]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/scsi/scsi_lib.c
blk-mq: push IPI or local end_io decision to __blk_mq_complete_request()
[karo-tx-linux.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE         2
38
39 struct scsi_host_sg_pool {
40         size_t          size;
41         char            *name;
42         struct kmem_cache       *slab;
43         mempool_t       *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51         SP(8),
52         SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54         SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56         SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58         SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65         SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 /*
72  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73  * not change behaviour from the previous unplug mechanism, experimentation
74  * may prove this needs changing.
75  */
76 #define SCSI_QUEUE_DELAY        3
77
78 /**
79  * __scsi_queue_insert - private queue insertion
80  * @cmd: The SCSI command being requeued
81  * @reason:  The reason for the requeue
82  * @unbusy: Whether the queue should be unbusied
83  *
84  * This is a private queue insertion.  The public interface
85  * scsi_queue_insert() always assumes the queue should be unbusied
86  * because it's always called before the completion.  This function is
87  * for a requeue after completion, which should only occur in this
88  * file.
89  */
90 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
91 {
92         struct Scsi_Host *host = cmd->device->host;
93         struct scsi_device *device = cmd->device;
94         struct scsi_target *starget = scsi_target(device);
95         struct request_queue *q = device->request_queue;
96         unsigned long flags;
97
98         SCSI_LOG_MLQUEUE(1,
99                  printk("Inserting command %p into mlqueue\n", cmd));
100
101         /*
102          * Set the appropriate busy bit for the device/host.
103          *
104          * If the host/device isn't busy, assume that something actually
105          * completed, and that we should be able to queue a command now.
106          *
107          * Note that the prior mid-layer assumption that any host could
108          * always queue at least one command is now broken.  The mid-layer
109          * will implement a user specifiable stall (see
110          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
111          * if a command is requeued with no other commands outstanding
112          * either for the device or for the host.
113          */
114         switch (reason) {
115         case SCSI_MLQUEUE_HOST_BUSY:
116                 host->host_blocked = host->max_host_blocked;
117                 break;
118         case SCSI_MLQUEUE_DEVICE_BUSY:
119         case SCSI_MLQUEUE_EH_RETRY:
120                 device->device_blocked = device->max_device_blocked;
121                 break;
122         case SCSI_MLQUEUE_TARGET_BUSY:
123                 starget->target_blocked = starget->max_target_blocked;
124                 break;
125         }
126
127         /*
128          * Decrement the counters, since these commands are no longer
129          * active on the host/device.
130          */
131         if (unbusy)
132                 scsi_device_unbusy(device);
133
134         /*
135          * Requeue this command.  It will go before all other commands
136          * that are already in the queue. Schedule requeue work under
137          * lock such that the kblockd_schedule_work() call happens
138          * before blk_cleanup_queue() finishes.
139          */
140         spin_lock_irqsave(q->queue_lock, flags);
141         blk_requeue_request(q, cmd->request);
142         kblockd_schedule_work(&device->requeue_work);
143         spin_unlock_irqrestore(q->queue_lock, flags);
144 }
145
146 /*
147  * Function:    scsi_queue_insert()
148  *
149  * Purpose:     Insert a command in the midlevel queue.
150  *
151  * Arguments:   cmd    - command that we are adding to queue.
152  *              reason - why we are inserting command to queue.
153  *
154  * Lock status: Assumed that lock is not held upon entry.
155  *
156  * Returns:     Nothing.
157  *
158  * Notes:       We do this for one of two cases.  Either the host is busy
159  *              and it cannot accept any more commands for the time being,
160  *              or the device returned QUEUE_FULL and can accept no more
161  *              commands.
162  * Notes:       This could be called either from an interrupt context or a
163  *              normal process context.
164  */
165 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
166 {
167         __scsi_queue_insert(cmd, reason, 1);
168 }
169 /**
170  * scsi_execute - insert request and wait for the result
171  * @sdev:       scsi device
172  * @cmd:        scsi command
173  * @data_direction: data direction
174  * @buffer:     data buffer
175  * @bufflen:    len of buffer
176  * @sense:      optional sense buffer
177  * @timeout:    request timeout in seconds
178  * @retries:    number of times to retry request
179  * @flags:      or into request flags;
180  * @resid:      optional residual length
181  *
182  * returns the req->errors value which is the scsi_cmnd result
183  * field.
184  */
185 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
186                  int data_direction, void *buffer, unsigned bufflen,
187                  unsigned char *sense, int timeout, int retries, u64 flags,
188                  int *resid)
189 {
190         struct request *req;
191         int write = (data_direction == DMA_TO_DEVICE);
192         int ret = DRIVER_ERROR << 24;
193
194         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
195         if (!req)
196                 return ret;
197
198         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
199                                         buffer, bufflen, __GFP_WAIT))
200                 goto out;
201
202         req->cmd_len = COMMAND_SIZE(cmd[0]);
203         memcpy(req->cmd, cmd, req->cmd_len);
204         req->sense = sense;
205         req->sense_len = 0;
206         req->retries = retries;
207         req->timeout = timeout;
208         req->cmd_type = REQ_TYPE_BLOCK_PC;
209         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
210
211         /*
212          * head injection *required* here otherwise quiesce won't work
213          */
214         blk_execute_rq(req->q, NULL, req, 1);
215
216         /*
217          * Some devices (USB mass-storage in particular) may transfer
218          * garbage data together with a residue indicating that the data
219          * is invalid.  Prevent the garbage from being misinterpreted
220          * and prevent security leaks by zeroing out the excess data.
221          */
222         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
223                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
224
225         if (resid)
226                 *resid = req->resid_len;
227         ret = req->errors;
228  out:
229         blk_put_request(req);
230
231         return ret;
232 }
233 EXPORT_SYMBOL(scsi_execute);
234
235 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
236                      int data_direction, void *buffer, unsigned bufflen,
237                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
238                      int *resid, u64 flags)
239 {
240         char *sense = NULL;
241         int result;
242         
243         if (sshdr) {
244                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
245                 if (!sense)
246                         return DRIVER_ERROR << 24;
247         }
248         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
249                               sense, timeout, retries, flags, resid);
250         if (sshdr)
251                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
252
253         kfree(sense);
254         return result;
255 }
256 EXPORT_SYMBOL(scsi_execute_req_flags);
257
258 /*
259  * Function:    scsi_init_cmd_errh()
260  *
261  * Purpose:     Initialize cmd fields related to error handling.
262  *
263  * Arguments:   cmd     - command that is ready to be queued.
264  *
265  * Notes:       This function has the job of initializing a number of
266  *              fields related to error handling.   Typically this will
267  *              be called once for each command, as required.
268  */
269 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
270 {
271         cmd->serial_number = 0;
272         scsi_set_resid(cmd, 0);
273         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
274         if (cmd->cmd_len == 0)
275                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
276 }
277
278 void scsi_device_unbusy(struct scsi_device *sdev)
279 {
280         struct Scsi_Host *shost = sdev->host;
281         struct scsi_target *starget = scsi_target(sdev);
282         unsigned long flags;
283
284         spin_lock_irqsave(shost->host_lock, flags);
285         shost->host_busy--;
286         starget->target_busy--;
287         if (unlikely(scsi_host_in_recovery(shost) &&
288                      (shost->host_failed || shost->host_eh_scheduled)))
289                 scsi_eh_wakeup(shost);
290         spin_unlock(shost->host_lock);
291         spin_lock(sdev->request_queue->queue_lock);
292         sdev->device_busy--;
293         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
294 }
295
296 /*
297  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
298  * and call blk_run_queue for all the scsi_devices on the target -
299  * including current_sdev first.
300  *
301  * Called with *no* scsi locks held.
302  */
303 static void scsi_single_lun_run(struct scsi_device *current_sdev)
304 {
305         struct Scsi_Host *shost = current_sdev->host;
306         struct scsi_device *sdev, *tmp;
307         struct scsi_target *starget = scsi_target(current_sdev);
308         unsigned long flags;
309
310         spin_lock_irqsave(shost->host_lock, flags);
311         starget->starget_sdev_user = NULL;
312         spin_unlock_irqrestore(shost->host_lock, flags);
313
314         /*
315          * Call blk_run_queue for all LUNs on the target, starting with
316          * current_sdev. We race with others (to set starget_sdev_user),
317          * but in most cases, we will be first. Ideally, each LU on the
318          * target would get some limited time or requests on the target.
319          */
320         blk_run_queue(current_sdev->request_queue);
321
322         spin_lock_irqsave(shost->host_lock, flags);
323         if (starget->starget_sdev_user)
324                 goto out;
325         list_for_each_entry_safe(sdev, tmp, &starget->devices,
326                         same_target_siblings) {
327                 if (sdev == current_sdev)
328                         continue;
329                 if (scsi_device_get(sdev))
330                         continue;
331
332                 spin_unlock_irqrestore(shost->host_lock, flags);
333                 blk_run_queue(sdev->request_queue);
334                 spin_lock_irqsave(shost->host_lock, flags);
335         
336                 scsi_device_put(sdev);
337         }
338  out:
339         spin_unlock_irqrestore(shost->host_lock, flags);
340 }
341
342 static inline int scsi_device_is_busy(struct scsi_device *sdev)
343 {
344         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
345                 return 1;
346
347         return 0;
348 }
349
350 static inline int scsi_target_is_busy(struct scsi_target *starget)
351 {
352         return ((starget->can_queue > 0 &&
353                  starget->target_busy >= starget->can_queue) ||
354                  starget->target_blocked);
355 }
356
357 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
358 {
359         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
360             shost->host_blocked || shost->host_self_blocked)
361                 return 1;
362
363         return 0;
364 }
365
366 static void scsi_starved_list_run(struct Scsi_Host *shost)
367 {
368         LIST_HEAD(starved_list);
369         struct scsi_device *sdev;
370         unsigned long flags;
371
372         spin_lock_irqsave(shost->host_lock, flags);
373         list_splice_init(&shost->starved_list, &starved_list);
374
375         while (!list_empty(&starved_list)) {
376                 struct request_queue *slq;
377
378                 /*
379                  * As long as shost is accepting commands and we have
380                  * starved queues, call blk_run_queue. scsi_request_fn
381                  * drops the queue_lock and can add us back to the
382                  * starved_list.
