 return -ENOTSUPP;
6253
6254         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6255
6256         /* Update the field, and then ring the doorbell */
6257         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6258         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6259         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6260         hpsa_wait_for_mode_change_ack(h);
6261         print_cfg_table(&h->pdev->dev, h->cfgtable);
6262         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6263                 goto error;
6264         h->transMethod = CFGTBL_Trans_Simple;
6265         return 0;
6266 error:
6267         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
6268         return -ENODEV;
6269 }
6270
6271 static int hpsa_pci_init(struct ctlr_info *h)
6272 {
6273         int prod_index, err;
6274
6275         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6276         if (prod_index < 0)
6277                 return prod_index;
6278         h->product_name = products[prod_index].product_name;
6279         h->access = *(products[prod_index].access);
6280
6281         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6282                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6283
6284         err = pci_enable_device(h->pdev);
6285         if (err) {
6286                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6287                 return err;
6288         }
6289
6290         err = pci_request_regions(h->pdev, HPSA);
6291         if (err) {
6292                 dev_err(&h->pdev->dev,
6293                         "cannot obtain PCI resources, aborting\n");
6294                 return err;
6295         }
6296
6297         pci_set_master(h->pdev);
6298
6299         hpsa_interrupt_mode(h);
6300         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6301         if (err)
6302                 goto err_out_free_res;
6303         h->vaddr = remap_pci_mem(h->paddr, 0x250);
6304         if (!h->vaddr) {
6305                 err = -ENOMEM;
6306                 goto err_out_free_res;
6307         }
6308         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6309         if (err)
6310                 goto err_out_free_res;
6311         err = hpsa_find_cfgtables(h);
6312         if (err)
6313                 goto err_out_free_res;
6314         hpsa_find_board_params(h);
6315
6316         if (!hpsa_CISS_signature_present(h)) {
6317                 err = -ENODEV;
6318                 goto err_out_free_res;
6319         }
6320         hpsa_set_driver_support_bits(h);
6321         hpsa_p600_dma_prefetch_quirk(h);
6322         err = hpsa_enter_simple_mode(h);
6323         if (err)
6324                 goto err_out_free_res;
6325         return 0;
6326
6327 err_out_free_res:
6328         if (h->transtable)
6329                 iounmap(h->transtable);
6330         if (h->cfgtable)
6331                 iounmap(h->cfgtable);
6332         if (h->vaddr)
6333                 iounmap(h->vaddr);
6334         pci_disable_device(h->pdev);
6335         pci_release_regions(h->pdev);
6336         return err;
6337 }
6338
6339 static void hpsa_hba_inquiry(struct ctlr_info *h)
6340 {
6341         int rc;
6342
6343 #define HBA_INQUIRY_BYTE_COUNT 64
6344         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6345         if (!h->hba_inquiry_data)
6346                 return;
6347         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6348                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6349         if (rc != 0) {
6350                 kfree(h->hba_inquiry_data);
6351                 h->hba_inquiry_data = NULL;
6352         }
6353 }
6354
6355 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6356 {
6357         int rc, i;
6358         void __iomem *vaddr;
6359
6360         if (!reset_devices)
6361                 return 0;
6362
6363         /* kdump kernel is loading, we don't know in which state is
6364          * the pci interface. The dev->enable_cnt is equal zero
6365          * so we call enable+disable, wait a while and switch it on.
6366          */
6367         rc = pci_enable_device(pdev);
6368         if (rc) {
6369                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
6370                 return -ENODEV;
6371         }
6372         pci_disable_device(pdev);
6373         msleep(260);                    /* a randomly chosen number */
6374         rc = pci_enable_device(pdev);
6375         if (rc) {
6376                 dev_warn(&pdev->dev, "failed to enable device.\n");
6377                 return -ENODEV;
6378         }
6379
6380         pci_set_master(pdev);
6381
6382         vaddr = pci_ioremap_bar(pdev, 0);
6383         if (vaddr == NULL) {
6384                 rc = -ENOMEM;
6385                 goto out_disable;
6386         }
6387         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
6388         iounmap(vaddr);
6389
6390         /* Reset the controller with a PCI power-cycle or via doorbell */
6391         rc = hpsa_kdump_hard_reset_controller(pdev);
6392
6393         /* -ENOTSUPP here means we cannot reset the controller
6394          * but it's already (and still) up and running in
6395          * "performant mode".  Or, it might be 640x, which can't reset
6396          * due to concerns about shared bbwc between 6402/6404 pair.
