]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/scsi/mpt3sas/mpt3sas_base.c
Merge tag 'pwm/for-4.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[karo-tx-linux.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/kthread.h>
61 #include <linux/aer.h>
62
63
64 #include "mpt3sas_base.h"
65
66 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
67
68
69 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
70
71  /* maximum controller queue depth */
72 #define MAX_HBA_QUEUE_DEPTH     30000
73 #define MAX_CHAIN_DEPTH         100000
74 static int max_queue_depth = -1;
75 module_param(max_queue_depth, int, 0);
76 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
77
78 static int max_sgl_entries = -1;
79 module_param(max_sgl_entries, int, 0);
80 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
81
82 static int msix_disable = -1;
83 module_param(msix_disable, int, 0);
84 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
85
86 static int max_msix_vectors = -1;
87 module_param(max_msix_vectors, int, 0);
88 MODULE_PARM_DESC(max_msix_vectors,
89         " max msix vectors");
90
91 static int mpt3sas_fwfault_debug;
92 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
93         " enable detection of firmware fault and halt firmware - (default=0)");
94
95 static int
96 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
97
98 /**
99  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
100  *
101  */
102 static int
103 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
104 {
105         int ret = param_set_int(val, kp);
106         struct MPT3SAS_ADAPTER *ioc;
107
108         if (ret)
109                 return ret;
110
111         /* global ioc spinlock to protect controller list on list operations */
112         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
113         spin_lock(&gioc_lock);
114         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
115                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
116         spin_unlock(&gioc_lock);
117         return 0;
118 }
119 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
120         param_get_int, &mpt3sas_fwfault_debug, 0644);
121
122 /**
123  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
124  * @arg: input argument, used to derive ioc
125  *
126  * Return 0 if controller is removed from pci subsystem.
127  * Return -1 for other case.
128  */
129 static int mpt3sas_remove_dead_ioc_func(void *arg)
130 {
131         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
132         struct pci_dev *pdev;
133
134         if ((ioc == NULL))
135                 return -1;
136
137         pdev = ioc->pdev;
138         if ((pdev == NULL))
139                 return -1;
140         pci_stop_and_remove_bus_device_locked(pdev);
141         return 0;
142 }
143
144 /**
145  * _base_fault_reset_work - workq handling ioc fault conditions
146  * @work: input argument, used to derive ioc
147  * Context: sleep.
148  *
149  * Return nothing.
150  */
151 static void
152 _base_fault_reset_work(struct work_struct *work)
153 {
154         struct MPT3SAS_ADAPTER *ioc =
155             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
156         unsigned long    flags;
157         u32 doorbell;
158         int rc;
159         struct task_struct *p;
160
161
162         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
163         if (ioc->shost_recovery || ioc->pci_error_recovery)
164                 goto rearm_timer;
165         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
166
167         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
168         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
169                 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
170                     ioc->name);
171
172                 /* It may be possible that EEH recovery can resolve some of
173                  * pci bus failure issues rather removing the dead ioc function
174                  * by considering controller is in a non-operational state. So
175                  * here priority is given to the EEH recovery. If it doesn't
176                  * not resolve this issue, mpt3sas driver will consider this
177                  * controller to non-operational state and remove the dead ioc
178                  * function.
179                  */
180                 if (ioc->non_operational_loop++ < 5) {
181                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
182                                                          flags);
183                         goto rearm_timer;
184                 }
185
186                 /*
187                  * Call _scsih_flush_pending_cmds callback so that we flush all
188                  * pending commands back to OS. This call is required to aovid
189                  * deadlock at block layer. Dead IOC will fail to do diag reset,
190                  * and this call is safe since dead ioc will never return any
191                  * command back from HW.
192                  */
193                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
194                 /*
195                  * Set remove_host flag early since kernel thread will
196                  * take some time to execute.
197                  */
198                 ioc->remove_host = 1;
199                 /*Remove the Dead Host */
200                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
201                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
202                 if (IS_ERR(p))
203                         pr_err(MPT3SAS_FMT
204                         "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
205                         ioc->name, __func__);
206                 else
207                         pr_err(MPT3SAS_FMT
208                         "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
209                         ioc->name, __func__);
210                 return; /* don't rearm timer */
211         }
212
213         ioc->non_operational_loop = 0;
214
215         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
216                 rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
217                     FORCE_BIG_HAMMER);
218                 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
219                     __func__, (rc == 0) ? "success" : "failed");
220                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
221                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
222                         mpt3sas_base_fault_info(ioc, doorbell &
223                             MPI2_DOORBELL_DATA_MASK);
224                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
225                     MPI2_IOC_STATE_OPERATIONAL)
226                         return; /* don't rearm timer */
227         }
228
229         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
230  rearm_timer:
231         if (ioc->fault_reset_work_q)
232                 queue_delayed_work(ioc->fault_reset_work_q,
233                     &ioc->fault_reset_work,
234                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
235         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
236 }
237
238 /**
239  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
240  * @ioc: per adapter object
241  * Context: sleep.
242  *
243  * Return nothing.
244  */
245 void
246 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
247 {
248         unsigned long    flags;
249
250         if (ioc->fault_reset_work_q)
251                 return;
252
253         /* initialize fault polling */
254
255         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
256         snprintf(ioc->fault_reset_work_q_name,
257             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
258             ioc->driver_name, ioc->id);
259         ioc->fault_reset_work_q =
260                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
261         if (!ioc->fault_reset_work_q) {
262                 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
263                     ioc->name, __func__, __LINE__);
264                         return;
265         }
266         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
267         if (ioc->fault_reset_work_q)
268                 queue_delayed_work(ioc->fault_reset_work_q,
269                     &ioc->fault_reset_work,
270                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
271         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
272 }
273
274 /**
275  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
276  * @ioc: per adapter object
277  * Context: sleep.
278  *
279  * Return nothing.
280  */
281 void
282 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
283 {
284         unsigned long flags;
285         struct workqueue_struct *wq;
286
287         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
288         wq = ioc->fault_reset_work_q;
289         ioc->fault_reset_work_q = NULL;
290         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
291         if (wq) {
292                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
293                         flush_workqueue(wq);
294                 destroy_workqueue(wq);
295         }
296 }
297
298 /**
299  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
300  * @ioc: per adapter object
301  * @fault_code: fault code
302  *
303  * Return nothing.
304  */
305 void
306 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
307 {
308         pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
309             ioc->name, fault_code);
310 }
311
312 /**
313  * mpt3sas_halt_firmware - halt's mpt controller firmware
314  * @ioc: per adapter object
315  *
316  * For debugging timeout related issues.  Writing 0xCOFFEE00
317  * to the doorbell register will halt controller firmware. With
318  * the purpose to stop both driver and firmware, the enduser can
319  * obtain a ring buffer from controller UART.
320  */
321 void
322 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
323 {
324         u32 doorbell;
325
326         if (!ioc->fwfault_debug)
327                 return;
328
329         dump_stack();
330
331         doorbell = readl(&ioc->chip->Doorbell);
332         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
333                 mpt3sas_base_fault_info(ioc , doorbell);
334         else {
335                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
336                 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
337                         ioc->name);
338         }
339
340         if (ioc->fwfault_debug == 2)
341                 for (;;)
342                         ;
343         else
344                 panic("panic in %s\n", __func__);
345 }
346
347 /**
348  * _base_sas_ioc_info - verbose translation of the ioc status
349  * @ioc: per adapter object
350  * @mpi_reply: reply mf payload returned from firmware
351  * @request_hdr: request mf
352  *
353  * Return nothing.
354  */
355 static void
356 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
357         MPI2RequestHeader_t *request_hdr)
358 {
359         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
360             MPI2_IOCSTATUS_MASK;
361         char *desc = NULL;
362         u16 frame_sz;
363         char *func_str = NULL;
364
365         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
366         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
367             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
368             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
369                 return;
370
371         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
372                 return;
373
374         switch (ioc_status) {
375
376 /****************************************************************************
377 *  Common IOCStatus values for all replies
378 ****************************************************************************/
379
380         case MPI2_IOCSTATUS_INVALID_FUNCTION:
381                 desc = "invalid function";
382                 break;
383         case MPI2_IOCSTATUS_BUSY:
384                 desc = "busy";
385                 break;
386         case MPI2_IOCSTATUS_INVALID_SGL:
387                 desc = "invalid sgl";
388                 break;
389         case MPI2_IOCSTATUS_INTERNAL_ERROR:
390                 desc = "internal error";
391                 break;
392         case MPI2_IOCSTATUS_INVALID_VPID:
393                 desc = "invalid vpid";
394                 break;
395         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
396                 desc = "insufficient resources";
397                 break;
398         case MPI2_IOCSTATUS_INVALID_FIELD:
399                 desc = "invalid field";
400                 break;
401         case MPI2_IOCSTATUS_INVALID_STATE:
402                 desc = "invalid state";
403                 break;
404         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
405                 desc = "op state not supported";
406                 break;
407
408 /****************************************************************************
409 *  Config IOCStatus values
410 ****************************************************************************/
411
412         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
413                 desc = "config invalid action";
414                 break;
415         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
416                 desc = "config invalid type";
417                 break;
418         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
419                 desc = "config invalid page";
420                 break;
421         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
422                 desc = "config invalid data";
423                 break;
424         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
425                 desc = "config no defaults";
426                 break;
427         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
428                 desc = "config cant commit";
429                 break;
430
431 /****************************************************************************
432 *  SCSI IO Reply
433 ****************************************************************************/
434
435         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
436         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
437         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
438         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
439         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
440         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
441         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
442         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
443         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
444         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
445         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
446         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
447                 break;
448
449 /****************************************************************************
450 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
451 ****************************************************************************/
452
453         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
454                 desc = "eedp guard error";
455                 break;
456         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
457                 desc = "eedp ref tag error";
458                 break;
459         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
460                 desc = "eedp app tag error";
461                 break;
462
463 /****************************************************************************
464 *  SCSI Target values
465 ****************************************************************************/
466
467         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
468                 desc = "target invalid io index";
469                 break;
470         case MPI2_IOCSTATUS_TARGET_ABORTED:
471                 desc = "target aborted";
472                 break;
473         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
474                 desc = "target no conn retryable";
475                 break;
476         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
477                 desc = "target no connection";
478                 break;
479         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
480                 desc = "target xfer count mismatch";
481                 break;
482         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
483                 desc = "target data offset error";
484                 break;
485         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
486                 desc = "target too much write data";
487                 break;
488         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
489                 desc = "target iu too short";
490                 break;
491         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
492                 desc = "target ack nak timeout";
493                 break;
494         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
495                 desc = "target nak received";
496                 break;
497
498 /****************************************************************************
499 *  Serial Attached SCSI values
500 ****************************************************************************/
501
502         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
503                 desc = "smp request failed";
504                 break;
505         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
506                 desc = "smp data overrun";
507                 break;
508
509 /****************************************************************************
510 *  Diagnostic Buffer Post / Diagnostic Release values
511 ****************************************************************************/
512
513         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
514                 desc = "diagnostic released";
515                 break;
516         default:
517                 break;
518         }
519
520         if (!desc)
521                 return;
522
523         switch (request_hdr->Function) {
524         case MPI2_FUNCTION_CONFIG:
525                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
526                 func_str = "config_page";
527                 break;
528         case MPI2_FUNCTION_SCSI_TASK_MGMT:
529                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
530                 func_str = "task_mgmt";
531                 break;
532         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
533                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
534                 func_str = "sas_iounit_ctl";
535                 break;
536         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
537                 frame_sz = sizeof(Mpi2SepRequest_t);
538                 func_str = "enclosure";
539                 break;
540         case MPI2_FUNCTION_IOC_INIT:
541                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
542                 func_str = "ioc_init";
543                 break;
544         case MPI2_FUNCTION_PORT_ENABLE:
545                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
546                 func_str = "port_enable";
547                 break;
548         case MPI2_FUNCTION_SMP_PASSTHROUGH:
549                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
550                 func_str = "smp_passthru";
551                 break;
552         default:
553                 frame_sz = 32;
554                 func_str = "unknown";
555                 break;
556         }
557
558         pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
559                 ioc->name, desc, ioc_status, request_hdr, func_str);
560
561         _debug_dump_mf(request_hdr, frame_sz/4);
562 }
563
564 /**
565  * _base_display_event_data - verbose translation of firmware asyn events
566  * @ioc: per adapter object
567  * @mpi_reply: reply mf payload returned from firmware
568  *
569  * Return nothing.
570  */
571 static void
572 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
573         Mpi2EventNotificationReply_t *mpi_reply)
574 {
575         char *desc = NULL;
576         u16 event;
577
578         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
579                 return;
580
581         event = le16_to_cpu(mpi_reply->Event);
582
583         switch (event) {
584         case MPI2_EVENT_LOG_DATA:
585                 desc = "Log Data";
586                 break;
587         case MPI2_EVENT_STATE_CHANGE:
588                 desc = "Status Change";
589                 break;
590         case MPI2_EVENT_HARD_RESET_RECEIVED:
591                 desc = "Hard Reset Received";
592                 break;
593         case MPI2_EVENT_EVENT_CHANGE:
594                 desc = "Event Change";
595                 break;
596         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
597                 desc = "Device Status Change";
598                 break;
599         case MPI2_EVENT_IR_OPERATION_STATUS:
600                 if (!ioc->hide_ir_msg)
601                         desc = "IR Operation Status";
602                 break;
603         case MPI2_EVENT_SAS_DISCOVERY:
604         {
605                 Mpi2EventDataSasDiscovery_t *event_data =
606                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
607                 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
608                     (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
609                     "start" : "stop");
610                 if (event_data->DiscoveryStatus)
611                         pr_info("discovery_status(0x%08x)",
612                             le32_to_cpu(event_data->DiscoveryStatus));
613                         pr_info("\n");
614                 return;
615         }
616         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
617                 desc = "SAS Broadcast Primitive";
618                 break;
619         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
620                 desc = "SAS Init Device Status Change";
621                 break;
622         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
623                 desc = "SAS Init Table Overflow";
624                 break;
625         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
626                 desc = "SAS Topology Change List";
627                 break;
628         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
629                 desc = "SAS Enclosure Device Status Change";
630                 break;
631         case MPI2_EVENT_IR_VOLUME:
632                 if (!ioc->hide_ir_msg)
633                         desc = "IR Volume";
634                 break;
635         case MPI2_EVENT_IR_PHYSICAL_DISK:
636                 if (!ioc->hide_ir_msg)
637                         desc = "IR Physical Disk";
638                 break;
639         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
640                 if (!ioc->hide_ir_msg)
641                         desc = "IR Configuration Change List";
642                 break;
643         case MPI2_EVENT_LOG_ENTRY_ADDED:
644                 if (!ioc->hide_ir_msg)
645                         desc = "Log Entry Added";
646                 break;
647         case MPI2_EVENT_TEMP_THRESHOLD:
648                 desc = "Temperature Threshold";
649                 break;
650         }
651
652         if (!desc)
653                 return;
654
655         pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
656 }
657
658 /**
659  * _base_sas_log_info - verbose translation of firmware log info
660  * @ioc: per adapter object
661  * @log_info: log info
662  *
663  * Return nothing.
664  */
665 static void
666 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
667 {
668         union loginfo_type {
669                 u32     loginfo;
670                 struct {
671                         u32     subcode:16;
672                         u32     code:8;
673                         u32     originator:4;
674                         u32     bus_type:4;
675                 } dw;
676         };
677         union loginfo_type sas_loginfo;
678         char *originator_str = NULL;
679
680         sas_loginfo.loginfo = log_info;
681         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
682                 return;
683
684         /* each nexus loss loginfo */
685         if (log_info == 0x31170000)
686                 return;
687
688         /* eat the loginfos associated with task aborts */
689         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
690             0x31140000 || log_info == 0x31130000))
691                 return;
692
693         switch (sas_loginfo.dw.originator) {
694         case 0:
695                 originator_str = "IOP";
696                 break;
697         case 1:
698                 originator_str = "PL";
699                 break;
700         case 2:
701                 if (!ioc->hide_ir_msg)
702                         originator_str = "IR";
703                 else
704                         originator_str = "WarpDrive";
705                 break;
706         }
707
708         pr_warn(MPT3SAS_FMT
709                 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
710                 ioc->name, log_info,
711              originator_str, sas_loginfo.dw.code,
712              sas_loginfo.dw.subcode);
713 }
714
715 /**
716  * _base_display_reply_info -
717  * @ioc: per adapter object
718  * @smid: system request message index
719  * @msix_index: MSIX table index supplied by the OS
720  * @reply: reply message frame(lower 32bit addr)
721  *
722  * Return nothing.
723  */
724 static void
725 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
726         u32 reply)
727 {
728         MPI2DefaultReply_t *mpi_reply;
729         u16 ioc_status;
730         u32 loginfo = 0;
731
732         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
733         if (unlikely(!mpi_reply)) {
734                 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
735                     ioc->name, __FILE__, __LINE__, __func__);
736                 return;
737         }
738         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
739
740         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
741             (ioc->logging_level & MPT_DEBUG_REPLY)) {
742                 _base_sas_ioc_info(ioc , mpi_reply,
743                    mpt3sas_base_get_msg_frame(ioc, smid));
744         }
745
746         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
747                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
748                 _base_sas_log_info(ioc, loginfo);
749         }
750
751         if (ioc_status || loginfo) {
752                 ioc_status &= MPI2_IOCSTATUS_MASK;
753                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
754         }
755 }
756
757 /**
758  * mpt3sas_base_done - base internal command completion routine
759  * @ioc: per adapter object
760  * @smid: system request message index
761  * @msix_index: MSIX table index supplied by the OS
762  * @reply: reply message frame(lower 32bit addr)
763  *
764  * Return 1 meaning mf should be freed from _base_interrupt
765  *        0 means the mf is freed from this function.
766  */
767 u8
768 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
769         u32 reply)
770 {
771         MPI2DefaultReply_t *mpi_reply;
772
773         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
774         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
775                 return 1;
776
777         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
778                 return 1;
779
780         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
781         if (mpi_reply) {
782                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
783                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
784         }
785         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
786
787         complete(&ioc->base_cmds.done);
788         return 1;
789 }
790
791 /**
792  * _base_async_event - main callback handler for firmware asyn events
793  * @ioc: per adapter object
794  * @msix_index: MSIX table index supplied by the OS
795  * @reply: reply message frame(lower 32bit addr)
796  *
797  * Return 1 meaning mf should be freed from _base_interrupt
798  *        0 means the mf is freed from this function.
799  */
800 static u8
801 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
802 {
803         Mpi2EventNotificationReply_t *mpi_reply;
804         Mpi2EventAckRequest_t *ack_request;
805         u16 smid;
806
807         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
808         if (!mpi_reply)
809                 return 1;
810         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
811                 return 1;
812
813         _base_display_event_data(ioc, mpi_reply);
814
815         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
816                 goto out;
817         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
818         if (!smid) {
819                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
820                     ioc->name, __func__);
821                 goto out;
822         }
823
824         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
825         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
826         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
827         ack_request->Event = mpi_reply->Event;
828         ack_request->EventContext = mpi_reply->EventContext;
829         ack_request->VF_ID = 0;  /* TODO */
830         ack_request->VP_ID = 0;
831         mpt3sas_base_put_smid_default(ioc, smid);
832
833  out:
834
835         /* scsih callback handler */
836         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
837
838         /* ctl callback handler */
839         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
840
841         return 1;
842 }
843
844 /**
845  * _base_get_cb_idx - obtain the callback index
846  * @ioc: per adapter object
847  * @smid: system request message index
848  *
849  * Return callback index.
