]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/scsi/hpsa.c
hpsa: refactor hpsa_figure_bus_target_lun
[karo-tx-linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2014-2015 PMC-Sierra, Inc.
4  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License as published by
8  *    the Free Software Foundation; version 2 of the License.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
14  *
15  *    Questions/Comments/Bugfixes to storagedev@pmcs.com
16  *
17  */
18
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_dbg.h>
45 #include <linux/cciss_ioctl.h>
46 #include <linux/string.h>
47 #include <linux/bitmap.h>
48 #include <linux/atomic.h>
49 #include <linux/jiffies.h>
50 #include <linux/percpu-defs.h>
51 #include <linux/percpu.h>
52 #include <asm/unaligned.h>
53 #include <asm/div64.h>
54 #include "hpsa_cmd.h"
55 #include "hpsa.h"
56
57 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
58 #define HPSA_DRIVER_VERSION "3.4.10-0"
59 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
60 #define HPSA "hpsa"
61
62 /* How long to wait for CISS doorbell communication */
63 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
64 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
65 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
66 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
67 #define MAX_IOCTL_CONFIG_WAIT 1000
68
69 /*define how many times we will try a command because of bus resets */
70 #define MAX_CMD_RETRIES 3
71
72 /* Embedded module documentation macros - see modules.h */
73 MODULE_AUTHOR("Hewlett-Packard Company");
74 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
75         HPSA_DRIVER_VERSION);
76 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
77 MODULE_VERSION(HPSA_DRIVER_VERSION);
78 MODULE_LICENSE("GPL");
79
80 static int hpsa_allow_any;
81 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_allow_any,
83                 "Allow hpsa driver to access unknown HP Smart Array hardware");
84 static int hpsa_simple_mode;
85 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_simple_mode,
87         "Use 'simple mode' rather than 'performant mode'");
88
89 /* define the PCI info for the cards we can control */
90 static const struct pci_device_id hpsa_pci_device_id[] = {
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
131         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
132         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
133         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
134         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
137         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
138         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
139         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
140         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
141         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
142         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
143                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
144         {0,}
145 };
146
147 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
148
149 /*  board_id = Subsystem Device ID & Vendor ID
150  *  product = Marketing Name for the board
151  *  access = Address of the struct of function pointers
152  */
153 static struct board_type products[] = {
154         {0x3241103C, "Smart Array P212", &SA5_access},
155         {0x3243103C, "Smart Array P410", &SA5_access},
156         {0x3245103C, "Smart Array P410i", &SA5_access},
157         {0x3247103C, "Smart Array P411", &SA5_access},
158         {0x3249103C, "Smart Array P812", &SA5_access},
159         {0x324A103C, "Smart Array P712m", &SA5_access},
160         {0x324B103C, "Smart Array P711m", &SA5_access},
161         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
162         {0x3350103C, "Smart Array P222", &SA5_access},
163         {0x3351103C, "Smart Array P420", &SA5_access},
164         {0x3352103C, "Smart Array P421", &SA5_access},
165         {0x3353103C, "Smart Array P822", &SA5_access},
166         {0x3354103C, "Smart Array P420i", &SA5_access},
167         {0x3355103C, "Smart Array P220i", &SA5_access},
168         {0x3356103C, "Smart Array P721m", &SA5_access},
169         {0x1921103C, "Smart Array P830i", &SA5_access},
170         {0x1922103C, "Smart Array P430", &SA5_access},
171         {0x1923103C, "Smart Array P431", &SA5_access},
172         {0x1924103C, "Smart Array P830", &SA5_access},
173         {0x1926103C, "Smart Array P731m", &SA5_access},
174         {0x1928103C, "Smart Array P230i", &SA5_access},
175         {0x1929103C, "Smart Array P530", &SA5_access},
176         {0x21BD103C, "Smart Array P244br", &SA5_access},
177         {0x21BE103C, "Smart Array P741m", &SA5_access},
178         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
179         {0x21C0103C, "Smart Array P440ar", &SA5_access},
180         {0x21C1103C, "Smart Array P840ar", &SA5_access},
181         {0x21C2103C, "Smart Array P440", &SA5_access},
182         {0x21C3103C, "Smart Array P441", &SA5_access},
183         {0x21C4103C, "Smart Array", &SA5_access},
184         {0x21C5103C, "Smart Array P841", &SA5_access},
185         {0x21C6103C, "Smart HBA H244br", &SA5_access},
186         {0x21C7103C, "Smart HBA H240", &SA5_access},
187         {0x21C8103C, "Smart HBA H241", &SA5_access},
188         {0x21C9103C, "Smart Array", &SA5_access},
189         {0x21CA103C, "Smart Array P246br", &SA5_access},
190         {0x21CB103C, "Smart Array P840", &SA5_access},
191         {0x21CC103C, "Smart Array", &SA5_access},
192         {0x21CD103C, "Smart Array", &SA5_access},
193         {0x21CE103C, "Smart HBA", &SA5_access},
194         {0x05809005, "SmartHBA-SA", &SA5_access},
195         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
196         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
197         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
198         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
199         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
200         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
201         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
202         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
203         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
204         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
205         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
206 };
207
208 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
209 static const struct scsi_cmnd hpsa_cmd_busy;
210 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
211 static const struct scsi_cmnd hpsa_cmd_idle;
212 static int number_of_controllers;
213
214 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
215 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
216 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
217
218 #ifdef CONFIG_COMPAT
219 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
220         void __user *arg);
221 #endif
222
223 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
224 static struct CommandList *cmd_alloc(struct ctlr_info *h);
225 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
226 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
227                                             struct scsi_cmnd *scmd);
228 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
229         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
230         int cmd_type);
231 static void hpsa_free_cmd_pool(struct ctlr_info *h);
232 #define VPD_PAGE (1 << 8)
233 #define HPSA_SIMPLE_ERROR_BITS 0x03
234
235 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
236 static void hpsa_scan_start(struct Scsi_Host *);
237 static int hpsa_scan_finished(struct Scsi_Host *sh,
238         unsigned long elapsed_time);
239 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
240
241 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
242 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
243 static int hpsa_slave_alloc(struct scsi_device *sdev);
244 static int hpsa_slave_configure(struct scsi_device *sdev);
245 static void hpsa_slave_destroy(struct scsi_device *sdev);
246
247 static void hpsa_update_scsi_devices(struct ctlr_info *h);
248 static int check_for_unit_attention(struct ctlr_info *h,
249         struct CommandList *c);
250 static void check_ioctl_unit_attention(struct ctlr_info *h,
251         struct CommandList *c);
252 /* performant mode helper functions */
253 static void calc_bucket_map(int *bucket, int num_buckets,
254         int nsgs, int min_blocks, u32 *bucket_map);
255 static void hpsa_free_performant_mode(struct ctlr_info *h);
256 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
257 static inline u32 next_command(struct ctlr_info *h, u8 q);
258 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
259                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
260                                u64 *cfg_offset);
261 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
262                                     unsigned long *memory_bar);
263 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
264 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
265                                      int wait_for_ready);
266 static inline void finish_cmd(struct CommandList *c);
267 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
268 #define BOARD_NOT_READY 0
269 #define BOARD_READY 1
270 static void hpsa_drain_accel_commands(struct ctlr_info *h);
271 static void hpsa_flush_cache(struct ctlr_info *h);
272 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
273         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
274         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
275 static void hpsa_command_resubmit_worker(struct work_struct *work);
276 static u32 lockup_detected(struct ctlr_info *h);
277 static int detect_controller_lockup(struct ctlr_info *h);
278 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device);
279
280 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
281 {
282         unsigned long *priv = shost_priv(sdev->host);
283         return (struct ctlr_info *) *priv;
284 }
285
286 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
287 {
288         unsigned long *priv = shost_priv(sh);
289         return (struct ctlr_info *) *priv;
290 }
291
292 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
293 {
294         return c->scsi_cmd == SCSI_CMD_IDLE;
295 }
296
297 static inline bool hpsa_is_pending_event(struct CommandList *c)
298 {
299         return c->abort_pending || c->reset_pending;
300 }
301
302 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
303 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
304                         u8 *sense_key, u8 *asc, u8 *ascq)
305 {
306         struct scsi_sense_hdr sshdr;
307         bool rc;
308
309         *sense_key = -1;
310         *asc = -1;
311         *ascq = -1;
312
313         if (sense_data_len < 1)
314                 return;
315
316         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
317         if (rc) {
318                 *sense_key = sshdr.sense_key;
319                 *asc = sshdr.asc;
320                 *ascq = sshdr.ascq;
321         }
322 }
323
324 static int check_for_unit_attention(struct ctlr_info *h,
325         struct CommandList *c)
326 {
327         u8 sense_key, asc, ascq;
328         int sense_len;
329
330         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
331                 sense_len = sizeof(c->err_info->SenseInfo);
332         else
333                 sense_len = c->err_info->SenseLen;
334
335         decode_sense_data(c->err_info->SenseInfo, sense_len,
336                                 &sense_key, &asc, &ascq);
337         if (sense_key != UNIT_ATTENTION || asc == 0xff)
338                 return 0;
339
340         switch (asc) {
341         case STATE_CHANGED:
342                 dev_warn(&h->pdev->dev,
343                         "%s: a state change detected, command retried\n",
344                         h->devname);
345                 break;
346         case LUN_FAILED:
347                 dev_warn(&h->pdev->dev,
348                         "%s: LUN failure detected\n", h->devname);
349                 break;
350         case REPORT_LUNS_CHANGED:
351                 dev_warn(&h->pdev->dev,
352                         "%s: report LUN data changed\n", h->devname);
353         /*
354          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
355          * target (array) devices.
356          */
357                 break;
358         case POWER_OR_RESET:
359                 dev_warn(&h->pdev->dev,
360                         "%s: a power on or device reset detected\n",
361                         h->devname);
362                 break;
363         case UNIT_ATTENTION_CLEARED:
364                 dev_warn(&h->pdev->dev,
365                         "%s: unit attention cleared by another initiator\n",
366                         h->devname);
367                 break;
368         default:
369                 dev_warn(&h->pdev->dev,
370                         "%s: unknown unit attention detected\n",
371                         h->devname);
372                 break;
373         }
374         return 1;
375 }
376
377 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
378 {
379         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
380                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
381                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
382                 return 0;
383         dev_warn(&h->pdev->dev, HPSA "device busy");
384         return 1;
385 }
386
387 static u32 lockup_detected(struct ctlr_info *h);
388 static ssize_t host_show_lockup_detected(struct device *dev,
389                 struct device_attribute *attr, char *buf)
390 {
391         int ld;
392         struct ctlr_info *h;
393         struct Scsi_Host *shost = class_to_shost(dev);
394
395         h = shost_to_hba(shost);
396         ld = lockup_detected(h);
397
398         return sprintf(buf, "ld=%d\n", ld);
399 }
400
401 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
402                                          struct device_attribute *attr,
403                                          const char *buf, size_t count)
404 {
405         int status, len;
406         struct ctlr_info *h;
407         struct Scsi_Host *shost = class_to_shost(dev);
408         char tmpbuf[10];
409
410         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
411                 return -EACCES;
412         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
413         strncpy(tmpbuf, buf, len);
414         tmpbuf[len] = '\0';
415         if (sscanf(tmpbuf, "%d", &status) != 1)
416                 return -EINVAL;
417         h = shost_to_hba(shost);
418         h->acciopath_status = !!status;
419         dev_warn(&h->pdev->dev,
420                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
421                 h->acciopath_status ? "enabled" : "disabled");
422         return count;
423 }
424
425 static ssize_t host_store_raid_offload_debug(struct device *dev,
426                                          struct device_attribute *attr,
427                                          const char *buf, size_t count)
428 {
429         int debug_level, len;
430         struct ctlr_info *h;
431         struct Scsi_Host *shost = class_to_shost(dev);
432         char tmpbuf[10];
433
434         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
435                 return -EACCES;
436         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
437         strncpy(tmpbuf, buf, len);
438         tmpbuf[len] = '\0';
439         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
440                 return -EINVAL;
441         if (debug_level < 0)
442                 debug_level = 0;
443         h = shost_to_hba(shost);
444         h->raid_offload_debug = debug_level;
445         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
446                 h->raid_offload_debug);
447         return count;
448 }
449
450 static ssize_t host_store_rescan(struct device *dev,
451                                  struct device_attribute *attr,
452                                  const char *buf, size_t count)
453 {
454         struct ctlr_info *h;
455         struct Scsi_Host *shost = class_to_shost(dev);
456         h = shost_to_hba(shost);
457         hpsa_scan_start(h->scsi_host);
458         return count;
459 }
460
461 static ssize_t host_show_firmware_revision(struct device *dev,
462              struct device_attribute *attr, char *buf)
463 {
464         struct ctlr_info *h;
465         struct Scsi_Host *shost = class_to_shost(dev);
466         unsigned char *fwrev;
467
468         h = shost_to_hba(shost);
469         if (!h->hba_inquiry_data)
470                 return 0;
471         fwrev = &h->hba_inquiry_data[32];
472         return snprintf(buf, 20, "%c%c%c%c\n",
473                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
474 }
475
476 static ssize_t host_show_commands_outstanding(struct device *dev,
477              struct device_attribute *attr, char *buf)
478 {
479         struct Scsi_Host *shost = class_to_shost(dev);
480         struct ctlr_info *h = shost_to_hba(shost);
481
482         return snprintf(buf, 20, "%d\n",
483                         atomic_read(&h->commands_outstanding));
484 }
485
486 static ssize_t host_show_transport_mode(struct device *dev,
487         struct device_attribute *attr, char *buf)
488 {
489         struct ctlr_info *h;
490         struct Scsi_Host *shost = class_to_shost(dev);
491
492         h = shost_to_hba(shost);
493         return snprintf(buf, 20, "%s\n",
494                 h->transMethod & CFGTBL_Trans_Performant ?
495                         "performant" : "simple");
496 }
497
498 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
499         struct device_attribute *attr, char *buf)
500 {
501         struct ctlr_info *h;
502         struct Scsi_Host *shost = class_to_shost(dev);
503
504         h = shost_to_hba(shost);
505         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
506                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
507 }
508
509 /* List of controllers which cannot be hard reset on kexec with reset_devices */
510 static u32 unresettable_controller[] = {
511         0x324a103C, /* Smart Array P712m */
512         0x324b103C, /* Smart Array P711m */
513         0x3223103C, /* Smart Array P800 */
514         0x3234103C, /* Smart Array P400 */
515         0x3235103C, /* Smart Array P400i */
516         0x3211103C, /* Smart Array E200i */
517         0x3212103C, /* Smart Array E200 */
518         0x3213103C, /* Smart Array E200i */
519         0x3214103C, /* Smart Array E200i */
520         0x3215103C, /* Smart Array E200i */
521         0x3237103C, /* Smart Array E500 */
522         0x323D103C, /* Smart Array P700m */
523         0x40800E11, /* Smart Array 5i */
524         0x409C0E11, /* Smart Array 6400 */
525         0x409D0E11, /* Smart Array 6400 EM */
526         0x40700E11, /* Smart Array 5300 */
527         0x40820E11, /* Smart Array 532 */
528         0x40830E11, /* Smart Array 5312 */
529         0x409A0E11, /* Smart Array 641 */
530         0x409B0E11, /* Smart Array 642 */
531         0x40910E11, /* Smart Array 6i */
532 };
533
534 /* List of controllers which cannot even be soft reset */
535 static u32 soft_unresettable_controller[] = {
536         0x40800E11, /* Smart Array 5i */
537         0x40700E11, /* Smart Array 5300 */
538         0x40820E11, /* Smart Array 532 */
539         0x40830E11, /* Smart Array 5312 */
540         0x409A0E11, /* Smart Array 641 */
541         0x409B0E11, /* Smart Array 642 */
542         0x40910E11, /* Smart Array 6i */
543         /* Exclude 640x boards.  These are two pci devices in one slot
544          * which share a battery backed cache module.  One controls the
545          * cache, the other accesses the cache through the one that controls
546          * it.  If we reset the one controlling the cache, the other will
547          * likely not be happy.  Just forbid resetting this conjoined mess.
548          * The 640x isn't really supported by hpsa anyway.
549          */
550         0x409C0E11, /* Smart Array 6400 */
551         0x409D0E11, /* Smart Array 6400 EM */
552 };
553
554 static u32 needs_abort_tags_swizzled[] = {
555         0x323D103C, /* Smart Array P700m */
556         0x324a103C, /* Smart Array P712m */
557         0x324b103C, /* SmartArray P711m */
558 };
559
560 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
561 {
562         int i;
563
564         for (i = 0; i < nelems; i++)
565                 if (a[i] == board_id)
566                         return 1;
567         return 0;
568 }
569
570 static int ctlr_is_hard_resettable(u32 board_id)
571 {
572         return !board_id_in_array(unresettable_controller,
573                         ARRAY_SIZE(unresettable_controller), board_id);
574 }
575
576 static int ctlr_is_soft_resettable(u32 board_id)
577 {
578         return !board_id_in_array(soft_unresettable_controller,
579                         ARRAY_SIZE(soft_unresettable_controller), board_id);
580 }
581
582 static int ctlr_is_resettable(u32 board_id)
583 {
584         return ctlr_is_hard_resettable(board_id) ||
585                 ctlr_is_soft_resettable(board_id);
586 }
587
588 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
589 {
590         return board_id_in_array(needs_abort_tags_swizzled,
591                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
592 }
593
594 static ssize_t host_show_resettable(struct device *dev,
595         struct device_attribute *attr, char *buf)
596 {
597         struct ctlr_info *h;
598         struct Scsi_Host *shost = class_to_shost(dev);
599
600         h = shost_to_hba(shost);
601         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
602 }
603
604 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
605 {
606         return (scsi3addr[3] & 0xC0) == 0x40;
607 }
608
609 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
610         "1(+0)ADM", "UNKNOWN"
611 };
612 #define HPSA_RAID_0     0
613 #define HPSA_RAID_4     1
614 #define HPSA_RAID_1     2       /* also used for RAID 10 */
615 #define HPSA_RAID_5     3       /* also used for RAID 50 */
616 #define HPSA_RAID_51    4
617 #define HPSA_RAID_6     5       /* also used for RAID 60 */
618 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
619 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
620
621 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
622 {
623         return !device->physical_device;
624 }
625
626 static ssize_t raid_level_show(struct device *dev,
627              struct device_attribute *attr, char *buf)
628 {
629         ssize_t l = 0;
630         unsigned char rlevel;
631         struct ctlr_info *h;
632         struct scsi_device *sdev;
633         struct hpsa_scsi_dev_t *hdev;
634         unsigned long flags;
635
636         sdev = to_scsi_device(dev);
637         h = sdev_to_hba(sdev);
638         spin_lock_irqsave(&h->lock, flags);
639         hdev = sdev->hostdata;
640         if (!hdev) {
641                 spin_unlock_irqrestore(&h->lock, flags);
642                 return -ENODEV;
643         }
644
645         /* Is this even a logical drive? */
646         if (!is_logical_device(hdev)) {
647                 spin_unlock_irqrestore(&h->lock, flags);
648                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
649                 return l;
650         }
651
652         rlevel = hdev->raid_level;
653         spin_unlock_irqrestore(&h->lock, flags);
654         if (rlevel > RAID_UNKNOWN)
655                 rlevel = RAID_UNKNOWN;
656         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
657         return l;
658 }
659
660 static ssize_t lunid_show(struct device *dev,
661              struct device_attribute *attr, char *buf)
662 {
663         struct ctlr_info *h;
664         struct scsi_device *sdev;
665         struct hpsa_scsi_dev_t *hdev;
666         unsigned long flags;
667         unsigned char lunid[8];
668
669         sdev = to_scsi_device(dev);
670         h = sdev_to_hba(sdev);
671         spin_lock_irqsave(&h->lock, flags);
672         hdev = sdev->hostdata;
673         if (!hdev) {
674                 spin_unlock_irqrestore(&h->lock, flags);
675                 return -ENODEV;
676         }
677         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
678         spin_unlock_irqrestore(&h->lock, flags);
679         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
680                 lunid[0], lunid[1], lunid[2], lunid[3],
681                 lunid[4], lunid[5], lunid[6], lunid[7]);
682 }
683
684 static ssize_t unique_id_show(struct device *dev,
685              struct device_attribute *attr, char *buf)
686 {
687         struct ctlr_info *h;
688         struct scsi_device *sdev;
689         struct hpsa_scsi_dev_t *hdev;
690         unsigned long flags;
691         unsigned char sn[16];
692
693         sdev = to_scsi_device(dev);
694         h = sdev_to_hba(sdev);
695         spin_lock_irqsave(&h->lock, flags);
696         hdev = sdev->hostdata;
697         if (!hdev) {
698                 spin_unlock_irqrestore(&h->lock, flags);
699                 return -ENODEV;
700         }
701         memcpy(sn, hdev->device_id, sizeof(sn));
702         spin_unlock_irqrestore(&h->lock, flags);
703         return snprintf(buf, 16 * 2 + 2,
704                         "%02X%02X%02X%02X%02X%02X%02X%02X"
705                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
706                         sn[0], sn[1], sn[2], sn[3],
707                         sn[4], sn[5], sn[6], sn[7],
708                         sn[8], sn[9], sn[10], sn[11],
709                         sn[12], sn[13], sn[14], sn[15]);
710 }
711
712 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
713              struct device_attribute *attr, char *buf)
714 {
715         struct ctlr_info *h;
716         struct scsi_device *sdev;
717         struct hpsa_scsi_dev_t *hdev;
718         unsigned long flags;
719         int offload_enabled;
720
721         sdev = to_scsi_device(dev);
722         h = sdev_to_hba(sdev);
723         spin_lock_irqsave(&h->lock, flags);
724         hdev = sdev->hostdata;
725         if (!hdev) {
726                 spin_unlock_irqrestore(&h->lock, flags);
727                 return -ENODEV;
728         }
729         offload_enabled = hdev->offload_enabled;
730         spin_unlock_irqrestore(&h->lock, flags);
731         return snprintf(buf, 20, "%d\n", offload_enabled);
732 }
733
734 #define MAX_PATHS 8
735 #define PATH_STRING_LEN 50
736
737 static ssize_t path_info_show(struct device *dev,
738              struct device_attribute *attr, char *buf)
739 {
740         struct ctlr_info *h;
741         struct scsi_device *sdev;
742         struct hpsa_scsi_dev_t *hdev;
743         unsigned long flags;
744         int i;
745         int output_len = 0;
746         u8 box;
747         u8 bay;
748         u8 path_map_index = 0;
749         char *active;
750         unsigned char phys_connector[2];
751         unsigned char path[MAX_PATHS][PATH_STRING_LEN];
752
753         memset(path, 0, MAX_PATHS * PATH_STRING_LEN);
754         sdev = to_scsi_device(dev);
755         h = sdev_to_hba(sdev);
756         spin_lock_irqsave(&h->devlock, flags);
757         hdev = sdev->hostdata;
758         if (!hdev) {
759                 spin_unlock_irqrestore(&h->devlock, flags);
760                 return -ENODEV;
761         }
762
763         bay = hdev->bay;
764         for (i = 0; i < MAX_PATHS; i++) {
765                 path_map_index = 1<<i;
766                 if (i == hdev->active_path_index)
767                         active = "Active";
768                 else if (hdev->path_map & path_map_index)
769                         active = "Inactive";
770                 else
771                         continue;
772
773                 output_len = snprintf(path[i],
774                                 PATH_STRING_LEN, "[%d:%d:%d:%d] %20.20s ",
775                                 h->scsi_host->host_no,
776                                 hdev->bus, hdev->target, hdev->lun,
777                                 scsi_device_type(hdev->devtype));
778
779                 if (is_ext_target(h, hdev) ||
780                         hdev->devtype == TYPE_RAID ||
781                         is_logical_device(hdev)) {
782                         output_len += snprintf(path[i] + output_len,
783                                                 PATH_STRING_LEN, "%s\n",
784                                                 active);
785                         continue;
786                 }
787
788                 box = hdev->box[i];
789                 memcpy(&phys_connector, &hdev->phys_connector[i],
790                         sizeof(phys_connector));
791                 if (phys_connector[0] < '0')
792                         phys_connector[0] = '0';
793                 if (phys_connector[1] < '0')
794                         phys_connector[1] = '0';
795                 if (hdev->phys_connector[i] > 0)
796                         output_len += snprintf(path[i] + output_len,
797                                 PATH_STRING_LEN,
798                                 "PORT: %.2s ",
799                                 phys_connector);
800                 if (hdev->devtype == TYPE_DISK && hdev->expose_device) {
801                         if (box == 0 || box == 0xFF) {
802                                 output_len += snprintf(path[i] + output_len,
803                                         PATH_STRING_LEN,
804                                         "BAY: %hhu %s\n",
805                                         bay, active);
806                         } else {
807                                 output_len += snprintf(path[i] + output_len,
808                                         PATH_STRING_LEN,
809                                         "BOX: %hhu BAY: %hhu %s\n",
810                                         box, bay, active);
811                         }
812                 } else if (box != 0 && box != 0xFF) {
813                         output_len += snprintf(path[i] + output_len,
814                                 PATH_STRING_LEN, "BOX: %hhu %s\n",
815                                 box, active);
816                 } else
817                         output_len += snprintf(path[i] + output_len,
818                                 PATH_STRING_LEN, "%s\n", active);
819         }
820
821         spin_unlock_irqrestore(&h->devlock, flags);
822         return snprintf(buf, output_len+1, "%s%s%s%s%s%s%s%s",
823                 path[0], path[1], path[2], path[3],
824                 path[4], path[5], path[6], path[7]);
825 }
826
827 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
828 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
829 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
830 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
831 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
832                         host_show_hp_ssd_smart_path_enabled, NULL);
833 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
834 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
835                 host_show_hp_ssd_smart_path_status,
836                 host_store_hp_ssd_smart_path_status);
837 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
838                         host_store_raid_offload_debug);
839 static DEVICE_ATTR(firmware_revision, S_IRUGO,
840         host_show_firmware_revision, NULL);
841 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
842         host_show_commands_outstanding, NULL);
843 static DEVICE_ATTR(transport_mode, S_IRUGO,
844         host_show_transport_mode, NULL);
845 static DEVICE_ATTR(resettable, S_IRUGO,
846         host_show_resettable, NULL);
847 static DEVICE_ATTR(lockup_detected, S_IRUGO,
848         host_show_lockup_detected, NULL);
849
850 static struct device_attribute *hpsa_sdev_attrs[] = {
851         &dev_attr_raid_level,
852         &dev_attr_lunid,
853         &dev_attr_unique_id,
854         &dev_attr_hp_ssd_smart_path_enabled,
855         &dev_attr_path_info,
856         &dev_attr_lockup_detected,
857         NULL,
858 };
859
860 static struct device_attribute *hpsa_shost_attrs[] = {
861         &dev_attr_rescan,
862         &dev_attr_firmware_revision,
863         &dev_attr_commands_outstanding,
864         &dev_attr_transport_mode,
865         &dev_attr_resettable,
866         &dev_attr_hp_ssd_smart_path_status,
867         &dev_attr_raid_offload_debug,
868         NULL,
869 };
870
871 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
872                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
873
874 static struct scsi_host_template hpsa_driver_template = {
875         .module                 = THIS_MODULE,
876         .name                   = HPSA,
877         .proc_name              = HPSA,
878         .queuecommand           = hpsa_scsi_queue_command,
879         .scan_start             = hpsa_scan_start,
880         .scan_finished          = hpsa_scan_finished,
881         .change_queue_depth     = hpsa_change_queue_depth,
882         .this_id                = -1,
883         .use_clustering         = ENABLE_CLUSTERING,
884         .eh_abort_handler       = hpsa_eh_abort_handler,
885         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
886         .ioctl                  = hpsa_ioctl,
887         .slave_alloc            = hpsa_slave_alloc,
888         .slave_configure        = hpsa_slave_configure,
889         .slave_destroy          = hpsa_slave_destroy,
890 #ifdef CONFIG_COMPAT
891         .compat_ioctl           = hpsa_compat_ioctl,
892 #endif
893         .sdev_attrs = hpsa_sdev_attrs,
894         .shost_attrs = hpsa_shost_attrs,
895         .max_sectors = 8192,
896         .no_write_same = 1,
897 };
898
899 static inline u32 next_command(struct ctlr_info *h, u8 q)
900 {
901         u32 a;
902         struct reply_queue_buffer *rq = &h->reply_queue[q];
903
904         if (h->transMethod & CFGTBL_Trans_io_accel1)
905                 return h->access.command_completed(h, q);
906
907         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
908                 return h->access.command_completed(h, q);
909
910         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
911                 a = rq->head[rq->current_entry];
912                 rq->current_entry++;
913                 atomic_dec(&h->commands_outstanding);
914         } else {
915                 a = FIFO_EMPTY;
916         }
917         /* Check for wraparound */
918         if (rq->current_entry == h->max_commands) {
919                 rq->current_entry = 0;
920                 rq->wraparound ^= 1;
921         }
922         return a;
923 }
924
925 /*
926  * There are some special bits in the bus address of the
927  * command that we have to set for the controller to know
928  * how to process the command:
929  *
930  * Normal performant mode:
931  * bit 0: 1 means performant mode, 0 means simple mode.
932  * bits 1-3 = block fetch table entry
933  * bits 4-6 = command type (== 0)
934  *
935  * ioaccel1 mode:
936  * bit 0 = "performant mode" bit.
937  * bits 1-3 = block fetch table entry
938  * bits 4-6 = command type (== 110)
939  * (command type is needed because ioaccel1 mode
940  * commands are submitted through the same register as normal
941  * mode commands, so this is how the controller knows whether
942  * the command is normal mode or ioaccel1 mode.)
943  *
944  * ioaccel2 mode:
945  * bit 0 = "performant mode" bit.
946  * bits 1-4 = block fetch table entry (note extra bit)
947  * bits 4-6 = not needed, because ioaccel2 mode has
948  * a separate special register for submitting commands.
949  */
950
951 /*
952  * set_performant_mode: Modify the tag for cciss performant
953  * set bit 0 for pull model, bits 3-1 for block fetch
954  * register number
955  */
956 #define DEFAULT_REPLY_QUEUE (-1)
957 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
958                                         int reply_queue)
959 {
960         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
961                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
962                 if (unlikely(!h->msix_vector))
963                         return;
964                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
965                         c->Header.ReplyQueue =
966                                 raw_smp_processor_id() % h->nreply_queues;
967                 else
968                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
969         }
970 }
971
972 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
973                                                 struct CommandList *c,
974                                                 int reply_queue)
975 {
976         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
977
978         /*
979          * Tell the controller to post the reply to the queue for this
980          * processor.  This seems to give the best I/O throughput.
981          */
982         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
983                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
984         else
985                 cp->ReplyQueue = reply_queue % h->nreply_queues;
986         /*
987          * Set the bits in the address sent down to include:
988          *  - performant mode bit (bit 0)
989          *  - pull count (bits 1-3)
990          *  - command type (bits 4-6)
991          */
992         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
993                                         IOACCEL1_BUSADDR_CMDTYPE;
994 }
995
996 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
997                                                 struct CommandList *c,
998                                                 int reply_queue)
999 {
1000         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1001                 &h->ioaccel2_cmd_pool[c->cmdindex];
1002
1003         /* Tell the controller to post the reply to the queue for this
1004          * processor.  This seems to give the best I/O throughput.
1005          */
1006         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1007                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1008         else
1009                 cp->reply_queue = reply_queue % h->nreply_queues;
1010         /* Set the bits in the address sent down to include:
1011          *  - performant mode bit not used in ioaccel mode 2
1012          *  - pull count (bits 0-3)
1013          *  - command type isn't needed for ioaccel2
1014          */
1015         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1016 }
1017
1018 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1019                                                 struct CommandList *c,
1020                                                 int reply_queue)
1021 {
1022         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1023
1024         /*
1025          * Tell the controller to post the reply to the queue for this
1026          * processor.  This seems to give the best I/O throughput.
1027          */
1028         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1029                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1030         else
1031                 cp->reply_queue = reply_queue % h->nreply_queues;
1032         /*
1033          * Set the bits in the address sent down to include:
1034          *  - performant mode bit not used in ioaccel mode 2
1035          *  - pull count (bits 0-3)
1036          *  - command type isn't needed for ioaccel2
1037          */
1038         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1039 }
1040
1041 static int is_firmware_flash_cmd(u8 *cdb)
1042 {
1043         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1044 }
1045
1046 /*
1047  * During firmware flash, the heartbeat register may not update as frequently
1048  * as it should.  So we dial down lockup detection during firmware flash. and
1049  * dial it back up when firmware flash completes.
1050  */
1051 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1052 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1053 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1054                 struct CommandList *c)
1055 {
1056         if (!is_firmware_flash_cmd(c->Request.CDB))
1057                 return;
1058         atomic_inc(&h->firmware_flash_in_progress);
1059         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1060 }
1061
1062 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1063                 struct CommandList *c)
1064 {
1065         if (is_firmware_flash_cmd(c->Request.CDB) &&
1066                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1067                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1068 }
1069
1070 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1071         struct CommandList *c, int reply_queue)
1072 {
1073         dial_down_lockup_detection_during_fw_flash(h, c);
1074         atomic_inc(&h->commands_outstanding);
1075         switch (c->cmd_type) {
1076         case CMD_IOACCEL1:
1077                 set_ioaccel1_performant_mode(h, c, reply_queue);
1078                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1079                 break;
1080         case CMD_IOACCEL2:
1081                 set_ioaccel2_performant_mode(h, c, reply_queue);
1082                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1083                 break;
1084         case IOACCEL2_TMF:
1085                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1086                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1087                 break;
1088         default:
1089                 set_performant_mode(h, c, reply_queue);
1090                 h->access.submit_command(h, c);
1091         }
1092 }
1093
1094 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1095 {
1096         if (unlikely(hpsa_is_pending_event(c)))
1097                 return finish_cmd(c);
1098
1099         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1100 }
1101
1102 static inline int is_hba_lunid(unsigned char scsi3addr[])
1103 {
1104         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1105 }
1106
1107 static inline int is_scsi_rev_5(struct ctlr_info *h)
1108 {
1109         if (!h->hba_inquiry_data)
1110                 return 0;
1111         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1112                 return 1;
1113         return 0;
1114 }
1115
1116 static int hpsa_find_target_lun(struct ctlr_info *h,
1117         unsigned char scsi3addr[], int bus, int *target, int *lun)
1118 {
1119         /* finds an unused bus, target, lun for a new physical device
1120          * assumes h->devlock is held
1121          */
1122         int i, found = 0;
1123         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1124
1125         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1126
1127         for (i = 0; i < h->ndevices; i++) {
1128                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1129                         __set_bit(h->dev[i]->target, lun_taken);
1130         }
1131
1132         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1133         if (i < HPSA_MAX_DEVICES) {
1134                 /* *bus = 1; */
1135                 *target = i;
1136                 *lun = 0;
1137                 found = 1;
1138         }
1139         return !found;
1140 }
1141
1142 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1143         struct hpsa_scsi_dev_t *dev, char *description)
1144 {
1145         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1146                 return;
1147
1148         dev_printk(level, &h->pdev->dev,
1149                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
1150                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1151                         description,
1152                         scsi_device_type(dev->devtype),
1153                         dev->vendor,
1154                         dev->model,
1155                         dev->raid_level > RAID_UNKNOWN ?