6397          */
6398         if (rc)
6399                 goto out_disable;
6400
6401         /* Now try to get the controller to respond to a no-op */
6402         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
6403         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6404                 if (hpsa_noop(pdev) == 0)
6405                         break;
6406                 else
6407                         dev_warn(&pdev->dev, "no-op failed%s\n",
6408                                         (i < 11 ? "; re-trying" : ""));
6409         }
6410
6411 out_disable:
6412
6413         pci_disable_device(pdev);
6414         return rc;
6415 }
6416
6417 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6418 {
6419         h->cmd_pool_bits = kzalloc(
6420                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6421                 sizeof(unsigned long), GFP_KERNEL);
6422         h->cmd_pool = pci_alloc_consistent(h->pdev,
6423                     h->nr_cmds * sizeof(*h->cmd_pool),
6424                     &(h->cmd_pool_dhandle));
6425         h->errinfo_pool = pci_alloc_consistent(h->pdev,
6426                     h->nr_cmds * sizeof(*h->errinfo_pool),
6427                     &(h->errinfo_pool_dhandle));
6428         if ((h->cmd_pool_bits == NULL)
6429             || (h->cmd_pool == NULL)
6430             || (h->errinfo_pool == NULL)) {
6431                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6432                 goto clean_up;
6433         }
6434         return 0;
6435 clean_up:
6436         hpsa_free_cmd_pool(h);
6437         return -ENOMEM;
6438 }
6439
6440 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6441 {
6442         kfree(h->cmd_pool_bits);
6443         if (h->cmd_pool)
6444                 pci_free_consistent(h->pdev,
6445                             h->nr_cmds * sizeof(struct CommandList),
6446                             h->cmd_pool, h->cmd_pool_dhandle);
6447         if (h->ioaccel2_cmd_pool)
6448                 pci_free_consistent(h->pdev,
6449                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6450                         h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6451         if (h->errinfo_pool)
6452                 pci_free_consistent(h->pdev,
6453                             h->nr_cmds * sizeof(struct ErrorInfo),
6454                             h->errinfo_pool,
6455                             h->errinfo_pool_dhandle);
6456         if (h->ioaccel_cmd_pool)
6457                 pci_free_consistent(h->pdev,
6458                         h->nr_cmds * sizeof(struct io_accel1_cmd),
6459                         h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6460 }
6461
6462 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6463 {
6464         int i, cpu;
6465
6466         cpu = cpumask_first(cpu_online_mask);
6467         for (i = 0; i < h->msix_vector; i++) {
6468                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6469                 cpu = cpumask_next(cpu, cpu_online_mask);
6470         }
6471 }
6472
6473 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
6474 static void hpsa_free_irqs(struct ctlr_info *h)
6475 {
6476         int i;
6477
6478         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6479                 /* Single reply queue, only one irq to free */
6480                 i = h->intr_mode;
6481                 irq_set_affinity_hint(h->intr[i], NULL);
6482                 free_irq(h->intr[i], &h->q[i]);
6483                 return;
6484         }
6485
6486         for (i = 0; i < h->msix_vector; i++) {
6487                 irq_set_affinity_hint(h->intr[i], NULL);
6488                 free_irq(h->intr[i], &h->q[i]);
6489         }
6490         for (; i < MAX_REPLY_QUEUES; i++)
6491                 h->q[i] = 0;
6492 }
6493
6494 /* returns 0 on success; cleans up and returns -Enn on error */
6495 static int hpsa_request_irqs(struct ctlr_info *h,
6496         irqreturn_t (*msixhandler)(int, void *),
6497         irqreturn_t (*intxhandler)(int, void *))
6498 {
6499         int rc, i;
6500
6501         /*
6502          * initialize h->q[x] = x so that interrupt handlers know which
6503          * queue to process.
6504          */
6505         for (i = 0; i < MAX_REPLY_QUEUES; i++)
6506                 h->q[i] = (u8) i;
6507
6508         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6509                 /* If performant mode and MSI-X, use multiple reply queues */
6510                 for (i = 0; i < h->msix_vector; i++) {
6511                         rc = request_irq(h->intr[i], msixhandler,
6512                                         0, h->devname,
6513                                         &h->q[i]);
6514                         if (rc) {
6515                                 int j;
6516
6517                                 dev_err(&h->pdev->dev,
6518                                         "failed to get irq %d for %s\n",
6519                                        h->intr[i], h->devname);
6520                                 for (j = 0; j < i; j++) {
6521                                         free_irq(h->intr[j], &h->q[j]);
6522                                         h->q[j] = 0;
6523                                 }
6524                                 for (; j < MAX_REPLY_QUEUES; j++)
6525                                         h->q[j] = 0;
6526                                 return rc;
6527                         }
6528                 }
6529                 hpsa_irq_affinity_hints(h);
6530         } else {
6531                 /* Use single reply pool */
6532                 if (h->msix_vector > 0 || h->msi_vector) {
6533                         rc = request_irq(h->intr[h->intr_mode],
6534                                 msixhandler, 0, h->devname,
6535                                 &h->q[h->intr_mode]);
6536                 } else {
6537                         rc = request_irq(h->intr[h->intr_mode],
6538                                 intxhandler, IRQF_SHARED, h->devname,
6539                                 &h->q[h->intr_mode]);
6540                 }
6541         }
6542         if (rc) {
6543                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6544                        h->intr[h->intr_mode], h->devname);
6545                 return -ENODEV;
6546         }
6547         return 0;
6548 }
6549
6550 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6551 {
6552         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6553                 HPSA_RESET_TYPE_CONTROLLER)) {
6554                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6555                 return -EIO;
6556         }
6557
6558         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6559         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6560                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6561                 return -1;
6562         }
6563
6564         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6565         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6566                 dev_warn(&h->pdev->dev, "Board failed to become ready "
6567                         "after soft reset.\n");
6568                 return -1;
6569         }
6570
6571         return 0;
6572 }
6573
6574 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6575 {
6576         hpsa_free_irqs(h);
6577 #ifdef CONFIG_PCI_MSI
6578         if (h->msix_vector) {
6579                 if (h->pdev->msix_enabled)