383                  *
384                  * host_lock protects the starved_list and starved_entry.
385                  * scsi_request_fn must get the host_lock before checking
386                  * or modifying starved_list or starved_entry.
387                  */
388                 if (scsi_host_is_busy(shost))
389                         break;
390
391                 sdev = list_entry(starved_list.next,
392                                   struct scsi_device, starved_entry);
393                 list_del_init(&sdev->starved_entry);
394                 if (scsi_target_is_busy(scsi_target(sdev))) {
395                         list_move_tail(&sdev->starved_entry,
396                                        &shost->starved_list);
397                         continue;
398                 }
399
400                 /*
401                  * Once we drop the host lock, a racing scsi_remove_device()
402                  * call may remove the sdev from the starved list and destroy
403                  * it and the queue.  Mitigate by taking a reference to the
404                  * queue and never touching the sdev again after we drop the
405                  * host lock.  Note: if __scsi_remove_device() invokes
406                  * blk_cleanup_queue() before the queue is run from this
407                  * function then blk_run_queue() will return immediately since
408                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
409                  */
410                 slq = sdev->request_queue;
411                 if (!blk_get_queue(slq))
412                         continue;
413                 spin_unlock_irqrestore(shost->host_lock, flags);
414
415                 blk_run_queue(slq);
416                 blk_put_queue(slq);
417
418                 spin_lock_irqsave(shost->host_lock, flags);
419         }
420         /* put any unprocessed entries back */
421         list_splice(&starved_list, &shost->starved_list);
422         spin_unlock_irqrestore(shost->host_lock, flags);
423 }
424
425 /*
426  * Function:   scsi_run_queue()
427  *
428  * Purpose:    Select a proper request queue to serve next
429  *
430  * Arguments:  q       - last request's queue
431  *
432  * Returns:     Nothing
433  *
434  * Notes:      The previous command was completely finished, start
435  *             a new one if possible.
436  */
437 static void scsi_run_queue(struct request_queue *q)
438 {
439         struct scsi_device *sdev = q->queuedata;
440
441         if (scsi_target(sdev)->single_lun)
442                 scsi_single_lun_run(sdev);
443         if (!list_empty(&sdev->host->starved_list))
444                 scsi_starved_list_run(sdev->host);
445
446         blk_run_queue(q);
447 }
448
449 void scsi_requeue_run_queue(struct work_struct *work)
450 {
451         struct scsi_device *sdev;
452         struct request_queue *q;
453
454         sdev = container_of(work, struct scsi_device, requeue_work);
455         q = sdev->request_queue;
456         scsi_run_queue(q);
457 }
458
459 /*
460  * Function:    scsi_requeue_command()
461  *
462  * Purpose:     Handle post-processing of completed commands.
463  *
464  * Arguments:   q       - queue to operate on
465  *              cmd     - command that may need to be requeued.
466  *
467  * Returns:     Nothing
468  *
469  * Notes:       After command completion, there may be blocks left
470  *              over which weren't finished by the previous command
471  *              this can be for a number of reasons - the main one is
472  *              I/O errors in the middle of the request, in which case
473  *              we need to request the blocks that come after the bad
474  *              sector.
475  * Notes:       Upon return, cmd is a stale pointer.
476  */
477 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
478 {
479         struct scsi_device *sdev = cmd->device;
480         struct request *req = cmd->request;
481         unsigned long flags;
482
483         spin_lock_irqsave(q->queue_lock, flags);
484         blk_unprep_request(req);
485         req->special = NULL;
486         scsi_put_command(cmd);
487         blk_requeue_request(q, req);
488         spin_unlock_irqrestore(q->queue_lock, flags);
489
490         scsi_run_queue(q);
491
492         put_device(&sdev->sdev_gendev);
493 }
494
495 void scsi_next_command(struct scsi_cmnd *cmd)
496 {
497         struct scsi_device *sdev = cmd->device;
498         struct request_queue *q = sdev->request_queue;
499
500         scsi_put_command(cmd);
501         scsi_run_queue(q);
502
503         put_device(&sdev->sdev_gendev);
504 }
505
506 void scsi_run_host_queues(struct Scsi_Host *shost)
507 {
508         struct scsi_device *sdev;
509
510         shost_for_each_device(sdev, shost)
511                 scsi_run_queue(sdev->request_queue);
512 }
513
514 static void __scsi_release_buffers(struct scsi_cmnd *, int);
515
516 /*
517  * Function:    scsi_end_request()
518  *
519  * Purpose:     Post-processing of completed commands (usually invoked at end
520  *              of upper level post-processing and scsi_io_completion).
521  *
522  * Arguments:   cmd      - command that is complete.
523  *              error    - 0 if I/O indicates success, < 0 for I/O error.
524  *              bytes    - number of bytes of completed I/O
525  *              requeue  - indicates whether we should requeue leftovers.
526  *
527  * Lock status: Assumed that lock is not held upon entry.
528  *
529  * Returns:     cmd if requeue required, NULL otherwise.
530  *
531  * Notes:       This is called for block device requests in order to
532  *              mark some number of sectors as complete.
533  * 
534  *              We are guaranteeing that the request queue will be goosed
535  *              at some point during this call.
536  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
537  */
538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539                                           int bytes, int requeue)
540 {
541         struct request_queue *q = cmd->device->request_queue;
542         struct request *req = cmd->request;
543
544         /*
545          * If there are blocks left over at the end, set up the command
546          * to queue the remainder of them.
547          */
548         if (blk_end_request(req, error, bytes)) {
549                 /* kill remainder if no retrys */
550                 if (error && scsi_noretry_cmd(cmd))
551                         blk_end_request_all(req, error);
552                 else {
553                         if (requeue) {
554                                 /*
555                                  * Bleah.  Leftovers again.  Stick the
556                                  * leftovers in the front of the
557                                  * queue, and goose the queue again.
558                                  */
559                                 scsi_release_buffers(cmd);
560                                 scsi_requeue_command(q, cmd);
561                                 cmd = NULL;
562                         }
563                         return cmd;
564                 }
565         }
566
567         /*
568          * This will goose the queue request function at the end, so we don't
569          * need to worry about launching another command.
570          */
571         __scsi_release_buffers(cmd, 0);
572         scsi_next_command(cmd);
573         return NULL;
574 }
575
576 static inline unsigned int scsi_sgtable_index(unsigned short nents)
577 {
578         unsigned int index;
579
580         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
581
582         if (nents <= 8)
583                 index = 0;
584         else
585                 index = get_count_order(nents) - 3;
586
587         return index;
588 }
589
590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
591 {
592         struct scsi_host_sg_pool *sgp;
593
594         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
595         mempool_free(sgl, sgp->pool);
596 }
597
598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
599 {
600         struct scsi_host_sg_pool *sgp;
601
602         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
603         return mempool_alloc(sgp->pool, gfp_mask);
604 }
605
606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
607                               gfp_t gfp_mask)
608 {
609         int ret;
610
611         BUG_ON(!nents);
612
613         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
614                                gfp_mask, scsi_sg_alloc);
615         if (unlikely(ret))
616                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
617                                 scsi_sg_free);
618
619         return ret;
620 }
621
622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
623 {
624         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
625 }
626
627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
628 {
629
630         if (cmd->sdb.table.nents)
631                 scsi_free_sgtable(&cmd->sdb);
632
633         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
634
635         if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
636                 struct scsi_data_buffer *bidi_sdb =
637                         cmd->request->next_rq->special;
638                 scsi_free_sgtable(bidi_sdb);
639                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
640                 cmd->request->next_rq->special = NULL;
641         }
642
643         if (scsi_prot_sg_count(cmd))
644                 scsi_free_sgtable(cmd->prot_sdb);
645 }
646
647 /*
648  * Function:    scsi_release_buffers()
649  *
650  * Purpose:     Completion processing for block device I/O requests.
651  *
652  * Arguments:   cmd     - command that we are bailing.
653  *
654  * Lock status: Assumed that no lock is held upon entry.
655  *
656  * Returns:     Nothing
657  *
658  * Notes:       In the event that an upper level driver rejects a
659  *              command, we must release resources allocated during
660  *              the __init_io() function.  Primarily this would involve
661  *              the scatter-gather table, and potentially any bounce
662  *              buffers.
663  */
664 void scsi_release_buffers(struct scsi_cmnd *cmd)
665 {
666         __scsi_release_buffers(cmd, 1);
667 }
668 EXPORT_SYMBOL(scsi_release_buffers);
669
670 /**
671  * __scsi_error_from_host_byte - translate SCSI error code into errno
672  * @cmd:        SCSI command (unused)
673  * @result:     scsi error code
674  *
675  * Translate SCSI error code into standard UNIX errno.
676  * Return values:
677  * -ENOLINK     temporary transport failure
678  * -EREMOTEIO   permanent target failure, do not retry
679  * -EBADE       permanent nexus failure, retry on other path
680  * -ENOSPC      No write space available
681  * -ENODATA     Medium error
682  * -EIO         unspecified I/O error
683  */
684 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
685 {
686         int error = 0;
687
688         switch(host_byte(result)) {
689         case DID_TRANSPORT_FAILFAST:
690                 error = -ENOLINK;
691                 break;
692         case DID_TARGET_FAILURE:
693                 set_host_byte(cmd, DID_OK);
694                 error = -EREMOTEIO;
695                 break;
696         case DID_NEXUS_FAILURE:
697                 set_host_byte(cmd, DID_OK);
698                 error = -EBADE;
699                 break;
700         case DID_ALLOC_FAILURE:
701                 set_host_byte(cmd, DID_OK);
702                 error = -ENOSPC;
703                 break;
704         case DID_MEDIUM_ERROR:
705                 set_host_byte(cmd, DID_OK);
706                 error = -ENODATA;
707                 break;
708         default:
709                 error = -EIO;
710                 break;
711         }
712
713         return error;
714 }
715
716 /*
717  * Function:    scsi_io_completion()
718  *
719  * Purpose:     Completion processing for block device I/O requests.