1156                                 "RAID-?" : raid_label[dev->raid_level],
1157                         dev->offload_config ? '+' : '-',
1158                         dev->offload_enabled ? '+' : '-',
1159                         dev->expose_device);
1160 }
1161
1162 /* Add an entry into h->dev[] array. */
1163 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1164                 struct hpsa_scsi_dev_t *device,
1165                 struct hpsa_scsi_dev_t *added[], int *nadded)
1166 {
1167         /* assumes h->devlock is held */
1168         int n = h->ndevices;
1169         int i;
1170         unsigned char addr1[8], addr2[8];
1171         struct hpsa_scsi_dev_t *sd;
1172
1173         if (n >= HPSA_MAX_DEVICES) {
1174                 dev_err(&h->pdev->dev, "too many devices, some will be "
1175                         "inaccessible.\n");
1176                 return -1;
1177         }
1178
1179         /* physical devices do not have lun or target assigned until now. */
1180         if (device->lun != -1)
1181                 /* Logical device, lun is already assigned. */
1182                 goto lun_assigned;
1183
1184         /* If this device a non-zero lun of a multi-lun device
1185          * byte 4 of the 8-byte LUN addr will contain the logical
1186          * unit no, zero otherwise.
1187          */
1188         if (device->scsi3addr[4] == 0) {
1189                 /* This is not a non-zero lun of a multi-lun device */
1190                 if (hpsa_find_target_lun(h, device->scsi3addr,
1191                         device->bus, &device->target, &device->lun) != 0)
1192                         return -1;
1193                 goto lun_assigned;
1194         }
1195
1196         /* This is a non-zero lun of a multi-lun device.
1197          * Search through our list and find the device which
1198          * has the same 8 byte LUN address, excepting byte 4 and 5.
1199          * Assign the same bus and target for this new LUN.
1200          * Use the logical unit number from the firmware.
1201          */
1202         memcpy(addr1, device->scsi3addr, 8);
1203         addr1[4] = 0;
1204         addr1[5] = 0;
1205         for (i = 0; i < n; i++) {
1206                 sd = h->dev[i];
1207                 memcpy(addr2, sd->scsi3addr, 8);
1208                 addr2[4] = 0;
1209                 addr2[5] = 0;
1210                 /* differ only in byte 4 and 5? */
1211                 if (memcmp(addr1, addr2, 8) == 0) {
1212                         device->bus = sd->bus;
1213                         device->target = sd->target;
1214                         device->lun = device->scsi3addr[4];
1215                         break;
1216                 }
1217         }
1218         if (device->lun == -1) {
1219                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1220                         " suspect firmware bug or unsupported hardware "
1221                         "configuration.\n");
1222                         return -1;
1223         }
1224
1225 lun_assigned:
1226
1227         h->dev[n] = device;
1228         h->ndevices++;
1229         added[*nadded] = device;
1230         (*nadded)++;
1231         hpsa_show_dev_msg(KERN_INFO, h, device,
1232                 device->expose_device ? "added" : "masked");
1233         device->offload_to_be_enabled = device->offload_enabled;
1234         device->offload_enabled = 0;
1235         return 0;
1236 }
1237
1238 /* Update an entry in h->dev[] array. */
1239 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1240         int entry, struct hpsa_scsi_dev_t *new_entry)
1241 {
1242         int offload_enabled;
1243         /* assumes h->devlock is held */
1244         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1245
1246         /* Raid level changed. */
1247         h->dev[entry]->raid_level = new_entry->raid_level;
1248
1249         /* Raid offload parameters changed.  Careful about the ordering. */
1250         if (new_entry->offload_config && new_entry->offload_enabled) {
1251                 /*
1252                  * if drive is newly offload_enabled, we want to copy the
1253                  * raid map data first.  If previously offload_enabled and
1254                  * offload_config were set, raid map data had better be
1255                  * the same as it was before.  if raid map data is changed
1256                  * then it had better be the case that
1257                  * h->dev[entry]->offload_enabled is currently 0.
1258                  */
1259                 h->dev[entry]->raid_map = new_entry->raid_map;
1260                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1261         }
1262         if (new_entry->hba_ioaccel_enabled) {
1263                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1264                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1265         }
1266         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1267         h->dev[entry]->offload_config = new_entry->offload_config;
1268         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1269         h->dev[entry]->queue_depth = new_entry->queue_depth;
1270
1271         /*
1272          * We can turn off ioaccel offload now, but need to delay turning
1273          * it on until we can update h->dev[entry]->phys_disk[], but we
1274          * can't do that until all the devices are updated.
1275          */
1276         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1277         if (!new_entry->offload_enabled)
1278                 h->dev[entry]->offload_enabled = 0;
1279
1280         offload_enabled = h->dev[entry]->offload_enabled;
1281         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1282         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1283         h->dev[entry]->offload_enabled = offload_enabled;
1284 }
1285
1286 /* Replace an entry from h->dev[] array. */
1287 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1288         int entry, struct hpsa_scsi_dev_t *new_entry,
1289         struct hpsa_scsi_dev_t *added[], int *nadded,
1290         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1291 {
1292         /* assumes h->devlock is held */
1293         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1294         removed[*nremoved] = h->dev[entry];
1295         (*nremoved)++;
1296
1297         /*
1298          * New physical devices won't have target/lun assigned yet
1299          * so we need to preserve the values in the slot we are replacing.
1300          */
1301         if (new_entry->target == -1) {
1302                 new_entry->target = h->dev[entry]->target;
1303                 new_entry->lun = h->dev[entry]->lun;
1304         }
1305
1306         h->dev[entry] = new_entry;
1307         added[*nadded] = new_entry;
1308         (*nadded)++;
1309         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1310         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1311         new_entry->offload_enabled = 0;
1312 }
1313
1314 /* Remove an entry from h->dev[] array. */
1315 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1316         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1317 {
1318         /* assumes h->devlock is held */
1319         int i;
1320         struct hpsa_scsi_dev_t *sd;
1321
1322         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1323
1324         sd = h->dev[entry];
1325         removed[*nremoved] = h->dev[entry];
1326         (*nremoved)++;
1327
1328         for (i = entry; i < h->ndevices-1; i++)
1329                 h->dev[i] = h->dev[i+1];
1330         h->ndevices--;
1331         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1332 }
1333
1334 #define SCSI3ADDR_EQ(a, b) ( \
1335         (a)[7] == (b)[7] && \
1336         (a)[6] == (b)[6] && \
1337         (a)[5] == (b)[5] && \
1338         (a)[4] == (b)[4] && \
1339         (a)[3] == (b)[3] && \
1340         (a)[2] == (b)[2] && \
1341         (a)[1] == (b)[1] && \
1342         (a)[0] == (b)[0])
1343
1344 static void fixup_botched_add(struct ctlr_info *h,
1345         struct hpsa_scsi_dev_t *added)
1346 {
1347         /* called when scsi_add_device fails in order to re-adjust
1348          * h->dev[] to match the mid layer's view.
1349          */
1350         unsigned long flags;
1351         int i, j;
1352
1353         spin_lock_irqsave(&h->lock, flags);
1354         for (i = 0; i < h->ndevices; i++) {
1355                 if (h->dev[i] == added) {
1356                         for (j = i; j < h->ndevices-1; j++)
1357                                 h->dev[j] = h->dev[j+1];
1358                         h->ndevices--;
1359                         break;
1360                 }
1361         }
1362         spin_unlock_irqrestore(&h->lock, flags);
1363         kfree(added);
1364 }
1365
1366 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1367         struct hpsa_scsi_dev_t *dev2)
1368 {
1369         /* we compare everything except lun and target as these
1370          * are not yet assigned.  Compare parts likely
1371          * to differ first
1372          */
1373         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1374                 sizeof(dev1->scsi3addr)) != 0)
1375                 return 0;
1376         if (memcmp(dev1->device_id, dev2->device_id,
1377                 sizeof(dev1->device_id)) != 0)
1378                 return 0;
1379         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1380                 return 0;
1381         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1382                 return 0;
1383         if (dev1->devtype != dev2->devtype)
1384                 return 0;
1385         if (dev1->bus != dev2->bus)
1386                 return 0;
1387         return 1;
1388 }
1389
1390 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1391         struct hpsa_scsi_dev_t *dev2)
1392 {
1393         /* Device attributes that can change, but don't mean
1394          * that the device is a different device, nor that the OS
1395          * needs to be told anything about the change.
1396          */
1397         if (dev1->raid_level != dev2->raid_level)
1398                 return 1;
1399         if (dev1->offload_config != dev2->offload_config)
1400                 return 1;
1401         if (dev1->offload_enabled != dev2->offload_enabled)
1402                 return 1;
1403         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1404                 if (dev1->queue_depth != dev2->queue_depth)
1405                         return 1;
1406         return 0;
1407 }
1408
1409 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1410  * and return needle location in *index.  If scsi3addr matches, but not
1411  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1412  * location in *index.
1413  * In the case of a minor device attribute change, such as RAID level, just
1414  * return DEVICE_UPDATED, along with the updated device's location in index.
1415  * If needle not found, return DEVICE_NOT_FOUND.
1416  */
1417 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1418         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1419         int *index)
1420 {
1421         int i;
1422 #define DEVICE_NOT_FOUND 0
1423 #define DEVICE_CHANGED 1
1424 #define DEVICE_SAME 2
1425 #define DEVICE_UPDATED 3
1426         if (needle == NULL)
1427                 return DEVICE_NOT_FOUND;
1428
1429         for (i = 0; i < haystack_size; i++) {
1430                 if (haystack[i] == NULL) /* previously removed. */
1431                         continue;
1432                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1433                         *index = i;
1434                         if (device_is_the_same(needle, haystack[i])) {
1435                                 if (device_updated(needle, haystack[i]))
1436                                         return DEVICE_UPDATED;
1437                                 return DEVICE_SAME;
1438                         } else {
1439                                 /* Keep offline devices offline */
1440                                 if (needle->volume_offline)
1441                                         return DEVICE_NOT_FOUND;
1442                                 return DEVICE_CHANGED;
1443                         }
1444                 }
1445         }
1446         *index = -1;
1447         return DEVICE_NOT_FOUND;
1448 }
1449
1450 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1451                                         unsigned char scsi3addr[])
1452 {
1453         struct offline_device_entry *device;
1454         unsigned long flags;
1455
1456         /* Check to see if device is already on the list */
1457         spin_lock_irqsave(&h->offline_device_lock, flags);
1458         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1459                 if (memcmp(device->scsi3addr, scsi3addr,
1460                         sizeof(device->scsi3addr)) == 0) {
1461                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1462                         return;
1463                 }
1464         }
1465         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1466
1467         /* Device is not on the list, add it. */
1468         device = kmalloc(sizeof(*device), GFP_KERNEL);
1469         if (!device) {
1470                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1471                 return;
1472         }
1473         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1474         spin_lock_irqsave(&h->offline_device_lock, flags);
1475         list_add_tail(&device->offline_list, &h->offline_device_list);
1476         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1477 }
1478
1479 /* Print a message explaining various offline volume states */
1480 static void hpsa_show_volume_status(struct ctlr_info *h,
1481         struct hpsa_scsi_dev_t *sd)
1482 {
1483         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1484                 dev_info(&h->pdev->dev,
1485                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1486                         h->scsi_host->host_no,
1487                         sd->bus, sd->target, sd->lun);
1488         switch (sd->volume_offline) {
1489         case HPSA_LV_OK:
1490                 break;
1491         case HPSA_LV_UNDERGOING_ERASE:
1492                 dev_info(&h->pdev->dev,
1493                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1494                         h->scsi_host->host_no,
1495                         sd->bus, sd->target, sd->lun);
1496                 break;
1497         case HPSA_LV_NOT_AVAILABLE:
1498                 dev_info(&h->pdev->dev,
1499                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1500                         h->scsi_host->host_no,
1501                         sd->bus, sd->target, sd->lun);
1502                 break;
1503         case HPSA_LV_UNDERGOING_RPI:
1504                 dev_info(&h->pdev->dev,
1505                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1506                         h->scsi_host->host_no,
1507                         sd->bus, sd->target, sd->lun);
1508                 break;
1509         case HPSA_LV_PENDING_RPI:
1510                 dev_info(&h->pdev->dev,
1511                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1512                         h->scsi_host->host_no,
1513                         sd->bus, sd->target, sd->lun);
1514                 break;
1515         case HPSA_LV_ENCRYPTED_NO_KEY:
1516                 dev_info(&h->pdev->dev,
1517                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1518                         h->scsi_host->host_no,
1519                         sd->bus, sd->target, sd->lun);
1520                 break;
1521         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1522                 dev_info(&h->pdev->dev,
1523                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1524                         h->scsi_host->host_no,
1525                         sd->bus, sd->target, sd->lun);
1526                 break;
1527         case HPSA_LV_UNDERGOING_ENCRYPTION:
1528                 dev_info(&h->pdev->dev,
1529                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1530                         h->scsi_host->host_no,
1531                         sd->bus, sd->target, sd->lun);
1532                 break;
1533         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1534                 dev_info(&h->pdev->dev,
1535                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1536                         h->scsi_host->host_no,
1537                         sd->bus, sd->target, sd->lun);
1538                 break;
1539         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1540                 dev_info(&h->pdev->dev,
1541                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1542                         h->scsi_host->host_no,
1543                         sd->bus, sd->target, sd->lun);
1544                 break;
1545         case HPSA_LV_PENDING_ENCRYPTION:
1546                 dev_info(&h->pdev->dev,
1547                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1548                         h->scsi_host->host_no,
1549                         sd->bus, sd->target, sd->lun);
1550                 break;
1551         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1552                 dev_info(&h->pdev->dev,
1553                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1554                         h->scsi_host->host_no,
1555                         sd->bus, sd->target, sd->lun);
1556                 break;
1557         }
1558 }
1559
1560 /*
1561  * Figure the list of physical drive pointers for a logical drive with
1562  * raid offload configured.
1563  */
1564 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1565                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1566                                 struct hpsa_scsi_dev_t *logical_drive)
1567 {
1568         struct raid_map_data *map = &logical_drive->raid_map;
1569         struct raid_map_disk_data *dd = &map->data[0];
1570         int i, j;
1571         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1572                                 le16_to_cpu(map->metadata_disks_per_row);
1573         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1574                                 le16_to_cpu(map->layout_map_count) *
1575                                 total_disks_per_row;
1576         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1577                                 total_disks_per_row;
1578         int qdepth;
1579
1580         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1581                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1582
1583         logical_drive->nphysical_disks = nraid_map_entries;
1584
1585         qdepth = 0;
1586         for (i = 0; i < nraid_map_entries; i++) {
1587                 logical_drive->phys_disk[i] = NULL;
1588                 if (!logical_drive->offload_config)
1589                         continue;
1590                 for (j = 0; j < ndevices; j++) {
1591                         if (dev[j] == NULL)
1592                                 continue;
1593                         if (dev[j]->devtype != TYPE_DISK)
1594                                 continue;
1595                         if (is_logical_device(dev[j]))
1596                                 continue;
1597                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1598                                 continue;
1599
1600                         logical_drive->phys_disk[i] = dev[j];
1601                         if (i < nphys_disk)
1602                                 qdepth = min(h->nr_cmds, qdepth +
1603                                     logical_drive->phys_disk[i]->queue_depth);
1604                         break;
1605                 }
1606
1607                 /*
1608                  * This can happen if a physical drive is removed and
1609                  * the logical drive is degraded.  In that case, the RAID
1610                  * map data will refer to a physical disk which isn't actually
1611                  * present.  And in that case offload_enabled should already
1612                  * be 0, but we'll turn it off here just in case
1613                  */
1614                 if (!logical_drive->phys_disk[i]) {
1615                         logical_drive->offload_enabled = 0;
1616                         logical_drive->offload_to_be_enabled = 0;
1617                         logical_drive->queue_depth = 8;
1618                 }
1619         }
1620         if (nraid_map_entries)
1621                 /*
1622                  * This is correct for reads, too high for full stripe writes,
1623                  * way too high for partial stripe writes
1624                  */
1625                 logical_drive->queue_depth = qdepth;
1626         else
1627                 logical_drive->queue_depth = h->nr_cmds;
1628 }
1629
1630 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1631                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1632 {
1633         int i;
1634
1635         for (i = 0; i < ndevices; i++) {
1636                 if (dev[i] == NULL)
1637                         continue;
1638                 if (dev[i]->devtype != TYPE_DISK)
1639                         continue;
1640                 if (!is_logical_device(dev[i]))
1641                         continue;
1642
1643                 /*
1644                  * If offload is currently enabled, the RAID map and
1645                  * phys_disk[] assignment *better* not be changing
1646                  * and since it isn't changing, we do not need to
1647                  * update it.
1648                  */
1649                 if (dev[i]->offload_enabled)
1650                         continue;
1651
1652                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1653         }
1654 }
1655
1656 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1657         struct hpsa_scsi_dev_t *sd[], int nsds)
1658 {
1659         /* sd contains scsi3 addresses and devtypes, and inquiry
1660          * data.  This function takes what's in sd to be the current
1661          * reality and updates h->dev[] to reflect that reality.
1662          */
1663         int i, entry, device_change, changes = 0;
1664         struct hpsa_scsi_dev_t *csd;
1665         unsigned long flags;
1666         struct hpsa_scsi_dev_t **added, **removed;
1667         int nadded, nremoved;
1668         struct Scsi_Host *sh = NULL;
1669
1670         /*
1671          * A reset can cause a device status to change
1672          * re-schedule the scan to see what happened.
1673          */
1674         if (h->reset_in_progress) {
1675                 h->drv_req_rescan = 1;
1676                 return;
1677         }
1678
1679         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1680         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1681
1682         if (!added || !removed) {
1683                 dev_warn(&h->pdev->dev, "out of memory in "
1684                         "adjust_hpsa_scsi_table\n");
1685                 goto free_and_out;
1686         }
1687
1688         spin_lock_irqsave(&h->devlock, flags);
1689
1690         /* find any devices in h->dev[] that are not in
1691          * sd[] and remove them from h->dev[], and for any
1692          * devices which have changed, remove the old device
1693          * info and add the new device info.
1694          * If minor device attributes change, just update
1695          * the existing device structure.
1696          */
1697         i = 0;
1698         nremoved = 0;
1699         nadded = 0;
1700         while (i < h->ndevices) {
1701                 csd = h->dev[i];
1702                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1703                 if (device_change == DEVICE_NOT_FOUND) {
1704                         changes++;
1705                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1706                         continue; /* remove ^^^, hence i not incremented */
1707                 } else if (device_change == DEVICE_CHANGED) {
1708                         changes++;
1709                         hpsa_scsi_replace_entry(h, i, sd[entry],
1710                                 added, &nadded, removed, &nremoved);
1711                         /* Set it to NULL to prevent it from being freed
1712                          * at the bottom of hpsa_update_scsi_devices()
1713                          */
1714                         sd[entry] = NULL;
1715                 } else if (device_change == DEVICE_UPDATED) {
1716                         hpsa_scsi_update_entry(h, i, sd[entry]);
1717                 }
1718                 i++;
1719         }
1720
1721         /* Now, make sure every device listed in sd[] is also
1722          * listed in h->dev[], adding them if they aren't found
1723          */
1724
1725         for (i = 0; i < nsds; i++) {
1726                 if (!sd[i]) /* if already added above. */
1727                         continue;
1728
1729                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1730                  * as the SCSI mid-layer does not handle such devices well.
1731                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1732                  * at 160Hz, and prevents the system from coming up.
1733                  */
1734                 if (sd[i]->volume_offline) {
1735                         hpsa_show_volume_status(h, sd[i]);
1736                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1737                         continue;
1738                 }
1739
1740                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1741                                         h->ndevices, &entry);
1742                 if (device_change == DEVICE_NOT_FOUND) {
1743                         changes++;
1744                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1745                                 break;
1746                         sd[i] = NULL; /* prevent from being freed later. */
1747                 } else if (device_change == DEVICE_CHANGED) {
1748                         /* should never happen... */
1749                         changes++;
1750                         dev_warn(&h->pdev->dev,
1751                                 "device unexpectedly changed.\n");
1752                         /* but if it does happen, we just ignore that device */
1753                 }
1754         }
1755         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1756
1757         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1758          * any logical drives that need it enabled.
1759          */
1760         for (i = 0; i < h->ndevices; i++) {
1761                 if (h->dev[i] == NULL)
1762                         continue;
1763                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1764         }
1765
1766         spin_unlock_irqrestore(&h->devlock, flags);
1767
1768         /* Monitor devices which are in one of several NOT READY states to be
1769          * brought online later. This must be done without holding h->devlock,
1770          * so don't touch h->dev[]
1771          */
1772         for (i = 0; i < nsds; i++) {
1773                 if (!sd[i]) /* if already added above. */
1774                         continue;
1775                 if (sd[i]->volume_offline)
1776                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1777         }
1778
1779         /* Don't notify scsi mid layer of any changes the first time through
1780          * (or if there are no changes) scsi_scan_host will do it later the
1781          * first time through.
1782          */
1783         if (!changes)
1784                 goto free_and_out;
1785
1786         sh = h->scsi_host;
1787         if (sh == NULL) {
1788                 dev_warn(&h->pdev->dev, "%s: scsi_host is null\n", __func__);
1789                 goto free_and_out;
1790         }
1791         /* Notify scsi mid layer of any removed devices */
1792         for (i = 0; i < nremoved; i++) {
1793                 if (removed[i] == NULL)
1794                         continue;
1795                 if (removed[i]->expose_device) {
1796                         struct scsi_device *sdev =
1797                                 scsi_device_lookup(sh, removed[i]->bus,
1798                                         removed[i]->target, removed[i]->lun);
1799                         if (sdev != NULL) {
1800                                 scsi_remove_device(sdev);
1801                                 scsi_device_put(sdev);
1802                         } else {
1803                                 /*
1804                                  * We don't expect to get here.
1805                                  * future cmds to this device will get selection
1806                                  * timeout as if the device was gone.
1807                                  */
1808                                 hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
1809                                         "didn't find device for removal.");
1810                         }
1811                 }
1812                 kfree(removed[i]);
1813                 removed[i] = NULL;
1814         }
1815
1816         /* Notify scsi mid layer of any added devices */
1817         for (i = 0; i < nadded; i++) {
1818                 if (added[i] == NULL)
1819                         continue;
1820                 if (!(added[i]->expose_device))
1821                         continue;
1822                 if (scsi_add_device(sh, added[i]->bus,
1823                         added[i]->target, added[i]->lun) == 0)
1824                         continue;
1825                 dev_warn(&h->pdev->dev, "addition failed, device not added.");
1826                 /* now we have to remove it from h->dev,
1827                  * since it didn't get added to scsi mid layer
1828                  */
1829                 fixup_botched_add(h, added[i]);
1830                 h->drv_req_rescan = 1;
1831         }
1832
1833 free_and_out:
1834         kfree(added);
1835         kfree(removed);
1836 }
1837
1838 /*
1839  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1840  * Assume's h->devlock is held.
1841  */
1842 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1843         int bus, int target, int lun)
1844 {
1845         int i;
1846         struct hpsa_scsi_dev_t *sd;
1847
1848         for (i = 0; i < h->ndevices; i++) {
1849                 sd = h->dev[i];
1850                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1851                         return sd;
1852         }
1853         return NULL;
1854 }
1855
1856 static int hpsa_slave_alloc(struct scsi_device *sdev)
1857 {
1858         struct hpsa_scsi_dev_t *sd;
1859         unsigned long flags;
1860         struct ctlr_info *h;
1861
1862         h = sdev_to_hba(sdev);
1863         spin_lock_irqsave(&h->devlock, flags);
1864         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1865                 sdev_id(sdev), sdev->lun);
1866         if (likely(sd)) {
1867                 atomic_set(&sd->ioaccel_cmds_out, 0);
1868                 sdev->hostdata = sd->expose_device ? sd : NULL;
1869         } else
1870                 sdev->hostdata = NULL;
1871         spin_unlock_irqrestore(&h->devlock, flags);
1872         return 0;
1873 }
1874
1875 /* configure scsi device based on internal per-device structure */
1876 static int hpsa_slave_configure(struct scsi_device *sdev)
1877 {
1878         struct hpsa_scsi_dev_t *sd;
1879         int queue_depth;
1880
1881         sd = sdev->hostdata;
1882         sdev->no_uld_attach = !sd || !sd->expose_device;
1883
1884         if (sd)
1885                 queue_depth = sd->queue_depth != 0 ?
1886                         sd->queue_depth : sdev->host->can_queue;
1887         else
1888                 queue_depth = sdev->host->can_queue;
1889
1890         scsi_change_queue_depth(sdev, queue_depth);
1891
1892         return 0;
1893 }
1894
1895 static void hpsa_slave_destroy(struct scsi_device *sdev)
1896 {
1897         /* nothing to do. */
1898 }
1899
1900 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1901 {
1902         int i;
1903
1904         if (!h->ioaccel2_cmd_sg_list)
1905                 return;
1906         for (i = 0; i < h->nr_cmds; i++) {
1907                 kfree(h->ioaccel2_cmd_sg_list[i]);
1908                 h->ioaccel2_cmd_sg_list[i] = NULL;
1909         }
1910         kfree(h->ioaccel2_cmd_sg_list);
1911         h->ioaccel2_cmd_sg_list = NULL;
1912 }
1913
1914 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1915 {
1916         int i;
1917
1918         if (h->chainsize <= 0)
1919                 return 0;
1920
1921         h->ioaccel2_cmd_sg_list =
1922                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
1923                                         GFP_KERNEL);
1924         if (!h->ioaccel2_cmd_sg_list)
1925                 return -ENOMEM;
1926         for (i = 0; i < h->nr_cmds; i++) {
1927                 h->ioaccel2_cmd_sg_list[i] =
1928                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
1929                                         h->maxsgentries, GFP_KERNEL);
1930                 if (!h->ioaccel2_cmd_sg_list[i])
1931                         goto clean;
1932         }
1933         return 0;
1934
1935 clean:
1936         hpsa_free_ioaccel2_sg_chain_blocks(h);
1937         return -ENOMEM;
1938 }
1939
1940 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1941 {
1942         int i;
1943
1944         if (!h->cmd_sg_list)
1945                 return;
1946         for (i = 0; i < h->nr_cmds; i++) {
1947                 kfree(h->cmd_sg_list[i]);
1948                 h->cmd_sg_list[i] = NULL;
1949         }
1950         kfree(h->cmd_sg_list);
1951         h->cmd_sg_list = NULL;
1952 }
1953
1954 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
1955 {
1956         int i;
1957
1958         if (h->chainsize <= 0)
1959                 return 0;
1960
1961         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1962                                 GFP_KERNEL);
1963         if (!h->cmd_sg_list) {
1964                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1965                 return -ENOMEM;
1966         }
1967         for (i = 0; i < h->nr_cmds; i++) {
1968                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1969                                                 h->chainsize, GFP_KERNEL);
1970                 if (!h->cmd_sg_list[i]) {
1971                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1972                         goto clean;
1973                 }
1974         }
1975         return 0;
1976
1977 clean:
1978         hpsa_free_sg_chain_blocks(h);
1979         return -ENOMEM;
1980 }
1981
1982 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
1983         struct io_accel2_cmd *cp, struct CommandList *c)
1984 {
1985         struct ioaccel2_sg_element *chain_block;
1986         u64 temp64;
1987         u32 chain_size;
1988
1989         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
1990         chain_size = le32_to_cpu(cp->sg[0].length);
1991         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
1992                                 PCI_DMA_TODEVICE);
1993         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1994                 /* prevent subsequent unmapping */
1995                 cp->sg->address = 0;
1996                 return -1;
1997         }
1998         cp->sg->address = cpu_to_le64(temp64);
1999         return 0;
2000 }
2001
2002 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2003         struct io_accel2_cmd *cp)
2004 {
2005         struct ioaccel2_sg_element *chain_sg;
2006         u64 temp64;
2007         u32 chain_size;
2008
2009         chain_sg = cp->sg;
2010         temp64 = le64_to_cpu(chain_sg->address);
2011         chain_size = le32_to_cpu(cp->sg[0].length);
2012         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2013 }
2014
2015 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2016         struct CommandList *c)
2017 {
2018         struct SGDescriptor *chain_sg, *chain_block;
2019         u64 temp64;
2020         u32 chain_len;
2021
2022         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2023         chain_block = h->cmd_sg_list[c->cmdindex];
2024         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2025         chain_len = sizeof(*chain_sg) *
2026                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2027         chain_sg->Len = cpu_to_le32(chain_len);
2028         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2029                                 PCI_DMA_TODEVICE);
2030         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2031                 /* prevent subsequent unmapping */
2032                 chain_sg->Addr = cpu_to_le64(0);
2033                 return -1;
2034         }
2035         chain_sg->Addr = cpu_to_le64(temp64);
2036         return 0;
2037 }
2038
2039 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2040         struct CommandList *c)
2041 {
2042         struct SGDescriptor *chain_sg;
2043
2044         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2045                 return;
2046
2047         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2048         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2049                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2050 }
2051
2052
2053 /* Decode the various types of errors on ioaccel2 path.
2054  * Return 1 for any error that should generate a RAID path retry.
2055  * Return 0 for errors that don't require a RAID path retry.
2056  */
2057 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2058                                         struct CommandList *c,
2059                                         struct scsi_cmnd *cmd,
2060                                         struct io_accel2_cmd *c2)
2061 {
2062         int data_len;
2063         int retry = 0;
2064         u32 ioaccel2_resid = 0;
2065
2066         switch (c2->error_data.serv_response) {
2067         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2068                 switch (c2->error_data.status) {
2069                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2070                         break;
2071                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2072                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2073                         if (c2->error_data.data_present !=
2074                                         IOACCEL2_SENSE_DATA_PRESENT) {
2075                                 memset(cmd->sense_buffer, 0,
2076                                         SCSI_SENSE_BUFFERSIZE);
2077                                 break;
2078                         }
2079                         /* copy the sense data */
2080                         data_len = c2->error_data.sense_data_len;
2081                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2082                                 data_len = SCSI_SENSE_BUFFERSIZE;
2083                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2084                                 data_len =
2085                                         sizeof(c2->error_data.sense_data_buff);
2086                         memcpy(cmd->sense_buffer,
2087                                 c2->error_data.sense_data_buff, data_len);
2088                         retry = 1;
2089                         break;
2090                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2091                         retry = 1;
2092                         break;
2093                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2094                         retry = 1;
2095                         break;
2096                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2097                         retry = 1;
2098                         break;
2099                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2100                         retry = 1;
2101                         break;
2102                 default:
2103                         retry = 1;
2104                         break;
2105                 }
2106                 break;
2107         case IOACCEL2_SERV_RESPONSE_FAILURE:
2108                 switch (c2->error_data.status) {
2109                 case IOACCEL2_STATUS_SR_IO_ERROR:
2110                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2111                 case IOACCEL2_STATUS_SR_OVERRUN:
2112                         retry = 1;
2113                         break;
2114                 case IOACCEL2_STATUS_SR_UNDERRUN:
2115                         cmd->result = (DID_OK << 16);           /* host byte */
2116                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2117                         ioaccel2_resid = get_unaligned_le32(
2118                                                 &c2->error_data.resid_cnt[0]);
2119                         scsi_set_resid(cmd, ioaccel2_resid);
2120                         break;
2121                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2122                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2123                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2124                         /* We will get an event from ctlr to trigger rescan */
2125                         retry = 1;
2126                         break;
2127                 default:
2128                         retry = 1;
2129                 }
2130                 break;
2131         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2132                 break;
2133         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2134                 break;
2135         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2136                 retry = 1;
2137                 break;
2138         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2139                 break;
2140         default:
2141                 retry = 1;
2142                 break;
2143         }
2144
2145         return retry;   /* retry on raid path? */
2146 }
2147
2148 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2149                 struct CommandList *c)
2150 {
2151         bool do_wake = false;
2152
2153         /*
2154          * Prevent the following race in the abort handler:
2155          *
2156          * 1. LLD is requested to abort a SCSI command
2157          * 2. The SCSI command completes
2158          * 3. The struct CommandList associated with step 2 is made available
2159          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2160          * 5. Abort handler follows scsi_cmnd->host_scribble and
2161          *    finds struct CommandList and tries to aborts it
2162          * Now we have aborted the wrong command.
2163          *
2164          * Reset c->scsi_cmd here so that the abort or reset handler will know
2165          * this command has completed.  Then, check to see if the handler is
2166          * waiting for this command, and, if so, wake it.
2167          */
2168         c->scsi_cmd = SCSI_CMD_IDLE;
2169         mb();   /* Declare command idle before checking for pending events. */
2170         if (c->abort_pending) {
2171                 do_wake = true;
2172                 c->abort_pending = false;
2173         }
2174         if (c->reset_pending) {
2175                 unsigned long flags;
2176                 struct hpsa_scsi_dev_t *dev;
2177
2178                 /*
2179                  * There appears to be a reset pending; lock the lock and
2180                  * reconfirm.  If so, then decrement the count of outstanding
2181                  * commands and wake the reset command if this is the last one.
2182                  */
2183                 spin_lock_irqsave(&h->lock, flags);
2184                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2185                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2186                         do_wake = true;
2187                 c->reset_pending = NULL;
2188                 spin_unlock_irqrestore(&h->lock, flags);
2189         }
2190
2191         if (do_wake)
2192                 wake_up_all(&h->event_sync_wait_queue);
2193 }
2194
2195 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2196                                       struct CommandList *c)
2197 {
2198         hpsa_cmd_resolve_events(h, c);
2199         cmd_tagged_free(h, c);
2200 }
2201
2202 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2203                 struct CommandList *c, struct scsi_cmnd *cmd)
2204 {
2205         hpsa_cmd_resolve_and_free(h, c);
2206         cmd->scsi_done(cmd);
2207 }
2208
2209 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2210 {
2211         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2212         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2213 }
2214
2215 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2216 {
2217         cmd->result = DID_ABORT << 16;
2218 }
2219
2220 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2221                                     struct scsi_cmnd *cmd)
2222 {
2223         hpsa_set_scsi_cmd_aborted(cmd);
2224         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2225                          c->Request.CDB, c->err_info->ScsiStatus);
2226         hpsa_cmd_resolve_and_free(h, c);
2227 }
2228
2229 static void process_ioaccel2_completion(struct ctlr_info *h,
2230                 struct CommandList *c, struct scsi_cmnd *cmd,
2231                 struct hpsa_scsi_dev_t *dev)
2232 {
2233         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2234
2235         /* check for good status */
2236         if (likely(c2->error_data.serv_response == 0 &&
2237                         c2->error_data.status == 0))
2238                 return hpsa_cmd_free_and_done(h, c, cmd);
2239
2240         /*
2241          * Any RAID offload error results in retry which will use
2242          * the normal I/O path so the controller can handle whatever's
2243          * wrong.
2244          */
2245         if (is_logical_device(dev) &&
2246                 c2->error_data.serv_response ==
2247                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2248                 if (c2->error_data.status ==
2249                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2250                         dev->offload_enabled = 0;
2251
2252                 return hpsa_retry_cmd(h, c);
2253         }
2254
2255         if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2256                 return hpsa_retry_cmd(h, c);
2257
2258         return hpsa_cmd_free_and_done(h, c, cmd);
2259 }
2260
2261 /* Returns 0 on success, < 0 otherwise. */
2262 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2263                                         struct CommandList *cp)
2264 {
2265         u8 tmf_status = cp->err_info->ScsiStatus;
2266
2267         switch (tmf_status) {
2268         case CISS_TMF_COMPLETE:
2269                 /*
2270                  * CISS_TMF_COMPLETE never happens, instead,
2271                  * ei->CommandStatus == 0 for this case.