6580                         pci_disable_msix(h->pdev);
6581         } else if (h->msi_vector) {
6582                 if (h->pdev->msi_enabled)
6583                         pci_disable_msi(h->pdev);
6584         }
6585 #endif /* CONFIG_PCI_MSI */
6586 }
6587
6588 static void hpsa_free_reply_queues(struct ctlr_info *h)
6589 {
6590         int i;
6591
6592         for (i = 0; i < h->nreply_queues; i++) {
6593                 if (!h->reply_queue[i].head)
6594                         continue;
6595                 pci_free_consistent(h->pdev, h->reply_queue_size,
6596                         h->reply_queue[i].head, h->reply_queue[i].busaddr);
6597                 h->reply_queue[i].head = NULL;
6598                 h->reply_queue[i].busaddr = 0;
6599         }
6600 }
6601
6602 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6603 {
6604         hpsa_free_irqs_and_disable_msix(h);
6605         hpsa_free_sg_chain_blocks(h);
6606         hpsa_free_cmd_pool(h);
6607         kfree(h->ioaccel1_blockFetchTable);
6608         kfree(h->blockFetchTable);
6609         hpsa_free_reply_queues(h);
6610         if (h->vaddr)
6611                 iounmap(h->vaddr);
6612         if (h->transtable)
6613                 iounmap(h->transtable);
6614         if (h->cfgtable)
6615                 iounmap(h->cfgtable);
6616         pci_disable_device(h->pdev);
6617         pci_release_regions(h->pdev);
6618         kfree(h);
6619 }
6620
6621 /* Called when controller lockup detected. */
6622 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
6623 {
6624         struct CommandList *c = NULL;
6625
6626         assert_spin_locked(&h->lock);
6627         /* Mark all outstanding commands as failed and complete them. */
6628         while (!list_empty(list)) {
6629                 c = list_entry(list->next, struct CommandList, list);
6630                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6631                 finish_cmd(c);
6632         }
6633 }
6634
6635 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
6636 {
6637         int i, cpu;
6638
6639         cpu = cpumask_first(cpu_online_mask);
6640         for (i = 0; i < num_online_cpus(); i++) {
6641                 u32 *lockup_detected;
6642                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
6643                 *lockup_detected = value;
6644                 cpu = cpumask_next(cpu, cpu_online_mask);
6645         }
6646         wmb(); /* be sure the per-cpu variables are out to memory */
6647 }
6648
6649 static void controller_lockup_detected(struct ctlr_info *h)
6650 {
6651         unsigned long flags;
6652         u32 lockup_detected;
6653
6654         h->access.set_intr_mask(h, HPSA_INTR_OFF);
6655         spin_lock_irqsave(&h->lock, flags);
6656         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6657         if (!lockup_detected) {
6658                 /* no heartbeat, but controller gave us a zero. */
6659                 dev_warn(&h->pdev->dev,
6660                         "lockup detected but scratchpad register is zero\n");
6661                 lockup_detected = 0xffffffff;
6662         }
6663         set_lockup_detected_for_all_cpus(h, lockup_detected);
6664         spin_unlock_irqrestore(&h->lock, flags);
6665         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6666                         lockup_detected);
6667         pci_disable_device(h->pdev);
6668         spin_lock_irqsave(&h->lock, flags);
6669         fail_all_cmds_on_list(h, &h->cmpQ);
6670         fail_all_cmds_on_list(h, &h->reqQ);
6671         spin_unlock_irqrestore(&h->lock, flags);
6672 }
6673
6674 static void detect_controller_lockup(struct ctlr_info *h)
6675 {
6676         u64 now;
6677         u32 heartbeat;
6678         unsigned long flags;
6679
6680         now = get_jiffies_64();
6681         /* If we've received an interrupt recently, we're ok. */
6682         if (time_after64(h->last_intr_timestamp +
6683                                 (h->heartbeat_sample_interval), now))
6684                 return;
6685
6686         /*
6687          * If we've already checked the heartbeat recently, we're ok.
6688          * This could happen if someone sends us a signal. We
6689          * otherwise don't care about signals in this thread.
6690          */
6691         if (time_after64(h->last_heartbeat_timestamp +
6692                                 (h->heartbeat_sample_interval), now))
6693                 return;
6694
6695         /* If heartbeat has not changed since we last looked, we're not ok. */
6696         spin_lock_irqsave(&h->lock, flags);
6697         heartbeat = readl(&h->cfgtable->HeartBeat);
6698         spin_unlock_irqrestore(&h->lock, flags);
6699         if (h->last_heartbeat == heartbeat) {
6700                 controller_lockup_detected(h);
6701                 return;
6702         }
6703
6704         /* We're ok. */
6705         h->last_heartbeat = heartbeat;
6706         h->last_heartbeat_timestamp = now;
6707 }
6708
6709 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6710 {
6711         int i;
6712         char *event_type;
6713
6714         /* Clear the driver-requested rescan flag */
6715         h->drv_req_rescan = 0;
6716
6717         /* Ask the controller to clear the events we're handling. */
6718         if ((h->transMethod & (CFGTBL_Trans_io_accel1
6719                         | CFGTBL_Trans_io_accel2)) &&
6720                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6721                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6722
6723                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6724                         event_type = "state change";
6725                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6726                         event_type = "configuration change";
6727                 /* Stop sending new RAID offload reqs via the IO accelerator */
6728                 scsi_block_requests(h->scsi_host);
6729                 for (i = 0; i < h->ndevices; i++)
6730                         h->dev[i]->offload_enabled = 0;
6731                 hpsa_drain_accel_commands(h);
6732                 /* Set 'accelerator path config change' bit */
6733                 dev_warn(&h->pdev->dev,
6734                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6735                         h->events, event_type);
6736                 writel(h->events, &(h->cfgtable->clear_event_notify));
6737                 /* Set the "clear event notify field update" bit 6 */
6738                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6739                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
6740                 hpsa_wait_for_clear_event_notify_ack(h);
6741                 scsi_unblock_requests(h->scsi_host);
6742         } else {
6743                 /* Acknowledge controller notification events. */
6744                 writel(h->events, &(h->cfgtable->clear_event_notify));
6745                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6746                 hpsa_wait_for_clear_event_notify_ack(h);
6747 #if 0
6748                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6749                 hpsa_wait_for_mode_change_ack(h);
6750 #endif
6751         }
6752         return;
6753 }
6754
6755 /* Check a register on the controller to see if there are configuration
6756  * changes (added/changed/removed logical drives, etc.) which mean that
6757  * we should rescan the controller for devices.
6758  * Also check flag for driver-initiated rescan.