850  */
851 static u8
852 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
853 {
854         int i;
855         u8 cb_idx;
856
857         if (smid < ioc->hi_priority_smid) {
858                 i = smid - 1;
859                 cb_idx = ioc->scsi_lookup[i].cb_idx;
860         } else if (smid < ioc->internal_smid) {
861                 i = smid - ioc->hi_priority_smid;
862                 cb_idx = ioc->hpr_lookup[i].cb_idx;
863         } else if (smid <= ioc->hba_queue_depth) {
864                 i = smid - ioc->internal_smid;
865                 cb_idx = ioc->internal_lookup[i].cb_idx;
866         } else
867                 cb_idx = 0xFF;
868         return cb_idx;
869 }
870
871 /**
872  * _base_mask_interrupts - disable interrupts
873  * @ioc: per adapter object
874  *
875  * Disabling ResetIRQ, Reply and Doorbell Interrupts
876  *
877  * Return nothing.
878  */
879 static void
880 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
881 {
882         u32 him_register;
883
884         ioc->mask_interrupts = 1;
885         him_register = readl(&ioc->chip->HostInterruptMask);
886         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
887         writel(him_register, &ioc->chip->HostInterruptMask);
888         readl(&ioc->chip->HostInterruptMask);
889 }
890
891 /**
892  * _base_unmask_interrupts - enable interrupts
893  * @ioc: per adapter object
894  *
895  * Enabling only Reply Interrupts
896  *
897  * Return nothing.
898  */
899 static void
900 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
901 {
902         u32 him_register;
903
904         him_register = readl(&ioc->chip->HostInterruptMask);
905         him_register &= ~MPI2_HIM_RIM;
906         writel(him_register, &ioc->chip->HostInterruptMask);
907         ioc->mask_interrupts = 0;
908 }
909
910 union reply_descriptor {
911         u64 word;
912         struct {
913                 u32 low;
914                 u32 high;
915         } u;
916 };
917
918 /**
919  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
920  * @irq: irq number (not used)
921  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
922  * @r: pt_regs pointer (not used)
923  *
924  * Return IRQ_HANDLE if processed, else IRQ_NONE.
925  */
926 static irqreturn_t
927 _base_interrupt(int irq, void *bus_id)
928 {
929         struct adapter_reply_queue *reply_q = bus_id;
930         union reply_descriptor rd;
931         u32 completed_cmds;
932         u8 request_desript_type;
933         u16 smid;
934         u8 cb_idx;
935         u32 reply;
936         u8 msix_index = reply_q->msix_index;
937         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
938         Mpi2ReplyDescriptorsUnion_t *rpf;
939         u8 rc;
940
941         if (ioc->mask_interrupts)
942                 return IRQ_NONE;
943
944         if (!atomic_add_unless(&reply_q->busy, 1, 1))
945                 return IRQ_NONE;
946
947         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
948         request_desript_type = rpf->Default.ReplyFlags
949              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
950         if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
951                 atomic_dec(&reply_q->busy);
952                 return IRQ_NONE;
953         }
954
955         completed_cmds = 0;
956         cb_idx = 0xFF;
957         do {
958                 rd.word = le64_to_cpu(rpf->Words);
959                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
960                         goto out;
961                 reply = 0;
962                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
963                 if (request_desript_type ==
964                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
965                     request_desript_type ==
966                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
967                         cb_idx = _base_get_cb_idx(ioc, smid);
968                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
969                             (likely(mpt_callbacks[cb_idx] != NULL))) {
970                                 rc = mpt_callbacks[cb_idx](ioc, smid,
971                                     msix_index, 0);
972                                 if (rc)
973                                         mpt3sas_base_free_smid(ioc, smid);
974                         }
975                 } else if (request_desript_type ==
976                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
977                         reply = le32_to_cpu(
978                             rpf->AddressReply.ReplyFrameAddress);
979                         if (reply > ioc->reply_dma_max_address ||
980                             reply < ioc->reply_dma_min_address)
981                                 reply = 0;
982                         if (smid) {
983                                 cb_idx = _base_get_cb_idx(ioc, smid);
984                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
985                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
986                                         rc = mpt_callbacks[cb_idx](ioc, smid,
987                                             msix_index, reply);
988                                         if (reply)
989                                                 _base_display_reply_info(ioc,
990                                                     smid, msix_index, reply);
991                                         if (rc)
992                                                 mpt3sas_base_free_smid(ioc,
993                                                     smid);
994                                 }
995                         } else {
996                                 _base_async_event(ioc, msix_index, reply);
997                         }
998
999                         /* reply free queue handling */
1000                         if (reply) {
1001                                 ioc->reply_free_host_index =
1002                                     (ioc->reply_free_host_index ==
1003                                     (ioc->reply_free_queue_depth - 1)) ?
1004                                     0 : ioc->reply_free_host_index + 1;
1005                                 ioc->reply_free[ioc->reply_free_host_index] =
1006                                     cpu_to_le32(reply);
1007                                 wmb();
1008                                 writel(ioc->reply_free_host_index,
1009                                     &ioc->chip->ReplyFreeHostIndex);
1010                         }
1011                 }
1012
1013                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1014                 reply_q->reply_post_host_index =
1015                     (reply_q->reply_post_host_index ==
1016                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1017                     reply_q->reply_post_host_index + 1;
1018                 request_desript_type =
1019                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1020                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1021                 completed_cmds++;
1022                 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1023                         goto out;
1024                 if (!reply_q->reply_post_host_index)
1025                         rpf = reply_q->reply_post_free;
1026                 else
1027                         rpf++;
1028         } while (1);
1029
1030  out:
1031
1032         if (!completed_cmds) {
1033                 atomic_dec(&reply_q->busy);
1034                 return IRQ_NONE;
1035         }
1036
1037         wmb();
1038         if (ioc->is_warpdrive) {
1039                 writel(reply_q->reply_post_host_index,
1040                 ioc->reply_post_host_index[msix_index]);
1041                 atomic_dec(&reply_q->busy);
1042                 return IRQ_HANDLED;
1043         }
1044
1045         /* Update Reply Post Host Index.
1046          * For those HBA's which support combined reply queue feature
1047          * 1. Get the correct Supplemental Reply Post Host Index Register.
1048          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1049          *    Index Register address bank i.e replyPostRegisterIndex[],
1050          * 2. Then update this register with new reply host index value
1051          *    in ReplyPostIndex field and the MSIxIndex field with
1052          *    msix_index value reduced to a value between 0 and 7,
1053          *    using a modulo 8 operation. Since each Supplemental Reply Post
1054          *    Host Index Register supports 8 MSI-X vectors.
1055          *
1056          * For other HBA's just update the Reply Post Host Index register with
1057          * new reply host index value in ReplyPostIndex Field and msix_index
1058          * value in MSIxIndex field.
1059          */
1060         if (ioc->msix96_vector)
1061                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1062                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1063                         ioc->replyPostRegisterIndex[msix_index/8]);
1064         else
1065                 writel(reply_q->reply_post_host_index | (msix_index <<
1066                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1067                         &ioc->chip->ReplyPostHostIndex);
1068         atomic_dec(&reply_q->busy);
1069         return IRQ_HANDLED;
1070 }
1071
1072 /**
1073  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1074  * @ioc: per adapter object
1075  *
1076  */
1077 static inline int
1078 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1079 {
1080         return (ioc->facts.IOCCapabilities &
1081             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1082 }
1083
1084 /**
1085  * mpt3sas_base_flush_reply_queues - flushing the MSIX reply queues
1086  * @ioc: per adapter object
1087  * Context: ISR conext
1088  *
1089  * Called when a Task Management request has completed. We want
1090  * to flush the other reply queues so all the outstanding IO has been
1091  * completed back to OS before we process the TM completetion.
1092  *
1093  * Return nothing.
1094  */
1095 void
1096 mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1097 {
1098         struct adapter_reply_queue *reply_q;
1099
1100         /* If MSIX capability is turned off
1101          * then multi-queues are not enabled
1102          */
1103         if (!_base_is_controller_msix_enabled(ioc))
1104                 return;
1105
1106         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1107                 if (ioc->shost_recovery)
1108                         return;
1109                 /* TMs are on msix_index == 0 */
1110                 if (reply_q->msix_index == 0)
1111                         continue;
1112                 _base_interrupt(reply_q->vector, (void *)reply_q);
1113         }
1114 }
1115
1116 /**
1117  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1118  * @cb_idx: callback index
1119  *
1120  * Return nothing.
1121  */
1122 void
1123 mpt3sas_base_release_callback_handler(u8 cb_idx)
1124 {
1125         mpt_callbacks[cb_idx] = NULL;
1126 }
1127
1128 /**
1129  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1130  * @cb_func: callback function
1131  *
1132  * Returns cb_func.
1133  */
1134 u8
1135 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1136 {
1137         u8 cb_idx;
1138
1139         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1140                 if (mpt_callbacks[cb_idx] == NULL)
1141                         break;
1142
1143         mpt_callbacks[cb_idx] = cb_func;
1144         return cb_idx;
1145 }
1146
1147 /**
1148  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1149  *
1150  * Return nothing.
1151  */
1152 void
1153 mpt3sas_base_initialize_callback_handler(void)
1154 {
1155         u8 cb_idx;
1156
1157         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1158                 mpt3sas_base_release_callback_handler(cb_idx);
1159 }
1160
1161
1162 /**
1163  * _base_build_zero_len_sge - build zero length sg entry
1164  * @ioc: per adapter object
1165  * @paddr: virtual address for SGE
1166  *
1167  * Create a zero length scatter gather entry to insure the IOCs hardware has
1168  * something to use if the target device goes brain dead and tries
1169  * to send data even when none is asked for.
1170  *
1171  * Return nothing.
1172  */
1173 static void
1174 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1175 {
1176         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1177             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1178             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1179             MPI2_SGE_FLAGS_SHIFT);
1180         ioc->base_add_sg_single(paddr, flags_length, -1);
1181 }
1182
1183 /**
1184  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1185  * @paddr: virtual address for SGE
1186  * @flags_length: SGE flags and data transfer length
1187  * @dma_addr: Physical address
1188  *
1189  * Return nothing.
1190  */
1191 static void
1192 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1193 {
1194         Mpi2SGESimple32_t *sgel = paddr;
1195
1196         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1197             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1198         sgel->FlagsLength = cpu_to_le32(flags_length);
1199         sgel->Address = cpu_to_le32(dma_addr);
1200 }
1201
1202
1203 /**
1204  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1205  * @paddr: virtual address for SGE
1206  * @flags_length: SGE flags and data transfer length
1207  * @dma_addr: Physical address
1208  *
1209  * Return nothing.
1210  */
1211 static void
1212 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1213 {
1214         Mpi2SGESimple64_t *sgel = paddr;
1215
1216         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1217             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1218         sgel->FlagsLength = cpu_to_le32(flags_length);
1219         sgel->Address = cpu_to_le64(dma_addr);
1220 }
1221
1222 /**
1223  * _base_get_chain_buffer_tracker - obtain chain tracker
1224  * @ioc: per adapter object
1225  * @smid: smid associated to an IO request
1226  *
1227  * Returns chain tracker(from ioc->free_chain_list)
1228  */
1229 static struct chain_tracker *
1230 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1231 {
1232         struct chain_tracker *chain_req;
1233         unsigned long flags;
1234
1235         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1236         if (list_empty(&ioc->free_chain_list)) {
1237                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1238                 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1239                         "chain buffers not available\n", ioc->name));
1240                 return NULL;
1241         }
1242         chain_req = list_entry(ioc->free_chain_list.next,
1243             struct chain_tracker, tracker_list);
1244         list_del_init(&chain_req->tracker_list);
1245         list_add_tail(&chain_req->tracker_list,
1246             &ioc->scsi_lookup[smid - 1].chain_list);
1247         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1248         return chain_req;
1249 }
1250
1251
1252 /**
1253  * _base_build_sg - build generic sg
1254  * @ioc: per adapter object
1255  * @psge: virtual address for SGE
1256  * @data_out_dma: physical address for WRITES
1257  * @data_out_sz: data xfer size for WRITES
1258  * @data_in_dma: physical address for READS
1259  * @data_in_sz: data xfer size for READS
1260  *
1261  * Return nothing.
1262  */
1263 static void
1264 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1265         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1266         size_t data_in_sz)
1267 {
1268         u32 sgl_flags;
1269
1270         if (!data_out_sz && !data_in_sz) {
1271                 _base_build_zero_len_sge(ioc, psge);
1272                 return;
1273         }
1274
1275         if (data_out_sz && data_in_sz) {
1276                 /* WRITE sgel first */
1277                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1278                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1279                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1280                 ioc->base_add_sg_single(psge, sgl_flags |
1281                     data_out_sz, data_out_dma);
1282
1283                 /* incr sgel */
1284                 psge += ioc->sge_size;
1285
1286                 /* READ sgel last */
1287                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1288                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1289                     MPI2_SGE_FLAGS_END_OF_LIST);
1290                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1291                 ioc->base_add_sg_single(psge, sgl_flags |
1292                     data_in_sz, data_in_dma);
1293         } else if (data_out_sz) /* WRITE */ {
1294                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1295                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1296                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1297                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1298                 ioc->base_add_sg_single(psge, sgl_flags |
1299                     data_out_sz, data_out_dma);
1300         } else if (data_in_sz) /* READ */ {
1301                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1302                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1303                     MPI2_SGE_FLAGS_END_OF_LIST);
1304                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1305                 ioc->base_add_sg_single(psge, sgl_flags |
1306                     data_in_sz, data_in_dma);
1307         }
1308 }
1309
1310 /* IEEE format sgls */
1311
1312 /**
1313  * _base_add_sg_single_ieee - add sg element for IEEE format
1314  * @paddr: virtual address for SGE
1315  * @flags: SGE flags
1316  * @chain_offset: number of 128 byte elements from start of segment
1317  * @length: data transfer length
1318  * @dma_addr: Physical address
1319  *
1320  * Return nothing.
1321  */
1322 static void
1323 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1324         dma_addr_t dma_addr)
1325 {
1326         Mpi25IeeeSgeChain64_t *sgel = paddr;
1327
1328         sgel->Flags = flags;
1329         sgel->NextChainOffset = chain_offset;
1330         sgel->Length = cpu_to_le32(length);
1331         sgel->Address = cpu_to_le64(dma_addr);
1332 }
1333
1334 /**
1335  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1336  * @ioc: per adapter object
1337  * @paddr: virtual address for SGE
1338  *
1339  * Create a zero length scatter gather entry to insure the IOCs hardware has
1340  * something to use if the target device goes brain dead and tries
1341  * to send data even when none is asked for.
1342  *
1343  * Return nothing.
1344  */
1345 static void
1346 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1347 {
1348         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1349                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1350                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1351         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1352 }
1353
1354 /**
1355  * _base_build_sg_scmd - main sg creation routine
1356  * @ioc: per adapter object
1357  * @scmd: scsi command
1358  * @smid: system request message index
1359  * Context: none.
1360  *
1361  * The main routine that builds scatter gather table from a given
1362  * scsi request sent via the .queuecommand main handler.
1363  *
1364  * Returns 0 success, anything else error
1365  */
1366 static int
1367 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1368                 struct scsi_cmnd *scmd, u16 smid)
1369 {
1370         Mpi2SCSIIORequest_t *mpi_request;
1371         dma_addr_t chain_dma;
1372         struct scatterlist *sg_scmd;
1373         void *sg_local, *chain;
1374         u32 chain_offset;
1375         u32 chain_length;
1376         u32 chain_flags;
1377         int sges_left;
1378         u32 sges_in_segment;
1379         u32 sgl_flags;
1380         u32 sgl_flags_last_element;
1381         u32 sgl_flags_end_buffer;
1382         struct chain_tracker *chain_req;
1383
1384         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1385
1386         /* init scatter gather flags */
1387         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1388         if (scmd->sc_data_direction == DMA_TO_DEVICE)
1389                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1390         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1391             << MPI2_SGE_FLAGS_SHIFT;
1392         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1393             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1394             << MPI2_SGE_FLAGS_SHIFT;
1395         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1396
1397         sg_scmd = scsi_sglist(scmd);
1398         sges_left = scsi_dma_map(scmd);
1399         if (sges_left < 0) {
1400                 sdev_printk(KERN_ERR, scmd->device,
1401                  "pci_map_sg failed: request for %d bytes!\n",
1402                  scsi_bufflen(scmd));
1403                 return -ENOMEM;
1404         }
1405
1406         sg_local = &mpi_request->SGL;
1407         sges_in_segment = ioc->max_sges_in_main_message;
1408         if (sges_left <= sges_in_segment)
1409                 goto fill_in_last_segment;
1410
1411         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1412             (sges_in_segment * ioc->sge_size))/4;
1413
1414         /* fill in main message segment when there is a chain following */
1415         while (sges_in_segment) {
1416                 if (sges_in_segment == 1)
1417                         ioc->base_add_sg_single(sg_local,
1418                             sgl_flags_last_element | sg_dma_len(sg_scmd),
1419                             sg_dma_address(sg_scmd));
1420                 else
1421                         ioc->base_add_sg_single(sg_local, sgl_flags |
1422                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1423                 sg_scmd = sg_next(sg_scmd);
1424                 sg_local += ioc->sge_size;
1425                 sges_left--;
1426                 sges_in_segment--;
1427         }
1428
1429         /* initializing the chain flags and pointers */
1430         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1431         chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1432         if (!chain_req)
1433                 return -1;
1434         chain = chain_req->chain_buffer;
1435         chain_dma = chain_req->chain_buffer_dma;
1436         do {
1437                 sges_in_segment = (sges_left <=
1438                     ioc->max_sges_in_chain_message) ? sges_left :
1439                     ioc->max_sges_in_chain_message;
1440                 chain_offset = (sges_left == sges_in_segment) ?
1441                     0 : (sges_in_segment * ioc->sge_size)/4;
1442                 chain_length = sges_in_segment * ioc->sge_size;
1443                 if (chain_offset) {
1444                         chain_offset = chain_offset <<
1445                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
1446                         chain_length += ioc->sge_size;
1447                 }
1448                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1449                     chain_length, chain_dma);
1450                 sg_local = chain;
1451                 if (!chain_offset)
1452                         goto fill_in_last_segment;
1453
1454                 /* fill in chain segments */
1455                 while (sges_in_segment) {
1456                         if (sges_in_segment == 1)
1457                                 ioc->base_add_sg_single(sg_local,
1458                                     sgl_flags_last_element |
1459                                     sg_dma_len(sg_scmd),
1460                                     sg_dma_address(sg_scmd));
1461                         else
1462                                 ioc->base_add_sg_single(sg_local, sgl_flags |
1463                                     sg_dma_len(sg_scmd),
1464                                     sg_dma_address(sg_scmd));
1465                         sg_scmd = sg_next(sg_scmd);
1466                         sg_local += ioc->sge_size;
1467                         sges_left--;
1468                         sges_in_segment--;
1469                 }
1470
1471                 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1472                 if (!chain_req)
1473                         return -1;
1474                 chain = chain_req->chain_buffer;
1475                 chain_dma = chain_req->chain_buffer_dma;
1476         } while (1);
1477
1478
1479  fill_in_last_segment:
1480
1481         /* fill the last segment */
1482         while (sges_left) {
1483                 if (sges_left == 1)
1484                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1485                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1486                 else
1487                         ioc->base_add_sg_single(sg_local, sgl_flags |
1488                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1489                 sg_scmd = sg_next(sg_scmd);
1490                 sg_local += ioc->sge_size;
1491                 sges_left--;
1492         }
1493
1494         return 0;
1495 }
1496
1497 /**
1498  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1499  * @ioc: per adapter object
1500  * @scmd: scsi command
1501  * @smid: system request message index
1502  * Context: none.
1503  *
1504  * The main routine that builds scatter gather table from a given
1505  * scsi request sent via the .queuecommand main handler.
