]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/scsi/scsi_lib.c
Merge branches 'pm-core', 'pm-qos', 'pm-domains' and 'pm-opp'
[karo-tx-linux.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_dh.h>
34
35 #include <trace/events/scsi.h>
36
37 #include "scsi_priv.h"
38 #include "scsi_logging.h"
39
40
41 struct kmem_cache *scsi_sdb_cache;
42
43 /*
44  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
45  * not change behaviour from the previous unplug mechanism, experimentation
46  * may prove this needs changing.
47  */
48 #define SCSI_QUEUE_DELAY        3
49
50 static void
51 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
52 {
53         struct Scsi_Host *host = cmd->device->host;
54         struct scsi_device *device = cmd->device;
55         struct scsi_target *starget = scsi_target(device);
56
57         /*
58          * Set the appropriate busy bit for the device/host.
59          *
60          * If the host/device isn't busy, assume that something actually
61          * completed, and that we should be able to queue a command now.
62          *
63          * Note that the prior mid-layer assumption that any host could
64          * always queue at least one command is now broken.  The mid-layer
65          * will implement a user specifiable stall (see
66          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
67          * if a command is requeued with no other commands outstanding
68          * either for the device or for the host.
69          */
70         switch (reason) {
71         case SCSI_MLQUEUE_HOST_BUSY:
72                 atomic_set(&host->host_blocked, host->max_host_blocked);
73                 break;
74         case SCSI_MLQUEUE_DEVICE_BUSY:
75         case SCSI_MLQUEUE_EH_RETRY:
76                 atomic_set(&device->device_blocked,
77                            device->max_device_blocked);
78                 break;
79         case SCSI_MLQUEUE_TARGET_BUSY:
80                 atomic_set(&starget->target_blocked,
81                            starget->max_target_blocked);
82                 break;
83         }
84 }
85
86 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
87 {
88         struct scsi_device *sdev = cmd->device;
89
90         blk_mq_requeue_request(cmd->request, true);
91         put_device(&sdev->sdev_gendev);
92 }
93
94 /**
95  * __scsi_queue_insert - private queue insertion
96  * @cmd: The SCSI command being requeued
97  * @reason:  The reason for the requeue
98  * @unbusy: Whether the queue should be unbusied
99  *
100  * This is a private queue insertion.  The public interface
101  * scsi_queue_insert() always assumes the queue should be unbusied
102  * because it's always called before the completion.  This function is
103  * for a requeue after completion, which should only occur in this
104  * file.
105  */
106 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107 {
108         struct scsi_device *device = cmd->device;
109         struct request_queue *q = device->request_queue;
110         unsigned long flags;
111
112         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
113                 "Inserting command %p into mlqueue\n", cmd));
114
115         scsi_set_blocked(cmd, reason);
116
117         /*
118          * Decrement the counters, since these commands are no longer
119          * active on the host/device.
120          */
121         if (unbusy)
122                 scsi_device_unbusy(device);
123
124         /*
125          * Requeue this command.  It will go before all other commands
126          * that are already in the queue. Schedule requeue work under
127          * lock such that the kblockd_schedule_work() call happens
128          * before blk_cleanup_queue() finishes.
129          */
130         cmd->result = 0;
131         if (q->mq_ops) {
132                 scsi_mq_requeue_cmd(cmd);
133                 return;
134         }
135         spin_lock_irqsave(q->queue_lock, flags);
136         blk_requeue_request(q, cmd->request);
137         kblockd_schedule_work(&device->requeue_work);
138         spin_unlock_irqrestore(q->queue_lock, flags);
139 }
140
141 /*
142  * Function:    scsi_queue_insert()
143  *
144  * Purpose:     Insert a command in the midlevel queue.
145  *
146  * Arguments:   cmd    - command that we are adding to queue.
147  *              reason - why we are inserting command to queue.
148  *
149  * Lock status: Assumed that lock is not held upon entry.