2272                  */
2273         case CISS_TMF_SUCCESS:
2274                 return 0;
2275         case CISS_TMF_INVALID_FRAME:
2276         case CISS_TMF_NOT_SUPPORTED:
2277         case CISS_TMF_FAILED:
2278         case CISS_TMF_WRONG_LUN:
2279         case CISS_TMF_OVERLAPPED_TAG:
2280                 break;
2281         default:
2282                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2283                                 tmf_status);
2284                 break;
2285         }
2286         return -tmf_status;
2287 }
2288
2289 static void complete_scsi_command(struct CommandList *cp)
2290 {
2291         struct scsi_cmnd *cmd;
2292         struct ctlr_info *h;
2293         struct ErrorInfo *ei;
2294         struct hpsa_scsi_dev_t *dev;
2295         struct io_accel2_cmd *c2;
2296
2297         u8 sense_key;
2298         u8 asc;      /* additional sense code */
2299         u8 ascq;     /* additional sense code qualifier */
2300         unsigned long sense_data_size;
2301
2302         ei = cp->err_info;
2303         cmd = cp->scsi_cmd;
2304         h = cp->h;
2305         dev = cmd->device->hostdata;
2306         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2307
2308         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2309         if ((cp->cmd_type == CMD_SCSI) &&
2310                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2311                 hpsa_unmap_sg_chain_block(h, cp);
2312
2313         if ((cp->cmd_type == CMD_IOACCEL2) &&
2314                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2315                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2316
2317         cmd->result = (DID_OK << 16);           /* host byte */
2318         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2319
2320         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2321                 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2322
2323         /*
2324          * We check for lockup status here as it may be set for
2325          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2326          * fail_all_oustanding_cmds()
2327          */
2328         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2329                 /* DID_NO_CONNECT will prevent a retry */
2330                 cmd->result = DID_NO_CONNECT << 16;
2331                 return hpsa_cmd_free_and_done(h, cp, cmd);
2332         }
2333
2334         if ((unlikely(hpsa_is_pending_event(cp)))) {
2335                 if (cp->reset_pending)
2336                         return hpsa_cmd_resolve_and_free(h, cp);
2337                 if (cp->abort_pending)
2338                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2339         }
2340
2341         if (cp->cmd_type == CMD_IOACCEL2)
2342                 return process_ioaccel2_completion(h, cp, cmd, dev);
2343
2344         scsi_set_resid(cmd, ei->ResidualCnt);
2345         if (ei->CommandStatus == 0)
2346                 return hpsa_cmd_free_and_done(h, cp, cmd);
2347
2348         /* For I/O accelerator commands, copy over some fields to the normal
2349          * CISS header used below for error handling.
2350          */
2351         if (cp->cmd_type == CMD_IOACCEL1) {
2352                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2353                 cp->Header.SGList = scsi_sg_count(cmd);
2354                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2355                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2356                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2357                 cp->Header.tag = c->tag;
2358                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2359                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2360
2361                 /* Any RAID offload error results in retry which will use
2362                  * the normal I/O path so the controller can handle whatever's
2363                  * wrong.
2364                  */
2365                 if (is_logical_device(dev)) {
2366                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2367                                 dev->offload_enabled = 0;
2368                         return hpsa_retry_cmd(h, cp);
2369                 }
2370         }
2371
2372         /* an error has occurred */
2373         switch (ei->CommandStatus) {
2374
2375         case CMD_TARGET_STATUS:
2376                 cmd->result |= ei->ScsiStatus;
2377                 /* copy the sense data */
2378                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2379                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2380                 else
2381                         sense_data_size = sizeof(ei->SenseInfo);
2382                 if (ei->SenseLen < sense_data_size)
2383                         sense_data_size = ei->SenseLen;
2384                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2385                 if (ei->ScsiStatus)
2386                         decode_sense_data(ei->SenseInfo, sense_data_size,
2387                                 &sense_key, &asc, &ascq);
2388                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2389                         if (sense_key == ABORTED_COMMAND) {
2390                                 cmd->result |= DID_SOFT_ERROR << 16;
2391                                 break;
2392                         }
2393                         break;
2394                 }
2395                 /* Problem was not a check condition
2396                  * Pass it up to the upper layers...
2397                  */
2398                 if (ei->ScsiStatus) {
2399                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2400                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2401                                 "Returning result: 0x%x\n",
2402                                 cp, ei->ScsiStatus,
2403                                 sense_key, asc, ascq,
2404                                 cmd->result);
2405                 } else {  /* scsi status is zero??? How??? */
2406                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2407                                 "Returning no connection.\n", cp),
2408
2409                         /* Ordinarily, this case should never happen,
2410                          * but there is a bug in some released firmware
2411                          * revisions that allows it to happen if, for
2412                          * example, a 4100 backplane loses power and
2413                          * the tape drive is in it.  We assume that
2414                          * it's a fatal error of some kind because we
2415                          * can't show that it wasn't. We will make it
2416                          * look like selection timeout since that is
2417                          * the most common reason for this to occur,
2418                          * and it's severe enough.
2419                          */
2420
2421                         cmd->result = DID_NO_CONNECT << 16;
2422                 }
2423                 break;
2424
2425         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2426                 break;
2427         case CMD_DATA_OVERRUN:
2428                 dev_warn(&h->pdev->dev,
2429                         "CDB %16phN data overrun\n", cp->Request.CDB);
2430                 break;
2431         case CMD_INVALID: {
2432                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2433                 print_cmd(cp); */
2434                 /* We get CMD_INVALID if you address a non-existent device
2435                  * instead of a selection timeout (no response).  You will
2436                  * see this if you yank out a drive, then try to access it.
2437                  * This is kind of a shame because it means that any other
2438                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2439                  * missing target. */
2440                 cmd->result = DID_NO_CONNECT << 16;
2441         }
2442                 break;
2443         case CMD_PROTOCOL_ERR:
2444                 cmd->result = DID_ERROR << 16;
2445                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2446                                 cp->Request.CDB);
2447                 break;
2448         case CMD_HARDWARE_ERR:
2449                 cmd->result = DID_ERROR << 16;
2450                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2451                         cp->Request.CDB);
2452                 break;
2453         case CMD_CONNECTION_LOST:
2454                 cmd->result = DID_ERROR << 16;
2455                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2456                         cp->Request.CDB);
2457                 break;
2458         case CMD_ABORTED:
2459                 /* Return now to avoid calling scsi_done(). */
2460                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2461         case CMD_ABORT_FAILED:
2462                 cmd->result = DID_ERROR << 16;
2463                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2464                         cp->Request.CDB);
2465                 break;
2466         case CMD_UNSOLICITED_ABORT:
2467                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2468                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2469                         cp->Request.CDB);
2470                 break;
2471         case CMD_TIMEOUT:
2472                 cmd->result = DID_TIME_OUT << 16;
2473                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2474                         cp->Request.CDB);
2475                 break;
2476         case CMD_UNABORTABLE:
2477                 cmd->result = DID_ERROR << 16;
2478                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2479                 break;
2480         case CMD_TMF_STATUS:
2481                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2482                         cmd->result = DID_ERROR << 16;
2483                 break;
2484         case CMD_IOACCEL_DISABLED:
2485                 /* This only handles the direct pass-through case since RAID
2486                  * offload is handled above.  Just attempt a retry.
2487                  */
2488                 cmd->result = DID_SOFT_ERROR << 16;
2489                 dev_warn(&h->pdev->dev,
2490                                 "cp %p had HP SSD Smart Path error\n", cp);
2491                 break;
2492         default:
2493                 cmd->result = DID_ERROR << 16;
2494                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2495                                 cp, ei->CommandStatus);
2496         }
2497
2498         return hpsa_cmd_free_and_done(h, cp, cmd);
2499 }
2500
2501 static void hpsa_pci_unmap(struct pci_dev *pdev,
2502         struct CommandList *c, int sg_used, int data_direction)
2503 {
2504         int i;
2505
2506         for (i = 0; i < sg_used; i++)
2507                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2508                                 le32_to_cpu(c->SG[i].Len),
2509                                 data_direction);
2510 }
2511
2512 static int hpsa_map_one(struct pci_dev *pdev,
2513                 struct CommandList *cp,
2514                 unsigned char *buf,
2515                 size_t buflen,
2516                 int data_direction)
2517 {
2518         u64 addr64;
2519
2520         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2521                 cp->Header.SGList = 0;
2522                 cp->Header.SGTotal = cpu_to_le16(0);
2523                 return 0;
2524         }
2525
2526         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2527         if (dma_mapping_error(&pdev->dev, addr64)) {
2528                 /* Prevent subsequent unmap of something never mapped */
2529                 cp->Header.SGList = 0;
2530                 cp->Header.SGTotal = cpu_to_le16(0);
2531                 return -1;
2532         }
2533         cp->SG[0].Addr = cpu_to_le64(addr64);
2534         cp->SG[0].Len = cpu_to_le32(buflen);
2535         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2536         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2537         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2538         return 0;
2539 }
2540
2541 #define NO_TIMEOUT ((unsigned long) -1)
2542 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2543 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2544         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2545 {
2546         DECLARE_COMPLETION_ONSTACK(wait);
2547
2548         c->waiting = &wait;
2549         __enqueue_cmd_and_start_io(h, c, reply_queue);
2550         if (timeout_msecs == NO_TIMEOUT) {
2551                 /* TODO: get rid of this no-timeout thing */
2552                 wait_for_completion_io(&wait);
2553                 return IO_OK;
2554         }
2555         if (!wait_for_completion_io_timeout(&wait,
2556                                         msecs_to_jiffies(timeout_msecs))) {
2557                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2558                 return -ETIMEDOUT;
2559         }
2560         return IO_OK;
2561 }
2562
2563 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2564                                    int reply_queue, unsigned long timeout_msecs)
2565 {
2566         if (unlikely(lockup_detected(h))) {
2567                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2568                 return IO_OK;
2569         }
2570         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2571 }
2572
2573 static u32 lockup_detected(struct ctlr_info *h)
2574 {
2575         int cpu;
2576         u32 rc, *lockup_detected;
2577
2578         cpu = get_cpu();
2579         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2580         rc = *lockup_detected;
2581         put_cpu();
2582         return rc;
2583 }
2584
2585 #define MAX_DRIVER_CMD_RETRIES 25
2586 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2587         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2588 {
2589         int backoff_time = 10, retry_count = 0;
2590         int rc;
2591
2592         do {
2593                 memset(c->err_info, 0, sizeof(*c->err_info));
2594                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2595                                                   timeout_msecs);
2596                 if (rc)
2597                         break;
2598                 retry_count++;
2599                 if (retry_count > 3) {
2600                         msleep(backoff_time);
2601                         if (backoff_time < 1000)
2602                                 backoff_time *= 2;
2603                 }
2604         } while ((check_for_unit_attention(h, c) ||
2605                         check_for_busy(h, c)) &&
2606                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2607         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2608         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2609                 rc = -EIO;
2610         return rc;
2611 }
2612
2613 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2614                                 struct CommandList *c)
2615 {
2616         const u8 *cdb = c->Request.CDB;
2617         const u8 *lun = c->Header.LUN.LunAddrBytes;
2618
2619         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2620         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2621                 txt, lun[0], lun[1], lun[2], lun[3],
2622                 lun[4], lun[5], lun[6], lun[7],
2623                 cdb[0], cdb[1], cdb[2], cdb[3],
2624                 cdb[4], cdb[5], cdb[6], cdb[7],
2625                 cdb[8], cdb[9], cdb[10], cdb[11],
2626                 cdb[12], cdb[13], cdb[14], cdb[15]);
2627 }
2628
2629 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2630                         struct CommandList *cp)
2631 {
2632         const struct ErrorInfo *ei = cp->err_info;
2633         struct device *d = &cp->h->pdev->dev;
2634         u8 sense_key, asc, ascq;
2635         int sense_len;
2636
2637         switch (ei->CommandStatus) {
2638         case CMD_TARGET_STATUS:
2639                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2640                         sense_len = sizeof(ei->SenseInfo);
2641                 else
2642                         sense_len = ei->SenseLen;
2643                 decode_sense_data(ei->SenseInfo, sense_len,
2644                                         &sense_key, &asc, &ascq);
2645                 hpsa_print_cmd(h, "SCSI status", cp);
2646                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2647                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2648                                 sense_key, asc, ascq);
2649                 else
2650                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2651                 if (ei->ScsiStatus == 0)
2652                         dev_warn(d, "SCSI status is abnormally zero.  "
2653                         "(probably indicates selection timeout "
2654                         "reported incorrectly due to a known "
2655                         "firmware bug, circa July, 2001.)\n");
2656                 break;
2657         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2658                 break;
2659         case CMD_DATA_OVERRUN:
2660                 hpsa_print_cmd(h, "overrun condition", cp);
2661                 break;
2662         case CMD_INVALID: {
2663                 /* controller unfortunately reports SCSI passthru's
2664                  * to non-existent targets as invalid commands.
2665                  */
2666                 hpsa_print_cmd(h, "invalid command", cp);
2667                 dev_warn(d, "probably means device no longer present\n");
2668                 }
2669                 break;
2670         case CMD_PROTOCOL_ERR:
2671                 hpsa_print_cmd(h, "protocol error", cp);
2672                 break;
2673         case CMD_HARDWARE_ERR:
2674                 hpsa_print_cmd(h, "hardware error", cp);
2675                 break;
2676         case CMD_CONNECTION_LOST:
2677                 hpsa_print_cmd(h, "connection lost", cp);
2678                 break;
2679         case CMD_ABORTED:
2680                 hpsa_print_cmd(h, "aborted", cp);
2681                 break;
2682         case CMD_ABORT_FAILED:
2683                 hpsa_print_cmd(h, "abort failed", cp);
2684                 break;
2685         case CMD_UNSOLICITED_ABORT:
2686                 hpsa_print_cmd(h, "unsolicited abort", cp);
2687                 break;
2688         case CMD_TIMEOUT:
2689                 hpsa_print_cmd(h, "timed out", cp);
2690                 break;
2691         case CMD_UNABORTABLE:
2692                 hpsa_print_cmd(h, "unabortable", cp);
2693                 break;
2694         case CMD_CTLR_LOCKUP:
2695                 hpsa_print_cmd(h, "controller lockup detected", cp);
2696                 break;
2697         default:
2698                 hpsa_print_cmd(h, "unknown status", cp);
2699                 dev_warn(d, "Unknown command status %x\n",
2700                                 ei->CommandStatus);
2701         }
2702 }
2703
2704 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2705                         u16 page, unsigned char *buf,
2706                         unsigned char bufsize)
2707 {
2708         int rc = IO_OK;
2709         struct CommandList *c;
2710         struct ErrorInfo *ei;
2711
2712         c = cmd_alloc(h);
2713
2714         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2715                         page, scsi3addr, TYPE_CMD)) {
2716                 rc = -1;
2717                 goto out;
2718         }
2719         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2720                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2721         if (rc)
2722                 goto out;
2723         ei = c->err_info;
2724         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2725                 hpsa_scsi_interpret_error(h, c);
2726                 rc = -1;
2727         }
2728 out:
2729         cmd_free(h, c);
2730         return rc;
2731 }
2732
2733 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2734         u8 reset_type, int reply_queue)
2735 {
2736         int rc = IO_OK;
2737         struct CommandList *c;
2738         struct ErrorInfo *ei;
2739
2740         c = cmd_alloc(h);
2741
2742
2743         /* fill_cmd can't fail here, no data buffer to map. */
2744         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2745                         scsi3addr, TYPE_MSG);
2746         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2747         if (rc) {
2748                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2749                 goto out;
2750         }
2751         /* no unmap needed here because no data xfer. */
2752
2753         ei = c->err_info;
2754         if (ei->CommandStatus != 0) {
2755                 hpsa_scsi_interpret_error(h, c);
2756                 rc = -1;
2757         }
2758 out:
2759         cmd_free(h, c);
2760         return rc;
2761 }
2762
2763 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2764                                struct hpsa_scsi_dev_t *dev,
2765                                unsigned char *scsi3addr)
2766 {
2767         int i;
2768         bool match = false;
2769         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2770         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2771
2772         if (hpsa_is_cmd_idle(c))
2773                 return false;
2774
2775         switch (c->cmd_type) {
2776         case CMD_SCSI:
2777         case CMD_IOCTL_PEND:
2778                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2779                                 sizeof(c->Header.LUN.LunAddrBytes));
2780                 break;
2781
2782         case CMD_IOACCEL1:
2783         case CMD_IOACCEL2:
2784                 if (c->phys_disk == dev) {
2785                         /* HBA mode match */
2786                         match = true;
2787                 } else {
2788                         /* Possible RAID mode -- check each phys dev. */
2789                         /* FIXME:  Do we need to take out a lock here?  If
2790                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2791                          * instead. */
2792                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
2793                                 /* FIXME: an alternate test might be
2794                                  *
2795                                  * match = dev->phys_disk[i]->ioaccel_handle
2796                                  *              == c2->scsi_nexus;      */
2797                                 match = dev->phys_disk[i] == c->phys_disk;
2798                         }
2799                 }
2800                 break;
2801
2802         case IOACCEL2_TMF:
2803                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2804                         match = dev->phys_disk[i]->ioaccel_handle ==
2805                                         le32_to_cpu(ac->it_nexus);
2806                 }
2807                 break;
2808
2809         case 0:         /* The command is in the middle of being initialized. */
2810                 match = false;
2811                 break;
2812
2813         default:
2814                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2815                         c->cmd_type);
2816                 BUG();
2817         }
2818
2819         return match;
2820 }
2821
2822 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2823         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2824 {
2825         int i;
2826         int rc = 0;
2827
2828         /* We can really only handle one reset at a time */
2829         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2830                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2831                 return -EINTR;
2832         }
2833
2834         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2835
2836         for (i = 0; i < h->nr_cmds; i++) {
2837                 struct CommandList *c = h->cmd_pool + i;
2838                 int refcount = atomic_inc_return(&c->refcount);
2839
2840                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2841                         unsigned long flags;
2842
2843                         /*
2844                          * Mark the target command as having a reset pending,
2845                          * then lock a lock so that the command cannot complete
2846                          * while we're considering it.  If the command is not
2847                          * idle then count it; otherwise revoke the event.
2848                          */
2849                         c->reset_pending = dev;
2850                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
2851                         if (!hpsa_is_cmd_idle(c))
2852                                 atomic_inc(&dev->reset_cmds_out);
2853                         else
2854                                 c->reset_pending = NULL;
2855                         spin_unlock_irqrestore(&h->lock, flags);
2856                 }
2857
2858                 cmd_free(h, c);
2859         }
2860
2861         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2862         if (!rc)
2863                 wait_event(h->event_sync_wait_queue,
2864                         atomic_read(&dev->reset_cmds_out) == 0 ||
2865                         lockup_detected(h));
2866
2867         if (unlikely(lockup_detected(h))) {
2868                 dev_warn(&h->pdev->dev,
2869                          "Controller lockup detected during reset wait\n");
2870                 rc = -ENODEV;
2871         }
2872
2873         if (unlikely(rc))
2874                 atomic_set(&dev->reset_cmds_out, 0);
2875
2876         mutex_unlock(&h->reset_mutex);
2877         return rc;
2878 }
2879
2880 static void hpsa_get_raid_level(struct ctlr_info *h,
2881         unsigned char *scsi3addr, unsigned char *raid_level)
2882 {
2883         int rc;
2884         unsigned char *buf;
2885
2886         *raid_level = RAID_UNKNOWN;
2887         buf = kzalloc(64, GFP_KERNEL);
2888         if (!buf)
2889                 return;
2890         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2891         if (rc == 0)
2892                 *raid_level = buf[8];
2893         if (*raid_level > RAID_UNKNOWN)
2894                 *raid_level = RAID_UNKNOWN;
2895         kfree(buf);
2896         return;
2897 }
2898
2899 #define HPSA_MAP_DEBUG
2900 #ifdef HPSA_MAP_DEBUG
2901 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2902                                 struct raid_map_data *map_buff)
2903 {
2904         struct raid_map_disk_data *dd = &map_buff->data[0];
2905         int map, row, col;
2906         u16 map_cnt, row_cnt, disks_per_row;
2907
2908         if (rc != 0)
2909                 return;
2910
2911         /* Show details only if debugging has been activated. */
2912         if (h->raid_offload_debug < 2)
2913                 return;
2914
2915         dev_info(&h->pdev->dev, "structure_size = %u\n",
2916                                 le32_to_cpu(map_buff->structure_size));
2917         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2918                         le32_to_cpu(map_buff->volume_blk_size));
2919         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2920                         le64_to_cpu(map_buff->volume_blk_cnt));
2921         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2922                         map_buff->phys_blk_shift);
2923         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2924                         map_buff->parity_rotation_shift);
2925         dev_info(&h->pdev->dev, "strip_size = %u\n",
2926                         le16_to_cpu(map_buff->strip_size));
2927         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2928                         le64_to_cpu(map_buff->disk_starting_blk));
2929         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2930                         le64_to_cpu(map_buff->disk_blk_cnt));
2931         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2932                         le16_to_cpu(map_buff->data_disks_per_row));
2933         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2934                         le16_to_cpu(map_buff->metadata_disks_per_row));
2935         dev_info(&h->pdev->dev, "row_cnt = %u\n",
2936                         le16_to_cpu(map_buff->row_cnt));
2937         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2938                         le16_to_cpu(map_buff->layout_map_count));
2939         dev_info(&h->pdev->dev, "flags = 0x%x\n",
2940                         le16_to_cpu(map_buff->flags));
2941         dev_info(&h->pdev->dev, "encrypytion = %s\n",
2942                         le16_to_cpu(map_buff->flags) &
2943                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2944         dev_info(&h->pdev->dev, "dekindex = %u\n",
2945                         le16_to_cpu(map_buff->dekindex));
2946         map_cnt = le16_to_cpu(map_buff->layout_map_count);
2947         for (map = 0; map < map_cnt; map++) {
2948                 dev_info(&h->pdev->dev, "Map%u:\n", map);
2949                 row_cnt = le16_to_cpu(map_buff->row_cnt);
2950                 for (row = 0; row < row_cnt; row++) {
2951                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
2952                         disks_per_row =
2953                                 le16_to_cpu(map_buff->data_disks_per_row);
2954                         for (col = 0; col < disks_per_row; col++, dd++)
2955                                 dev_info(&h->pdev->dev,
2956                                         "    D%02u: h=0x%04x xor=%u,%u\n",
2957                                         col, dd->ioaccel_handle,
2958                                         dd->xor_mult[0], dd->xor_mult[1]);
2959                         disks_per_row =
2960                                 le16_to_cpu(map_buff->metadata_disks_per_row);
2961                         for (col = 0; col < disks_per_row; col++, dd++)
2962                                 dev_info(&h->pdev->dev,
2963                                         "    M%02u: h=0x%04x xor=%u,%u\n",
2964                                         col, dd->ioaccel_handle,
2965                                         dd->xor_mult[0], dd->xor_mult[1]);
2966                 }
2967         }
2968 }
2969 #else
2970 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2971                         __attribute__((unused)) int rc,
2972                         __attribute__((unused)) struct raid_map_data *map_buff)
2973 {
2974 }
2975 #endif
2976
2977 static int hpsa_get_raid_map(struct ctlr_info *h,
2978         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2979 {
2980         int rc = 0;
2981         struct CommandList *c;
2982         struct ErrorInfo *ei;
2983
2984         c = cmd_alloc(h);
2985
2986         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2987                         sizeof(this_device->raid_map), 0,
2988                         scsi3addr, TYPE_CMD)) {
2989                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
2990                 cmd_free(h, c);
2991                 return -1;
2992         }
2993         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2994                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2995         if (rc)
2996                 goto out;
2997         ei = c->err_info;
2998         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2999                 hpsa_scsi_interpret_error(h, c);
3000                 rc = -1;
3001                 goto out;
3002         }
3003         cmd_free(h, c);
3004
3005         /* @todo in the future, dynamically allocate RAID map memory */
3006         if (le32_to_cpu(this_device->raid_map.structure_size) >
3007                                 sizeof(this_device->raid_map)) {
3008                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3009                 rc = -1;
3010         }
3011         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3012         return rc;
3013 out:
3014         cmd_free(h, c);
3015         return rc;
3016 }
3017
3018 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3019                 unsigned char scsi3addr[], u16 bmic_device_index,
3020                 struct bmic_identify_physical_device *buf, size_t bufsize)
3021 {
3022         int rc = IO_OK;
3023         struct CommandList *c;
3024         struct ErrorInfo *ei;
3025
3026         c = cmd_alloc(h);
3027         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3028                 0, RAID_CTLR_LUNID, TYPE_CMD);
3029         if (rc)
3030                 goto out;
3031
3032         c->Request.CDB[2] = bmic_device_index & 0xff;
3033         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3034
3035         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3036                                                 NO_TIMEOUT);
3037         ei = c->err_info;
3038         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3039                 hpsa_scsi_interpret_error(h, c);
3040                 rc = -1;
3041         }
3042 out:
3043         cmd_free(h, c);
3044         return rc;
3045 }
3046
3047 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3048         unsigned char scsi3addr[], u8 page)
3049 {
3050         int rc;
3051         int i;
3052         int pages;
3053         unsigned char *buf, bufsize;
3054
3055         buf = kzalloc(256, GFP_KERNEL);
3056         if (!buf)
3057                 return 0;
3058
3059         /* Get the size of the page list first */
3060         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3061                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3062                                 buf, HPSA_VPD_HEADER_SZ);
3063         if (rc != 0)
3064                 goto exit_unsupported;
3065         pages = buf[3];
3066         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3067                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3068         else
3069                 bufsize = 255;
3070
3071         /* Get the whole VPD page list */
3072         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3073                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3074                                 buf, bufsize);
3075         if (rc != 0)
3076                 goto exit_unsupported;
3077
3078         pages = buf[3];
3079         for (i = 1; i <= pages; i++)
3080                 if (buf[3 + i] == page)
3081                         goto exit_supported;
3082 exit_unsupported:
3083         kfree(buf);
3084         return 0;
3085 exit_supported:
3086         kfree(buf);
3087         return 1;
3088 }
3089
3090 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3091         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3092 {
3093         int rc;
3094         unsigned char *buf;
3095         u8 ioaccel_status;
3096
3097         this_device->offload_config = 0;
3098         this_device->offload_enabled = 0;
3099         this_device->offload_to_be_enabled = 0;
3100
3101         buf = kzalloc(64, GFP_KERNEL);
3102         if (!buf)
3103                 return;
3104         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3105                 goto out;
3106         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3107                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3108         if (rc != 0)
3109                 goto out;
3110
3111 #define IOACCEL_STATUS_BYTE 4
3112 #define OFFLOAD_CONFIGURED_BIT 0x01
3113 #define OFFLOAD_ENABLED_BIT 0x02
3114         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3115         this_device->offload_config =
3116                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3117         if (this_device->offload_config) {
3118                 this_device->offload_enabled =
3119                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3120                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3121                         this_device->offload_enabled = 0;
3122         }
3123         this_device->offload_to_be_enabled = this_device->offload_enabled;
3124 out:
3125         kfree(buf);
3126         return;
3127 }
3128
3129 /* Get the device id from inquiry page 0x83 */
3130 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3131         unsigned char *device_id, int index, int buflen)
3132 {
3133         int rc;
3134         unsigned char *buf;
3135
3136         if (buflen > 16)
3137                 buflen = 16;
3138         buf = kzalloc(64, GFP_KERNEL);
3139         if (!buf)
3140                 return -ENOMEM;
3141         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3142         if (rc == 0)
3143                 memcpy(device_id, &buf[index], buflen);
3144
3145         kfree(buf);
3146
3147         return rc != 0;
3148 }
3149
3150 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3151                 void *buf, int bufsize,
3152                 int extended_response)
3153 {
3154         int rc = IO_OK;
3155         struct CommandList *c;
3156         unsigned char scsi3addr[8];
3157         struct ErrorInfo *ei;
3158
3159         c = cmd_alloc(h);
3160
3161         /* address the controller */
3162         memset(scsi3addr, 0, sizeof(scsi3addr));
3163         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3164                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3165                 rc = -1;
3166                 goto out;
3167         }
3168         if (extended_response)
3169                 c->Request.CDB[1] = extended_response;
3170         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3171                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3172         if (rc)
3173                 goto out;
3174         ei = c->err_info;
3175         if (ei->CommandStatus != 0 &&
3176             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3177                 hpsa_scsi_interpret_error(h, c);
3178                 rc = -1;
3179         } else {
3180                 struct ReportLUNdata *rld = buf;
3181
3182                 if (rld->extended_response_flag != extended_response) {
3183                         dev_err(&h->pdev->dev,
3184                                 "report luns requested format %u, got %u\n",
3185                                 extended_response,
3186                                 rld->extended_response_flag);
3187                         rc = -1;
3188                 }
3189         }
3190 out:
3191         cmd_free(h, c);
3192         return rc;
3193 }
3194
3195 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3196                 struct ReportExtendedLUNdata *buf, int bufsize)
3197 {
3198         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3199                                                 HPSA_REPORT_PHYS_EXTENDED);
3200 }
3201
3202 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3203                 struct ReportLUNdata *buf, int bufsize)
3204 {
3205         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3206 }
3207
3208 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3209         int bus, int target, int lun)
3210 {
3211         device->bus = bus;
3212         device->target = target;
3213         device->lun = lun;
3214 }
3215
3216 /* Use VPD inquiry to get details of volume status */
3217 static int hpsa_get_volume_status(struct ctlr_info *h,
3218                                         unsigned char scsi3addr[])
3219 {
3220         int rc;
3221         int status;
3222         int size;
3223         unsigned char *buf;
3224
3225         buf = kzalloc(64, GFP_KERNEL);
3226         if (!buf)
3227                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3228
3229         /* Does controller have VPD for logical volume status? */
3230         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3231                 goto exit_failed;
3232
3233         /* Get the size of the VPD return buffer */
3234         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3235                                         buf, HPSA_VPD_HEADER_SZ);
3236         if (rc != 0)
3237                 goto exit_failed;
3238         size = buf[3];
3239
3240         /* Now get the whole VPD buffer */
3241         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3242                                         buf, size + HPSA_VPD_HEADER_SZ);
3243         if (rc != 0)
3244                 goto exit_failed;
3245         status = buf[4]; /* status byte */
3246
3247         kfree(buf);
3248         return status;
3249 exit_failed:
3250         kfree(buf);
3251         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3252 }
3253
3254 /* Determine offline status of a volume.
3255  * Return either:
3256  *  0 (not offline)
3257  *  0xff (offline for unknown reasons)
3258  *  # (integer code indicating one of several NOT READY states
3259  *     describing why a volume is to be kept offline)
3260  */
3261 static int hpsa_volume_offline(struct ctlr_info *h,
3262                                         unsigned char scsi3addr[])
3263 {
3264         struct CommandList *c;
3265         unsigned char *sense;
3266         u8 sense_key, asc, ascq;
3267         int sense_len;
3268         int rc, ldstat = 0;
3269         u16 cmd_status;
3270         u8 scsi_status;
3271 #define ASC_LUN_NOT_READY 0x04
3272 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3273 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3274
3275         c = cmd_alloc(h);
3276
3277         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3278         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3279         if (rc) {
3280                 cmd_free(h, c);
3281                 return 0;
3282         }
3283         sense = c->err_info->SenseInfo;
3284         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3285                 sense_len = sizeof(c->err_info->SenseInfo);
3286         else
3287                 sense_len = c->err_info->SenseLen;
3288         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3289         cmd_status = c->err_info->CommandStatus;
3290         scsi_status = c->err_info->ScsiStatus;
3291         cmd_free(h, c);
3292         /* Is the volume 'not ready'? */
3293         if (cmd_status != CMD_TARGET_STATUS ||
3294                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3295                 sense_key != NOT_READY ||
3296                 asc != ASC_LUN_NOT_READY)  {
3297                 return 0;
3298         }
3299
3300         /* Determine the reason for not ready state */
3301         ldstat = hpsa_get_volume_status(h, scsi3addr);
3302
3303         /* Keep volume offline in certain cases: */
3304         switch (ldstat) {
3305         case HPSA_LV_UNDERGOING_ERASE:
3306         case HPSA_LV_NOT_AVAILABLE:
3307         case HPSA_LV_UNDERGOING_RPI:
3308         case HPSA_LV_PENDING_RPI:
3309         case HPSA_LV_ENCRYPTED_NO_KEY:
3310         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3311         case HPSA_LV_UNDERGOING_ENCRYPTION:
3312         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3313         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3314                 return ldstat;
3315         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3316                 /* If VPD status page isn't available,
3317                  * use ASC/ASCQ to determine state
3318                  */
3319                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3320                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3321                         return ldstat;
3322                 break;
3323         default:
3324                 break;
3325         }
3326         return 0;
3327 }
3328
3329 /*
3330  * Find out if a logical device supports aborts by simply trying one.
3331  * Smart Array may claim not to support aborts on logical drives, but
3332  * if a MSA2000 * is connected, the drives on that will be presented
3333  * by the Smart Array as logical drives, and aborts may be sent to
3334  * those devices successfully.  So the simplest way to find out is
3335  * to simply try an abort and see how the device responds.
3336  */
3337 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3338                                         unsigned char *scsi3addr)
3339 {
3340         struct CommandList *c;
3341         struct ErrorInfo *ei;
3342         int rc = 0;
3343
3344         u64 tag = (u64) -1; /* bogus tag */
3345
3346         /* Assume that physical devices support aborts */
3347         if (!is_logical_dev_addr_mode(scsi3addr))
3348                 return 1;
3349
3350         c = cmd_alloc(h);
3351
3352         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3353         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3354         /* no unmap needed here because no data xfer. */
3355         ei = c->err_info;
3356         switch (ei->CommandStatus) {
3357         case CMD_INVALID:
3358                 rc = 0;
3359                 break;
3360         case CMD_UNABORTABLE:
3361         case CMD_ABORT_FAILED:
3362                 rc = 1;
3363                 break;
3364         case CMD_TMF_STATUS:
3365                 rc = hpsa_evaluate_tmf_status(h, c);
3366                 break;
3367         default:
3368                 rc = 0;
3369                 break;
3370         }
3371         cmd_free(h, c);
3372         return rc;
3373 }
3374
3375 static void sanitize_inquiry_string(unsigned char *s, int len)
3376 {
3377         bool terminated = false;
3378
3379         for (; len > 0; (--len, ++s)) {
3380                 if (*s == 0)
3381                         terminated = true;
3382                 if (terminated || *s < 0x20 || *s > 0x7e)
3383                         *s = ' ';
3384         }
3385 }
3386
3387 static int hpsa_update_device_info(struct ctlr_info *h,
3388         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3389         unsigned char *is_OBDR_device)
3390 {
3391
3392 #define OBDR_SIG_OFFSET 43
3393 #define OBDR_TAPE_SIG "$DR-10"
3394 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3395 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3396
3397         unsigned char *inq_buff;
3398         unsigned char *obdr_sig;
3399         int rc = 0;
3400
3401         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3402         if (!inq_buff) {
3403                 rc = -ENOMEM;
3404                 goto bail_out;
3405         }
3406
3407         /* Do an inquiry to the device to see what it is. */
3408         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3409                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3410                 /* Inquiry failed (msg printed already) */
3411                 dev_err(&h->pdev->dev,
3412                         "hpsa_update_device_info: inquiry failed\n");
3413                 rc = -EIO;
3414                 goto bail_out;
3415         }
3416
3417         sanitize_inquiry_string(&inq_buff[8], 8);
3418         sanitize_inquiry_string(&inq_buff[16], 16);
3419
3420         this_device->devtype = (inq_buff[0] & 0x1f);
3421         memcpy(this_device->scsi3addr, scsi3addr, 8);
3422         memcpy(this_device->vendor, &inq_buff[8],
3423                 sizeof(this_device->vendor));
3424         memcpy(this_device->model, &inq_buff[16],
3425                 sizeof(this_device->model));
3426         memset(this_device->device_id, 0,
3427                 sizeof(this_device->device_id));
3428         hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3429                 sizeof(this_device->device_id));
3430
3431         if (this_device->devtype == TYPE_DISK &&
3432                 is_logical_dev_addr_mode(scsi3addr)) {
3433                 int volume_offline;
3434
3435                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3436                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3437                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3438                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3439                 if (volume_offline < 0 || volume_offline > 0xff)
3440                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3441                 this_device->volume_offline = volume_offline & 0xff;
3442         } else {
3443                 this_device->raid_level = RAID_UNKNOWN;
3444                 this_device->offload_config = 0;
3445                 this_device->offload_enabled = 0;
3446                 this_device->offload_to_be_enabled = 0;
3447                 this_device->hba_ioaccel_enabled = 0;
3448                 this_device->volume_offline = 0;
3449                 this_device->queue_depth = h->nr_cmds;
3450         }
3451
3452         if (is_OBDR_device) {
3453                 /* See if this is a One-Button-Disaster-Recovery device
3454                  * by looking for "$DR-10" at offset 43 in inquiry data.