1506  *
1507  * Returns 0 success, anything else error
1508  */
1509 static int
1510 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1511         struct scsi_cmnd *scmd, u16 smid)
1512 {
1513         Mpi2SCSIIORequest_t *mpi_request;
1514         dma_addr_t chain_dma;
1515         struct scatterlist *sg_scmd;
1516         void *sg_local, *chain;
1517         u32 chain_offset;
1518         u32 chain_length;
1519         int sges_left;
1520         u32 sges_in_segment;
1521         u8 simple_sgl_flags;
1522         u8 simple_sgl_flags_last;
1523         u8 chain_sgl_flags;
1524         struct chain_tracker *chain_req;
1525
1526         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1527
1528         /* init scatter gather flags */
1529         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1530             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1531         simple_sgl_flags_last = simple_sgl_flags |
1532             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1533         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1534             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1535
1536         sg_scmd = scsi_sglist(scmd);
1537         sges_left = scsi_dma_map(scmd);
1538         if (sges_left < 0) {
1539                 sdev_printk(KERN_ERR, scmd->device,
1540                         "pci_map_sg failed: request for %d bytes!\n",
1541                         scsi_bufflen(scmd));
1542                 return -ENOMEM;
1543         }
1544
1545         sg_local = &mpi_request->SGL;
1546         sges_in_segment = (ioc->request_sz -
1547             offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1548         if (sges_left <= sges_in_segment)
1549                 goto fill_in_last_segment;
1550
1551         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1552             (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1553
1554         /* fill in main message segment when there is a chain following */
1555         while (sges_in_segment > 1) {
1556                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1557                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1558                 sg_scmd = sg_next(sg_scmd);
1559                 sg_local += ioc->sge_size_ieee;
1560                 sges_left--;
1561                 sges_in_segment--;
1562         }
1563
1564         /* initializing the pointers */
1565         chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1566         if (!chain_req)
1567                 return -1;
1568         chain = chain_req->chain_buffer;
1569         chain_dma = chain_req->chain_buffer_dma;
1570         do {
1571                 sges_in_segment = (sges_left <=
1572                     ioc->max_sges_in_chain_message) ? sges_left :
1573                     ioc->max_sges_in_chain_message;
1574                 chain_offset = (sges_left == sges_in_segment) ?
1575                     0 : sges_in_segment;
1576                 chain_length = sges_in_segment * ioc->sge_size_ieee;
1577                 if (chain_offset)
1578                         chain_length += ioc->sge_size_ieee;
1579                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1580                     chain_offset, chain_length, chain_dma);
1581
1582                 sg_local = chain;
1583                 if (!chain_offset)
1584                         goto fill_in_last_segment;
1585
1586                 /* fill in chain segments */
1587                 while (sges_in_segment) {
1588                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1589                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1590                         sg_scmd = sg_next(sg_scmd);
1591                         sg_local += ioc->sge_size_ieee;
1592                         sges_left--;
1593                         sges_in_segment--;
1594                 }
1595
1596                 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1597                 if (!chain_req)
1598                         return -1;
1599                 chain = chain_req->chain_buffer;
1600                 chain_dma = chain_req->chain_buffer_dma;
1601         } while (1);
1602
1603
1604  fill_in_last_segment:
1605
1606         /* fill the last segment */
1607         while (sges_left > 0) {
1608                 if (sges_left == 1)
1609                         _base_add_sg_single_ieee(sg_local,
1610                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1611                             sg_dma_address(sg_scmd));
1612                 else
1613                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1614                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1615                 sg_scmd = sg_next(sg_scmd);
1616                 sg_local += ioc->sge_size_ieee;
1617                 sges_left--;
1618         }
1619
1620         return 0;
1621 }
1622
1623 /**
1624  * _base_build_sg_ieee - build generic sg for IEEE format
1625  * @ioc: per adapter object
1626  * @psge: virtual address for SGE
1627  * @data_out_dma: physical address for WRITES
1628  * @data_out_sz: data xfer size for WRITES
1629  * @data_in_dma: physical address for READS
1630  * @data_in_sz: data xfer size for READS
1631  *
1632  * Return nothing.
1633  */
1634 static void
1635 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1636         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1637         size_t data_in_sz)
1638 {
1639         u8 sgl_flags;
1640
1641         if (!data_out_sz && !data_in_sz) {
1642                 _base_build_zero_len_sge_ieee(ioc, psge);
1643                 return;
1644         }
1645
1646         if (data_out_sz && data_in_sz) {
1647                 /* WRITE sgel first */
1648                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1649                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1650                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1651                     data_out_dma);
1652
1653                 /* incr sgel */
1654                 psge += ioc->sge_size_ieee;
1655
1656                 /* READ sgel last */
1657                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1658                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1659                     data_in_dma);
1660         } else if (data_out_sz) /* WRITE */ {
1661                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1662                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1663                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1664                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1665                     data_out_dma);
1666         } else if (data_in_sz) /* READ */ {
1667                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1668                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1669                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1670                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1671                     data_in_dma);
1672         }
1673 }
1674
1675 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1676
1677 /**
1678  * _base_config_dma_addressing - set dma addressing
1679  * @ioc: per adapter object
1680  * @pdev: PCI device struct
1681  *
1682  * Returns 0 for success, non-zero for failure.
1683  */
1684 static int
1685 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1686 {
1687         struct sysinfo s;
1688         u64 consistent_dma_mask;
1689
1690         if (ioc->dma_mask)
1691                 consistent_dma_mask = DMA_BIT_MASK(64);
1692         else
1693                 consistent_dma_mask = DMA_BIT_MASK(32);
1694
1695         if (sizeof(dma_addr_t) > 4) {
1696                 const uint64_t required_mask =
1697                     dma_get_required_mask(&pdev->dev);
1698                 if ((required_mask > DMA_BIT_MASK(32)) &&
1699                     !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1700                     !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1701                         ioc->base_add_sg_single = &_base_add_sg_single_64;
1702                         ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1703                         ioc->dma_mask = 64;
1704                         goto out;
1705                 }
1706         }
1707
1708         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1709             && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1710                 ioc->base_add_sg_single = &_base_add_sg_single_32;
1711                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1712                 ioc->dma_mask = 32;
1713         } else
1714                 return -ENODEV;
1715
1716  out:
1717         si_meminfo(&s);
1718         pr_info(MPT3SAS_FMT
1719                 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1720                 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1721
1722         return 0;
1723 }
1724
1725 static int
1726 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1727                                       struct pci_dev *pdev)
1728 {
1729         if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1730                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1731                         return -ENODEV;
1732         }
1733         return 0;
1734 }
1735
1736 /**
1737  * _base_check_enable_msix - checks MSIX capabable.
1738  * @ioc: per adapter object
1739  *
1740  * Check to see if card is capable of MSIX, and set number
1741  * of available msix vectors
1742  */
1743 static int
1744 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1745 {
1746         int base;
1747         u16 message_control;
1748
1749         /* Check whether controller SAS2008 B0 controller,
1750          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
1751          */
1752         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1753             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
1754                 return -EINVAL;
1755         }
1756
1757         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1758         if (!base) {
1759                 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1760                         ioc->name));
1761                 return -EINVAL;
1762         }
1763
1764         /* get msix vector count */
1765         /* NUMA_IO not supported for older controllers */
1766         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1767             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1768             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1769             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1770             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1771             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1772             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1773                 ioc->msix_vector_count = 1;
1774         else {
1775                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
1776                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1777         }
1778         dinitprintk(ioc, pr_info(MPT3SAS_FMT
1779                 "msix is supported, vector_count(%d)\n",
1780                 ioc->name, ioc->msix_vector_count));
1781         return 0;
1782 }
1783
1784 /**
1785  * _base_free_irq - free irq
1786  * @ioc: per adapter object
1787  *
1788  * Freeing respective reply_queue from the list.
1789  */
1790 static void
1791 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1792 {
1793         struct adapter_reply_queue *reply_q, *next;
1794
1795         if (list_empty(&ioc->reply_queue_list))
1796                 return;
1797
1798         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1799                 list_del(&reply_q->list);
1800                 irq_set_affinity_hint(reply_q->vector, NULL);
1801                 free_cpumask_var(reply_q->affinity_hint);
1802                 synchronize_irq(reply_q->vector);
1803                 free_irq(reply_q->vector, reply_q);
1804                 kfree(reply_q);
1805         }
1806 }
1807
1808 /**
1809  * _base_request_irq - request irq
1810  * @ioc: per adapter object
1811  * @index: msix index into vector table
1812  * @vector: irq vector
1813  *
1814  * Inserting respective reply_queue into the list.
1815  */
1816 static int
1817 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1818 {
1819         struct adapter_reply_queue *reply_q;
1820         int r;
1821
1822         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1823         if (!reply_q) {
1824                 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1825                     ioc->name, (int)sizeof(struct adapter_reply_queue));
1826                 return -ENOMEM;
1827         }
1828         reply_q->ioc = ioc;
1829         reply_q->msix_index = index;
1830         reply_q->vector = vector;
1831
1832         if (!alloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL))
1833                 return -ENOMEM;
1834         cpumask_clear(reply_q->affinity_hint);
1835
1836         atomic_set(&reply_q->busy, 0);
1837         if (ioc->msix_enable)
1838                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1839                     ioc->driver_name, ioc->id, index);
1840         else
1841                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1842                     ioc->driver_name, ioc->id);
1843         r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1844             reply_q);
1845         if (r) {
1846                 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1847                     reply_q->name, vector);
1848                 kfree(reply_q);
1849                 return -EBUSY;
1850         }
1851
1852         INIT_LIST_HEAD(&reply_q->list);
1853         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1854         return 0;
1855 }
1856
1857 /**
1858  * _base_assign_reply_queues - assigning msix index for each cpu
1859  * @ioc: per adapter object
1860  *
1861  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1862  *
1863  * It would nice if we could call irq_set_affinity, however it is not
1864  * an exported symbol
1865  */
1866 static void
1867 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1868 {
1869         unsigned int cpu, nr_cpus, nr_msix, index = 0;
1870         struct adapter_reply_queue *reply_q;
1871
1872         if (!_base_is_controller_msix_enabled(ioc))
1873                 return;
1874
1875         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1876
1877         nr_cpus = num_online_cpus();
1878         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1879                                                ioc->facts.MaxMSIxVectors);
1880         if (!nr_msix)
1881                 return;
1882
1883         cpu = cpumask_first(cpu_online_mask);
1884
1885         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1886
1887                 unsigned int i, group = nr_cpus / nr_msix;
1888
1889                 if (cpu >= nr_cpus)
1890                         break;
1891
1892                 if (index < nr_cpus % nr_msix)
1893                         group++;
1894
1895                 for (i = 0 ; i < group ; i++) {
1896                         ioc->cpu_msix_table[cpu] = index;
1897                         cpumask_or(reply_q->affinity_hint,
1898                                    reply_q->affinity_hint, get_cpu_mask(cpu));
1899                         cpu = cpumask_next(cpu, cpu_online_mask);
1900                 }
1901
1902                 if (irq_set_affinity_hint(reply_q->vector,
1903                                            reply_q->affinity_hint))
1904                         dinitprintk(ioc, pr_info(MPT3SAS_FMT
1905                             "error setting affinity hint for irq vector %d\n",
1906                             ioc->name, reply_q->vector));
1907                 index++;
1908         }
1909 }
1910
1911 /**
1912  * _base_disable_msix - disables msix
1913  * @ioc: per adapter object
1914  *
1915  */
1916 static void
1917 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1918 {
1919         if (!ioc->msix_enable)
1920                 return;
1921         pci_disable_msix(ioc->pdev);
1922         ioc->msix_enable = 0;
1923 }
1924
1925 /**
1926  * _base_enable_msix - enables msix, failback to io_apic
1927  * @ioc: per adapter object
1928  *
1929  */
1930 static int
1931 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1932 {
1933         struct msix_entry *entries, *a;
1934         int r;
1935         int i;
1936         u8 try_msix = 0;
1937
1938         if (msix_disable == -1 || msix_disable == 0)
1939                 try_msix = 1;
1940
1941         if (!try_msix)
1942                 goto try_ioapic;
1943
1944         if (_base_check_enable_msix(ioc) != 0)
1945                 goto try_ioapic;
1946
1947         ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1948             ioc->msix_vector_count);
1949
1950         printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1951           ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1952           ioc->cpu_count, max_msix_vectors);
1953
1954         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1955                 max_msix_vectors = 8;
1956
1957         if (max_msix_vectors > 0) {
1958                 ioc->reply_queue_count = min_t(int, max_msix_vectors,
1959                         ioc->reply_queue_count);
1960                 ioc->msix_vector_count = ioc->reply_queue_count;
1961         } else if (max_msix_vectors == 0)
1962                 goto try_ioapic;
1963
1964         entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1965             GFP_KERNEL);
1966         if (!entries) {
1967                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1968                         "kcalloc failed @ at %s:%d/%s() !!!\n",
1969                         ioc->name, __FILE__, __LINE__, __func__));
1970                 goto try_ioapic;
1971         }
1972
1973         for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
1974                 a->entry = i;
1975
1976         r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
1977         if (r) {
1978                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1979                         "pci_enable_msix_exact failed (r=%d) !!!\n",
1980                         ioc->name, r));
1981                 kfree(entries);
1982                 goto try_ioapic;
1983         }
1984
1985         ioc->msix_enable = 1;
1986         for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
1987                 r = _base_request_irq(ioc, i, a->vector);
1988                 if (r) {
1989                         _base_free_irq(ioc);
1990                         _base_disable_msix(ioc);
1991                         kfree(entries);
1992                         goto try_ioapic;
1993                 }
1994         }
1995
1996         kfree(entries);
1997         return 0;
1998
1999 /* failback to io_apic interrupt routing */
2000  try_ioapic:
2001
2002         ioc->reply_queue_count = 1;
2003         r = _base_request_irq(ioc, 0, ioc->pdev->irq);
2004
2005         return r;
2006 }
2007
2008 /**
2009  * mpt3sas_base_unmap_resources - free controller resources
2010  * @ioc: per adapter object
2011  */
2012 void
2013 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2014 {
2015         struct pci_dev *pdev = ioc->pdev;
2016
2017         dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2018                 ioc->name, __func__));
2019
2020         _base_free_irq(ioc);
2021         _base_disable_msix(ioc);
2022
2023         if (ioc->msix96_vector) {
2024                 kfree(ioc->replyPostRegisterIndex);
2025                 ioc->replyPostRegisterIndex = NULL;
2026         }
2027
2028         if (ioc->chip_phys) {
2029                 iounmap(ioc->chip);
2030                 ioc->chip_phys = 0;
2031         }
2032
2033         if (pci_is_enabled(pdev)) {
2034                 pci_release_selected_regions(ioc->pdev, ioc->bars);
2035                 pci_disable_pcie_error_reporting(pdev);
2036                 pci_disable_device(pdev);
2037         }
2038 }
2039
2040 /**
2041  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2042  * @ioc: per adapter object
2043  *
2044  * Returns 0 for success, non-zero for failure.
2045  */
2046 int
2047 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2048 {
2049         struct pci_dev *pdev = ioc->pdev;
2050         u32 memap_sz;
2051         u32 pio_sz;
2052         int i, r = 0;
2053         u64 pio_chip = 0;
2054         u64 chip_phys = 0;
2055         struct adapter_reply_queue *reply_q;
2056
2057         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2058             ioc->name, __func__));
2059
2060         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2061         if (pci_enable_device_mem(pdev)) {
2062                 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2063                         ioc->name);
2064                 ioc->bars = 0;
2065                 return -ENODEV;
2066         }
2067
2068
2069         if (pci_request_selected_regions(pdev, ioc->bars,
2070             ioc->driver_name)) {
2071                 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2072                         ioc->name);
2073                 ioc->bars = 0;
2074                 r = -ENODEV;
2075                 goto out_fail;
2076         }
2077
2078 /* AER (Advanced Error Reporting) hooks */
2079         pci_enable_pcie_error_reporting(pdev);
2080
2081         pci_set_master(pdev);
2082
2083
2084         if (_base_config_dma_addressing(ioc, pdev) != 0) {
2085                 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2086                     ioc->name, pci_name(pdev));
2087                 r = -ENODEV;
2088                 goto out_fail;
2089         }
2090
2091         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2092              (!memap_sz || !pio_sz); i++) {
2093                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2094                         if (pio_sz)
2095                                 continue;
2096                         pio_chip = (u64)pci_resource_start(pdev, i);
2097                         pio_sz = pci_resource_len(pdev, i);
2098                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2099                         if (memap_sz)
2100                                 continue;
2101                         ioc->chip_phys = pci_resource_start(pdev, i);
2102                         chip_phys = (u64)ioc->chip_phys;
2103                         memap_sz = pci_resource_len(pdev, i);
2104                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2105                 }
2106         }
2107
2108         if (ioc->chip == NULL) {
2109                 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2110                         " or resource not found\n", ioc->name);
2111                 r = -EINVAL;
2112                 goto out_fail;
2113         }
2114
2115         _base_mask_interrupts(ioc);
2116
2117         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
2118         if (r)
2119                 goto out_fail;
2120
2121         if (!ioc->rdpq_array_enable_assigned) {
2122                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2123                 ioc->rdpq_array_enable_assigned = 1;
2124         }
2125
2126         r = _base_enable_msix(ioc);
2127         if (r)
2128                 goto out_fail;
2129
2130         /* Use the Combined reply queue feature only for SAS3 C0 & higher
2131          * revision HBAs and also only when reply queue count is greater than 8
2132          */
2133         if (ioc->msix96_vector && ioc->reply_queue_count > 8) {
2134                 /* Determine the Supplemental Reply Post Host Index Registers
2135                  * Addresse. Supplemental Reply Post Host Index Registers
2136                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2137                  * each register is at offset bytes of
2138                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2139                  */
2140                 ioc->replyPostRegisterIndex = kcalloc(
2141                      MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT,
2142                      sizeof(resource_size_t *), GFP_KERNEL);
2143                 if (!ioc->replyPostRegisterIndex) {
2144                         dfailprintk(ioc, printk(MPT3SAS_FMT
2145                         "allocation for reply Post Register Index failed!!!\n",
2146                                                                    ioc->name));
2147                         r = -ENOMEM;
2148                         goto out_fail;
2149                 }
2150
2151                 for (i = 0; i < MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT; i++) {
2152                         ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2153                              ((u8 *)&ioc->chip->Doorbell +
2154                              MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2155                              (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2156                 }
2157         } else
2158                 ioc->msix96_vector = 0;
2159
2160         list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2161                 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2162                     reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2163                     "IO-APIC enabled"), reply_q->vector);
2164
2165         pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2166             ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2167         pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2168             ioc->name, (unsigned long long)pio_chip, pio_sz);
2169
2170         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
2171         pci_save_state(pdev);
2172         return 0;
2173
2174  out_fail:
2175         mpt3sas_base_unmap_resources(ioc);
2176         return r;
2177 }
2178
2179 /**
2180  * mpt3sas_base_get_msg_frame - obtain request mf pointer
2181  * @ioc: per adapter object
2182  * @smid: system request message index(smid zero is invalid)
2183  *
2184  * Returns virt pointer to message frame.
2185  */
2186 void *
2187 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2188 {
2189         return (void *)(ioc->request + (smid * ioc->request_sz));
2190 }
2191
2192 /**
2193  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2194  * @ioc: per adapter object
2195  * @smid: system request message index
2196  *
2197  * Returns virt pointer to sense buffer.
2198  */
2199 void *
2200 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2201 {
2202         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2203 }
2204
2205 /**
2206  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2207  * @ioc: per adapter object
2208  * @smid: system request message index
2209  *
2210  * Returns phys pointer to the low 32bit address of the sense buffer.
2211  */
2212 __le32
2213 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2214 {
2215         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2216             SCSI_SENSE_BUFFERSIZE));
2217 }
2218
2219 /**
2220  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2221  * @ioc: per adapter object
2222  * @phys_addr: lower 32 physical addr of the reply
2223  *
2224  * Converts 32bit lower physical addr into a virt address.