150  *
151  * Returns:     Nothing.
152  *
153  * Notes:       We do this for one of two cases.  Either the host is busy
154  *              and it cannot accept any more commands for the time being,
155  *              or the device returned QUEUE_FULL and can accept no more
156  *              commands.
157  * Notes:       This could be called either from an interrupt context or a
158  *              normal process context.
159  */
160 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
161 {
162         __scsi_queue_insert(cmd, reason, 1);
163 }
164
165 static int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
166                  int data_direction, void *buffer, unsigned bufflen,
167                  unsigned char *sense, int timeout, int retries, u64 flags,
168                  req_flags_t rq_flags, int *resid)
169 {
170         struct request *req;
171         int write = (data_direction == DMA_TO_DEVICE);
172         int ret = DRIVER_ERROR << 24;
173
174         req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
175         if (IS_ERR(req))
176                 return ret;
177         blk_rq_set_block_pc(req);
178
179         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
180                                         buffer, bufflen, __GFP_RECLAIM))
181                 goto out;
182
183         req->cmd_len = COMMAND_SIZE(cmd[0]);
184         memcpy(req->cmd, cmd, req->cmd_len);
185         req->sense = sense;
186         req->sense_len = 0;
187         req->retries = retries;
188         req->timeout = timeout;
189         req->cmd_flags |= flags;
190         req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
191
192         /*
193          * head injection *required* here otherwise quiesce won't work
194          */
195         blk_execute_rq(req->q, NULL, req, 1);
196
197         /*
198          * Some devices (USB mass-storage in particular) may transfer
199          * garbage data together with a residue indicating that the data
200          * is invalid.  Prevent the garbage from being misinterpreted
201          * and prevent security leaks by zeroing out the excess data.
202          */
203         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
204                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
205
206         if (resid)
207                 *resid = req->resid_len;
208         ret = req->errors;
209  out:
210         blk_put_request(req);
211
212         return ret;
213 }
214
215 /**
216  * scsi_execute - insert request and wait for the result
217  * @sdev:       scsi device
218  * @cmd:        scsi command
219  * @data_direction: data direction
220  * @buffer:     data buffer
221  * @bufflen:    len of buffer
222  * @sense:      optional sense buffer
223  * @timeout:    request timeout in seconds
224  * @retries:    number of times to retry request
225  * @flags:      or into request flags;
226  * @resid:      optional residual length
227  *
228  * returns the req->errors value which is the scsi_cmnd result
229  * field.
230  */
231 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
232                  int data_direction, void *buffer, unsigned bufflen,
233                  unsigned char *sense, int timeout, int retries, u64 flags,
234                  int *resid)
235 {
236         return __scsi_execute(sdev, cmd, data_direction, buffer, bufflen, sense,
237                         timeout, retries, flags, 0, resid);
238 }
239 EXPORT_SYMBOL(scsi_execute);
240
241 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
242                      int data_direction, void *buffer, unsigned bufflen,
243                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
244                      int *resid, u64 flags, req_flags_t rq_flags)
245 {
246         char *sense = NULL;
247         int result;
248         
249         if (sshdr) {
250                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
251                 if (!sense)
252                         return DRIVER_ERROR << 24;
253         }
254         result = __scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
255                               sense, timeout, retries, flags, rq_flags, resid);
256         if (sshdr)
257                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
258
259         kfree(sense);
260         return result;
261 }
262 EXPORT_SYMBOL(scsi_execute_req_flags);
263
264 /*
265  * Function:    scsi_init_cmd_errh()
266  *
267  * Purpose:     Initialize cmd fields related to error handling.
268  *
269  * Arguments:   cmd     - command that is ready to be queued.
270  *
271  * Notes:       This function has the job of initializing a number of
272  *              fields related to error handling.   Typically this will
273  *              be called once for each command, as required.