720  *
721  * Arguments:   cmd   - command that is finished.
722  *
723  * Lock status: Assumed that no lock is held upon entry.
724  *
725  * Returns:     Nothing
726  *
727  * Notes:       This function is matched in terms of capabilities to
728  *              the function that created the scatter-gather list.
729  *              In other words, if there are no bounce buffers
730  *              (the normal case for most drivers), we don't need
731  *              the logic to deal with cleaning up afterwards.
732  *
733  *              We must call scsi_end_request().  This will finish off
734  *              the specified number of sectors.  If we are done, the
735  *              command block will be released and the queue function
736  *              will be goosed.  If we are not done then we have to
737  *              figure out what to do next:
738  *
739  *              a) We can call scsi_requeue_command().  The request
740  *                 will be unprepared and put back on the queue.  Then
741  *                 a new command will be created for it.  This should
742  *                 be used if we made forward progress, or if we want
743  *                 to switch from READ(10) to READ(6) for example.
744  *
745  *              b) We can call scsi_queue_insert().  The request will
746  *                 be put back on the queue and retried using the same
747  *                 command as before, possibly after a delay.
748  *
749  *              c) We can call blk_end_request() with -EIO to fail
750  *                 the remainder of the request.
751  */
752 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
753 {
754         int result = cmd->result;
755         struct request_queue *q = cmd->device->request_queue;
756         struct request *req = cmd->request;
757         int error = 0;
758         struct scsi_sense_hdr sshdr;
759         int sense_valid = 0;
760         int sense_deferred = 0;
761         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
762               ACTION_DELAYED_RETRY} action;
763         char *description = NULL;
764         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
765
766         if (result) {
767                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
768                 if (sense_valid)
769                         sense_deferred = scsi_sense_is_deferred(&sshdr);
770         }
771
772         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
773                 if (result) {
774                         if (sense_valid && req->sense) {
775                                 /*
776                                  * SG_IO wants current and deferred errors
777                                  */
778                                 int len = 8 + cmd->sense_buffer[7];
779
780                                 if (len > SCSI_SENSE_BUFFERSIZE)
781                                         len = SCSI_SENSE_BUFFERSIZE;
782                                 memcpy(req->sense, cmd->sense_buffer,  len);
783                                 req->sense_len = len;
784                         }
785                         if (!sense_deferred)
786                                 error = __scsi_error_from_host_byte(cmd, result);
787                 }
788                 /*
789                  * __scsi_error_from_host_byte may have reset the host_byte
790                  */
791                 req->errors = cmd->result;
792
793                 req->resid_len = scsi_get_resid(cmd);
794
795                 if (scsi_bidi_cmnd(cmd)) {
796                         /*
797                          * Bidi commands Must be complete as a whole,
798                          * both sides at once.
799                          */
800                         req->next_rq->resid_len = scsi_in(cmd)->resid;
801
802                         scsi_release_buffers(cmd);
803                         blk_end_request_all(req, 0);
804
805                         scsi_next_command(cmd);
806                         return;
807                 }
808         }
809
810         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
811         BUG_ON(blk_bidi_rq(req));
812
813         /*
814          * Next deal with any sectors which we were able to correctly
815          * handle.
816          */
817         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
818                                       "%d bytes done.\n",
819                                       blk_rq_sectors(req), good_bytes));
820
821         /*
822          * Recovered errors need reporting, but they're always treated
823          * as success, so fiddle the result code here.  For BLOCK_PC
824          * we already took a copy of the original into rq->errors which
825          * is what gets returned to the user
826          */
827         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
828                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
829                  * print since caller wants ATA registers. Only occurs on
830                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
831                  */
832                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
833                         ;
834                 else if (!(req->cmd_flags & REQ_QUIET))
835                         scsi_print_sense("", cmd);
836                 result = 0;
837                 /* BLOCK_PC may have set error */
838                 error = 0;
839         }
840
841         /*
842          * A number of bytes were successfully read.  If there
843          * are leftovers and there is some kind of error
844          * (result != 0), retry the rest.
845          */
846         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
847                 return;
848
849         error = __scsi_error_from_host_byte(cmd, result);
850
851         if (host_byte(result) == DID_RESET) {
852                 /* Third party bus reset or reset for error recovery
853                  * reasons.  Just retry the command and see what
854                  * happens.
855                  */
856                 action = ACTION_RETRY;
857         } else if (sense_valid && !sense_deferred) {
858                 switch (sshdr.sense_key) {
859                 case UNIT_ATTENTION:
860                         if (cmd->device->removable) {
861                                 /* Detected disc change.  Set a bit
862                                  * and quietly refuse further access.
863                                  */
864                                 cmd->device->changed = 1;
865                                 description = "Media Changed";
866                                 action = ACTION_FAIL;
867                         } else {
868                                 /* Must have been a power glitch, or a
869                                  * bus reset.  Could not have been a
870                                  * media change, so we just retry the
871                                  * command and see what happens.
872                                  */
873                                 action = ACTION_RETRY;
874                         }
875                         break;
876                 case ILLEGAL_REQUEST:
877                         /* If we had an ILLEGAL REQUEST returned, then
878                          * we may have performed an unsupported
879                          * command.  The only thing this should be
880                          * would be a ten byte read where only a six
881                          * byte read was supported.  Also, on a system
882                          * where READ CAPACITY failed, we may have
883                          * read past the end of the disk.
884                          */
885                         if ((cmd->device->use_10_for_rw &&
886                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
887                             (cmd->cmnd[0] == READ_10 ||
888                              cmd->cmnd[0] == WRITE_10)) {
889                                 /* This will issue a new 6-byte command. */
890                                 cmd->device->use_10_for_rw = 0;
891                                 action = ACTION_REPREP;
892                         } else if (sshdr.asc == 0x10) /* DIX */ {
893                                 description = "Host Data Integrity Failure";
894                                 action = ACTION_FAIL;
895                                 error = -EILSEQ;
896                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
897                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
898                                 switch (cmd->cmnd[0]) {
899                                 case UNMAP:
900                                         description = "Discard failure";
901                                         break;
902                                 case WRITE_SAME:
903                                 case WRITE_SAME_16:
904                                         if (cmd->cmnd[1] & 0x8)
905                                                 description = "Discard failure";
906                                         else
907                                                 description =
908                                                         "Write same failure";
909                                         break;
910                                 default:
911                                         description = "Invalid command failure";
912                                         break;
913                                 }
914                                 action = ACTION_FAIL;
915                                 error = -EREMOTEIO;
916                         } else
917                                 action = ACTION_FAIL;
918                         break;
919                 case ABORTED_COMMAND:
920                         action = ACTION_FAIL;
921                         if (sshdr.asc == 0x10) { /* DIF */
922                                 description = "Target Data Integrity Failure";
923                                 error = -EILSEQ;
924                         }
925                         break;
926                 case NOT_READY:
927                         /* If the device is in the process of becoming
928                          * ready, or has a temporary blockage, retry.
929                          */
930                         if (sshdr.asc == 0x04) {
931                                 switch (sshdr.ascq) {
932                                 case 0x01: /* becoming ready */
933                                 case 0x04: /* format in progress */
934                                 case 0x05: /* rebuild in progress */
935                                 case 0x06: /* recalculation in progress */
936                                 case 0x07: /* operation in progress */
937                                 case 0x08: /* Long write in progress */
938                                 case 0x09: /* self test in progress */
939                                 case 0x14: /* space allocation in progress */
940                                         action = ACTION_DELAYED_RETRY;
941                                         break;
942                                 default:
943                                         description = "Device not ready";
944                                         action = ACTION_FAIL;
945                                         break;
946                                 }
947                         } else {
948                                 description = "Device not ready";
949                                 action = ACTION_FAIL;
950                         }
951                         break;
952                 case VOLUME_OVERFLOW:
953                         /* See SSC3rXX or current. */
954                         action = ACTION_FAIL;
955                         break;
956                 default:
957                         description = "Unhandled sense code";
958                         action = ACTION_FAIL;
959                         break;
960                 }
961         } else {
962                 description = "Unhandled error code";
963                 action = ACTION_FAIL;
964         }
965
966         if (action != ACTION_FAIL &&
967             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
968                 action = ACTION_FAIL;
969                 description = "Command timed out";
970         }
971
972         switch (action) {
973         case ACTION_FAIL:
974                 /* Give up and fail the remainder of the request */
975                 scsi_release_buffers(cmd);
976                 if (!(req->cmd_flags & REQ_QUIET)) {
977                         if (description)
978                                 scmd_printk(KERN_INFO, cmd, "%s\n",
979                                             description);
980                         scsi_print_result(cmd);
981                         if (driver_byte(result) & DRIVER_SENSE)
982                                 scsi_print_sense("", cmd);
983                         scsi_print_command(cmd);
984                 }
985                 if (blk_end_request_err(req, error))
986                         scsi_requeue_command(q, cmd);
987                 else
988                         scsi_next_command(cmd);
989                 break;
990         case ACTION_REPREP:
991                 /* Unprep the request and put it back at the head of the queue.
992                  * A new command will be prepared and issued.
993                  */
994                 scsi_release_buffers(cmd);
995                 scsi_requeue_command(q, cmd);
996                 break;
997         case ACTION_RETRY:
998                 /* Retry the same command immediately */
999                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1000                 break;
1001         case ACTION_DELAYED_RETRY:
1002                 /* Retry the same command after a delay */
1003                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1004                 break;
1005         }
1006 }
1007
1008 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1009                              gfp_t gfp_mask)
1010 {
1011         int count;
1012
1013         /*
1014          * If sg table allocation fails, requeue request later.
1015          */
1016         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1017                                         gfp_mask))) {
1018                 return BLKPREP_DEFER;
1019         }
1020
1021         /* 
1022          * Next, walk the list, and fill in the addresses and sizes of
1023          * each segment.