2225  */
2226 void *
2227 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2228 {
2229         if (!phys_addr)
2230                 return NULL;
2231         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2232 }
2233
2234 /**
2235  * mpt3sas_base_get_smid - obtain a free smid from internal queue
2236  * @ioc: per adapter object
2237  * @cb_idx: callback index
2238  *
2239  * Returns smid (zero is invalid)
2240  */
2241 u16
2242 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2243 {
2244         unsigned long flags;
2245         struct request_tracker *request;
2246         u16 smid;
2247
2248         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2249         if (list_empty(&ioc->internal_free_list)) {
2250                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2251                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2252                     ioc->name, __func__);
2253                 return 0;
2254         }
2255
2256         request = list_entry(ioc->internal_free_list.next,
2257             struct request_tracker, tracker_list);
2258         request->cb_idx = cb_idx;
2259         smid = request->smid;
2260         list_del(&request->tracker_list);
2261         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2262         return smid;
2263 }
2264
2265 /**
2266  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2267  * @ioc: per adapter object
2268  * @cb_idx: callback index
2269  * @scmd: pointer to scsi command object
2270  *
2271  * Returns smid (zero is invalid)
2272  */
2273 u16
2274 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2275         struct scsi_cmnd *scmd)
2276 {
2277         unsigned long flags;
2278         struct scsiio_tracker *request;
2279         u16 smid;
2280
2281         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2282         if (list_empty(&ioc->free_list)) {
2283                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2284                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2285                     ioc->name, __func__);
2286                 return 0;
2287         }
2288
2289         request = list_entry(ioc->free_list.next,
2290             struct scsiio_tracker, tracker_list);
2291         request->scmd = scmd;
2292         request->cb_idx = cb_idx;
2293         smid = request->smid;
2294         list_del(&request->tracker_list);
2295         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2296         return smid;
2297 }
2298
2299 /**
2300  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2301  * @ioc: per adapter object
2302  * @cb_idx: callback index
2303  *
2304  * Returns smid (zero is invalid)
2305  */
2306 u16
2307 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2308 {
2309         unsigned long flags;
2310         struct request_tracker *request;
2311         u16 smid;
2312
2313         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2314         if (list_empty(&ioc->hpr_free_list)) {
2315                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2316                 return 0;
2317         }
2318
2319         request = list_entry(ioc->hpr_free_list.next,
2320             struct request_tracker, tracker_list);
2321         request->cb_idx = cb_idx;
2322         smid = request->smid;
2323         list_del(&request->tracker_list);
2324         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2325         return smid;
2326 }
2327
2328 /**
2329  * mpt3sas_base_free_smid - put smid back on free_list
2330  * @ioc: per adapter object
2331  * @smid: system request message index
2332  *
2333  * Return nothing.
2334  */
2335 void
2336 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2337 {
2338         unsigned long flags;
2339         int i;
2340         struct chain_tracker *chain_req, *next;
2341
2342         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2343         if (smid < ioc->hi_priority_smid) {
2344                 /* scsiio queue */
2345                 i = smid - 1;
2346                 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2347                         list_for_each_entry_safe(chain_req, next,
2348                             &ioc->scsi_lookup[i].chain_list, tracker_list) {
2349                                 list_del_init(&chain_req->tracker_list);
2350                                 list_add(&chain_req->tracker_list,
2351                                     &ioc->free_chain_list);
2352                         }
2353                 }
2354                 ioc->scsi_lookup[i].cb_idx = 0xFF;
2355                 ioc->scsi_lookup[i].scmd = NULL;
2356                 ioc->scsi_lookup[i].direct_io = 0;
2357                 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2358                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2359
2360                 /*
2361                  * See _wait_for_commands_to_complete() call with regards
2362                  * to this code.
2363                  */
2364                 if (ioc->shost_recovery && ioc->pending_io_count) {
2365                         if (ioc->pending_io_count == 1)
2366                                 wake_up(&ioc->reset_wq);
2367                         ioc->pending_io_count--;
2368                 }
2369                 return;
2370         } else if (smid < ioc->internal_smid) {
2371                 /* hi-priority */
2372                 i = smid - ioc->hi_priority_smid;
2373                 ioc->hpr_lookup[i].cb_idx = 0xFF;
2374                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2375         } else if (smid <= ioc->hba_queue_depth) {
2376                 /* internal queue */
2377                 i = smid - ioc->internal_smid;
2378                 ioc->internal_lookup[i].cb_idx = 0xFF;
2379                 list_add(&ioc->internal_lookup[i].tracker_list,
2380                     &ioc->internal_free_list);
2381         }
2382         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2383 }
2384
2385 /**
2386  * _base_writeq - 64 bit write to MMIO
2387  * @ioc: per adapter object
2388  * @b: data payload
2389  * @addr: address in MMIO space
2390  * @writeq_lock: spin lock
2391  *
2392  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2393  * care of 32 bit environment where its not quarenteed to send the entire word
2394  * in one transfer.
2395  */
2396 #if defined(writeq) && defined(CONFIG_64BIT)
2397 static inline void
2398 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2399 {
2400         writeq(cpu_to_le64(b), addr);
2401 }
2402 #else
2403 static inline void
2404 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2405 {
2406         unsigned long flags;
2407         __u64 data_out = cpu_to_le64(b);
2408
2409         spin_lock_irqsave(writeq_lock, flags);
2410         writel((u32)(data_out), addr);
2411         writel((u32)(data_out >> 32), (addr + 4));
2412         spin_unlock_irqrestore(writeq_lock, flags);
2413 }
2414 #endif
2415
2416 static inline u8
2417 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2418 {
2419         return ioc->cpu_msix_table[raw_smp_processor_id()];
2420 }
2421
2422 /**
2423  * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2424  * @ioc: per adapter object
2425  * @smid: system request message index
2426  * @handle: device handle
2427  *
2428  * Return nothing.
2429  */
2430 void
2431 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2432 {
2433         Mpi2RequestDescriptorUnion_t descriptor;
2434         u64 *request = (u64 *)&descriptor;
2435
2436
2437         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2438         descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
2439         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2440         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2441         descriptor.SCSIIO.LMID = 0;
2442         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2443             &ioc->scsi_lookup_lock);
2444 }
2445
2446 /**
2447  * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2448  * @ioc: per adapter object
2449  * @smid: system request message index
2450  * @handle: device handle
2451  *
2452  * Return nothing.
2453  */
2454 void
2455 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2456         u16 handle)
2457 {
2458         Mpi2RequestDescriptorUnion_t descriptor;
2459         u64 *request = (u64 *)&descriptor;
2460
2461         descriptor.SCSIIO.RequestFlags =
2462             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2463         descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2464         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2465         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2466         descriptor.SCSIIO.LMID = 0;
2467         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2468             &ioc->scsi_lookup_lock);
2469 }
2470
2471 /**
2472  * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2473  * @ioc: per adapter object
2474  * @smid: system request message index
2475  *
2476  * Return nothing.
2477  */
2478 void
2479 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2480 {
2481         Mpi2RequestDescriptorUnion_t descriptor;
2482         u64 *request = (u64 *)&descriptor;
2483
2484         descriptor.HighPriority.RequestFlags =
2485             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2486         descriptor.HighPriority.MSIxIndex =  0;
2487         descriptor.HighPriority.SMID = cpu_to_le16(smid);
2488         descriptor.HighPriority.LMID = 0;
2489         descriptor.HighPriority.Reserved1 = 0;
2490         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2491             &ioc->scsi_lookup_lock);
2492 }
2493
2494 /**
2495  * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2496  * @ioc: per adapter object
2497  * @smid: system request message index
2498  *
2499  * Return nothing.
2500  */
2501 void
2502 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2503 {
2504         Mpi2RequestDescriptorUnion_t descriptor;
2505         u64 *request = (u64 *)&descriptor;
2506
2507         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2508         descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
2509         descriptor.Default.SMID = cpu_to_le16(smid);
2510         descriptor.Default.LMID = 0;
2511         descriptor.Default.DescriptorTypeDependent = 0;
2512         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2513             &ioc->scsi_lookup_lock);
2514 }
2515
2516 /**
2517  * _base_display_OEMs_branding - Display branding string
2518  * @ioc: per adapter object
2519  *
2520  * Return nothing.
2521  */
2522 static void
2523 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
2524 {
2525         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2526                 return;
2527
2528         switch (ioc->pdev->subsystem_vendor) {
2529         case PCI_VENDOR_ID_INTEL:
2530                 switch (ioc->pdev->device) {
2531                 case MPI2_MFGPAGE_DEVID_SAS2008:
2532                         switch (ioc->pdev->subsystem_device) {
2533                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
2534                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2535                                     MPT2SAS_INTEL_RMS2LL080_BRANDING);
2536                                 break;
2537                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
2538                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2539                                     MPT2SAS_INTEL_RMS2LL040_BRANDING);
2540                                 break;
2541                         case MPT2SAS_INTEL_SSD910_SSDID:
2542                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2543                                     MPT2SAS_INTEL_SSD910_BRANDING);
2544                                 break;
2545                         default:
2546                                 pr_info(MPT3SAS_FMT
2547                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
2548                                  ioc->name, ioc->pdev->subsystem_device);
2549                                 break;
2550                         }
2551                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2552                         switch (ioc->pdev->subsystem_device) {
2553                         case MPT2SAS_INTEL_RS25GB008_SSDID:
2554                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2555                                     MPT2SAS_INTEL_RS25GB008_BRANDING);
2556                                 break;
2557                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
2558                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2559                                     MPT2SAS_INTEL_RMS25JB080_BRANDING);
2560                                 break;
2561                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
2562                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2563                                     MPT2SAS_INTEL_RMS25JB040_BRANDING);
2564                                 break;
2565                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
2566                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2567                                     MPT2SAS_INTEL_RMS25KB080_BRANDING);
2568                                 break;
2569                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
2570                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2571                                     MPT2SAS_INTEL_RMS25KB040_BRANDING);
2572                                 break;
2573                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
2574                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2575                                     MPT2SAS_INTEL_RMS25LB040_BRANDING);
2576                                 break;
2577                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
2578                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2579                                     MPT2SAS_INTEL_RMS25LB080_BRANDING);
2580                                 break;
2581                         default:
2582                                 pr_info(MPT3SAS_FMT
2583                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
2584                                  ioc->name, ioc->pdev->subsystem_device);
2585                                 break;
2586                         }
2587                 case MPI25_MFGPAGE_DEVID_SAS3008:
2588                         switch (ioc->pdev->subsystem_device) {
2589                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
2590                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2591                                         MPT3SAS_INTEL_RMS3JC080_BRANDING);
2592                                 break;
2593
2594                         case MPT3SAS_INTEL_RS3GC008_SSDID:
2595                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2596                                         MPT3SAS_INTEL_RS3GC008_BRANDING);
2597                                 break;
2598                         case MPT3SAS_INTEL_RS3FC044_SSDID:
2599                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2600                                         MPT3SAS_INTEL_RS3FC044_BRANDING);
2601                                 break;
2602                         case MPT3SAS_INTEL_RS3UC080_SSDID:
2603                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2604                                         MPT3SAS_INTEL_RS3UC080_BRANDING);
2605                                 break;
2606                         default:
2607                                 pr_info(MPT3SAS_FMT
2608                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
2609                                  ioc->name, ioc->pdev->subsystem_device);
2610                                 break;
2611                         }
2612                         break;
2613                 default:
2614                         pr_info(MPT3SAS_FMT
2615                          "Intel(R) Controller: Subsystem ID: 0x%X\n",
2616                          ioc->name, ioc->pdev->subsystem_device);
2617                         break;
2618                 }
2619                 break;
2620         case PCI_VENDOR_ID_DELL:
2621                 switch (ioc->pdev->device) {
2622                 case MPI2_MFGPAGE_DEVID_SAS2008:
2623                         switch (ioc->pdev->subsystem_device) {
2624                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
2625                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2626                                  MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
2627                                 break;
2628                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
2629                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2630                                  MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
2631                                 break;
2632                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
2633                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2634                                  MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
2635                                 break;
2636                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
2637                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2638                                  MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
2639                                 break;
2640                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
2641                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2642                                  MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
2643                                 break;
2644                         case MPT2SAS_DELL_PERC_H200_SSDID:
2645                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2646                                  MPT2SAS_DELL_PERC_H200_BRANDING);
2647                                 break;
2648                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
2649                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2650                                  MPT2SAS_DELL_6GBPS_SAS_BRANDING);
2651                                 break;
2652                         default:
2653                                 pr_info(MPT3SAS_FMT
2654                                    "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
2655                                    ioc->name, ioc->pdev->subsystem_device);
2656                                 break;
2657                         }
2658                         break;
2659                 case MPI25_MFGPAGE_DEVID_SAS3008:
2660                         switch (ioc->pdev->subsystem_device) {
2661                         case MPT3SAS_DELL_12G_HBA_SSDID:
2662                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2663                                         MPT3SAS_DELL_12G_HBA_BRANDING);
2664                                 break;
2665                         default:
2666                                 pr_info(MPT3SAS_FMT
2667                                    "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
2668                                    ioc->name, ioc->pdev->subsystem_device);
2669                                 break;
2670                         }
2671                         break;
2672                 default:
2673                         pr_info(MPT3SAS_FMT
2674                            "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
2675                            ioc->pdev->subsystem_device);
2676                         break;
2677                 }
2678                 break;
2679         case PCI_VENDOR_ID_CISCO:
2680                 switch (ioc->pdev->device) {
2681                 case MPI25_MFGPAGE_DEVID_SAS3008:
2682                         switch (ioc->pdev->subsystem_device) {
2683                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2684                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2685                                         MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2686                                 break;
2687                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2688                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2689                                         MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2690                                 break;
2691                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2692                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2693                                         MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2694                                 break;
2695                         default:
2696                                 pr_info(MPT3SAS_FMT
2697                                   "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2698                                   ioc->name, ioc->pdev->subsystem_device);
2699                                 break;
2700                         }
2701                         break;
2702                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
2703                         switch (ioc->pdev->subsystem_device) {
2704                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2705                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2706                                 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2707                                 break;
2708                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2709                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2710                                 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
2711                                 );
2712                                 break;
2713                         default:
2714                                 pr_info(MPT3SAS_FMT
2715                                  "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2716                                  ioc->name, ioc->pdev->subsystem_device);
2717                                 break;
2718                         }
2719                         break;
2720                 default:
2721                         pr_info(MPT3SAS_FMT
2722                            "Cisco SAS HBA: Subsystem ID: 0x%X\n",
2723                            ioc->name, ioc->pdev->subsystem_device);
2724                         break;
2725                 }
2726                 break;
2727         case MPT2SAS_HP_3PAR_SSVID:
2728                 switch (ioc->pdev->device) {
2729                 case MPI2_MFGPAGE_DEVID_SAS2004:
2730                         switch (ioc->pdev->subsystem_device) {
2731                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2732                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2733                                     MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2734                                 break;
2735                         default:
2736                                 pr_info(MPT3SAS_FMT
2737                                    "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2738                                    ioc->name, ioc->pdev->subsystem_device);
2739                                 break;
2740                         }
2741                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2742                         switch (ioc->pdev->subsystem_device) {
2743                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2744                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2745                                     MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2746                                 break;
2747                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2748                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2749                                     MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2750                                 break;
2751                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2752                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2753                                  MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2754                                 break;
2755                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2756                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2757                                     MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2758                                 break;
2759                         default:
2760                                 pr_info(MPT3SAS_FMT
2761                                    "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2762                                    ioc->name, ioc->pdev->subsystem_device);
2763                                 break;
2764                         }
2765                 default:
2766                         pr_info(MPT3SAS_FMT
2767                            "HP SAS HBA: Subsystem ID: 0x%X\n",
2768                            ioc->name, ioc->pdev->subsystem_device);
2769                         break;
2770                 }
2771         default:
2772                 break;
2773         }
2774 }
2775
2776 /**
2777  * _base_display_ioc_capabilities - Disply IOC's capabilities.
2778  * @ioc: per adapter object
2779  *
2780  * Return nothing.
2781  */
2782 static void
2783 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2784 {
2785         int i = 0;
2786         char desc[16];
2787         u32 iounit_pg1_flags;
2788         u32 bios_version;
2789
2790         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2791         strncpy(desc, ioc->manu_pg0.ChipName, 16);
2792         pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2793            "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2794             ioc->name, desc,
2795            (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2796            (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2797            (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2798            ioc->facts.FWVersion.Word & 0x000000FF,
2799            ioc->pdev->revision,
2800            (bios_version & 0xFF000000) >> 24,
2801            (bios_version & 0x00FF0000) >> 16,
2802            (bios_version & 0x0000FF00) >> 8,
2803             bios_version & 0x000000FF);
2804
2805         _base_display_OEMs_branding(ioc);
2806
2807         pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2808
2809         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2810                 pr_info("Initiator");
2811                 i++;
2812         }
2813
2814         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2815                 pr_info("%sTarget", i ? "," : "");
2816                 i++;
2817         }
2818
2819         i = 0;
2820         pr_info("), ");
2821         pr_info("Capabilities=(");
2822
2823         if (!ioc->hide_ir_msg) {
2824                 if (ioc->facts.IOCCapabilities &
2825                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2826                         pr_info("Raid");
2827                         i++;
2828                 }
2829         }
2830
2831         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2832                 pr_info("%sTLR", i ? "," : "");
2833                 i++;
2834         }
2835
2836         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2837                 pr_info("%sMulticast", i ? "," : "");
2838                 i++;
2839         }
2840
2841         if (ioc->facts.IOCCapabilities &
2842             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2843                 pr_info("%sBIDI Target", i ? "," : "");
2844                 i++;
2845         }
2846
2847         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2848                 pr_info("%sEEDP", i ? "," : "");
2849                 i++;
2850         }
2851
2852         if (ioc->facts.IOCCapabilities &
2853             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2854                 pr_info("%sSnapshot Buffer", i ? "," : "");
2855                 i++;
2856         }
2857
2858         if (ioc->facts.IOCCapabilities &
2859             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2860                 pr_info("%sDiag Trace Buffer", i ? "," : "");
2861                 i++;
2862         }
2863
2864         if (ioc->facts.IOCCapabilities &
2865             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2866                 pr_info("%sDiag Extended Buffer", i ? "," : "");
2867                 i++;
2868         }
2869
2870         if (ioc->facts.IOCCapabilities &
2871             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2872                 pr_info("%sTask Set Full", i ? "," : "");
2873                 i++;
2874         }
2875
2876         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2877         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2878                 pr_info("%sNCQ", i ? "," : "");
2879                 i++;
2880         }
2881
2882         pr_info(")\n");
2883 }
2884
2885 /**
2886  * mpt3sas_base_update_missing_delay - change the missing delay timers
2887  * @ioc: per adapter object
2888  * @device_missing_delay: amount of time till device is reported missing
2889  * @io_missing_delay: interval IO is returned when there is a missing device
2890  *
2891  * Return nothing.
2892  *
2893  * Passed on the command line, this function will modify the device missing
2894  * delay, as well as the io missing delay. This should be called at driver
2895  * load time.