3455                  */
3456                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3457                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3458                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3459                                                 OBDR_SIG_LEN) == 0);
3460         }
3461         kfree(inq_buff);
3462         return 0;
3463
3464 bail_out:
3465         kfree(inq_buff);
3466         return rc;
3467 }
3468
3469 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3470                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3471 {
3472         unsigned long flags;
3473         int rc, entry;
3474         /*
3475          * See if this device supports aborts.  If we already know
3476          * the device, we already know if it supports aborts, otherwise
3477          * we have to find out if it supports aborts by trying one.
3478          */
3479         spin_lock_irqsave(&h->devlock, flags);
3480         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3481         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3482                 entry >= 0 && entry < h->ndevices) {
3483                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3484                 spin_unlock_irqrestore(&h->devlock, flags);
3485         } else {
3486                 spin_unlock_irqrestore(&h->devlock, flags);
3487                 dev->supports_aborts =
3488                                 hpsa_device_supports_aborts(h, scsi3addr);
3489                 if (dev->supports_aborts < 0)
3490                         dev->supports_aborts = 0;
3491         }
3492 }
3493
3494 static unsigned char *ext_target_model[] = {
3495         "MSA2012",
3496         "MSA2024",
3497         "MSA2312",
3498         "MSA2324",
3499         "P2000 G3 SAS",
3500         "MSA 2040 SAS",
3501         NULL,
3502 };
3503
3504 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
3505 {
3506         int i;
3507
3508         for (i = 0; ext_target_model[i]; i++)
3509                 if (strncmp(device->model, ext_target_model[i],
3510                         strlen(ext_target_model[i])) == 0)
3511                         return 1;
3512         return 0;
3513 }
3514
3515 /*
3516  * Helper function to assign bus, target, lun mapping of devices.
3517  * Logical drive target and lun are assigned at this time, but
3518  * physical device lun and target assignment are deferred (assigned
3519  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3520 */
3521 static void figure_bus_target_lun(struct ctlr_info *h,
3522         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3523 {
3524         u32 lunid = get_unaligned_le32(lunaddrbytes);
3525
3526         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3527                 /* physical device, target and lun filled in later */
3528                 if (is_hba_lunid(lunaddrbytes))
3529                         hpsa_set_bus_target_lun(device,
3530                                         HPSA_HBA_BUS, 0, lunid & 0x3fff);
3531                 else
3532                         /* defer target, lun assignment for physical devices */
3533                         hpsa_set_bus_target_lun(device,
3534                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3535                 return;
3536         }
3537         /* It's a logical device */
3538         if (is_ext_target(h, device)) {
3539                 hpsa_set_bus_target_lun(device,
3540                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3541                         lunid & 0x00ff);
3542                 return;
3543         }
3544         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3545                                 0, lunid & 0x3fff);
3546 }
3547
3548 /*
3549  * If there is no lun 0 on a target, linux won't find any devices.
3550  * For the external targets (arrays), we have to manually detect the enclosure
3551  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
3552  * it for some reason.  *tmpdevice is the target we're adding,
3553  * this_device is a pointer into the current element of currentsd[]
3554  * that we're building up in update_scsi_devices(), below.
3555  * lunzerobits is a bitmap that tracks which targets already have a
3556  * lun 0 assigned.
3557  * Returns 1 if an enclosure was added, 0 if not.
3558  */
3559 static int add_ext_target_dev(struct ctlr_info *h,
3560         struct hpsa_scsi_dev_t *tmpdevice,
3561         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3562         unsigned long lunzerobits[], int *n_ext_target_devs)
3563 {
3564         unsigned char scsi3addr[8];
3565
3566         if (test_bit(tmpdevice->target, lunzerobits))
3567                 return 0; /* There is already a lun 0 on this target. */
3568
3569         if (!is_logical_dev_addr_mode(lunaddrbytes))
3570                 return 0; /* It's the logical targets that may lack lun 0. */
3571
3572         if (!is_ext_target(h, tmpdevice))
3573                 return 0; /* Only external target devices have this problem. */
3574
3575         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3576                 return 0;
3577
3578         memset(scsi3addr, 0, 8);
3579         scsi3addr[3] = tmpdevice->target;
3580         if (is_hba_lunid(scsi3addr))
3581                 return 0; /* Don't add the RAID controller here. */
3582
3583         if (is_scsi_rev_5(h))
3584                 return 0; /* p1210m doesn't need to do this. */
3585
3586         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3587                 dev_warn(&h->pdev->dev, "Maximum number of external "
3588                         "target devices exceeded.  Check your hardware "
3589                         "configuration.");
3590                 return 0;
3591         }
3592
3593         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3594                 return 0;
3595         (*n_ext_target_devs)++;
3596         hpsa_set_bus_target_lun(this_device,
3597                                 tmpdevice->bus, tmpdevice->target, 0);
3598         hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3599         set_bit(tmpdevice->target, lunzerobits);
3600         return 1;
3601 }
3602
3603 /*
3604  * Get address of physical disk used for an ioaccel2 mode command:
3605  *      1. Extract ioaccel2 handle from the command.
3606  *      2. Find a matching ioaccel2 handle from list of physical disks.
3607  *      3. Return:
3608  *              1 and set scsi3addr to address of matching physical
3609  *              0 if no matching physical disk was found.
3610  */
3611 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3612         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3613 {
3614         struct io_accel2_cmd *c2 =
3615                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3616         unsigned long flags;
3617         int i;
3618
3619         spin_lock_irqsave(&h->devlock, flags);
3620         for (i = 0; i < h->ndevices; i++)
3621                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3622                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3623                                 sizeof(h->dev[i]->scsi3addr));
3624                         spin_unlock_irqrestore(&h->devlock, flags);
3625                         return 1;
3626                 }
3627         spin_unlock_irqrestore(&h->devlock, flags);
3628         return 0;
3629 }
3630
3631 /*
3632  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3633  * logdev.  The number of luns in physdev and logdev are returned in
3634  * *nphysicals and *nlogicals, respectively.
3635  * Returns 0 on success, -1 otherwise.
3636  */
3637 static int hpsa_gather_lun_info(struct ctlr_info *h,
3638         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3639         struct ReportLUNdata *logdev, u32 *nlogicals)
3640 {
3641         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3642                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3643                 return -1;
3644         }
3645         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3646         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3647                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3648                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3649                 *nphysicals = HPSA_MAX_PHYS_LUN;
3650         }
3651         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3652                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3653                 return -1;
3654         }
3655         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3656         /* Reject Logicals in excess of our max capability. */
3657         if (*nlogicals > HPSA_MAX_LUN) {
3658                 dev_warn(&h->pdev->dev,
3659                         "maximum logical LUNs (%d) exceeded.  "
3660                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3661                         *nlogicals - HPSA_MAX_LUN);
3662                         *nlogicals = HPSA_MAX_LUN;
3663         }
3664         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3665                 dev_warn(&h->pdev->dev,
3666                         "maximum logical + physical LUNs (%d) exceeded. "
3667                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3668                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3669                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3670         }
3671         return 0;
3672 }
3673
3674 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3675         int i, int nphysicals, int nlogicals,
3676         struct ReportExtendedLUNdata *physdev_list,
3677         struct ReportLUNdata *logdev_list)
3678 {
3679         /* Helper function, figure out where the LUN ID info is coming from
3680          * given index i, lists of physical and logical devices, where in
3681          * the list the raid controller is supposed to appear (first or last)
3682          */
3683
3684         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3685         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3686
3687         if (i == raid_ctlr_position)
3688                 return RAID_CTLR_LUNID;
3689
3690         if (i < logicals_start)
3691                 return &physdev_list->LUN[i -
3692                                 (raid_ctlr_position == 0)].lunid[0];
3693
3694         if (i < last_device)
3695                 return &logdev_list->LUN[i - nphysicals -
3696                         (raid_ctlr_position == 0)][0];
3697         BUG();
3698         return NULL;
3699 }
3700
3701 /* get physical drive ioaccel handle and queue depth */
3702 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3703                 struct hpsa_scsi_dev_t *dev,
3704                 struct ReportExtendedLUNdata *rlep, int rle_index,
3705                 struct bmic_identify_physical_device *id_phys)
3706 {
3707         int rc;
3708         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3709
3710         dev->ioaccel_handle = rle->ioaccel_handle;
3711         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3712                 dev->hba_ioaccel_enabled = 1;
3713         memset(id_phys, 0, sizeof(*id_phys));
3714         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3715                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3716                         sizeof(*id_phys));
3717         if (!rc)
3718                 /* Reserve space for FW operations */
3719 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3720 #define DRIVE_QUEUE_DEPTH 7
3721                 dev->queue_depth =
3722                         le16_to_cpu(id_phys->current_queue_depth_limit) -
3723                                 DRIVE_CMDS_RESERVED_FOR_FW;
3724         else
3725                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3726 }
3727
3728 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3729         struct ReportExtendedLUNdata *rlep, int rle_index,
3730         struct bmic_identify_physical_device *id_phys)
3731 {
3732         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3733
3734         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
3735                 this_device->hba_ioaccel_enabled = 1;
3736
3737         memcpy(&this_device->active_path_index,
3738                 &id_phys->active_path_number,
3739                 sizeof(this_device->active_path_index));
3740         memcpy(&this_device->path_map,
3741                 &id_phys->redundant_path_present_map,
3742                 sizeof(this_device->path_map));
3743         memcpy(&this_device->box,
3744                 &id_phys->alternate_paths_phys_box_on_port,
3745                 sizeof(this_device->box));
3746         memcpy(&this_device->phys_connector,
3747                 &id_phys->alternate_paths_phys_connector,
3748                 sizeof(this_device->phys_connector));
3749         memcpy(&this_device->bay,
3750                 &id_phys->phys_bay_in_box,
3751                 sizeof(this_device->bay));
3752 }
3753
3754 static void hpsa_update_scsi_devices(struct ctlr_info *h)
3755 {
3756         /* the idea here is we could get notified
3757          * that some devices have changed, so we do a report
3758          * physical luns and report logical luns cmd, and adjust
3759          * our list of devices accordingly.
3760          *
3761          * The scsi3addr's of devices won't change so long as the
3762          * adapter is not reset.  That means we can rescan and
3763          * tell which devices we already know about, vs. new
3764          * devices, vs.  disappearing devices.
3765          */
3766         struct ReportExtendedLUNdata *physdev_list = NULL;
3767         struct ReportLUNdata *logdev_list = NULL;
3768         struct bmic_identify_physical_device *id_phys = NULL;
3769         u32 nphysicals = 0;
3770         u32 nlogicals = 0;
3771         u32 ndev_allocated = 0;
3772         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3773         int ncurrent = 0;
3774         int i, n_ext_target_devs, ndevs_to_allocate;
3775         int raid_ctlr_position;
3776         bool physical_device;
3777         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3778
3779         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3780         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3781         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3782         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3783         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3784
3785         if (!currentsd || !physdev_list || !logdev_list ||
3786                 !tmpdevice || !id_phys) {
3787                 dev_err(&h->pdev->dev, "out of memory\n");
3788                 goto out;
3789         }
3790         memset(lunzerobits, 0, sizeof(lunzerobits));
3791
3792         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
3793
3794         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3795                         logdev_list, &nlogicals)) {
3796                 h->drv_req_rescan = 1;
3797                 goto out;
3798         }
3799
3800         /* We might see up to the maximum number of logical and physical disks
3801          * plus external target devices, and a device for the local RAID
3802          * controller.
3803          */
3804         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3805
3806         /* Allocate the per device structures */
3807         for (i = 0; i < ndevs_to_allocate; i++) {
3808                 if (i >= HPSA_MAX_DEVICES) {
3809                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3810                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
3811                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
3812                         break;
3813                 }
3814
3815                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3816                 if (!currentsd[i]) {
3817                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3818                                 __FILE__, __LINE__);
3819                         h->drv_req_rescan = 1;
3820                         goto out;
3821                 }
3822                 ndev_allocated++;
3823         }
3824
3825         if (is_scsi_rev_5(h))
3826                 raid_ctlr_position = 0;
3827         else
3828                 raid_ctlr_position = nphysicals + nlogicals;
3829
3830         /* adjust our table of devices */
3831         n_ext_target_devs = 0;
3832         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3833                 u8 *lunaddrbytes, is_OBDR = 0;
3834                 int rc = 0;
3835                 int phys_dev_index = i - (raid_ctlr_position == 0);
3836
3837                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
3838
3839                 /* Figure out where the LUN ID info is coming from */
3840                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3841                         i, nphysicals, nlogicals, physdev_list, logdev_list);
3842
3843                 /* skip masked non-disk devices */
3844                 if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
3845                         (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
3846                         continue;
3847
3848                 /* Get device type, vendor, model, device id */
3849                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3850                                                         &is_OBDR);
3851                 if (rc == -ENOMEM) {
3852                         dev_warn(&h->pdev->dev,
3853                                 "Out of memory, rescan deferred.\n");
3854                         h->drv_req_rescan = 1;
3855                         goto out;
3856                 }
3857                 if (rc) {
3858                         dev_warn(&h->pdev->dev,
3859                                 "Inquiry failed, skipping device.\n");
3860                         continue;
3861                 }
3862
3863                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3864                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3865                 this_device = currentsd[ncurrent];
3866
3867                 /*
3868                  * For external target devices, we have to insert a LUN 0 which
3869                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3870                  * is nonetheless an enclosure device there.  We have to
3871                  * present that otherwise linux won't find anything if
3872                  * there is no lun 0.
3873                  */
3874                 if (add_ext_target_dev(h, tmpdevice, this_device,
3875                                 lunaddrbytes, lunzerobits,
3876                                 &n_ext_target_devs)) {
3877                         ncurrent++;
3878                         this_device = currentsd[ncurrent];
3879                 }
3880
3881                 *this_device = *tmpdevice;
3882                 this_device->physical_device = physical_device;
3883
3884                 /*
3885                  * Expose all devices except for physical devices that
3886                  * are masked.
3887                  */
3888                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
3889                         this_device->expose_device = 0;
3890                 else
3891                         this_device->expose_device = 1;
3892
3893                 switch (this_device->devtype) {
3894                 case TYPE_ROM:
3895                         /* We don't *really* support actual CD-ROM devices,
3896                          * just "One Button Disaster Recovery" tape drive
3897                          * which temporarily pretends to be a CD-ROM drive.
3898                          * So we check that the device is really an OBDR tape
3899                          * device by checking for "$DR-10" in bytes 43-48 of
3900                          * the inquiry data.
3901                          */
3902                         if (is_OBDR)
3903                                 ncurrent++;
3904                         break;
3905                 case TYPE_DISK:
3906                         if (this_device->physical_device) {
3907                                 /* The disk is in HBA mode. */
3908                                 /* Never use RAID mapper in HBA mode. */
3909                                 this_device->offload_enabled = 0;
3910                                 hpsa_get_ioaccel_drive_info(h, this_device,
3911                                         physdev_list, phys_dev_index, id_phys);
3912                                 hpsa_get_path_info(this_device,
3913                                         physdev_list, phys_dev_index, id_phys);
3914                         }
3915                         ncurrent++;
3916                         break;
3917                 case TYPE_TAPE:
3918                 case TYPE_MEDIUM_CHANGER:
3919                 case TYPE_ENCLOSURE:
3920                         ncurrent++;
3921                         break;
3922                 case TYPE_RAID:
3923                         /* Only present the Smartarray HBA as a RAID controller.
3924                          * If it's a RAID controller other than the HBA itself
3925                          * (an external RAID controller, MSA500 or similar)
3926                          * don't present it.
3927                          */
3928                         if (!is_hba_lunid(lunaddrbytes))
3929                                 break;
3930                         ncurrent++;
3931                         break;
3932                 default:
3933                         break;
3934                 }
3935                 if (ncurrent >= HPSA_MAX_DEVICES)
3936                         break;
3937         }
3938         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
3939 out:
3940         kfree(tmpdevice);
3941         for (i = 0; i < ndev_allocated; i++)
3942                 kfree(currentsd[i]);
3943         kfree(currentsd);
3944         kfree(physdev_list);
3945         kfree(logdev_list);
3946         kfree(id_phys);
3947 }
3948
3949 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3950                                    struct scatterlist *sg)
3951 {
3952         u64 addr64 = (u64) sg_dma_address(sg);
3953         unsigned int len = sg_dma_len(sg);
3954
3955         desc->Addr = cpu_to_le64(addr64);
3956         desc->Len = cpu_to_le32(len);
3957         desc->Ext = 0;
3958 }
3959
3960 /*
3961  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3962  * dma mapping  and fills in the scatter gather entries of the
3963  * hpsa command, cp.
3964  */
3965 static int hpsa_scatter_gather(struct ctlr_info *h,
3966                 struct CommandList *cp,
3967                 struct scsi_cmnd *cmd)
3968 {
3969         struct scatterlist *sg;
3970         int use_sg, i, sg_limit, chained, last_sg;
3971         struct SGDescriptor *curr_sg;
3972
3973         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3974
3975         use_sg = scsi_dma_map(cmd);
3976         if (use_sg < 0)
3977                 return use_sg;
3978
3979         if (!use_sg)
3980                 goto sglist_finished;
3981
3982         /*
3983          * If the number of entries is greater than the max for a single list,
3984          * then we have a chained list; we will set up all but one entry in the
3985          * first list (the last entry is saved for link information);
3986          * otherwise, we don't have a chained list and we'll set up at each of
3987          * the entries in the one list.
3988          */
3989         curr_sg = cp->SG;
3990         chained = use_sg > h->max_cmd_sg_entries;
3991         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
3992         last_sg = scsi_sg_count(cmd) - 1;
3993         scsi_for_each_sg(cmd, sg, sg_limit, i) {
3994                 hpsa_set_sg_descriptor(curr_sg, sg);
3995                 curr_sg++;
3996         }
3997
3998         if (chained) {
3999                 /*
4000                  * Continue with the chained list.  Set curr_sg to the chained
4001                  * list.  Modify the limit to the total count less the entries
4002                  * we've already set up.  Resume the scan at the list entry
4003                  * where the previous loop left off.
4004                  */
4005                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4006                 sg_limit = use_sg - sg_limit;
4007                 for_each_sg(sg, sg, sg_limit, i) {
4008                         hpsa_set_sg_descriptor(curr_sg, sg);
4009                         curr_sg++;
4010                 }
4011         }
4012
4013         /* Back the pointer up to the last entry and mark it as "last". */
4014         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4015
4016         if (use_sg + chained > h->maxSG)
4017                 h->maxSG = use_sg + chained;
4018
4019         if (chained) {
4020                 cp->Header.SGList = h->max_cmd_sg_entries;
4021                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4022                 if (hpsa_map_sg_chain_block(h, cp)) {
4023                         scsi_dma_unmap(cmd);
4024                         return -1;
4025                 }
4026                 return 0;
4027         }
4028
4029 sglist_finished:
4030
4031         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4032         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4033         return 0;
4034 }
4035
4036 #define IO_ACCEL_INELIGIBLE (1)
4037 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4038 {
4039         int is_write = 0;
4040         u32 block;
4041         u32 block_cnt;
4042
4043         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4044         switch (cdb[0]) {
4045         case WRITE_6:
4046         case WRITE_12:
4047                 is_write = 1;
4048         case READ_6:
4049         case READ_12:
4050                 if (*cdb_len == 6) {
4051                         block = get_unaligned_be16(&cdb[2]);
4052                         block_cnt = cdb[4];
4053                         if (block_cnt == 0)
4054                                 block_cnt = 256;
4055                 } else {
4056                         BUG_ON(*cdb_len != 12);
4057                         block = get_unaligned_be32(&cdb[2]);
4058                         block_cnt = get_unaligned_be32(&cdb[6]);
4059                 }
4060                 if (block_cnt > 0xffff)
4061                         return IO_ACCEL_INELIGIBLE;
4062
4063                 cdb[0] = is_write ? WRITE_10 : READ_10;
4064                 cdb[1] = 0;
4065                 cdb[2] = (u8) (block >> 24);
4066                 cdb[3] = (u8) (block >> 16);
4067                 cdb[4] = (u8) (block >> 8);
4068                 cdb[5] = (u8) (block);
4069                 cdb[6] = 0;
4070                 cdb[7] = (u8) (block_cnt >> 8);
4071                 cdb[8] = (u8) (block_cnt);
4072                 cdb[9] = 0;
4073                 *cdb_len = 10;
4074                 break;
4075         }
4076         return 0;
4077 }
4078
4079 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4080         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4081         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4082 {
4083         struct scsi_cmnd *cmd = c->scsi_cmd;
4084         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4085         unsigned int len;
4086         unsigned int total_len = 0;
4087         struct scatterlist *sg;
4088         u64 addr64;
4089         int use_sg, i;
4090         struct SGDescriptor *curr_sg;
4091         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4092
4093         /* TODO: implement chaining support */
4094         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4095                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4096                 return IO_ACCEL_INELIGIBLE;
4097         }
4098
4099         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4100
4101         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4102                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4103                 return IO_ACCEL_INELIGIBLE;
4104         }
4105
4106         c->cmd_type = CMD_IOACCEL1;
4107
4108         /* Adjust the DMA address to point to the accelerated command buffer */
4109         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4110                                 (c->cmdindex * sizeof(*cp));
4111         BUG_ON(c->busaddr & 0x0000007F);
4112
4113         use_sg = scsi_dma_map(cmd);
4114         if (use_sg < 0) {
4115                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4116                 return use_sg;
4117         }
4118
4119         if (use_sg) {
4120                 curr_sg = cp->SG;
4121                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4122                         addr64 = (u64) sg_dma_address(sg);
4123                         len  = sg_dma_len(sg);
4124                         total_len += len;
4125                         curr_sg->Addr = cpu_to_le64(addr64);
4126                         curr_sg->Len = cpu_to_le32(len);
4127                         curr_sg->Ext = cpu_to_le32(0);
4128                         curr_sg++;
4129                 }
4130                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4131
4132                 switch (cmd->sc_data_direction) {
4133                 case DMA_TO_DEVICE:
4134                         control |= IOACCEL1_CONTROL_DATA_OUT;
4135                         break;
4136                 case DMA_FROM_DEVICE:
4137                         control |= IOACCEL1_CONTROL_DATA_IN;
4138                         break;
4139                 case DMA_NONE:
4140                         control |= IOACCEL1_CONTROL_NODATAXFER;
4141                         break;
4142                 default:
4143                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4144                         cmd->sc_data_direction);
4145                         BUG();
4146                         break;
4147                 }
4148         } else {
4149                 control |= IOACCEL1_CONTROL_NODATAXFER;
4150         }
4151
4152         c->Header.SGList = use_sg;
4153         /* Fill out the command structure to submit */
4154         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4155         cp->transfer_len = cpu_to_le32(total_len);
4156         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4157                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4158         cp->control = cpu_to_le32(control);
4159         memcpy(cp->CDB, cdb, cdb_len);
4160         memcpy(cp->CISS_LUN, scsi3addr, 8);
4161         /* Tag was already set at init time. */
4162         enqueue_cmd_and_start_io(h, c);
4163         return 0;
4164 }
4165
4166 /*
4167  * Queue a command directly to a device behind the controller using the
4168  * I/O accelerator path.
4169  */
4170 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4171         struct CommandList *c)
4172 {
4173         struct scsi_cmnd *cmd = c->scsi_cmd;
4174         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4175
4176         c->phys_disk = dev;
4177
4178         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4179                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4180 }
4181
4182 /*
4183  * Set encryption parameters for the ioaccel2 request
4184  */
4185 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4186         struct CommandList *c, struct io_accel2_cmd *cp)
4187 {
4188         struct scsi_cmnd *cmd = c->scsi_cmd;
4189         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4190         struct raid_map_data *map = &dev->raid_map;
4191         u64 first_block;
4192
4193         /* Are we doing encryption on this device */
4194         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4195                 return;
4196         /* Set the data encryption key index. */
4197         cp->dekindex = map->dekindex;
4198
4199         /* Set the encryption enable flag, encoded into direction field. */
4200         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4201
4202         /* Set encryption tweak values based on logical block address
4203          * If block size is 512, tweak value is LBA.
4204          * For other block sizes, tweak is (LBA * block size)/ 512)
4205          */
4206         switch (cmd->cmnd[0]) {
4207         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4208         case WRITE_6:
4209         case READ_6:
4210                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4211                 break;
4212         case WRITE_10:
4213         case READ_10:
4214         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4215         case WRITE_12:
4216         case READ_12:
4217                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4218                 break;
4219         case WRITE_16:
4220         case READ_16:
4221                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4222                 break;
4223         default:
4224                 dev_err(&h->pdev->dev,
4225                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4226                         __func__, cmd->cmnd[0]);
4227                 BUG();
4228                 break;
4229         }
4230
4231         if (le32_to_cpu(map->volume_blk_size) != 512)
4232                 first_block = first_block *
4233                                 le32_to_cpu(map->volume_blk_size)/512;
4234
4235         cp->tweak_lower = cpu_to_le32(first_block);
4236         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4237 }
4238
4239 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4240         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4241         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4242 {
4243         struct scsi_cmnd *cmd = c->scsi_cmd;
4244         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4245         struct ioaccel2_sg_element *curr_sg;
4246         int use_sg, i;
4247         struct scatterlist *sg;
4248         u64 addr64;
4249         u32 len;
4250         u32 total_len = 0;
4251
4252         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4253
4254         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4255                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4256                 return IO_ACCEL_INELIGIBLE;
4257         }
4258
4259         c->cmd_type = CMD_IOACCEL2;
4260         /* Adjust the DMA address to point to the accelerated command buffer */
4261         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4262                                 (c->cmdindex * sizeof(*cp));
4263         BUG_ON(c->busaddr & 0x0000007F);
4264
4265         memset(cp, 0, sizeof(*cp));
4266         cp->IU_type = IOACCEL2_IU_TYPE;
4267
4268         use_sg = scsi_dma_map(cmd);
4269         if (use_sg < 0) {
4270                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4271                 return use_sg;
4272         }
4273
4274         if (use_sg) {
4275                 curr_sg = cp->sg;
4276                 if (use_sg > h->ioaccel_maxsg) {
4277                         addr64 = le64_to_cpu(
4278                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4279                         curr_sg->address = cpu_to_le64(addr64);
4280                         curr_sg->length = 0;
4281                         curr_sg->reserved[0] = 0;
4282                         curr_sg->reserved[1] = 0;
4283                         curr_sg->reserved[2] = 0;
4284                         curr_sg->chain_indicator = 0x80;
4285
4286                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4287                 }
4288                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4289                         addr64 = (u64) sg_dma_address(sg);
4290                         len  = sg_dma_len(sg);
4291                         total_len += len;
4292                         curr_sg->address = cpu_to_le64(addr64);
4293                         curr_sg->length = cpu_to_le32(len);
4294                         curr_sg->reserved[0] = 0;
4295                         curr_sg->reserved[1] = 0;
4296                         curr_sg->reserved[2] = 0;
4297                         curr_sg->chain_indicator = 0;
4298                         curr_sg++;
4299                 }
4300
4301                 switch (cmd->sc_data_direction) {
4302                 case DMA_TO_DEVICE:
4303                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4304                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4305                         break;
4306                 case DMA_FROM_DEVICE:
4307                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4308                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4309                         break;
4310                 case DMA_NONE:
4311                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4312                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4313                         break;
4314                 default:
4315                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4316                                 cmd->sc_data_direction);
4317                         BUG();
4318                         break;
4319                 }
4320         } else {
4321                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4322                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4323         }
4324
4325         /* Set encryption parameters, if necessary */
4326         set_encrypt_ioaccel2(h, c, cp);
4327
4328         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4329         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4330         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4331
4332         cp->data_len = cpu_to_le32(total_len);
4333         cp->err_ptr = cpu_to_le64(c->busaddr +
4334                         offsetof(struct io_accel2_cmd, error_data));
4335         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4336
4337         /* fill in sg elements */
4338         if (use_sg > h->ioaccel_maxsg) {
4339                 cp->sg_count = 1;
4340                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4341                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4342                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4343                         scsi_dma_unmap(cmd);
4344                         return -1;
4345                 }
4346         } else
4347                 cp->sg_count = (u8) use_sg;
4348
4349         enqueue_cmd_and_start_io(h, c);
4350         return 0;
4351 }
4352
4353 /*
4354  * Queue a command to the correct I/O accelerator path.
4355  */
4356 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4357         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4358         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4359 {
4360         /* Try to honor the device's queue depth */
4361         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4362                                         phys_disk->queue_depth) {
4363                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4364                 return IO_ACCEL_INELIGIBLE;
4365         }
4366         if (h->transMethod & CFGTBL_Trans_io_accel1)
4367                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4368                                                 cdb, cdb_len, scsi3addr,
4369                                                 phys_disk);
4370         else
4371                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4372                                                 cdb, cdb_len, scsi3addr,
4373                                                 phys_disk);
4374 }
4375
4376 static void raid_map_helper(struct raid_map_data *map,
4377                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4378 {
4379         if (offload_to_mirror == 0)  {
4380                 /* use physical disk in the first mirrored group. */
4381                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4382                 return;
4383         }
4384         do {
4385                 /* determine mirror group that *map_index indicates */
4386                 *current_group = *map_index /
4387                         le16_to_cpu(map->data_disks_per_row);
4388                 if (offload_to_mirror == *current_group)
4389                         continue;
4390                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4391                         /* select map index from next group */
4392                         *map_index += le16_to_cpu(map->data_disks_per_row);
4393                         (*current_group)++;
4394                 } else {
4395                         /* select map index from first group */
4396                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4397                         *current_group = 0;
4398                 }
4399         } while (offload_to_mirror != *current_group);
4400 }
4401
4402 /*
4403  * Attempt to perform offload RAID mapping for a logical volume I/O.
4404  */
4405 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4406         struct CommandList *c)
4407 {
4408         struct scsi_cmnd *cmd = c->scsi_cmd;
4409         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4410         struct raid_map_data *map = &dev->raid_map;
4411         struct raid_map_disk_data *dd = &map->data[0];
4412         int is_write = 0;
4413         u32 map_index;
4414         u64 first_block, last_block;
4415         u32 block_cnt;
4416         u32 blocks_per_row;
4417         u64 first_row, last_row;
4418         u32 first_row_offset, last_row_offset;
4419         u32 first_column, last_column;
4420         u64 r0_first_row, r0_last_row;
4421         u32 r5or6_blocks_per_row;
4422         u64 r5or6_first_row, r5or6_last_row;
4423         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4424         u32 r5or6_first_column, r5or6_last_column;
4425         u32 total_disks_per_row;
4426         u32 stripesize;
4427         u32 first_group, last_group, current_group;
4428         u32 map_row;
4429         u32 disk_handle;
4430         u64 disk_block;
4431         u32 disk_block_cnt;
4432         u8 cdb[16];
4433         u8 cdb_len;
4434         u16 strip_size;
4435 #if BITS_PER_LONG == 32
4436         u64 tmpdiv;
4437 #endif
4438         int offload_to_mirror;
4439
4440         /* check for valid opcode, get LBA and block count */
4441         switch (cmd->cmnd[0]) {
4442         case WRITE_6:
4443                 is_write = 1;
4444         case READ_6:
4445                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4446                 block_cnt = cmd->cmnd[4];
4447                 if (block_cnt == 0)
4448                         block_cnt = 256;
4449                 break;
4450         case WRITE_10:
4451                 is_write = 1;
4452         case READ_10:
4453                 first_block =
4454                         (((u64) cmd->cmnd[2]) << 24) |
4455                         (((u64) cmd->cmnd[3]) << 16) |
4456                         (((u64) cmd->cmnd[4]) << 8) |
4457                         cmd->cmnd[5];
4458                 block_cnt =
4459                         (((u32) cmd->cmnd[7]) << 8) |
4460                         cmd->cmnd[8];
4461                 break;
4462         case WRITE_12:
4463                 is_write = 1;
4464         case READ_12:
4465                 first_block =
4466                         (((u64) cmd->cmnd[2]) << 24) |
4467                         (((u64) cmd->cmnd[3]) << 16) |
4468                         (((u64) cmd->cmnd[4]) << 8) |
4469                         cmd->cmnd[5];
4470                 block_cnt =
4471                         (((u32) cmd->cmnd[6]) << 24) |
4472                         (((u32) cmd->cmnd[7]) << 16) |
4473                         (((u32) cmd->cmnd[8]) << 8) |
4474                 cmd->cmnd[9];
4475                 break;
4476         case WRITE_16:
4477                 is_write = 1;
4478         case READ_16:
4479                 first_block =
4480                         (((u64) cmd->cmnd[2]) << 56) |
4481                         (((u64) cmd->cmnd[3]) << 48) |
4482                         (((u64) cmd->cmnd[4]) << 40) |
4483                         (((u64) cmd->cmnd[5]) << 32) |
4484                         (((u64) cmd->cmnd[6]) << 24) |
4485                         (((u64) cmd->cmnd[7]) << 16) |
4486                         (((u64) cmd->cmnd[8]) << 8) |
4487                         cmd->cmnd[9];
4488                 block_cnt =
4489                         (((u32) cmd->cmnd[10]) << 24) |
4490                         (((u32) cmd->cmnd[11]) << 16) |
4491                         (((u32) cmd->cmnd[12]) << 8) |
4492                         cmd->cmnd[13];
4493                 break;
4494         default:
4495                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4496         }
4497         last_block = first_block + block_cnt - 1;
4498
4499         /* check for write to non-RAID-0 */
4500         if (is_write && dev->raid_level != 0)
4501                 return IO_ACCEL_INELIGIBLE;
4502
4503         /* check for invalid block or wraparound */
4504         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4505                 last_block < first_block)
4506                 return IO_ACCEL_INELIGIBLE;
4507
4508         /* calculate stripe information for the request */
4509         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4510                                 le16_to_cpu(map->strip_size);
4511         strip_size = le16_to_cpu(map->strip_size);
4512 #if BITS_PER_LONG == 32
4513         tmpdiv = first_block;
4514         (void) do_div(tmpdiv, blocks_per_row);
4515         first_row = tmpdiv;
4516         tmpdiv = last_block;
4517         (void) do_div(tmpdiv, blocks_per_row);
4518         last_row = tmpdiv;
4519         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4520         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4521         tmpdiv = first_row_offset;
4522         (void) do_div(tmpdiv, strip_size);
4523         first_column = tmpdiv;
4524         tmpdiv = last_row_offset;
4525         (void) do_div(tmpdiv, strip_size);
4526         last_column = tmpdiv;
4527 #else
4528         first_row = first_block / blocks_per_row;
4529         last_row = last_block / blocks_per_row;
4530         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4531         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4532         first_column = first_row_offset / strip_size;
4533         last_column = last_row_offset / strip_size;
4534 #endif
4535
4536         /* if this isn't a single row/column then give to the controller */
4537         if ((first_row != last_row) || (first_column != last_column))
4538                 return IO_ACCEL_INELIGIBLE;
4539
4540         /* proceeding with driver mapping */
4541         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4542                                 le16_to_cpu(map->metadata_disks_per_row);
4543         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4544                                 le16_to_cpu(map->row_cnt);
4545         map_index = (map_row * total_disks_per_row) + first_column;
4546
4547         switch (dev->raid_level) {
4548         case HPSA_RAID_0:
4549                 break; /* nothing special to do */
4550         case HPSA_RAID_1:
4551                 /* Handles load balance across RAID 1 members.
4552                  * (2-drive R1 and R10 with even # of drives.)
4553                  * Appropriate for SSDs, not optimal for HDDs
4554                  */
4555                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4556                 if (dev->offload_to_mirror)
4557                         map_index += le16_to_cpu(map->data_disks_per_row);
4558                 dev->offload_to_mirror = !dev->offload_to_mirror;
4559                 break;
4560         case HPSA_RAID_ADM:
4561                 /* Handles N-way mirrors  (R1-ADM)
4562                  * and R10 with # of drives divisible by 3.)