1024          */
1025         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1026         BUG_ON(count > sdb->table.nents);
1027         sdb->table.nents = count;
1028         sdb->length = blk_rq_bytes(req);
1029         return BLKPREP_OK;
1030 }
1031
1032 /*
1033  * Function:    scsi_init_io()
1034  *
1035  * Purpose:     SCSI I/O initialize function.
1036  *
1037  * Arguments:   cmd   - Command descriptor we wish to initialize
1038  *
1039  * Returns:     0 on success
1040  *              BLKPREP_DEFER if the failure is retryable
1041  *              BLKPREP_KILL if the failure is fatal
1042  */
1043 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1044 {
1045         struct request *rq = cmd->request;
1046
1047         int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1048         if (error)
1049                 goto err_exit;
1050
1051         if (blk_bidi_rq(rq)) {
1052                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1053                         scsi_sdb_cache, GFP_ATOMIC);
1054                 if (!bidi_sdb) {
1055                         error = BLKPREP_DEFER;
1056                         goto err_exit;
1057                 }
1058
1059                 rq->next_rq->special = bidi_sdb;
1060                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1061                 if (error)
1062                         goto err_exit;
1063         }
1064
1065         if (blk_integrity_rq(rq)) {
1066                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1067                 int ivecs, count;
1068
1069                 BUG_ON(prot_sdb == NULL);
1070                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1071
1072                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1073                         error = BLKPREP_DEFER;
1074                         goto err_exit;
1075                 }
1076
1077                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1078                                                 prot_sdb->table.sgl);
1079                 BUG_ON(unlikely(count > ivecs));
1080                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1081
1082                 cmd->prot_sdb = prot_sdb;
1083                 cmd->prot_sdb->table.nents = count;
1084         }
1085
1086         return BLKPREP_OK ;
1087
1088 err_exit:
1089         scsi_release_buffers(cmd);
1090         cmd->request->special = NULL;
1091         scsi_put_command(cmd);
1092         put_device(&cmd->device->sdev_gendev);
1093         return error;
1094 }
1095 EXPORT_SYMBOL(scsi_init_io);
1096
1097 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1098                 struct request *req)
1099 {
1100         struct scsi_cmnd *cmd;
1101
1102         if (!req->special) {
1103                 /* Bail if we can't get a reference to the device */
1104                 if (!get_device(&sdev->sdev_gendev))
1105                         return NULL;
1106
1107                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1108                 if (unlikely(!cmd)) {
1109                         put_device(&sdev->sdev_gendev);
1110                         return NULL;
1111                 }
1112                 req->special = cmd;
1113         } else {
1114                 cmd = req->special;
1115         }
1116
1117         /* pull a tag out of the request if we have one */
1118         cmd->tag = req->tag;
1119         cmd->request = req;
1120
1121         cmd->cmnd = req->cmd;
1122         cmd->prot_op = SCSI_PROT_NORMAL;
1123
1124         return cmd;
1125 }
1126
1127 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1128 {
1129         struct scsi_cmnd *cmd;
1130         int ret = scsi_prep_state_check(sdev, req);
1131
1132         if (ret != BLKPREP_OK)
1133                 return ret;
1134
1135         cmd = scsi_get_cmd_from_req(sdev, req);
1136         if (unlikely(!cmd))
1137                 return BLKPREP_DEFER;
1138
1139         /*
1140          * BLOCK_PC requests may transfer data, in which case they must
1141          * a bio attached to them.  Or they might contain a SCSI command
1142          * that does not transfer data, in which case they may optionally
1143          * submit a request without an attached bio.
1144          */
1145         if (req->bio) {
1146                 int ret;
1147
1148                 BUG_ON(!req->nr_phys_segments);
1149
1150                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1151                 if (unlikely(ret))
1152                         return ret;
1153         } else {
1154                 BUG_ON(blk_rq_bytes(req));
1155
1156                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1157         }
1158
1159         cmd->cmd_len = req->cmd_len;
1160         if (!blk_rq_bytes(req))
1161                 cmd->sc_data_direction = DMA_NONE;
1162         else if (rq_data_dir(req) == WRITE)
1163                 cmd->sc_data_direction = DMA_TO_DEVICE;
1164         else
1165                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1166         
1167         cmd->transfersize = blk_rq_bytes(req);
1168         cmd->allowed = req->retries;
1169         return BLKPREP_OK;
1170 }
1171 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1172
1173 /*
1174  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1175  * from filesystems that still need to be translated to SCSI CDBs from
1176  * the ULD.
1177  */
1178 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1179 {
1180         struct scsi_cmnd *cmd;
1181         int ret = scsi_prep_state_check(sdev, req);
1182
1183         if (ret != BLKPREP_OK)
1184                 return ret;
1185
1186         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1187                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1188                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1189                 if (ret != BLKPREP_OK)
1190                         return ret;
1191         }
1192
1193         /*
1194          * Filesystem requests must transfer data.
1195          */
1196         BUG_ON(!req->nr_phys_segments);
1197
1198         cmd = scsi_get_cmd_from_req(sdev, req);
1199         if (unlikely(!cmd))
1200                 return BLKPREP_DEFER;
1201
1202         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1203         return scsi_init_io(cmd, GFP_ATOMIC);
1204 }
1205 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1206
1207 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1208 {
1209         int ret = BLKPREP_OK;
1210
1211         /*
1212          * If the device is not in running state we will reject some
1213          * or all commands.
1214          */
1215         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1216                 switch (sdev->sdev_state) {
1217                 case SDEV_OFFLINE:
1218                 case SDEV_TRANSPORT_OFFLINE:
1219                         /*
1220                          * If the device is offline we refuse to process any
1221                          * commands.  The device must be brought online
1222                          * before trying any recovery commands.
1223                          */
1224                         sdev_printk(KERN_ERR, sdev,
1225                                     "rejecting I/O to offline device\n");
1226                         ret = BLKPREP_KILL;
1227                         break;
1228                 case SDEV_DEL:
1229                         /*
1230                          * If the device is fully deleted, we refuse to
1231                          * process any commands as well.
1232                          */
1233                         sdev_printk(KERN_ERR, sdev,
1234                                     "rejecting I/O to dead device\n");
1235                         ret = BLKPREP_KILL;
1236                         break;
1237                 case SDEV_QUIESCE:
1238                 case SDEV_BLOCK:
1239                 case SDEV_CREATED_BLOCK:
1240                         /*
1241                          * If the devices is blocked we defer normal commands.
1242                          */
1243                         if (!(req->cmd_flags & REQ_PREEMPT))
1244                                 ret = BLKPREP_DEFER;
1245                         break;
1246                 default:
1247                         /*
1248                          * For any other not fully online state we only allow
1249                          * special commands.  In particular any user initiated
1250                          * command is not allowed.
1251                          */
1252                         if (!(req->cmd_flags & REQ_PREEMPT))
1253                                 ret = BLKPREP_KILL;
1254                         break;
1255                 }
1256         }
1257         return ret;
1258 }
1259 EXPORT_SYMBOL(scsi_prep_state_check);
1260
1261 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1262 {
1263         struct scsi_device *sdev = q->queuedata;
1264
1265         switch (ret) {
1266         case BLKPREP_KILL:
1267                 req->errors = DID_NO_CONNECT << 16;
1268                 /* release the command and kill it */
1269                 if (req->special) {
1270                         struct scsi_cmnd *cmd = req->special;
1271                         scsi_release_buffers(cmd);
1272                         scsi_put_command(cmd);
1273                         put_device(&cmd->device->sdev_gendev);
1274                         req->special = NULL;
1275                 }
1276                 break;
1277         case BLKPREP_DEFER:
1278                 /*
1279                  * If we defer, the blk_peek_request() returns NULL, but the
1280                  * queue must be restarted, so we schedule a callback to happen
1281                  * shortly.
1282                  */
1283                 if (sdev->device_busy == 0)
1284                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1285                 break;
1286         default:
1287                 req->cmd_flags |= REQ_DONTPREP;
1288         }
1289
1290         return ret;
1291 }
1292 EXPORT_SYMBOL(scsi_prep_return);
1293
1294 int scsi_prep_fn(struct request_queue *q, struct request *req)
1295 {
1296         struct scsi_device *sdev = q->queuedata;
1297         int ret = BLKPREP_KILL;
1298
1299         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1300                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1301         return scsi_prep_return(q, req, ret);
1302 }
1303 EXPORT_SYMBOL(scsi_prep_fn);
1304
1305 /*
1306  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1307  * return 0.
1308  *
1309  * Called with the queue_lock held.
1310  */
1311 static inline int scsi_dev_queue_ready(struct request_queue *q,
1312                                   struct scsi_device *sdev)
1313 {
1314         if (sdev->device_busy == 0 && sdev->device_blocked) {
1315                 /*
1316                  * unblock after device_blocked iterates to zero
1317                  */
1318                 if (--sdev->device_blocked == 0) {
1319                         SCSI_LOG_MLQUEUE(3,
1320                                    sdev_printk(KERN_INFO, sdev,
1321                                    "unblocking device at zero depth\n"));
1322                 } else {
1323                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1324                         return 0;
1325                 }
1326         }
1327         if (scsi_device_is_busy(sdev))
1328                 return 0;
1329
1330         return 1;
1331 }
1332
1333
1334 /*
1335  * scsi_target_queue_ready: checks if there we can send commands to target
1336  * @sdev: scsi device on starget to check.
1337  *
1338  * Called with the host lock held.
1339  */
1340 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1341                                            struct scsi_device *sdev)
1342 {
1343         struct scsi_target *starget = scsi_target(sdev);
1344
1345         if (starget->single_lun) {
1346                 if (starget->starget_sdev_user &&
1347                     starget->starget_sdev_user != sdev)
1348                         return 0;
1349                 starget->starget_sdev_user = sdev;
1350         }
1351
1352         if (starget->target_busy == 0 && starget->target_blocked) {
1353                 /*
1354                  * unblock after target_blocked iterates to zero
1355                  */
1356                 if (--starget->target_blocked == 0) {
1357                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1358                                          "unblocking target at zero depth\n"));
1359                 } else
1360                         return 0;
1361         }
1362
1363         if (scsi_target_is_busy(starget)) {
1364                 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1365                 return 0;
1366         }
1367
1368         return 1;
1369 }
1370
1371 /*
1372  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1373  * return 0. We must end up running the queue again whenever 0 is
1374  * returned, else IO can hang.