6759  */
6760 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6761 {
6762         if (h->drv_req_rescan)
6763                 return 1;
6764
6765         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6766                 return 0;
6767
6768         h->events = readl(&(h->cfgtable->event_notify));
6769         return h->events & RESCAN_REQUIRED_EVENT_BITS;
6770 }
6771
6772 /*
6773  * Check if any of the offline devices have become ready
6774  */
6775 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6776 {
6777         unsigned long flags;
6778         struct offline_device_entry *d;
6779         struct list_head *this, *tmp;
6780
6781         spin_lock_irqsave(&h->offline_device_lock, flags);
6782         list_for_each_safe(this, tmp, &h->offline_device_list) {
6783                 d = list_entry(this, struct offline_device_entry,
6784                                 offline_list);
6785                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6786                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
6787                         spin_lock_irqsave(&h->offline_device_lock, flags);
6788                         list_del(&d->offline_list);
6789                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
6790                         return 1;
6791                 }
6792                 spin_lock_irqsave(&h->offline_device_lock, flags);
6793         }
6794         spin_unlock_irqrestore(&h->offline_device_lock, flags);
6795         return 0;
6796 }
6797
6798
6799 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6800 {
6801         unsigned long flags;
6802         struct ctlr_info *h = container_of(to_delayed_work(work),
6803                                         struct ctlr_info, monitor_ctlr_work);
6804         detect_controller_lockup(h);
6805         if (lockup_detected(h))
6806                 return;
6807
6808         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6809                 scsi_host_get(h->scsi_host);
6810                 h->drv_req_rescan = 0;
6811                 hpsa_ack_ctlr_events(h);
6812                 hpsa_scan_start(h->scsi_host);
6813                 scsi_host_put(h->scsi_host);
6814         }
6815
6816         spin_lock_irqsave(&h->lock, flags);
6817         if (h->remove_in_progress) {
6818                 spin_unlock_irqrestore(&h->lock, flags);
6819                 return;
6820         }
6821         schedule_delayed_work(&h->monitor_ctlr_work,
6822                                 h->heartbeat_sample_interval);
6823         spin_unlock_irqrestore(&h->lock, flags);
6824 }
6825
6826 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6827 {
6828         int dac, rc;
6829         struct ctlr_info *h;
6830         int try_soft_reset = 0;
6831         unsigned long flags;
6832
6833         if (number_of_controllers == 0)
6834                 printk(KERN_INFO DRIVER_NAME "\n");
6835
6836         rc = hpsa_init_reset_devices(pdev);
6837         if (rc) {
6838                 if (rc != -ENOTSUPP)
6839                         return rc;
6840                 /* If the reset fails in a particular way (it has no way to do
6841                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
6842                  * a soft reset once we get the controller configured up to the
6843                  * point that it can accept a command.
6844                  */
6845                 try_soft_reset = 1;
6846                 rc = 0;
6847         }
6848
6849 reinit_after_soft_reset:
6850
6851         /* Command structures must be aligned on a 32-byte boundary because
6852          * the 5 lower bits of the address are used by the hardware. and by
6853          * the driver.  See comments in hpsa.h for more info.
6854          */
6855         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6856         h = kzalloc(sizeof(*h), GFP_KERNEL);
6857         if (!h)
6858                 return -ENOMEM;
6859
6860         h->pdev = pdev;
6861         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6862         INIT_LIST_HEAD(&h->cmpQ);
6863         INIT_LIST_HEAD(&h->reqQ);
6864         INIT_LIST_HEAD(&h->offline_device_list);
6865         spin_lock_init(&h->lock);
6866         spin_lock_init(&h->offline_device_lock);
6867         spin_lock_init(&h->scan_lock);
6868         spin_lock_init(&h->passthru_count_lock);
6869
6870         /* Allocate and clear per-cpu variable lockup_detected */
6871         h->lockup_detected = alloc_percpu(u32);
6872         if (!h->lockup_detected) {
6873                 rc = -ENOMEM;
6874                 goto clean1;
6875         }
6876         set_lockup_detected_for_all_cpus(h, 0);
6877
6878         rc = hpsa_pci_init(h);
6879         if (rc != 0)
6880                 goto clean1;
6881
6882         sprintf(h->devname, HPSA "%d", number_of_controllers);
6883         h->ctlr = number_of_controllers;
6884         number_of_controllers++;
6885
6886         /* configure PCI DMA stuff */
6887         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
6888         if (rc == 0) {
6889                 dac = 1;
6890         } else {
6891                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6892                 if (rc == 0) {
6893                         dac = 0;
6894                 } else {
6895                         dev_err(&pdev->dev, "no suitable DMA available\n");
6896                         goto clean1;
6897                 }
6898         }
6899
6900         /* make sure the board interrupts are off */
6901         h->access.set_intr_mask(h, HPSA_INTR_OFF);
6902
6903         if (hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6904                 goto clean2;
6905         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
6906                h->devname, pdev->device,
6907                h->intr[h->intr_mode], dac ? "" : " not");
6908         rc = hpsa_allocate_cmd_pool(h);
6909         if (rc)
6910                 goto clean2_and_free_irqs;
6911         if (hpsa_allocate_sg_chain_blocks(h))
6912                 goto clean4;
6913         init_waitqueue_head(&h->scan_wait_queue);
6914         h->scan_finished = 1; /* no scan currently in progress */
6915
6916         pci_set_drvdata(pdev, h);
6917         h->ndevices = 0;
6918         h->hba_mode_enabled = 0;
6919         h->scsi_host = NULL;
6920         spin_lock_init(&h->devlock);
6921         hpsa_put_ctlr_into_performant_mode(h);
6922
6923         /* At this point, the controller is ready to take commands.
6924          * Now, if reset_devices and the hard reset didn't work, try
6925          * the soft reset and see if that works.
6926          */
6927         if (try_soft_reset) {
6928
6929                 /* This is kind of gross.  We may or may not get a completion
6930                  * from the soft reset command, and if we do, then the value
6931                  * from the fifo may or may not be valid.  So, we wait 10 secs
6932                  * after the reset throwing away any completions we get during
6933                  * that time.  Unregister the interrupt handler and register
6934                  * fake ones to scoop up any residual completions.
6935                  */
6936                 spin_lock_irqsave(&h->lock, flags);
6937                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6938                 spin_unlock_irqrestore(&h->lock, flags);
6939                 hpsa_free_irqs(h);
6940                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
6941                                         hpsa_intx_discard_completions);
6942                 if (rc) {
6943                         dev_warn(&h->pdev->dev,
6944                                 "Failed to request_irq after soft reset.\n");
6945                         goto clean4;
6946                 }
6947
6948                 rc = hpsa_kdump_soft_reset(h);
6949                 if (rc)
6950                         /* Neither hard nor soft reset worked, we're hosed. */
6951                         goto clean4;
6952
6953                 dev_info(&h->pdev->dev, "Board READY.\n");
6954                 dev_info(&h->pdev->dev,
6955                         "Waiting for stale completions to drain.\n");
6956                 h->access.set_intr_mask(h, HPSA_INTR_ON);
6957                 msleep(10000);
6958                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6959
6960                 rc = controller_reset_failed(h->cfgtable);
6961                 if (rc)
6962                         dev_info(&h->pdev->dev,
6963                                 "Soft reset appears to have failed.\n");
6964
6965                 /* since the controller's reset, we have to go back and re-init
6966                  * everything.  Easiest to just forget what we've done and do it
6967                  * all over again.