2896  */
2897 void
2898 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2899         u16 device_missing_delay, u8 io_missing_delay)
2900 {
2901         u16 dmd, dmd_new, dmd_orignal;
2902         u8 io_missing_delay_original;
2903         u16 sz;
2904         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2905         Mpi2ConfigReply_t mpi_reply;
2906         u8 num_phys = 0;
2907         u16 ioc_status;
2908
2909         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2910         if (!num_phys)
2911                 return;
2912
2913         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2914             sizeof(Mpi2SasIOUnit1PhyData_t));
2915         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2916         if (!sas_iounit_pg1) {
2917                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2918                     ioc->name, __FILE__, __LINE__, __func__);
2919                 goto out;
2920         }
2921         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2922             sas_iounit_pg1, sz))) {
2923                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2924                     ioc->name, __FILE__, __LINE__, __func__);
2925                 goto out;
2926         }
2927         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2928             MPI2_IOCSTATUS_MASK;
2929         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2930                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2931                     ioc->name, __FILE__, __LINE__, __func__);
2932                 goto out;
2933         }
2934
2935         /* device missing delay */
2936         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2937         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2938                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2939         else
2940                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2941         dmd_orignal = dmd;
2942         if (device_missing_delay > 0x7F) {
2943                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2944                     device_missing_delay;
2945                 dmd = dmd / 16;
2946                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2947         } else
2948                 dmd = device_missing_delay;
2949         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2950
2951         /* io missing delay */
2952         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2953         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2954
2955         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2956             sz)) {
2957                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2958                         dmd_new = (dmd &
2959                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2960                 else
2961                         dmd_new =
2962                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2963                 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
2964                         ioc->name, dmd_orignal, dmd_new);
2965                 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
2966                         ioc->name, io_missing_delay_original,
2967                     io_missing_delay);
2968                 ioc->device_missing_delay = dmd_new;
2969                 ioc->io_missing_delay = io_missing_delay;
2970         }
2971
2972 out:
2973         kfree(sas_iounit_pg1);
2974 }
2975 /**
2976  * _base_static_config_pages - static start of day config pages
2977  * @ioc: per adapter object
2978  *
2979  * Return nothing.
2980  */
2981 static void
2982 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
2983 {
2984         Mpi2ConfigReply_t mpi_reply;
2985         u32 iounit_pg1_flags;
2986
2987         mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
2988         if (ioc->ir_firmware)
2989                 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
2990                     &ioc->manu_pg10);
2991
2992         /*
2993          * Ensure correct T10 PI operation if vendor left EEDPTagMode
2994          * flag unset in NVDATA.
2995          */
2996         mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
2997         if (ioc->manu_pg11.EEDPTagMode == 0) {
2998                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
2999                     ioc->name);
3000                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
3001                 ioc->manu_pg11.EEDPTagMode |= 0x1;
3002                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3003                     &ioc->manu_pg11);
3004         }
3005
3006         mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3007         mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3008         mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3009         mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3010         mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3011         mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3012         _base_display_ioc_capabilities(ioc);
3013
3014         /*
3015          * Enable task_set_full handling in iounit_pg1 when the
3016          * facts capabilities indicate that its supported.
3017          */
3018         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3019         if ((ioc->facts.IOCCapabilities &
3020             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3021                 iounit_pg1_flags &=
3022                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3023         else
3024                 iounit_pg1_flags |=
3025                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3026         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3027         mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3028
3029         if (ioc->iounit_pg8.NumSensors)
3030                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3031 }
3032
3033 /**
3034  * _base_release_memory_pools - release memory
3035  * @ioc: per adapter object
3036  *
3037  * Free memory allocated from _base_allocate_memory_pools.
3038  *
3039  * Return nothing.
3040  */
3041 static void
3042 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3043 {
3044         int i = 0;
3045         struct reply_post_struct *rps;
3046
3047         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3048             __func__));
3049
3050         if (ioc->request) {
3051                 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3052                     ioc->request,  ioc->request_dma);
3053                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3054                         "request_pool(0x%p): free\n",
3055                         ioc->name, ioc->request));
3056                 ioc->request = NULL;
3057         }
3058
3059         if (ioc->sense) {
3060                 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3061                 if (ioc->sense_dma_pool)
3062                         pci_pool_destroy(ioc->sense_dma_pool);
3063                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3064                         "sense_pool(0x%p): free\n",
3065                         ioc->name, ioc->sense));
3066                 ioc->sense = NULL;
3067         }
3068
3069         if (ioc->reply) {
3070                 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3071                 if (ioc->reply_dma_pool)
3072                         pci_pool_destroy(ioc->reply_dma_pool);
3073                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3074                         "reply_pool(0x%p): free\n",
3075                         ioc->name, ioc->reply));
3076                 ioc->reply = NULL;
3077         }
3078
3079         if (ioc->reply_free) {
3080                 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3081                     ioc->reply_free_dma);
3082                 if (ioc->reply_free_dma_pool)
3083                         pci_pool_destroy(ioc->reply_free_dma_pool);
3084                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3085                         "reply_free_pool(0x%p): free\n",
3086                         ioc->name, ioc->reply_free));
3087                 ioc->reply_free = NULL;
3088         }
3089
3090         if (ioc->reply_post) {
3091                 do {
3092                         rps = &ioc->reply_post[i];
3093                         if (rps->reply_post_free) {
3094                                 pci_pool_free(
3095                                     ioc->reply_post_free_dma_pool,
3096                                     rps->reply_post_free,
3097                                     rps->reply_post_free_dma);
3098                                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3099                                     "reply_post_free_pool(0x%p): free\n",
3100                                     ioc->name, rps->reply_post_free));
3101                                 rps->reply_post_free = NULL;
3102                         }
3103                 } while (ioc->rdpq_array_enable &&
3104                            (++i < ioc->reply_queue_count));
3105
3106                 if (ioc->reply_post_free_dma_pool)
3107                         pci_pool_destroy(ioc->reply_post_free_dma_pool);
3108                 kfree(ioc->reply_post);
3109         }
3110
3111         if (ioc->config_page) {
3112                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3113                     "config_page(0x%p): free\n", ioc->name,
3114                     ioc->config_page));
3115                 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3116                     ioc->config_page, ioc->config_page_dma);
3117         }
3118
3119         if (ioc->scsi_lookup) {
3120                 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3121                 ioc->scsi_lookup = NULL;
3122         }
3123         kfree(ioc->hpr_lookup);
3124         kfree(ioc->internal_lookup);
3125         if (ioc->chain_lookup) {
3126                 for (i = 0; i < ioc->chain_depth; i++) {
3127                         if (ioc->chain_lookup[i].chain_buffer)
3128                                 pci_pool_free(ioc->chain_dma_pool,
3129                                     ioc->chain_lookup[i].chain_buffer,
3130                                     ioc->chain_lookup[i].chain_buffer_dma);
3131                 }
3132                 if (ioc->chain_dma_pool)
3133                         pci_pool_destroy(ioc->chain_dma_pool);
3134                 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3135                 ioc->chain_lookup = NULL;
3136         }
3137 }
3138
3139 /**
3140  * _base_allocate_memory_pools - allocate start of day memory pools
3141  * @ioc: per adapter object
3142  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3143  *
3144  * Returns 0 success, anything else error
3145  */
3146 static int
3147 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc,  int sleep_flag)
3148 {
3149         struct mpt3sas_facts *facts;
3150         u16 max_sge_elements;
3151         u16 chains_needed_per_io;
3152         u32 sz, total_sz, reply_post_free_sz;
3153         u32 retry_sz;
3154         u16 max_request_credit;
3155         unsigned short sg_tablesize;
3156         u16 sge_size;
3157         int i;
3158
3159         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3160             __func__));
3161
3162
3163         retry_sz = 0;
3164         facts = &ioc->facts;
3165
3166         /* command line tunables for max sgl entries */
3167         if (max_sgl_entries != -1)
3168                 sg_tablesize = max_sgl_entries;
3169         else {
3170                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3171                         sg_tablesize = MPT2SAS_SG_DEPTH;
3172                 else
3173                         sg_tablesize = MPT3SAS_SG_DEPTH;
3174         }
3175
3176         if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3177                 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3178         else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3179                 sg_tablesize = min_t(unsigned short, sg_tablesize,
3180                                       SCSI_MAX_SG_CHAIN_SEGMENTS);
3181                 pr_warn(MPT3SAS_FMT
3182                  "sg_tablesize(%u) is bigger than kernel"
3183                  " defined SCSI_MAX_SG_SEGMENTS(%u)\n", ioc->name,
3184                  sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3185         }
3186         ioc->shost->sg_tablesize = sg_tablesize;
3187
3188         ioc->hi_priority_depth = facts->HighPriorityCredit;
3189         ioc->internal_depth = ioc->hi_priority_depth + (5);
3190         /* command line tunables  for max controller queue depth */
3191         if (max_queue_depth != -1 && max_queue_depth != 0) {
3192                 max_request_credit = min_t(u16, max_queue_depth +
3193                     ioc->hi_priority_depth + ioc->internal_depth,
3194                     facts->RequestCredit);
3195                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3196                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
3197         } else
3198                 max_request_credit = min_t(u16, facts->RequestCredit,
3199                     MAX_HBA_QUEUE_DEPTH);
3200
3201         ioc->hba_queue_depth = max_request_credit;
3202
3203         /* request frame size */
3204         ioc->request_sz = facts->IOCRequestFrameSize * 4;
3205
3206         /* reply frame size */
3207         ioc->reply_sz = facts->ReplyFrameSize * 4;
3208
3209         /* calculate the max scatter element size */
3210         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3211
3212  retry_allocation:
3213         total_sz = 0;
3214         /* calculate number of sg elements left over in the 1st frame */
3215         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3216             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3217         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3218
3219         /* now do the same for a chain buffer */
3220         max_sge_elements = ioc->request_sz - sge_size;
3221         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3222
3223         /*
3224          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3225          */
3226         chains_needed_per_io = ((ioc->shost->sg_tablesize -
3227            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3228             + 1;
3229         if (chains_needed_per_io > facts->MaxChainDepth) {
3230                 chains_needed_per_io = facts->MaxChainDepth;
3231                 ioc->shost->sg_tablesize = min_t(u16,
3232                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3233                 * chains_needed_per_io), ioc->shost->sg_tablesize);
3234         }
3235         ioc->chains_needed_per_io = chains_needed_per_io;
3236
3237         /* reply free queue sizing - taking into account for 64 FW events */
3238         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3239
3240         /* calculate reply descriptor post queue depth */
3241         ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3242                                 ioc->reply_free_queue_depth +  1 ;
3243         /* align the reply post queue on the next 16 count boundary */
3244         if (ioc->reply_post_queue_depth % 16)
3245                 ioc->reply_post_queue_depth += 16 -
3246                 (ioc->reply_post_queue_depth % 16);
3247
3248
3249         if (ioc->reply_post_queue_depth >
3250             facts->MaxReplyDescriptorPostQueueDepth) {
3251                 ioc->reply_post_queue_depth =
3252                                 facts->MaxReplyDescriptorPostQueueDepth -
3253                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
3254                 ioc->hba_queue_depth =
3255                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
3256                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3257         }
3258
3259         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3260             "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3261             "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3262             ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3263             ioc->chains_needed_per_io));
3264
3265         /* reply post queue, 16 byte align */
3266         reply_post_free_sz = ioc->reply_post_queue_depth *
3267             sizeof(Mpi2DefaultReplyDescriptor_t);
3268
3269         sz = reply_post_free_sz;
3270         if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3271                 sz *= ioc->reply_queue_count;
3272
3273         ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3274             (ioc->reply_queue_count):1,
3275             sizeof(struct reply_post_struct), GFP_KERNEL);
3276
3277         if (!ioc->reply_post) {
3278                 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3279                         ioc->name);
3280                 goto out;
3281         }
3282         ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
3283             ioc->pdev, sz, 16, 0);
3284         if (!ioc->reply_post_free_dma_pool) {
3285                 pr_err(MPT3SAS_FMT
3286                  "reply_post_free pool: pci_pool_create failed\n",
3287                  ioc->name);
3288                 goto out;
3289         }
3290         i = 0;
3291         do {
3292                 ioc->reply_post[i].reply_post_free =
3293                     pci_pool_alloc(ioc->reply_post_free_dma_pool,
3294                     GFP_KERNEL,
3295                     &ioc->reply_post[i].reply_post_free_dma);
3296                 if (!ioc->reply_post[i].reply_post_free) {
3297                         pr_err(MPT3SAS_FMT
3298                         "reply_post_free pool: pci_pool_alloc failed\n",
3299                         ioc->name);
3300                         goto out;
3301                 }
3302                 memset(ioc->reply_post[i].reply_post_free, 0, sz);
3303                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3304                     "reply post free pool (0x%p): depth(%d),"
3305                     "element_size(%d), pool_size(%d kB)\n", ioc->name,
3306                     ioc->reply_post[i].reply_post_free,
3307                     ioc->reply_post_queue_depth, 8, sz/1024));
3308                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3309                     "reply_post_free_dma = (0x%llx)\n", ioc->name,
3310                     (unsigned long long)
3311                     ioc->reply_post[i].reply_post_free_dma));
3312                 total_sz += sz;
3313         } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3314
3315         if (ioc->dma_mask == 64) {
3316                 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3317                         pr_warn(MPT3SAS_FMT
3318                             "no suitable consistent DMA mask for %s\n",
3319                             ioc->name, pci_name(ioc->pdev));
3320                         goto out;
3321                 }
3322         }
3323
3324         ioc->scsiio_depth = ioc->hba_queue_depth -
3325             ioc->hi_priority_depth - ioc->internal_depth;
3326
3327         /* set the scsi host can_queue depth
3328          * with some internal commands that could be outstanding
3329          */
3330         ioc->shost->can_queue = ioc->scsiio_depth;
3331         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3332                 "scsi host: can_queue depth (%d)\n",
3333                 ioc->name, ioc->shost->can_queue));
3334
3335
3336         /* contiguous pool for request and chains, 16 byte align, one extra "
3337          * "frame for smid=0
3338          */
3339         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3340         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3341
3342         /* hi-priority queue */
3343         sz += (ioc->hi_priority_depth * ioc->request_sz);
3344
3345         /* internal queue */
3346         sz += (ioc->internal_depth * ioc->request_sz);
3347
3348         ioc->request_dma_sz = sz;
3349         ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3350         if (!ioc->request) {
3351                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3352                     "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3353                     "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3354                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3355                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3356                         goto out;
3357                 retry_sz += 64;
3358                 ioc->hba_queue_depth = max_request_credit - retry_sz;
3359                 goto retry_allocation;
3360         }
3361
3362         if (retry_sz)
3363                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3364                     "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3365                     "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3366                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3367
3368         /* hi-priority queue */
3369         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3370             ioc->request_sz);
3371         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3372             ioc->request_sz);
3373
3374         /* internal queue */
3375         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3376             ioc->request_sz);
3377         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3378             ioc->request_sz);
3379
3380         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3381                 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3382                 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3383             (ioc->hba_queue_depth * ioc->request_sz)/1024));
3384
3385         dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3386             ioc->name, (unsigned long long) ioc->request_dma));
3387         total_sz += sz;
3388
3389         sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3390         ioc->scsi_lookup_pages = get_order(sz);
3391         ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3392             GFP_KERNEL, ioc->scsi_lookup_pages);
3393         if (!ioc->scsi_lookup) {
3394                 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3395                         ioc->name, (int)sz);
3396                 goto out;
3397         }
3398
3399         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3400                 ioc->name, ioc->request, ioc->scsiio_depth));
3401
3402         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3403         sz = ioc->chain_depth * sizeof(struct chain_tracker);
3404         ioc->chain_pages = get_order(sz);
3405         ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3406             GFP_KERNEL, ioc->chain_pages);
3407         if (!ioc->chain_lookup) {
3408                 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3409                         ioc->name);
3410                 goto out;
3411         }
3412         ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
3413             ioc->request_sz, 16, 0);
3414         if (!ioc->chain_dma_pool) {
3415                 pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
3416                         ioc->name);
3417                 goto out;
3418         }
3419         for (i = 0; i < ioc->chain_depth; i++) {
3420                 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
3421                     ioc->chain_dma_pool , GFP_KERNEL,
3422                     &ioc->chain_lookup[i].chain_buffer_dma);
3423                 if (!ioc->chain_lookup[i].chain_buffer) {
3424                         ioc->chain_depth = i;
3425                         goto chain_done;
3426                 }
3427                 total_sz += ioc->request_sz;
3428         }
3429  chain_done:
3430         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3431                 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3432                 ioc->name, ioc->chain_depth, ioc->request_sz,
3433                 ((ioc->chain_depth *  ioc->request_sz))/1024));
3434
3435         /* initialize hi-priority queue smid's */
3436         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3437             sizeof(struct request_tracker), GFP_KERNEL);
3438         if (!ioc->hpr_lookup) {
3439                 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3440                     ioc->name);
3441                 goto out;
3442         }
3443         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3444         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3445                 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
3446                 ioc->name, ioc->hi_priority,
3447             ioc->hi_priority_depth, ioc->hi_priority_smid));
3448
3449         /* initialize internal queue smid's */
3450         ioc->internal_lookup = kcalloc(ioc->internal_depth,
3451             sizeof(struct request_tracker), GFP_KERNEL);
3452         if (!ioc->internal_lookup) {
3453                 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3454                     ioc->name);
3455                 goto out;
3456         }
3457         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3458         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3459                 "internal(0x%p): depth(%d), start smid(%d)\n",
3460                 ioc->name, ioc->internal,
3461             ioc->internal_depth, ioc->internal_smid));
3462
3463         /* sense buffers, 4 byte align */
3464         sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3465         ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
3466             0);
3467         if (!ioc->sense_dma_pool) {
3468                 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
3469                     ioc->name);
3470                 goto out;
3471         }
3472         ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
3473             &ioc->sense_dma);
3474         if (!ioc->sense) {
3475                 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
3476                     ioc->name);
3477                 goto out;
3478         }
3479         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3480             "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3481             "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3482             SCSI_SENSE_BUFFERSIZE, sz/1024));
3483         dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3484             ioc->name, (unsigned long long)ioc->sense_dma));
3485         total_sz += sz;
3486
3487         /* reply pool, 4 byte align */
3488         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3489         ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3490             0);
3491         if (!ioc->reply_dma_pool) {
3492                 pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3493                     ioc->name);
3494                 goto out;
3495         }
3496         ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3497             &ioc->reply_dma);
3498         if (!ioc->reply) {
3499                 pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3500                     ioc->name);
3501                 goto out;
3502         }
3503         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3504         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3505         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3506                 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3507                 ioc->name, ioc->reply,
3508             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3509         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3510             ioc->name, (unsigned long long)ioc->reply_dma));
3511         total_sz += sz;
3512
3513         /* reply free queue, 16 byte align */
3514         sz = ioc->reply_free_queue_depth * 4;
3515         ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3516             ioc->pdev, sz, 16, 0);
3517         if (!ioc->reply_free_dma_pool) {
3518                 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3519                         ioc->name);
3520                 goto out;
3521         }
3522         ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3523             &ioc->reply_free_dma);
3524         if (!ioc->reply_free) {
3525                 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3526                         ioc->name);
3527                 goto out;
3528         }
3529         memset(ioc->reply_free, 0, sz);
3530         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3531             "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3532             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3533         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3534                 "reply_free_dma (0x%llx)\n",
3535                 ioc->name, (unsigned long long)ioc->reply_free_dma));
3536         total_sz += sz;
3537
3538         ioc->config_page_sz = 512;
3539         ioc->config_page = pci_alloc_consistent(ioc->pdev,
3540             ioc->config_page_sz, &ioc->config_page_dma);
3541         if (!ioc->config_page) {
3542                 pr_err(MPT3SAS_FMT
3543                         "config page: pci_pool_alloc failed\n",
3544                         ioc->name);
3545                 goto out;
3546         }
3547         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3548                 "config page(0x%p): size(%d)\n",
3549                 ioc->name, ioc->config_page, ioc->config_page_sz));
3550         dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3551                 ioc->name, (unsigned long long)ioc->config_page_dma));
3552         total_sz += ioc->config_page_sz;
3553
3554         pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3555             ioc->name, total_sz/1024);
3556         pr_info(MPT3SAS_FMT
3557                 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3558             ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3559         pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3560             ioc->name, ioc->shost->sg_tablesize);
3561         return 0;
3562
3563  out:
3564         return -ENOMEM;
3565 }
3566
3567 /**
3568  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3569  * @ioc: Pointer to MPT_ADAPTER structure
3570  * @cooked: Request raw or cooked IOC state
3571  *
3572  * Returns all IOC Doorbell register bits if cooked==0, else just the
3573  * Doorbell bits in MPI_IOC_STATE_MASK.