274  */
275 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
276 {
277         cmd->serial_number = 0;
278         scsi_set_resid(cmd, 0);
279         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
280         if (cmd->cmd_len == 0)
281                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
282 }
283
284 void scsi_device_unbusy(struct scsi_device *sdev)
285 {
286         struct Scsi_Host *shost = sdev->host;
287         struct scsi_target *starget = scsi_target(sdev);
288         unsigned long flags;
289
290         atomic_dec(&shost->host_busy);
291         if (starget->can_queue > 0)
292                 atomic_dec(&starget->target_busy);
293
294         if (unlikely(scsi_host_in_recovery(shost) &&
295                      (shost->host_failed || shost->host_eh_scheduled))) {
296                 spin_lock_irqsave(shost->host_lock, flags);
297                 scsi_eh_wakeup(shost);
298                 spin_unlock_irqrestore(shost->host_lock, flags);
299         }
300
301         atomic_dec(&sdev->device_busy);
302 }
303
304 static void scsi_kick_queue(struct request_queue *q)
305 {
306         if (q->mq_ops)
307                 blk_mq_start_hw_queues(q);
308         else
309                 blk_run_queue(q);
310 }
311
312 /*
313  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
314  * and call blk_run_queue for all the scsi_devices on the target -
315  * including current_sdev first.
316  *
317  * Called with *no* scsi locks held.
318  */
319 static void scsi_single_lun_run(struct scsi_device *current_sdev)
320 {
321         struct Scsi_Host *shost = current_sdev->host;
322         struct scsi_device *sdev, *tmp;
323         struct scsi_target *starget = scsi_target(current_sdev);
324         unsigned long flags;
325
326         spin_lock_irqsave(shost->host_lock, flags);
327         starget->starget_sdev_user = NULL;
328         spin_unlock_irqrestore(shost->host_lock, flags);
329
330         /*
331          * Call blk_run_queue for all LUNs on the target, starting with
332          * current_sdev. We race with others (to set starget_sdev_user),
333          * but in most cases, we will be first. Ideally, each LU on the
334          * target would get some limited time or requests on the target.
335          */
336         scsi_kick_queue(current_sdev->request_queue);
337
338         spin_lock_irqsave(shost->host_lock, flags);
339         if (starget->starget_sdev_user)
340                 goto out;
341         list_for_each_entry_safe(sdev, tmp, &starget->devices,
342                         same_target_siblings) {
343                 if (sdev == current_sdev)
344                         continue;
345                 if (scsi_device_get(sdev))
346                         continue;
347
348                 spin_unlock_irqrestore(shost->host_lock, flags);
349                 scsi_kick_queue(sdev->request_queue);
350                 spin_lock_irqsave(shost->host_lock, flags);
351         
352                 scsi_device_put(sdev);
353         }
354  out:
355         spin_unlock_irqrestore(shost->host_lock, flags);
356 }
357
358 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
359 {
360         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
361                 return true;
362         if (atomic_read(&sdev->device_blocked) > 0)
363                 return true;
364         return false;
365 }
366
367 static inline bool scsi_target_is_busy(struct scsi_target *starget)
368 {
369         if (starget->can_queue > 0) {
370                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
371                         return true;
372                 if (atomic_read(&starget->target_blocked) > 0)
373                         return true;
374         }
375         return false;
376 }
377
378 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
379 {
380         if (shost->can_queue > 0 &&
381             atomic_read(&shost->host_busy) >= shost->can_queue)
382                 return true;
383         if (atomic_read(&shost->host_blocked) > 0)
384                 return true;
385         if (shost->host_self_blocked)
386                 return true;
387         return false;
388 }
389
390 static void scsi_starved_list_run(struct Scsi_Host *shost)
391 {
392         LIST_HEAD(starved_list);
393         struct scsi_device *sdev;
394         unsigned long flags;
395
396         spin_lock_irqsave(shost->host_lock, flags);
397         list_splice_init(&shost->starved_list, &starved_list);
398
399         while (!list_empty(&starved_list)) {
400                 struct request_queue *slq;
401
402                 /*
403                  * As long as shost is accepting commands and we have
404                  * starved queues, call blk_run_queue. scsi_request_fn
405                  * drops the queue_lock and can add us back to the
406                  * starved_list.
