]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/scsi/hpsa.c
[SCSI] hpsa: Return DID_RESET for commands which complete with status of UNSOLICITED...
[mv-sheeva.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp_lock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "1.0.0"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68         HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76                 "Allow hpsa driver to access unknown HP Smart Array hardware");
77
78 /* define the PCI info for the cards we can control */
79 static const struct pci_device_id hpsa_pci_device_id[] = {
80         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
81         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
82         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
83         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
88 #define PCI_DEVICE_ID_HP_CISSF 0x333f
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x333F},
90         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
91                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
92         {0,}
93 };
94
95 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
96
97 /*  board_id = Subsystem Device ID & Vendor ID
98  *  product = Marketing Name for the board
99  *  access = Address of the struct of function pointers
100  */
101 static struct board_type products[] = {
102         {0x3241103C, "Smart Array P212", &SA5_access},
103         {0x3243103C, "Smart Array P410", &SA5_access},
104         {0x3245103C, "Smart Array P410i", &SA5_access},
105         {0x3247103C, "Smart Array P411", &SA5_access},
106         {0x3249103C, "Smart Array P812", &SA5_access},
107         {0x324a103C, "Smart Array P712m", &SA5_access},
108         {0x324b103C, "Smart Array P711m", &SA5_access},
109         {0x3233103C, "StorageWorks P1210m", &SA5_access},
110         {0x333F103C, "StorageWorks P1210m", &SA5_access},
111         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
112 };
113
114 static int number_of_controllers;
115
116 static irqreturn_t do_hpsa_intr(int irq, void *dev_id);
117 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
118 static void start_io(struct ctlr_info *h);
119
120 #ifdef CONFIG_COMPAT
121 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
122 #endif
123
124 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
125 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
126 static struct CommandList *cmd_alloc(struct ctlr_info *h);
127 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
128 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
129         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
130         int cmd_type);
131
132 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
133                 void (*done)(struct scsi_cmnd *));
134
135 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
136 static int hpsa_slave_alloc(struct scsi_device *sdev);
137 static void hpsa_slave_destroy(struct scsi_device *sdev);
138
139 static ssize_t raid_level_show(struct device *dev,
140         struct device_attribute *attr, char *buf);
141 static ssize_t lunid_show(struct device *dev,
142         struct device_attribute *attr, char *buf);
143 static ssize_t unique_id_show(struct device *dev,
144         struct device_attribute *attr, char *buf);
145 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
146 static ssize_t host_store_rescan(struct device *dev,
147          struct device_attribute *attr, const char *buf, size_t count);
148 static int check_for_unit_attention(struct ctlr_info *h,
149         struct CommandList *c);
150 static void check_ioctl_unit_attention(struct ctlr_info *h,
151         struct CommandList *c);
152 /* performant mode helper functions */
153 static void calc_bucket_map(int *bucket, int num_buckets,
154         int nsgs, int *bucket_map);
155 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
156 static inline u32 next_command(struct ctlr_info *h);
157
158 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
159 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
160 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
161 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
162
163 static struct device_attribute *hpsa_sdev_attrs[] = {
164         &dev_attr_raid_level,
165         &dev_attr_lunid,
166         &dev_attr_unique_id,
167         NULL,
168 };
169
170 static struct device_attribute *hpsa_shost_attrs[] = {
171         &dev_attr_rescan,
172         NULL,
173 };
174
175 static struct scsi_host_template hpsa_driver_template = {
176         .module                 = THIS_MODULE,
177         .name                   = "hpsa",
178         .proc_name              = "hpsa",
179         .queuecommand           = hpsa_scsi_queue_command,
180         .this_id                = -1,
181         .sg_tablesize           = MAXSGENTRIES,
182         .use_clustering         = ENABLE_CLUSTERING,
183         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
184         .ioctl                  = hpsa_ioctl,
185         .slave_alloc            = hpsa_slave_alloc,
186         .slave_destroy          = hpsa_slave_destroy,
187 #ifdef CONFIG_COMPAT
188         .compat_ioctl           = hpsa_compat_ioctl,
189 #endif
190         .sdev_attrs = hpsa_sdev_attrs,
191         .shost_attrs = hpsa_shost_attrs,
192 };
193
194 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
195 {
196         unsigned long *priv = shost_priv(sdev->host);
197         return (struct ctlr_info *) *priv;
198 }
199
200 static struct task_struct *hpsa_scan_thread;
201 static DEFINE_MUTEX(hpsa_scan_mutex);
202 static LIST_HEAD(hpsa_scan_q);
203 static int hpsa_scan_func(void *data);
204
205 /**
206  * add_to_scan_list() - add controller to rescan queue
207  * @h:                Pointer to the controller.
208  *
209  * Adds the controller to the rescan queue if not already on the queue.
210  *
211  * returns 1 if added to the queue, 0 if skipped (could be on the
212  * queue already, or the controller could be initializing or shutting
213  * down).
214  **/
215 static int add_to_scan_list(struct ctlr_info *h)
216 {
217         struct ctlr_info *test_h;
218         int found = 0;
219         int ret = 0;
220
221         if (h->busy_initializing)
222                 return 0;
223
224         /*
225          * If we don't get the lock, it means the driver is unloading
226          * and there's no point in scheduling a new scan.
227          */
228         if (!mutex_trylock(&h->busy_shutting_down))
229                 return 0;
230
231         mutex_lock(&hpsa_scan_mutex);
232         list_for_each_entry(test_h, &hpsa_scan_q, scan_list) {
233                 if (test_h == h) {
234                         found = 1;
235                         break;
236                 }
237         }
238         if (!found && !h->busy_scanning) {
239                 INIT_COMPLETION(h->scan_wait);
240                 list_add_tail(&h->scan_list, &hpsa_scan_q);
241                 ret = 1;
242         }
243         mutex_unlock(&hpsa_scan_mutex);
244         mutex_unlock(&h->busy_shutting_down);
245
246         return ret;
247 }
248
249 /**
250  * remove_from_scan_list() - remove controller from rescan queue
251  * @h:                     Pointer to the controller.
252  *
253  * Removes the controller from the rescan queue if present. Blocks if
254  * the controller is currently conducting a rescan.  The controller
255  * can be in one of three states:
256  * 1. Doesn't need a scan
257  * 2. On the scan list, but not scanning yet (we remove it)
258  * 3. Busy scanning (and not on the list). In this case we want to wait for
259  *    the scan to complete to make sure the scanning thread for this
260  *    controller is completely idle.
261  **/
262 static void remove_from_scan_list(struct ctlr_info *h)
263 {
264         struct ctlr_info *test_h, *tmp_h;
265
266         mutex_lock(&hpsa_scan_mutex);
267         list_for_each_entry_safe(test_h, tmp_h, &hpsa_scan_q, scan_list) {
268                 if (test_h == h) { /* state 2. */
269                         list_del(&h->scan_list);
270                         complete_all(&h->scan_wait);
271                         mutex_unlock(&hpsa_scan_mutex);
272                         return;
273                 }
274         }
275         if (h->busy_scanning) { /* state 3. */
276                 mutex_unlock(&hpsa_scan_mutex);
277                 wait_for_completion(&h->scan_wait);
278         } else { /* state 1, nothing to do. */
279                 mutex_unlock(&hpsa_scan_mutex);
280         }
281 }
282
283 /* hpsa_scan_func() - kernel thread used to rescan controllers
284  * @data:        Ignored.
285  *
286  * A kernel thread used scan for drive topology changes on
287  * controllers. The thread processes only one controller at a time
288  * using a queue.  Controllers are added to the queue using
289  * add_to_scan_list() and removed from the queue either after done
290  * processing or using remove_from_scan_list().
291  *
292  * returns 0.
293  **/
294 static int hpsa_scan_func(__attribute__((unused)) void *data)
295 {
296         struct ctlr_info *h;
297         int host_no;
298
299         while (1) {
300                 set_current_state(TASK_INTERRUPTIBLE);
301                 schedule();
302                 if (kthread_should_stop())
303                         break;
304
305                 while (1) {
306                         mutex_lock(&hpsa_scan_mutex);
307                         if (list_empty(&hpsa_scan_q)) {
308                                 mutex_unlock(&hpsa_scan_mutex);
309                                 break;
310                         }
311                         h = list_entry(hpsa_scan_q.next, struct ctlr_info,
312                                         scan_list);
313                         list_del(&h->scan_list);
314                         h->busy_scanning = 1;
315                         mutex_unlock(&hpsa_scan_mutex);
316                         host_no = h->scsi_host ?  h->scsi_host->host_no : -1;
317                         hpsa_update_scsi_devices(h, host_no);
318                         complete_all(&h->scan_wait);
319                         mutex_lock(&hpsa_scan_mutex);
320                         h->busy_scanning = 0;
321                         mutex_unlock(&hpsa_scan_mutex);
322                 }
323         }
324         return 0;
325 }
326
327 static int check_for_unit_attention(struct ctlr_info *h,
328         struct CommandList *c)
329 {
330         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
331                 return 0;
332
333         switch (c->err_info->SenseInfo[12]) {
334         case STATE_CHANGED:
335                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
336                         "detected, command retried\n", h->ctlr);
337                 break;
338         case LUN_FAILED:
339                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
340                         "detected, action required\n", h->ctlr);
341                 break;
342         case REPORT_LUNS_CHANGED:
343                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
344                         "changed\n", h->ctlr);
345         /*
346          * Here, we could call add_to_scan_list and wake up the scan thread,
347          * except that it's quite likely that we will get more than one
348          * REPORT_LUNS_CHANGED condition in quick succession, which means
349          * that those which occur after the first one will likely happen
350          * *during* the hpsa_scan_thread's rescan.  And the rescan code is not
351          * robust enough to restart in the middle, undoing what it has already
352          * done, and it's not clear that it's even possible to do this, since
353          * part of what it does is notify the SCSI mid layer, which starts
354          * doing it's own i/o to read partition tables and so on, and the
355          * driver doesn't have visibility to know what might need undoing.
356          * In any event, if possible, it is horribly complicated to get right
357          * so we just don't do it for now.
358          *
359          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
360          */
361                 break;
362         case POWER_OR_RESET:
363                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
364                         "or device reset detected\n", h->ctlr);
365                 break;
366         case UNIT_ATTENTION_CLEARED:
367                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
368                     "cleared by another initiator\n", h->ctlr);
369                 break;
370         default:
371                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
372                         "unit attention detected\n", h->ctlr);
373                 break;
374         }
375         return 1;
376 }
377
378 static ssize_t host_store_rescan(struct device *dev,
379                                  struct device_attribute *attr,
380                                  const char *buf, size_t count)
381 {
382         struct ctlr_info *h;
383         struct Scsi_Host *shost = class_to_shost(dev);
384         unsigned long *priv = shost_priv(shost);
385         h = (struct ctlr_info *) *priv;
386         if (add_to_scan_list(h)) {
387                 wake_up_process(hpsa_scan_thread);
388                 wait_for_completion_interruptible(&h->scan_wait);
389         }
390         return count;
391 }
392
393 /* Enqueuing and dequeuing functions for cmdlists. */
394 static inline void addQ(struct hlist_head *list, struct CommandList *c)
395 {
396         hlist_add_head(&c->list, list);
397 }
398
399 static inline u32 next_command(struct ctlr_info *h)
400 {
401         u32 a;
402
403         if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
404                 return h->access.command_completed(h);
405
406         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
407                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
408                 (h->reply_pool_head)++;
409                 h->commands_outstanding--;
410         } else {
411                 a = FIFO_EMPTY;
412         }
413         /* Check for wraparound */
414         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
415                 h->reply_pool_head = h->reply_pool;
416                 h->reply_pool_wraparound ^= 1;
417         }
418         return a;
419 }
420
421 /* set_performant_mode: Modify the tag for cciss performant
422  * set bit 0 for pull model, bits 3-1 for block fetch
423  * register number
424  */
425 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
426 {
427         if (likely(h->transMethod == CFGTBL_Trans_Performant))
428                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
429 }
430
431 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
432         struct CommandList *c)
433 {
434         unsigned long flags;
435
436         set_performant_mode(h, c);
437         spin_lock_irqsave(&h->lock, flags);
438         addQ(&h->reqQ, c);
439         h->Qdepth++;
440         start_io(h);
441         spin_unlock_irqrestore(&h->lock, flags);
442 }
443
444 static inline void removeQ(struct CommandList *c)
445 {
446         if (WARN_ON(hlist_unhashed(&c->list)))
447                 return;
448         hlist_del_init(&c->list);
449 }
450
451 static inline int is_hba_lunid(unsigned char scsi3addr[])
452 {
453         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
454 }
455
456 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
457 {
458         return (scsi3addr[3] & 0xC0) == 0x40;
459 }
460
461 static inline int is_scsi_rev_5(struct ctlr_info *h)
462 {
463         if (!h->hba_inquiry_data)
464                 return 0;
465         if ((h->hba_inquiry_data[2] & 0x07) == 5)
466                 return 1;
467         return 0;
468 }
469
470 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
471         "UNKNOWN"
472 };
473 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
474
475 static ssize_t raid_level_show(struct device *dev,
476              struct device_attribute *attr, char *buf)
477 {
478         ssize_t l = 0;
479         unsigned char rlevel;
480         struct ctlr_info *h;
481         struct scsi_device *sdev;
482         struct hpsa_scsi_dev_t *hdev;
483         unsigned long flags;
484
485         sdev = to_scsi_device(dev);
486         h = sdev_to_hba(sdev);
487         spin_lock_irqsave(&h->lock, flags);
488         hdev = sdev->hostdata;
489         if (!hdev) {
490                 spin_unlock_irqrestore(&h->lock, flags);
491                 return -ENODEV;
492         }
493
494         /* Is this even a logical drive? */
495         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
496                 spin_unlock_irqrestore(&h->lock, flags);
497                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
498                 return l;
499         }
500
501         rlevel = hdev->raid_level;
502         spin_unlock_irqrestore(&h->lock, flags);
503         if (rlevel > RAID_UNKNOWN)
504                 rlevel = RAID_UNKNOWN;
505         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
506         return l;
507 }
508
509 static ssize_t lunid_show(struct device *dev,
510              struct device_attribute *attr, char *buf)
511 {
512         struct ctlr_info *h;
513         struct scsi_device *sdev;
514         struct hpsa_scsi_dev_t *hdev;
515         unsigned long flags;
516         unsigned char lunid[8];
517
518         sdev = to_scsi_device(dev);
519         h = sdev_to_hba(sdev);
520         spin_lock_irqsave(&h->lock, flags);
521         hdev = sdev->hostdata;
522         if (!hdev) {
523                 spin_unlock_irqrestore(&h->lock, flags);
524                 return -ENODEV;
525         }
526         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
527         spin_unlock_irqrestore(&h->lock, flags);
528         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
529                 lunid[0], lunid[1], lunid[2], lunid[3],
530                 lunid[4], lunid[5], lunid[6], lunid[7]);
531 }
532
533 static ssize_t unique_id_show(struct device *dev,
534              struct device_attribute *attr, char *buf)
535 {
536         struct ctlr_info *h;
537         struct scsi_device *sdev;
538         struct hpsa_scsi_dev_t *hdev;
539         unsigned long flags;
540         unsigned char sn[16];
541
542         sdev = to_scsi_device(dev);
543         h = sdev_to_hba(sdev);
544         spin_lock_irqsave(&h->lock, flags);
545         hdev = sdev->hostdata;
546         if (!hdev) {
547                 spin_unlock_irqrestore(&h->lock, flags);
548                 return -ENODEV;
549         }
550         memcpy(sn, hdev->device_id, sizeof(sn));
551         spin_unlock_irqrestore(&h->lock, flags);
552         return snprintf(buf, 16 * 2 + 2,
553                         "%02X%02X%02X%02X%02X%02X%02X%02X"
554                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
555                         sn[0], sn[1], sn[2], sn[3],
556                         sn[4], sn[5], sn[6], sn[7],
557                         sn[8], sn[9], sn[10], sn[11],
558                         sn[12], sn[13], sn[14], sn[15]);
559 }
560
561 static int hpsa_find_target_lun(struct ctlr_info *h,
562         unsigned char scsi3addr[], int bus, int *target, int *lun)
563 {
564         /* finds an unused bus, target, lun for a new physical device
565          * assumes h->devlock is held
566          */
567         int i, found = 0;
568         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
569
570         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
571
572         for (i = 0; i < h->ndevices; i++) {
573                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
574                         set_bit(h->dev[i]->target, lun_taken);
575         }
576
577         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
578                 if (!test_bit(i, lun_taken)) {
579                         /* *bus = 1; */
580                         *target = i;
581                         *lun = 0;
582                         found = 1;
583                         break;
584                 }
585         }
586         return !found;
587 }
588
589 /* Add an entry into h->dev[] array. */
590 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
591                 struct hpsa_scsi_dev_t *device,
592                 struct hpsa_scsi_dev_t *added[], int *nadded)
593 {
594         /* assumes h->devlock is held */
595         int n = h->ndevices;
596         int i;
597         unsigned char addr1[8], addr2[8];
598         struct hpsa_scsi_dev_t *sd;
599
600         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
601                 dev_err(&h->pdev->dev, "too many devices, some will be "
602                         "inaccessible.\n");
603                 return -1;
604         }
605
606         /* physical devices do not have lun or target assigned until now. */
607         if (device->lun != -1)
608                 /* Logical device, lun is already assigned. */
609                 goto lun_assigned;
610
611         /* If this device a non-zero lun of a multi-lun device
612          * byte 4 of the 8-byte LUN addr will contain the logical
613          * unit no, zero otherise.