1375  *
1376  * Called with host_lock held.
1377  */
1378 static inline int scsi_host_queue_ready(struct request_queue *q,
1379                                    struct Scsi_Host *shost,
1380                                    struct scsi_device *sdev)
1381 {
1382         if (scsi_host_in_recovery(shost))
1383                 return 0;
1384         if (shost->host_busy == 0 && shost->host_blocked) {
1385                 /*
1386                  * unblock after host_blocked iterates to zero
1387                  */
1388                 if (--shost->host_blocked == 0) {
1389                         SCSI_LOG_MLQUEUE(3,
1390                                 printk("scsi%d unblocking host at zero depth\n",
1391                                         shost->host_no));
1392                 } else {
1393                         return 0;
1394                 }
1395         }
1396         if (scsi_host_is_busy(shost)) {
1397                 if (list_empty(&sdev->starved_entry))
1398                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1399                 return 0;
1400         }
1401
1402         /* We're OK to process the command, so we can't be starved */
1403         if (!list_empty(&sdev->starved_entry))
1404                 list_del_init(&sdev->starved_entry);
1405
1406         return 1;
1407 }
1408
1409 /*
1410  * Busy state exporting function for request stacking drivers.
1411  *
1412  * For efficiency, no lock is taken to check the busy state of
1413  * shost/starget/sdev, since the returned value is not guaranteed and
1414  * may be changed after request stacking drivers call the function,
1415  * regardless of taking lock or not.
1416  *
1417  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1418  * needs to return 'not busy'. Otherwise, request stacking drivers
1419  * may hold requests forever.
1420  */
1421 static int scsi_lld_busy(struct request_queue *q)
1422 {
1423         struct scsi_device *sdev = q->queuedata;
1424         struct Scsi_Host *shost;
1425
1426         if (blk_queue_dying(q))
1427                 return 0;
1428
1429         shost = sdev->host;
1430
1431         /*
1432          * Ignore host/starget busy state.
1433          * Since block layer does not have a concept of fairness across
1434          * multiple queues, congestion of host/starget needs to be handled
1435          * in SCSI layer.
1436          */
1437         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1438                 return 1;
1439
1440         return 0;
1441 }
1442
1443 /*
1444  * Kill a request for a dead device
1445  */
1446 static void scsi_kill_request(struct request *req, struct request_queue *q)
1447 {
1448         struct scsi_cmnd *cmd = req->special;
1449         struct scsi_device *sdev;
1450         struct scsi_target *starget;
1451         struct Scsi_Host *shost;
1452
1453         blk_start_request(req);
1454
1455         scmd_printk(KERN_INFO, cmd, "killing request\n");
1456
1457         sdev = cmd->device;
1458         starget = scsi_target(sdev);
1459         shost = sdev->host;
1460         scsi_init_cmd_errh(cmd);
1461         cmd->result = DID_NO_CONNECT << 16;
1462         atomic_inc(&cmd->device->iorequest_cnt);
1463
1464         /*
1465          * SCSI request completion path will do scsi_device_unbusy(),
1466          * bump busy counts.  To bump the counters, we need to dance
1467          * with the locks as normal issue path does.
1468          */
1469         sdev->device_busy++;
1470         spin_unlock(sdev->request_queue->queue_lock);
1471         spin_lock(shost->host_lock);
1472         shost->host_busy++;
1473         starget->target_busy++;
1474         spin_unlock(shost->host_lock);
1475         spin_lock(sdev->request_queue->queue_lock);
1476
1477         blk_complete_request(req);
1478 }
1479
1480 static void scsi_softirq_done(struct request *rq)
1481 {
1482         struct scsi_cmnd *cmd = rq->special;
1483         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1484         int disposition;
1485
1486         INIT_LIST_HEAD(&cmd->eh_entry);
1487
1488         atomic_inc(&cmd->device->iodone_cnt);
1489         if (cmd->result)
1490                 atomic_inc(&cmd->device->ioerr_cnt);
1491
1492         disposition = scsi_decide_disposition(cmd);
1493         if (disposition != SUCCESS &&
1494             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1495                 sdev_printk(KERN_ERR, cmd->device,
1496                             "timing out command, waited %lus\n",
1497                             wait_for/HZ);
1498                 disposition = SUCCESS;
1499         }
1500                         
1501         scsi_log_completion(cmd, disposition);
1502
1503         switch (disposition) {
1504                 case SUCCESS:
1505                         scsi_finish_command(cmd);
1506                         break;
1507                 case NEEDS_RETRY:
1508                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1509                         break;
1510                 case ADD_TO_MLQUEUE:
1511                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1512                         break;
1513                 default:
1514                         if (!scsi_eh_scmd_add(cmd, 0))
1515                                 scsi_finish_command(cmd);
1516         }
1517 }
1518
1519 /*
1520  * Function:    scsi_request_fn()
1521  *
1522  * Purpose:     Main strategy routine for SCSI.
1523  *
1524  * Arguments:   q       - Pointer to actual queue.
1525  *
1526  * Returns:     Nothing
1527  *
1528  * Lock status: IO request lock assumed to be held when called.
1529  */
1530 static void scsi_request_fn(struct request_queue *q)
1531         __releases(q->queue_lock)
1532         __acquires(q->queue_lock)
1533 {
1534         struct scsi_device *sdev = q->queuedata;
1535         struct Scsi_Host *shost;
1536         struct scsi_cmnd *cmd;
1537         struct request *req;
1538
1539         /*
1540          * To start with, we keep looping until the queue is empty, or until
1541          * the host is no longer able to accept any more requests.
1542          */
1543         shost = sdev->host;
1544         for (;;) {
1545                 int rtn;
1546                 /*
1547                  * get next queueable request.  We do this early to make sure
1548                  * that the request is fully prepared even if we cannot 
1549                  * accept it.
1550                  */
1551                 req = blk_peek_request(q);
1552                 if (!req || !scsi_dev_queue_ready(q, sdev))
1553                         break;
1554
1555                 if (unlikely(!scsi_device_online(sdev))) {
1556                         sdev_printk(KERN_ERR, sdev,
1557                                     "rejecting I/O to offline device\n");
1558                         scsi_kill_request(req, q);
1559                         continue;
1560                 }
1561
1562
1563                 /*
1564                  * Remove the request from the request list.
1565                  */
1566                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1567                         blk_start_request(req);
1568                 sdev->device_busy++;
1569
1570                 spin_unlock(q->queue_lock);
1571                 cmd = req->special;
1572                 if (unlikely(cmd == NULL)) {
1573                         printk(KERN_CRIT "impossible request in %s.\n"
1574                                          "please mail a stack trace to "
1575                                          "linux-scsi@vger.kernel.org\n",
1576                                          __func__);
1577                         blk_dump_rq_flags(req, "foo");
1578                         BUG();
1579                 }
1580                 spin_lock(shost->host_lock);
1581
1582                 /*
1583                  * We hit this when the driver is using a host wide
1584                  * tag map. For device level tag maps the queue_depth check
1585                  * in the device ready fn would prevent us from trying
1586                  * to allocate a tag. Since the map is a shared host resource
1587                  * we add the dev to the starved list so it eventually gets
1588                  * a run when a tag is freed.
1589                  */
1590                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1591                         if (list_empty(&sdev->starved_entry))
1592                                 list_add_tail(&sdev->starved_entry,
1593                                               &shost->starved_list);
1594                         goto not_ready;
1595                 }
1596
1597                 if (!scsi_target_queue_ready(shost, sdev))
1598                         goto not_ready;
1599
1600                 if (!scsi_host_queue_ready(q, shost, sdev))
1601                         goto not_ready;
1602
1603                 scsi_target(sdev)->target_busy++;
1604                 shost->host_busy++;
1605
1606                 /*
1607                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1608                  *              take the lock again.
1609                  */
1610                 spin_unlock_irq(shost->host_lock);
1611
1612                 /*
1613                  * Finally, initialize any error handling parameters, and set up
1614                  * the timers for timeouts.
1615                  */
1616                 scsi_init_cmd_errh(cmd);
1617
1618                 /*
1619                  * Dispatch the command to the low-level driver.
1620                  */
1621                 rtn = scsi_dispatch_cmd(cmd);
1622                 spin_lock_irq(q->queue_lock);
1623                 if (rtn)
1624                         goto out_delay;
1625         }
1626
1627         return;
1628
1629  not_ready:
1630         spin_unlock_irq(shost->host_lock);
1631
1632         /*
1633          * lock q, handle tag, requeue req, and decrement device_busy. We
1634          * must return with queue_lock held.
1635          *
1636          * Decrementing device_busy without checking it is OK, as all such
1637          * cases (host limits or settings) should run the queue at some
1638          * later time.
1639          */
1640         spin_lock_irq(q->queue_lock);
1641         blk_requeue_request(q, req);
1642         sdev->device_busy--;
1643 out_delay:
1644         if (sdev->device_busy == 0)
1645                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1646 }
1647
1648 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1649 {
1650         struct device *host_dev;
1651         u64 bounce_limit = 0xffffffff;
1652
1653         if (shost->unchecked_isa_dma)
1654                 return BLK_BOUNCE_ISA;
1655         /*
1656          * Platforms with virtual-DMA translation
1657          * hardware have no practical limit.