3574  */
3575 u32
3576 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3577 {
3578         u32 s, sc;
3579
3580         s = readl(&ioc->chip->Doorbell);
3581         sc = s & MPI2_IOC_STATE_MASK;
3582         return cooked ? sc : s;
3583 }
3584
3585 /**
3586  * _base_wait_on_iocstate - waiting on a particular ioc state
3587  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3588  * @timeout: timeout in second
3589  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3590  *
3591  * Returns 0 for success, non-zero for failure.
3592  */
3593 static int
3594 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
3595         int sleep_flag)
3596 {
3597         u32 count, cntdn;
3598         u32 current_state;
3599
3600         count = 0;
3601         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3602         do {
3603                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
3604                 if (current_state == ioc_state)
3605                         return 0;
3606                 if (count && current_state == MPI2_IOC_STATE_FAULT)
3607                         break;
3608                 if (sleep_flag == CAN_SLEEP)
3609                         usleep_range(1000, 1500);
3610                 else
3611                         udelay(500);
3612                 count++;
3613         } while (--cntdn);
3614
3615         return current_state;
3616 }
3617
3618 /**
3619  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3620  * a write to the doorbell)
3621  * @ioc: per adapter object
3622  * @timeout: timeout in second
3623  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3624  *
3625  * Returns 0 for success, non-zero for failure.
3626  *
3627  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3628  */
3629 static int
3630 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
3631
3632 static int
3633 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3634         int sleep_flag)
3635 {
3636         u32 cntdn, count;
3637         u32 int_status;
3638
3639         count = 0;
3640         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3641         do {
3642                 int_status = readl(&ioc->chip->HostInterruptStatus);
3643                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3644                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3645                                 "%s: successful count(%d), timeout(%d)\n",
3646                                 ioc->name, __func__, count, timeout));
3647                         return 0;
3648                 }
3649                 if (sleep_flag == CAN_SLEEP)
3650                         usleep_range(1000, 1500);
3651                 else
3652                         udelay(500);
3653                 count++;
3654         } while (--cntdn);
3655
3656         pr_err(MPT3SAS_FMT
3657                 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3658                 ioc->name, __func__, count, int_status);
3659         return -EFAULT;
3660 }
3661
3662 /**
3663  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3664  * @ioc: per adapter object
3665  * @timeout: timeout in second
3666  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3667  *
3668  * Returns 0 for success, non-zero for failure.
3669  *
3670  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3671  * doorbell.
3672  */
3673 static int
3674 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3675         int sleep_flag)
3676 {
3677         u32 cntdn, count;
3678         u32 int_status;
3679         u32 doorbell;
3680
3681         count = 0;
3682         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3683         do {
3684                 int_status = readl(&ioc->chip->HostInterruptStatus);
3685                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3686                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3687                                 "%s: successful count(%d), timeout(%d)\n",
3688                                 ioc->name, __func__, count, timeout));
3689                         return 0;
3690                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3691                         doorbell = readl(&ioc->chip->Doorbell);
3692                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
3693                             MPI2_IOC_STATE_FAULT) {
3694                                 mpt3sas_base_fault_info(ioc , doorbell);
3695                                 return -EFAULT;
3696                         }
3697                 } else if (int_status == 0xFFFFFFFF)
3698                         goto out;
3699
3700                 if (sleep_flag == CAN_SLEEP)
3701                         usleep_range(1000, 1500);
3702                 else
3703                         udelay(500);
3704                 count++;
3705         } while (--cntdn);
3706
3707  out:
3708         pr_err(MPT3SAS_FMT
3709          "%s: failed due to timeout count(%d), int_status(%x)!\n",
3710          ioc->name, __func__, count, int_status);
3711         return -EFAULT;
3712 }
3713
3714 /**
3715  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3716  * @ioc: per adapter object
3717  * @timeout: timeout in second
3718  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3719  *
3720  * Returns 0 for success, non-zero for failure.
3721  *
3722  */
3723 static int
3724 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3725         int sleep_flag)
3726 {
3727         u32 cntdn, count;
3728         u32 doorbell_reg;
3729
3730         count = 0;
3731         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3732         do {
3733                 doorbell_reg = readl(&ioc->chip->Doorbell);
3734                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3735                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3736                                 "%s: successful count(%d), timeout(%d)\n",
3737                                 ioc->name, __func__, count, timeout));
3738                         return 0;
3739                 }
3740                 if (sleep_flag == CAN_SLEEP)
3741                         usleep_range(1000, 1500);
3742                 else
3743                         udelay(500);
3744                 count++;
3745         } while (--cntdn);
3746
3747         pr_err(MPT3SAS_FMT
3748                 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3749                 ioc->name, __func__, count, doorbell_reg);
3750         return -EFAULT;
3751 }
3752
3753 /**
3754  * _base_send_ioc_reset - send doorbell reset
3755  * @ioc: per adapter object
3756  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3757  * @timeout: timeout in second
3758  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3759  *
3760  * Returns 0 for success, non-zero for failure.
3761  */
3762 static int
3763 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3764         int sleep_flag)
3765 {
3766         u32 ioc_state;
3767         int r = 0;
3768
3769         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3770                 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3771                     ioc->name, __func__);
3772                 return -EFAULT;
3773         }
3774
3775         if (!(ioc->facts.IOCCapabilities &
3776            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3777                 return -EFAULT;
3778
3779         pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3780
3781         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3782             &ioc->chip->Doorbell);
3783         if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3784                 r = -EFAULT;
3785                 goto out;
3786         }
3787         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3788             timeout, sleep_flag);
3789         if (ioc_state) {
3790                 pr_err(MPT3SAS_FMT
3791                         "%s: failed going to ready state (ioc_state=0x%x)\n",
3792                         ioc->name, __func__, ioc_state);
3793                 r = -EFAULT;
3794                 goto out;
3795         }
3796  out:
3797         pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3798             ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3799         return r;
3800 }
3801
3802 /**
3803  * _base_handshake_req_reply_wait - send request thru doorbell interface
3804  * @ioc: per adapter object
3805  * @request_bytes: request length
3806  * @request: pointer having request payload
3807  * @reply_bytes: reply length
3808  * @reply: pointer to reply payload
3809  * @timeout: timeout in second
3810  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3811  *
3812  * Returns 0 for success, non-zero for failure.
3813  */
3814 static int
3815 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3816         u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3817 {
3818         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3819         int i;
3820         u8 failed;
3821         u16 dummy;
3822         __le32 *mfp;
3823
3824         /* make sure doorbell is not in use */
3825         if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3826                 pr_err(MPT3SAS_FMT
3827                         "doorbell is in use (line=%d)\n",
3828                         ioc->name, __LINE__);
3829                 return -EFAULT;
3830         }
3831
3832         /* clear pending doorbell interrupts from previous state changes */
3833         if (readl(&ioc->chip->HostInterruptStatus) &
3834             MPI2_HIS_IOC2SYS_DB_STATUS)
3835                 writel(0, &ioc->chip->HostInterruptStatus);
3836
3837         /* send message to ioc */
3838         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3839             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3840             &ioc->chip->Doorbell);
3841
3842         if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3843                 pr_err(MPT3SAS_FMT
3844                         "doorbell handshake int failed (line=%d)\n",
3845                         ioc->name, __LINE__);
3846                 return -EFAULT;
3847         }
3848         writel(0, &ioc->chip->HostInterruptStatus);
3849
3850         if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3851                 pr_err(MPT3SAS_FMT
3852                         "doorbell handshake ack failed (line=%d)\n",
3853                         ioc->name, __LINE__);
3854                 return -EFAULT;
3855         }
3856
3857         /* send message 32-bits at a time */
3858         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3859                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3860                 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3861                         failed = 1;
3862         }
3863
3864         if (failed) {
3865                 pr_err(MPT3SAS_FMT
3866                         "doorbell handshake sending request failed (line=%d)\n",
3867                         ioc->name, __LINE__);
3868                 return -EFAULT;
3869         }
3870
3871         /* now wait for the reply */
3872         if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3873                 pr_err(MPT3SAS_FMT
3874                         "doorbell handshake int failed (line=%d)\n",
3875                         ioc->name, __LINE__);
3876                 return -EFAULT;
3877         }
3878
3879         /* read the first two 16-bits, it gives the total length of the reply */
3880         reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3881             & MPI2_DOORBELL_DATA_MASK);
3882         writel(0, &ioc->chip->HostInterruptStatus);
3883         if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3884                 pr_err(MPT3SAS_FMT
3885                         "doorbell handshake int failed (line=%d)\n",
3886                         ioc->name, __LINE__);
3887                 return -EFAULT;
3888         }
3889         reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3890             & MPI2_DOORBELL_DATA_MASK);
3891         writel(0, &ioc->chip->HostInterruptStatus);
3892
3893         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
3894                 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3895                         pr_err(MPT3SAS_FMT
3896                                 "doorbell handshake int failed (line=%d)\n",
3897                                 ioc->name, __LINE__);
3898                         return -EFAULT;
3899                 }
3900                 if (i >=  reply_bytes/2) /* overflow case */
3901                         dummy = readl(&ioc->chip->Doorbell);
3902                 else
3903                         reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3904                             & MPI2_DOORBELL_DATA_MASK);
3905                 writel(0, &ioc->chip->HostInterruptStatus);
3906         }
3907
3908         _base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3909         if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3910                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3911                         "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3912         }
3913         writel(0, &ioc->chip->HostInterruptStatus);
3914
3915         if (ioc->logging_level & MPT_DEBUG_INIT) {
3916                 mfp = (__le32 *)reply;
3917                 pr_info("\toffset:data\n");
3918                 for (i = 0; i < reply_bytes/4; i++)
3919                         pr_info("\t[0x%02x]:%08x\n", i*4,
3920                             le32_to_cpu(mfp[i]));
3921         }
3922         return 0;
3923 }
3924
3925 /**
3926  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3927  * @ioc: per adapter object
3928  * @mpi_reply: the reply payload from FW
3929  * @mpi_request: the request payload sent to FW
3930  *
3931  * The SAS IO Unit Control Request message allows the host to perform low-level
3932  * operations, such as resets on the PHYs of the IO Unit, also allows the host
3933  * to obtain the IOC assigned device handles for a device if it has other
3934  * identifying information about the device, in addition allows the host to
3935  * remove IOC resources associated with the device.
3936  *
3937  * Returns 0 for success, non-zero for failure.
3938  */
3939 int
3940 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
3941         Mpi2SasIoUnitControlReply_t *mpi_reply,
3942         Mpi2SasIoUnitControlRequest_t *mpi_request)
3943 {
3944         u16 smid;
3945         u32 ioc_state;
3946         unsigned long timeleft;
3947         bool issue_reset = false;
3948         int rc;
3949         void *request;
3950         u16 wait_state_count;
3951
3952         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3953             __func__));
3954
3955         mutex_lock(&ioc->base_cmds.mutex);
3956
3957         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3958                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3959                     ioc->name, __func__);
3960                 rc = -EAGAIN;
3961                 goto out;
3962         }
3963
3964         wait_state_count = 0;
3965         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3966         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3967                 if (wait_state_count++ == 10) {
3968                         pr_err(MPT3SAS_FMT
3969                             "%s: failed due to ioc not operational\n",
3970                             ioc->name, __func__);
3971                         rc = -EFAULT;
3972                         goto out;
3973                 }
3974                 ssleep(1);
3975                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3976                 pr_info(MPT3SAS_FMT
3977                         "%s: waiting for operational state(count=%d)\n",
3978                         ioc->name, __func__, wait_state_count);
3979         }
3980
3981         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3982         if (!smid) {
3983                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3984                     ioc->name, __func__);
3985                 rc = -EAGAIN;
3986                 goto out;
3987         }
3988
3989         rc = 0;
3990         ioc->base_cmds.status = MPT3_CMD_PENDING;
3991         request = mpt3sas_base_get_msg_frame(ioc, smid);
3992         ioc->base_cmds.smid = smid;
3993         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
3994         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3995             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
3996                 ioc->ioc_link_reset_in_progress = 1;
3997         init_completion(&ioc->base_cmds.done);
3998         mpt3sas_base_put_smid_default(ioc, smid);
3999         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
4000             msecs_to_jiffies(10000));
4001         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4002             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4003             ioc->ioc_link_reset_in_progress)
4004                 ioc->ioc_link_reset_in_progress = 0;
4005         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4006                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4007                     ioc->name, __func__);
4008                 _debug_dump_mf(mpi_request,
4009                     sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4010                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4011                         issue_reset = true;
4012                 goto issue_host_reset;
4013         }
4014         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4015                 memcpy(mpi_reply, ioc->base_cmds.reply,
4016                     sizeof(Mpi2SasIoUnitControlReply_t));
4017         else
4018                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4019         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4020         goto out;
4021
4022  issue_host_reset:
4023         if (issue_reset)
4024                 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4025                     FORCE_BIG_HAMMER);
4026         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4027         rc = -EFAULT;
4028  out:
4029         mutex_unlock(&ioc->base_cmds.mutex);
4030         return rc;
4031 }
4032
4033 /**
4034  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4035  * @ioc: per adapter object
4036  * @mpi_reply: the reply payload from FW
4037  * @mpi_request: the request payload sent to FW
4038  *
4039  * The SCSI Enclosure Processor request message causes the IOC to
4040  * communicate with SES devices to control LED status signals.
4041  *
4042  * Returns 0 for success, non-zero for failure.
4043  */
4044 int
4045 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4046         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4047 {
4048         u16 smid;
4049         u32 ioc_state;
4050         unsigned long timeleft;
4051         bool issue_reset = false;
4052         int rc;
4053         void *request;
4054         u16 wait_state_count;
4055
4056         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4057             __func__));
4058
4059         mutex_lock(&ioc->base_cmds.mutex);
4060
4061         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4062                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4063                     ioc->name, __func__);
4064                 rc = -EAGAIN;
4065                 goto out;
4066         }
4067
4068         wait_state_count = 0;
4069         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4070         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4071                 if (wait_state_count++ == 10) {
4072                         pr_err(MPT3SAS_FMT
4073                             "%s: failed due to ioc not operational\n",
4074                             ioc->name, __func__);
4075                         rc = -EFAULT;
4076                         goto out;
4077                 }
4078                 ssleep(1);
4079                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4080                 pr_info(MPT3SAS_FMT
4081                         "%s: waiting for operational state(count=%d)\n",
4082                         ioc->name,
4083                     __func__, wait_state_count);
4084         }
4085
4086         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4087         if (!smid) {
4088                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4089                     ioc->name, __func__);
4090                 rc = -EAGAIN;
4091                 goto out;
4092         }
4093
4094         rc = 0;
4095         ioc->base_cmds.status = MPT3_CMD_PENDING;
4096         request = mpt3sas_base_get_msg_frame(ioc, smid);
4097         ioc->base_cmds.smid = smid;
4098         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4099         init_completion(&ioc->base_cmds.done);
4100         mpt3sas_base_put_smid_default(ioc, smid);
4101         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
4102             msecs_to_jiffies(10000));
4103         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4104                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4105                     ioc->name, __func__);
4106                 _debug_dump_mf(mpi_request,
4107                     sizeof(Mpi2SepRequest_t)/4);
4108                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4109                         issue_reset = false;
4110                 goto issue_host_reset;
4111         }
4112         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4113                 memcpy(mpi_reply, ioc->base_cmds.reply,
4114                     sizeof(Mpi2SepReply_t));
4115         else
4116                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4117         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4118         goto out;
4119
4120  issue_host_reset:
4121         if (issue_reset)
4122                 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4123                     FORCE_BIG_HAMMER);
4124         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4125         rc = -EFAULT;
4126  out:
4127         mutex_unlock(&ioc->base_cmds.mutex);
4128         return rc;
4129 }
4130
4131 /**
4132  * _base_get_port_facts - obtain port facts reply and save in ioc
4133  * @ioc: per adapter object
4134  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4135  *
4136  * Returns 0 for success, non-zero for failure.
4137  */
4138 static int
4139 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
4140 {
4141         Mpi2PortFactsRequest_t mpi_request;
4142         Mpi2PortFactsReply_t mpi_reply;
4143         struct mpt3sas_port_facts *pfacts;
4144         int mpi_reply_sz, mpi_request_sz, r;
4145
4146         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4147             __func__));
4148
4149         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4150         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4151         memset(&mpi_request, 0, mpi_request_sz);
4152         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4153         mpi_request.PortNumber = port;
4154         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4155             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4156
4157         if (r != 0) {
4158                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4159                     ioc->name, __func__, r);
4160                 return r;
4161         }
4162
4163         pfacts = &ioc->pfacts[port];
4164         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4165         pfacts->PortNumber = mpi_reply.PortNumber;
4166         pfacts->VP_ID = mpi_reply.VP_ID;
4167         pfacts->VF_ID = mpi_reply.VF_ID;
4168         pfacts->MaxPostedCmdBuffers =
4169             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4170
4171         return 0;
4172 }
4173
4174 /**
4175  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4176  * @ioc: per adapter object
4177  * @timeout:
4178  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4179  *
4180  * Returns 0 for success, non-zero for failure.
4181  */
4182 static int
4183 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout,
4184         int sleep_flag)
4185 {
4186         u32 ioc_state;
4187         int rc;
4188
4189         dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4190             __func__));
4191
4192         if (ioc->pci_error_recovery) {
4193                 dfailprintk(ioc, printk(MPT3SAS_FMT
4194                     "%s: host in pci error recovery\n", ioc->name, __func__));
4195                 return -EFAULT;
4196         }
4197
4198         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4199         dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4200             ioc->name, __func__, ioc_state));
4201
4202         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4203             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4204                 return 0;
4205
4206         if (ioc_state & MPI2_DOORBELL_USED) {
4207                 dhsprintk(ioc, printk(MPT3SAS_FMT
4208                     "unexpected doorbell active!\n", ioc->name));
4209                 goto issue_diag_reset;
4210         }
4211
4212         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4213                 mpt3sas_base_fault_info(ioc, ioc_state &
4214                     MPI2_DOORBELL_DATA_MASK);
4215                 goto issue_diag_reset;
4216         }
4217
4218         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
4219             timeout, sleep_flag);
4220         if (ioc_state) {
4221                 dfailprintk(ioc, printk(MPT3SAS_FMT
4222                     "%s: failed going to ready state (ioc_state=0x%x)\n",
4223                     ioc->name, __func__, ioc_state));
4224                 return -EFAULT;
4225         }
4226
4227  issue_diag_reset:
4228         rc = _base_diag_reset(ioc, sleep_flag);
4229         return rc;
4230 }
4231
4232 /**
4233  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4234  * @ioc: per adapter object
4235  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4236  *
4237  * Returns 0 for success, non-zero for failure.