4563                  */
4564                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4565
4566                 offload_to_mirror = dev->offload_to_mirror;
4567                 raid_map_helper(map, offload_to_mirror,
4568                                 &map_index, &current_group);
4569                 /* set mirror group to use next time */
4570                 offload_to_mirror =
4571                         (offload_to_mirror >=
4572                         le16_to_cpu(map->layout_map_count) - 1)
4573                         ? 0 : offload_to_mirror + 1;
4574                 dev->offload_to_mirror = offload_to_mirror;
4575                 /* Avoid direct use of dev->offload_to_mirror within this
4576                  * function since multiple threads might simultaneously
4577                  * increment it beyond the range of dev->layout_map_count -1.
4578                  */
4579                 break;
4580         case HPSA_RAID_5:
4581         case HPSA_RAID_6:
4582                 if (le16_to_cpu(map->layout_map_count) <= 1)
4583                         break;
4584
4585                 /* Verify first and last block are in same RAID group */
4586                 r5or6_blocks_per_row =
4587                         le16_to_cpu(map->strip_size) *
4588                         le16_to_cpu(map->data_disks_per_row);
4589                 BUG_ON(r5or6_blocks_per_row == 0);
4590                 stripesize = r5or6_blocks_per_row *
4591                         le16_to_cpu(map->layout_map_count);
4592 #if BITS_PER_LONG == 32
4593                 tmpdiv = first_block;
4594                 first_group = do_div(tmpdiv, stripesize);
4595                 tmpdiv = first_group;
4596                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4597                 first_group = tmpdiv;
4598                 tmpdiv = last_block;
4599                 last_group = do_div(tmpdiv, stripesize);
4600                 tmpdiv = last_group;
4601                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4602                 last_group = tmpdiv;
4603 #else
4604                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4605                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4606 #endif
4607                 if (first_group != last_group)
4608                         return IO_ACCEL_INELIGIBLE;
4609
4610                 /* Verify request is in a single row of RAID 5/6 */
4611 #if BITS_PER_LONG == 32
4612                 tmpdiv = first_block;
4613                 (void) do_div(tmpdiv, stripesize);
4614                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4615                 tmpdiv = last_block;
4616                 (void) do_div(tmpdiv, stripesize);
4617                 r5or6_last_row = r0_last_row = tmpdiv;
4618 #else
4619                 first_row = r5or6_first_row = r0_first_row =
4620                                                 first_block / stripesize;
4621                 r5or6_last_row = r0_last_row = last_block / stripesize;
4622 #endif
4623                 if (r5or6_first_row != r5or6_last_row)
4624                         return IO_ACCEL_INELIGIBLE;
4625
4626
4627                 /* Verify request is in a single column */
4628 #if BITS_PER_LONG == 32
4629                 tmpdiv = first_block;
4630                 first_row_offset = do_div(tmpdiv, stripesize);
4631                 tmpdiv = first_row_offset;
4632                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4633                 r5or6_first_row_offset = first_row_offset;
4634                 tmpdiv = last_block;
4635                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4636                 tmpdiv = r5or6_last_row_offset;
4637                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4638                 tmpdiv = r5or6_first_row_offset;
4639                 (void) do_div(tmpdiv, map->strip_size);
4640                 first_column = r5or6_first_column = tmpdiv;
4641                 tmpdiv = r5or6_last_row_offset;
4642                 (void) do_div(tmpdiv, map->strip_size);
4643                 r5or6_last_column = tmpdiv;
4644 #else
4645                 first_row_offset = r5or6_first_row_offset =
4646                         (u32)((first_block % stripesize) %
4647                                                 r5or6_blocks_per_row);
4648
4649                 r5or6_last_row_offset =
4650                         (u32)((last_block % stripesize) %
4651                                                 r5or6_blocks_per_row);
4652
4653                 first_column = r5or6_first_column =
4654                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4655                 r5or6_last_column =
4656                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4657 #endif
4658                 if (r5or6_first_column != r5or6_last_column)
4659                         return IO_ACCEL_INELIGIBLE;
4660
4661                 /* Request is eligible */
4662                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4663                         le16_to_cpu(map->row_cnt);
4664
4665                 map_index = (first_group *
4666                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4667                         (map_row * total_disks_per_row) + first_column;
4668                 break;
4669         default:
4670                 return IO_ACCEL_INELIGIBLE;
4671         }
4672
4673         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4674                 return IO_ACCEL_INELIGIBLE;
4675
4676         c->phys_disk = dev->phys_disk[map_index];
4677
4678         disk_handle = dd[map_index].ioaccel_handle;
4679         disk_block = le64_to_cpu(map->disk_starting_blk) +
4680                         first_row * le16_to_cpu(map->strip_size) +
4681                         (first_row_offset - first_column *
4682                         le16_to_cpu(map->strip_size));
4683         disk_block_cnt = block_cnt;
4684
4685         /* handle differing logical/physical block sizes */
4686         if (map->phys_blk_shift) {
4687                 disk_block <<= map->phys_blk_shift;
4688                 disk_block_cnt <<= map->phys_blk_shift;
4689         }
4690         BUG_ON(disk_block_cnt > 0xffff);
4691
4692         /* build the new CDB for the physical disk I/O */
4693         if (disk_block > 0xffffffff) {
4694                 cdb[0] = is_write ? WRITE_16 : READ_16;
4695                 cdb[1] = 0;
4696                 cdb[2] = (u8) (disk_block >> 56);
4697                 cdb[3] = (u8) (disk_block >> 48);
4698                 cdb[4] = (u8) (disk_block >> 40);
4699                 cdb[5] = (u8) (disk_block >> 32);
4700                 cdb[6] = (u8) (disk_block >> 24);
4701                 cdb[7] = (u8) (disk_block >> 16);
4702                 cdb[8] = (u8) (disk_block >> 8);
4703                 cdb[9] = (u8) (disk_block);
4704                 cdb[10] = (u8) (disk_block_cnt >> 24);
4705                 cdb[11] = (u8) (disk_block_cnt >> 16);
4706                 cdb[12] = (u8) (disk_block_cnt >> 8);
4707                 cdb[13] = (u8) (disk_block_cnt);
4708                 cdb[14] = 0;
4709                 cdb[15] = 0;
4710                 cdb_len = 16;
4711         } else {
4712                 cdb[0] = is_write ? WRITE_10 : READ_10;
4713                 cdb[1] = 0;
4714                 cdb[2] = (u8) (disk_block >> 24);
4715                 cdb[3] = (u8) (disk_block >> 16);
4716                 cdb[4] = (u8) (disk_block >> 8);
4717                 cdb[5] = (u8) (disk_block);
4718                 cdb[6] = 0;
4719                 cdb[7] = (u8) (disk_block_cnt >> 8);
4720                 cdb[8] = (u8) (disk_block_cnt);
4721                 cdb[9] = 0;
4722                 cdb_len = 10;
4723         }
4724         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4725                                                 dev->scsi3addr,
4726                                                 dev->phys_disk[map_index]);
4727 }
4728
4729 /*
4730  * Submit commands down the "normal" RAID stack path
4731  * All callers to hpsa_ciss_submit must check lockup_detected
4732  * beforehand, before (opt.) and after calling cmd_alloc
4733  */
4734 static int hpsa_ciss_submit(struct ctlr_info *h,
4735         struct CommandList *c, struct scsi_cmnd *cmd,
4736         unsigned char scsi3addr[])
4737 {
4738         cmd->host_scribble = (unsigned char *) c;
4739         c->cmd_type = CMD_SCSI;
4740         c->scsi_cmd = cmd;
4741         c->Header.ReplyQueue = 0;  /* unused in simple mode */
4742         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4743         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4744
4745         /* Fill in the request block... */
4746
4747         c->Request.Timeout = 0;
4748         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4749         c->Request.CDBLen = cmd->cmd_len;
4750         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4751         switch (cmd->sc_data_direction) {
4752         case DMA_TO_DEVICE:
4753                 c->Request.type_attr_dir =
4754                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4755                 break;
4756         case DMA_FROM_DEVICE:
4757                 c->Request.type_attr_dir =
4758                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4759                 break;
4760         case DMA_NONE:
4761                 c->Request.type_attr_dir =
4762                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4763                 break;
4764         case DMA_BIDIRECTIONAL:
4765                 /* This can happen if a buggy application does a scsi passthru
4766                  * and sets both inlen and outlen to non-zero. ( see
4767                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4768                  */
4769
4770                 c->Request.type_attr_dir =
4771                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4772                 /* This is technically wrong, and hpsa controllers should
4773                  * reject it with CMD_INVALID, which is the most correct
4774                  * response, but non-fibre backends appear to let it
4775                  * slide by, and give the same results as if this field
4776                  * were set correctly.  Either way is acceptable for
4777                  * our purposes here.
4778                  */
4779
4780                 break;
4781
4782         default:
4783                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4784                         cmd->sc_data_direction);
4785                 BUG();
4786                 break;
4787         }
4788
4789         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4790                 hpsa_cmd_resolve_and_free(h, c);
4791                 return SCSI_MLQUEUE_HOST_BUSY;
4792         }
4793         enqueue_cmd_and_start_io(h, c);
4794         /* the cmd'll come back via intr handler in complete_scsi_command()  */
4795         return 0;
4796 }
4797
4798 static void hpsa_cmd_init(struct ctlr_info *h, int index,
4799                                 struct CommandList *c)
4800 {
4801         dma_addr_t cmd_dma_handle, err_dma_handle;
4802
4803         /* Zero out all of commandlist except the last field, refcount */
4804         memset(c, 0, offsetof(struct CommandList, refcount));
4805         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
4806         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4807         c->err_info = h->errinfo_pool + index;
4808         memset(c->err_info, 0, sizeof(*c->err_info));
4809         err_dma_handle = h->errinfo_pool_dhandle
4810             + index * sizeof(*c->err_info);
4811         c->cmdindex = index;
4812         c->busaddr = (u32) cmd_dma_handle;
4813         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4814         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4815         c->h = h;
4816         c->scsi_cmd = SCSI_CMD_IDLE;
4817 }
4818
4819 static void hpsa_preinitialize_commands(struct ctlr_info *h)
4820 {
4821         int i;
4822
4823         for (i = 0; i < h->nr_cmds; i++) {
4824                 struct CommandList *c = h->cmd_pool + i;
4825
4826                 hpsa_cmd_init(h, i, c);
4827                 atomic_set(&c->refcount, 0);
4828         }
4829 }
4830
4831 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
4832                                 struct CommandList *c)
4833 {
4834         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4835
4836         BUG_ON(c->cmdindex != index);
4837
4838         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4839         memset(c->err_info, 0, sizeof(*c->err_info));
4840         c->busaddr = (u32) cmd_dma_handle;
4841 }
4842
4843 static int hpsa_ioaccel_submit(struct ctlr_info *h,
4844                 struct CommandList *c, struct scsi_cmnd *cmd,
4845                 unsigned char *scsi3addr)
4846 {
4847         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4848         int rc = IO_ACCEL_INELIGIBLE;
4849
4850         cmd->host_scribble = (unsigned char *) c;
4851
4852         if (dev->offload_enabled) {
4853                 hpsa_cmd_init(h, c->cmdindex, c);
4854                 c->cmd_type = CMD_SCSI;
4855                 c->scsi_cmd = cmd;
4856                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
4857                 if (rc < 0)     /* scsi_dma_map failed. */
4858                         rc = SCSI_MLQUEUE_HOST_BUSY;
4859         } else if (dev->hba_ioaccel_enabled) {
4860                 hpsa_cmd_init(h, c->cmdindex, c);
4861                 c->cmd_type = CMD_SCSI;
4862                 c->scsi_cmd = cmd;
4863                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
4864                 if (rc < 0)     /* scsi_dma_map failed. */
4865                         rc = SCSI_MLQUEUE_HOST_BUSY;
4866         }
4867         return rc;
4868 }
4869
4870 static void hpsa_command_resubmit_worker(struct work_struct *work)
4871 {
4872         struct scsi_cmnd *cmd;
4873         struct hpsa_scsi_dev_t *dev;
4874         struct CommandList *c = container_of(work, struct CommandList, work);
4875
4876         cmd = c->scsi_cmd;
4877         dev = cmd->device->hostdata;
4878         if (!dev) {
4879                 cmd->result = DID_NO_CONNECT << 16;
4880                 return hpsa_cmd_free_and_done(c->h, c, cmd);
4881         }
4882         if (c->reset_pending)
4883                 return hpsa_cmd_resolve_and_free(c->h, c);
4884         if (c->abort_pending)
4885                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
4886         if (c->cmd_type == CMD_IOACCEL2) {
4887                 struct ctlr_info *h = c->h;
4888                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
4889                 int rc;
4890
4891                 if (c2->error_data.serv_response ==
4892                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
4893                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
4894                         if (rc == 0)
4895                                 return;
4896                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4897                                 /*
4898                                  * If we get here, it means dma mapping failed.
4899                                  * Try again via scsi mid layer, which will
4900                                  * then get SCSI_MLQUEUE_HOST_BUSY.
4901                                  */
4902                                 cmd->result = DID_IMM_RETRY << 16;
4903                                 return hpsa_cmd_free_and_done(h, c, cmd);
4904                         }
4905                         /* else, fall thru and resubmit down CISS path */
4906                 }
4907         }
4908         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4909         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4910                 /*
4911                  * If we get here, it means dma mapping failed. Try
4912                  * again via scsi mid layer, which will then get
4913                  * SCSI_MLQUEUE_HOST_BUSY.
4914                  *
4915                  * hpsa_ciss_submit will have already freed c
4916                  * if it encountered a dma mapping failure.
4917                  */
4918                 cmd->result = DID_IMM_RETRY << 16;
4919                 cmd->scsi_done(cmd);
4920         }
4921 }
4922
4923 /* Running in struct Scsi_Host->host_lock less mode */
4924 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4925 {
4926         struct ctlr_info *h;
4927         struct hpsa_scsi_dev_t *dev;
4928         unsigned char scsi3addr[8];
4929         struct CommandList *c;
4930         int rc = 0;
4931
4932         /* Get the ptr to our adapter structure out of cmd->host. */
4933         h = sdev_to_hba(cmd->device);
4934
4935         BUG_ON(cmd->request->tag < 0);
4936
4937         dev = cmd->device->hostdata;
4938         if (!dev) {
4939                 cmd->result = DID_NO_CONNECT << 16;
4940                 cmd->scsi_done(cmd);
4941                 return 0;
4942         }
4943
4944         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4945
4946         if (unlikely(lockup_detected(h))) {
4947                 cmd->result = DID_NO_CONNECT << 16;
4948                 cmd->scsi_done(cmd);
4949                 return 0;
4950         }
4951         c = cmd_tagged_alloc(h, cmd);
4952
4953         /*
4954          * Call alternate submit routine for I/O accelerated commands.
4955          * Retries always go down the normal I/O path.
4956          */
4957         if (likely(cmd->retries == 0 &&
4958                 cmd->request->cmd_type == REQ_TYPE_FS &&
4959                 h->acciopath_status)) {
4960                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
4961                 if (rc == 0)
4962                         return 0;
4963                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4964                         hpsa_cmd_resolve_and_free(h, c);
4965                         return SCSI_MLQUEUE_HOST_BUSY;
4966                 }
4967         }
4968         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4969 }
4970
4971 static void hpsa_scan_complete(struct ctlr_info *h)
4972 {
4973         unsigned long flags;
4974
4975         spin_lock_irqsave(&h->scan_lock, flags);
4976         h->scan_finished = 1;
4977         wake_up_all(&h->scan_wait_queue);
4978         spin_unlock_irqrestore(&h->scan_lock, flags);
4979 }
4980
4981 static void hpsa_scan_start(struct Scsi_Host *sh)
4982 {
4983         struct ctlr_info *h = shost_to_hba(sh);
4984         unsigned long flags;
4985
4986         /*
4987          * Don't let rescans be initiated on a controller known to be locked
4988          * up.  If the controller locks up *during* a rescan, that thread is
4989          * probably hosed, but at least we can prevent new rescan threads from
4990          * piling up on a locked up controller.
4991          */
4992         if (unlikely(lockup_detected(h)))
4993                 return hpsa_scan_complete(h);
4994
4995         /* wait until any scan already in progress is finished. */
4996         while (1) {
4997                 spin_lock_irqsave(&h->scan_lock, flags);
4998                 if (h->scan_finished)
4999                         break;
5000                 spin_unlock_irqrestore(&h->scan_lock, flags);
5001                 wait_event(h->scan_wait_queue, h->scan_finished);
5002                 /* Note: We don't need to worry about a race between this
5003                  * thread and driver unload because the midlayer will
5004                  * have incremented the reference count, so unload won't
5005                  * happen if we're in here.
5006                  */
5007         }
5008         h->scan_finished = 0; /* mark scan as in progress */
5009         spin_unlock_irqrestore(&h->scan_lock, flags);
5010
5011         if (unlikely(lockup_detected(h)))
5012                 return hpsa_scan_complete(h);
5013
5014         hpsa_update_scsi_devices(h);
5015
5016         hpsa_scan_complete(h);
5017 }
5018
5019 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5020 {
5021         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5022
5023         if (!logical_drive)
5024                 return -ENODEV;
5025
5026         if (qdepth < 1)
5027                 qdepth = 1;
5028         else if (qdepth > logical_drive->queue_depth)
5029                 qdepth = logical_drive->queue_depth;
5030
5031         return scsi_change_queue_depth(sdev, qdepth);
5032 }
5033
5034 static int hpsa_scan_finished(struct Scsi_Host *sh,
5035         unsigned long elapsed_time)
5036 {
5037         struct ctlr_info *h = shost_to_hba(sh);
5038         unsigned long flags;
5039         int finished;
5040
5041         spin_lock_irqsave(&h->scan_lock, flags);
5042         finished = h->scan_finished;
5043         spin_unlock_irqrestore(&h->scan_lock, flags);
5044         return finished;
5045 }
5046
5047 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5048 {
5049         struct Scsi_Host *sh;
5050         int error;
5051
5052         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5053         if (sh == NULL) {
5054                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5055                 return -ENOMEM;
5056         }
5057
5058         sh->io_port = 0;
5059         sh->n_io_port = 0;
5060         sh->this_id = -1;
5061         sh->max_channel = 3;
5062         sh->max_cmd_len = MAX_COMMAND_SIZE;
5063         sh->max_lun = HPSA_MAX_LUN;
5064         sh->max_id = HPSA_MAX_LUN;
5065         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5066         sh->cmd_per_lun = sh->can_queue;
5067         sh->sg_tablesize = h->maxsgentries;
5068         sh->hostdata[0] = (unsigned long) h;
5069         sh->irq = h->intr[h->intr_mode];
5070         sh->unique_id = sh->irq;
5071         error = scsi_init_shared_tag_map(sh, sh->can_queue);
5072         if (error) {
5073                 dev_err(&h->pdev->dev,
5074                         "%s: scsi_init_shared_tag_map failed for controller %d\n",
5075                         __func__, h->ctlr);
5076                         scsi_host_put(sh);
5077                         return error;
5078         }
5079         h->scsi_host = sh;
5080         return 0;
5081 }
5082
5083 static int hpsa_scsi_add_host(struct ctlr_info *h)
5084 {
5085         int rv;
5086
5087         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5088         if (rv) {
5089                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5090                 return rv;
5091         }
5092         scsi_scan_host(h->scsi_host);
5093         return 0;
5094 }
5095
5096 /*
5097  * The block layer has already gone to the trouble of picking out a unique,
5098  * small-integer tag for this request.  We use an offset from that value as
5099  * an index to select our command block.  (The offset allows us to reserve the
5100  * low-numbered entries for our own uses.)
5101  */
5102 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5103 {
5104         int idx = scmd->request->tag;
5105
5106         if (idx < 0)
5107                 return idx;
5108
5109         /* Offset to leave space for internal cmds. */
5110         return idx += HPSA_NRESERVED_CMDS;
5111 }
5112
5113 /*
5114  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5115  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5116  */
5117 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5118                                 struct CommandList *c, unsigned char lunaddr[],
5119                                 int reply_queue)
5120 {
5121         int rc;
5122
5123         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5124         (void) fill_cmd(c, TEST_UNIT_READY, h,
5125                         NULL, 0, 0, lunaddr, TYPE_CMD);
5126         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5127         if (rc)
5128                 return rc;
5129         /* no unmap needed here because no data xfer. */
5130
5131         /* Check if the unit is already ready. */
5132         if (c->err_info->CommandStatus == CMD_SUCCESS)
5133                 return 0;
5134
5135         /*
5136          * The first command sent after reset will receive "unit attention" to
5137          * indicate that the LUN has been reset...this is actually what we're
5138          * looking for (but, success is good too).
5139          */
5140         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5141                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5142                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5143                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5144                 return 0;
5145
5146         return 1;
5147 }
5148
5149 /*
5150  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5151  * returns zero when the unit is ready, and non-zero when giving up.
5152  */
5153 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5154                                 struct CommandList *c,
5155                                 unsigned char lunaddr[], int reply_queue)
5156 {
5157         int rc;
5158         int count = 0;
5159         int waittime = 1; /* seconds */
5160
5161         /* Send test unit ready until device ready, or give up. */
5162         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5163
5164                 /*
5165                  * Wait for a bit.  do this first, because if we send
5166                  * the TUR right away, the reset will just abort it.
5167                  */
5168                 msleep(1000 * waittime);
5169
5170                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5171                 if (!rc)
5172                         break;
5173
5174                 /* Increase wait time with each try, up to a point. */
5175                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5176                         waittime *= 2;
5177
5178                 dev_warn(&h->pdev->dev,
5179                          "waiting %d secs for device to become ready.\n",
5180                          waittime);
5181         }
5182
5183         return rc;
5184 }
5185
5186 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5187                                            unsigned char lunaddr[],
5188                                            int reply_queue)
5189 {
5190         int first_queue;
5191         int last_queue;
5192         int rq;
5193         int rc = 0;
5194         struct CommandList *c;
5195
5196         c = cmd_alloc(h);
5197
5198         /*
5199          * If no specific reply queue was requested, then send the TUR
5200          * repeatedly, requesting a reply on each reply queue; otherwise execute
5201          * the loop exactly once using only the specified queue.
5202          */
5203         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5204                 first_queue = 0;
5205                 last_queue = h->nreply_queues - 1;
5206         } else {
5207                 first_queue = reply_queue;
5208                 last_queue = reply_queue;
5209         }
5210
5211         for (rq = first_queue; rq <= last_queue; rq++) {
5212                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5213                 if (rc)
5214                         break;
5215         }
5216
5217         if (rc)
5218                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5219         else
5220                 dev_warn(&h->pdev->dev, "device is ready.\n");
5221
5222         cmd_free(h, c);
5223         return rc;
5224 }
5225
5226 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5227  * complaining.  Doing a host- or bus-reset can't do anything good here.
5228  */
5229 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5230 {
5231         int rc;
5232         struct ctlr_info *h;
5233         struct hpsa_scsi_dev_t *dev;
5234         u8 reset_type;
5235         char msg[48];
5236
5237         /* find the controller to which the command to be aborted was sent */
5238         h = sdev_to_hba(scsicmd->device);
5239         if (h == NULL) /* paranoia */
5240                 return FAILED;
5241
5242         if (lockup_detected(h))
5243                 return FAILED;
5244
5245         dev = scsicmd->device->hostdata;
5246         if (!dev) {
5247                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5248                 return FAILED;
5249         }
5250
5251         /* if controller locked up, we can guarantee command won't complete */
5252         if (lockup_detected(h)) {
5253                 snprintf(msg, sizeof(msg),
5254                          "cmd %d RESET FAILED, lockup detected",
5255                          hpsa_get_cmd_index(scsicmd));
5256                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5257                 return FAILED;
5258         }
5259
5260         /* this reset request might be the result of a lockup; check */
5261         if (detect_controller_lockup(h)) {
5262                 snprintf(msg, sizeof(msg),
5263                          "cmd %d RESET FAILED, new lockup detected",
5264                          hpsa_get_cmd_index(scsicmd));
5265                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5266                 return FAILED;
5267         }
5268
5269         /* Do not attempt on controller */
5270         if (is_hba_lunid(dev->scsi3addr))
5271                 return SUCCESS;
5272
5273         if (is_logical_dev_addr_mode(dev->scsi3addr))
5274                 reset_type = HPSA_DEVICE_RESET_MSG;
5275         else
5276                 reset_type = HPSA_PHYS_TARGET_RESET;
5277
5278         sprintf(msg, "resetting %s",
5279                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5280         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5281
5282         h->reset_in_progress = 1;
5283
5284         /* send a reset to the SCSI LUN which the command was sent to */
5285         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5286                            DEFAULT_REPLY_QUEUE);
5287         sprintf(msg, "reset %s %s",
5288                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5289                 rc == 0 ? "completed successfully" : "failed");
5290         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5291         h->reset_in_progress = 0;
5292         return rc == 0 ? SUCCESS : FAILED;
5293 }
5294
5295 static void swizzle_abort_tag(u8 *tag)
5296 {
5297         u8 original_tag[8];
5298
5299         memcpy(original_tag, tag, 8);
5300         tag[0] = original_tag[3];
5301         tag[1] = original_tag[2];
5302         tag[2] = original_tag[1];
5303         tag[3] = original_tag[0];
5304         tag[4] = original_tag[7];
5305         tag[5] = original_tag[6];
5306         tag[6] = original_tag[5];
5307         tag[7] = original_tag[4];
5308 }
5309
5310 static void hpsa_get_tag(struct ctlr_info *h,
5311         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5312 {
5313         u64 tag;
5314         if (c->cmd_type == CMD_IOACCEL1) {
5315                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5316                         &h->ioaccel_cmd_pool[c->cmdindex];
5317                 tag = le64_to_cpu(cm1->tag);
5318                 *tagupper = cpu_to_le32(tag >> 32);
5319                 *taglower = cpu_to_le32(tag);
5320                 return;
5321         }
5322         if (c->cmd_type == CMD_IOACCEL2) {
5323                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5324                         &h->ioaccel2_cmd_pool[c->cmdindex];
5325                 /* upper tag not used in ioaccel2 mode */
5326                 memset(tagupper, 0, sizeof(*tagupper));
5327                 *taglower = cm2->Tag;
5328                 return;
5329         }
5330         tag = le64_to_cpu(c->Header.tag);
5331         *tagupper = cpu_to_le32(tag >> 32);
5332         *taglower = cpu_to_le32(tag);
5333 }
5334
5335 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5336         struct CommandList *abort, int reply_queue)
5337 {
5338         int rc = IO_OK;
5339         struct CommandList *c;
5340         struct ErrorInfo *ei;
5341         __le32 tagupper, taglower;
5342
5343         c = cmd_alloc(h);
5344
5345         /* fill_cmd can't fail here, no buffer to map */
5346         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5347                 0, 0, scsi3addr, TYPE_MSG);
5348         if (h->needs_abort_tags_swizzled)
5349                 swizzle_abort_tag(&c->Request.CDB[4]);
5350         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5351         hpsa_get_tag(h, abort, &taglower, &tagupper);
5352         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5353                 __func__, tagupper, taglower);
5354         /* no unmap needed here because no data xfer. */
5355
5356         ei = c->err_info;
5357         switch (ei->CommandStatus) {
5358         case CMD_SUCCESS:
5359                 break;
5360         case CMD_TMF_STATUS:
5361                 rc = hpsa_evaluate_tmf_status(h, c);
5362                 break;
5363         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5364                 rc = -1;
5365                 break;
5366         default:
5367                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5368                         __func__, tagupper, taglower);
5369                 hpsa_scsi_interpret_error(h, c);
5370                 rc = -1;
5371                 break;
5372         }
5373         cmd_free(h, c);
5374         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5375                 __func__, tagupper, taglower);
5376         return rc;
5377 }
5378
5379 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5380         struct CommandList *command_to_abort, int reply_queue)
5381 {
5382         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5383         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5384         struct io_accel2_cmd *c2a =
5385                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5386         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5387         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5388
5389         /*
5390          * We're overlaying struct hpsa_tmf_struct on top of something which
5391          * was allocated as a struct io_accel2_cmd, so we better be sure it
5392          * actually fits, and doesn't overrun the error info space.
5393          */
5394         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5395                         sizeof(struct io_accel2_cmd));
5396         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5397                         offsetof(struct hpsa_tmf_struct, error_len) +
5398                                 sizeof(ac->error_len));
5399
5400         c->cmd_type = IOACCEL2_TMF;
5401         c->scsi_cmd = SCSI_CMD_BUSY;
5402
5403         /* Adjust the DMA address to point to the accelerated command buffer */
5404         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5405                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5406         BUG_ON(c->busaddr & 0x0000007F);
5407
5408         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5409         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5410         ac->reply_queue = reply_queue;
5411         ac->tmf = IOACCEL2_TMF_ABORT;
5412         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5413         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5414         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5415         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5416         ac->error_ptr = cpu_to_le64(c->busaddr +
5417                         offsetof(struct io_accel2_cmd, error_data));
5418         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5419 }
5420
5421 /* ioaccel2 path firmware cannot handle abort task requests.
5422  * Change abort requests to physical target reset, and send to the
5423  * address of the physical disk used for the ioaccel 2 command.
5424  * Return 0 on success (IO_OK)
5425  *       -1 on failure
5426  */
5427
5428 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5429         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5430 {
5431         int rc = IO_OK;
5432         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5433         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5434         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5435         unsigned char *psa = &phys_scsi3addr[0];
5436
5437         /* Get a pointer to the hpsa logical device. */
5438         scmd = abort->scsi_cmd;
5439         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5440         if (dev == NULL) {
5441                 dev_warn(&h->pdev->dev,
5442                         "Cannot abort: no device pointer for command.\n");
5443                         return -1; /* not abortable */
5444         }
5445
5446         if (h->raid_offload_debug > 0)
5447                 dev_info(&h->pdev->dev,
5448                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5449                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5450                         "Reset as abort",
5451                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5452                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5453
5454         if (!dev->offload_enabled) {
5455                 dev_warn(&h->pdev->dev,
5456                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5457                 return -1; /* not abortable */
5458         }
5459
5460         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5461         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5462                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5463                 return -1; /* not abortable */
5464         }
5465
5466         /* send the reset */
5467         if (h->raid_offload_debug > 0)
5468                 dev_info(&h->pdev->dev,
5469                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5470                         psa[0], psa[1], psa[2], psa[3],
5471                         psa[4], psa[5], psa[6], psa[7]);
5472         rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5473         if (rc != 0) {
5474                 dev_warn(&h->pdev->dev,
5475                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5476                         psa[0], psa[1], psa[2], psa[3],
5477                         psa[4], psa[5], psa[6], psa[7]);
5478                 return rc; /* failed to reset */
5479         }
5480
5481         /* wait for device to recover */
5482         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5483                 dev_warn(&h->pdev->dev,
5484                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5485                         psa[0], psa[1], psa[2], psa[3],
5486                         psa[4], psa[5], psa[6], psa[7]);
5487                 return -1;  /* failed to recover */
5488         }
5489
5490         /* device recovered */
5491         dev_info(&h->pdev->dev,
5492                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5493                 psa[0], psa[1], psa[2], psa[3],
5494                 psa[4], psa[5], psa[6], psa[7]);
5495
5496         return rc; /* success */
5497 }
5498
5499 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5500         struct CommandList *abort, int reply_queue)
5501 {
5502         int rc = IO_OK;
5503         struct CommandList *c;
5504         __le32 taglower, tagupper;
5505         struct hpsa_scsi_dev_t *dev;
5506         struct io_accel2_cmd *c2;
5507
5508         dev = abort->scsi_cmd->device->hostdata;
5509         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5510                 return -1;
5511
5512         c = cmd_alloc(h);
5513         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5514         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5515         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5516         hpsa_get_tag(h, abort, &taglower, &tagupper);
5517         dev_dbg(&h->pdev->dev,
5518                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5519                 __func__, tagupper, taglower);
5520         /* no unmap needed here because no data xfer. */
5521
5522         dev_dbg(&h->pdev->dev,
5523                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5524                 __func__, tagupper, taglower, c2->error_data.serv_response);
5525         switch (c2->error_data.serv_response) {
5526         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5527         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5528                 rc = 0;
5529                 break;
5530         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5531         case IOACCEL2_SERV_RESPONSE_FAILURE:
5532         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5533                 rc = -1;
5534                 break;
5535         default:
5536                 dev_warn(&h->pdev->dev,
5537                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5538                         __func__, tagupper, taglower,
5539                         c2->error_data.serv_response);
5540                 rc = -1;
5541         }
5542         cmd_free(h, c);
5543         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5544                 tagupper, taglower);
5545         return rc;
5546 }
5547
5548 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5549         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5550 {
5551         /*
5552          * ioccelerator mode 2 commands should be aborted via the
5553          * accelerated path, since RAID path is unaware of these commands,
5554          * but not all underlying firmware can handle abort TMF.
5555          * Change abort to physical device reset when abort TMF is unsupported.
5556          */
5557         if (abort->cmd_type == CMD_IOACCEL2) {
5558                 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5559                         return hpsa_send_abort_ioaccel2(h, abort,
5560                                                 reply_queue);
5561                 else
5562                         return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5563                                                         abort, reply_queue);
5564         }
5565         return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5566 }
5567
5568 /* Find out which reply queue a command was meant to return on */
5569 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5570                                         struct CommandList *c)
5571 {
5572         if (c->cmd_type == CMD_IOACCEL2)
5573                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5574         return c->Header.ReplyQueue;
5575 }
5576
5577 /*
5578  * Limit concurrency of abort commands to prevent
5579  * over-subscription of commands
5580  */
5581 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5582 {
5583 #define ABORT_CMD_WAIT_MSECS 5000
5584         return !wait_event_timeout(h->abort_cmd_wait_queue,
5585                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5586                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5587 }
5588
5589 /* Send an abort for the specified command.
5590  *      If the device and controller support it,
5591  *              send a task abort request.
5592  */
5593 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5594 {
5595
5596         int rc;
5597         struct ctlr_info *h;
5598         struct hpsa_scsi_dev_t *dev;
5599         struct CommandList *abort; /* pointer to command to be aborted */
5600         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
5601         char msg[256];          /* For debug messaging. */
5602         int ml = 0;
5603         __le32 tagupper, taglower;
5604         int refcount, reply_queue;
5605
5606         if (sc == NULL)
5607                 return FAILED;
5608
5609         if (sc->device == NULL)
5610                 return FAILED;
5611
5612         /* Find the controller of the command to be aborted */
5613         h = sdev_to_hba(sc->device);
5614         if (h == NULL)
5615                 return FAILED;
5616
5617         /* Find the device of the command to be aborted */
5618         dev = sc->device->hostdata;
5619         if (!dev) {
5620                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5621                                 msg);
5622                 return FAILED;
5623         }
5624
5625         /* If controller locked up, we can guarantee command won't complete */
5626         if (lockup_detected(h)) {
5627                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5628                                         "ABORT FAILED, lockup detected");
5629                 return FAILED;
5630         }
5631
5632         /* This is a good time to check if controller lockup has occurred */
5633         if (detect_controller_lockup(h)) {
5634                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5635                                         "ABORT FAILED, new lockup detected");
5636                 return FAILED;
5637         }
5638
5639         /* Check that controller supports some kind of task abort */
5640         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5641                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5642                 return FAILED;
5643
5644         memset(msg, 0, sizeof(msg));
5645         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5646                 h->scsi_host->host_no, sc->device->channel,
5647                 sc->device->id, sc->device->lun,
5648                 "Aborting command", sc);
5649
5650         /* Get SCSI command to be aborted */
5651         abort = (struct CommandList *) sc->host_scribble;
5652         if (abort == NULL) {
5653                 /* This can happen if the command already completed. */
5654                 return SUCCESS;
5655         }
5656         refcount = atomic_inc_return(&abort->refcount);
5657         if (refcount == 1) { /* Command is done already. */
5658                 cmd_free(h, abort);
5659                 return SUCCESS;
5660         }
5661
5662         /* Don't bother trying the abort if we know it won't work. */
5663         if (abort->cmd_type != CMD_IOACCEL2 &&
5664                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5665                 cmd_free(h, abort);
5666                 return FAILED;
5667         }
5668
5669         /*
5670          * Check that we're aborting the right command.