6968                  */
6969                 hpsa_undo_allocations_after_kdump_soft_reset(h);
6970                 try_soft_reset = 0;
6971                 if (rc)
6972                         /* don't go to clean4, we already unallocated */
6973                         return -ENODEV;
6974
6975                 goto reinit_after_soft_reset;
6976         }
6977
6978                 /* Enable Accelerated IO path at driver layer */
6979                 h->acciopath_status = 1;
6980
6981         h->drv_req_rescan = 0;
6982
6983         /* Turn the interrupts on so we can service requests */
6984         h->access.set_intr_mask(h, HPSA_INTR_ON);
6985
6986         hpsa_hba_inquiry(h);
6987         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
6988
6989         /* Monitor the controller for firmware lockups */
6990         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
6991         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
6992         schedule_delayed_work(&h->monitor_ctlr_work,
6993                                 h->heartbeat_sample_interval);
6994         return 0;
6995
6996 clean4:
6997         hpsa_free_sg_chain_blocks(h);
6998         hpsa_free_cmd_pool(h);
6999 clean2_and_free_irqs:
7000         hpsa_free_irqs(h);
7001 clean2:
7002 clean1:
7003         if (h->lockup_detected)
7004                 free_percpu(h->lockup_detected);
7005         kfree(h);
7006         return rc;
7007 }
7008
7009 static void hpsa_flush_cache(struct ctlr_info *h)
7010 {
7011         char *flush_buf;
7012         struct CommandList *c;
7013
7014         /* Don't bother trying to flush the cache if locked up */
7015         if (unlikely(lockup_detected(h)))
7016                 return;
7017         flush_buf = kzalloc(4, GFP_KERNEL);
7018         if (!flush_buf)
7019                 return;
7020
7021         c = cmd_alloc(h);
7022         if (!c) {
7023                 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
7024                 goto out_of_memory;
7025         }
7026         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7027                 RAID_CTLR_LUNID, TYPE_CMD)) {
7028                 goto out;
7029         }
7030         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7031         if (c->err_info->CommandStatus != 0)
7032 out:
7033                 dev_warn(&h->pdev->dev,
7034                         "error flushing cache on controller\n");
7035         cmd_free(h, c);
7036 out_of_memory:
7037         kfree(flush_buf);
7038 }
7039
7040 static void hpsa_shutdown(struct pci_dev *pdev)
7041 {
7042         struct ctlr_info *h;
7043
7044         h = pci_get_drvdata(pdev);
7045         /* Turn board interrupts off  and send the flush cache command
7046          * sendcmd will turn off interrupt, and send the flush...
7047          * To write all data in the battery backed cache to disks
7048          */
7049         hpsa_flush_cache(h);
7050         h->access.set_intr_mask(h, HPSA_INTR_OFF);
7051         hpsa_free_irqs_and_disable_msix(h);
7052 }
7053
7054 static void hpsa_free_device_info(struct ctlr_info *h)
7055 {
7056         int i;
7057
7058         for (i = 0; i < h->ndevices; i++)
7059                 kfree(h->dev[i]);
7060 }
7061
7062 static void hpsa_remove_one(struct pci_dev *pdev)
7063 {
7064         struct ctlr_info *h;
7065         unsigned long flags;
7066
7067         if (pci_get_drvdata(pdev) == NULL) {
7068                 dev_err(&pdev->dev, "unable to remove device\n");
7069                 return;
7070         }
7071         h = pci_get_drvdata(pdev);
7072
7073         /* Get rid of any controller monitoring work items */
7074         spin_lock_irqsave(&h->lock, flags);
7075         h->remove_in_progress = 1;
7076         cancel_delayed_work(&h->monitor_ctlr_work);
7077         spin_unlock_irqrestore(&h->lock, flags);
7078
7079         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
7080         hpsa_shutdown(pdev);
7081         iounmap(h->vaddr);
7082         iounmap(h->transtable);
7083         iounmap(h->cfgtable);
7084         hpsa_free_device_info(h);
7085         hpsa_free_sg_chain_blocks(h);
7086         pci_free_consistent(h->pdev,
7087                 h->nr_cmds * sizeof(struct CommandList),
7088                 h->cmd_pool, h->cmd_pool_dhandle);
7089         pci_free_consistent(h->pdev,
7090                 h->nr_cmds * sizeof(struct ErrorInfo),
7091                 h->errinfo_pool, h->errinfo_pool_dhandle);
7092         hpsa_free_reply_queues(h);
7093         kfree(h->cmd_pool_bits);
7094         kfree(h->blockFetchTable);
7095         kfree(h->ioaccel1_blockFetchTable);
7096         kfree(h->ioaccel2_blockFetchTable);
7097         kfree(h->hba_inquiry_data);
7098         pci_disable_device(pdev);
7099         pci_release_regions(pdev);
7100         free_percpu(h->lockup_detected);
7101         kfree(h);
7102 }
7103
7104 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7105         __attribute__((unused)) pm_message_t state)
7106 {
7107         return -ENOSYS;
7108 }
7109
7110 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7111 {
7112         return -ENOSYS;
7113 }
7114
7115 static struct pci_driver hpsa_pci_driver = {
7116         .name = HPSA,
7117         .probe = hpsa_init_one,
7118         .remove = hpsa_remove_one,
7119         .id_table = hpsa_pci_device_id, /* id_table */
7120         .shutdown = hpsa_shutdown,
7121         .suspend = hpsa_suspend,
7122         .resume = hpsa_resume,
7123 };
7124
7125 /* Fill in bucket_map[], given nsgs (the max number of
7126  * scatter gather elements supported) and bucket[],
7127  * which is an array of 8 integers.  The bucket[] array
7128  * contains 8 different DMA transfer sizes (in 16
7129  * byte increments) which the controller uses to fetch
7130  * commands.  This function fills in bucket_map[], which
7131  * maps a given number of scatter gather elements to one of
7132  * the 8 DMA transfer sizes.  The point of it is to allow the
7133  * controller to only do as much DMA as needed to fetch the
7134  * command, with the DMA transfer size encoded in the lower
7135  * bits of the command address.