614          */
615         if (device->scsi3addr[4] == 0) {
616                 /* This is not a non-zero lun of a multi-lun device */
617                 if (hpsa_find_target_lun(h, device->scsi3addr,
618                         device->bus, &device->target, &device->lun) != 0)
619                         return -1;
620                 goto lun_assigned;
621         }
622
623         /* This is a non-zero lun of a multi-lun device.
624          * Search through our list and find the device which
625          * has the same 8 byte LUN address, excepting byte 4.
626          * Assign the same bus and target for this new LUN.
627          * Use the logical unit number from the firmware.
628          */
629         memcpy(addr1, device->scsi3addr, 8);
630         addr1[4] = 0;
631         for (i = 0; i < n; i++) {
632                 sd = h->dev[i];
633                 memcpy(addr2, sd->scsi3addr, 8);
634                 addr2[4] = 0;
635                 /* differ only in byte 4? */
636                 if (memcmp(addr1, addr2, 8) == 0) {
637                         device->bus = sd->bus;
638                         device->target = sd->target;
639                         device->lun = device->scsi3addr[4];
640                         break;
641                 }
642         }
643         if (device->lun == -1) {
644                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
645                         " suspect firmware bug or unsupported hardware "
646                         "configuration.\n");
647                         return -1;
648         }
649
650 lun_assigned:
651
652         h->dev[n] = device;
653         h->ndevices++;
654         added[*nadded] = device;
655         (*nadded)++;
656
657         /* initially, (before registering with scsi layer) we don't
658          * know our hostno and we don't want to print anything first
659          * time anyway (the scsi layer's inquiries will show that info)
660          */
661         /* if (hostno != -1) */
662                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
663                         scsi_device_type(device->devtype), hostno,
664                         device->bus, device->target, device->lun);
665         return 0;
666 }
667
668 /* Remove an entry from h->dev[] array. */
669 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
670         struct hpsa_scsi_dev_t *removed[], int *nremoved)
671 {
672         /* assumes h->devlock is held */
673         int i;
674         struct hpsa_scsi_dev_t *sd;
675
676         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
677
678         sd = h->dev[entry];
679         removed[*nremoved] = h->dev[entry];
680         (*nremoved)++;
681
682         for (i = entry; i < h->ndevices-1; i++)
683                 h->dev[i] = h->dev[i+1];
684         h->ndevices--;
685         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
686                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
687                 sd->lun);
688 }
689
690 #define SCSI3ADDR_EQ(a, b) ( \
691         (a)[7] == (b)[7] && \
692         (a)[6] == (b)[6] && \
693         (a)[5] == (b)[5] && \
694         (a)[4] == (b)[4] && \
695         (a)[3] == (b)[3] && \
696         (a)[2] == (b)[2] && \
697         (a)[1] == (b)[1] && \
698         (a)[0] == (b)[0])
699
700 static void fixup_botched_add(struct ctlr_info *h,
701         struct hpsa_scsi_dev_t *added)
702 {
703         /* called when scsi_add_device fails in order to re-adjust
704          * h->dev[] to match the mid layer's view.
705          */
706         unsigned long flags;
707         int i, j;
708
709         spin_lock_irqsave(&h->lock, flags);
710         for (i = 0; i < h->ndevices; i++) {
711                 if (h->dev[i] == added) {
712                         for (j = i; j < h->ndevices-1; j++)
713                                 h->dev[j] = h->dev[j+1];
714                         h->ndevices--;
715                         break;
716                 }
717         }
718         spin_unlock_irqrestore(&h->lock, flags);
719         kfree(added);
720 }
721
722 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
723         struct hpsa_scsi_dev_t *dev2)
724 {
725         if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
726                 (dev1->lun != -1 && dev2->lun != -1)) &&
727                 dev1->devtype != 0x0C)
728                 return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
729
730         /* we compare everything except lun and target as these
731          * are not yet assigned.  Compare parts likely
732          * to differ first
733          */
734         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
735                 sizeof(dev1->scsi3addr)) != 0)
736                 return 0;
737         if (memcmp(dev1->device_id, dev2->device_id,
738                 sizeof(dev1->device_id)) != 0)
739                 return 0;
740         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
741                 return 0;
742         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
743                 return 0;
744         if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
745                 return 0;
746         if (dev1->devtype != dev2->devtype)
747                 return 0;
748         if (dev1->raid_level != dev2->raid_level)
749                 return 0;
750         if (dev1->bus != dev2->bus)
751                 return 0;
752         return 1;
753 }
754
755 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
756  * and return needle location in *index.  If scsi3addr matches, but not
757  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
758  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
759  */
760 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
761         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
762         int *index)
763 {
764         int i;
765 #define DEVICE_NOT_FOUND 0
766 #define DEVICE_CHANGED 1
767 #define DEVICE_SAME 2
768         for (i = 0; i < haystack_size; i++) {
769                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
770                         *index = i;
771                         if (device_is_the_same(needle, haystack[i]))
772                                 return DEVICE_SAME;
773                         else
774                                 return DEVICE_CHANGED;
775                 }
776         }
777         *index = -1;
778         return DEVICE_NOT_FOUND;
779 }
780
781 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
782         struct hpsa_scsi_dev_t *sd[], int nsds)
783 {
784         /* sd contains scsi3 addresses and devtypes, and inquiry
785          * data.  This function takes what's in sd to be the current
786          * reality and updates h->dev[] to reflect that reality.
787          */
788         int i, entry, device_change, changes = 0;
789         struct hpsa_scsi_dev_t *csd;
790         unsigned long flags;
791         struct hpsa_scsi_dev_t **added, **removed;
792         int nadded, nremoved;
793         struct Scsi_Host *sh = NULL;
794
795         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
796                 GFP_KERNEL);
797         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
798                 GFP_KERNEL);
799
800         if (!added || !removed) {
801                 dev_warn(&h->pdev->dev, "out of memory in "
802                         "adjust_hpsa_scsi_table\n");
803                 goto free_and_out;
804         }
805
806         spin_lock_irqsave(&h->devlock, flags);
807
808         /* find any devices in h->dev[] that are not in
809          * sd[] and remove them from h->dev[], and for any
810          * devices which have changed, remove the old device
811          * info and add the new device info.
812          */
813         i = 0;
814         nremoved = 0;
815         nadded = 0;
816         while (i < h->ndevices) {
817                 csd = h->dev[i];
818                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
819                 if (device_change == DEVICE_NOT_FOUND) {
820                         changes++;
821                         hpsa_scsi_remove_entry(h, hostno, i,
822                                 removed, &nremoved);
823                         continue; /* remove ^^^, hence i not incremented */
824                 } else if (device_change == DEVICE_CHANGED) {
825                         changes++;
826                         hpsa_scsi_remove_entry(h, hostno, i,
827                                 removed, &nremoved);
828                         (void) hpsa_scsi_add_entry(h, hostno, sd[entry],
829                                 added, &nadded);
830                         /* add can't fail, we just removed one. */
831                         sd[entry] = NULL; /* prevent it from being freed */
832                 }
833                 i++;
834         }
835
836         /* Now, make sure every device listed in sd[] is also
837          * listed in h->dev[], adding them if they aren't found
838          */
839
840         for (i = 0; i < nsds; i++) {
841                 if (!sd[i]) /* if already added above. */
842                         continue;
843                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
844                                         h->ndevices, &entry);
845                 if (device_change == DEVICE_NOT_FOUND) {
846                         changes++;
847                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
848                                 added, &nadded) != 0)
849                                 break;
850                         sd[i] = NULL; /* prevent from being freed later. */
851                 } else if (device_change == DEVICE_CHANGED) {
852                         /* should never happen... */
853                         changes++;
854                         dev_warn(&h->pdev->dev,
855                                 "device unexpectedly changed.\n");
856                         /* but if it does happen, we just ignore that device */
857                 }
858         }
859         spin_unlock_irqrestore(&h->devlock, flags);
860
861         /* Don't notify scsi mid layer of any changes the first time through
862          * (or if there are no changes) scsi_scan_host will do it later the
863          * first time through.
864          */
865         if (hostno == -1 || !changes)
866                 goto free_and_out;
867
868         sh = h->scsi_host;
869         /* Notify scsi mid layer of any removed devices */
870         for (i = 0; i < nremoved; i++) {
871                 struct scsi_device *sdev =
872                         scsi_device_lookup(sh, removed[i]->bus,
873                                 removed[i]->target, removed[i]->lun);
874                 if (sdev != NULL) {
875                         scsi_remove_device(sdev);
876                         scsi_device_put(sdev);
877                 } else {
878                         /* We don't expect to get here.
879                          * future cmds to this device will get selection
880                          * timeout as if the device was gone.
881                          */
882                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
883                                 " for removal.", hostno, removed[i]->bus,
884                                 removed[i]->target, removed[i]->lun);
885                 }
886                 kfree(removed[i]);
887                 removed[i] = NULL;
888         }
889
890         /* Notify scsi mid layer of any added devices */
891         for (i = 0; i < nadded; i++) {
892                 if (scsi_add_device(sh, added[i]->bus,
893                         added[i]->target, added[i]->lun) == 0)
894                         continue;
895                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
896                         "device not added.\n", hostno, added[i]->bus,
897                         added[i]->target, added[i]->lun);
898                 /* now we have to remove it from h->dev,
899                  * since it didn't get added to scsi mid layer
900                  */
901                 fixup_botched_add(h, added[i]);
902         }
903
904 free_and_out:
905         kfree(added);
906         kfree(removed);
907 }
908
909 /*
910  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
911  * Assume's h->devlock is held.
912  */
913 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
914         int bus, int target, int lun)
915 {
916         int i;
917         struct hpsa_scsi_dev_t *sd;
918
919         for (i = 0; i < h->ndevices; i++) {
920                 sd = h->dev[i];
921                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
922                         return sd;
923         }
924         return NULL;
925 }
926
927 /* link sdev->hostdata to our per-device structure. */
928 static int hpsa_slave_alloc(struct scsi_device *sdev)
929 {
930         struct hpsa_scsi_dev_t *sd;
931         unsigned long flags;
932         struct ctlr_info *h;
933
934         h = sdev_to_hba(sdev);
935         spin_lock_irqsave(&h->devlock, flags);
936         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
937                 sdev_id(sdev), sdev->lun);
938         if (sd != NULL)
939                 sdev->hostdata = sd;
940         spin_unlock_irqrestore(&h->devlock, flags);
941         return 0;
942 }
943
944 static void hpsa_slave_destroy(struct scsi_device *sdev)
945 {
946         /* nothing to do. */
947 }
948
949 static void hpsa_scsi_setup(struct ctlr_info *h)
950 {
951         h->ndevices = 0;
952         h->scsi_host = NULL;
953         spin_lock_init(&h->devlock);
954 }
955
956 static void complete_scsi_command(struct CommandList *cp,
957         int timeout, u32 tag)
958 {
959         struct scsi_cmnd *cmd;
960         struct ctlr_info *h;
961         struct ErrorInfo *ei;
962
963         unsigned char sense_key;
964         unsigned char asc;      /* additional sense code */
965         unsigned char ascq;     /* additional sense code qualifier */
966
967         ei = cp->err_info;
968         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
969         h = cp->h;
970
971         scsi_dma_unmap(cmd); /* undo the DMA mappings */
972
973         cmd->result = (DID_OK << 16);           /* host byte */
974         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
975         cmd->result |= (ei->ScsiStatus << 1);
976
977         /* copy the sense data whether we need to or not. */
978         memcpy(cmd->sense_buffer, ei->SenseInfo,
979                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
980                         SCSI_SENSE_BUFFERSIZE :
981                         ei->SenseLen);
982         scsi_set_resid(cmd, ei->ResidualCnt);
983
984         if (ei->CommandStatus == 0) {
985                 cmd->scsi_done(cmd);
986                 cmd_free(h, cp);
987                 return;
988         }
989
990         /* an error has occurred */
991         switch (ei->CommandStatus) {
992
993         case CMD_TARGET_STATUS:
994                 if (ei->ScsiStatus) {
995                         /* Get sense key */
996                         sense_key = 0xf & ei->SenseInfo[2];
997                         /* Get additional sense code */
998                         asc = ei->SenseInfo[12];
999                         /* Get addition sense code qualifier */
1000                         ascq = ei->SenseInfo[13];
1001                 }
1002
1003                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1004                         if (check_for_unit_attention(h, cp)) {
1005                                 cmd->result = DID_SOFT_ERROR << 16;
1006                                 break;
1007                         }
1008                         if (sense_key == ILLEGAL_REQUEST) {
1009                                 /*
1010                                  * SCSI REPORT_LUNS is commonly unsupported on
1011                                  * Smart Array.  Suppress noisy complaint.