5671          * It's possible the CommandList already completed and got re-used.
5672          */
5673         if (abort->scsi_cmd != sc) {
5674                 cmd_free(h, abort);
5675                 return SUCCESS;
5676         }
5677
5678         abort->abort_pending = true;
5679         hpsa_get_tag(h, abort, &taglower, &tagupper);
5680         reply_queue = hpsa_extract_reply_queue(h, abort);
5681         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5682         as  = abort->scsi_cmd;
5683         if (as != NULL)
5684                 ml += sprintf(msg+ml,
5685                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5686                         as->cmd_len, as->cmnd[0], as->cmnd[1],
5687                         as->serial_number);
5688         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5689         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5690
5691         /*
5692          * Command is in flight, or possibly already completed
5693          * by the firmware (but not to the scsi mid layer) but we can't
5694          * distinguish which.  Send the abort down.
5695          */
5696         if (wait_for_available_abort_cmd(h)) {
5697                 dev_warn(&h->pdev->dev,
5698                         "%s FAILED, timeout waiting for an abort command to become available.\n",
5699                         msg);
5700                 cmd_free(h, abort);
5701                 return FAILED;
5702         }
5703         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5704         atomic_inc(&h->abort_cmds_available);
5705         wake_up_all(&h->abort_cmd_wait_queue);
5706         if (rc != 0) {
5707                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5708                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5709                                 "FAILED to abort command");
5710                 cmd_free(h, abort);
5711                 return FAILED;
5712         }
5713         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5714         wait_event(h->event_sync_wait_queue,
5715                    abort->scsi_cmd != sc || lockup_detected(h));
5716         cmd_free(h, abort);
5717         return !lockup_detected(h) ? SUCCESS : FAILED;
5718 }
5719
5720 /*
5721  * For operations with an associated SCSI command, a command block is allocated
5722  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5723  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5724  * the complement, although cmd_free() may be called instead.
5725  */
5726 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5727                                             struct scsi_cmnd *scmd)
5728 {
5729         int idx = hpsa_get_cmd_index(scmd);
5730         struct CommandList *c = h->cmd_pool + idx;
5731
5732         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5733                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5734                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5735                 /* The index value comes from the block layer, so if it's out of
5736                  * bounds, it's probably not our bug.
5737                  */
5738                 BUG();
5739         }
5740
5741         atomic_inc(&c->refcount);
5742         if (unlikely(!hpsa_is_cmd_idle(c))) {
5743                 /*
5744                  * We expect that the SCSI layer will hand us a unique tag
5745                  * value.  Thus, there should never be a collision here between
5746                  * two requests...because if the selected command isn't idle
5747                  * then someone is going to be very disappointed.
5748                  */
5749                 dev_err(&h->pdev->dev,
5750                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5751                         idx);
5752                 if (c->scsi_cmd != NULL)
5753                         scsi_print_command(c->scsi_cmd);
5754                 scsi_print_command(scmd);
5755         }
5756
5757         hpsa_cmd_partial_init(h, idx, c);
5758         return c;
5759 }
5760
5761 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5762 {
5763         /*
5764          * Release our reference to the block.  We don't need to do anything
5765          * else to free it, because it is accessed by index.  (There's no point
5766          * in checking the result of the decrement, since we cannot guarantee
5767          * that there isn't a concurrent abort which is also accessing it.)
5768          */
5769         (void)atomic_dec(&c->refcount);
5770 }
5771
5772 /*
5773  * For operations that cannot sleep, a command block is allocated at init,
5774  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5775  * which ones are free or in use.  Lock must be held when calling this.
5776  * cmd_free() is the complement.
5777  * This function never gives up and returns NULL.  If it hangs,
5778  * another thread must call cmd_free() to free some tags.
5779  */
5780
5781 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5782 {
5783         struct CommandList *c;
5784         int refcount, i;
5785         int offset = 0;
5786
5787         /*
5788          * There is some *extremely* small but non-zero chance that that
5789          * multiple threads could get in here, and one thread could
5790          * be scanning through the list of bits looking for a free
5791          * one, but the free ones are always behind him, and other
5792          * threads sneak in behind him and eat them before he can
5793          * get to them, so that while there is always a free one, a
5794          * very unlucky thread might be starved anyway, never able to
5795          * beat the other threads.  In reality, this happens so
5796          * infrequently as to be indistinguishable from never.
5797          *
5798          * Note that we start allocating commands before the SCSI host structure
5799          * is initialized.  Since the search starts at bit zero, this
5800          * all works, since we have at least one command structure available;
5801          * however, it means that the structures with the low indexes have to be
5802          * reserved for driver-initiated requests, while requests from the block
5803          * layer will use the higher indexes.
5804          */
5805
5806         for (;;) {
5807                 i = find_next_zero_bit(h->cmd_pool_bits,
5808                                         HPSA_NRESERVED_CMDS,
5809                                         offset);
5810                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5811                         offset = 0;
5812                         continue;
5813                 }
5814                 c = h->cmd_pool + i;
5815                 refcount = atomic_inc_return(&c->refcount);
5816                 if (unlikely(refcount > 1)) {
5817                         cmd_free(h, c); /* already in use */
5818                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
5819                         continue;
5820                 }
5821                 set_bit(i & (BITS_PER_LONG - 1),
5822                         h->cmd_pool_bits + (i / BITS_PER_LONG));
5823                 break; /* it's ours now. */
5824         }
5825         hpsa_cmd_partial_init(h, i, c);
5826         return c;
5827 }
5828
5829 /*
5830  * This is the complementary operation to cmd_alloc().  Note, however, in some
5831  * corner cases it may also be used to free blocks allocated by
5832  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5833  * the clear-bit is harmless.
5834  */
5835 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5836 {
5837         if (atomic_dec_and_test(&c->refcount)) {
5838                 int i;
5839
5840                 i = c - h->cmd_pool;
5841                 clear_bit(i & (BITS_PER_LONG - 1),
5842                           h->cmd_pool_bits + (i / BITS_PER_LONG));
5843         }
5844 }
5845
5846 #ifdef CONFIG_COMPAT
5847
5848 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5849         void __user *arg)
5850 {
5851         IOCTL32_Command_struct __user *arg32 =
5852             (IOCTL32_Command_struct __user *) arg;
5853         IOCTL_Command_struct arg64;
5854         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5855         int err;
5856         u32 cp;
5857
5858         memset(&arg64, 0, sizeof(arg64));
5859         err = 0;
5860         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5861                            sizeof(arg64.LUN_info));
5862         err |= copy_from_user(&arg64.Request, &arg32->Request,
5863                            sizeof(arg64.Request));
5864         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5865                            sizeof(arg64.error_info));
5866         err |= get_user(arg64.buf_size, &arg32->buf_size);
5867         err |= get_user(cp, &arg32->buf);
5868         arg64.buf = compat_ptr(cp);
5869         err |= copy_to_user(p, &arg64, sizeof(arg64));
5870
5871         if (err)
5872                 return -EFAULT;
5873
5874         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5875         if (err)
5876                 return err;
5877         err |= copy_in_user(&arg32->error_info, &p->error_info,
5878                          sizeof(arg32->error_info));
5879         if (err)
5880                 return -EFAULT;
5881         return err;
5882 }
5883
5884 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
5885         int cmd, void __user *arg)
5886 {
5887         BIG_IOCTL32_Command_struct __user *arg32 =
5888             (BIG_IOCTL32_Command_struct __user *) arg;
5889         BIG_IOCTL_Command_struct arg64;
5890         BIG_IOCTL_Command_struct __user *p =
5891             compat_alloc_user_space(sizeof(arg64));
5892         int err;
5893         u32 cp;
5894
5895         memset(&arg64, 0, sizeof(arg64));
5896         err = 0;
5897         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5898                            sizeof(arg64.LUN_info));
5899         err |= copy_from_user(&arg64.Request, &arg32->Request,
5900                            sizeof(arg64.Request));
5901         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5902                            sizeof(arg64.error_info));
5903         err |= get_user(arg64.buf_size, &arg32->buf_size);
5904         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
5905         err |= get_user(cp, &arg32->buf);
5906         arg64.buf = compat_ptr(cp);
5907         err |= copy_to_user(p, &arg64, sizeof(arg64));
5908
5909         if (err)
5910                 return -EFAULT;
5911
5912         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5913         if (err)
5914                 return err;
5915         err |= copy_in_user(&arg32->error_info, &p->error_info,
5916                          sizeof(arg32->error_info));
5917         if (err)
5918                 return -EFAULT;
5919         return err;
5920 }
5921
5922 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5923 {
5924         switch (cmd) {
5925         case CCISS_GETPCIINFO:
5926         case CCISS_GETINTINFO:
5927         case CCISS_SETINTINFO:
5928         case CCISS_GETNODENAME:
5929         case CCISS_SETNODENAME:
5930         case CCISS_GETHEARTBEAT:
5931         case CCISS_GETBUSTYPES:
5932         case CCISS_GETFIRMVER:
5933         case CCISS_GETDRIVVER:
5934         case CCISS_REVALIDVOLS:
5935         case CCISS_DEREGDISK:
5936         case CCISS_REGNEWDISK:
5937         case CCISS_REGNEWD:
5938         case CCISS_RESCANDISK:
5939         case CCISS_GETLUNINFO:
5940                 return hpsa_ioctl(dev, cmd, arg);
5941
5942         case CCISS_PASSTHRU32:
5943                 return hpsa_ioctl32_passthru(dev, cmd, arg);
5944         case CCISS_BIG_PASSTHRU32:
5945                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
5946
5947         default:
5948                 return -ENOIOCTLCMD;
5949         }
5950 }
5951 #endif
5952
5953 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
5954 {
5955         struct hpsa_pci_info pciinfo;
5956
5957         if (!argp)
5958                 return -EINVAL;
5959         pciinfo.domain = pci_domain_nr(h->pdev->bus);
5960         pciinfo.bus = h->pdev->bus->number;
5961         pciinfo.dev_fn = h->pdev->devfn;
5962         pciinfo.board_id = h->board_id;
5963         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
5964                 return -EFAULT;
5965         return 0;
5966 }
5967
5968 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
5969 {
5970         DriverVer_type DriverVer;
5971         unsigned char vmaj, vmin, vsubmin;
5972         int rc;
5973
5974         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
5975                 &vmaj, &vmin, &vsubmin);
5976         if (rc != 3) {
5977                 dev_info(&h->pdev->dev, "driver version string '%s' "
5978                         "unrecognized.", HPSA_DRIVER_VERSION);
5979                 vmaj = 0;
5980                 vmin = 0;
5981                 vsubmin = 0;
5982         }
5983         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
5984         if (!argp)
5985                 return -EINVAL;
5986         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
5987                 return -EFAULT;
5988         return 0;
5989 }
5990
5991 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5992 {
5993         IOCTL_Command_struct iocommand;
5994         struct CommandList *c;
5995         char *buff = NULL;
5996         u64 temp64;
5997         int rc = 0;
5998
5999         if (!argp)
6000                 return -EINVAL;
6001         if (!capable(CAP_SYS_RAWIO))
6002                 return -EPERM;
6003         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6004                 return -EFAULT;
6005         if ((iocommand.buf_size < 1) &&
6006             (iocommand.Request.Type.Direction != XFER_NONE)) {
6007                 return -EINVAL;
6008         }
6009         if (iocommand.buf_size > 0) {
6010                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6011                 if (buff == NULL)
6012                         return -ENOMEM;
6013                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6014                         /* Copy the data into the buffer we created */
6015                         if (copy_from_user(buff, iocommand.buf,
6016                                 iocommand.buf_size)) {
6017                                 rc = -EFAULT;
6018                                 goto out_kfree;
6019                         }
6020                 } else {
6021                         memset(buff, 0, iocommand.buf_size);
6022                 }
6023         }
6024         c = cmd_alloc(h);
6025
6026         /* Fill in the command type */
6027         c->cmd_type = CMD_IOCTL_PEND;
6028         c->scsi_cmd = SCSI_CMD_BUSY;
6029         /* Fill in Command Header */
6030         c->Header.ReplyQueue = 0; /* unused in simple mode */
6031         if (iocommand.buf_size > 0) {   /* buffer to fill */
6032                 c->Header.SGList = 1;
6033                 c->Header.SGTotal = cpu_to_le16(1);
6034         } else  { /* no buffers to fill */
6035                 c->Header.SGList = 0;
6036                 c->Header.SGTotal = cpu_to_le16(0);
6037         }
6038         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6039
6040         /* Fill in Request block */
6041         memcpy(&c->Request, &iocommand.Request,
6042                 sizeof(c->Request));
6043
6044         /* Fill in the scatter gather information */
6045         if (iocommand.buf_size > 0) {
6046                 temp64 = pci_map_single(h->pdev, buff,
6047                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6048                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6049                         c->SG[0].Addr = cpu_to_le64(0);
6050                         c->SG[0].Len = cpu_to_le32(0);
6051                         rc = -ENOMEM;
6052                         goto out;
6053                 }
6054                 c->SG[0].Addr = cpu_to_le64(temp64);
6055                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6056                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6057         }
6058         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6059         if (iocommand.buf_size > 0)
6060                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6061         check_ioctl_unit_attention(h, c);
6062         if (rc) {
6063                 rc = -EIO;
6064                 goto out;
6065         }
6066
6067         /* Copy the error information out */
6068         memcpy(&iocommand.error_info, c->err_info,
6069                 sizeof(iocommand.error_info));
6070         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6071                 rc = -EFAULT;
6072                 goto out;
6073         }
6074         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6075                 iocommand.buf_size > 0) {
6076                 /* Copy the data out of the buffer we created */
6077                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6078                         rc = -EFAULT;
6079                         goto out;
6080                 }
6081         }
6082 out:
6083         cmd_free(h, c);
6084 out_kfree:
6085         kfree(buff);
6086         return rc;
6087 }
6088
6089 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6090 {
6091         BIG_IOCTL_Command_struct *ioc;
6092         struct CommandList *c;
6093         unsigned char **buff = NULL;
6094         int *buff_size = NULL;
6095         u64 temp64;
6096         BYTE sg_used = 0;
6097         int status = 0;
6098         u32 left;
6099         u32 sz;
6100         BYTE __user *data_ptr;
6101
6102         if (!argp)
6103                 return -EINVAL;
6104         if (!capable(CAP_SYS_RAWIO))
6105                 return -EPERM;
6106         ioc = (BIG_IOCTL_Command_struct *)
6107             kmalloc(sizeof(*ioc), GFP_KERNEL);
6108         if (!ioc) {
6109                 status = -ENOMEM;
6110                 goto cleanup1;
6111         }
6112         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6113                 status = -EFAULT;
6114                 goto cleanup1;
6115         }
6116         if ((ioc->buf_size < 1) &&
6117             (ioc->Request.Type.Direction != XFER_NONE)) {
6118                 status = -EINVAL;
6119                 goto cleanup1;
6120         }
6121         /* Check kmalloc limits  using all SGs */
6122         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6123                 status = -EINVAL;
6124                 goto cleanup1;
6125         }
6126         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6127                 status = -EINVAL;
6128                 goto cleanup1;
6129         }
6130         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6131         if (!buff) {
6132                 status = -ENOMEM;
6133                 goto cleanup1;
6134         }
6135         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6136         if (!buff_size) {
6137                 status = -ENOMEM;
6138                 goto cleanup1;
6139         }
6140         left = ioc->buf_size;
6141         data_ptr = ioc->buf;
6142         while (left) {
6143                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6144                 buff_size[sg_used] = sz;
6145                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6146                 if (buff[sg_used] == NULL) {
6147                         status = -ENOMEM;
6148                         goto cleanup1;
6149                 }
6150                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6151                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6152                                 status = -EFAULT;
6153                                 goto cleanup1;
6154                         }
6155                 } else
6156                         memset(buff[sg_used], 0, sz);
6157                 left -= sz;
6158                 data_ptr += sz;
6159                 sg_used++;
6160         }
6161         c = cmd_alloc(h);
6162
6163         c->cmd_type = CMD_IOCTL_PEND;
6164         c->scsi_cmd = SCSI_CMD_BUSY;
6165         c->Header.ReplyQueue = 0;
6166         c->Header.SGList = (u8) sg_used;
6167         c->Header.SGTotal = cpu_to_le16(sg_used);
6168         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6169         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6170         if (ioc->buf_size > 0) {
6171                 int i;
6172                 for (i = 0; i < sg_used; i++) {
6173                         temp64 = pci_map_single(h->pdev, buff[i],
6174                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6175                         if (dma_mapping_error(&h->pdev->dev,
6176                                                         (dma_addr_t) temp64)) {
6177                                 c->SG[i].Addr = cpu_to_le64(0);
6178                                 c->SG[i].Len = cpu_to_le32(0);
6179                                 hpsa_pci_unmap(h->pdev, c, i,
6180                                         PCI_DMA_BIDIRECTIONAL);
6181                                 status = -ENOMEM;
6182                                 goto cleanup0;
6183                         }
6184                         c->SG[i].Addr = cpu_to_le64(temp64);
6185                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6186                         c->SG[i].Ext = cpu_to_le32(0);
6187                 }
6188                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6189         }
6190         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6191         if (sg_used)
6192                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6193         check_ioctl_unit_attention(h, c);
6194         if (status) {
6195                 status = -EIO;
6196                 goto cleanup0;
6197         }
6198
6199         /* Copy the error information out */
6200         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6201         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6202                 status = -EFAULT;
6203                 goto cleanup0;
6204         }
6205         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6206                 int i;
6207
6208                 /* Copy the data out of the buffer we created */
6209                 BYTE __user *ptr = ioc->buf;
6210                 for (i = 0; i < sg_used; i++) {
6211                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6212                                 status = -EFAULT;
6213                                 goto cleanup0;
6214                         }
6215                         ptr += buff_size[i];
6216                 }
6217         }
6218         status = 0;
6219 cleanup0:
6220         cmd_free(h, c);
6221 cleanup1:
6222         if (buff) {
6223                 int i;
6224
6225                 for (i = 0; i < sg_used; i++)
6226                         kfree(buff[i]);
6227                 kfree(buff);
6228         }
6229         kfree(buff_size);
6230         kfree(ioc);
6231         return status;
6232 }
6233
6234 static void check_ioctl_unit_attention(struct ctlr_info *h,
6235         struct CommandList *c)
6236 {
6237         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6238                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6239                 (void) check_for_unit_attention(h, c);
6240 }
6241
6242 /*
6243  * ioctl
6244  */
6245 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6246 {
6247         struct ctlr_info *h;
6248         void __user *argp = (void __user *)arg;
6249         int rc;
6250
6251         h = sdev_to_hba(dev);
6252
6253         switch (cmd) {
6254         case CCISS_DEREGDISK:
6255         case CCISS_REGNEWDISK:
6256         case CCISS_REGNEWD:
6257                 hpsa_scan_start(h->scsi_host);
6258                 return 0;
6259         case CCISS_GETPCIINFO:
6260                 return hpsa_getpciinfo_ioctl(h, argp);
6261         case CCISS_GETDRIVVER:
6262                 return hpsa_getdrivver_ioctl(h, argp);
6263         case CCISS_PASSTHRU:
6264                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6265                         return -EAGAIN;
6266                 rc = hpsa_passthru_ioctl(h, argp);
6267                 atomic_inc(&h->passthru_cmds_avail);
6268                 return rc;
6269         case CCISS_BIG_PASSTHRU:
6270                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6271                         return -EAGAIN;
6272                 rc = hpsa_big_passthru_ioctl(h, argp);
6273                 atomic_inc(&h->passthru_cmds_avail);
6274                 return rc;
6275         default:
6276                 return -ENOTTY;
6277         }
6278 }
6279
6280 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6281                                 u8 reset_type)
6282 {
6283         struct CommandList *c;
6284
6285         c = cmd_alloc(h);
6286
6287         /* fill_cmd can't fail here, no data buffer to map */
6288         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6289                 RAID_CTLR_LUNID, TYPE_MSG);
6290         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6291         c->waiting = NULL;
6292         enqueue_cmd_and_start_io(h, c);
6293         /* Don't wait for completion, the reset won't complete.  Don't free
6294          * the command either.  This is the last command we will send before
6295          * re-initializing everything, so it doesn't matter and won't leak.
6296          */
6297         return;
6298 }
6299
6300 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6301         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6302         int cmd_type)
6303 {
6304         int pci_dir = XFER_NONE;
6305         u64 tag; /* for commands to be aborted */
6306
6307         c->cmd_type = CMD_IOCTL_PEND;
6308         c->scsi_cmd = SCSI_CMD_BUSY;
6309         c->Header.ReplyQueue = 0;
6310         if (buff != NULL && size > 0) {
6311                 c->Header.SGList = 1;
6312                 c->Header.SGTotal = cpu_to_le16(1);
6313         } else {
6314                 c->Header.SGList = 0;
6315                 c->Header.SGTotal = cpu_to_le16(0);
6316         }
6317         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6318
6319         if (cmd_type == TYPE_CMD) {
6320                 switch (cmd) {
6321                 case HPSA_INQUIRY:
6322                         /* are we trying to read a vital product page */
6323                         if (page_code & VPD_PAGE) {
6324                                 c->Request.CDB[1] = 0x01;
6325                                 c->Request.CDB[2] = (page_code & 0xff);
6326                         }
6327                         c->Request.CDBLen = 6;
6328                         c->Request.type_attr_dir =
6329                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6330                         c->Request.Timeout = 0;
6331                         c->Request.CDB[0] = HPSA_INQUIRY;
6332                         c->Request.CDB[4] = size & 0xFF;
6333                         break;
6334                 case HPSA_REPORT_LOG:
6335                 case HPSA_REPORT_PHYS:
6336                         /* Talking to controller so It's a physical command
6337                            mode = 00 target = 0.  Nothing to write.
6338                          */
6339                         c->Request.CDBLen = 12;
6340                         c->Request.type_attr_dir =
6341                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6342                         c->Request.Timeout = 0;
6343                         c->Request.CDB[0] = cmd;
6344                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6345                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6346                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6347                         c->Request.CDB[9] = size & 0xFF;
6348                         break;
6349                 case HPSA_CACHE_FLUSH:
6350                         c->Request.CDBLen = 12;
6351                         c->Request.type_attr_dir =
6352                                         TYPE_ATTR_DIR(cmd_type,
6353                                                 ATTR_SIMPLE, XFER_WRITE);
6354                         c->Request.Timeout = 0;
6355                         c->Request.CDB[0] = BMIC_WRITE;
6356                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6357                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6358                         c->Request.CDB[8] = size & 0xFF;
6359                         break;
6360                 case TEST_UNIT_READY:
6361                         c->Request.CDBLen = 6;
6362                         c->Request.type_attr_dir =
6363                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6364                         c->Request.Timeout = 0;
6365                         break;
6366                 case HPSA_GET_RAID_MAP:
6367                         c->Request.CDBLen = 12;
6368                         c->Request.type_attr_dir =
6369                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6370                         c->Request.Timeout = 0;
6371                         c->Request.CDB[0] = HPSA_CISS_READ;
6372                         c->Request.CDB[1] = cmd;
6373                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6374                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6375                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6376                         c->Request.CDB[9] = size & 0xFF;
6377                         break;
6378                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6379                         c->Request.CDBLen = 10;
6380                         c->Request.type_attr_dir =
6381                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6382                         c->Request.Timeout = 0;
6383                         c->Request.CDB[0] = BMIC_READ;
6384                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6385                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6386                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6387                         break;
6388                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6389                         c->Request.CDBLen = 10;
6390                         c->Request.type_attr_dir =
6391                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6392                         c->Request.Timeout = 0;
6393                         c->Request.CDB[0] = BMIC_READ;
6394                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6395                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6396                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6397                         break;
6398                 default:
6399                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6400                         BUG();
6401                         return -1;
6402                 }
6403         } else if (cmd_type == TYPE_MSG) {
6404                 switch (cmd) {
6405
6406                 case  HPSA_PHYS_TARGET_RESET:
6407                         c->Request.CDBLen = 16;
6408                         c->Request.type_attr_dir =
6409                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6410                         c->Request.Timeout = 0; /* Don't time out */
6411                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6412                         c->Request.CDB[0] = HPSA_RESET;
6413                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6414                         /* Physical target reset needs no control bytes 4-7*/
6415                         c->Request.CDB[4] = 0x00;
6416                         c->Request.CDB[5] = 0x00;
6417                         c->Request.CDB[6] = 0x00;
6418                         c->Request.CDB[7] = 0x00;
6419                         break;
6420                 case  HPSA_DEVICE_RESET_MSG:
6421                         c->Request.CDBLen = 16;
6422                         c->Request.type_attr_dir =
6423                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6424                         c->Request.Timeout = 0; /* Don't time out */
6425                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6426                         c->Request.CDB[0] =  cmd;
6427                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6428                         /* If bytes 4-7 are zero, it means reset the */
6429                         /* LunID device */
6430                         c->Request.CDB[4] = 0x00;
6431                         c->Request.CDB[5] = 0x00;
6432                         c->Request.CDB[6] = 0x00;
6433                         c->Request.CDB[7] = 0x00;
6434                         break;
6435                 case  HPSA_ABORT_MSG:
6436                         memcpy(&tag, buff, sizeof(tag));
6437                         dev_dbg(&h->pdev->dev,
6438                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6439                                 tag, c->Header.tag);
6440                         c->Request.CDBLen = 16;
6441                         c->Request.type_attr_dir =
6442                                         TYPE_ATTR_DIR(cmd_type,
6443                                                 ATTR_SIMPLE, XFER_WRITE);
6444                         c->Request.Timeout = 0; /* Don't time out */
6445                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6446                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6447                         c->Request.CDB[2] = 0x00; /* reserved */
6448                         c->Request.CDB[3] = 0x00; /* reserved */
6449                         /* Tag to abort goes in CDB[4]-CDB[11] */
6450                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6451                         c->Request.CDB[12] = 0x00; /* reserved */
6452                         c->Request.CDB[13] = 0x00; /* reserved */
6453                         c->Request.CDB[14] = 0x00; /* reserved */
6454                         c->Request.CDB[15] = 0x00; /* reserved */
6455                 break;
6456                 default:
6457                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6458                                 cmd);
6459                         BUG();
6460                 }
6461         } else {
6462                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6463                 BUG();
6464         }
6465
6466         switch (GET_DIR(c->Request.type_attr_dir)) {
6467         case XFER_READ:
6468                 pci_dir = PCI_DMA_FROMDEVICE;
6469                 break;
6470         case XFER_WRITE:
6471                 pci_dir = PCI_DMA_TODEVICE;
6472                 break;
6473         case XFER_NONE:
6474                 pci_dir = PCI_DMA_NONE;
6475                 break;
6476         default:
6477                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6478         }
6479         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6480                 return -1;
6481         return 0;
6482 }
6483
6484 /*
6485  * Map (physical) PCI mem into (virtual) kernel space
6486  */
6487 static void __iomem *remap_pci_mem(ulong base, ulong size)
6488 {
6489         ulong page_base = ((ulong) base) & PAGE_MASK;
6490         ulong page_offs = ((ulong) base) - page_base;
6491         void __iomem *page_remapped = ioremap_nocache(page_base,
6492                 page_offs + size);
6493
6494         return page_remapped ? (page_remapped + page_offs) : NULL;
6495 }
6496
6497 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6498 {
6499         return h->access.command_completed(h, q);
6500 }
6501
6502 static inline bool interrupt_pending(struct ctlr_info *h)
6503 {
6504         return h->access.intr_pending(h);
6505 }
6506
6507 static inline long interrupt_not_for_us(struct ctlr_info *h)
6508 {
6509         return (h->access.intr_pending(h) == 0) ||
6510                 (h->interrupts_enabled == 0);
6511 }
6512
6513 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6514         u32 raw_tag)
6515 {
6516         if (unlikely(tag_index >= h->nr_cmds)) {
6517                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6518                 return 1;
6519         }
6520         return 0;
6521 }
6522
6523 static inline void finish_cmd(struct CommandList *c)
6524 {
6525         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6526         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6527                         || c->cmd_type == CMD_IOACCEL2))
6528                 complete_scsi_command(c);
6529         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6530                 complete(c->waiting);
6531 }
6532
6533 /* process completion of an indexed ("direct lookup") command */
6534 static inline void process_indexed_cmd(struct ctlr_info *h,
6535         u32 raw_tag)
6536 {
6537         u32 tag_index;
6538         struct CommandList *c;
6539
6540         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6541         if (!bad_tag(h, tag_index, raw_tag)) {
6542                 c = h->cmd_pool + tag_index;
6543                 finish_cmd(c);
6544         }
6545 }
6546
6547 /* Some controllers, like p400, will give us one interrupt
6548  * after a soft reset, even if we turned interrupts off.
6549  * Only need to check for this in the hpsa_xxx_discard_completions
6550  * functions.
6551  */
6552 static int ignore_bogus_interrupt(struct ctlr_info *h)
6553 {
6554         if (likely(!reset_devices))
6555                 return 0;
6556
6557         if (likely(h->interrupts_enabled))
6558                 return 0;
6559
6560         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6561                 "(known firmware bug.)  Ignoring.\n");
6562
6563         return 1;
6564 }
6565
6566 /*
6567  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6568  * Relies on (h-q[x] == x) being true for x such that
6569  * 0 <= x < MAX_REPLY_QUEUES.
6570  */
6571 static struct ctlr_info *queue_to_hba(u8 *queue)
6572 {
6573         return container_of((queue - *queue), struct ctlr_info, q[0]);
6574 }
6575
6576 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6577 {
6578         struct ctlr_info *h = queue_to_hba(queue);
6579         u8 q = *(u8 *) queue;
6580         u32 raw_tag;
6581
6582         if (ignore_bogus_interrupt(h))
6583                 return IRQ_NONE;
6584
6585         if (interrupt_not_for_us(h))
6586                 return IRQ_NONE;
6587         h->last_intr_timestamp = get_jiffies_64();
6588         while (interrupt_pending(h)) {
6589                 raw_tag = get_next_completion(h, q);
6590                 while (raw_tag != FIFO_EMPTY)
6591                         raw_tag = next_command(h, q);
6592         }
6593         return IRQ_HANDLED;
6594 }
6595
6596 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6597 {
6598         struct ctlr_info *h = queue_to_hba(queue);
6599         u32 raw_tag;
6600         u8 q = *(u8 *) queue;
6601
6602         if (ignore_bogus_interrupt(h))
6603                 return IRQ_NONE;
6604
6605         h->last_intr_timestamp = get_jiffies_64();
6606         raw_tag = get_next_completion(h, q);
6607         while (raw_tag != FIFO_EMPTY)
6608                 raw_tag = next_command(h, q);
6609         return IRQ_HANDLED;
6610 }
6611
6612 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6613 {
6614         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6615         u32 raw_tag;
6616         u8 q = *(u8 *) queue;
6617
6618         if (interrupt_not_for_us(h))
6619                 return IRQ_NONE;
6620         h->last_intr_timestamp = get_jiffies_64();
6621         while (interrupt_pending(h)) {
6622                 raw_tag = get_next_completion(h, q);
6623                 while (raw_tag != FIFO_EMPTY) {
6624                         process_indexed_cmd(h, raw_tag);
6625                         raw_tag = next_command(h, q);
6626                 }
6627         }
6628         return IRQ_HANDLED;
6629 }
6630
6631 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6632 {
6633         struct ctlr_info *h = queue_to_hba(queue);
6634         u32 raw_tag;
6635         u8 q = *(u8 *) queue;
6636
6637         h->last_intr_timestamp = get_jiffies_64();
6638         raw_tag = get_next_completion(h, q);
6639         while (raw_tag != FIFO_EMPTY) {
6640                 process_indexed_cmd(h, raw_tag);
6641                 raw_tag = next_command(h, q);
6642         }
6643         return IRQ_HANDLED;
6644 }
6645
6646 /* Send a message CDB to the firmware. Careful, this only works
6647  * in simple mode, not performant mode due to the tag lookup.
6648  * We only ever use this immediately after a controller reset.
6649  */
6650 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6651                         unsigned char type)
6652 {
6653         struct Command {
6654                 struct CommandListHeader CommandHeader;
6655                 struct RequestBlock Request;
6656                 struct ErrDescriptor ErrorDescriptor;
6657         };
6658         struct Command *cmd;
6659         static const size_t cmd_sz = sizeof(*cmd) +
6660                                         sizeof(cmd->ErrorDescriptor);
6661         dma_addr_t paddr64;
6662         __le32 paddr32;
6663         u32 tag;
6664         void __iomem *vaddr;
6665         int i, err;
6666
6667         vaddr = pci_ioremap_bar(pdev, 0);
6668         if (vaddr == NULL)
6669                 return -ENOMEM;
6670
6671         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6672          * CCISS commands, so they must be allocated from the lower 4GiB of
6673          * memory.
6674          */
6675         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6676         if (err) {
6677                 iounmap(vaddr);
6678                 return err;
6679         }
6680
6681         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6682         if (cmd == NULL) {
6683                 iounmap(vaddr);
6684                 return -ENOMEM;
6685         }
6686
6687         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
6688          * although there's no guarantee, we assume that the address is at
6689          * least 4-byte aligned (most likely, it's page-aligned).
6690          */
6691         paddr32 = cpu_to_le32(paddr64);
6692
6693         cmd->CommandHeader.ReplyQueue = 0;
6694         cmd->CommandHeader.SGList = 0;
6695         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6696         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6697         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6698
6699         cmd->Request.CDBLen = 16;
6700         cmd->Request.type_attr_dir =
6701                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6702         cmd->Request.Timeout = 0; /* Don't time out */
6703         cmd->Request.CDB[0] = opcode;
6704         cmd->Request.CDB[1] = type;
6705         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6706         cmd->ErrorDescriptor.Addr =
6707                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6708         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6709
6710         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6711
6712         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6713                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6714                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6715                         break;
6716                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6717         }
6718
6719         iounmap(vaddr);
6720
6721         /* we leak the DMA buffer here ... no choice since the controller could
6722          *  still complete the command.
6723          */
6724         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6725                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6726                         opcode, type);
6727                 return -ETIMEDOUT;
6728         }
6729
6730         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6731
6732         if (tag & HPSA_ERROR_BIT) {
6733                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6734                         opcode, type);
6735                 return -EIO;
6736         }
6737
6738         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6739                 opcode, type);
6740         return 0;
6741 }
6742
6743 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6744
6745 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6746         void __iomem *vaddr, u32 use_doorbell)
6747 {
6748
6749         if (use_doorbell) {
6750                 /* For everything after the P600, the PCI power state method
6751                  * of resetting the controller doesn't work, so we have this
6752                  * other way using the doorbell register.
6753                  */
6754                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
6755                 writel(use_doorbell, vaddr + SA5_DOORBELL);
6756
6757                 /* PMC hardware guys tell us we need a 10 second delay after
6758                  * doorbell reset and before any attempt to talk to the board
6759                  * at all to ensure that this actually works and doesn't fall
6760                  * over in some weird corner cases.
6761                  */
6762                 msleep(10000);
6763         } else { /* Try to do it the PCI power state way */
6764
6765                 /* Quoting from the Open CISS Specification: "The Power
6766                  * Management Control/Status Register (CSR) controls the power
6767                  * state of the device.  The normal operating state is D0,
6768                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
6769                  * the controller, place the interface device in D3 then to D0,
6770                  * this causes a secondary PCI reset which will reset the
6771                  * controller." */
6772
6773                 int rc = 0;
6774
6775                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6776
6777                 /* enter the D3hot power management state */
6778                 rc = pci_set_power_state(pdev, PCI_D3hot);
6779                 if (rc)
6780                         return rc;
6781
6782                 msleep(500);
6783
6784                 /* enter the D0 power management state */
6785                 rc = pci_set_power_state(pdev, PCI_D0);
6786                 if (rc)
6787                         return rc;
6788
6789                 /*
6790                  * The P600 requires a small delay when changing states.