407                  *
408                  * host_lock protects the starved_list and starved_entry.
409                  * scsi_request_fn must get the host_lock before checking
410                  * or modifying starved_list or starved_entry.
411                  */
412                 if (scsi_host_is_busy(shost))
413                         break;
414
415                 sdev = list_entry(starved_list.next,
416                                   struct scsi_device, starved_entry);
417                 list_del_init(&sdev->starved_entry);
418                 if (scsi_target_is_busy(scsi_target(sdev))) {
419                         list_move_tail(&sdev->starved_entry,
420                                        &shost->starved_list);
421                         continue;
422                 }
423
424                 /*
425                  * Once we drop the host lock, a racing scsi_remove_device()
426                  * call may remove the sdev from the starved list and destroy
427                  * it and the queue.  Mitigate by taking a reference to the
428                  * queue and never touching the sdev again after we drop the
429                  * host lock.  Note: if __scsi_remove_device() invokes
430                  * blk_cleanup_queue() before the queue is run from this
431                  * function then blk_run_queue() will return immediately since
432                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
433                  */
434                 slq = sdev->request_queue;
435                 if (!blk_get_queue(slq))
436                         continue;
437                 spin_unlock_irqrestore(shost->host_lock, flags);
438
439                 scsi_kick_queue(slq);
440                 blk_put_queue(slq);
441
442                 spin_lock_irqsave(shost->host_lock, flags);
443         }
444         /* put any unprocessed entries back */
445         list_splice(&starved_list, &shost->starved_list);
446         spin_unlock_irqrestore(shost->host_lock, flags);
447 }
448
449 /*
450  * Function:   scsi_run_queue()
451  *
452  * Purpose:    Select a proper request queue to serve next
453  *
454  * Arguments:  q       - last request's queue
455  *
456  * Returns:     Nothing
457  *
458  * Notes:      The previous command was completely finished, start
459  *             a new one if possible.
460  */
461 static void scsi_run_queue(struct request_queue *q)
462 {
463         struct scsi_device *sdev = q->queuedata;
464
465         if (scsi_target(sdev)->single_lun)
466                 scsi_single_lun_run(sdev);
467         if (!list_empty(&sdev->host->starved_list))
468                 scsi_starved_list_run(sdev->host);
469
470         if (q->mq_ops)
471                 blk_mq_start_stopped_hw_queues(q, false);
472         else
473                 blk_run_queue(q);
474 }
475
476 void scsi_requeue_run_queue(struct work_struct *work)
477 {
478         struct scsi_device *sdev;
479         struct request_queue *q;
480
481         sdev = container_of(work, struct scsi_device, requeue_work);
482         q = sdev->request_queue;
483         scsi_run_queue(q);
484 }
485
486 /*
487  * Function:    scsi_requeue_command()
488  *
489  * Purpose:     Handle post-processing of completed commands.
490  *
491  * Arguments:   q       - queue to operate on
492  *              cmd     - command that may need to be requeued.
493  *
494  * Returns:     Nothing
495  *
496  * Notes:       After command completion, there may be blocks left
497  *              over which weren't finished by the previous command
498  *              this can be for a number of reasons - the main one is
499  *              I/O errors in the middle of the request, in which case
500  *              we need to request the blocks that come after the bad
501  *              sector.
502  * Notes:       Upon return, cmd is a stale pointer.