1012                                  */
1013                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1014                                         break;
1015
1016                                 /* If ASC/ASCQ indicate Logical Unit
1017                                  * Not Supported condition,
1018                                  */
1019                                 if ((asc == 0x25) && (ascq == 0x0)) {
1020                                         dev_warn(&h->pdev->dev, "cp %p "
1021                                                 "has check condition\n", cp);
1022                                         break;
1023                                 }
1024                         }
1025
1026                         if (sense_key == NOT_READY) {
1027                                 /* If Sense is Not Ready, Logical Unit
1028                                  * Not ready, Manual Intervention
1029                                  * required
1030                                  */
1031                                 if ((asc == 0x04) && (ascq == 0x03)) {
1032                                         cmd->result = DID_NO_CONNECT << 16;
1033                                         dev_warn(&h->pdev->dev, "cp %p "
1034                                                 "has check condition: unit "
1035                                                 "not ready, manual "
1036                                                 "intervention required\n", cp);
1037                                         break;
1038                                 }
1039                         }
1040
1041
1042                         /* Must be some other type of check condition */
1043                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1044                                         "unknown type: "
1045                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1046                                         "Returning result: 0x%x, "
1047                                         "cmd=[%02x %02x %02x %02x %02x "
1048                                         "%02x %02x %02x %02x %02x]\n",
1049                                         cp, sense_key, asc, ascq,
1050                                         cmd->result,
1051                                         cmd->cmnd[0], cmd->cmnd[1],
1052                                         cmd->cmnd[2], cmd->cmnd[3],
1053                                         cmd->cmnd[4], cmd->cmnd[5],
1054                                         cmd->cmnd[6], cmd->cmnd[7],
1055                                         cmd->cmnd[8], cmd->cmnd[9]);
1056                         break;
1057                 }
1058
1059
1060                 /* Problem was not a check condition
1061                  * Pass it up to the upper layers...
1062                  */
1063                 if (ei->ScsiStatus) {
1064                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1065                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1066                                 "Returning result: 0x%x\n",
1067                                 cp, ei->ScsiStatus,
1068                                 sense_key, asc, ascq,
1069                                 cmd->result);
1070                 } else {  /* scsi status is zero??? How??? */
1071                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1072                                 "Returning no connection.\n", cp),
1073
1074                         /* Ordinarily, this case should never happen,
1075                          * but there is a bug in some released firmware
1076                          * revisions that allows it to happen if, for
1077                          * example, a 4100 backplane loses power and
1078                          * the tape drive is in it.  We assume that
1079                          * it's a fatal error of some kind because we
1080                          * can't show that it wasn't. We will make it
1081                          * look like selection timeout since that is
1082                          * the most common reason for this to occur,
1083                          * and it's severe enough.
1084                          */
1085
1086                         cmd->result = DID_NO_CONNECT << 16;
1087                 }
1088                 break;
1089
1090         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1091                 break;
1092         case CMD_DATA_OVERRUN:
1093                 dev_warn(&h->pdev->dev, "cp %p has"
1094                         " completed with data overrun "
1095                         "reported\n", cp);
1096                 break;
1097         case CMD_INVALID: {
1098                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1099                 print_cmd(cp); */
1100                 /* We get CMD_INVALID if you address a non-existent device
1101                  * instead of a selection timeout (no response).  You will
1102                  * see this if you yank out a drive, then try to access it.
1103                  * This is kind of a shame because it means that any other
1104                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1105                  * missing target. */
1106                 cmd->result = DID_NO_CONNECT << 16;
1107         }
1108                 break;
1109         case CMD_PROTOCOL_ERR:
1110                 dev_warn(&h->pdev->dev, "cp %p has "
1111                         "protocol error \n", cp);
1112                 break;
1113         case CMD_HARDWARE_ERR:
1114                 cmd->result = DID_ERROR << 16;
1115                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1116                 break;
1117         case CMD_CONNECTION_LOST:
1118                 cmd->result = DID_ERROR << 16;
1119                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1120                 break;
1121         case CMD_ABORTED:
1122                 cmd->result = DID_ABORT << 16;
1123                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1124                                 cp, ei->ScsiStatus);
1125                 break;
1126         case CMD_ABORT_FAILED:
1127                 cmd->result = DID_ERROR << 16;
1128                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1129                 break;
1130         case CMD_UNSOLICITED_ABORT:
1131                 cmd->result = DID_RESET << 16;
1132                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1133                         "abort\n", cp);
1134                 break;
1135         case CMD_TIMEOUT:
1136                 cmd->result = DID_TIME_OUT << 16;
1137                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1138                 break;
1139         default:
1140                 cmd->result = DID_ERROR << 16;
1141                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1142                                 cp, ei->CommandStatus);
1143         }
1144         cmd->scsi_done(cmd);
1145         cmd_free(h, cp);
1146 }
1147
1148 static int hpsa_scsi_detect(struct ctlr_info *h)
1149 {
1150         struct Scsi_Host *sh;
1151         int error;
1152
1153         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1154         if (sh == NULL)
1155                 goto fail;
1156
1157         sh->io_port = 0;
1158         sh->n_io_port = 0;
1159         sh->this_id = -1;
1160         sh->max_channel = 3;
1161         sh->max_cmd_len = MAX_COMMAND_SIZE;
1162         sh->max_lun = HPSA_MAX_LUN;
1163         sh->max_id = HPSA_MAX_LUN;
1164         sh->can_queue = h->nr_cmds;
1165         sh->cmd_per_lun = h->nr_cmds;
1166         h->scsi_host = sh;
1167         sh->hostdata[0] = (unsigned long) h;
1168         sh->irq = h->intr[PERF_MODE_INT];
1169         sh->unique_id = sh->irq;
1170         error = scsi_add_host(sh, &h->pdev->dev);
1171         if (error)
1172                 goto fail_host_put;
1173         scsi_scan_host(sh);
1174         return 0;
1175
1176  fail_host_put:
1177         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1178                 " failed for controller %d\n", h->ctlr);
1179         scsi_host_put(sh);
1180         return error;
1181  fail:
1182         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1183                 " failed for controller %d\n", h->ctlr);
1184         return -ENOMEM;
1185 }
1186
1187 static void hpsa_pci_unmap(struct pci_dev *pdev,
1188         struct CommandList *c, int sg_used, int data_direction)
1189 {
1190         int i;
1191         union u64bit addr64;
1192
1193         for (i = 0; i < sg_used; i++) {
1194                 addr64.val32.lower = c->SG[i].Addr.lower;
1195                 addr64.val32.upper = c->SG[i].Addr.upper;
1196                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1197                         data_direction);
1198         }
1199 }
1200
1201 static void hpsa_map_one(struct pci_dev *pdev,
1202                 struct CommandList *cp,
1203                 unsigned char *buf,
1204                 size_t buflen,
1205                 int data_direction)
1206 {
1207         u64 addr64;
1208
1209         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1210                 cp->Header.SGList = 0;
1211                 cp->Header.SGTotal = 0;
1212                 return;
1213         }
1214
1215         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1216         cp->SG[0].Addr.lower =
1217           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1218         cp->SG[0].Addr.upper =
1219           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1220         cp->SG[0].Len = buflen;
1221         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1222         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1223 }
1224
1225 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1226         struct CommandList *c)
1227 {
1228         DECLARE_COMPLETION_ONSTACK(wait);
1229
1230         c->waiting = &wait;
1231         enqueue_cmd_and_start_io(h, c);
1232         wait_for_completion(&wait);
1233 }
1234
1235 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1236         struct CommandList *c, int data_direction)
1237 {
1238         int retry_count = 0;
1239
1240         do {
1241                 memset(c->err_info, 0, sizeof(c->err_info));
1242                 hpsa_scsi_do_simple_cmd_core(h, c);
1243                 retry_count++;
1244         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1245         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1246 }
1247
1248 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1249 {
1250         struct ErrorInfo *ei;
1251         struct device *d = &cp->h->pdev->dev;
1252
1253         ei = cp->err_info;
1254         switch (ei->CommandStatus) {
1255         case CMD_TARGET_STATUS:
1256                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1257                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1258                                 ei->ScsiStatus);
1259                 if (ei->ScsiStatus == 0)
1260                         dev_warn(d, "SCSI status is abnormally zero.  "
1261                         "(probably indicates selection timeout "
1262                         "reported incorrectly due to a known "
1263                         "firmware bug, circa July, 2001.)\n");
1264                 break;
1265         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1266                         dev_info(d, "UNDERRUN\n");
1267                 break;
1268         case CMD_DATA_OVERRUN:
1269                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1270                 break;
1271         case CMD_INVALID: {
1272                 /* controller unfortunately reports SCSI passthru's
1273                  * to non-existent targets as invalid commands.
1274                  */
1275                 dev_warn(d, "cp %p is reported invalid (probably means "
1276                         "target device no longer present)\n", cp);
1277                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1278                 print_cmd(cp);  */
1279                 }
1280                 break;
1281         case CMD_PROTOCOL_ERR:
1282                 dev_warn(d, "cp %p has protocol error \n", cp);
1283                 break;
1284         case CMD_HARDWARE_ERR:
1285                 /* cmd->result = DID_ERROR << 16; */
1286                 dev_warn(d, "cp %p had hardware error\n", cp);
1287                 break;
1288         case CMD_CONNECTION_LOST:
1289                 dev_warn(d, "cp %p had connection lost\n", cp);
1290                 break;
1291         case CMD_ABORTED:
1292                 dev_warn(d, "cp %p was aborted\n", cp);
1293                 break;
1294         case CMD_ABORT_FAILED:
1295                 dev_warn(d, "cp %p reports abort failed\n", cp);
1296                 break;
1297         case CMD_UNSOLICITED_ABORT:
1298                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1299                 break;
1300         case CMD_TIMEOUT:
1301                 dev_warn(d, "cp %p timed out\n", cp);
1302                 break;
1303         default:
1304                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1305                                 ei->CommandStatus);
1306         }
1307 }
1308
1309 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1310                         unsigned char page, unsigned char *buf,
1311                         unsigned char bufsize)
1312 {
1313         int rc = IO_OK;
1314         struct CommandList *c;
1315         struct ErrorInfo *ei;
1316
1317         c = cmd_special_alloc(h);
1318
1319         if (c == NULL) {                        /* trouble... */
1320                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1321                 return -ENOMEM;
1322         }
1323
1324         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1325         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1326         ei = c->err_info;
1327         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1328                 hpsa_scsi_interpret_error(c);
1329                 rc = -1;
1330         }
1331         cmd_special_free(h, c);
1332         return rc;
1333 }
1334
1335 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1336 {
1337         int rc = IO_OK;
1338         struct CommandList *c;
1339         struct ErrorInfo *ei;
1340
1341         c = cmd_special_alloc(h);
1342
1343         if (c == NULL) {                        /* trouble... */
1344                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1345                 return -1;
1346         }
1347
1348         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1349         hpsa_scsi_do_simple_cmd_core(h, c);
1350         /* no unmap needed here because no data xfer. */
1351
1352         ei = c->err_info;
1353         if (ei->CommandStatus != 0) {
1354                 hpsa_scsi_interpret_error(c);
1355                 rc = -1;
1356         }
1357         cmd_special_free(h, c);
1358         return rc;
1359 }
1360
1361 static void hpsa_get_raid_level(struct ctlr_info *h,
1362         unsigned char *scsi3addr, unsigned char *raid_level)
1363 {
1364         int rc;
1365         unsigned char *buf;
1366
1367         *raid_level = RAID_UNKNOWN;
1368         buf = kzalloc(64, GFP_KERNEL);
1369         if (!buf)
1370                 return;
1371         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1372         if (rc == 0)
1373                 *raid_level = buf[8];
1374         if (*raid_level > RAID_UNKNOWN)
1375                 *raid_level = RAID_UNKNOWN;
1376         kfree(buf);
1377         return;
1378 }
1379
1380 /* Get the device id from inquiry page 0x83 */
1381 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1382         unsigned char *device_id, int buflen)
1383 {
1384         int rc;
1385         unsigned char *buf;
1386
1387         if (buflen > 16)
1388                 buflen = 16;
1389         buf = kzalloc(64, GFP_KERNEL);
1390         if (!buf)
1391                 return -1;
1392         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1393         if (rc == 0)
1394                 memcpy(device_id, &buf[8], buflen);
1395         kfree(buf);
1396         return rc != 0;
1397 }
1398
1399 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1400                 struct ReportLUNdata *buf, int bufsize,
1401                 int extended_response)
1402 {
1403         int rc = IO_OK;
1404         struct CommandList *c;
1405         unsigned char scsi3addr[8];
1406         struct ErrorInfo *ei;
1407
1408         c = cmd_special_alloc(h);
1409         if (c == NULL) {                        /* trouble... */
1410                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1411                 return -1;
1412         }
1413         /* address the controller */
1414         memset(scsi3addr, 0, sizeof(scsi3addr));
1415         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1416                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1417         if (extended_response)
1418                 c->Request.CDB[1] = extended_response;
1419         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1420         ei = c->err_info;
1421         if (ei->CommandStatus != 0 &&
1422             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1423                 hpsa_scsi_interpret_error(c);
1424                 rc = -1;
1425         }
1426         cmd_special_free(h, c);
1427         return rc;
1428 }
1429
1430 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1431                 struct ReportLUNdata *buf,
1432                 int bufsize, int extended_response)
1433 {
1434         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1435 }
1436
1437 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1438                 struct ReportLUNdata *buf, int bufsize)
1439 {
1440         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1441 }
1442
1443 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1444         int bus, int target, int lun)
1445 {
1446         device->bus = bus;
1447         device->target = target;
1448         device->lun = lun;
1449 }
1450
1451 static int hpsa_update_device_info(struct ctlr_info *h,
1452         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1453 {
1454 #define OBDR_TAPE_INQ_SIZE 49
1455         unsigned char *inq_buff;
1456
1457         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1458         if (!inq_buff)
1459                 goto bail_out;
1460
1461         /* Do an inquiry to the device to see what it is. */
1462         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1463                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1464                 /* Inquiry failed (msg printed already) */
1465                 dev_err(&h->pdev->dev,
1466                         "hpsa_update_device_info: inquiry failed\n");
1467                 goto bail_out;
1468         }
1469
1470         /* As a side effect, record the firmware version number
1471          * if we happen to be talking to the RAID controller.
1472          */
1473         if (is_hba_lunid(scsi3addr))
1474                 memcpy(h->firm_ver, &inq_buff[32], 4);
1475
1476         this_device->devtype = (inq_buff[0] & 0x1f);
1477         memcpy(this_device->scsi3addr, scsi3addr, 8);
1478         memcpy(this_device->vendor, &inq_buff[8],
1479                 sizeof(this_device->vendor));
1480         memcpy(this_device->model, &inq_buff[16],
1481                 sizeof(this_device->model));
1482         memcpy(this_device->revision, &inq_buff[32],
1483                 sizeof(this_device->revision));
1484         memset(this_device->device_id, 0,
1485                 sizeof(this_device->device_id));
1486         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1487                 sizeof(this_device->device_id));
1488
1489         if (this_device->devtype == TYPE_DISK &&
1490                 is_logical_dev_addr_mode(scsi3addr))
1491                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1492         else
1493                 this_device->raid_level = RAID_UNKNOWN;
1494
1495         kfree(inq_buff);
1496         return 0;
1497
1498 bail_out:
1499         kfree(inq_buff);
1500         return 1;
1501 }
1502
1503 static unsigned char *msa2xxx_model[] = {
1504         "MSA2012",
1505         "MSA2024",
1506         "MSA2312",
1507         "MSA2324",
1508         NULL,
1509 };
1510
1511 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1512 {
1513         int i;
1514
1515         for (i = 0; msa2xxx_model[i]; i++)
1516                 if (strncmp(device->model, msa2xxx_model[i],
1517                         strlen(msa2xxx_model[i])) == 0)
1518                         return 1;
1519         return 0;
1520 }
1521
1522 /* Helper function to assign bus, target, lun mapping of devices.