4238  */
4239 static int
4240 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4241 {
4242         Mpi2IOCFactsRequest_t mpi_request;
4243         Mpi2IOCFactsReply_t mpi_reply;
4244         struct mpt3sas_facts *facts;
4245         int mpi_reply_sz, mpi_request_sz, r;
4246
4247         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4248             __func__));
4249
4250         r = _base_wait_for_iocstate(ioc, 10, sleep_flag);
4251         if (r) {
4252                 dfailprintk(ioc, printk(MPT3SAS_FMT
4253                     "%s: failed getting to correct state\n",
4254                     ioc->name, __func__));
4255                 return r;
4256         }
4257         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4258         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4259         memset(&mpi_request, 0, mpi_request_sz);
4260         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4261         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4262             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4263
4264         if (r != 0) {
4265                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4266                     ioc->name, __func__, r);
4267                 return r;
4268         }
4269
4270         facts = &ioc->facts;
4271         memset(facts, 0, sizeof(struct mpt3sas_facts));
4272         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4273         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4274         facts->VP_ID = mpi_reply.VP_ID;
4275         facts->VF_ID = mpi_reply.VF_ID;
4276         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4277         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4278         facts->WhoInit = mpi_reply.WhoInit;
4279         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4280         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4281         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4282         facts->MaxReplyDescriptorPostQueueDepth =
4283             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4284         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4285         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4286         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4287                 ioc->ir_firmware = 1;
4288         if ((facts->IOCCapabilities &
4289               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4290                 ioc->rdpq_array_capable = 1;
4291         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4292         facts->IOCRequestFrameSize =
4293             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4294         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4295         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4296         ioc->shost->max_id = -1;
4297         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4298         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4299         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4300         facts->HighPriorityCredit =
4301             le16_to_cpu(mpi_reply.HighPriorityCredit);
4302         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4303         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4304
4305         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4306                 "hba queue depth(%d), max chains per io(%d)\n",
4307                 ioc->name, facts->RequestCredit,
4308             facts->MaxChainDepth));
4309         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4310                 "request frame size(%d), reply frame size(%d)\n", ioc->name,
4311             facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4312         return 0;
4313 }
4314
4315 /**
4316  * _base_send_ioc_init - send ioc_init to firmware
4317  * @ioc: per adapter object
4318  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4319  *
4320  * Returns 0 for success, non-zero for failure.
4321  */
4322 static int
4323 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4324 {
4325         Mpi2IOCInitRequest_t mpi_request;
4326         Mpi2IOCInitReply_t mpi_reply;
4327         int i, r = 0;
4328         struct timeval current_time;
4329         u16 ioc_status;
4330         u32 reply_post_free_array_sz = 0;
4331         Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4332         dma_addr_t reply_post_free_array_dma;
4333
4334         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4335             __func__));
4336
4337         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4338         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4339         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4340         mpi_request.VF_ID = 0; /* TODO */
4341         mpi_request.VP_ID = 0;
4342         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
4343         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4344
4345         if (_base_is_controller_msix_enabled(ioc))
4346                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4347         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4348         mpi_request.ReplyDescriptorPostQueueDepth =
4349             cpu_to_le16(ioc->reply_post_queue_depth);
4350         mpi_request.ReplyFreeQueueDepth =
4351             cpu_to_le16(ioc->reply_free_queue_depth);
4352
4353         mpi_request.SenseBufferAddressHigh =
4354             cpu_to_le32((u64)ioc->sense_dma >> 32);
4355         mpi_request.SystemReplyAddressHigh =
4356             cpu_to_le32((u64)ioc->reply_dma >> 32);
4357         mpi_request.SystemRequestFrameBaseAddress =
4358             cpu_to_le64((u64)ioc->request_dma);
4359         mpi_request.ReplyFreeQueueAddress =
4360             cpu_to_le64((u64)ioc->reply_free_dma);
4361
4362         if (ioc->rdpq_array_enable) {
4363                 reply_post_free_array_sz = ioc->reply_queue_count *
4364                     sizeof(Mpi2IOCInitRDPQArrayEntry);
4365                 reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4366                         reply_post_free_array_sz, &reply_post_free_array_dma);
4367                 if (!reply_post_free_array) {
4368                         pr_err(MPT3SAS_FMT
4369                         "reply_post_free_array: pci_alloc_consistent failed\n",
4370                         ioc->name);
4371                         r = -ENOMEM;
4372                         goto out;
4373                 }
4374                 memset(reply_post_free_array, 0, reply_post_free_array_sz);
4375                 for (i = 0; i < ioc->reply_queue_count; i++)
4376                         reply_post_free_array[i].RDPQBaseAddress =
4377                             cpu_to_le64(
4378                                 (u64)ioc->reply_post[i].reply_post_free_dma);
4379                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4380                 mpi_request.ReplyDescriptorPostQueueAddress =
4381                     cpu_to_le64((u64)reply_post_free_array_dma);
4382         } else {
4383                 mpi_request.ReplyDescriptorPostQueueAddress =
4384                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4385         }
4386
4387         /* This time stamp specifies number of milliseconds
4388          * since epoch ~ midnight January 1, 1970.
4389          */
4390         do_gettimeofday(&current_time);
4391         mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
4392             (current_time.tv_usec / 1000));
4393
4394         if (ioc->logging_level & MPT_DEBUG_INIT) {
4395                 __le32 *mfp;
4396                 int i;
4397
4398                 mfp = (__le32 *)&mpi_request;
4399                 pr_info("\toffset:data\n");
4400                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4401                         pr_info("\t[0x%02x]:%08x\n", i*4,
4402                             le32_to_cpu(mfp[i]));
4403         }
4404
4405         r = _base_handshake_req_reply_wait(ioc,
4406             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4407             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
4408             sleep_flag);
4409
4410         if (r != 0) {
4411                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4412                     ioc->name, __func__, r);
4413                 goto out;
4414         }
4415
4416         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4417         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4418             mpi_reply.IOCLogInfo) {
4419                 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4420                 r = -EIO;
4421         }
4422
4423 out:
4424         if (reply_post_free_array)
4425                 pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4426                                     reply_post_free_array,
4427                                     reply_post_free_array_dma);
4428         return r;
4429 }
4430
4431 /**
4432  * mpt3sas_port_enable_done - command completion routine for port enable
4433  * @ioc: per adapter object
4434  * @smid: system request message index
4435  * @msix_index: MSIX table index supplied by the OS
4436  * @reply: reply message frame(lower 32bit addr)
4437  *
4438  * Return 1 meaning mf should be freed from _base_interrupt
4439  *        0 means the mf is freed from this function.
4440  */
4441 u8
4442 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4443         u32 reply)
4444 {
4445         MPI2DefaultReply_t *mpi_reply;
4446         u16 ioc_status;
4447
4448         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4449                 return 1;
4450
4451         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4452         if (!mpi_reply)
4453                 return 1;
4454
4455         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4456                 return 1;
4457
4458         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4459         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4460         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4461         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4462         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4463         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4464                 ioc->port_enable_failed = 1;
4465
4466         if (ioc->is_driver_loading) {
4467                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4468                         mpt3sas_port_enable_complete(ioc);
4469                         return 1;
4470                 } else {
4471                         ioc->start_scan_failed = ioc_status;
4472                         ioc->start_scan = 0;
4473                         return 1;
4474                 }
4475         }
4476         complete(&ioc->port_enable_cmds.done);
4477         return 1;
4478 }
4479
4480 /**
4481  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4482  * @ioc: per adapter object
4483  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4484  *
4485  * Returns 0 for success, non-zero for failure.
4486  */
4487 static int
4488 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4489 {
4490         Mpi2PortEnableRequest_t *mpi_request;
4491         Mpi2PortEnableReply_t *mpi_reply;
4492         unsigned long timeleft;
4493         int r = 0;
4494         u16 smid;
4495         u16 ioc_status;
4496
4497         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4498
4499         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4500                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4501                     ioc->name, __func__);
4502                 return -EAGAIN;
4503         }
4504
4505         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4506         if (!smid) {
4507                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4508                     ioc->name, __func__);
4509                 return -EAGAIN;
4510         }
4511
4512         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4513         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4514         ioc->port_enable_cmds.smid = smid;
4515         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4516         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4517
4518         init_completion(&ioc->port_enable_cmds.done);
4519         mpt3sas_base_put_smid_default(ioc, smid);
4520         timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
4521             300*HZ);
4522         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4523                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4524                     ioc->name, __func__);
4525                 _debug_dump_mf(mpi_request,
4526                     sizeof(Mpi2PortEnableRequest_t)/4);
4527                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4528                         r = -EFAULT;
4529                 else
4530                         r = -ETIME;
4531                 goto out;
4532         }
4533
4534         mpi_reply = ioc->port_enable_cmds.reply;
4535         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4536         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4537                 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4538                     ioc->name, __func__, ioc_status);
4539                 r = -EFAULT;
4540                 goto out;
4541         }
4542
4543  out:
4544         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4545         pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4546             "SUCCESS" : "FAILED"));
4547         return r;
4548 }
4549
4550 /**
4551  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4552  * @ioc: per adapter object
4553  *
4554  * Returns 0 for success, non-zero for failure.
4555  */
4556 int
4557 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4558 {
4559         Mpi2PortEnableRequest_t *mpi_request;
4560         u16 smid;
4561
4562         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4563
4564         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4565                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4566                     ioc->name, __func__);
4567                 return -EAGAIN;
4568         }
4569
4570         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4571         if (!smid) {
4572                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4573                     ioc->name, __func__);
4574                 return -EAGAIN;
4575         }
4576
4577         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4578         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4579         ioc->port_enable_cmds.smid = smid;
4580         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4581         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4582
4583         mpt3sas_base_put_smid_default(ioc, smid);
4584         return 0;
4585 }
4586
4587 /**
4588  * _base_determine_wait_on_discovery - desposition
4589  * @ioc: per adapter object
4590  *
4591  * Decide whether to wait on discovery to complete. Used to either
4592  * locate boot device, or report volumes ahead of physical devices.
4593  *
4594  * Returns 1 for wait, 0 for don't wait
4595  */
4596 static int
4597 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4598 {
4599         /* We wait for discovery to complete if IR firmware is loaded.
4600          * The sas topology events arrive before PD events, so we need time to
4601          * turn on the bit in ioc->pd_handles to indicate PD
4602          * Also, it maybe required to report Volumes ahead of physical
4603          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4604          */
4605         if (ioc->ir_firmware)
4606                 return 1;
4607
4608         /* if no Bios, then we don't need to wait */
4609         if (!ioc->bios_pg3.BiosVersion)
4610                 return 0;
4611
4612         /* Bios is present, then we drop down here.
4613          *
4614          * If there any entries in the Bios Page 2, then we wait
4615          * for discovery to complete.
4616          */
4617
4618         /* Current Boot Device */
4619         if ((ioc->bios_pg2.CurrentBootDeviceForm &
4620             MPI2_BIOSPAGE2_FORM_MASK) ==
4621             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4622         /* Request Boot Device */
4623            (ioc->bios_pg2.ReqBootDeviceForm &
4624             MPI2_BIOSPAGE2_FORM_MASK) ==
4625             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4626         /* Alternate Request Boot Device */
4627            (ioc->bios_pg2.ReqAltBootDeviceForm &
4628             MPI2_BIOSPAGE2_FORM_MASK) ==
4629             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4630                 return 0;
4631
4632         return 1;
4633 }
4634
4635 /**
4636  * _base_unmask_events - turn on notification for this event
4637  * @ioc: per adapter object
4638  * @event: firmware event
4639  *
4640  * The mask is stored in ioc->event_masks.
4641  */
4642 static void
4643 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4644 {
4645         u32 desired_event;
4646
4647         if (event >= 128)
4648                 return;
4649
4650         desired_event = (1 << (event % 32));
4651
4652         if (event < 32)
4653                 ioc->event_masks[0] &= ~desired_event;
4654         else if (event < 64)
4655                 ioc->event_masks[1] &= ~desired_event;
4656         else if (event < 96)
4657                 ioc->event_masks[2] &= ~desired_event;
4658         else if (event < 128)
4659                 ioc->event_masks[3] &= ~desired_event;
4660 }
4661
4662 /**
4663  * _base_event_notification - send event notification
4664  * @ioc: per adapter object
4665  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4666  *
4667  * Returns 0 for success, non-zero for failure.
4668  */
4669 static int
4670 _base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4671 {
4672         Mpi2EventNotificationRequest_t *mpi_request;
4673         unsigned long timeleft;
4674         u16 smid;
4675         int r = 0;
4676         int i;
4677
4678         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4679             __func__));
4680
4681         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4682                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4683                     ioc->name, __func__);
4684                 return -EAGAIN;
4685         }
4686
4687         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4688         if (!smid) {
4689                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4690                     ioc->name, __func__);
4691                 return -EAGAIN;
4692         }
4693         ioc->base_cmds.status = MPT3_CMD_PENDING;
4694         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4695         ioc->base_cmds.smid = smid;
4696         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4697         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4698         mpi_request->VF_ID = 0; /* TODO */
4699         mpi_request->VP_ID = 0;
4700         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4701                 mpi_request->EventMasks[i] =
4702                     cpu_to_le32(ioc->event_masks[i]);
4703         init_completion(&ioc->base_cmds.done);
4704         mpt3sas_base_put_smid_default(ioc, smid);
4705         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4706         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4707                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4708                     ioc->name, __func__);
4709                 _debug_dump_mf(mpi_request,
4710                     sizeof(Mpi2EventNotificationRequest_t)/4);
4711                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
4712                         r = -EFAULT;
4713                 else
4714                         r = -ETIME;
4715         } else
4716                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4717                     ioc->name, __func__));
4718         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4719         return r;
4720 }
4721
4722 /**
4723  * mpt3sas_base_validate_event_type - validating event types
4724  * @ioc: per adapter object
4725  * @event: firmware event
4726  *
4727  * This will turn on firmware event notification when application
4728  * ask for that event. We don't mask events that are already enabled.
4729  */
4730 void
4731 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4732 {
4733         int i, j;
4734         u32 event_mask, desired_event;
4735         u8 send_update_to_fw;
4736
4737         for (i = 0, send_update_to_fw = 0; i <
4738             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4739                 event_mask = ~event_type[i];
4740                 desired_event = 1;
4741                 for (j = 0; j < 32; j++) {
4742                         if (!(event_mask & desired_event) &&
4743                             (ioc->event_masks[i] & desired_event)) {
4744                                 ioc->event_masks[i] &= ~desired_event;
4745                                 send_update_to_fw = 1;
4746                         }
4747                         desired_event = (desired_event << 1);
4748                 }
4749         }
4750
4751         if (!send_update_to_fw)
4752                 return;
4753
4754         mutex_lock(&ioc->base_cmds.mutex);
4755         _base_event_notification(ioc, CAN_SLEEP);
4756         mutex_unlock(&ioc->base_cmds.mutex);
4757 }
4758
4759 /**
4760  * _base_diag_reset - the "big hammer" start of day reset
4761  * @ioc: per adapter object
4762  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4763  *
4764  * Returns 0 for success, non-zero for failure.
4765  */
4766 static int
4767 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4768 {
4769         u32 host_diagnostic;
4770         u32 ioc_state;
4771         u32 count;
4772         u32 hcb_size;
4773
4774         pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4775
4776         drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4777             ioc->name));
4778
4779         count = 0;
4780         do {
4781                 /* Write magic sequence to WriteSequence register
4782                  * Loop until in diagnostic mode
4783                  */
4784                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4785                         "write magic sequence\n", ioc->name));
4786                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4787                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4788                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4789                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4790                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4791                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4792                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4793
4794                 /* wait 100 msec */
4795                 if (sleep_flag == CAN_SLEEP)
4796                         msleep(100);
4797                 else
4798                         mdelay(100);
4799
4800                 if (count++ > 20)
4801                         goto out;
4802
4803                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4804                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4805                         "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4806                     ioc->name, count, host_diagnostic));
4807
4808         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4809
4810         hcb_size = readl(&ioc->chip->HCBSize);
4811
4812         drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4813             ioc->name));
4814         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4815              &ioc->chip->HostDiagnostic);
4816
4817         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
4818         if (sleep_flag == CAN_SLEEP)
4819                 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4820         else
4821                 mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4822
4823         /* Approximately 300 second max wait */
4824         for (count = 0; count < (300000000 /
4825                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4826
4827                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4828
4829                 if (host_diagnostic == 0xFFFFFFFF)
4830                         goto out;
4831                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4832                         break;
4833
4834                 /* Wait to pass the second read delay window */
4835                 if (sleep_flag == CAN_SLEEP)
4836                         msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4837                                                                 / 1000);
4838                 else
4839                         mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4840                                                                 / 1000);
4841         }
4842
4843         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4844
4845                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4846                 "restart the adapter assuming the HCB Address points to good F/W\n",
4847                     ioc->name));
4848                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4849                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4850                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4851
4852                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4853                     "re-enable the HCDW\n", ioc->name));
4854                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4855                     &ioc->chip->HCBSize);
4856         }
4857
4858         drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4859             ioc->name));
4860         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4861             &ioc->chip->HostDiagnostic);
4862
4863         drsprintk(ioc, pr_info(MPT3SAS_FMT
4864                 "disable writes to the diagnostic register\n", ioc->name));
4865         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4866
4867         drsprintk(ioc, pr_info(MPT3SAS_FMT
4868                 "Wait for FW to go to the READY state\n", ioc->name));
4869         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4870             sleep_flag);
4871         if (ioc_state) {
4872                 pr_err(MPT3SAS_FMT
4873                         "%s: failed going to ready state (ioc_state=0x%x)\n",
4874                         ioc->name, __func__, ioc_state);
4875                 goto out;
4876         }
4877
4878         pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4879         return 0;
4880
4881  out:
4882         pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4883         return -EFAULT;
4884 }
4885
4886 /**
4887  * _base_make_ioc_ready - put controller in READY state
4888  * @ioc: per adapter object
4889  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4890  * @type: FORCE_BIG_HAMMER or SOFT_RESET
4891  *
4892  * Returns 0 for success, non-zero for failure.
4893  */
4894 static int
4895 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4896         enum reset_type type)
4897 {
4898         u32 ioc_state;
4899         int rc;
4900         int count;
4901
4902         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4903             __func__));
4904
4905         if (ioc->pci_error_recovery)
4906                 return 0;
4907
4908         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4909         dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4910             ioc->name, __func__, ioc_state));
4911
4912         /* if in RESET state, it should move to READY state shortly */
4913         count = 0;
4914         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4915                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4916                     MPI2_IOC_STATE_READY) {
4917                         if (count++ == 10) {
4918                                 pr_err(MPT3SAS_FMT
4919                                         "%s: failed going to ready state (ioc_state=0x%x)\n",
4920                                     ioc->name, __func__, ioc_state);
4921                                 return -EFAULT;
4922                         }
4923                         if (sleep_flag == CAN_SLEEP)
4924                                 ssleep(1);
4925                         else
4926                                 mdelay(1000);
4927                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4928                 }
4929         }
4930
4931         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4932                 return 0;
4933
4934         if (ioc_state & MPI2_DOORBELL_USED) {
4935                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4936                         "unexpected doorbell active!\n",
4937                         ioc->name));
4938                 goto issue_diag_reset;
4939         }
4940
4941         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4942                 mpt3sas_base_fault_info(ioc, ioc_state &
4943                     MPI2_DOORBELL_DATA_MASK);
4944                 goto issue_diag_reset;
4945         }
4946
4947         if (type == FORCE_BIG_HAMMER)
4948                 goto issue_diag_reset;
4949
4950         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4951                 if (!(_base_send_ioc_reset(ioc,
4952                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
4953                         return 0;
4954         }
4955
4956  issue_diag_reset:
4957         rc = _base_diag_reset(ioc, CAN_SLEEP);
4958         return rc;
4959 }
4960
4961 /**
4962  * _base_make_ioc_operational - put controller in OPERATIONAL state
4963  * @ioc: per adapter object
4964  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4965  *
4966  * Returns 0 for success, non-zero for failure.