7136  */
7137 static void  calc_bucket_map(int bucket[], int num_buckets,
7138         int nsgs, int min_blocks, u32 *bucket_map)
7139 {
7140         int i, j, b, size;
7141
7142         /* Note, bucket_map must have nsgs+1 entries. */
7143         for (i = 0; i <= nsgs; i++) {
7144                 /* Compute size of a command with i SG entries */
7145                 size = i + min_blocks;
7146                 b = num_buckets; /* Assume the biggest bucket */
7147                 /* Find the bucket that is just big enough */
7148                 for (j = 0; j < num_buckets; j++) {
7149                         if (bucket[j] >= size) {
7150                                 b = j;
7151                                 break;
7152                         }
7153                 }
7154                 /* for a command with i SG entries, use bucket b. */
7155                 bucket_map[i] = b;
7156         }
7157 }
7158
7159 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7160 {
7161         int i;
7162         unsigned long register_value;
7163         unsigned long transMethod = CFGTBL_Trans_Performant |
7164                         (trans_support & CFGTBL_Trans_use_short_tags) |
7165                                 CFGTBL_Trans_enable_directed_msix |
7166                         (trans_support & (CFGTBL_Trans_io_accel1 |
7167                                 CFGTBL_Trans_io_accel2));
7168         struct access_method access = SA5_performant_access;
7169
7170         /* This is a bit complicated.  There are 8 registers on
7171          * the controller which we write to to tell it 8 different
7172          * sizes of commands which there may be.  It's a way of
7173          * reducing the DMA done to fetch each command.  Encoded into
7174          * each command's tag are 3 bits which communicate to the controller
7175          * which of the eight sizes that command fits within.  The size of
7176          * each command depends on how many scatter gather entries there are.
7177          * Each SG entry requires 16 bytes.  The eight registers are programmed
7178          * with the number of 16-byte blocks a command of that size requires.
7179          * The smallest command possible requires 5 such 16 byte blocks.
7180          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7181          * blocks.  Note, this only extends to the SG entries contained
7182          * within the command block, and does not extend to chained blocks
7183          * of SG elements.   bft[] contains the eight values we write to
7184          * the registers.  They are not evenly distributed, but have more
7185          * sizes for small commands, and fewer sizes for larger commands.
7186          */
7187         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7188 #define MIN_IOACCEL2_BFT_ENTRY 5
7189 #define HPSA_IOACCEL2_HEADER_SZ 4
7190         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7191                         13, 14, 15, 16, 17, 18, 19,
7192                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7193         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7194         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7195         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7196                                  16 * MIN_IOACCEL2_BFT_ENTRY);
7197         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7198         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7199         /*  5 = 1 s/g entry or 4k
7200          *  6 = 2 s/g entry or 8k
7201          *  8 = 4 s/g entry or 16k
7202          * 10 = 6 s/g entry or 24k
7203          */
7204
7205         /* If the controller supports either ioaccel method then
7206          * we can also use the RAID stack submit path that does not
7207          * perform the superfluous readl() after each command submission.
7208          */
7209         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7210                 access = SA5_performant_access_no_read;
7211
7212         /* Controller spec: zero out this buffer. */
7213         for (i = 0; i < h->nreply_queues; i++)
7214                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7215
7216         bft[7] = SG_ENTRIES_IN_CMD + 4;
7217         calc_bucket_map(bft, ARRAY_SIZE(bft),
7218                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7219         for (i = 0; i < 8; i++)
7220                 writel(bft[i], &h->transtable->BlockFetch[i]);
7221
7222         /* size of controller ring buffer */
7223         writel(h->max_commands, &h->transtable->RepQSize);
7224         writel(h->nreply_queues, &h->transtable->RepQCount);
7225         writel(0, &h->transtable->RepQCtrAddrLow32);
7226         writel(0, &h->transtable->RepQCtrAddrHigh32);
7227
7228         for (i = 0; i < h->nreply_queues; i++) {
7229                 writel(0, &h->transtable->RepQAddr[i].upper);
7230                 writel(h->reply_queue[i].busaddr,
7231                         &h->transtable->RepQAddr[i].lower);
7232         }
7233
7234         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7235         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7236         /*
7237          * enable outbound interrupt coalescing in accelerator mode;
7238          */
7239         if (trans_support & CFGTBL_Trans_io_accel1) {
7240                 access = SA5_ioaccel_mode1_access;
7241                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7242                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7243         } else {
7244                 if (trans_support & CFGTBL_Trans_io_accel2) {
7245                         access = SA5_ioaccel_mode2_access;
7246                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7247                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7248                 }
7249         }
7250         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7251         hpsa_wait_for_mode_change_ack(h);
7252         register_value = readl(&(h->cfgtable->TransportActive));
7253         if (!(register_value & CFGTBL_Trans_Performant)) {
7254                 dev_err(&h->pdev->dev,
7255                         "performant mode problem - transport not active\n");
7256                 return;
7257         }
7258         /* Change the access methods to the performant access methods */
7259         h->access = access;
7260         h->transMethod = transMethod;
7261
7262         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7263                 (trans_support & CFGTBL_Trans_io_accel2)))
7264                 return;
7265
7266         if (trans_support & CFGTBL_Trans_io_accel1) {
7267                 /* Set up I/O accelerator mode */
7268                 for (i = 0; i < h->nreply_queues; i++) {
7269                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7270                         h->reply_queue[i].current_entry =
7271                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7272                 }
7273                 bft[7] = h->ioaccel_maxsg + 8;
7274                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7275                                 h->ioaccel1_blockFetchTable);
7276
7277                 /* initialize all reply queue entries to unused */
7278                 for (i = 0; i < h->nreply_queues; i++)
7279                         memset(h->reply_queue[i].head,
7280                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
7281                                 h->reply_queue_size);
7282
7283                 /* set all the constant fields in the accelerator command
7284                  * frames once at init time to save CPU cycles later.