1523  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1524  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1525  * Logical drive target and lun are assigned at this time, but
1526  * physical device lun and target assignment are deferred (assigned
1527  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1528  */
1529 static void figure_bus_target_lun(struct ctlr_info *h,
1530         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1531         struct hpsa_scsi_dev_t *device)
1532 {
1533         u32 lunid;
1534
1535         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1536                 /* logical device */
1537                 if (unlikely(is_scsi_rev_5(h))) {
1538                         /* p1210m, logical drives lun assignments
1539                          * match SCSI REPORT LUNS data.
1540                          */
1541                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1542                         *bus = 0;
1543                         *target = 0;
1544                         *lun = (lunid & 0x3fff) + 1;
1545                 } else {
1546                         /* not p1210m... */
1547                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1548                         if (is_msa2xxx(h, device)) {
1549                                 /* msa2xxx way, put logicals on bus 1
1550                                  * and match target/lun numbers box
1551                                  * reports.
1552                                  */
1553                                 *bus = 1;
1554                                 *target = (lunid >> 16) & 0x3fff;
1555                                 *lun = lunid & 0x00ff;
1556                         } else {
1557                                 /* Traditional smart array way. */
1558                                 *bus = 0;
1559                                 *lun = 0;
1560                                 *target = lunid & 0x3fff;
1561                         }
1562                 }
1563         } else {
1564                 /* physical device */
1565                 if (is_hba_lunid(lunaddrbytes))
1566                         if (unlikely(is_scsi_rev_5(h))) {
1567                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1568                                 *target = 0;
1569                                 *lun = 0;
1570                                 return;
1571                         } else
1572                                 *bus = 3; /* traditional smartarray */
1573                 else
1574                         *bus = 2; /* physical disk */
1575                 *target = -1;
1576                 *lun = -1; /* we will fill these in later. */
1577         }
1578 }
1579
1580 /*
1581  * If there is no lun 0 on a target, linux won't find any devices.
1582  * For the MSA2xxx boxes, we have to manually detect the enclosure
1583  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1584  * it for some reason.  *tmpdevice is the target we're adding,
1585  * this_device is a pointer into the current element of currentsd[]
1586  * that we're building up in update_scsi_devices(), below.
1587  * lunzerobits is a bitmap that tracks which targets already have a
1588  * lun 0 assigned.
1589  * Returns 1 if an enclosure was added, 0 if not.
1590  */
1591 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1592         struct hpsa_scsi_dev_t *tmpdevice,
1593         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1594         int bus, int target, int lun, unsigned long lunzerobits[],
1595         int *nmsa2xxx_enclosures)
1596 {
1597         unsigned char scsi3addr[8];
1598
1599         if (test_bit(target, lunzerobits))
1600                 return 0; /* There is already a lun 0 on this target. */
1601
1602         if (!is_logical_dev_addr_mode(lunaddrbytes))
1603                 return 0; /* It's the logical targets that may lack lun 0. */
1604
1605         if (!is_msa2xxx(h, tmpdevice))
1606                 return 0; /* It's only the MSA2xxx that have this problem. */
1607
1608         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1609                 return 0;
1610
1611         if (is_hba_lunid(scsi3addr))
1612                 return 0; /* Don't add the RAID controller here. */
1613
1614         if (is_scsi_rev_5(h))
1615                 return 0; /* p1210m doesn't need to do this. */
1616
1617 #define MAX_MSA2XXX_ENCLOSURES 32
1618         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1619                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1620                         "enclosures exceeded.  Check your hardware "
1621                         "configuration.");
1622                 return 0;
1623         }
1624
1625         memset(scsi3addr, 0, 8);
1626         scsi3addr[3] = target;
1627         if (hpsa_update_device_info(h, scsi3addr, this_device))
1628                 return 0;
1629         (*nmsa2xxx_enclosures)++;
1630         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1631         set_bit(target, lunzerobits);
1632         return 1;
1633 }
1634
1635 /*
1636  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1637  * logdev.  The number of luns in physdev and logdev are returned in
1638  * *nphysicals and *nlogicals, respectively.
1639  * Returns 0 on success, -1 otherwise.
1640  */
1641 static int hpsa_gather_lun_info(struct ctlr_info *h,
1642         int reportlunsize,
1643         struct ReportLUNdata *physdev, u32 *nphysicals,
1644         struct ReportLUNdata *logdev, u32 *nlogicals)
1645 {
1646         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1647                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1648                 return -1;
1649         }
1650         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1651         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1652                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1653                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1654                         *nphysicals - HPSA_MAX_PHYS_LUN);
1655                 *nphysicals = HPSA_MAX_PHYS_LUN;
1656         }
1657         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1658                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1659                 return -1;
1660         }
1661         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1662         /* Reject Logicals in excess of our max capability. */
1663         if (*nlogicals > HPSA_MAX_LUN) {
1664                 dev_warn(&h->pdev->dev,
1665                         "maximum logical LUNs (%d) exceeded.  "
1666                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1667                         *nlogicals - HPSA_MAX_LUN);
1668                         *nlogicals = HPSA_MAX_LUN;
1669         }
1670         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1671                 dev_warn(&h->pdev->dev,
1672                         "maximum logical + physical LUNs (%d) exceeded. "
1673                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1674                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1675                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1676         }
1677         return 0;
1678 }
1679
1680 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1681         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1682         struct ReportLUNdata *logdev_list)
1683 {
1684         /* Helper function, figure out where the LUN ID info is coming from
1685          * given index i, lists of physical and logical devices, where in
1686          * the list the raid controller is supposed to appear (first or last)
1687          */
1688
1689         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1690         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1691
1692         if (i == raid_ctlr_position)
1693                 return RAID_CTLR_LUNID;
1694
1695         if (i < logicals_start)
1696                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1697
1698         if (i < last_device)
1699                 return &logdev_list->LUN[i - nphysicals -
1700                         (raid_ctlr_position == 0)][0];
1701         BUG();
1702         return NULL;
1703 }
1704
1705 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1706 {
1707         /* the idea here is we could get notified
1708          * that some devices have changed, so we do a report
1709          * physical luns and report logical luns cmd, and adjust
1710          * our list of devices accordingly.
1711          *
1712          * The scsi3addr's of devices won't change so long as the
1713          * adapter is not reset.  That means we can rescan and
1714          * tell which devices we already know about, vs. new
1715          * devices, vs.  disappearing devices.
1716          */
1717         struct ReportLUNdata *physdev_list = NULL;
1718         struct ReportLUNdata *logdev_list = NULL;
1719         unsigned char *inq_buff = NULL;
1720         u32 nphysicals = 0;
1721         u32 nlogicals = 0;
1722         u32 ndev_allocated = 0;
1723         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1724         int ncurrent = 0;
1725         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1726         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1727         int bus, target, lun;
1728         int raid_ctlr_position;
1729         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1730
1731         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1732                 GFP_KERNEL);
1733         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1734         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1735         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1736         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1737
1738         if (!currentsd || !physdev_list || !logdev_list ||
1739                 !inq_buff || !tmpdevice) {
1740                 dev_err(&h->pdev->dev, "out of memory\n");
1741                 goto out;
1742         }
1743         memset(lunzerobits, 0, sizeof(lunzerobits));
1744
1745         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1746                         logdev_list, &nlogicals))
1747                 goto out;
1748
1749         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1750          * but each of them 4 times through different paths.  The plus 1
1751          * is for the RAID controller.
1752          */
1753         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1754
1755         /* Allocate the per device structures */
1756         for (i = 0; i < ndevs_to_allocate; i++) {
1757                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1758                 if (!currentsd[i]) {
1759                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1760                                 __FILE__, __LINE__);
1761                         goto out;
1762                 }
1763                 ndev_allocated++;
1764         }
1765
1766         if (unlikely(is_scsi_rev_5(h)))
1767                 raid_ctlr_position = 0;
1768         else
1769                 raid_ctlr_position = nphysicals + nlogicals;
1770
1771         /* adjust our table of devices */
1772         nmsa2xxx_enclosures = 0;
1773         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1774                 u8 *lunaddrbytes;
1775
1776                 /* Figure out where the LUN ID info is coming from */
1777                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1778                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1779                 /* skip masked physical devices. */
1780                 if (lunaddrbytes[3] & 0xC0 &&
1781                         i < nphysicals + (raid_ctlr_position == 0))
1782                         continue;
1783
1784                 /* Get device type, vendor, model, device id */
1785                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1786                         continue; /* skip it if we can't talk to it. */
1787                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1788                         tmpdevice);
1789                 this_device = currentsd[ncurrent];
1790
1791                 /*
1792                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1793                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1794                  * is nonetheless an enclosure device there.  We have to
1795                  * present that otherwise linux won't find anything if
1796                  * there is no lun 0.
1797                  */
1798                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1799                                 lunaddrbytes, bus, target, lun, lunzerobits,
1800                                 &nmsa2xxx_enclosures)) {
1801                         ncurrent++;
1802                         this_device = currentsd[ncurrent];
1803                 }
1804
1805                 *this_device = *tmpdevice;
1806                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1807
1808                 switch (this_device->devtype) {
1809                 case TYPE_ROM: {
1810                         /* We don't *really* support actual CD-ROM devices,
1811                          * just "One Button Disaster Recovery" tape drive
1812                          * which temporarily pretends to be a CD-ROM drive.
1813                          * So we check that the device is really an OBDR tape
1814                          * device by checking for "$DR-10" in bytes 43-48 of
1815                          * the inquiry data.
1816                          */
1817                                 char obdr_sig[7];
1818 #define OBDR_TAPE_SIG "$DR-10"
1819                                 strncpy(obdr_sig, &inq_buff[43], 6);
1820                                 obdr_sig[6] = '\0';
1821                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1822                                         /* Not OBDR device, ignore it. */
1823                                         break;
1824                         }
1825                         ncurrent++;
1826                         break;
1827                 case TYPE_DISK:
1828                         if (i < nphysicals)
1829                                 break;
1830                         ncurrent++;
1831                         break;
1832                 case TYPE_TAPE:
1833                 case TYPE_MEDIUM_CHANGER:
1834                         ncurrent++;
1835                         break;
1836                 case TYPE_RAID:
1837                         /* Only present the Smartarray HBA as a RAID controller.
1838                          * If it's a RAID controller other than the HBA itself
1839                          * (an external RAID controller, MSA500 or similar)
1840                          * don't present it.
1841                          */
1842                         if (!is_hba_lunid(lunaddrbytes))
1843                                 break;
1844                         ncurrent++;
1845                         break;
1846                 default:
1847                         break;
1848                 }
1849                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1850                         break;
1851         }
1852         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1853 out:
1854         kfree(tmpdevice);
1855         for (i = 0; i < ndev_allocated; i++)
1856                 kfree(currentsd[i]);
1857         kfree(currentsd);
1858         kfree(inq_buff);
1859         kfree(physdev_list);
1860         kfree(logdev_list);
1861 }
1862
1863 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1864  * dma mapping  and fills in the scatter gather entries of the
1865  * hpsa command, cp.
1866  */
1867 static int hpsa_scatter_gather(struct pci_dev *pdev,
1868                 struct CommandList *cp,
1869                 struct scsi_cmnd *cmd)
1870 {
1871         unsigned int len;
1872         struct scatterlist *sg;
1873         u64 addr64;
1874         int use_sg, i;
1875
1876         BUG_ON(scsi_sg_count(cmd) > MAXSGENTRIES);
1877
1878         use_sg = scsi_dma_map(cmd);
1879         if (use_sg < 0)
1880                 return use_sg;
1881
1882         if (!use_sg)
1883                 goto sglist_finished;
1884
1885         scsi_for_each_sg(cmd, sg, use_sg, i) {
1886                 addr64 = (u64) sg_dma_address(sg);
1887                 len  = sg_dma_len(sg);
1888                 cp->SG[i].Addr.lower =
1889                         (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1890                 cp->SG[i].Addr.upper =
1891                         (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1892                 cp->SG[i].Len = len;
1893                 cp->SG[i].Ext = 0;  /* we are not chaining */
1894         }
1895
1896 sglist_finished:
1897
1898         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1899         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1900         return 0;
1901 }
1902
1903
1904 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
1905         void (*done)(struct scsi_cmnd *))
1906 {
1907         struct ctlr_info *h;
1908         struct hpsa_scsi_dev_t *dev;
1909         unsigned char scsi3addr[8];
1910         struct CommandList *c;
1911         unsigned long flags;
1912
1913         /* Get the ptr to our adapter structure out of cmd->host. */
1914         h = sdev_to_hba(cmd->device);
1915         dev = cmd->device->hostdata;
1916         if (!dev) {
1917                 cmd->result = DID_NO_CONNECT << 16;
1918                 done(cmd);
1919                 return 0;
1920         }
1921         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1922
1923         /* Need a lock as this is being allocated from the pool */
1924         spin_lock_irqsave(&h->lock, flags);
1925         c = cmd_alloc(h);
1926         spin_unlock_irqrestore(&h->lock, flags);
1927         if (c == NULL) {                        /* trouble... */
1928                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1929                 return SCSI_MLQUEUE_HOST_BUSY;
1930         }
1931
1932         /* Fill in the command list header */
1933
1934         cmd->scsi_done = done;    /* save this for use by completion code */
1935
1936         /* save c in case we have to abort it  */
1937         cmd->host_scribble = (unsigned char *) c;
1938
1939         c->cmd_type = CMD_SCSI;
1940         c->scsi_cmd = cmd;
1941         c->Header.ReplyQueue = 0;  /* unused in simple mode */
1942         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1943         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1944         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1945
1946         /* Fill in the request block... */
1947
1948         c->Request.Timeout = 0;
1949         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1950         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1951         c->Request.CDBLen = cmd->cmd_len;
1952         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1953         c->Request.Type.Type = TYPE_CMD;
1954         c->Request.Type.Attribute = ATTR_SIMPLE;
1955         switch (cmd->sc_data_direction) {
1956         case DMA_TO_DEVICE:
1957                 c->Request.Type.Direction = XFER_WRITE;
1958                 break;
1959         case DMA_FROM_DEVICE:
1960                 c->Request.Type.Direction = XFER_READ;
1961                 break;
1962         case DMA_NONE:
1963                 c->Request.Type.Direction = XFER_NONE;
1964                 break;
1965         case DMA_BIDIRECTIONAL:
1966                 /* This can happen if a buggy application does a scsi passthru
1967                  * and sets both inlen and outlen to non-zero. ( see
1968                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1969                  */
1970
1971                 c->Request.Type.Direction = XFER_RSVD;
1972                 /* This is technically wrong, and hpsa controllers should
1973                  * reject it with CMD_INVALID, which is the most correct
1974                  * response, but non-fibre backends appear to let it
1975                  * slide by, and give the same results as if this field
1976                  * were set correctly.  Either way is acceptable for
1977                  * our purposes here.