1658          */
1659         if (!PCI_DMA_BUS_IS_PHYS)
1660                 return BLK_BOUNCE_ANY;
1661
1662         host_dev = scsi_get_device(shost);
1663         if (host_dev && host_dev->dma_mask)
1664                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1665
1666         return bounce_limit;
1667 }
1668 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1669
1670 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1671                                          request_fn_proc *request_fn)
1672 {
1673         struct request_queue *q;
1674         struct device *dev = shost->dma_dev;
1675
1676         q = blk_init_queue(request_fn, NULL);
1677         if (!q)
1678                 return NULL;
1679
1680         /*
1681          * this limit is imposed by hardware restrictions
1682          */
1683         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1684                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1685
1686         if (scsi_host_prot_dma(shost)) {
1687                 shost->sg_prot_tablesize =
1688                         min_not_zero(shost->sg_prot_tablesize,
1689                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1690                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1691                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1692         }
1693
1694         blk_queue_max_hw_sectors(q, shost->max_sectors);
1695         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1696         blk_queue_segment_boundary(q, shost->dma_boundary);
1697         dma_set_seg_boundary(dev, shost->dma_boundary);
1698
1699         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1700
1701         if (!shost->use_clustering)
1702                 q->limits.cluster = 0;
1703
1704         /*
1705          * set a reasonable default alignment on word boundaries: the
1706          * host and device may alter it using
1707          * blk_queue_update_dma_alignment() later.
1708          */
1709         blk_queue_dma_alignment(q, 0x03);
1710
1711         return q;
1712 }
1713 EXPORT_SYMBOL(__scsi_alloc_queue);
1714
1715 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1716 {
1717         struct request_queue *q;
1718
1719         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1720         if (!q)
1721                 return NULL;
1722
1723         blk_queue_prep_rq(q, scsi_prep_fn);
1724         blk_queue_softirq_done(q, scsi_softirq_done);
1725         blk_queue_rq_timed_out(q, scsi_times_out);
1726         blk_queue_lld_busy(q, scsi_lld_busy);
1727         return q;
1728 }
1729
1730 /*
1731  * Function:    scsi_block_requests()
1732  *
1733  * Purpose:     Utility function used by low-level drivers to prevent further
1734  *              commands from being queued to the device.
1735  *
1736  * Arguments:   shost       - Host in question
1737  *
1738  * Returns:     Nothing
1739  *
1740  * Lock status: No locks are assumed held.
1741  *
1742  * Notes:       There is no timer nor any other means by which the requests
1743  *              get unblocked other than the low-level driver calling
1744  *              scsi_unblock_requests().
1745  */
1746 void scsi_block_requests(struct Scsi_Host *shost)
1747 {
1748         shost->host_self_blocked = 1;
1749 }
1750 EXPORT_SYMBOL(scsi_block_requests);
1751
1752 /*
1753  * Function:    scsi_unblock_requests()
1754  *
1755  * Purpose:     Utility function used by low-level drivers to allow further
1756  *              commands from being queued to the device.
1757  *
1758  * Arguments:   shost       - Host in question
1759  *
1760  * Returns:     Nothing
1761  *
1762  * Lock status: No locks are assumed held.
1763  *
1764  * Notes:       There is no timer nor any other means by which the requests
1765  *              get unblocked other than the low-level driver calling
1766  *              scsi_unblock_requests().
1767  *
1768  *              This is done as an API function so that changes to the
1769  *              internals of the scsi mid-layer won't require wholesale
1770  *              changes to drivers that use this feature.
1771  */
1772 void scsi_unblock_requests(struct Scsi_Host *shost)
1773 {
1774         shost->host_self_blocked = 0;
1775         scsi_run_host_queues(shost);
1776 }
1777 EXPORT_SYMBOL(scsi_unblock_requests);
1778
1779 int __init scsi_init_queue(void)
1780 {
1781         int i;
1782
1783         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1784                                            sizeof(struct scsi_data_buffer),
1785                                            0, 0, NULL);
1786         if (!scsi_sdb_cache) {
1787                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1788                 return -ENOMEM;
1789         }
1790
1791         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1792                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1793                 int size = sgp->size * sizeof(struct scatterlist);
1794
1795                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1796                                 SLAB_HWCACHE_ALIGN, NULL);
1797                 if (!sgp->slab) {
1798                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1799                                         sgp->name);
1800                         goto cleanup_sdb;
1801                 }
1802
1803                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1804                                                      sgp->slab);
1805                 if (!sgp->pool) {
1806                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1807                                         sgp->name);
1808                         goto cleanup_sdb;
1809                 }
1810         }
1811
1812         return 0;
1813
1814 cleanup_sdb:
1815         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1816                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1817                 if (sgp->pool)
1818                         mempool_destroy(sgp->pool);
1819                 if (sgp->slab)
1820                         kmem_cache_destroy(sgp->slab);
1821         }
1822         kmem_cache_destroy(scsi_sdb_cache);
1823
1824         return -ENOMEM;
1825 }
1826
1827 void scsi_exit_queue(void)
1828 {
1829         int i;
1830
1831         kmem_cache_destroy(scsi_sdb_cache);
1832
1833         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1834                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1835                 mempool_destroy(sgp->pool);
1836                 kmem_cache_destroy(sgp->slab);
1837         }
1838 }
1839
1840 /**
1841  *      scsi_mode_select - issue a mode select
1842  *      @sdev:  SCSI device to be queried
1843  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1844  *      @sp:    Save page bit (0 == don't save, 1 == save)
1845  *      @modepage: mode page being requested
1846  *      @buffer: request buffer (may not be smaller than eight bytes)
1847  *      @len:   length of request buffer.
1848  *      @timeout: command timeout
1849  *      @retries: number of retries before failing
1850  *      @data: returns a structure abstracting the mode header data
1851  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1852  *              must be SCSI_SENSE_BUFFERSIZE big.
1853  *
1854  *      Returns zero if successful; negative error number or scsi
1855  *      status on error
1856  *
1857  */
1858 int
1859 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1860                  unsigned char *buffer, int len, int timeout, int retries,
1861                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1862 {
1863         unsigned char cmd[10];
1864         unsigned char *real_buffer;
1865         int ret;
1866
1867         memset(cmd, 0, sizeof(cmd));
1868         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1869
1870         if (sdev->use_10_for_ms) {
1871                 if (len > 65535)
1872                         return -EINVAL;
1873                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1874                 if (!real_buffer)
1875                         return -ENOMEM;
1876                 memcpy(real_buffer + 8, buffer, len);
1877                 len += 8;
1878                 real_buffer[0] = 0;
1879                 real_buffer[1] = 0;
1880                 real_buffer[2] = data->medium_type;
1881                 real_buffer[3] = data->device_specific;
1882                 real_buffer[4] = data->longlba ? 0x01 : 0;
1883                 real_buffer[5] = 0;
1884                 real_buffer[6] = data->block_descriptor_length >> 8;
1885                 real_buffer[7] = data->block_descriptor_length;
1886
1887                 cmd[0] = MODE_SELECT_10;
1888                 cmd[7] = len >> 8;
1889                 cmd[8] = len;
1890         } else {
1891                 if (len > 255 || data->block_descriptor_length > 255 ||
1892                     data->longlba)
1893                         return -EINVAL;
1894
1895                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1896                 if (!real_buffer)
1897                         return -ENOMEM;
1898                 memcpy(real_buffer + 4, buffer, len);
1899                 len += 4;
1900                 real_buffer[0] = 0;
1901                 real_buffer[1] = data->medium_type;
1902                 real_buffer[2] = data->device_specific;
1903                 real_buffer[3] = data->block_descriptor_length;
1904                 
1905
1906                 cmd[0] = MODE_SELECT;
1907                 cmd[4] = len;
1908         }
1909
1910         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1911                                sshdr, timeout, retries, NULL);
1912         kfree(real_buffer);
1913         return ret;
1914 }
1915 EXPORT_SYMBOL_GPL(scsi_mode_select);
1916
1917 /**
1918  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1919  *      @sdev:  SCSI device to be queried
1920  *      @dbd:   set if mode sense will allow block descriptors to be returned
1921  *      @modepage: mode page being requested
1922  *      @buffer: request buffer (may not be smaller than eight bytes)
1923  *      @len:   length of request buffer.
1924  *      @timeout: command timeout
1925  *      @retries: number of retries before failing
1926  *      @data: returns a structure abstracting the mode header data
1927  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1928  *              must be SCSI_SENSE_BUFFERSIZE big.
1929  *
1930  *      Returns zero if unsuccessful, or the header offset (either 4
1931  *      or 8 depending on whether a six or ten byte command was
1932  *      issued) if successful.
1933  */
1934 int
1935 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1936                   unsigned char *buffer, int len, int timeout, int retries,
1937                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1938 {
1939         unsigned char cmd[12];
1940         int use_10_for_ms;
1941         int header_length;
1942         int result;
1943         struct scsi_sense_hdr my_sshdr;
1944
1945         memset(data, 0, sizeof(*data));
1946         memset(&cmd[0], 0, 12);
1947         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1948         cmd[2] = modepage;
1949
1950         /* caller might not be interested in sense, but we need it */
1951         if (!sshdr)
1952                 sshdr = &my_sshdr;
1953
1954  retry:
1955         use_10_for_ms = sdev->use_10_for_ms;
1956
1957         if (use_10_for_ms) {
1958                 if (len < 8)
1959                         len = 8;
1960
1961                 cmd[0] = MODE_SENSE_10;
1962                 cmd[8] = len;
1963                 header_length = 8;
1964         } else {
1965                 if (len < 4)
1966                         len = 4;
1967
1968                 cmd[0] = MODE_SENSE;
1969                 cmd[4] = len;
1970                 header_length = 4;
1971         }
1972
1973         memset(buffer, 0, len);
1974
1975         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1976                                   sshdr, timeout, retries, NULL);
1977
1978         /* This code looks awful: what it's doing is making sure an
1979          * ILLEGAL REQUEST sense return identifies the actual command
1980          * byte as the problem.  MODE_SENSE commands can return
1981          * ILLEGAL REQUEST if the code page isn't supported */
1982
1983         if (use_10_for_ms && !scsi_status_is_good(result) &&
1984             (driver_byte(result) & DRIVER_SENSE)) {
1985                 if (scsi_sense_valid(sshdr)) {
1986                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1987                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1988                                 /* 
1989                                  * Invalid command operation code
1990                                  */
1991                                 sdev->use_10_for_ms = 0;
1992                                 goto retry;
1993                         }
1994                 }
1995         }
1996
1997         if(scsi_status_is_good(result)) {
1998                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1999                              (modepage == 6 || modepage == 8))) {
2000                         /* Initio breakage? */
2001                         header_length = 0;
2002                         data->length = 13;
2003                         data->medium_type = 0;
2004                         data->device_specific = 0;
2005                         data->longlba = 0;
2006                         data->block_descriptor_length = 0;
2007                 } else if(use_10_for_ms) {
2008                         data->length = buffer[0]*256 + buffer[1] + 2;
2009                         data->medium_type = buffer[2];
2010                         data->device_specific = buffer[3];
2011                         data->longlba = buffer[4] & 0x01;
2012                         data->block_descriptor_length = buffer[6]*256
2013                                 + buffer[7];
2014                 } else {
2015                         data->length = buffer[0] + 1;
2016                         data->medium_type = buffer[1];
2017                         data->device_specific = buffer[2];
2018                         data->block_descriptor_length = buffer[3];
2019                 }
2020                 data->header_length = header_length;
2021         }
2022
2023         return result;
2024 }
2025 EXPORT_SYMBOL(scsi_mode_sense);
2026
2027 /**
2028  *      scsi_test_unit_ready - test if unit is ready
2029  *      @sdev:  scsi device to change the state of.