6791                  * Otherwise we may think the board did not reset and we bail.
6792                  * This for kdump only and is particular to the P600.
6793                  */
6794                 msleep(500);
6795         }
6796         return 0;
6797 }
6798
6799 static void init_driver_version(char *driver_version, int len)
6800 {
6801         memset(driver_version, 0, len);
6802         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6803 }
6804
6805 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6806 {
6807         char *driver_version;
6808         int i, size = sizeof(cfgtable->driver_version);
6809
6810         driver_version = kmalloc(size, GFP_KERNEL);
6811         if (!driver_version)
6812                 return -ENOMEM;
6813
6814         init_driver_version(driver_version, size);
6815         for (i = 0; i < size; i++)
6816                 writeb(driver_version[i], &cfgtable->driver_version[i]);
6817         kfree(driver_version);
6818         return 0;
6819 }
6820
6821 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6822                                           unsigned char *driver_ver)
6823 {
6824         int i;
6825
6826         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6827                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
6828 }
6829
6830 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6831 {
6832
6833         char *driver_ver, *old_driver_ver;
6834         int rc, size = sizeof(cfgtable->driver_version);
6835
6836         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6837         if (!old_driver_ver)
6838                 return -ENOMEM;
6839         driver_ver = old_driver_ver + size;
6840
6841         /* After a reset, the 32 bytes of "driver version" in the cfgtable
6842          * should have been changed, otherwise we know the reset failed.
6843          */
6844         init_driver_version(old_driver_ver, size);
6845         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6846         rc = !memcmp(driver_ver, old_driver_ver, size);
6847         kfree(old_driver_ver);
6848         return rc;
6849 }
6850 /* This does a hard reset of the controller using PCI power management
6851  * states or the using the doorbell register.
6852  */
6853 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6854 {
6855         u64 cfg_offset;
6856         u32 cfg_base_addr;
6857         u64 cfg_base_addr_index;
6858         void __iomem *vaddr;
6859         unsigned long paddr;
6860         u32 misc_fw_support;
6861         int rc;
6862         struct CfgTable __iomem *cfgtable;
6863         u32 use_doorbell;
6864         u16 command_register;
6865
6866         /* For controllers as old as the P600, this is very nearly
6867          * the same thing as
6868          *
6869          * pci_save_state(pci_dev);
6870          * pci_set_power_state(pci_dev, PCI_D3hot);
6871          * pci_set_power_state(pci_dev, PCI_D0);
6872          * pci_restore_state(pci_dev);
6873          *
6874          * For controllers newer than the P600, the pci power state
6875          * method of resetting doesn't work so we have another way
6876          * using the doorbell register.
6877          */
6878
6879         if (!ctlr_is_resettable(board_id)) {
6880                 dev_warn(&pdev->dev, "Controller not resettable\n");
6881                 return -ENODEV;
6882         }
6883
6884         /* if controller is soft- but not hard resettable... */
6885         if (!ctlr_is_hard_resettable(board_id))
6886                 return -ENOTSUPP; /* try soft reset later. */
6887
6888         /* Save the PCI command register */
6889         pci_read_config_word(pdev, 4, &command_register);
6890         pci_save_state(pdev);
6891
6892         /* find the first memory BAR, so we can find the cfg table */
6893         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
6894         if (rc)
6895                 return rc;
6896         vaddr = remap_pci_mem(paddr, 0x250);
6897         if (!vaddr)
6898                 return -ENOMEM;
6899
6900         /* find cfgtable in order to check if reset via doorbell is supported */
6901         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
6902                                         &cfg_base_addr_index, &cfg_offset);
6903         if (rc)
6904                 goto unmap_vaddr;
6905         cfgtable = remap_pci_mem(pci_resource_start(pdev,
6906                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
6907         if (!cfgtable) {
6908                 rc = -ENOMEM;
6909                 goto unmap_vaddr;
6910         }
6911         rc = write_driver_ver_to_cfgtable(cfgtable);
6912         if (rc)
6913                 goto unmap_cfgtable;
6914
6915         /* If reset via doorbell register is supported, use that.
6916          * There are two such methods.  Favor the newest method.
6917          */
6918         misc_fw_support = readl(&cfgtable->misc_fw_support);
6919         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6920         if (use_doorbell) {
6921                 use_doorbell = DOORBELL_CTLR_RESET2;
6922         } else {
6923                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6924                 if (use_doorbell) {
6925                         dev_warn(&pdev->dev,
6926                                 "Soft reset not supported. Firmware update is required.\n");
6927                         rc = -ENOTSUPP; /* try soft reset */
6928                         goto unmap_cfgtable;
6929                 }
6930         }
6931
6932         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6933         if (rc)
6934                 goto unmap_cfgtable;
6935
6936         pci_restore_state(pdev);
6937         pci_write_config_word(pdev, 4, command_register);
6938
6939         /* Some devices (notably the HP Smart Array 5i Controller)
6940            need a little pause here */
6941         msleep(HPSA_POST_RESET_PAUSE_MSECS);
6942
6943         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6944         if (rc) {
6945                 dev_warn(&pdev->dev,
6946                         "Failed waiting for board to become ready after hard reset\n");
6947                 goto unmap_cfgtable;
6948         }
6949
6950         rc = controller_reset_failed(vaddr);
6951         if (rc < 0)
6952                 goto unmap_cfgtable;
6953         if (rc) {
6954                 dev_warn(&pdev->dev, "Unable to successfully reset "
6955                         "controller. Will try soft reset.\n");
6956                 rc = -ENOTSUPP;
6957         } else {
6958                 dev_info(&pdev->dev, "board ready after hard reset.\n");
6959         }
6960
6961 unmap_cfgtable:
6962         iounmap(cfgtable);
6963
6964 unmap_vaddr:
6965         iounmap(vaddr);
6966         return rc;
6967 }
6968
6969 /*
6970  *  We cannot read the structure directly, for portability we must use
6971  *   the io functions.
6972  *   This is for debug only.
6973  */
6974 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6975 {
6976 #ifdef HPSA_DEBUG
6977         int i;
6978         char temp_name[17];
6979
6980         dev_info(dev, "Controller Configuration information\n");
6981         dev_info(dev, "------------------------------------\n");
6982         for (i = 0; i < 4; i++)
6983                 temp_name[i] = readb(&(tb->Signature[i]));
6984         temp_name[4] = '\0';
6985         dev_info(dev, "   Signature = %s\n", temp_name);
6986         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
6987         dev_info(dev, "   Transport methods supported = 0x%x\n",
6988                readl(&(tb->TransportSupport)));
6989         dev_info(dev, "   Transport methods active = 0x%x\n",
6990                readl(&(tb->TransportActive)));
6991         dev_info(dev, "   Requested transport Method = 0x%x\n",
6992                readl(&(tb->HostWrite.TransportRequest)));
6993         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
6994                readl(&(tb->HostWrite.CoalIntDelay)));
6995         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
6996                readl(&(tb->HostWrite.CoalIntCount)));
6997         dev_info(dev, "   Max outstanding commands = %d\n",
6998                readl(&(tb->CmdsOutMax)));
6999         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7000         for (i = 0; i < 16; i++)
7001                 temp_name[i] = readb(&(tb->ServerName[i]));
7002         temp_name[16] = '\0';
7003         dev_info(dev, "   Server Name = %s\n", temp_name);
7004         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7005                 readl(&(tb->HeartBeat)));
7006 #endif                          /* HPSA_DEBUG */
7007 }
7008
7009 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7010 {
7011         int i, offset, mem_type, bar_type;
7012
7013         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7014                 return 0;
7015         offset = 0;
7016         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7017                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7018                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7019                         offset += 4;
7020                 else {
7021                         mem_type = pci_resource_flags(pdev, i) &
7022                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7023                         switch (mem_type) {
7024                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7025                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7026                                 offset += 4;    /* 32 bit */
7027                                 break;
7028                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7029                                 offset += 8;
7030                                 break;
7031                         default:        /* reserved in PCI 2.2 */
7032                                 dev_warn(&pdev->dev,
7033                                        "base address is invalid\n");
7034                                 return -1;
7035                                 break;
7036                         }
7037                 }
7038                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7039                         return i + 1;
7040         }
7041         return -1;
7042 }
7043
7044 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7045 {
7046         if (h->msix_vector) {
7047                 if (h->pdev->msix_enabled)
7048                         pci_disable_msix(h->pdev);
7049                 h->msix_vector = 0;
7050         } else if (h->msi_vector) {
7051                 if (h->pdev->msi_enabled)
7052                         pci_disable_msi(h->pdev);
7053                 h->msi_vector = 0;
7054         }
7055 }
7056
7057 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7058  * controllers that are capable. If not, we use legacy INTx mode.
7059  */
7060 static void hpsa_interrupt_mode(struct ctlr_info *h)
7061 {
7062 #ifdef CONFIG_PCI_MSI
7063         int err, i;
7064         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7065
7066         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7067                 hpsa_msix_entries[i].vector = 0;
7068                 hpsa_msix_entries[i].entry = i;
7069         }
7070
7071         /* Some boards advertise MSI but don't really support it */
7072         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7073             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7074                 goto default_int_mode;
7075         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7076                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7077                 h->msix_vector = MAX_REPLY_QUEUES;
7078                 if (h->msix_vector > num_online_cpus())
7079                         h->msix_vector = num_online_cpus();
7080                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7081                                             1, h->msix_vector);
7082                 if (err < 0) {
7083                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7084                         h->msix_vector = 0;
7085                         goto single_msi_mode;
7086                 } else if (err < h->msix_vector) {
7087                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7088                                "available\n", err);
7089                 }
7090                 h->msix_vector = err;
7091                 for (i = 0; i < h->msix_vector; i++)
7092                         h->intr[i] = hpsa_msix_entries[i].vector;
7093                 return;
7094         }
7095 single_msi_mode:
7096         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7097                 dev_info(&h->pdev->dev, "MSI capable controller\n");
7098                 if (!pci_enable_msi(h->pdev))
7099                         h->msi_vector = 1;
7100                 else
7101                         dev_warn(&h->pdev->dev, "MSI init failed\n");
7102         }
7103 default_int_mode:
7104 #endif                          /* CONFIG_PCI_MSI */
7105         /* if we get here we're going to use the default interrupt mode */
7106         h->intr[h->intr_mode] = h->pdev->irq;
7107 }
7108
7109 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7110 {
7111         int i;
7112         u32 subsystem_vendor_id, subsystem_device_id;
7113
7114         subsystem_vendor_id = pdev->subsystem_vendor;
7115         subsystem_device_id = pdev->subsystem_device;
7116         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7117                     subsystem_vendor_id;
7118
7119         for (i = 0; i < ARRAY_SIZE(products); i++)
7120                 if (*board_id == products[i].board_id)
7121                         return i;
7122
7123         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7124                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7125                 !hpsa_allow_any) {
7126                 dev_warn(&pdev->dev, "unrecognized board ID: "
7127                         "0x%08x, ignoring.\n", *board_id);
7128                         return -ENODEV;
7129         }
7130         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7131 }
7132
7133 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7134                                     unsigned long *memory_bar)
7135 {
7136         int i;
7137
7138         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7139                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7140                         /* addressing mode bits already removed */
7141                         *memory_bar = pci_resource_start(pdev, i);
7142                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7143                                 *memory_bar);
7144                         return 0;
7145                 }
7146         dev_warn(&pdev->dev, "no memory BAR found\n");
7147         return -ENODEV;
7148 }
7149
7150 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7151                                      int wait_for_ready)
7152 {
7153         int i, iterations;
7154         u32 scratchpad;
7155         if (wait_for_ready)
7156                 iterations = HPSA_BOARD_READY_ITERATIONS;
7157         else
7158                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7159
7160         for (i = 0; i < iterations; i++) {
7161                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7162                 if (wait_for_ready) {
7163                         if (scratchpad == HPSA_FIRMWARE_READY)
7164                                 return 0;
7165                 } else {
7166                         if (scratchpad != HPSA_FIRMWARE_READY)
7167                                 return 0;
7168                 }
7169                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7170         }
7171         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7172         return -ENODEV;
7173 }
7174
7175 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7176                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7177                                u64 *cfg_offset)
7178 {
7179         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7180         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7181         *cfg_base_addr &= (u32) 0x0000ffff;
7182         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7183         if (*cfg_base_addr_index == -1) {
7184                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7185                 return -ENODEV;
7186         }
7187         return 0;
7188 }
7189
7190 static void hpsa_free_cfgtables(struct ctlr_info *h)
7191 {
7192         if (h->transtable) {
7193                 iounmap(h->transtable);
7194                 h->transtable = NULL;
7195         }
7196         if (h->cfgtable) {
7197                 iounmap(h->cfgtable);
7198                 h->cfgtable = NULL;
7199         }
7200 }
7201
7202 /* Find and map CISS config table and transfer table
7203 + * several items must be unmapped (freed) later
7204 + * */
7205 static int hpsa_find_cfgtables(struct ctlr_info *h)
7206 {
7207         u64 cfg_offset;
7208         u32 cfg_base_addr;
7209         u64 cfg_base_addr_index;
7210         u32 trans_offset;
7211         int rc;
7212
7213         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7214                 &cfg_base_addr_index, &cfg_offset);
7215         if (rc)
7216                 return rc;
7217         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7218                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7219         if (!h->cfgtable) {
7220                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7221                 return -ENOMEM;
7222         }
7223         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7224         if (rc)
7225                 return rc;
7226         /* Find performant mode table. */
7227         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7228         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7229                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7230                                 sizeof(*h->transtable));
7231         if (!h->transtable) {
7232                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7233                 hpsa_free_cfgtables(h);
7234                 return -ENOMEM;
7235         }
7236         return 0;
7237 }
7238
7239 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7240 {
7241 #define MIN_MAX_COMMANDS 16
7242         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7243
7244         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7245
7246         /* Limit commands in memory limited kdump scenario. */
7247         if (reset_devices && h->max_commands > 32)
7248                 h->max_commands = 32;
7249
7250         if (h->max_commands < MIN_MAX_COMMANDS) {
7251                 dev_warn(&h->pdev->dev,
7252                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7253                         h->max_commands,
7254                         MIN_MAX_COMMANDS);
7255                 h->max_commands = MIN_MAX_COMMANDS;
7256         }
7257 }
7258
7259 /* If the controller reports that the total max sg entries is greater than 512,
7260  * then we know that chained SG blocks work.  (Original smart arrays did not
7261  * support chained SG blocks and would return zero for max sg entries.)
7262  */
7263 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7264 {
7265         return h->maxsgentries > 512;
7266 }
7267
7268 /* Interrogate the hardware for some limits:
7269  * max commands, max SG elements without chaining, and with chaining,
7270  * SG chain block size, etc.
7271  */
7272 static void hpsa_find_board_params(struct ctlr_info *h)
7273 {
7274         hpsa_get_max_perf_mode_cmds(h);
7275         h->nr_cmds = h->max_commands;
7276         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7277         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7278         if (hpsa_supports_chained_sg_blocks(h)) {
7279                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7280                 h->max_cmd_sg_entries = 32;
7281                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7282                 h->maxsgentries--; /* save one for chain pointer */
7283         } else {
7284                 /*
7285                  * Original smart arrays supported at most 31 s/g entries
7286                  * embedded inline in the command (trying to use more
7287                  * would lock up the controller)
7288                  */
7289                 h->max_cmd_sg_entries = 31;
7290                 h->maxsgentries = 31; /* default to traditional values */
7291                 h->chainsize = 0;
7292         }
7293
7294         /* Find out what task management functions are supported and cache */
7295         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7296         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7297                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7298         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7299                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7300         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7301                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7302 }
7303
7304 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7305 {
7306         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7307                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7308                 return false;
7309         }
7310         return true;
7311 }
7312
7313 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7314 {
7315         u32 driver_support;
7316
7317         driver_support = readl(&(h->cfgtable->driver_support));
7318         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7319 #ifdef CONFIG_X86
7320         driver_support |= ENABLE_SCSI_PREFETCH;
7321 #endif
7322         driver_support |= ENABLE_UNIT_ATTN;
7323         writel(driver_support, &(h->cfgtable->driver_support));
7324 }
7325
7326 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7327  * in a prefetch beyond physical memory.
7328  */
7329 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7330 {
7331         u32 dma_prefetch;
7332
7333         if (h->board_id != 0x3225103C)
7334                 return;
7335         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7336         dma_prefetch |= 0x8000;
7337         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7338 }
7339
7340 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7341 {
7342         int i;
7343         u32 doorbell_value;
7344         unsigned long flags;
7345         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7346         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7347                 spin_lock_irqsave(&h->lock, flags);
7348                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7349                 spin_unlock_irqrestore(&h->lock, flags);
7350                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7351                         goto done;
7352                 /* delay and try again */
7353                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7354         }
7355         return -ENODEV;
7356 done:
7357         return 0;
7358 }
7359
7360 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7361 {
7362         int i;
7363         u32 doorbell_value;
7364         unsigned long flags;
7365
7366         /* under certain very rare conditions, this can take awhile.
7367          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7368          * as we enter this code.)
7369          */
7370         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7371                 if (h->remove_in_progress)
7372                         goto done;
7373                 spin_lock_irqsave(&h->lock, flags);
7374                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7375                 spin_unlock_irqrestore(&h->lock, flags);
7376                 if (!(doorbell_value & CFGTBL_ChangeReq))
7377                         goto done;
7378                 /* delay and try again */
7379                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7380         }
7381         return -ENODEV;
7382 done:
7383         return 0;
7384 }
7385
7386 /* return -ENODEV or other reason on error, 0 on success */
7387 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7388 {
7389         u32 trans_support;
7390
7391         trans_support = readl(&(h->cfgtable->TransportSupport));
7392         if (!(trans_support & SIMPLE_MODE))
7393                 return -ENOTSUPP;
7394
7395         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7396
7397         /* Update the field, and then ring the doorbell */
7398         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7399         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7400         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7401         if (hpsa_wait_for_mode_change_ack(h))
7402                 goto error;
7403         print_cfg_table(&h->pdev->dev, h->cfgtable);
7404         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7405                 goto error;
7406         h->transMethod = CFGTBL_Trans_Simple;
7407         return 0;
7408 error:
7409         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7410         return -ENODEV;
7411 }
7412
7413 /* free items allocated or mapped by hpsa_pci_init */
7414 static void hpsa_free_pci_init(struct ctlr_info *h)
7415 {
7416         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7417         iounmap(h->vaddr);                      /* pci_init 3 */
7418         h->vaddr = NULL;
7419         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7420         /*
7421          * call pci_disable_device before pci_release_regions per
7422          * Documentation/PCI/pci.txt
7423          */
7424         pci_disable_device(h->pdev);            /* pci_init 1 */
7425         pci_release_regions(h->pdev);           /* pci_init 2 */
7426 }
7427
7428 /* several items must be freed later */
7429 static int hpsa_pci_init(struct ctlr_info *h)
7430 {
7431         int prod_index, err;
7432
7433         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7434         if (prod_index < 0)
7435                 return prod_index;
7436         h->product_name = products[prod_index].product_name;
7437         h->access = *(products[prod_index].access);
7438
7439         h->needs_abort_tags_swizzled =
7440                 ctlr_needs_abort_tags_swizzled(h->board_id);
7441
7442         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7443                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7444
7445         err = pci_enable_device(h->pdev);
7446         if (err) {
7447                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7448                 pci_disable_device(h->pdev);
7449                 return err;
7450         }
7451
7452         err = pci_request_regions(h->pdev, HPSA);
7453         if (err) {
7454                 dev_err(&h->pdev->dev,
7455                         "failed to obtain PCI resources\n");
7456                 pci_disable_device(h->pdev);
7457                 return err;
7458         }
7459
7460         pci_set_master(h->pdev);
7461
7462         hpsa_interrupt_mode(h);
7463         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7464         if (err)
7465                 goto clean2;    /* intmode+region, pci */
7466         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7467         if (!h->vaddr) {
7468                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7469                 err = -ENOMEM;
7470                 goto clean2;    /* intmode+region, pci */
7471         }
7472         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7473         if (err)
7474                 goto clean3;    /* vaddr, intmode+region, pci */
7475         err = hpsa_find_cfgtables(h);
7476         if (err)
7477                 goto clean3;    /* vaddr, intmode+region, pci */
7478         hpsa_find_board_params(h);
7479
7480         if (!hpsa_CISS_signature_present(h)) {
7481                 err = -ENODEV;
7482                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7483         }
7484         hpsa_set_driver_support_bits(h);
7485         hpsa_p600_dma_prefetch_quirk(h);
7486         err = hpsa_enter_simple_mode(h);
7487         if (err)
7488                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7489         return 0;
7490
7491 clean4: /* cfgtables, vaddr, intmode+region, pci */
7492         hpsa_free_cfgtables(h);
7493 clean3: /* vaddr, intmode+region, pci */
7494         iounmap(h->vaddr);
7495         h->vaddr = NULL;
7496 clean2: /* intmode+region, pci */
7497         hpsa_disable_interrupt_mode(h);
7498         /*
7499          * call pci_disable_device before pci_release_regions per
7500          * Documentation/PCI/pci.txt
7501          */
7502         pci_disable_device(h->pdev);
7503         pci_release_regions(h->pdev);
7504         return err;
7505 }
7506
7507 static void hpsa_hba_inquiry(struct ctlr_info *h)
7508 {
7509         int rc;
7510
7511 #define HBA_INQUIRY_BYTE_COUNT 64
7512         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7513         if (!h->hba_inquiry_data)
7514                 return;
7515         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7516                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7517         if (rc != 0) {
7518                 kfree(h->hba_inquiry_data);
7519                 h->hba_inquiry_data = NULL;
7520         }
7521 }
7522
7523 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7524 {
7525         int rc, i;
7526         void __iomem *vaddr;
7527
7528         if (!reset_devices)
7529                 return 0;
7530
7531         /* kdump kernel is loading, we don't know in which state is
7532          * the pci interface. The dev->enable_cnt is equal zero
7533          * so we call enable+disable, wait a while and switch it on.
7534          */
7535         rc = pci_enable_device(pdev);
7536         if (rc) {
7537                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7538                 return -ENODEV;
7539         }
7540         pci_disable_device(pdev);
7541         msleep(260);                    /* a randomly chosen number */
7542         rc = pci_enable_device(pdev);
7543         if (rc) {
7544                 dev_warn(&pdev->dev, "failed to enable device.\n");
7545                 return -ENODEV;
7546         }
7547
7548         pci_set_master(pdev);
7549
7550         vaddr = pci_ioremap_bar(pdev, 0);
7551         if (vaddr == NULL) {
7552                 rc = -ENOMEM;
7553                 goto out_disable;
7554         }
7555         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7556         iounmap(vaddr);
7557
7558         /* Reset the controller with a PCI power-cycle or via doorbell */
7559         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7560
7561         /* -ENOTSUPP here means we cannot reset the controller
7562          * but it's already (and still) up and running in
7563          * "performant mode".  Or, it might be 640x, which can't reset
7564          * due to concerns about shared bbwc between 6402/6404 pair.
7565          */
7566         if (rc)
7567                 goto out_disable;
7568
7569         /* Now try to get the controller to respond to a no-op */
7570         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7571         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7572                 if (hpsa_noop(pdev) == 0)
7573                         break;
7574                 else
7575                         dev_warn(&pdev->dev, "no-op failed%s\n",
7576                                         (i < 11 ? "; re-trying" : ""));
7577         }
7578
7579 out_disable:
7580
7581         pci_disable_device(pdev);
7582         return rc;
7583 }
7584
7585 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7586 {
7587         kfree(h->cmd_pool_bits);
7588         h->cmd_pool_bits = NULL;
7589         if (h->cmd_pool) {
7590                 pci_free_consistent(h->pdev,
7591                                 h->nr_cmds * sizeof(struct CommandList),
7592                                 h->cmd_pool,
7593                                 h->cmd_pool_dhandle);
7594                 h->cmd_pool = NULL;
7595                 h->cmd_pool_dhandle = 0;
7596         }
7597         if (h->errinfo_pool) {
7598                 pci_free_consistent(h->pdev,
7599                                 h->nr_cmds * sizeof(struct ErrorInfo),
7600                                 h->errinfo_pool,
7601                                 h->errinfo_pool_dhandle);
7602                 h->errinfo_pool = NULL;
7603                 h->errinfo_pool_dhandle = 0;
7604         }
7605 }
7606
7607 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7608 {
7609         h->cmd_pool_bits = kzalloc(
7610                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7611                 sizeof(unsigned long), GFP_KERNEL);
7612         h->cmd_pool = pci_alloc_consistent(h->pdev,
7613                     h->nr_cmds * sizeof(*h->cmd_pool),
7614                     &(h->cmd_pool_dhandle));
7615         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7616                     h->nr_cmds * sizeof(*h->errinfo_pool),
7617                     &(h->errinfo_pool_dhandle));
7618         if ((h->cmd_pool_bits == NULL)
7619             || (h->cmd_pool == NULL)
7620             || (h->errinfo_pool == NULL)) {
7621                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7622                 goto clean_up;
7623         }
7624         hpsa_preinitialize_commands(h);
7625         return 0;
7626 clean_up:
7627         hpsa_free_cmd_pool(h);
7628         return -ENOMEM;
7629 }
7630
7631 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7632 {
7633         int i, cpu;
7634
7635         cpu = cpumask_first(cpu_online_mask);
7636         for (i = 0; i < h->msix_vector; i++) {
7637                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7638                 cpu = cpumask_next(cpu, cpu_online_mask);
7639         }
7640 }
7641
7642 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7643 static void hpsa_free_irqs(struct ctlr_info *h)
7644 {
7645         int i;
7646
7647         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7648                 /* Single reply queue, only one irq to free */
7649                 i = h->intr_mode;
7650                 irq_set_affinity_hint(h->intr[i], NULL);
7651                 free_irq(h->intr[i], &h->q[i]);
7652                 h->q[i] = 0;
7653                 return;
7654         }
7655
7656         for (i = 0; i < h->msix_vector; i++) {
7657                 irq_set_affinity_hint(h->intr[i], NULL);
7658                 free_irq(h->intr[i], &h->q[i]);
7659                 h->q[i] = 0;
7660         }
7661         for (; i < MAX_REPLY_QUEUES; i++)
7662                 h->q[i] = 0;
7663 }
7664
7665 /* returns 0 on success; cleans up and returns -Enn on error */
7666 static int hpsa_request_irqs(struct ctlr_info *h,
7667         irqreturn_t (*msixhandler)(int, void *),
7668         irqreturn_t (*intxhandler)(int, void *))
7669 {
7670         int rc, i;
7671
7672         /*
7673          * initialize h->q[x] = x so that interrupt handlers know which
7674          * queue to process.
7675          */
7676         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7677                 h->q[i] = (u8) i;
7678
7679         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7680                 /* If performant mode and MSI-X, use multiple reply queues */
7681                 for (i = 0; i < h->msix_vector; i++) {
7682                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7683                         rc = request_irq(h->intr[i], msixhandler,
7684                                         0, h->intrname[i],
7685                                         &h->q[i]);
7686                         if (rc) {
7687                                 int j;
7688
7689                                 dev_err(&h->pdev->dev,
7690                                         "failed to get irq %d for %s\n",
7691                                        h->intr[i], h->devname);
7692                                 for (j = 0; j < i; j++) {
7693                                         free_irq(h->intr[j], &h->q[j]);
7694                                         h->q[j] = 0;
7695                                 }
7696                                 for (; j < MAX_REPLY_QUEUES; j++)
7697                                         h->q[j] = 0;
7698                                 return rc;
7699                         }
7700                 }
7701                 hpsa_irq_affinity_hints(h);
7702         } else {
7703                 /* Use single reply pool */
7704                 if (h->msix_vector > 0 || h->msi_vector) {
7705                         if (h->msix_vector)
7706                                 sprintf(h->intrname[h->intr_mode],
7707                                         "%s-msix", h->devname);
7708                         else
7709                                 sprintf(h->intrname[h->intr_mode],
7710                                         "%s-msi", h->devname);
7711                         rc = request_irq(h->intr[h->intr_mode],
7712                                 msixhandler, 0,
7713                                 h->intrname[h->intr_mode],
7714                                 &h->q[h->intr_mode]);
7715                 } else {
7716                         sprintf(h->intrname[h->intr_mode],
7717                                 "%s-intx", h->devname);
7718                         rc = request_irq(h->intr[h->intr_mode],
7719                                 intxhandler, IRQF_SHARED,
7720                                 h->intrname[h->intr_mode],
7721                                 &h->q[h->intr_mode]);
7722                 }
7723                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7724         }
7725         if (rc) {
7726                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7727                        h->intr[h->intr_mode], h->devname);
7728                 hpsa_free_irqs(h);
7729                 return -ENODEV;
7730         }
7731         return 0;
7732 }
7733
7734 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7735 {
7736         int rc;
7737         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7738
7739         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7740         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7741         if (rc) {
7742                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7743                 return rc;
7744         }
7745
7746         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7747         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7748         if (rc) {
7749                 dev_warn(&h->pdev->dev, "Board failed to become ready "
7750                         "after soft reset.\n");
7751                 return rc;
7752         }
7753
7754         return 0;
7755 }
7756
7757 static void hpsa_free_reply_queues(struct ctlr_info *h)
7758 {
7759         int i;
7760
7761         for (i = 0; i < h->nreply_queues; i++) {
7762                 if (!h->reply_queue[i].head)
7763                         continue;
7764                 pci_free_consistent(h->pdev,
7765                                         h->reply_queue_size,
7766                                         h->reply_queue[i].head,
7767                                         h->reply_queue[i].busaddr);
7768                 h->reply_queue[i].head = NULL;
7769                 h->reply_queue[i].busaddr = 0;
7770         }
7771         h->reply_queue_size = 0;
7772 }
7773
7774 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7775 {
7776         hpsa_free_performant_mode(h);           /* init_one 7 */
7777         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
7778         hpsa_free_cmd_pool(h);                  /* init_one 5 */
7779         hpsa_free_irqs(h);                      /* init_one 4 */
7780         scsi_host_put(h->scsi_host);            /* init_one 3 */
7781         h->scsi_host = NULL;                    /* init_one 3 */
7782         hpsa_free_pci_init(h);                  /* init_one 2_5 */
7783         free_percpu(h->lockup_detected);        /* init_one 2 */
7784         h->lockup_detected = NULL;              /* init_one 2 */
7785         if (h->resubmit_wq) {
7786                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
7787                 h->resubmit_wq = NULL;
7788         }
7789         if (h->rescan_ctlr_wq) {
7790                 destroy_workqueue(h->rescan_ctlr_wq);
7791                 h->rescan_ctlr_wq = NULL;
7792         }
7793         kfree(h);                               /* init_one 1 */
7794 }
7795
7796 /* Called when controller lockup detected. */
7797 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7798 {
7799         int i, refcount;
7800         struct CommandList *c;
7801         int failcount = 0;
7802
7803         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7804         for (i = 0; i < h->nr_cmds; i++) {
7805                 c = h->cmd_pool + i;
7806                 refcount = atomic_inc_return(&c->refcount);
7807                 if (refcount > 1) {
7808                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7809                         finish_cmd(c);
7810                         atomic_dec(&h->commands_outstanding);
7811                         failcount++;
7812                 }
7813                 cmd_free(h, c);
7814         }
7815         dev_warn(&h->pdev->dev,
7816                 "failed %d commands in fail_all\n", failcount);
7817 }
7818
7819 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7820 {
7821         int cpu;
7822
7823         for_each_online_cpu(cpu) {
7824                 u32 *lockup_detected;
7825                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7826                 *lockup_detected = value;
7827         }
7828         wmb(); /* be sure the per-cpu variables are out to memory */
7829 }
7830
7831 static void controller_lockup_detected(struct ctlr_info *h)
7832 {
7833         unsigned long flags;
7834         u32 lockup_detected;
7835
7836         h->access.set_intr_mask(h, HPSA_INTR_OFF);
7837         spin_lock_irqsave(&h->lock, flags);
7838         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7839         if (!lockup_detected) {
7840                 /* no heartbeat, but controller gave us a zero. */
7841                 dev_warn(&h->pdev->dev,
7842                         "lockup detected after %d but scratchpad register is zero\n",
7843                         h->heartbeat_sample_interval / HZ);
7844                 lockup_detected = 0xffffffff;
7845         }
7846         set_lockup_detected_for_all_cpus(h, lockup_detected);
7847         spin_unlock_irqrestore(&h->lock, flags);
7848         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
7849                         lockup_detected, h->heartbeat_sample_interval / HZ);
7850         pci_disable_device(h->pdev);
7851         fail_all_outstanding_cmds(h);
7852 }
7853
7854 static int detect_controller_lockup(struct ctlr_info *h)
7855 {
7856         u64 now;
7857         u32 heartbeat;
7858         unsigned long flags;
7859
7860         now = get_jiffies_64();
7861         /* If we've received an interrupt recently, we're ok. */
7862         if (time_after64(h->last_intr_timestamp +
7863                                 (h->heartbeat_sample_interval), now))
7864                 return false;
7865
7866         /*
7867          * If we've already checked the heartbeat recently, we're ok.
7868          * This could happen if someone sends us a signal. We
7869          * otherwise don't care about signals in this thread.
7870          */
7871         if (time_after64(h->last_heartbeat_timestamp +
7872                                 (h->heartbeat_sample_interval), now))
7873                 return false;
7874
7875         /* If heartbeat has not changed since we last looked, we're not ok. */
7876         spin_lock_irqsave(&h->lock, flags);
7877         heartbeat = readl(&h->cfgtable->HeartBeat);
7878         spin_unlock_irqrestore(&h->lock, flags);
7879         if (h->last_heartbeat == heartbeat) {
7880                 controller_lockup_detected(h);
7881                 return true;
7882         }
7883
7884         /* We're ok. */
7885         h->last_heartbeat = heartbeat;
7886         h->last_heartbeat_timestamp = now;
7887         return false;
7888 }
7889
7890 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7891 {
7892         int i;
7893         char *event_type;
7894
7895         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7896                 return;
7897
7898         /* Ask the controller to clear the events we're handling. */
7899         if ((h->transMethod & (CFGTBL_Trans_io_accel1
7900                         | CFGTBL_Trans_io_accel2)) &&
7901                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
7902                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
7903
7904                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
7905                         event_type = "state change";
7906                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
7907                         event_type = "configuration change";
7908                 /* Stop sending new RAID offload reqs via the IO accelerator */
7909                 scsi_block_requests(h->scsi_host);
7910                 for (i = 0; i < h->ndevices; i++)
7911                         h->dev[i]->offload_enabled = 0;
7912                 hpsa_drain_accel_commands(h);
7913                 /* Set 'accelerator path config change' bit */
7914                 dev_warn(&h->pdev->dev,
7915                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
7916                         h->events, event_type);
7917                 writel(h->events, &(h->cfgtable->clear_event_notify));
7918                 /* Set the "clear event notify field update" bit 6 */
7919                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7920                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
7921                 hpsa_wait_for_clear_event_notify_ack(h);
7922                 scsi_unblock_requests(h->scsi_host);
7923         } else {
7924                 /* Acknowledge controller notification events. */
7925                 writel(h->events, &(h->cfgtable->clear_event_notify));
7926                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7927                 hpsa_wait_for_clear_event_notify_ack(h);
7928 #if 0
7929                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7930                 hpsa_wait_for_mode_change_ack(h);
7931 #endif
7932         }
7933         return;
7934 }
7935
7936 /* Check a register on the controller to see if there are configuration
7937  * changes (added/changed/removed logical drives, etc.) which mean that
7938  * we should rescan the controller for devices.