1978                  */
1979
1980                 break;
1981
1982         default:
1983                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
1984                         cmd->sc_data_direction);
1985                 BUG();
1986                 break;
1987         }
1988
1989         if (hpsa_scatter_gather(h->pdev, c, cmd) < 0) { /* Fill SG list */
1990                 cmd_free(h, c);
1991                 return SCSI_MLQUEUE_HOST_BUSY;
1992         }
1993         enqueue_cmd_and_start_io(h, c);
1994         /* the cmd'll come back via intr handler in complete_scsi_command()  */
1995         return 0;
1996 }
1997
1998 static void hpsa_unregister_scsi(struct ctlr_info *h)
1999 {
2000         /* we are being forcibly unloaded, and may not refuse. */
2001         scsi_remove_host(h->scsi_host);
2002         scsi_host_put(h->scsi_host);
2003         h->scsi_host = NULL;
2004 }
2005
2006 static int hpsa_register_scsi(struct ctlr_info *h)
2007 {
2008         int rc;
2009
2010         hpsa_update_scsi_devices(h, -1);
2011         rc = hpsa_scsi_detect(h);
2012         if (rc != 0)
2013                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2014                         " hpsa_scsi_detect(), rc is %d\n", rc);
2015         return rc;
2016 }
2017
2018 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2019         unsigned char lunaddr[])
2020 {
2021         int rc = 0;
2022         int count = 0;
2023         int waittime = 1; /* seconds */
2024         struct CommandList *c;
2025
2026         c = cmd_special_alloc(h);
2027         if (!c) {
2028                 dev_warn(&h->pdev->dev, "out of memory in "
2029                         "wait_for_device_to_become_ready.\n");
2030                 return IO_ERROR;
2031         }
2032
2033         /* Send test unit ready until device ready, or give up. */
2034         while (count < HPSA_TUR_RETRY_LIMIT) {
2035
2036                 /* Wait for a bit.  do this first, because if we send
2037                  * the TUR right away, the reset will just abort it.
2038                  */
2039                 msleep(1000 * waittime);
2040                 count++;
2041
2042                 /* Increase wait time with each try, up to a point. */
2043                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2044                         waittime = waittime * 2;
2045
2046                 /* Send the Test Unit Ready */
2047                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2048                 hpsa_scsi_do_simple_cmd_core(h, c);
2049                 /* no unmap needed here because no data xfer. */
2050
2051                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2052                         break;
2053
2054                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2055                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2056                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2057                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2058                         break;
2059
2060                 dev_warn(&h->pdev->dev, "waiting %d secs "
2061                         "for device to become ready.\n", waittime);
2062                 rc = 1; /* device not ready. */
2063         }
2064
2065         if (rc)
2066                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2067         else
2068                 dev_warn(&h->pdev->dev, "device is ready.\n");
2069
2070         cmd_special_free(h, c);
2071         return rc;
2072 }
2073
2074 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2075  * complaining.  Doing a host- or bus-reset can't do anything good here.
2076  */
2077 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2078 {
2079         int rc;
2080         struct ctlr_info *h;
2081         struct hpsa_scsi_dev_t *dev;
2082
2083         /* find the controller to which the command to be aborted was sent */
2084         h = sdev_to_hba(scsicmd->device);
2085         if (h == NULL) /* paranoia */
2086                 return FAILED;
2087         dev_warn(&h->pdev->dev, "resetting drive\n");
2088
2089         dev = scsicmd->device->hostdata;
2090         if (!dev) {
2091                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2092                         "device lookup failed.\n");
2093                 return FAILED;
2094         }
2095         /* send a reset to the SCSI LUN which the command was sent to */
2096         rc = hpsa_send_reset(h, dev->scsi3addr);
2097         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2098                 return SUCCESS;
2099
2100         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2101         return FAILED;
2102 }
2103
2104 /*
2105  * For operations that cannot sleep, a command block is allocated at init,
2106  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2107  * which ones are free or in use.  Lock must be held when calling this.
2108  * cmd_free() is the complement.
2109  */
2110 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2111 {
2112         struct CommandList *c;
2113         int i;
2114         union u64bit temp64;
2115         dma_addr_t cmd_dma_handle, err_dma_handle;
2116
2117         do {
2118                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2119                 if (i == h->nr_cmds)
2120                         return NULL;
2121         } while (test_and_set_bit
2122                  (i & (BITS_PER_LONG - 1),
2123                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2124         c = h->cmd_pool + i;
2125         memset(c, 0, sizeof(*c));
2126         cmd_dma_handle = h->cmd_pool_dhandle
2127             + i * sizeof(*c);
2128         c->err_info = h->errinfo_pool + i;
2129         memset(c->err_info, 0, sizeof(*c->err_info));
2130         err_dma_handle = h->errinfo_pool_dhandle
2131             + i * sizeof(*c->err_info);
2132         h->nr_allocs++;
2133
2134         c->cmdindex = i;
2135
2136         INIT_HLIST_NODE(&c->list);
2137         c->busaddr = (u32) cmd_dma_handle;
2138         temp64.val = (u64) err_dma_handle;
2139         c->ErrDesc.Addr.lower = temp64.val32.lower;
2140         c->ErrDesc.Addr.upper = temp64.val32.upper;
2141         c->ErrDesc.Len = sizeof(*c->err_info);
2142
2143         c->h = h;
2144         return c;
2145 }
2146
2147 /* For operations that can wait for kmalloc to possibly sleep,
2148  * this routine can be called. Lock need not be held to call
2149  * cmd_special_alloc. cmd_special_free() is the complement.
2150  */
2151 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2152 {
2153         struct CommandList *c;
2154         union u64bit temp64;
2155         dma_addr_t cmd_dma_handle, err_dma_handle;
2156
2157         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2158         if (c == NULL)
2159                 return NULL;
2160         memset(c, 0, sizeof(*c));
2161
2162         c->cmdindex = -1;
2163
2164         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2165                     &err_dma_handle);
2166
2167         if (c->err_info == NULL) {
2168                 pci_free_consistent(h->pdev,
2169                         sizeof(*c), c, cmd_dma_handle);
2170                 return NULL;
2171         }
2172         memset(c->err_info, 0, sizeof(*c->err_info));
2173
2174         INIT_HLIST_NODE(&c->list);
2175         c->busaddr = (u32) cmd_dma_handle;
2176         temp64.val = (u64) err_dma_handle;
2177         c->ErrDesc.Addr.lower = temp64.val32.lower;
2178         c->ErrDesc.Addr.upper = temp64.val32.upper;
2179         c->ErrDesc.Len = sizeof(*c->err_info);
2180
2181         c->h = h;
2182         return c;
2183 }
2184
2185 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2186 {
2187         int i;
2188
2189         i = c - h->cmd_pool;
2190         clear_bit(i & (BITS_PER_LONG - 1),
2191                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2192         h->nr_frees++;
2193 }
2194
2195 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2196 {
2197         union u64bit temp64;
2198
2199         temp64.val32.lower = c->ErrDesc.Addr.lower;
2200         temp64.val32.upper = c->ErrDesc.Addr.upper;
2201         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2202                             c->err_info, (dma_addr_t) temp64.val);
2203         pci_free_consistent(h->pdev, sizeof(*c),
2204                             c, (dma_addr_t) c->busaddr);
2205 }
2206
2207 #ifdef CONFIG_COMPAT
2208
2209 static int do_ioctl(struct scsi_device *dev, int cmd, void *arg)
2210 {
2211         int ret;
2212
2213         lock_kernel();
2214         ret = hpsa_ioctl(dev, cmd, arg);
2215         unlock_kernel();
2216         return ret;
2217 }
2218
2219 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg);
2220 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2221         int cmd, void *arg);
2222
2223 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2224 {
2225         switch (cmd) {
2226         case CCISS_GETPCIINFO:
2227         case CCISS_GETINTINFO:
2228         case CCISS_SETINTINFO:
2229         case CCISS_GETNODENAME:
2230         case CCISS_SETNODENAME:
2231         case CCISS_GETHEARTBEAT:
2232         case CCISS_GETBUSTYPES:
2233         case CCISS_GETFIRMVER:
2234         case CCISS_GETDRIVVER:
2235         case CCISS_REVALIDVOLS:
2236         case CCISS_DEREGDISK:
2237         case CCISS_REGNEWDISK:
2238         case CCISS_REGNEWD:
2239         case CCISS_RESCANDISK:
2240         case CCISS_GETLUNINFO:
2241                 return do_ioctl(dev, cmd, arg);
2242
2243         case CCISS_PASSTHRU32:
2244                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2245         case CCISS_BIG_PASSTHRU32:
2246                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2247
2248         default:
2249                 return -ENOIOCTLCMD;
2250         }
2251 }
2252
2253 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2254 {
2255         IOCTL32_Command_struct __user *arg32 =
2256             (IOCTL32_Command_struct __user *) arg;
2257         IOCTL_Command_struct arg64;
2258         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2259         int err;
2260         u32 cp;
2261
2262         err = 0;
2263         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2264                            sizeof(arg64.LUN_info));
2265         err |= copy_from_user(&arg64.Request, &arg32->Request,
2266                            sizeof(arg64.Request));
2267         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2268                            sizeof(arg64.error_info));
2269         err |= get_user(arg64.buf_size, &arg32->buf_size);
2270         err |= get_user(cp, &arg32->buf);
2271         arg64.buf = compat_ptr(cp);
2272         err |= copy_to_user(p, &arg64, sizeof(arg64));
2273
2274         if (err)
2275                 return -EFAULT;
2276
2277         err = do_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2278         if (err)
2279                 return err;
2280         err |= copy_in_user(&arg32->error_info, &p->error_info,
2281                          sizeof(arg32->error_info));
2282         if (err)
2283                 return -EFAULT;
2284         return err;
2285 }
2286
2287 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2288         int cmd, void *arg)
2289 {
2290         BIG_IOCTL32_Command_struct __user *arg32 =
2291             (BIG_IOCTL32_Command_struct __user *) arg;
2292         BIG_IOCTL_Command_struct arg64;
2293         BIG_IOCTL_Command_struct __user *p =
2294             compat_alloc_user_space(sizeof(arg64));
2295         int err;
2296         u32 cp;
2297
2298         err = 0;
2299         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2300                            sizeof(arg64.LUN_info));
2301         err |= copy_from_user(&arg64.Request, &arg32->Request,
2302                            sizeof(arg64.Request));
2303         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2304                            sizeof(arg64.error_info));
2305         err |= get_user(arg64.buf_size, &arg32->buf_size);
2306         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2307         err |= get_user(cp, &arg32->buf);
2308         arg64.buf = compat_ptr(cp);
2309         err |= copy_to_user(p, &arg64, sizeof(arg64));
2310
2311         if (err)
2312                 return -EFAULT;
2313
2314         err = do_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2315         if (err)
2316                 return err;
2317         err |= copy_in_user(&arg32->error_info, &p->error_info,
2318                          sizeof(arg32->error_info));
2319         if (err)
2320                 return -EFAULT;
2321         return err;
2322 }
2323 #endif
2324
2325 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2326 {
2327         struct hpsa_pci_info pciinfo;
2328
2329         if (!argp)
2330                 return -EINVAL;
2331         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2332         pciinfo.bus = h->pdev->bus->number;
2333         pciinfo.dev_fn = h->pdev->devfn;
2334         pciinfo.board_id = h->board_id;
2335         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2336                 return -EFAULT;
2337         return 0;
2338 }
2339
2340 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2341 {
2342         DriverVer_type DriverVer;
2343         unsigned char vmaj, vmin, vsubmin;
2344         int rc;
2345
2346         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2347                 &vmaj, &vmin, &vsubmin);
2348         if (rc != 3) {
2349                 dev_info(&h->pdev->dev, "driver version string '%s' "
2350                         "unrecognized.", HPSA_DRIVER_VERSION);
2351                 vmaj = 0;
2352                 vmin = 0;
2353                 vsubmin = 0;
2354         }
2355         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2356         if (!argp)
2357                 return -EINVAL;
2358         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2359                 return -EFAULT;
2360         return 0;
2361 }
2362
2363 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2364 {
2365         IOCTL_Command_struct iocommand;
2366         struct CommandList *c;
2367         char *buff = NULL;
2368         union u64bit temp64;
2369
2370         if (!argp)
2371                 return -EINVAL;
2372         if (!capable(CAP_SYS_RAWIO))
2373                 return -EPERM;
2374         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2375                 return -EFAULT;
2376         if ((iocommand.buf_size < 1) &&
2377             (iocommand.Request.Type.Direction != XFER_NONE)) {
2378                 return -EINVAL;
2379         }
2380         if (iocommand.buf_size > 0) {
2381                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2382                 if (buff == NULL)
2383                         return -EFAULT;
2384         }
2385         if (iocommand.Request.Type.Direction == XFER_WRITE) {
2386                 /* Copy the data into the buffer we created */
2387                 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2388                         kfree(buff);
2389                         return -EFAULT;
2390                 }
2391         } else
2392                 memset(buff, 0, iocommand.buf_size);
2393         c = cmd_special_alloc(h);
2394         if (c == NULL) {
2395                 kfree(buff);
2396                 return -ENOMEM;
2397         }
2398         /* Fill in the command type */
2399         c->cmd_type = CMD_IOCTL_PEND;
2400         /* Fill in Command Header */
2401         c->Header.ReplyQueue = 0; /* unused in simple mode */
2402         if (iocommand.buf_size > 0) {   /* buffer to fill */
2403                 c->Header.SGList = 1;
2404                 c->Header.SGTotal = 1;
2405         } else  { /* no buffers to fill */
2406                 c->Header.SGList = 0;
2407                 c->Header.SGTotal = 0;
2408         }
2409         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2410         /* use the kernel address the cmd block for tag */
2411         c->Header.Tag.lower = c->busaddr;
2412
2413         /* Fill in Request block */
2414         memcpy(&c->Request, &iocommand.Request,
2415                 sizeof(c->Request));
2416
2417         /* Fill in the scatter gather information */
2418         if (iocommand.buf_size > 0) {
2419                 temp64.val = pci_map_single(h->pdev, buff,
2420                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2421                 c->SG[0].Addr.lower = temp64.val32.lower;
2422                 c->SG[0].Addr.upper = temp64.val32.upper;
2423                 c->SG[0].Len = iocommand.buf_size;
2424                 c->SG[0].Ext = 0; /* we are not chaining*/
2425         }
2426         hpsa_scsi_do_simple_cmd_core(h, c);
2427         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2428         check_ioctl_unit_attention(h, c);
2429
2430         /* Copy the error information out */
2431         memcpy(&iocommand.error_info, c->err_info,
2432                 sizeof(iocommand.error_info));
2433         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2434                 kfree(buff);
2435                 cmd_special_free(h, c);
2436                 return -EFAULT;
2437         }
2438
2439         if (iocommand.Request.Type.Direction == XFER_READ) {
2440                 /* Copy the data out of the buffer we created */
2441                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2442                         kfree(buff);
2443                         cmd_special_free(h, c);
2444                         return -EFAULT;
2445                 }
2446         }
2447         kfree(buff);
2448         cmd_special_free(h, c);
2449         return 0;
2450 }
2451
2452 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2453 {
2454         BIG_IOCTL_Command_struct *ioc;
2455         struct CommandList *c;
2456         unsigned char **buff = NULL;
2457         int *buff_size = NULL;
2458         union u64bit temp64;
2459         BYTE sg_used = 0;