503  */
504 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
505 {
506         struct scsi_device *sdev = cmd->device;
507         struct request *req = cmd->request;
508         unsigned long flags;
509
510         spin_lock_irqsave(q->queue_lock, flags);
511         blk_unprep_request(req);
512         req->special = NULL;
513         scsi_put_command(cmd);
514         blk_requeue_request(q, req);
515         spin_unlock_irqrestore(q->queue_lock, flags);
516
517         scsi_run_queue(q);
518
519         put_device(&sdev->sdev_gendev);
520 }
521
522 void scsi_run_host_queues(struct Scsi_Host *shost)
523 {
524         struct scsi_device *sdev;
525
526         shost_for_each_device(sdev, shost)
527                 scsi_run_queue(sdev->request_queue);
528 }
529
530 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
531 {
532         if (cmd->request->cmd_type == REQ_TYPE_FS) {
533                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
534
535                 if (drv->uninit_command)
536                         drv->uninit_command(cmd);
537         }
538 }
539
540 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
541 {
542         struct scsi_data_buffer *sdb;
543
544         if (cmd->sdb.table.nents)
545                 sg_free_table_chained(&cmd->sdb.table, true);
546         if (cmd->request->next_rq) {
547                 sdb = cmd->request->next_rq->special;
548                 if (sdb)
549                         sg_free_table_chained(&sdb->table, true);
550         }
551         if (scsi_prot_sg_count(cmd))
552                 sg_free_table_chained(&cmd->prot_sdb->table, true);
553 }
554
555 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
556 {
557         struct scsi_device *sdev = cmd->device;
558         struct Scsi_Host *shost = sdev->host;
559         unsigned long flags;
560
561         scsi_mq_free_sgtables(cmd);
562         scsi_uninit_cmd(cmd);
563
564         if (shost->use_cmd_list) {
565                 BUG_ON(list_empty(&cmd->list));
566                 spin_lock_irqsave(&sdev->list_lock, flags);
567                 list_del_init(&cmd->list);
568                 spin_unlock_irqrestore(&sdev->list_lock, flags);
569         }
570 }
571
572 /*
573  * Function:    scsi_release_buffers()
574  *
575  * Purpose:     Free resources allocate for a scsi_command.
576  *
577  * Arguments:   cmd     - command that we are bailing.
578  *
579  * Lock status: Assumed that no lock is held upon entry.
580  *
581  * Returns:     Nothing
582  *
583  * Notes:       In the event that an upper level driver rejects a
584  *              command, we must release resources allocated during
585  *              the __init_io() function.  Primarily this would involve
586  *              the scatter-gather table.
587  */
588 static void scsi_release_buffers(struct scsi_cmnd *cmd)
589 {
590         if (cmd->sdb.table.nents)
591                 sg_free_table_chained(&cmd->sdb.table, false);
592
593         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
594
595         if (scsi_prot_sg_count(cmd))
596                 sg_free_table_chained(&cmd->prot_sdb->table, false);
597 }
598
599 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
600 {
601         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
602
603         sg_free_table_chained(&bidi_sdb->table, false);
604         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
605         cmd->request->next_rq->special = NULL;
606 }
607
608 static bool scsi_end_request(struct request *req, int error,
609                 unsigned int bytes, unsigned int bidi_bytes)
610 {
611         struct scsi_cmnd *cmd = req->special;
612         struct scsi_device *sdev = cmd->device;
613         struct request_queue *q = sdev->request_queue;
614
615         if (blk_update_request(req, error, bytes))
616                 return true;
617
618         /* Bidi request must be completed as a whole */
619         if (unlikely(bidi_bytes) &&
620             blk_update_request(req->next_rq, error, bidi_bytes))
621                 return true;
622
623         if (blk_queue_add_random(q))
624                 add_disk_randomness(req->rq_disk);
625
626         if (req->mq_ctx) {
627                 /*
628                  * In the MQ case the command gets freed by __blk_mq_end_request,
629                  * so we have to do all cleanup that depends on it earlier.
630                  *
631                  * We also can't kick the queues from irq context, so we
632                  * will have to defer it to a workqueue.