7285                  */
7286                 for (i = 0; i < h->nr_cmds; i++) {
7287                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7288
7289                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
7290                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
7291                                         (i * sizeof(struct ErrorInfo)));
7292                         cp->err_info_len = sizeof(struct ErrorInfo);
7293                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
7294                         cp->host_context_flags =
7295                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
7296                         cp->timeout_sec = 0;
7297                         cp->ReplyQueue = 0;
7298                         cp->tag =
7299                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT) |
7300                                                 DIRECT_LOOKUP_BIT);
7301                         cp->host_addr =
7302                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7303                                         (i * sizeof(struct io_accel1_cmd)));
7304                 }
7305         } else if (trans_support & CFGTBL_Trans_io_accel2) {
7306                 u64 cfg_offset, cfg_base_addr_index;
7307                 u32 bft2_offset, cfg_base_addr;
7308                 int rc;
7309
7310                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7311                         &cfg_base_addr_index, &cfg_offset);
7312                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7313                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7314                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7315                                 4, h->ioaccel2_blockFetchTable);
7316                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7317                 BUILD_BUG_ON(offsetof(struct CfgTable,
7318                                 io_accel_request_size_offset) != 0xb8);
7319                 h->ioaccel2_bft2_regs =
7320                         remap_pci_mem(pci_resource_start(h->pdev,
7321                                         cfg_base_addr_index) +
7322                                         cfg_offset + bft2_offset,
7323                                         ARRAY_SIZE(bft2) *
7324                                         sizeof(*h->ioaccel2_bft2_regs));
7325                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
7326                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7327         }
7328         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7329         hpsa_wait_for_mode_change_ack(h);
7330 }
7331
7332 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7333 {
7334         h->ioaccel_maxsg =
7335                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7336         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7337                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7338
7339         /* Command structures must be aligned on a 128-byte boundary
7340          * because the 7 lower bits of the address are used by the
7341          * hardware.
7342          */
7343         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7344                         IOACCEL1_COMMANDLIST_ALIGNMENT);
7345         h->ioaccel_cmd_pool =
7346                 pci_alloc_consistent(h->pdev,
7347                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7348                         &(h->ioaccel_cmd_pool_dhandle));
7349
7350         h->ioaccel1_blockFetchTable =
7351                 kmalloc(((h->ioaccel_maxsg + 1) *
7352                                 sizeof(u32)), GFP_KERNEL);
7353
7354         if ((h->ioaccel_cmd_pool == NULL) ||
7355                 (h->ioaccel1_blockFetchTable == NULL))
7356                 goto clean_up;
7357
7358         memset(h->ioaccel_cmd_pool, 0,
7359                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7360         return 0;
7361
7362 clean_up:
7363         if (h->ioaccel_cmd_pool)
7364                 pci_free_consistent(h->pdev,
7365                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7366                         h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7367         kfree(h->ioaccel1_blockFetchTable);
7368         return 1;
7369 }
7370
7371 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7372 {
7373         /* Allocate ioaccel2 mode command blocks and block fetch table */
7374
7375         h->ioaccel_maxsg =
7376                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7377         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7378                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7379
7380         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7381                         IOACCEL2_COMMANDLIST_ALIGNMENT);
7382         h->ioaccel2_cmd_pool =
7383                 pci_alloc_consistent(h->pdev,
7384                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7385                         &(h->ioaccel2_cmd_pool_dhandle));
7386
7387         h->ioaccel2_blockFetchTable =
7388                 kmalloc(((h->ioaccel_maxsg + 1) *
7389                                 sizeof(u32)), GFP_KERNEL);
7390
7391         if ((h->ioaccel2_cmd_pool == NULL) ||
7392                 (h->ioaccel2_blockFetchTable == NULL))
7393                 goto clean_up;
7394
7395         memset(h->ioaccel2_cmd_pool, 0,
7396                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7397         return 0;
7398
7399 clean_up:
7400         if (h->ioaccel2_cmd_pool)
7401                 pci_free_consistent(h->pdev,
7402                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7403                         h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7404         kfree(h->ioaccel2_blockFetchTable);
7405         return 1;
7406 }
7407
7408 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7409 {
7410         u32 trans_support;
7411         unsigned long transMethod = CFGTBL_Trans_Performant |
7412                                         CFGTBL_Trans_use_short_tags;
7413         int i;
7414
7415         if (hpsa_simple_mode)
7416                 return;
7417
7418         trans_support = readl(&(h->cfgtable->TransportSupport));
7419         if (!(trans_support & PERFORMANT_MODE))
7420                 return;
7421
7422         /* Check for I/O accelerator mode support */
7423         if (trans_support & CFGTBL_Trans_io_accel1) {
7424                 transMethod |= CFGTBL_Trans_io_accel1 |
7425                                 CFGTBL_Trans_enable_directed_msix;
7426                 if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7427                         goto clean_up;
7428         } else {
7429                 if (trans_support & CFGTBL_Trans_io_accel2) {
7430                                 transMethod |= CFGTBL_Trans_io_accel2 |
7431                                 CFGTBL_Trans_enable_directed_msix;
7432                 if (ioaccel2_alloc_cmds_and_bft(h))
7433                         goto clean_up;
7434                 }
7435         }
7436
7437         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7438         hpsa_get_max_perf_mode_cmds(h);
7439         /* Performant mode ring buffer and supporting data structures */
7440         h->reply_queue_size = h->max_commands * sizeof(u64);
7441
7442         for (i = 0; i < h->nreply_queues; i++) {
7443                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
7444                                                 h->reply_queue_size,
7445                                                 &(h->reply_queue[i].busaddr));
7446                 if (!h->reply_queue[i].head)
7447                         goto clean_up;
7448                 h->reply_queue[i].size = h->max_commands;
7449                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
7450                 h->reply_queue[i].current_entry = 0;
7451         }
7452
7453         /* Need a block fetch table for performant mode */
7454         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7455                                 sizeof(u32)), GFP_KERNEL);
7456         if (!h->blockFetchTable)
7457                 goto clean_up;
7458
7459         hpsa_enter_performant_mode(h, trans_support);
7460         return;
7461
7462 clean_up:
7463         hpsa_free_reply_queues(h);
7464         kfree(h->blockFetchTable);
7465 }
7466
7467 static int is_accelerated_cmd(struct CommandList *c)
7468 {
7469         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7470 }
7471
7472 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7473 {
7474         struct CommandList *c = NULL;
7475         unsigned long flags;
7476         int accel_cmds_out;
7477
7478         do { /* wait for all outstanding commands to drain out */
7479                 accel_cmds_out = 0;
7480                 spin_lock_irqsave(&h->lock, flags);
7481                 list_for_each_entry(c, &h->cmpQ, list)
7482                         accel_cmds_out += is_accelerated_cmd(c);
7483                 list_for_each_entry(c, &h->reqQ, list)
7484                         accel_cmds_out += is_accelerated_cmd(c);
7485                 spin_unlock_irqrestore(&h->lock, flags);
7486                 if (accel_cmds_out <= 0)
7487                         break;
7488                 msleep(100);
7489         } while (1);
7490 }
7491
7492 /*
7493  *  This is it.  Register the PCI driver information for the cards we control
7494  *  the OS will call our registered routines when it finds one of our cards.