2460         int status = 0;
2461         int i;
2462         u32 left;
2463         u32 sz;
2464         BYTE __user *data_ptr;
2465
2466         if (!argp)
2467                 return -EINVAL;
2468         if (!capable(CAP_SYS_RAWIO))
2469                 return -EPERM;
2470         ioc = (BIG_IOCTL_Command_struct *)
2471             kmalloc(sizeof(*ioc), GFP_KERNEL);
2472         if (!ioc) {
2473                 status = -ENOMEM;
2474                 goto cleanup1;
2475         }
2476         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2477                 status = -EFAULT;
2478                 goto cleanup1;
2479         }
2480         if ((ioc->buf_size < 1) &&
2481             (ioc->Request.Type.Direction != XFER_NONE)) {
2482                 status = -EINVAL;
2483                 goto cleanup1;
2484         }
2485         /* Check kmalloc limits  using all SGs */
2486         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2487                 status = -EINVAL;
2488                 goto cleanup1;
2489         }
2490         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2491                 status = -EINVAL;
2492                 goto cleanup1;
2493         }
2494         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2495         if (!buff) {
2496                 status = -ENOMEM;
2497                 goto cleanup1;
2498         }
2499         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2500         if (!buff_size) {
2501                 status = -ENOMEM;
2502                 goto cleanup1;
2503         }
2504         left = ioc->buf_size;
2505         data_ptr = ioc->buf;
2506         while (left) {
2507                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2508                 buff_size[sg_used] = sz;
2509                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2510                 if (buff[sg_used] == NULL) {
2511                         status = -ENOMEM;
2512                         goto cleanup1;
2513                 }
2514                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2515                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2516                                 status = -ENOMEM;
2517                                 goto cleanup1;
2518                         }
2519                 } else
2520                         memset(buff[sg_used], 0, sz);
2521                 left -= sz;
2522                 data_ptr += sz;
2523                 sg_used++;
2524         }
2525         c = cmd_special_alloc(h);
2526         if (c == NULL) {
2527                 status = -ENOMEM;
2528                 goto cleanup1;
2529         }
2530         c->cmd_type = CMD_IOCTL_PEND;
2531         c->Header.ReplyQueue = 0;
2532
2533         if (ioc->buf_size > 0) {
2534                 c->Header.SGList = sg_used;
2535                 c->Header.SGTotal = sg_used;
2536         } else {
2537                 c->Header.SGList = 0;
2538                 c->Header.SGTotal = 0;
2539         }
2540         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2541         c->Header.Tag.lower = c->busaddr;
2542         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2543         if (ioc->buf_size > 0) {
2544                 int i;
2545                 for (i = 0; i < sg_used; i++) {
2546                         temp64.val = pci_map_single(h->pdev, buff[i],
2547                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2548                         c->SG[i].Addr.lower = temp64.val32.lower;
2549                         c->SG[i].Addr.upper = temp64.val32.upper;
2550                         c->SG[i].Len = buff_size[i];
2551                         /* we are not chaining */
2552                         c->SG[i].Ext = 0;
2553                 }
2554         }
2555         hpsa_scsi_do_simple_cmd_core(h, c);
2556         hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2557         check_ioctl_unit_attention(h, c);
2558         /* Copy the error information out */
2559         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2560         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2561                 cmd_special_free(h, c);
2562                 status = -EFAULT;
2563                 goto cleanup1;
2564         }
2565         if (ioc->Request.Type.Direction == XFER_READ) {
2566                 /* Copy the data out of the buffer we created */
2567                 BYTE __user *ptr = ioc->buf;
2568                 for (i = 0; i < sg_used; i++) {
2569                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2570                                 cmd_special_free(h, c);
2571                                 status = -EFAULT;
2572                                 goto cleanup1;
2573                         }
2574                         ptr += buff_size[i];
2575                 }
2576         }
2577         cmd_special_free(h, c);
2578         status = 0;
2579 cleanup1:
2580         if (buff) {
2581                 for (i = 0; i < sg_used; i++)
2582                         kfree(buff[i]);
2583                 kfree(buff);
2584         }
2585         kfree(buff_size);
2586         kfree(ioc);
2587         return status;
2588 }
2589
2590 static void check_ioctl_unit_attention(struct ctlr_info *h,
2591         struct CommandList *c)
2592 {
2593         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2594                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2595                 (void) check_for_unit_attention(h, c);
2596 }
2597 /*
2598  * ioctl
2599  */
2600 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2601 {
2602         struct ctlr_info *h;
2603         void __user *argp = (void __user *)arg;
2604
2605         h = sdev_to_hba(dev);
2606
2607         switch (cmd) {
2608         case CCISS_DEREGDISK:
2609         case CCISS_REGNEWDISK:
2610         case CCISS_REGNEWD:
2611                 hpsa_update_scsi_devices(h, dev->host->host_no);
2612                 return 0;
2613         case CCISS_GETPCIINFO:
2614                 return hpsa_getpciinfo_ioctl(h, argp);
2615         case CCISS_GETDRIVVER:
2616                 return hpsa_getdrivver_ioctl(h, argp);
2617         case CCISS_PASSTHRU:
2618                 return hpsa_passthru_ioctl(h, argp);
2619         case CCISS_BIG_PASSTHRU:
2620                 return hpsa_big_passthru_ioctl(h, argp);
2621         default:
2622                 return -ENOTTY;
2623         }
2624 }
2625
2626 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2627         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2628         int cmd_type)
2629 {
2630         int pci_dir = XFER_NONE;
2631
2632         c->cmd_type = CMD_IOCTL_PEND;
2633         c->Header.ReplyQueue = 0;
2634         if (buff != NULL && size > 0) {
2635                 c->Header.SGList = 1;
2636                 c->Header.SGTotal = 1;
2637         } else {
2638                 c->Header.SGList = 0;
2639                 c->Header.SGTotal = 0;
2640         }
2641         c->Header.Tag.lower = c->busaddr;
2642         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2643
2644         c->Request.Type.Type = cmd_type;
2645         if (cmd_type == TYPE_CMD) {
2646                 switch (cmd) {
2647                 case HPSA_INQUIRY:
2648                         /* are we trying to read a vital product page */
2649                         if (page_code != 0) {
2650                                 c->Request.CDB[1] = 0x01;
2651                                 c->Request.CDB[2] = page_code;
2652                         }
2653                         c->Request.CDBLen = 6;
2654                         c->Request.Type.Attribute = ATTR_SIMPLE;
2655                         c->Request.Type.Direction = XFER_READ;
2656                         c->Request.Timeout = 0;
2657                         c->Request.CDB[0] = HPSA_INQUIRY;
2658                         c->Request.CDB[4] = size & 0xFF;
2659                         break;
2660                 case HPSA_REPORT_LOG:
2661                 case HPSA_REPORT_PHYS:
2662                         /* Talking to controller so It's a physical command
2663                            mode = 00 target = 0.  Nothing to write.
2664                          */
2665                         c->Request.CDBLen = 12;
2666                         c->Request.Type.Attribute = ATTR_SIMPLE;
2667                         c->Request.Type.Direction = XFER_READ;
2668                         c->Request.Timeout = 0;
2669                         c->Request.CDB[0] = cmd;
2670                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2671                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2672                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2673                         c->Request.CDB[9] = size & 0xFF;
2674                         break;
2675
2676                 case HPSA_READ_CAPACITY:
2677                         c->Request.CDBLen = 10;
2678                         c->Request.Type.Attribute = ATTR_SIMPLE;
2679                         c->Request.Type.Direction = XFER_READ;
2680                         c->Request.Timeout = 0;
2681                         c->Request.CDB[0] = cmd;
2682                         break;
2683                 case HPSA_CACHE_FLUSH:
2684                         c->Request.CDBLen = 12;
2685                         c->Request.Type.Attribute = ATTR_SIMPLE;
2686                         c->Request.Type.Direction = XFER_WRITE;
2687                         c->Request.Timeout = 0;
2688                         c->Request.CDB[0] = BMIC_WRITE;
2689                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2690                         break;
2691                 case TEST_UNIT_READY:
2692                         c->Request.CDBLen = 6;
2693                         c->Request.Type.Attribute = ATTR_SIMPLE;
2694                         c->Request.Type.Direction = XFER_NONE;
2695                         c->Request.Timeout = 0;
2696                         break;
2697                 default:
2698                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2699                         BUG();
2700                         return;
2701                 }
2702         } else if (cmd_type == TYPE_MSG) {
2703                 switch (cmd) {
2704
2705                 case  HPSA_DEVICE_RESET_MSG:
2706                         c->Request.CDBLen = 16;
2707                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2708                         c->Request.Type.Attribute = ATTR_SIMPLE;
2709                         c->Request.Type.Direction = XFER_NONE;
2710                         c->Request.Timeout = 0; /* Don't time out */
2711                         c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2712                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2713                         /* If bytes 4-7 are zero, it means reset the */
2714                         /* LunID device */
2715                         c->Request.CDB[4] = 0x00;
2716                         c->Request.CDB[5] = 0x00;
2717                         c->Request.CDB[6] = 0x00;
2718                         c->Request.CDB[7] = 0x00;
2719                 break;
2720
2721                 default:
2722                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2723                                 cmd);
2724                         BUG();
2725                 }
2726         } else {
2727                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2728                 BUG();
2729         }
2730
2731         switch (c->Request.Type.Direction) {
2732         case XFER_READ:
2733                 pci_dir = PCI_DMA_FROMDEVICE;
2734                 break;
2735         case XFER_WRITE:
2736                 pci_dir = PCI_DMA_TODEVICE;
2737                 break;
2738         case XFER_NONE:
2739                 pci_dir = PCI_DMA_NONE;
2740                 break;
2741         default:
2742                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2743         }
2744
2745         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2746
2747         return;
2748 }
2749
2750 /*
2751  * Map (physical) PCI mem into (virtual) kernel space
2752  */
2753 static void __iomem *remap_pci_mem(ulong base, ulong size)
2754 {
2755         ulong page_base = ((ulong) base) & PAGE_MASK;
2756         ulong page_offs = ((ulong) base) - page_base;
2757         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2758
2759         return page_remapped ? (page_remapped + page_offs) : NULL;
2760 }
2761
2762 /* Takes cmds off the submission queue and sends them to the hardware,
2763  * then puts them on the queue of cmds waiting for completion.
2764  */
2765 static void start_io(struct ctlr_info *h)
2766 {
2767         struct CommandList *c;
2768
2769         while (!hlist_empty(&h->reqQ)) {
2770                 c = hlist_entry(h->reqQ.first, struct CommandList, list);
2771                 /* can't do anything if fifo is full */
2772                 if ((h->access.fifo_full(h))) {
2773                         dev_warn(&h->pdev->dev, "fifo full\n");
2774                         break;
2775                 }
2776
2777                 /* Get the first entry from the Request Q */
2778                 removeQ(c);
2779                 h->Qdepth--;
2780
2781                 /* Tell the controller execute command */
2782                 h->access.submit_command(h, c);
2783
2784                 /* Put job onto the completed Q */
2785                 addQ(&h->cmpQ, c);
2786         }
2787 }
2788
2789 static inline unsigned long get_next_completion(struct ctlr_info *h)
2790 {
2791         return h->access.command_completed(h);
2792 }
2793
2794 static inline bool interrupt_pending(struct ctlr_info *h)
2795 {
2796         return h->access.intr_pending(h);
2797 }
2798
2799 static inline long interrupt_not_for_us(struct ctlr_info *h)
2800 {
2801         return !(h->msi_vector || h->msix_vector) &&
2802                 ((h->access.intr_pending(h) == 0) ||
2803                 (h->interrupts_enabled == 0));
2804 }
2805
2806 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2807         u32 raw_tag)
2808 {
2809         if (unlikely(tag_index >= h->nr_cmds)) {
2810                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2811                 return 1;
2812         }
2813         return 0;
2814 }
2815
2816 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2817 {
2818         removeQ(c);
2819         if (likely(c->cmd_type == CMD_SCSI))
2820                 complete_scsi_command(c, 0, raw_tag);
2821         else if (c->cmd_type == CMD_IOCTL_PEND)
2822                 complete(c->waiting);
2823 }
2824
2825 static inline u32 hpsa_tag_contains_index(u32 tag)
2826 {
2827 #define DIRECT_LOOKUP_BIT 0x10
2828         return tag & DIRECT_LOOKUP_BIT;
2829 }
2830
2831 static inline u32 hpsa_tag_to_index(u32 tag)
2832 {
2833 #define DIRECT_LOOKUP_SHIFT 5
2834         return tag >> DIRECT_LOOKUP_SHIFT;
2835 }
2836
2837 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2838 {
2839 #define HPSA_ERROR_BITS 0x03
2840         return tag & ~HPSA_ERROR_BITS;
2841 }
2842
2843 /* process completion of an indexed ("direct lookup") command */
2844 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2845         u32 raw_tag)
2846 {
2847         u32 tag_index;
2848         struct CommandList *c;
2849
2850         tag_index = hpsa_tag_to_index(raw_tag);
2851         if (bad_tag(h, tag_index, raw_tag))
2852                 return next_command(h);
2853         c = h->cmd_pool + tag_index;
2854         finish_cmd(c, raw_tag);
2855         return next_command(h);
2856 }
2857
2858 /* process completion of a non-indexed command */
2859 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2860         u32 raw_tag)
2861 {
2862         u32 tag;
2863         struct CommandList *c = NULL;
2864         struct hlist_node *tmp;
2865
2866         tag = hpsa_tag_discard_error_bits(raw_tag);
2867         hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2868                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2869                         finish_cmd(c, raw_tag);
2870                         return next_command(h);
2871                 }
2872         }
2873         bad_tag(h, h->nr_cmds + 1, raw_tag);
2874         return next_command(h);
2875 }
2876
2877 static irqreturn_t do_hpsa_intr(int irq, void *dev_id)
2878 {
2879         struct ctlr_info *h = dev_id;
2880         unsigned long flags;
2881         u32 raw_tag;
2882
2883         if (interrupt_not_for_us(h))
2884                 return IRQ_NONE;
2885         spin_lock_irqsave(&h->lock, flags);
2886         raw_tag = get_next_completion(h);
2887         while (raw_tag != FIFO_EMPTY) {
2888                 if (hpsa_tag_contains_index(raw_tag))
2889                         raw_tag = process_indexed_cmd(h, raw_tag);
2890                 else
2891                         raw_tag = process_nonindexed_cmd(h, raw_tag);
2892         }
2893         spin_unlock_irqrestore(&h->lock, flags);
2894         return IRQ_HANDLED;
2895 }
2896
2897 /* Send a message CDB to the firmwart. */
2898 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2899                                                 unsigned char type)
2900 {
2901         struct Command {
2902                 struct CommandListHeader CommandHeader;
2903                 struct RequestBlock Request;
2904                 struct ErrDescriptor ErrorDescriptor;
2905         };
2906         struct Command *cmd;
2907         static const size_t cmd_sz = sizeof(*cmd) +
2908                                         sizeof(cmd->ErrorDescriptor);
2909         dma_addr_t paddr64;
2910         uint32_t paddr32, tag;
2911         void __iomem *vaddr;
2912         int i, err;
2913
2914         vaddr = pci_ioremap_bar(pdev, 0);
2915         if (vaddr == NULL)
2916                 return -ENOMEM;
2917
2918         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
2919          * CCISS commands, so they must be allocated from the lower 4GiB of
2920          * memory.