2030  *      @timeout: command timeout
2031  *      @retries: number of retries before failing
2032  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2033  *              returning sense. Make sure that this is cleared before passing
2034  *              in.
2035  *
2036  *      Returns zero if unsuccessful or an error if TUR failed.  For
2037  *      removable media, UNIT_ATTENTION sets ->changed flag.
2038  **/
2039 int
2040 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2041                      struct scsi_sense_hdr *sshdr_external)
2042 {
2043         char cmd[] = {
2044                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2045         };
2046         struct scsi_sense_hdr *sshdr;
2047         int result;
2048
2049         if (!sshdr_external)
2050                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2051         else
2052                 sshdr = sshdr_external;
2053
2054         /* try to eat the UNIT_ATTENTION if there are enough retries */
2055         do {
2056                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2057                                           timeout, retries, NULL);
2058                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2059                     sshdr->sense_key == UNIT_ATTENTION)
2060                         sdev->changed = 1;
2061         } while (scsi_sense_valid(sshdr) &&
2062                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2063
2064         if (!sshdr_external)
2065                 kfree(sshdr);
2066         return result;
2067 }
2068 EXPORT_SYMBOL(scsi_test_unit_ready);
2069
2070 /**
2071  *      scsi_device_set_state - Take the given device through the device state model.
2072  *      @sdev:  scsi device to change the state of.
2073  *      @state: state to change to.
2074  *
2075  *      Returns zero if unsuccessful or an error if the requested 
2076  *      transition is illegal.
2077  */
2078 int
2079 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2080 {
2081         enum scsi_device_state oldstate = sdev->sdev_state;
2082
2083         if (state == oldstate)
2084                 return 0;
2085
2086         switch (state) {
2087         case SDEV_CREATED:
2088                 switch (oldstate) {
2089                 case SDEV_CREATED_BLOCK:
2090                         break;
2091                 default:
2092                         goto illegal;
2093                 }
2094                 break;
2095                         
2096         case SDEV_RUNNING:
2097                 switch (oldstate) {
2098                 case SDEV_CREATED:
2099                 case SDEV_OFFLINE:
2100                 case SDEV_TRANSPORT_OFFLINE:
2101                 case SDEV_QUIESCE:
2102                 case SDEV_BLOCK:
2103                         break;
2104                 default:
2105                         goto illegal;
2106                 }
2107                 break;
2108
2109         case SDEV_QUIESCE:
2110                 switch (oldstate) {
2111                 case SDEV_RUNNING:
2112                 case SDEV_OFFLINE:
2113                 case SDEV_TRANSPORT_OFFLINE:
2114                         break;
2115                 default:
2116                         goto illegal;
2117                 }
2118                 break;
2119
2120         case SDEV_OFFLINE:
2121         case SDEV_TRANSPORT_OFFLINE:
2122                 switch (oldstate) {
2123                 case SDEV_CREATED:
2124                 case SDEV_RUNNING:
2125                 case SDEV_QUIESCE:
2126                 case SDEV_BLOCK:
2127                         break;
2128                 default:
2129                         goto illegal;
2130                 }
2131                 break;
2132
2133         case SDEV_BLOCK:
2134                 switch (oldstate) {
2135                 case SDEV_RUNNING:
2136                 case SDEV_CREATED_BLOCK:
2137                         break;
2138                 default:
2139                         goto illegal;
2140                 }
2141                 break;
2142
2143         case SDEV_CREATED_BLOCK:
2144                 switch (oldstate) {
2145                 case SDEV_CREATED:
2146                         break;
2147                 default:
2148                         goto illegal;
2149                 }
2150                 break;
2151
2152         case SDEV_CANCEL:
2153                 switch (oldstate) {
2154                 case SDEV_CREATED:
2155                 case SDEV_RUNNING:
2156                 case SDEV_QUIESCE:
2157                 case SDEV_OFFLINE:
2158                 case SDEV_TRANSPORT_OFFLINE:
2159                 case SDEV_BLOCK:
2160                         break;
2161                 default:
2162                         goto illegal;
2163                 }
2164                 break;
2165
2166         case SDEV_DEL:
2167                 switch (oldstate) {
2168                 case SDEV_CREATED:
2169                 case SDEV_RUNNING:
2170                 case SDEV_OFFLINE:
2171                 case SDEV_TRANSPORT_OFFLINE:
2172                 case SDEV_CANCEL:
2173                 case SDEV_CREATED_BLOCK:
2174                         break;
2175                 default:
2176                         goto illegal;
2177                 }
2178                 break;
2179
2180         }
2181         sdev->sdev_state = state;
2182         return 0;
2183
2184  illegal:
2185         SCSI_LOG_ERROR_RECOVERY(1, 
2186                                 sdev_printk(KERN_ERR, sdev,
2187                                             "Illegal state transition %s->%s\n",
2188                                             scsi_device_state_name(oldstate),
2189                                             scsi_device_state_name(state))
2190                                 );
2191         return -EINVAL;
2192 }
2193 EXPORT_SYMBOL(scsi_device_set_state);
2194
2195 /**
2196  *      sdev_evt_emit - emit a single SCSI device uevent
2197  *      @sdev: associated SCSI device
2198  *      @evt: event to emit
2199  *
2200  *      Send a single uevent (scsi_event) to the associated scsi_device.
2201  */
2202 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2203 {
2204         int idx = 0;
2205         char *envp[3];
2206
2207         switch (evt->evt_type) {
2208         case SDEV_EVT_MEDIA_CHANGE:
2209                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2210                 break;
2211         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2212                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2213                 break;
2214         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2215                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2216                 break;
2217         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2218                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2219                 break;
2220         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2221                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2222                 break;
2223         case SDEV_EVT_LUN_CHANGE_REPORTED:
2224                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2225                 break;
2226         default:
2227                 /* do nothing */
2228                 break;
2229         }
2230
2231         envp[idx++] = NULL;
2232
2233         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2234 }
2235
2236 /**
2237  *      sdev_evt_thread - send a uevent for each scsi event
2238  *      @work: work struct for scsi_device
2239  *
2240  *      Dispatch queued events to their associated scsi_device kobjects
2241  *      as uevents.
2242  */
2243 void scsi_evt_thread(struct work_struct *work)
2244 {
2245         struct scsi_device *sdev;
2246         enum scsi_device_event evt_type;
2247         LIST_HEAD(event_list);
2248
2249         sdev = container_of(work, struct scsi_device, event_work);
2250
2251         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2252                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2253                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2254
2255         while (1) {
2256                 struct scsi_event *evt;
2257                 struct list_head *this, *tmp;
2258                 unsigned long flags;
2259
2260                 spin_lock_irqsave(&sdev->list_lock, flags);
2261                 list_splice_init(&sdev->event_list, &event_list);
2262                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2263
2264                 if (list_empty(&event_list))
2265                         break;
2266
2267                 list_for_each_safe(this, tmp, &event_list) {
2268                         evt = list_entry(this, struct scsi_event, node);
2269                         list_del(&evt->node);
2270                         scsi_evt_emit(sdev, evt);
2271                         kfree(evt);
2272                 }
2273         }
2274 }
2275
2276 /**
2277  *      sdev_evt_send - send asserted event to uevent thread
2278  *      @sdev: scsi_device event occurred on
2279  *      @evt: event to send
2280  *
2281  *      Assert scsi device event asynchronously.
2282  */
2283 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2284 {
2285         unsigned long flags;
2286
2287 #if 0
2288         /* FIXME: currently this check eliminates all media change events
2289          * for polled devices.  Need to update to discriminate between AN
2290          * and polled events */
2291         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2292                 kfree(evt);
2293                 return;
2294         }
2295 #endif
2296
2297         spin_lock_irqsave(&sdev->list_lock, flags);
2298         list_add_tail(&evt->node, &sdev->event_list);
2299         schedule_work(&sdev->event_work);
2300         spin_unlock_irqrestore(&sdev->list_lock, flags);
2301 }
2302 EXPORT_SYMBOL_GPL(sdev_evt_send);
2303
2304 /**
2305  *      sdev_evt_alloc - allocate a new scsi event
2306  *      @evt_type: type of event to allocate
2307  *      @gfpflags: GFP flags for allocation
2308  *
2309  *      Allocates and returns a new scsi_event.
2310  */
2311 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2312                                   gfp_t gfpflags)
2313 {
2314         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2315         if (!evt)
2316                 return NULL;
2317
2318         evt->evt_type = evt_type;
2319         INIT_LIST_HEAD(&evt->node);
2320
2321         /* evt_type-specific initialization, if any */
2322         switch (evt_type) {
2323         case SDEV_EVT_MEDIA_CHANGE:
2324         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2325         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2326         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2327         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2328         case SDEV_EVT_LUN_CHANGE_REPORTED:
2329         default:
2330                 /* do nothing */
2331                 break;
2332         }
2333
2334         return evt;
2335 }
2336 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2337
2338 /**
2339  *      sdev_evt_send_simple - send asserted event to uevent thread
2340  *      @sdev: scsi_device event occurred on
2341  *      @evt_type: type of event to send
2342  *      @gfpflags: GFP flags for allocation
2343  *
2344  *      Assert scsi device event asynchronously, given an event type.