7495  */
7496 static int __init hpsa_init(void)
7497 {
7498         return pci_register_driver(&hpsa_pci_driver);
7499 }
7500
7501 static void __exit hpsa_cleanup(void)
7502 {
7503         pci_unregister_driver(&hpsa_pci_driver);
7504 }
7505
7506 static void __attribute__((unused)) verify_offsets(void)
7507 {
7508 #define VERIFY_OFFSET(member, offset) \
7509         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7510
7511         VERIFY_OFFSET(structure_size, 0);
7512         VERIFY_OFFSET(volume_blk_size, 4);
7513         VERIFY_OFFSET(volume_blk_cnt, 8);
7514         VERIFY_OFFSET(phys_blk_shift, 16);
7515         VERIFY_OFFSET(parity_rotation_shift, 17);
7516         VERIFY_OFFSET(strip_size, 18);
7517         VERIFY_OFFSET(disk_starting_blk, 20);
7518         VERIFY_OFFSET(disk_blk_cnt, 28);
7519         VERIFY_OFFSET(data_disks_per_row, 36);
7520         VERIFY_OFFSET(metadata_disks_per_row, 38);
7521         VERIFY_OFFSET(row_cnt, 40);
7522         VERIFY_OFFSET(layout_map_count, 42);
7523         VERIFY_OFFSET(flags, 44);
7524         VERIFY_OFFSET(dekindex, 46);
7525         /* VERIFY_OFFSET(reserved, 48 */
7526         VERIFY_OFFSET(data, 64);
7527
7528 #undef VERIFY_OFFSET
7529
7530 #define VERIFY_OFFSET(member, offset) \
7531         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7532
7533         VERIFY_OFFSET(IU_type, 0);
7534         VERIFY_OFFSET(direction, 1);
7535         VERIFY_OFFSET(reply_queue, 2);
7536         /* VERIFY_OFFSET(reserved1, 3);  */
7537         VERIFY_OFFSET(scsi_nexus, 4);
7538         VERIFY_OFFSET(Tag, 8);
7539         VERIFY_OFFSET(cdb, 16);
7540         VERIFY_OFFSET(cciss_lun, 32);
7541         VERIFY_OFFSET(data_len, 40);
7542         VERIFY_OFFSET(cmd_priority_task_attr, 44);
7543         VERIFY_OFFSET(sg_count, 45);
7544         /* VERIFY_OFFSET(reserved3 */
7545         VERIFY_OFFSET(err_ptr, 48);
7546         VERIFY_OFFSET(err_len, 56);
7547         /* VERIFY_OFFSET(reserved4  */
7548         VERIFY_OFFSET(sg, 64);
7549
7550 #undef VERIFY_OFFSET
7551
7552 #define VERIFY_OFFSET(member, offset) \
7553         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7554
7555         VERIFY_OFFSET(dev_handle, 0x00);
7556         VERIFY_OFFSET(reserved1, 0x02);
7557         VERIFY_OFFSET(function, 0x03);
7558         VERIFY_OFFSET(reserved2, 0x04);
7559         VERIFY_OFFSET(err_info, 0x0C);
7560         VERIFY_OFFSET(reserved3, 0x10);
7561         VERIFY_OFFSET(err_info_len, 0x12);
7562         VERIFY_OFFSET(reserved4, 0x13);
7563         VERIFY_OFFSET(sgl_offset, 0x14);
7564         VERIFY_OFFSET(reserved5, 0x15);
7565         VERIFY_OFFSET(transfer_len, 0x1C);
7566         VERIFY_OFFSET(reserved6, 0x20);
7567         VERIFY_OFFSET(io_flags, 0x24);
7568         VERIFY_OFFSET(reserved7, 0x26);
7569         VERIFY_OFFSET(LUN, 0x34);
7570         VERIFY_OFFSET(control, 0x3C);
7571         VERIFY_OFFSET(CDB, 0x40);
7572         VERIFY_OFFSET(reserved8, 0x50);
7573         VERIFY_OFFSET(host_context_flags, 0x60);
7574         VERIFY_OFFSET(timeout_sec, 0x62);
7575         VERIFY_OFFSET(ReplyQueue, 0x64);
7576         VERIFY_OFFSET(reserved9, 0x65);
7577         VERIFY_OFFSET(tag, 0x68);
7578         VERIFY_OFFSET(host_addr, 0x70);
7579         VERIFY_OFFSET(CISS_LUN, 0x78);
7580         VERIFY_OFFSET(SG, 0x78 + 8);
7581 #undef VERIFY_OFFSET
7582 }
7583
7584 module_init(hpsa_init);
7585 module_exit(hpsa_cleanup);