2921          */
2922         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2923         if (err) {
2924                 iounmap(vaddr);
2925                 return -ENOMEM;
2926         }
2927
2928         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2929         if (cmd == NULL) {
2930                 iounmap(vaddr);
2931                 return -ENOMEM;
2932         }
2933
2934         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
2935          * although there's no guarantee, we assume that the address is at
2936          * least 4-byte aligned (most likely, it's page-aligned).
2937          */
2938         paddr32 = paddr64;
2939
2940         cmd->CommandHeader.ReplyQueue = 0;
2941         cmd->CommandHeader.SGList = 0;
2942         cmd->CommandHeader.SGTotal = 0;
2943         cmd->CommandHeader.Tag.lower = paddr32;
2944         cmd->CommandHeader.Tag.upper = 0;
2945         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
2946
2947         cmd->Request.CDBLen = 16;
2948         cmd->Request.Type.Type = TYPE_MSG;
2949         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
2950         cmd->Request.Type.Direction = XFER_NONE;
2951         cmd->Request.Timeout = 0; /* Don't time out */
2952         cmd->Request.CDB[0] = opcode;
2953         cmd->Request.CDB[1] = type;
2954         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
2955         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
2956         cmd->ErrorDescriptor.Addr.upper = 0;
2957         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
2958
2959         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
2960
2961         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
2962                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
2963                 if (hpsa_tag_discard_error_bits(tag) == paddr32)
2964                         break;
2965                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
2966         }
2967
2968         iounmap(vaddr);
2969
2970         /* we leak the DMA buffer here ... no choice since the controller could
2971          *  still complete the command.
2972          */
2973         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
2974                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
2975                         opcode, type);
2976                 return -ETIMEDOUT;
2977         }
2978
2979         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
2980
2981         if (tag & HPSA_ERROR_BIT) {
2982                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
2983                         opcode, type);
2984                 return -EIO;
2985         }
2986
2987         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
2988                 opcode, type);
2989         return 0;
2990 }
2991
2992 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
2993 #define hpsa_noop(p) hpsa_message(p, 3, 0)
2994
2995 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
2996 {
2997 /* the #defines are stolen from drivers/pci/msi.h. */
2998 #define msi_control_reg(base)           (base + PCI_MSI_FLAGS)
2999 #define PCI_MSIX_FLAGS_ENABLE           (1 << 15)
3000
3001         int pos;
3002         u16 control = 0;
3003
3004         pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3005         if (pos) {
3006                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3007                 if (control & PCI_MSI_FLAGS_ENABLE) {
3008                         dev_info(&pdev->dev, "resetting MSI\n");
3009                         pci_write_config_word(pdev, msi_control_reg(pos),
3010                                         control & ~PCI_MSI_FLAGS_ENABLE);
3011                 }
3012         }
3013
3014         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3015         if (pos) {
3016                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3017                 if (control & PCI_MSIX_FLAGS_ENABLE) {
3018                         dev_info(&pdev->dev, "resetting MSI-X\n");
3019                         pci_write_config_word(pdev, msi_control_reg(pos),
3020                                         control & ~PCI_MSIX_FLAGS_ENABLE);
3021                 }
3022         }
3023
3024         return 0;
3025 }
3026
3027 /* This does a hard reset of the controller using PCI power management
3028  * states.
3029  */
3030 static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev)
3031 {
3032         u16 pmcsr, saved_config_space[32];
3033         int i, pos;
3034
3035         dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3036
3037         /* This is very nearly the same thing as
3038          *
3039          * pci_save_state(pci_dev);
3040          * pci_set_power_state(pci_dev, PCI_D3hot);
3041          * pci_set_power_state(pci_dev, PCI_D0);
3042          * pci_restore_state(pci_dev);
3043          *
3044          * but we can't use these nice canned kernel routines on
3045          * kexec, because they also check the MSI/MSI-X state in PCI
3046          * configuration space and do the wrong thing when it is
3047          * set/cleared.  Also, the pci_save/restore_state functions
3048          * violate the ordering requirements for restoring the
3049          * configuration space from the CCISS document (see the
3050          * comment below).  So we roll our own ....
3051          */
3052
3053         for (i = 0; i < 32; i++)
3054                 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3055
3056         pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3057         if (pos == 0) {
3058                 dev_err(&pdev->dev,
3059                         "hpsa_reset_controller: PCI PM not supported\n");
3060                 return -ENODEV;
3061         }
3062
3063         /* Quoting from the Open CISS Specification: "The Power
3064          * Management Control/Status Register (CSR) controls the power
3065          * state of the device.  The normal operating state is D0,
3066          * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3067          * the controller, place the interface device in D3 then to
3068          * D0, this causes a secondary PCI reset which will reset the
3069          * controller."
3070          */
3071
3072         /* enter the D3hot power management state */
3073         pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3074         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3075         pmcsr |= PCI_D3hot;
3076         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3077
3078         msleep(500);
3079
3080         /* enter the D0 power management state */
3081         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3082         pmcsr |= PCI_D0;
3083         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3084
3085         msleep(500);
3086
3087         /* Restore the PCI configuration space.  The Open CISS
3088          * Specification says, "Restore the PCI Configuration
3089          * Registers, offsets 00h through 60h. It is important to
3090          * restore the command register, 16-bits at offset 04h,
3091          * last. Do not restore the configuration status register,
3092          * 16-bits at offset 06h."  Note that the offset is 2*i.
3093          */
3094         for (i = 0; i < 32; i++) {
3095                 if (i == 2 || i == 3)
3096                         continue;
3097                 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3098         }
3099         wmb();
3100         pci_write_config_word(pdev, 4, saved_config_space[2]);
3101
3102         return 0;
3103 }
3104
3105 /*
3106  *  We cannot read the structure directly, for portability we must use
3107  *   the io functions.
3108  *   This is for debug only.
3109  */
3110 #ifdef HPSA_DEBUG
3111 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3112 {
3113         int i;
3114         char temp_name[17];
3115
3116         dev_info(dev, "Controller Configuration information\n");
3117         dev_info(dev, "------------------------------------\n");
3118         for (i = 0; i < 4; i++)
3119                 temp_name[i] = readb(&(tb->Signature[i]));
3120         temp_name[4] = '\0';
3121         dev_info(dev, "   Signature = %s\n", temp_name);
3122         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3123         dev_info(dev, "   Transport methods supported = 0x%x\n",
3124                readl(&(tb->TransportSupport)));
3125         dev_info(dev, "   Transport methods active = 0x%x\n",
3126                readl(&(tb->TransportActive)));
3127         dev_info(dev, "   Requested transport Method = 0x%x\n",
3128                readl(&(tb->HostWrite.TransportRequest)));
3129         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3130                readl(&(tb->HostWrite.CoalIntDelay)));
3131         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3132                readl(&(tb->HostWrite.CoalIntCount)));
3133         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3134                readl(&(tb->CmdsOutMax)));
3135         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3136         for (i = 0; i < 16; i++)
3137                 temp_name[i] = readb(&(tb->ServerName[i]));
3138         temp_name[16] = '\0';
3139         dev_info(dev, "   Server Name = %s\n", temp_name);
3140         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3141                 readl(&(tb->HeartBeat)));
3142 }
3143 #endif                          /* HPSA_DEBUG */
3144
3145 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3146 {
3147         int i, offset, mem_type, bar_type;
3148
3149         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3150                 return 0;
3151         offset = 0;
3152         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3153                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3154                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3155                         offset += 4;
3156                 else {
3157                         mem_type = pci_resource_flags(pdev, i) &
3158                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3159                         switch (mem_type) {
3160                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3161                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3162                                 offset += 4;    /* 32 bit */
3163                                 break;
3164                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3165                                 offset += 8;
3166                                 break;
3167                         default:        /* reserved in PCI 2.2 */
3168                                 dev_warn(&pdev->dev,
3169                                        "base address is invalid\n");
3170                                 return -1;
3171                                 break;
3172                         }
3173                 }
3174                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3175                         return i + 1;
3176         }
3177         return -1;
3178 }
3179
3180 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3181  * controllers that are capable. If not, we use IO-APIC mode.
3182  */
3183
3184 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h,
3185                                            struct pci_dev *pdev, u32 board_id)
3186 {
3187 #ifdef CONFIG_PCI_MSI
3188         int err;
3189         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3190         {0, 2}, {0, 3}
3191         };
3192
3193         /* Some boards advertise MSI but don't really support it */
3194         if ((board_id == 0x40700E11) ||
3195             (board_id == 0x40800E11) ||
3196             (board_id == 0x40820E11) || (board_id == 0x40830E11))
3197                 goto default_int_mode;
3198         if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3199                 dev_info(&pdev->dev, "MSIX\n");
3200                 err = pci_enable_msix(pdev, hpsa_msix_entries, 4);
3201                 if (!err) {
3202                         h->intr[0] = hpsa_msix_entries[0].vector;
3203                         h->intr[1] = hpsa_msix_entries[1].vector;
3204                         h->intr[2] = hpsa_msix_entries[2].vector;
3205                         h->intr[3] = hpsa_msix_entries[3].vector;
3206                         h->msix_vector = 1;
3207                         return;
3208                 }
3209                 if (err > 0) {
3210                         dev_warn(&pdev->dev, "only %d MSI-X vectors "
3211                                "available\n", err);
3212                         goto default_int_mode;
3213                 } else {
3214                         dev_warn(&pdev->dev, "MSI-X init failed %d\n",
3215                                err);
3216                         goto default_int_mode;
3217                 }
3218         }
3219         if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3220                 dev_info(&pdev->dev, "MSI\n");
3221                 if (!pci_enable_msi(pdev))
3222                         h->msi_vector = 1;
3223                 else
3224                         dev_warn(&pdev->dev, "MSI init failed\n");
3225         }
3226 default_int_mode:
3227 #endif                          /* CONFIG_PCI_MSI */
3228         /* if we get here we're going to use the default interrupt mode */
3229         h->intr[PERF_MODE_INT] = pdev->irq;
3230 }
3231
3232 static int hpsa_pci_init(struct ctlr_info *h, struct pci_dev *pdev)
3233 {
3234         ushort subsystem_vendor_id, subsystem_device_id, command;
3235         u32 board_id, scratchpad = 0;
3236         u64 cfg_offset;
3237         u32 cfg_base_addr;
3238         u64 cfg_base_addr_index;
3239         u32 trans_offset;
3240         int i, prod_index, err;
3241
3242         subsystem_vendor_id = pdev->subsystem_vendor;
3243         subsystem_device_id = pdev->subsystem_device;
3244         board_id = (((u32) (subsystem_device_id << 16) & 0xffff0000) |
3245                     subsystem_vendor_id);
3246
3247         for (i = 0; i < ARRAY_SIZE(products); i++)
3248                 if (board_id == products[i].board_id)
3249                         break;
3250
3251         prod_index = i;
3252
3253         if (prod_index == ARRAY_SIZE(products)) {
3254                 prod_index--;
3255                 if (subsystem_vendor_id != PCI_VENDOR_ID_HP ||
3256                                 !hpsa_allow_any) {
3257                         dev_warn(&pdev->dev, "unrecognized board ID:"
3258                                 " 0x%08lx, ignoring.\n",
3259                                 (unsigned long) board_id);
3260                         return -ENODEV;
3261                 }
3262         }
3263         /* check to see if controller has been disabled
3264          * BEFORE trying to enable it
3265          */
3266         (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3267         if (!(command & 0x02)) {
3268                 dev_warn(&pdev->dev, "controller appears to be disabled\n");
3269                 return -ENODEV;
3270         }
3271
3272         err = pci_enable_device(pdev);
3273         if (err) {
3274                 dev_warn(&pdev->dev, "unable to enable PCI device\n");
3275                 return err;
3276         }
3277
3278         err = pci_request_regions(pdev, "hpsa");
3279         if (err) {
3280                 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
3281                 return err;
3282         }
3283
3284         /* If the kernel supports MSI/MSI-X we will try to enable that,
3285          * else we use the IO-APIC interrupt assigned to us by system ROM.
3286          */
3287         hpsa_interrupt_mode(h, pdev, board_id);
3288
3289         /* find the memory BAR */
3290         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3291                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3292                         break;
3293         }
3294         if (i == DEVICE_COUNT_RESOURCE) {
3295                 dev_warn(&pdev->dev, "no memory BAR found\n");
3296                 err = -ENODEV;
3297                 goto err_out_free_res;
3298         }
3299
3300         h->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3301                                                  * already removed
3302                                                  */
3303
3304         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3305
3306         /* Wait for the board to become ready.  */
3307         for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3308                 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3309                 if (scratchpad == HPSA_FIRMWARE_READY)
3310                         break;
3311                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3312         }
3313         if (scratchpad != HPSA_FIRMWARE_READY) {
3314                 dev_warn(&pdev->dev, "board not ready, timed out.\n");
3315                 err = -ENODEV;
3316                 goto err_out_free_res;
3317         }
3318
3319         /* get the address index number */
3320         cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET);
3321         cfg_base_addr &= (u32) 0x0000ffff;
3322         cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3323         if (cfg_base_addr_index == -1) {
3324                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3325                 err = -ENODEV;
3326                 goto err_out_free_res;
3327         }
3328
3329         cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET);
3330         h->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3331                                cfg_base_addr_index) + cfg_offset,
3332                                 sizeof(h->cfgtable));
3333         /* Find performant mode table. */
3334         trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3335         h->transtable = remap_pci_mem(pci_resource_start(pdev,
3336                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3337                                 sizeof(*h->transtable));
3338
3339         h->board_id = board_id;
3340         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3341         h->product_name = products[prod_index].product_name;
3342         h->access = *(products[prod_index].access);
3343         /* Allow room for some ioctls */
3344         h->nr_cmds = h->max_commands - 4;
3345
3346         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3347             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3348             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3349             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3350                 dev_warn(&pdev->dev, "not a valid CISS config table\n");
3351                 err = -ENODEV;
3352                 goto err_out_free_res;
3353         }
3354 #ifdef CONFIG_X86
3355         {
3356                 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3357                 u32 prefetch;
3358                 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3359                 prefetch |= 0x100;
3360                 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3361         }
3362 #endif
3363
3364         /* Disabling DMA prefetch for the P600
3365          * An ASIC bug may result in a prefetch beyond
3366          * physical memory.
3367          */
3368         if (board_id == 0x3225103C) {
3369                 u32 dma_prefetch;
3370                 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3371                 dma_prefetch |= 0x8000;
3372                 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3373         }
3374
3375         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3376         /* Update the field, and then ring the doorbell */
3377         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3378         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3379
3380         /* under certain very rare conditions, this can take awhile.
3381          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3382          * as we enter this code.)