633                  */
634                 scsi_mq_uninit_cmd(cmd);
635
636                 __blk_mq_end_request(req, error);
637
638                 if (scsi_target(sdev)->single_lun ||
639                     !list_empty(&sdev->host->starved_list))
640                         kblockd_schedule_work(&sdev->requeue_work);
641                 else
642                         blk_mq_start_stopped_hw_queues(q, true);
643         } else {
644                 unsigned long flags;
645
646                 if (bidi_bytes)
647                         scsi_release_bidi_buffers(cmd);
648
649                 spin_lock_irqsave(q->queue_lock, flags);
650                 blk_finish_request(req, error);
651                 spin_unlock_irqrestore(q->queue_lock, flags);
652
653                 scsi_release_buffers(cmd);
654
655                 scsi_put_command(cmd);
656                 scsi_run_queue(q);
657         }
658
659         put_device(&sdev->sdev_gendev);
660         return false;
661 }
662
663 /**
664  * __scsi_error_from_host_byte - translate SCSI error code into errno
665  * @cmd:        SCSI command (unused)
666  * @result:     scsi error code
667  *
668  * Translate SCSI error code into standard UNIX errno.
669  * Return values:
670  * -ENOLINK     temporary transport failure
671  * -EREMOTEIO   permanent target failure, do not retry
672  * -EBADE       permanent nexus failure, retry on other path
673  * -ENOSPC      No write space available
674  * -ENODATA     Medium error
675  * -EIO         unspecified I/O error
676  */
677 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
678 {
679         int error = 0;
680
681         switch(host_byte(result)) {
682         case DID_TRANSPORT_FAILFAST:
683                 error = -ENOLINK;
684                 break;
685         case DID_TARGET_FAILURE:
686                 set_host_byte(cmd, DID_OK);
687                 error = -EREMOTEIO;
688                 break;
689         case DID_NEXUS_FAILURE:
690                 set_host_byte(cmd, DID_OK);
691                 error = -EBADE;
692                 break;
693         case DID_ALLOC_FAILURE:
694                 set_host_byte(cmd, DID_OK);
695                 error = -ENOSPC;
696                 break;
697         case DID_MEDIUM_ERROR:
698                 set_host_byte(cmd, DID_OK);
699                 error = -ENODATA;
700                 break;
701         default:
702                 error = -EIO;
703                 break;
704         }
705
706         return error;
707 }
708
709 /*
710  * Function:    scsi_io_completion()
711  *
712  * Purpose:     Completion processing for block device I/O requests.
713  *
714  * Arguments:   cmd   - command that is finished.
715  *
716  * Lock status: Assumed that no lock is held upon entry.
717  *
718  * Returns:     Nothing
719  *
720  * Notes:       We will finish off the specified number of sectors.  If we
721  *              are done, the command block will be released and the queue
722  *              function will be goosed.  If we are not done then we have to
723  *              figure out what to do next:
724  *
725  *              a) We can call scsi_requeue_command().  The request
726  *                 will be unprepared and put back on the queue.  Then
727  *                 a new command will be created for it.  This should
728  *                 be used if we made forward progress, or if we want
729  *                 to switch from READ(10) to READ(6) for example.
730  *
731  *              b) We can call __scsi_queue_insert().  The request will
732  *                 be put back on the queue and retried using the same
733  *                 command as before, possibly after a delay.
734  *
735  *              c) We can call scsi_end_request() with -EIO to fail
736  *                 the remainder of the request.