2345  */
2346 void sdev_evt_send_simple(struct scsi_device *sdev,
2347                           enum scsi_device_event evt_type, gfp_t gfpflags)
2348 {
2349         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2350         if (!evt) {
2351                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2352                             evt_type);
2353                 return;
2354         }
2355
2356         sdev_evt_send(sdev, evt);
2357 }
2358 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2359
2360 /**
2361  *      scsi_device_quiesce - Block user issued commands.
2362  *      @sdev:  scsi device to quiesce.
2363  *
2364  *      This works by trying to transition to the SDEV_QUIESCE state
2365  *      (which must be a legal transition).  When the device is in this
2366  *      state, only special requests will be accepted, all others will
2367  *      be deferred.  Since special requests may also be requeued requests,
2368  *      a successful return doesn't guarantee the device will be 
2369  *      totally quiescent.
2370  *
2371  *      Must be called with user context, may sleep.
2372  *
2373  *      Returns zero if unsuccessful or an error if not.
2374  */
2375 int
2376 scsi_device_quiesce(struct scsi_device *sdev)
2377 {
2378         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2379         if (err)
2380                 return err;
2381
2382         scsi_run_queue(sdev->request_queue);
2383         while (sdev->device_busy) {
2384                 msleep_interruptible(200);
2385                 scsi_run_queue(sdev->request_queue);
2386         }
2387         return 0;
2388 }
2389 EXPORT_SYMBOL(scsi_device_quiesce);
2390
2391 /**
2392  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2393  *      @sdev:  scsi device to resume.
2394  *
2395  *      Moves the device from quiesced back to running and restarts the
2396  *      queues.
2397  *
2398  *      Must be called with user context, may sleep.
2399  */
2400 void scsi_device_resume(struct scsi_device *sdev)
2401 {
2402         /* check if the device state was mutated prior to resume, and if
2403          * so assume the state is being managed elsewhere (for example
2404          * device deleted during suspend)
2405          */
2406         if (sdev->sdev_state != SDEV_QUIESCE ||
2407             scsi_device_set_state(sdev, SDEV_RUNNING))
2408                 return;
2409         scsi_run_queue(sdev->request_queue);
2410 }
2411 EXPORT_SYMBOL(scsi_device_resume);
2412
2413 static void
2414 device_quiesce_fn(struct scsi_device *sdev, void *data)
2415 {
2416         scsi_device_quiesce(sdev);
2417 }
2418
2419 void
2420 scsi_target_quiesce(struct scsi_target *starget)
2421 {
2422         starget_for_each_device(starget, NULL, device_quiesce_fn);
2423 }
2424 EXPORT_SYMBOL(scsi_target_quiesce);
2425
2426 static void
2427 device_resume_fn(struct scsi_device *sdev, void *data)
2428 {
2429         scsi_device_resume(sdev);
2430 }
2431
2432 void
2433 scsi_target_resume(struct scsi_target *starget)
2434 {
2435         starget_for_each_device(starget, NULL, device_resume_fn);
2436 }
2437 EXPORT_SYMBOL(scsi_target_resume);
2438
2439 /**
2440  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2441  * @sdev:       device to block
2442  *
2443  * Block request made by scsi lld's to temporarily stop all
2444  * scsi commands on the specified device.  Called from interrupt
2445  * or normal process context.
2446  *
2447  * Returns zero if successful or error if not
2448  *
2449  * Notes:       
2450  *      This routine transitions the device to the SDEV_BLOCK state
2451  *      (which must be a legal transition).  When the device is in this
2452  *      state, all commands are deferred until the scsi lld reenables
2453  *      the device with scsi_device_unblock or device_block_tmo fires.
2454  */
2455 int
2456 scsi_internal_device_block(struct scsi_device *sdev)
2457 {
2458         struct request_queue *q = sdev->request_queue;
2459         unsigned long flags;
2460         int err = 0;
2461
2462         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2463         if (err) {
2464                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2465
2466                 if (err)
2467                         return err;
2468         }
2469
2470         /* 
2471          * The device has transitioned to SDEV_BLOCK.  Stop the
2472          * block layer from calling the midlayer with this device's
2473          * request queue. 
2474          */
2475         spin_lock_irqsave(q->queue_lock, flags);
2476         blk_stop_queue(q);
2477         spin_unlock_irqrestore(q->queue_lock, flags);
2478
2479         return 0;
2480 }
2481 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2482  
2483 /**
2484  * scsi_internal_device_unblock - resume a device after a block request
2485  * @sdev:       device to resume
2486  * @new_state:  state to set devices to after unblocking
2487  *
2488  * Called by scsi lld's or the midlayer to restart the device queue
2489  * for the previously suspended scsi device.  Called from interrupt or
2490  * normal process context.
2491  *
2492  * Returns zero if successful or error if not.
2493  *
2494  * Notes:       
2495  *      This routine transitions the device to the SDEV_RUNNING state
2496  *      or to one of the offline states (which must be a legal transition)
2497  *      allowing the midlayer to goose the queue for this device.
2498  */
2499 int
2500 scsi_internal_device_unblock(struct scsi_device *sdev,
2501                              enum scsi_device_state new_state)
2502 {
2503         struct request_queue *q = sdev->request_queue; 
2504         unsigned long flags;
2505
2506         /*
2507          * Try to transition the scsi device to SDEV_RUNNING or one of the
2508          * offlined states and goose the device queue if successful.
2509          */
2510         if ((sdev->sdev_state == SDEV_BLOCK) ||
2511             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2512                 sdev->sdev_state = new_state;
2513         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2514                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2515                     new_state == SDEV_OFFLINE)
2516                         sdev->sdev_state = new_state;
2517                 else
2518                         sdev->sdev_state = SDEV_CREATED;
2519         } else if (sdev->sdev_state != SDEV_CANCEL &&
2520                  sdev->sdev_state != SDEV_OFFLINE)
2521                 return -EINVAL;
2522
2523         spin_lock_irqsave(q->queue_lock, flags);
2524         blk_start_queue(q);
2525         spin_unlock_irqrestore(q->queue_lock, flags);
2526
2527         return 0;
2528 }
2529 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2530
2531 static void
2532 device_block(struct scsi_device *sdev, void *data)
2533 {
2534         scsi_internal_device_block(sdev);
2535 }
2536
2537 static int
2538 target_block(struct device *dev, void *data)
2539 {
2540         if (scsi_is_target_device(dev))
2541                 starget_for_each_device(to_scsi_target(dev), NULL,
2542                                         device_block);
2543         return 0;
2544 }
2545
2546 void
2547 scsi_target_block(struct device *dev)
2548 {
2549         if (scsi_is_target_device(dev))
2550                 starget_for_each_device(to_scsi_target(dev), NULL,
2551                                         device_block);
2552         else
2553                 device_for_each_child(dev, NULL, target_block);
2554 }
2555 EXPORT_SYMBOL_GPL(scsi_target_block);
2556
2557 static void
2558 device_unblock(struct scsi_device *sdev, void *data)
2559 {
2560         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2561 }
2562
2563 static int
2564 target_unblock(struct device *dev, void *data)
2565 {
2566         if (scsi_is_target_device(dev))
2567                 starget_for_each_device(to_scsi_target(dev), data,
2568                                         device_unblock);
2569         return 0;
2570 }
2571
2572 void
2573 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2574 {
2575         if (scsi_is_target_device(dev))
2576                 starget_for_each_device(to_scsi_target(dev), &new_state,
2577                                         device_unblock);
2578         else
2579                 device_for_each_child(dev, &new_state, target_unblock);
2580 }
2581 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2582
2583 /**
2584  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2585  * @sgl:        scatter-gather list
2586  * @sg_count:   number of segments in sg
2587  * @offset:     offset in bytes into sg, on return offset into the mapped area
2588  * @len:        bytes to map, on return number of bytes mapped
2589  *
2590  * Returns virtual address of the start of the mapped page
2591  */
2592 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2593                           size_t *offset, size_t *len)
2594 {
2595         int i;
2596         size_t sg_len = 0, len_complete = 0;
2597         struct scatterlist *sg;
2598         struct page *page;
2599
2600         WARN_ON(!irqs_disabled());
2601
2602         for_each_sg(sgl, sg, sg_count, i) {
2603                 len_complete = sg_len; /* Complete sg-entries */
2604                 sg_len += sg->length;
2605                 if (sg_len > *offset)
2606                         break;
2607         }
2608
2609         if (unlikely(i == sg_count)) {
2610                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2611                         "elements %d\n",
2612                        __func__, sg_len, *offset, sg_count);
2613                 WARN_ON(1);
2614                 return NULL;
2615         }
2616
2617         /* Offset starting from the beginning of first page in this sg-entry */
2618         *offset = *offset - len_complete + sg->offset;
2619
2620         /* Assumption: contiguous pages can be accessed as "page + i" */
2621         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2622         *offset &= ~PAGE_MASK;
2623
2624         /* Bytes in this sg-entry from *offset to the end of the page */
2625         sg_len = PAGE_SIZE - *offset;
2626         if (*len > sg_len)
2627                 *len = sg_len;
2628
2629         return kmap_atomic(page);
2630 }
2631 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2632
2633 /**
2634  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2635  * @virt:       virtual address to be unmapped
2636  */
2637 void scsi_kunmap_atomic_sg(void *virt)
2638 {
2639         kunmap_atomic(virt);
2640 }
2641 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2642
2643 void sdev_disable_disk_events(struct scsi_device *sdev)
2644 {
2645         atomic_inc(&sdev->disk_events_disable_depth);
2646 }
2647 EXPORT_SYMBOL(sdev_disable_disk_events);
2648
2649 void sdev_enable_disk_events(struct scsi_device *sdev)
2650 {
2651         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2652                 return;
2653         atomic_dec(&sdev->disk_events_disable_depth);
2654 }
2655 EXPORT_SYMBOL(sdev_enable_disk_events);