3383          */
3384         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3385                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3386                         break;
3387                 /* delay and try again */
3388                 msleep(10);
3389         }
3390
3391 #ifdef HPSA_DEBUG
3392         print_cfg_table(&pdev->dev, h->cfgtable);
3393 #endif                          /* HPSA_DEBUG */
3394
3395         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3396                 dev_warn(&pdev->dev, "unable to get board into simple mode\n");
3397                 err = -ENODEV;
3398                 goto err_out_free_res;
3399         }
3400         return 0;
3401
3402 err_out_free_res:
3403         /*
3404          * Deliberately omit pci_disable_device(): it does something nasty to
3405          * Smart Array controllers that pci_enable_device does not undo
3406          */
3407         pci_release_regions(pdev);
3408         return err;
3409 }
3410
3411 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3412 {
3413         int rc;
3414
3415 #define HBA_INQUIRY_BYTE_COUNT 64
3416         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3417         if (!h->hba_inquiry_data)
3418                 return;
3419         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3420                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3421         if (rc != 0) {
3422                 kfree(h->hba_inquiry_data);
3423                 h->hba_inquiry_data = NULL;
3424         }
3425 }
3426
3427 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3428                                     const struct pci_device_id *ent)
3429 {
3430         int i, rc;
3431         int dac;
3432         struct ctlr_info *h;
3433
3434         if (number_of_controllers == 0)
3435                 printk(KERN_INFO DRIVER_NAME "\n");
3436         if (reset_devices) {
3437                 /* Reset the controller with a PCI power-cycle */
3438                 if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev))
3439                         return -ENODEV;
3440
3441                 /* Some devices (notably the HP Smart Array 5i Controller)
3442                    need a little pause here */
3443                 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3444
3445                 /* Now try to get the controller to respond to a no-op */
3446                 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3447                         if (hpsa_noop(pdev) == 0)
3448                                 break;
3449                         else
3450                                 dev_warn(&pdev->dev, "no-op failed%s\n",
3451                                                 (i < 11 ? "; re-trying" : ""));
3452                 }
3453         }
3454
3455         /* Command structures must be aligned on a 32-byte boundary because
3456          * the 5 lower bits of the address are used by the hardware. and by
3457          * the driver.  See comments in hpsa.h for more info.
3458          */
3459 #define COMMANDLIST_ALIGNMENT 32
3460         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3461         h = kzalloc(sizeof(*h), GFP_KERNEL);
3462         if (!h)
3463                 return -ENOMEM;
3464
3465         h->busy_initializing = 1;
3466         INIT_HLIST_HEAD(&h->cmpQ);
3467         INIT_HLIST_HEAD(&h->reqQ);
3468         mutex_init(&h->busy_shutting_down);
3469         init_completion(&h->scan_wait);
3470         rc = hpsa_pci_init(h, pdev);
3471         if (rc != 0)
3472                 goto clean1;
3473
3474         sprintf(h->devname, "hpsa%d", number_of_controllers);
3475         h->ctlr = number_of_controllers;
3476         number_of_controllers++;
3477         h->pdev = pdev;
3478
3479         /* configure PCI DMA stuff */
3480         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3481         if (rc == 0) {
3482                 dac = 1;
3483         } else {
3484                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3485                 if (rc == 0) {
3486                         dac = 0;
3487                 } else {
3488                         dev_err(&pdev->dev, "no suitable DMA available\n");
3489                         goto clean1;
3490                 }
3491         }
3492
3493         /* make sure the board interrupts are off */
3494         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3495         rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr,
3496                         IRQF_DISABLED, h->devname, h);
3497         if (rc) {
3498                 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3499                        h->intr[PERF_MODE_INT], h->devname);
3500                 goto clean2;
3501         }
3502
3503         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3504                h->devname, pdev->device,
3505                h->intr[PERF_MODE_INT], dac ? "" : " not");
3506
3507         h->cmd_pool_bits =
3508             kmalloc(((h->nr_cmds + BITS_PER_LONG -
3509                       1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3510         h->cmd_pool = pci_alloc_consistent(h->pdev,
3511                     h->nr_cmds * sizeof(*h->cmd_pool),
3512                     &(h->cmd_pool_dhandle));
3513         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3514                     h->nr_cmds * sizeof(*h->errinfo_pool),
3515                     &(h->errinfo_pool_dhandle));
3516         if ((h->cmd_pool_bits == NULL)
3517             || (h->cmd_pool == NULL)
3518             || (h->errinfo_pool == NULL)) {
3519                 dev_err(&pdev->dev, "out of memory");
3520                 rc = -ENOMEM;
3521                 goto clean4;
3522         }
3523         spin_lock_init(&h->lock);
3524
3525         pci_set_drvdata(pdev, h);
3526         memset(h->cmd_pool_bits, 0,
3527                ((h->nr_cmds + BITS_PER_LONG -
3528                  1) / BITS_PER_LONG) * sizeof(unsigned long));
3529
3530         hpsa_scsi_setup(h);
3531
3532         /* Turn the interrupts on so we can service requests */
3533         h->access.set_intr_mask(h, HPSA_INTR_ON);
3534
3535         hpsa_put_ctlr_into_performant_mode(h);
3536         hpsa_hba_inquiry(h);
3537         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
3538         h->busy_initializing = 0;
3539         return 1;
3540
3541 clean4:
3542         kfree(h->cmd_pool_bits);
3543         if (h->cmd_pool)
3544                 pci_free_consistent(h->pdev,
3545                             h->nr_cmds * sizeof(struct CommandList),
3546                             h->cmd_pool, h->cmd_pool_dhandle);
3547         if (h->errinfo_pool)
3548                 pci_free_consistent(h->pdev,
3549                             h->nr_cmds * sizeof(struct ErrorInfo),
3550                             h->errinfo_pool,
3551                             h->errinfo_pool_dhandle);
3552         free_irq(h->intr[PERF_MODE_INT], h);
3553 clean2:
3554 clean1:
3555         h->busy_initializing = 0;
3556         kfree(h);
3557         return rc;
3558 }
3559
3560 static void hpsa_flush_cache(struct ctlr_info *h)
3561 {
3562         char *flush_buf;
3563         struct CommandList *c;
3564
3565         flush_buf = kzalloc(4, GFP_KERNEL);
3566         if (!flush_buf)
3567                 return;
3568
3569         c = cmd_special_alloc(h);
3570         if (!c) {
3571                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3572                 goto out_of_memory;
3573         }
3574         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3575                 RAID_CTLR_LUNID, TYPE_CMD);
3576         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3577         if (c->err_info->CommandStatus != 0)
3578                 dev_warn(&h->pdev->dev,
3579                         "error flushing cache on controller\n");
3580         cmd_special_free(h, c);
3581 out_of_memory:
3582         kfree(flush_buf);
3583 }
3584
3585 static void hpsa_shutdown(struct pci_dev *pdev)
3586 {
3587         struct ctlr_info *h;
3588
3589         h = pci_get_drvdata(pdev);
3590         /* Turn board interrupts off  and send the flush cache command
3591          * sendcmd will turn off interrupt, and send the flush...
3592          * To write all data in the battery backed cache to disks
3593          */
3594         hpsa_flush_cache(h);
3595         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3596         free_irq(h->intr[PERF_MODE_INT], h);
3597 #ifdef CONFIG_PCI_MSI
3598         if (h->msix_vector)
3599                 pci_disable_msix(h->pdev);
3600         else if (h->msi_vector)
3601                 pci_disable_msi(h->pdev);
3602 #endif                          /* CONFIG_PCI_MSI */
3603 }
3604
3605 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3606 {
3607         struct ctlr_info *h;
3608
3609         if (pci_get_drvdata(pdev) == NULL) {
3610                 dev_err(&pdev->dev, "unable to remove device \n");
3611                 return;
3612         }
3613         h = pci_get_drvdata(pdev);
3614         mutex_lock(&h->busy_shutting_down);
3615         remove_from_scan_list(h);
3616         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
3617         hpsa_shutdown(pdev);
3618         iounmap(h->vaddr);
3619         pci_free_consistent(h->pdev,
3620                 h->nr_cmds * sizeof(struct CommandList),
3621                 h->cmd_pool, h->cmd_pool_dhandle);
3622         pci_free_consistent(h->pdev,
3623                 h->nr_cmds * sizeof(struct ErrorInfo),
3624                 h->errinfo_pool, h->errinfo_pool_dhandle);
3625         pci_free_consistent(h->pdev, h->reply_pool_size,
3626                 h->reply_pool, h->reply_pool_dhandle);
3627         kfree(h->cmd_pool_bits);
3628         kfree(h->blockFetchTable);
3629         kfree(h->hba_inquiry_data);
3630         /*
3631          * Deliberately omit pci_disable_device(): it does something nasty to
3632          * Smart Array controllers that pci_enable_device does not undo
3633          */
3634         pci_release_regions(pdev);
3635         pci_set_drvdata(pdev, NULL);
3636         mutex_unlock(&h->busy_shutting_down);
3637         kfree(h);
3638 }
3639
3640 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3641         __attribute__((unused)) pm_message_t state)
3642 {
3643         return -ENOSYS;
3644 }
3645
3646 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3647 {
3648         return -ENOSYS;
3649 }
3650
3651 static struct pci_driver hpsa_pci_driver = {
3652         .name = "hpsa",
3653         .probe = hpsa_init_one,
3654         .remove = __devexit_p(hpsa_remove_one),
3655         .id_table = hpsa_pci_device_id, /* id_table */
3656         .shutdown = hpsa_shutdown,
3657         .suspend = hpsa_suspend,
3658         .resume = hpsa_resume,
3659 };
3660
3661 /* Fill in bucket_map[], given nsgs (the max number of
3662  * scatter gather elements supported) and bucket[],
3663  * which is an array of 8 integers.  The bucket[] array
3664  * contains 8 different DMA transfer sizes (in 16
3665  * byte increments) which the controller uses to fetch
3666  * commands.  This function fills in bucket_map[], which
3667  * maps a given number of scatter gather elements to one of
3668  * the 8 DMA transfer sizes.  The point of it is to allow the
3669  * controller to only do as much DMA as needed to fetch the
3670  * command, with the DMA transfer size encoded in the lower
3671  * bits of the command address.
3672  */
3673 static void  calc_bucket_map(int bucket[], int num_buckets,
3674         int nsgs, int *bucket_map)
3675 {
3676         int i, j, b, size;
3677
3678         /* even a command with 0 SGs requires 4 blocks */
3679 #define MINIMUM_TRANSFER_BLOCKS 4
3680 #define NUM_BUCKETS 8
3681         /* Note, bucket_map must have nsgs+1 entries. */
3682         for (i = 0; i <= nsgs; i++) {
3683                 /* Compute size of a command with i SG entries */
3684                 size = i + MINIMUM_TRANSFER_BLOCKS;
3685                 b = num_buckets; /* Assume the biggest bucket */
3686                 /* Find the bucket that is just big enough */
3687                 for (j = 0; j < 8; j++) {
3688                         if (bucket[j] >= size) {
3689                                 b = j;
3690                                 break;
3691                         }
3692                 }
3693                 /* for a command with i SG entries, use bucket b. */
3694                 bucket_map[i] = b;
3695         }
3696 }
3697
3698 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
3699 {
3700         u32 trans_support;
3701         u64 trans_offset;
3702         /*  5 = 1 s/g entry or 4k
3703          *  6 = 2 s/g entry or 8k
3704          *  8 = 4 s/g entry or 16k
3705          * 10 = 6 s/g entry or 24k
3706          */
3707         int bft[8] = {5, 6, 8, 10, 12, 20, 28, 35}; /* for scatter/gathers */
3708         int i = 0;
3709         int l = 0;
3710         unsigned long register_value;
3711
3712         trans_support = readl(&(h->cfgtable->TransportSupport));
3713         if (!(trans_support & PERFORMANT_MODE))
3714                 return;
3715
3716         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3717         h->max_sg_entries = 32;
3718         /* Performant mode ring buffer and supporting data structures */
3719         h->reply_pool_size = h->max_commands * sizeof(u64);
3720         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
3721                                 &(h->reply_pool_dhandle));
3722
3723         /* Need a block fetch table for performant mode */
3724         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
3725                                 sizeof(u32)), GFP_KERNEL);
3726
3727         if ((h->reply_pool == NULL)
3728                 || (h->blockFetchTable == NULL))
3729                 goto clean_up;
3730
3731         h->reply_pool_wraparound = 1; /* spec: init to 1 */
3732
3733         /* Controller spec: zero out this buffer. */
3734         memset(h->reply_pool, 0, h->reply_pool_size);
3735         h->reply_pool_head = h->reply_pool;
3736
3737         trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3738         bft[7] = h->max_sg_entries + 4;
3739         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
3740         for (i = 0; i < 8; i++)
3741                 writel(bft[i], &h->transtable->BlockFetch[i]);
3742
3743         /* size of controller ring buffer */
3744         writel(h->max_commands, &h->transtable->RepQSize);
3745         writel(1, &h->transtable->RepQCount);
3746         writel(0, &h->transtable->RepQCtrAddrLow32);
3747         writel(0, &h->transtable->RepQCtrAddrHigh32);
3748         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3749         writel(0, &h->transtable->RepQAddr0High32);
3750         writel(CFGTBL_Trans_Performant,
3751                 &(h->cfgtable->HostWrite.TransportRequest));
3752         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3753         /* under certain very rare conditions, this can take awhile.
3754          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3755          * as we enter this code.) */
3756         for (l = 0; l < MAX_CONFIG_WAIT; l++) {
3757                 register_value = readl(h->vaddr + SA5_DOORBELL);
3758                 if (!(register_value & CFGTBL_ChangeReq))
3759                         break;
3760                 /* delay and try again */
3761                 set_current_state(TASK_INTERRUPTIBLE);
3762                 schedule_timeout(10);
3763         }
3764         register_value = readl(&(h->cfgtable->TransportActive));
3765         if (!(register_value & CFGTBL_Trans_Performant)) {
3766                 dev_warn(&h->pdev->dev, "unable to get board into"
3767                                         " performant mode\n");
3768                 return;
3769         }
3770
3771         /* Change the access methods to the performant access methods */
3772         h->access = SA5_performant_access;
3773         h->transMethod = CFGTBL_Trans_Performant;
3774
3775         return;
3776
3777 clean_up:
3778         if (h->reply_pool)
3779                 pci_free_consistent(h->pdev, h->reply_pool_size,
3780                         h->reply_pool, h->reply_pool_dhandle);
3781         kfree(h->blockFetchTable);
3782 }
3783
3784 /*
3785  *  This is it.  Register the PCI driver information for the cards we control
3786  *  the OS will call our registered routines when it finds one of our cards.
3787  */
3788 static int __init hpsa_init(void)
3789 {
3790         int err;
3791         /* Start the scan thread */
3792         hpsa_scan_thread = kthread_run(hpsa_scan_func, NULL, "hpsa_scan");
3793         if (IS_ERR(hpsa_scan_thread)) {
3794                 err = PTR_ERR(hpsa_scan_thread);
3795                 return -ENODEV;
3796         }
3797         err = pci_register_driver(&hpsa_pci_driver);
3798         if (err)
3799                 kthread_stop(hpsa_scan_thread);
3800         return err;
3801 }
3802
3803 static void __exit hpsa_cleanup(void)
3804 {
3805         pci_unregister_driver(&hpsa_pci_driver);
3806         kthread_stop(hpsa_scan_thread);
3807 }
3808
3809 module_init(hpsa_init);
3810 module_exit(hpsa_cleanup);