737  */
738 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
739 {
740         int result = cmd->result;
741         struct request_queue *q = cmd->device->request_queue;
742         struct request *req = cmd->request;
743         int error = 0;
744         struct scsi_sense_hdr sshdr;
745         bool sense_valid = false;
746         int sense_deferred = 0, level = 0;
747         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
748               ACTION_DELAYED_RETRY} action;
749         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
750
751         if (result) {
752                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
753                 if (sense_valid)
754                         sense_deferred = scsi_sense_is_deferred(&sshdr);
755         }
756
757         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
758                 if (result) {
759                         if (sense_valid && req->sense) {
760                                 /*
761                                  * SG_IO wants current and deferred errors
762                                  */
763                                 int len = 8 + cmd->sense_buffer[7];
764
765                                 if (len > SCSI_SENSE_BUFFERSIZE)
766                                         len = SCSI_SENSE_BUFFERSIZE;
767                                 memcpy(req->sense, cmd->sense_buffer,  len);
768                                 req->sense_len = len;
769                         }
770                         if (!sense_deferred)
771                                 error = __scsi_error_from_host_byte(cmd, result);
772                 }
773                 /*
774                  * __scsi_error_from_host_byte may have reset the host_byte
775                  */
776                 req->errors = cmd->result;
777
778                 req->resid_len = scsi_get_resid(cmd);
779
780                 if (scsi_bidi_cmnd(cmd)) {
781                         /*
782                          * Bidi commands Must be complete as a whole,
783                          * both sides at once.
784                          */
785                         req->next_rq->resid_len = scsi_in(cmd)->resid;
786                         if (scsi_end_request(req, 0, blk_rq_bytes(req),
787                                         blk_rq_bytes(req->next_rq)))
788                                 BUG();
789                         return;
790                 }
791         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
792                 /*
793                  * Certain non BLOCK_PC requests are commands that don't
794                  * actually transfer anything (FLUSH), so cannot use
795                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
796                  * This sets the error explicitly for the problem case.
797                  */
798                 error = __scsi_error_from_host_byte(cmd, result);
799         }
800
801         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
802         BUG_ON(blk_bidi_rq(req));
803
804         /*
805          * Next deal with any sectors which we were able to correctly
806          * handle.
807          */
808         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
809                 "%u sectors total, %d bytes done.\n",
810                 blk_rq_sectors(req), good_bytes));
811
812         /*
813          * Recovered errors need reporting, but they're always treated
814          * as success, so fiddle the result code here.  For BLOCK_PC
815          * we already took a copy of the original into rq->errors which
816          * is what gets returned to the user
817          */
818         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
819                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
820                  * print since caller wants ATA registers. Only occurs on
821                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
822                  */
823                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
824                         ;
825                 else if (!(req->rq_flags & RQF_QUIET))
826                         scsi_print_sense(cmd);
827                 result = 0;
828                 /* BLOCK_PC may have set error */
829                 error = 0;
830         }
831
832         /*
833          * special case: failed zero length commands always need to
834          * drop down into the retry code. Otherwise, if we finished
835          * all bytes in the request we are done now.
836          */
837         if (!(blk_rq_bytes(req) == 0 && error) &&
838             !scsi_end_request(req, error, good_bytes, 0))
839                 return;
840
841         /*
842          * Kill remainder if no retrys.
843          */
844         if (error && scsi_noretry_cmd(cmd)) {
845                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
846                         BUG();
847                 return;
848         }
849
850         /*
851          * If there had been no error, but we have leftover bytes in the
852          * requeues just queue the command up again.
853          */
854         if (result == 0)
855                 goto requeue;
856
857         error = __scsi_error_from_host_byte(cmd, result);
858
859         if (host_byte(result) == DID_RESET) {
860                 /* Third party bus reset or reset for error recovery
861                  * reasons.  Just retry the command and see what
862                  * happens.
863                  */
864                 action = ACTION_RETRY;
865         } else if (sense_valid && !sense_deferred) {
866                 switch (sshdr.sense_key) {
867                 case UNIT_ATTENTION:
868                         if (cmd->device->removable) {
869                                 /* Detected disc change.  Set a bit
870                                  * and quietly refuse further access.
871                                  */
872                                 cmd->device->changed = 1;
873                                 action = ACTION_FAIL;
874                         } else {
875                                 /* Must have been a power glitch, or a
876                                  * bus reset.  Could not have been a
877                                  * media change, so we just retry the
878                                  * command and see what happens.