4967  */
4968 static int
4969 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4970 {
4971         int r, i;
4972         unsigned long   flags;
4973         u32 reply_address;
4974         u16 smid;
4975         struct _tr_list *delayed_tr, *delayed_tr_next;
4976         u8 hide_flag;
4977         struct adapter_reply_queue *reply_q;
4978         long reply_post_free;
4979         u32 reply_post_free_sz, index = 0;
4980
4981         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4982             __func__));
4983
4984         /* clean the delayed target reset list */
4985         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4986             &ioc->delayed_tr_list, list) {
4987                 list_del(&delayed_tr->list);
4988                 kfree(delayed_tr);
4989         }
4990
4991
4992         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4993             &ioc->delayed_tr_volume_list, list) {
4994                 list_del(&delayed_tr->list);
4995                 kfree(delayed_tr);
4996         }
4997
4998         /* initialize the scsi lookup free list */
4999         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5000         INIT_LIST_HEAD(&ioc->free_list);
5001         smid = 1;
5002         for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5003                 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5004                 ioc->scsi_lookup[i].cb_idx = 0xFF;
5005                 ioc->scsi_lookup[i].smid = smid;
5006                 ioc->scsi_lookup[i].scmd = NULL;
5007                 ioc->scsi_lookup[i].direct_io = 0;
5008                 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5009                     &ioc->free_list);
5010         }
5011
5012         /* hi-priority queue */
5013         INIT_LIST_HEAD(&ioc->hpr_free_list);
5014         smid = ioc->hi_priority_smid;
5015         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5016                 ioc->hpr_lookup[i].cb_idx = 0xFF;
5017                 ioc->hpr_lookup[i].smid = smid;
5018                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5019                     &ioc->hpr_free_list);
5020         }
5021
5022         /* internal queue */
5023         INIT_LIST_HEAD(&ioc->internal_free_list);
5024         smid = ioc->internal_smid;
5025         for (i = 0; i < ioc->internal_depth; i++, smid++) {
5026                 ioc->internal_lookup[i].cb_idx = 0xFF;
5027                 ioc->internal_lookup[i].smid = smid;
5028                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
5029                     &ioc->internal_free_list);
5030         }
5031
5032         /* chain pool */
5033         INIT_LIST_HEAD(&ioc->free_chain_list);
5034         for (i = 0; i < ioc->chain_depth; i++)
5035                 list_add_tail(&ioc->chain_lookup[i].tracker_list,
5036                     &ioc->free_chain_list);
5037
5038         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5039
5040         /* initialize Reply Free Queue */
5041         for (i = 0, reply_address = (u32)ioc->reply_dma ;
5042             i < ioc->reply_free_queue_depth ; i++, reply_address +=
5043             ioc->reply_sz)
5044                 ioc->reply_free[i] = cpu_to_le32(reply_address);
5045
5046         /* initialize reply queues */
5047         if (ioc->is_driver_loading)
5048                 _base_assign_reply_queues(ioc);
5049
5050         /* initialize Reply Post Free Queue */
5051         reply_post_free_sz = ioc->reply_post_queue_depth *
5052             sizeof(Mpi2DefaultReplyDescriptor_t);
5053         reply_post_free = (long)ioc->reply_post[index].reply_post_free;
5054         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5055                 reply_q->reply_post_host_index = 0;
5056                 reply_q->reply_post_free = (Mpi2ReplyDescriptorsUnion_t *)
5057                     reply_post_free;
5058                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
5059                         reply_q->reply_post_free[i].Words =
5060                             cpu_to_le64(ULLONG_MAX);
5061                 if (!_base_is_controller_msix_enabled(ioc))
5062                         goto skip_init_reply_post_free_queue;
5063                 /*
5064                  * If RDPQ is enabled, switch to the next allocation.
5065                  * Otherwise advance within the contiguous region.
5066                  */
5067                 if (ioc->rdpq_array_enable)
5068                         reply_post_free = (long)
5069                             ioc->reply_post[++index].reply_post_free;
5070                 else
5071                         reply_post_free += reply_post_free_sz;
5072         }
5073  skip_init_reply_post_free_queue:
5074
5075         r = _base_send_ioc_init(ioc, sleep_flag);
5076         if (r)
5077                 return r;
5078
5079         /* initialize reply free host index */
5080         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5081         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5082
5083         /* initialize reply post host index */
5084         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5085                 if (ioc->msix96_vector)
5086                         writel((reply_q->msix_index & 7)<<
5087                            MPI2_RPHI_MSIX_INDEX_SHIFT,
5088                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5089                 else
5090                         writel(reply_q->msix_index <<
5091                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
5092                                 &ioc->chip->ReplyPostHostIndex);
5093
5094                 if (!_base_is_controller_msix_enabled(ioc))
5095                         goto skip_init_reply_post_host_index;
5096         }
5097
5098  skip_init_reply_post_host_index:
5099
5100         _base_unmask_interrupts(ioc);
5101         r = _base_event_notification(ioc, sleep_flag);
5102         if (r)
5103                 return r;
5104
5105         if (sleep_flag == CAN_SLEEP)
5106                 _base_static_config_pages(ioc);
5107
5108
5109         if (ioc->is_driver_loading) {
5110
5111                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5112                     == 0x80) {
5113                         hide_flag = (u8) (
5114                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5115                             MFG_PAGE10_HIDE_SSDS_MASK);
5116                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5117                                 ioc->mfg_pg10_hide_flag = hide_flag;
5118                 }
5119
5120                 ioc->wait_for_discovery_to_complete =
5121                     _base_determine_wait_on_discovery(ioc);
5122
5123                 return r; /* scan_start and scan_finished support */
5124         }
5125
5126         r = _base_send_port_enable(ioc, sleep_flag);
5127         if (r)
5128                 return r;
5129
5130         return r;
5131 }
5132
5133 /**
5134  * mpt3sas_base_free_resources - free resources controller resources
5135  * @ioc: per adapter object
5136  *
5137  * Return nothing.
5138  */
5139 void
5140 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5141 {
5142         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5143             __func__));
5144
5145         /* synchronizing freeing resource with pci_access_mutex lock */
5146         mutex_lock(&ioc->pci_access_mutex);
5147         if (ioc->chip_phys && ioc->chip) {
5148                 _base_mask_interrupts(ioc);
5149                 ioc->shost_recovery = 1;
5150                 _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5151                 ioc->shost_recovery = 0;
5152         }
5153
5154         mpt3sas_base_unmap_resources(ioc);
5155         mutex_unlock(&ioc->pci_access_mutex);
5156         return;
5157 }
5158
5159 /**
5160  * mpt3sas_base_attach - attach controller instance
5161  * @ioc: per adapter object
5162  *
5163  * Returns 0 for success, non-zero for failure.
5164  */
5165 int
5166 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5167 {
5168         int r, i;
5169         int cpu_id, last_cpu_id = 0;
5170
5171         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5172             __func__));
5173
5174         /* setup cpu_msix_table */
5175         ioc->cpu_count = num_online_cpus();
5176         for_each_online_cpu(cpu_id)
5177                 last_cpu_id = cpu_id;
5178         ioc->cpu_msix_table_sz = last_cpu_id + 1;
5179         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5180         ioc->reply_queue_count = 1;
5181         if (!ioc->cpu_msix_table) {
5182                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
5183                         "allocation for cpu_msix_table failed!!!\n",
5184                         ioc->name));
5185                 r = -ENOMEM;
5186                 goto out_free_resources;
5187         }
5188
5189         if (ioc->is_warpdrive) {
5190                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5191                     sizeof(resource_size_t *), GFP_KERNEL);
5192                 if (!ioc->reply_post_host_index) {
5193                         dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5194                                 "for cpu_msix_table failed!!!\n", ioc->name));
5195                         r = -ENOMEM;
5196                         goto out_free_resources;
5197                 }
5198         }
5199
5200         ioc->rdpq_array_enable_assigned = 0;
5201         ioc->dma_mask = 0;
5202         r = mpt3sas_base_map_resources(ioc);
5203         if (r)
5204                 goto out_free_resources;
5205
5206         if (ioc->is_warpdrive) {
5207                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
5208                     &ioc->chip->ReplyPostHostIndex;
5209
5210                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
5211                         ioc->reply_post_host_index[i] =
5212                         (resource_size_t __iomem *)
5213                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
5214                         * 4)));
5215         }
5216
5217         pci_set_drvdata(ioc->pdev, ioc->shost);
5218         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5219         if (r)
5220                 goto out_free_resources;
5221
5222         switch (ioc->hba_mpi_version_belonged) {
5223         case MPI2_VERSION:
5224                 ioc->build_sg_scmd = &_base_build_sg_scmd;
5225                 ioc->build_sg = &_base_build_sg;
5226                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5227                 break;
5228         case MPI25_VERSION:
5229                 /*
5230                  * In SAS3.0,
5231                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5232                  * Target Status - all require the IEEE formated scatter gather
5233                  * elements.
5234                  */
5235                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5236                 ioc->build_sg = &_base_build_sg_ieee;
5237                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5238                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5239                 break;
5240         }
5241
5242         /*
5243          * These function pointers for other requests that don't
5244          * the require IEEE scatter gather elements.
5245          *
5246          * For example Configuration Pages and SAS IOUNIT Control don't.
5247          */
5248         ioc->build_sg_mpi = &_base_build_sg;
5249         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5250
5251         r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5252         if (r)
5253                 goto out_free_resources;
5254
5255         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5256             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5257         if (!ioc->pfacts) {
5258                 r = -ENOMEM;
5259                 goto out_free_resources;
5260         }
5261
5262         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5263                 r = _base_get_port_facts(ioc, i, CAN_SLEEP);
5264                 if (r)
5265                         goto out_free_resources;
5266         }
5267
5268         r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
5269         if (r)
5270                 goto out_free_resources;
5271
5272         init_waitqueue_head(&ioc->reset_wq);
5273
5274         /* allocate memory pd handle bitmask list */
5275         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5276         if (ioc->facts.MaxDevHandle % 8)
5277                 ioc->pd_handles_sz++;
5278         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5279             GFP_KERNEL);
5280         if (!ioc->pd_handles) {
5281                 r = -ENOMEM;
5282                 goto out_free_resources;
5283         }
5284         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5285             GFP_KERNEL);
5286         if (!ioc->blocking_handles) {
5287                 r = -ENOMEM;
5288                 goto out_free_resources;
5289         }
5290
5291         ioc->fwfault_debug = mpt3sas_fwfault_debug;
5292
5293         /* base internal command bits */
5294         mutex_init(&ioc->base_cmds.mutex);
5295         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5296         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5297
5298         /* port_enable command bits */
5299         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5300         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5301
5302         /* transport internal command bits */
5303         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5304         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5305         mutex_init(&ioc->transport_cmds.mutex);
5306
5307         /* scsih internal command bits */
5308         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5309         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5310         mutex_init(&ioc->scsih_cmds.mutex);
5311
5312         /* task management internal command bits */
5313         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5314         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5315         mutex_init(&ioc->tm_cmds.mutex);
5316
5317         /* config page internal command bits */
5318         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5319         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5320         mutex_init(&ioc->config_cmds.mutex);
5321
5322         /* ctl module internal command bits */
5323         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5324         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5325         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5326         mutex_init(&ioc->ctl_cmds.mutex);
5327
5328         if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
5329             !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
5330             !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
5331             !ioc->ctl_cmds.sense) {
5332                 r = -ENOMEM;
5333                 goto out_free_resources;
5334         }
5335
5336         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5337                 ioc->event_masks[i] = -1;
5338
5339         /* here we enable the events we care about */
5340         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5341         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5342         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5343         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5344         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5345         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5346         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5347         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5348         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5349         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5350         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5351
5352         r = _base_make_ioc_operational(ioc, CAN_SLEEP);
5353         if (r)
5354                 goto out_free_resources;
5355
5356         ioc->non_operational_loop = 0;
5357         return 0;
5358
5359  out_free_resources:
5360
5361         ioc->remove_host = 1;
5362
5363         mpt3sas_base_free_resources(ioc);
5364         _base_release_memory_pools(ioc);
5365         pci_set_drvdata(ioc->pdev, NULL);
5366         kfree(ioc->cpu_msix_table);
5367         if (ioc->is_warpdrive)
5368                 kfree(ioc->reply_post_host_index);
5369         kfree(ioc->pd_handles);
5370         kfree(ioc->blocking_handles);
5371         kfree(ioc->tm_cmds.reply);
5372         kfree(ioc->transport_cmds.reply);
5373         kfree(ioc->scsih_cmds.reply);
5374         kfree(ioc->config_cmds.reply);
5375         kfree(ioc->base_cmds.reply);
5376         kfree(ioc->port_enable_cmds.reply);
5377         kfree(ioc->ctl_cmds.reply);
5378         kfree(ioc->ctl_cmds.sense);
5379         kfree(ioc->pfacts);
5380         ioc->ctl_cmds.reply = NULL;
5381         ioc->base_cmds.reply = NULL;
5382         ioc->tm_cmds.reply = NULL;
5383         ioc->scsih_cmds.reply = NULL;
5384         ioc->transport_cmds.reply = NULL;
5385         ioc->config_cmds.reply = NULL;
5386         ioc->pfacts = NULL;
5387         return r;
5388 }
5389
5390
5391 /**
5392  * mpt3sas_base_detach - remove controller instance
5393  * @ioc: per adapter object
5394  *
5395  * Return nothing.
5396  */
5397 void
5398 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5399 {
5400         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5401             __func__));
5402
5403         mpt3sas_base_stop_watchdog(ioc);
5404         mpt3sas_base_free_resources(ioc);
5405         _base_release_memory_pools(ioc);
5406         pci_set_drvdata(ioc->pdev, NULL);
5407         kfree(ioc->cpu_msix_table);
5408         if (ioc->is_warpdrive)
5409                 kfree(ioc->reply_post_host_index);
5410         kfree(ioc->pd_handles);
5411         kfree(ioc->blocking_handles);
5412         kfree(ioc->pfacts);
5413         kfree(ioc->ctl_cmds.reply);
5414         kfree(ioc->ctl_cmds.sense);
5415         kfree(ioc->base_cmds.reply);
5416         kfree(ioc->port_enable_cmds.reply);
5417         kfree(ioc->tm_cmds.reply);
5418         kfree(ioc->transport_cmds.reply);
5419         kfree(ioc->scsih_cmds.reply);
5420         kfree(ioc->config_cmds.reply);
5421 }
5422
5423 /**
5424  * _base_reset_handler - reset callback handler (for base)
5425  * @ioc: per adapter object
5426  * @reset_phase: phase
5427  *
5428  * The handler for doing any required cleanup or initialization.
5429  *
5430  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5431  * MPT3_IOC_DONE_RESET
5432  *
5433  * Return nothing.
5434  */
5435 static void
5436 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5437 {
5438         mpt3sas_scsih_reset_handler(ioc, reset_phase);
5439         mpt3sas_ctl_reset_handler(ioc, reset_phase);
5440         switch (reset_phase) {
5441         case MPT3_IOC_PRE_RESET:
5442                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5443                 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5444                 break;
5445         case MPT3_IOC_AFTER_RESET:
5446                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5447                 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5448                 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5449                         ioc->transport_cmds.status |= MPT3_CMD_RESET;
5450                         mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5451                         complete(&ioc->transport_cmds.done);
5452                 }
5453                 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5454                         ioc->base_cmds.status |= MPT3_CMD_RESET;
5455                         mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5456                         complete(&ioc->base_cmds.done);
5457                 }
5458                 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5459                         ioc->port_enable_failed = 1;
5460                         ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5461                         mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5462                         if (ioc->is_driver_loading) {
5463                                 ioc->start_scan_failed =
5464                                     MPI2_IOCSTATUS_INTERNAL_ERROR;
5465                                 ioc->start_scan = 0;
5466                                 ioc->port_enable_cmds.status =
5467                                     MPT3_CMD_NOT_USED;
5468                         } else
5469                                 complete(&ioc->port_enable_cmds.done);
5470                 }
5471                 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5472                         ioc->config_cmds.status |= MPT3_CMD_RESET;
5473                         mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5474                         ioc->config_cmds.smid = USHRT_MAX;
5475                         complete(&ioc->config_cmds.done);
5476                 }
5477                 break;
5478         case MPT3_IOC_DONE_RESET:
5479                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5480                         "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5481                 break;
5482         }
5483 }
5484
5485 /**
5486  * _wait_for_commands_to_complete - reset controller
5487  * @ioc: Pointer to MPT_ADAPTER structure
5488  * @sleep_flag: CAN_SLEEP or NO_SLEEP
5489  *
5490  * This function waiting(3s) for all pending commands to complete
5491  * prior to putting controller in reset.
5492  */
5493 static void
5494 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
5495 {
5496         u32 ioc_state;
5497         unsigned long flags;
5498         u16 i;
5499
5500         ioc->pending_io_count = 0;
5501         if (sleep_flag != CAN_SLEEP)
5502                 return;
5503
5504         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5505         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5506                 return;
5507
5508         /* pending command count */
5509         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5510         for (i = 0; i < ioc->scsiio_depth; i++)
5511                 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5512                         ioc->pending_io_count++;
5513         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5514
5515         if (!ioc->pending_io_count)
5516                 return;
5517
5518         /* wait for pending commands to complete */
5519         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5520 }
5521
5522 /**
5523  * mpt3sas_base_hard_reset_handler - reset controller
5524  * @ioc: Pointer to MPT_ADAPTER structure
5525  * @sleep_flag: CAN_SLEEP or NO_SLEEP
5526  * @type: FORCE_BIG_HAMMER or SOFT_RESET
5527  *
5528  * Returns 0 for success, non-zero for failure.
5529  */
5530 int
5531 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
5532         enum reset_type type)
5533 {
5534         int r;
5535         unsigned long flags;
5536         u32 ioc_state;
5537         u8 is_fault = 0, is_trigger = 0;
5538
5539         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5540             __func__));
5541
5542         if (ioc->pci_error_recovery) {
5543                 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5544                     ioc->name, __func__);
5545                 r = 0;
5546                 goto out_unlocked;
5547         }
5548
5549         if (mpt3sas_fwfault_debug)
5550                 mpt3sas_halt_firmware(ioc);
5551
5552         /* TODO - What we really should be doing is pulling
5553          * out all the code associated with NO_SLEEP; its never used.
5554          * That is legacy code from mpt fusion driver, ported over.
5555          * I will leave this BUG_ON here for now till its been resolved.
5556          */
5557         BUG_ON(sleep_flag == NO_SLEEP);
5558
5559         /* wait for an active reset in progress to complete */
5560         if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5561                 do {
5562                         ssleep(1);
5563                 } while (ioc->shost_recovery == 1);
5564                 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5565                     __func__));
5566                 return ioc->ioc_reset_in_progress_status;
5567         }
5568
5569         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5570         ioc->shost_recovery = 1;
5571         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5572
5573         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5574             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5575             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5576             MPT3_DIAG_BUFFER_IS_RELEASED))) {
5577                 is_trigger = 1;
5578                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5579                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5580                         is_fault = 1;
5581         }
5582         _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5583         _wait_for_commands_to_complete(ioc, sleep_flag);
5584         _base_mask_interrupts(ioc);
5585         r = _base_make_ioc_ready(ioc, sleep_flag, type);
5586         if (r)
5587                 goto out;
5588         _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5589
5590         /* If this hard reset is called while port enable is active, then
5591          * there is no reason to call make_ioc_operational
5592          */
5593         if (ioc->is_driver_loading && ioc->port_enable_failed) {
5594                 ioc->remove_host = 1;
5595                 r = -EFAULT;
5596                 goto out;
5597         }
5598         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5599         if (r)
5600                 goto out;
5601
5602         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5603                 panic("%s: Issue occurred with flashing controller firmware."
5604                       "Please reboot the system and ensure that the correct"
5605                       " firmware version is running\n", ioc->name);
5606
5607         r = _base_make_ioc_operational(ioc, sleep_flag);
5608         if (!r)
5609                 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5610
5611  out:
5612         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5613             ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5614
5615         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5616         ioc->ioc_reset_in_progress_status = r;
5617         ioc->shost_recovery = 0;
5618         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5619         ioc->ioc_reset_count++;
5620         mutex_unlock(&ioc->reset_in_progress_mutex);
5621
5622  out_unlocked:
5623         if ((r == 0) && is_trigger) {
5624                 if (is_fault)
5625                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5626                 else
5627                         mpt3sas_trigger_master(ioc,
5628                             MASTER_TRIGGER_ADAPTER_RESET);
5629         }
5630         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5631             __func__));
5632         return r;
5633 }