7939  * Also check flag for driver-initiated rescan.
7940  */
7941 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
7942 {
7943         if (h->drv_req_rescan) {
7944                 h->drv_req_rescan = 0;
7945                 return 1;
7946         }
7947
7948         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7949                 return 0;
7950
7951         h->events = readl(&(h->cfgtable->event_notify));
7952         return h->events & RESCAN_REQUIRED_EVENT_BITS;
7953 }
7954
7955 /*
7956  * Check if any of the offline devices have become ready
7957  */
7958 static int hpsa_offline_devices_ready(struct ctlr_info *h)
7959 {
7960         unsigned long flags;
7961         struct offline_device_entry *d;
7962         struct list_head *this, *tmp;
7963
7964         spin_lock_irqsave(&h->offline_device_lock, flags);
7965         list_for_each_safe(this, tmp, &h->offline_device_list) {
7966                 d = list_entry(this, struct offline_device_entry,
7967                                 offline_list);
7968                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
7969                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
7970                         spin_lock_irqsave(&h->offline_device_lock, flags);
7971                         list_del(&d->offline_list);
7972                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
7973                         return 1;
7974                 }
7975                 spin_lock_irqsave(&h->offline_device_lock, flags);
7976         }
7977         spin_unlock_irqrestore(&h->offline_device_lock, flags);
7978         return 0;
7979 }
7980
7981 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
7982 {
7983         unsigned long flags;
7984         struct ctlr_info *h = container_of(to_delayed_work(work),
7985                                         struct ctlr_info, rescan_ctlr_work);
7986
7987
7988         if (h->remove_in_progress)
7989                 return;
7990
7991         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
7992                 scsi_host_get(h->scsi_host);
7993                 hpsa_ack_ctlr_events(h);
7994                 hpsa_scan_start(h->scsi_host);
7995                 scsi_host_put(h->scsi_host);
7996         }
7997         spin_lock_irqsave(&h->lock, flags);
7998         if (!h->remove_in_progress)
7999                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8000                                 h->heartbeat_sample_interval);
8001         spin_unlock_irqrestore(&h->lock, flags);
8002 }
8003
8004 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8005 {
8006         unsigned long flags;
8007         struct ctlr_info *h = container_of(to_delayed_work(work),
8008                                         struct ctlr_info, monitor_ctlr_work);
8009
8010         detect_controller_lockup(h);
8011         if (lockup_detected(h))
8012                 return;
8013
8014         spin_lock_irqsave(&h->lock, flags);
8015         if (!h->remove_in_progress)
8016                 schedule_delayed_work(&h->monitor_ctlr_work,
8017                                 h->heartbeat_sample_interval);
8018         spin_unlock_irqrestore(&h->lock, flags);
8019 }
8020
8021 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8022                                                 char *name)
8023 {
8024         struct workqueue_struct *wq = NULL;
8025
8026         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8027         if (!wq)
8028                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8029
8030         return wq;
8031 }
8032
8033 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8034 {
8035         int dac, rc;
8036         struct ctlr_info *h;
8037         int try_soft_reset = 0;
8038         unsigned long flags;
8039         u32 board_id;
8040
8041         if (number_of_controllers == 0)
8042                 printk(KERN_INFO DRIVER_NAME "\n");
8043
8044         rc = hpsa_lookup_board_id(pdev, &board_id);
8045         if (rc < 0) {
8046                 dev_warn(&pdev->dev, "Board ID not found\n");
8047                 return rc;
8048         }
8049
8050         rc = hpsa_init_reset_devices(pdev, board_id);
8051         if (rc) {
8052                 if (rc != -ENOTSUPP)
8053                         return rc;
8054                 /* If the reset fails in a particular way (it has no way to do
8055                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8056                  * a soft reset once we get the controller configured up to the
8057                  * point that it can accept a command.
8058                  */
8059                 try_soft_reset = 1;
8060                 rc = 0;
8061         }
8062
8063 reinit_after_soft_reset:
8064
8065         /* Command structures must be aligned on a 32-byte boundary because
8066          * the 5 lower bits of the address are used by the hardware. and by
8067          * the driver.  See comments in hpsa.h for more info.
8068          */
8069         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8070         h = kzalloc(sizeof(*h), GFP_KERNEL);
8071         if (!h) {
8072                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8073                 return -ENOMEM;
8074         }
8075
8076         h->pdev = pdev;
8077
8078         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8079         INIT_LIST_HEAD(&h->offline_device_list);
8080         spin_lock_init(&h->lock);
8081         spin_lock_init(&h->offline_device_lock);
8082         spin_lock_init(&h->scan_lock);
8083         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8084         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8085
8086         /* Allocate and clear per-cpu variable lockup_detected */
8087         h->lockup_detected = alloc_percpu(u32);
8088         if (!h->lockup_detected) {
8089                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8090                 rc = -ENOMEM;
8091                 goto clean1;    /* aer/h */
8092         }
8093         set_lockup_detected_for_all_cpus(h, 0);
8094
8095         rc = hpsa_pci_init(h);
8096         if (rc)
8097                 goto clean2;    /* lu, aer/h */
8098
8099         /* relies on h-> settings made by hpsa_pci_init, including
8100          * interrupt_mode h->intr */
8101         rc = hpsa_scsi_host_alloc(h);
8102         if (rc)
8103                 goto clean2_5;  /* pci, lu, aer/h */
8104
8105         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8106         h->ctlr = number_of_controllers;
8107         number_of_controllers++;
8108
8109         /* configure PCI DMA stuff */
8110         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8111         if (rc == 0) {
8112                 dac = 1;
8113         } else {
8114                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8115                 if (rc == 0) {
8116                         dac = 0;
8117                 } else {
8118                         dev_err(&pdev->dev, "no suitable DMA available\n");
8119                         goto clean3;    /* shost, pci, lu, aer/h */
8120                 }
8121         }
8122
8123         /* make sure the board interrupts are off */
8124         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8125
8126         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8127         if (rc)
8128                 goto clean3;    /* shost, pci, lu, aer/h */
8129         rc = hpsa_alloc_cmd_pool(h);
8130         if (rc)
8131                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8132         rc = hpsa_alloc_sg_chain_blocks(h);
8133         if (rc)
8134                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8135         init_waitqueue_head(&h->scan_wait_queue);
8136         init_waitqueue_head(&h->abort_cmd_wait_queue);
8137         init_waitqueue_head(&h->event_sync_wait_queue);
8138         mutex_init(&h->reset_mutex);
8139         h->scan_finished = 1; /* no scan currently in progress */
8140
8141         pci_set_drvdata(pdev, h);
8142         h->ndevices = 0;
8143
8144         spin_lock_init(&h->devlock);
8145         rc = hpsa_put_ctlr_into_performant_mode(h);
8146         if (rc)
8147                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8148
8149         /* hook into SCSI subsystem */
8150         rc = hpsa_scsi_add_host(h);
8151         if (rc)
8152                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8153
8154         /* create the resubmit workqueue */
8155         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8156         if (!h->rescan_ctlr_wq) {
8157                 rc = -ENOMEM;
8158                 goto clean7;
8159         }
8160
8161         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8162         if (!h->resubmit_wq) {
8163                 rc = -ENOMEM;
8164                 goto clean7;    /* aer/h */
8165         }
8166
8167         /*
8168          * At this point, the controller is ready to take commands.
8169          * Now, if reset_devices and the hard reset didn't work, try
8170          * the soft reset and see if that works.
8171          */
8172         if (try_soft_reset) {
8173
8174                 /* This is kind of gross.  We may or may not get a completion
8175                  * from the soft reset command, and if we do, then the value
8176                  * from the fifo may or may not be valid.  So, we wait 10 secs
8177                  * after the reset throwing away any completions we get during
8178                  * that time.  Unregister the interrupt handler and register
8179                  * fake ones to scoop up any residual completions.
8180                  */
8181                 spin_lock_irqsave(&h->lock, flags);
8182                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8183                 spin_unlock_irqrestore(&h->lock, flags);
8184                 hpsa_free_irqs(h);
8185                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8186                                         hpsa_intx_discard_completions);
8187                 if (rc) {
8188                         dev_warn(&h->pdev->dev,
8189                                 "Failed to request_irq after soft reset.\n");
8190                         /*
8191                          * cannot goto clean7 or free_irqs will be called
8192                          * again. Instead, do its work
8193                          */
8194                         hpsa_free_performant_mode(h);   /* clean7 */
8195                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8196                         hpsa_free_cmd_pool(h);          /* clean5 */
8197                         /*
8198                          * skip hpsa_free_irqs(h) clean4 since that
8199                          * was just called before request_irqs failed
8200                          */
8201                         goto clean3;
8202                 }
8203
8204                 rc = hpsa_kdump_soft_reset(h);
8205                 if (rc)
8206                         /* Neither hard nor soft reset worked, we're hosed. */
8207                         goto clean7;
8208
8209                 dev_info(&h->pdev->dev, "Board READY.\n");
8210                 dev_info(&h->pdev->dev,
8211                         "Waiting for stale completions to drain.\n");
8212                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8213                 msleep(10000);
8214                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8215
8216                 rc = controller_reset_failed(h->cfgtable);
8217                 if (rc)
8218                         dev_info(&h->pdev->dev,
8219                                 "Soft reset appears to have failed.\n");
8220
8221                 /* since the controller's reset, we have to go back and re-init
8222                  * everything.  Easiest to just forget what we've done and do it
8223                  * all over again.
8224                  */
8225                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8226                 try_soft_reset = 0;
8227                 if (rc)
8228                         /* don't goto clean, we already unallocated */
8229                         return -ENODEV;
8230
8231                 goto reinit_after_soft_reset;
8232         }
8233
8234         /* Enable Accelerated IO path at driver layer */
8235         h->acciopath_status = 1;
8236
8237
8238         /* Turn the interrupts on so we can service requests */
8239         h->access.set_intr_mask(h, HPSA_INTR_ON);
8240
8241         hpsa_hba_inquiry(h);
8242
8243         /* Monitor the controller for firmware lockups */
8244         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8245         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8246         schedule_delayed_work(&h->monitor_ctlr_work,
8247                                 h->heartbeat_sample_interval);
8248         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8249         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8250                                 h->heartbeat_sample_interval);
8251         return 0;
8252
8253 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8254         hpsa_free_performant_mode(h);
8255         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8256 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8257         hpsa_free_sg_chain_blocks(h);
8258 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8259         hpsa_free_cmd_pool(h);
8260 clean4: /* irq, shost, pci, lu, aer/h */
8261         hpsa_free_irqs(h);
8262 clean3: /* shost, pci, lu, aer/h */
8263         scsi_host_put(h->scsi_host);
8264         h->scsi_host = NULL;
8265 clean2_5: /* pci, lu, aer/h */
8266         hpsa_free_pci_init(h);
8267 clean2: /* lu, aer/h */
8268         if (h->lockup_detected) {
8269                 free_percpu(h->lockup_detected);
8270                 h->lockup_detected = NULL;
8271         }
8272 clean1: /* wq/aer/h */
8273         if (h->resubmit_wq) {
8274                 destroy_workqueue(h->resubmit_wq);
8275                 h->resubmit_wq = NULL;
8276         }
8277         if (h->rescan_ctlr_wq) {
8278                 destroy_workqueue(h->rescan_ctlr_wq);
8279                 h->rescan_ctlr_wq = NULL;
8280         }
8281         kfree(h);
8282         return rc;
8283 }
8284
8285 static void hpsa_flush_cache(struct ctlr_info *h)
8286 {
8287         char *flush_buf;
8288         struct CommandList *c;
8289         int rc;
8290
8291         if (unlikely(lockup_detected(h)))
8292                 return;
8293         flush_buf = kzalloc(4, GFP_KERNEL);
8294         if (!flush_buf)
8295                 return;
8296
8297         c = cmd_alloc(h);
8298
8299         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8300                 RAID_CTLR_LUNID, TYPE_CMD)) {
8301                 goto out;
8302         }
8303         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8304                                         PCI_DMA_TODEVICE, NO_TIMEOUT);
8305         if (rc)
8306                 goto out;
8307         if (c->err_info->CommandStatus != 0)
8308 out:
8309                 dev_warn(&h->pdev->dev,
8310                         "error flushing cache on controller\n");
8311         cmd_free(h, c);
8312         kfree(flush_buf);
8313 }
8314
8315 static void hpsa_shutdown(struct pci_dev *pdev)
8316 {
8317         struct ctlr_info *h;
8318
8319         h = pci_get_drvdata(pdev);
8320         /* Turn board interrupts off  and send the flush cache command
8321          * sendcmd will turn off interrupt, and send the flush...
8322          * To write all data in the battery backed cache to disks
8323          */
8324         hpsa_flush_cache(h);
8325         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8326         hpsa_free_irqs(h);                      /* init_one 4 */
8327         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8328 }
8329
8330 static void hpsa_free_device_info(struct ctlr_info *h)
8331 {
8332         int i;
8333
8334         for (i = 0; i < h->ndevices; i++) {
8335                 kfree(h->dev[i]);
8336                 h->dev[i] = NULL;
8337         }
8338 }
8339
8340 static void hpsa_remove_one(struct pci_dev *pdev)
8341 {
8342         struct ctlr_info *h;
8343         unsigned long flags;
8344
8345         if (pci_get_drvdata(pdev) == NULL) {
8346                 dev_err(&pdev->dev, "unable to remove device\n");
8347                 return;
8348         }
8349         h = pci_get_drvdata(pdev);
8350
8351         /* Get rid of any controller monitoring work items */
8352         spin_lock_irqsave(&h->lock, flags);
8353         h->remove_in_progress = 1;
8354         spin_unlock_irqrestore(&h->lock, flags);
8355         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8356         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8357         destroy_workqueue(h->rescan_ctlr_wq);
8358         destroy_workqueue(h->resubmit_wq);
8359
8360         /*
8361          * Call before disabling interrupts.
8362          * scsi_remove_host can trigger I/O operations especially
8363          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8364          * operations which cannot complete and will hang the system.
8365          */
8366         if (h->scsi_host)
8367                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8368         /* includes hpsa_free_irqs - init_one 4 */
8369         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8370         hpsa_shutdown(pdev);
8371
8372         hpsa_free_device_info(h);               /* scan */
8373
8374         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8375         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8376         hpsa_free_ioaccel2_sg_chain_blocks(h);
8377         hpsa_free_performant_mode(h);                   /* init_one 7 */
8378         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8379         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8380
8381         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8382
8383         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8384         h->scsi_host = NULL;                            /* init_one 3 */
8385
8386         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8387         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8388
8389         free_percpu(h->lockup_detected);                /* init_one 2 */
8390         h->lockup_detected = NULL;                      /* init_one 2 */
8391         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8392         kfree(h);                                       /* init_one 1 */
8393 }
8394
8395 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8396         __attribute__((unused)) pm_message_t state)
8397 {
8398         return -ENOSYS;
8399 }
8400
8401 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8402 {
8403         return -ENOSYS;
8404 }
8405
8406 static struct pci_driver hpsa_pci_driver = {
8407         .name = HPSA,
8408         .probe = hpsa_init_one,
8409         .remove = hpsa_remove_one,
8410         .id_table = hpsa_pci_device_id, /* id_table */
8411         .shutdown = hpsa_shutdown,
8412         .suspend = hpsa_suspend,
8413         .resume = hpsa_resume,
8414 };
8415
8416 /* Fill in bucket_map[], given nsgs (the max number of
8417  * scatter gather elements supported) and bucket[],
8418  * which is an array of 8 integers.  The bucket[] array
8419  * contains 8 different DMA transfer sizes (in 16
8420  * byte increments) which the controller uses to fetch
8421  * commands.  This function fills in bucket_map[], which
8422  * maps a given number of scatter gather elements to one of
8423  * the 8 DMA transfer sizes.  The point of it is to allow the
8424  * controller to only do as much DMA as needed to fetch the
8425  * command, with the DMA transfer size encoded in the lower
8426  * bits of the command address.
8427  */
8428 static void  calc_bucket_map(int bucket[], int num_buckets,
8429         int nsgs, int min_blocks, u32 *bucket_map)
8430 {
8431         int i, j, b, size;
8432
8433         /* Note, bucket_map must have nsgs+1 entries. */
8434         for (i = 0; i <= nsgs; i++) {
8435                 /* Compute size of a command with i SG entries */
8436                 size = i + min_blocks;
8437                 b = num_buckets; /* Assume the biggest bucket */
8438                 /* Find the bucket that is just big enough */
8439                 for (j = 0; j < num_buckets; j++) {
8440                         if (bucket[j] >= size) {
8441                                 b = j;
8442                                 break;
8443                         }
8444                 }
8445                 /* for a command with i SG entries, use bucket b. */
8446                 bucket_map[i] = b;
8447         }
8448 }
8449
8450 /*
8451  * return -ENODEV on err, 0 on success (or no action)
8452  * allocates numerous items that must be freed later
8453  */
8454 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8455 {
8456         int i;
8457         unsigned long register_value;
8458         unsigned long transMethod = CFGTBL_Trans_Performant |
8459                         (trans_support & CFGTBL_Trans_use_short_tags) |
8460                                 CFGTBL_Trans_enable_directed_msix |
8461                         (trans_support & (CFGTBL_Trans_io_accel1 |
8462                                 CFGTBL_Trans_io_accel2));
8463         struct access_method access = SA5_performant_access;
8464
8465         /* This is a bit complicated.  There are 8 registers on
8466          * the controller which we write to to tell it 8 different
8467          * sizes of commands which there may be.  It's a way of
8468          * reducing the DMA done to fetch each command.  Encoded into
8469          * each command's tag are 3 bits which communicate to the controller
8470          * which of the eight sizes that command fits within.  The size of
8471          * each command depends on how many scatter gather entries there are.
8472          * Each SG entry requires 16 bytes.  The eight registers are programmed
8473          * with the number of 16-byte blocks a command of that size requires.
8474          * The smallest command possible requires 5 such 16 byte blocks.
8475          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8476          * blocks.  Note, this only extends to the SG entries contained
8477          * within the command block, and does not extend to chained blocks
8478          * of SG elements.   bft[] contains the eight values we write to
8479          * the registers.  They are not evenly distributed, but have more
8480          * sizes for small commands, and fewer sizes for larger commands.
8481          */
8482         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8483 #define MIN_IOACCEL2_BFT_ENTRY 5
8484 #define HPSA_IOACCEL2_HEADER_SZ 4
8485         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8486                         13, 14, 15, 16, 17, 18, 19,
8487                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8488         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8489         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8490         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8491                                  16 * MIN_IOACCEL2_BFT_ENTRY);
8492         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8493         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8494         /*  5 = 1 s/g entry or 4k
8495          *  6 = 2 s/g entry or 8k
8496          *  8 = 4 s/g entry or 16k
8497          * 10 = 6 s/g entry or 24k
8498          */
8499
8500         /* If the controller supports either ioaccel method then
8501          * we can also use the RAID stack submit path that does not
8502          * perform the superfluous readl() after each command submission.
8503          */
8504         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8505                 access = SA5_performant_access_no_read;
8506
8507         /* Controller spec: zero out this buffer. */
8508         for (i = 0; i < h->nreply_queues; i++)
8509                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8510
8511         bft[7] = SG_ENTRIES_IN_CMD + 4;
8512         calc_bucket_map(bft, ARRAY_SIZE(bft),
8513                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8514         for (i = 0; i < 8; i++)
8515                 writel(bft[i], &h->transtable->BlockFetch[i]);
8516
8517         /* size of controller ring buffer */
8518         writel(h->max_commands, &h->transtable->RepQSize);
8519         writel(h->nreply_queues, &h->transtable->RepQCount);
8520         writel(0, &h->transtable->RepQCtrAddrLow32);
8521         writel(0, &h->transtable->RepQCtrAddrHigh32);
8522
8523         for (i = 0; i < h->nreply_queues; i++) {
8524                 writel(0, &h->transtable->RepQAddr[i].upper);
8525                 writel(h->reply_queue[i].busaddr,
8526                         &h->transtable->RepQAddr[i].lower);
8527         }
8528
8529         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8530         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8531         /*
8532          * enable outbound interrupt coalescing in accelerator mode;
8533          */
8534         if (trans_support & CFGTBL_Trans_io_accel1) {
8535                 access = SA5_ioaccel_mode1_access;
8536                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8537                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8538         } else {
8539                 if (trans_support & CFGTBL_Trans_io_accel2) {
8540                         access = SA5_ioaccel_mode2_access;
8541                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8542                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8543                 }
8544         }
8545         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8546         if (hpsa_wait_for_mode_change_ack(h)) {
8547                 dev_err(&h->pdev->dev,
8548                         "performant mode problem - doorbell timeout\n");
8549                 return -ENODEV;
8550         }
8551         register_value = readl(&(h->cfgtable->TransportActive));
8552         if (!(register_value & CFGTBL_Trans_Performant)) {
8553                 dev_err(&h->pdev->dev,
8554                         "performant mode problem - transport not active\n");
8555                 return -ENODEV;
8556         }
8557         /* Change the access methods to the performant access methods */
8558         h->access = access;
8559         h->transMethod = transMethod;
8560
8561         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8562                 (trans_support & CFGTBL_Trans_io_accel2)))
8563                 return 0;
8564
8565         if (trans_support & CFGTBL_Trans_io_accel1) {
8566                 /* Set up I/O accelerator mode */
8567                 for (i = 0; i < h->nreply_queues; i++) {
8568                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8569                         h->reply_queue[i].current_entry =
8570                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8571                 }
8572                 bft[7] = h->ioaccel_maxsg + 8;
8573                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8574                                 h->ioaccel1_blockFetchTable);
8575
8576                 /* initialize all reply queue entries to unused */
8577                 for (i = 0; i < h->nreply_queues; i++)
8578                         memset(h->reply_queue[i].head,
8579                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8580                                 h->reply_queue_size);
8581
8582                 /* set all the constant fields in the accelerator command
8583                  * frames once at init time to save CPU cycles later.
8584                  */
8585                 for (i = 0; i < h->nr_cmds; i++) {
8586                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8587
8588                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
8589                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
8590                                         (i * sizeof(struct ErrorInfo)));
8591                         cp->err_info_len = sizeof(struct ErrorInfo);
8592                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
8593                         cp->host_context_flags =
8594                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8595                         cp->timeout_sec = 0;
8596                         cp->ReplyQueue = 0;
8597                         cp->tag =
8598                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8599                         cp->host_addr =
8600                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8601                                         (i * sizeof(struct io_accel1_cmd)));
8602                 }
8603         } else if (trans_support & CFGTBL_Trans_io_accel2) {
8604                 u64 cfg_offset, cfg_base_addr_index;
8605                 u32 bft2_offset, cfg_base_addr;
8606                 int rc;
8607
8608                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8609                         &cfg_base_addr_index, &cfg_offset);
8610                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8611                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8612                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8613                                 4, h->ioaccel2_blockFetchTable);
8614                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8615                 BUILD_BUG_ON(offsetof(struct CfgTable,
8616                                 io_accel_request_size_offset) != 0xb8);
8617                 h->ioaccel2_bft2_regs =
8618                         remap_pci_mem(pci_resource_start(h->pdev,
8619                                         cfg_base_addr_index) +
8620                                         cfg_offset + bft2_offset,
8621                                         ARRAY_SIZE(bft2) *
8622                                         sizeof(*h->ioaccel2_bft2_regs));
8623                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
8624                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8625         }
8626         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8627         if (hpsa_wait_for_mode_change_ack(h)) {
8628                 dev_err(&h->pdev->dev,
8629                         "performant mode problem - enabling ioaccel mode\n");
8630                 return -ENODEV;
8631         }
8632         return 0;
8633 }
8634
8635 /* Free ioaccel1 mode command blocks and block fetch table */
8636 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8637 {
8638         if (h->ioaccel_cmd_pool) {
8639                 pci_free_consistent(h->pdev,
8640                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8641                         h->ioaccel_cmd_pool,
8642                         h->ioaccel_cmd_pool_dhandle);
8643                 h->ioaccel_cmd_pool = NULL;
8644                 h->ioaccel_cmd_pool_dhandle = 0;
8645         }
8646         kfree(h->ioaccel1_blockFetchTable);
8647         h->ioaccel1_blockFetchTable = NULL;
8648 }
8649
8650 /* Allocate ioaccel1 mode command blocks and block fetch table */
8651 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8652 {
8653         h->ioaccel_maxsg =
8654                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8655         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8656                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8657
8658         /* Command structures must be aligned on a 128-byte boundary
8659          * because the 7 lower bits of the address are used by the
8660          * hardware.
8661          */
8662         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8663                         IOACCEL1_COMMANDLIST_ALIGNMENT);
8664         h->ioaccel_cmd_pool =
8665                 pci_alloc_consistent(h->pdev,
8666                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8667                         &(h->ioaccel_cmd_pool_dhandle));
8668
8669         h->ioaccel1_blockFetchTable =
8670                 kmalloc(((h->ioaccel_maxsg + 1) *
8671                                 sizeof(u32)), GFP_KERNEL);
8672
8673         if ((h->ioaccel_cmd_pool == NULL) ||
8674                 (h->ioaccel1_blockFetchTable == NULL))
8675                 goto clean_up;
8676
8677         memset(h->ioaccel_cmd_pool, 0,
8678                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
8679         return 0;
8680
8681 clean_up:
8682         hpsa_free_ioaccel1_cmd_and_bft(h);
8683         return -ENOMEM;
8684 }
8685
8686 /* Free ioaccel2 mode command blocks and block fetch table */
8687 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8688 {
8689         hpsa_free_ioaccel2_sg_chain_blocks(h);
8690
8691         if (h->ioaccel2_cmd_pool) {
8692                 pci_free_consistent(h->pdev,
8693                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8694                         h->ioaccel2_cmd_pool,
8695                         h->ioaccel2_cmd_pool_dhandle);
8696                 h->ioaccel2_cmd_pool = NULL;
8697                 h->ioaccel2_cmd_pool_dhandle = 0;
8698         }
8699         kfree(h->ioaccel2_blockFetchTable);
8700         h->ioaccel2_blockFetchTable = NULL;
8701 }
8702
8703 /* Allocate ioaccel2 mode command blocks and block fetch table */
8704 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8705 {
8706         int rc;
8707
8708         /* Allocate ioaccel2 mode command blocks and block fetch table */
8709
8710         h->ioaccel_maxsg =
8711                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8712         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
8713                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
8714
8715         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
8716                         IOACCEL2_COMMANDLIST_ALIGNMENT);
8717         h->ioaccel2_cmd_pool =
8718                 pci_alloc_consistent(h->pdev,
8719                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8720                         &(h->ioaccel2_cmd_pool_dhandle));
8721
8722         h->ioaccel2_blockFetchTable =
8723                 kmalloc(((h->ioaccel_maxsg + 1) *
8724                                 sizeof(u32)), GFP_KERNEL);
8725
8726         if ((h->ioaccel2_cmd_pool == NULL) ||
8727                 (h->ioaccel2_blockFetchTable == NULL)) {
8728                 rc = -ENOMEM;
8729                 goto clean_up;
8730         }
8731
8732         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
8733         if (rc)
8734                 goto clean_up;
8735
8736         memset(h->ioaccel2_cmd_pool, 0,
8737                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
8738         return 0;
8739
8740 clean_up:
8741         hpsa_free_ioaccel2_cmd_and_bft(h);
8742         return rc;
8743 }
8744
8745 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
8746 static void hpsa_free_performant_mode(struct ctlr_info *h)
8747 {
8748         kfree(h->blockFetchTable);
8749         h->blockFetchTable = NULL;
8750         hpsa_free_reply_queues(h);
8751         hpsa_free_ioaccel1_cmd_and_bft(h);
8752         hpsa_free_ioaccel2_cmd_and_bft(h);
8753 }
8754
8755 /* return -ENODEV on error, 0 on success (or no action)
8756  * allocates numerous items that must be freed later
8757  */
8758 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
8759 {
8760         u32 trans_support;
8761         unsigned long transMethod = CFGTBL_Trans_Performant |
8762                                         CFGTBL_Trans_use_short_tags;
8763         int i, rc;
8764
8765         if (hpsa_simple_mode)
8766                 return 0;
8767
8768         trans_support = readl(&(h->cfgtable->TransportSupport));
8769         if (!(trans_support & PERFORMANT_MODE))
8770                 return 0;
8771
8772         /* Check for I/O accelerator mode support */
8773         if (trans_support & CFGTBL_Trans_io_accel1) {
8774                 transMethod |= CFGTBL_Trans_io_accel1 |
8775                                 CFGTBL_Trans_enable_directed_msix;
8776                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
8777                 if (rc)
8778                         return rc;
8779         } else if (trans_support & CFGTBL_Trans_io_accel2) {
8780                 transMethod |= CFGTBL_Trans_io_accel2 |
8781                                 CFGTBL_Trans_enable_directed_msix;
8782                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
8783                 if (rc)
8784                         return rc;
8785         }
8786
8787         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
8788         hpsa_get_max_perf_mode_cmds(h);
8789         /* Performant mode ring buffer and supporting data structures */
8790         h->reply_queue_size = h->max_commands * sizeof(u64);
8791
8792         for (i = 0; i < h->nreply_queues; i++) {
8793                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
8794                                                 h->reply_queue_size,
8795                                                 &(h->reply_queue[i].busaddr));
8796                 if (!h->reply_queue[i].head) {
8797                         rc = -ENOMEM;
8798                         goto clean1;    /* rq, ioaccel */
8799                 }
8800                 h->reply_queue[i].size = h->max_commands;
8801                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
8802                 h->reply_queue[i].current_entry = 0;
8803         }
8804
8805         /* Need a block fetch table for performant mode */
8806         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
8807                                 sizeof(u32)), GFP_KERNEL);
8808         if (!h->blockFetchTable) {
8809                 rc = -ENOMEM;
8810                 goto clean1;    /* rq, ioaccel */
8811         }
8812
8813         rc = hpsa_enter_performant_mode(h, trans_support);
8814         if (rc)
8815                 goto clean2;    /* bft, rq, ioaccel */
8816         return 0;
8817
8818 clean2: /* bft, rq, ioaccel */
8819         kfree(h->blockFetchTable);
8820         h->blockFetchTable = NULL;
8821 clean1: /* rq, ioaccel */
8822         hpsa_free_reply_queues(h);
8823         hpsa_free_ioaccel1_cmd_and_bft(h);
8824         hpsa_free_ioaccel2_cmd_and_bft(h);
8825         return rc;
8826 }
8827
8828 static int is_accelerated_cmd(struct CommandList *c)
8829 {
8830         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
8831 }
8832
8833 static void hpsa_drain_accel_commands(struct ctlr_info *h)
8834 {
8835         struct CommandList *c = NULL;
8836         int i, accel_cmds_out;
8837         int refcount;
8838
8839         do { /* wait for all outstanding ioaccel commands to drain out */
8840                 accel_cmds_out = 0;
8841                 for (i = 0; i < h->nr_cmds; i++) {
8842                         c = h->cmd_pool + i;
8843                         refcount = atomic_inc_return(&c->refcount);
8844                         if (refcount > 1) /* Command is allocated */
8845                                 accel_cmds_out += is_accelerated_cmd(c);
8846                         cmd_free(h, c);
8847                 }
8848                 if (accel_cmds_out <= 0)
8849                         break;
8850                 msleep(100);
8851         } while (1);
8852 }
8853
8854 /*
8855  *  This is it.  Register the PCI driver information for the cards we control
8856  *  the OS will call our registered routines when it finds one of our cards.
8857  */
8858 static int __init hpsa_init(void)
8859 {
8860         return pci_register_driver(&hpsa_pci_driver);
8861 }
8862
8863 static void __exit hpsa_cleanup(void)
8864 {
8865         pci_unregister_driver(&hpsa_pci_driver);
8866 }
8867
8868 static void __attribute__((unused)) verify_offsets(void)
8869 {
8870 #define VERIFY_OFFSET(member, offset) \
8871         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
8872
8873         VERIFY_OFFSET(structure_size, 0);
8874         VERIFY_OFFSET(volume_blk_size, 4);
8875         VERIFY_OFFSET(volume_blk_cnt, 8);
8876         VERIFY_OFFSET(phys_blk_shift, 16);
8877         VERIFY_OFFSET(parity_rotation_shift, 17);
8878         VERIFY_OFFSET(strip_size, 18);
8879         VERIFY_OFFSET(disk_starting_blk, 20);
8880         VERIFY_OFFSET(disk_blk_cnt, 28);
8881         VERIFY_OFFSET(data_disks_per_row, 36);
8882         VERIFY_OFFSET(metadata_disks_per_row, 38);
8883         VERIFY_OFFSET(row_cnt, 40);
8884         VERIFY_OFFSET(layout_map_count, 42);
8885         VERIFY_OFFSET(flags, 44);
8886         VERIFY_OFFSET(dekindex, 46);
8887         /* VERIFY_OFFSET(reserved, 48 */
8888         VERIFY_OFFSET(data, 64);
8889
8890 #undef VERIFY_OFFSET
8891
8892 #define VERIFY_OFFSET(member, offset) \
8893         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
8894
8895         VERIFY_OFFSET(IU_type, 0);
8896         VERIFY_OFFSET(direction, 1);
8897         VERIFY_OFFSET(reply_queue, 2);
8898         /* VERIFY_OFFSET(reserved1, 3);  */
8899         VERIFY_OFFSET(scsi_nexus, 4);
8900         VERIFY_OFFSET(Tag, 8);
8901         VERIFY_OFFSET(cdb, 16);
8902         VERIFY_OFFSET(cciss_lun, 32);
8903         VERIFY_OFFSET(data_len, 40);
8904         VERIFY_OFFSET(cmd_priority_task_attr, 44);
8905         VERIFY_OFFSET(sg_count, 45);
8906         /* VERIFY_OFFSET(reserved3 */
8907         VERIFY_OFFSET(err_ptr, 48);
8908         VERIFY_OFFSET(err_len, 56);
8909         /* VERIFY_OFFSET(reserved4  */
8910         VERIFY_OFFSET(sg, 64);
8911
8912 #undef VERIFY_OFFSET
8913
8914 #define VERIFY_OFFSET(member, offset) \
8915         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
8916
8917         VERIFY_OFFSET(dev_handle, 0x00);
8918         VERIFY_OFFSET(reserved1, 0x02);
8919         VERIFY_OFFSET(function, 0x03);
8920         VERIFY_OFFSET(reserved2, 0x04);
8921         VERIFY_OFFSET(err_info, 0x0C);
8922         VERIFY_OFFSET(reserved3, 0x10);
8923         VERIFY_OFFSET(err_info_len, 0x12);
8924         VERIFY_OFFSET(reserved4, 0x13);
8925         VERIFY_OFFSET(sgl_offset, 0x14);
8926         VERIFY_OFFSET(reserved5, 0x15);
8927         VERIFY_OFFSET(transfer_len, 0x1C);
8928         VERIFY_OFFSET(reserved6, 0x20);
8929         VERIFY_OFFSET(io_flags, 0x24);
8930         VERIFY_OFFSET(reserved7, 0x26);
8931         VERIFY_OFFSET(LUN, 0x34);
8932         VERIFY_OFFSET(control, 0x3C);
8933         VERIFY_OFFSET(CDB, 0x40);
8934         VERIFY_OFFSET(reserved8, 0x50);
8935         VERIFY_OFFSET(host_context_flags, 0x60);
8936         VERIFY_OFFSET(timeout_sec, 0x62);
8937         VERIFY_OFFSET(ReplyQueue, 0x64);
8938         VERIFY_OFFSET(reserved9, 0x65);
8939         VERIFY_OFFSET(tag, 0x68);
8940         VERIFY_OFFSET(host_addr, 0x70);
8941         VERIFY_OFFSET(CISS_LUN, 0x78);
8942         VERIFY_OFFSET(SG, 0x78 + 8);
8943 #undef VERIFY_OFFSET
8944 }
8945
8946 module_init(hpsa_init);
8947 module_exit(hpsa_cleanup);