879                                  */
880                                 action = ACTION_RETRY;
881                         }
882                         break;
883                 case ILLEGAL_REQUEST:
884                         /* If we had an ILLEGAL REQUEST returned, then
885                          * we may have performed an unsupported
886                          * command.  The only thing this should be
887                          * would be a ten byte read where only a six
888                          * byte read was supported.  Also, on a system
889                          * where READ CAPACITY failed, we may have
890                          * read past the end of the disk.
891                          */
892                         if ((cmd->device->use_10_for_rw &&
893                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
894                             (cmd->cmnd[0] == READ_10 ||
895                              cmd->cmnd[0] == WRITE_10)) {
896                                 /* This will issue a new 6-byte command. */
897                                 cmd->device->use_10_for_rw = 0;
898                                 action = ACTION_REPREP;
899                         } else if (sshdr.asc == 0x10) /* DIX */ {
900                                 action = ACTION_FAIL;
901                                 error = -EILSEQ;
902                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
903                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
904                                 action = ACTION_FAIL;
905                                 error = -EREMOTEIO;
906                         } else
907                                 action = ACTION_FAIL;
908                         break;
909                 case ABORTED_COMMAND:
910                         action = ACTION_FAIL;
911                         if (sshdr.asc == 0x10) /* DIF */
912                                 error = -EILSEQ;
913                         break;
914                 case NOT_READY:
915                         /* If the device is in the process of becoming
916                          * ready, or has a temporary blockage, retry.
917                          */
918                         if (sshdr.asc == 0x04) {
919                                 switch (sshdr.ascq) {
920                                 case 0x01: /* becoming ready */
921                                 case 0x04: /* format in progress */
922                                 case 0x05: /* rebuild in progress */
923                                 case 0x06: /* recalculation in progress */
924                                 case 0x07: /* operation in progress */
925                                 case 0x08: /* Long write in progress */
926                                 case 0x09: /* self test in progress */
927                                 case 0x14: /* space allocation in progress */
928                                         action = ACTION_DELAYED_RETRY;
929                                         break;
930                                 default:
931                                         action = ACTION_FAIL;
932                                         break;
933                                 }
934                         } else
935                                 action = ACTION_FAIL;
936                         break;
937                 case VOLUME_OVERFLOW:
938                         /* See SSC3rXX or current. */
939                         action = ACTION_FAIL;
940                         break;
941                 default:
942                         action = ACTION_FAIL;
943                         break;
944                 }
945         } else
946                 action = ACTION_FAIL;
947
948         if (action != ACTION_FAIL &&
949             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
950                 action = ACTION_FAIL;
951
952         switch (action) {
953         case ACTION_FAIL:
954                 /* Give up and fail the remainder of the request */
955                 if (!(req->rq_flags & RQF_QUIET)) {
956                         static DEFINE_RATELIMIT_STATE(_rs,
957                                         DEFAULT_RATELIMIT_INTERVAL,
958                                         DEFAULT_RATELIMIT_BURST);
959
960                         if (unlikely(scsi_logging_level))
961                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
962                                                        SCSI_LOG_MLCOMPLETE_BITS);
963
964                         /*
965                          * if logging is enabled the failure will be printed
966                          * in scsi_log_completion(), so avoid duplicate messages
967                          */
968                         if (!level && __ratelimit(&_rs)) {
969                                 scsi_print_result(cmd, NULL, FAILED);
970                                 if (driver_byte(result) & DRIVER_SENSE)
971                                         scsi_print_sense(cmd);
972                                 scsi_print_command(cmd);
973                         }
974                 }
975                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
976                         return;
977                 /*FALLTHRU*/
978         case ACTION_REPREP:
979         requeue:
980                 /* Unprep the request and put it back at the head of the queue.
981                  * A new command will be prepared and issued.
982                  */
983                 if (q->mq_ops) {
984                         cmd->request->rq_flags &= ~RQF_DONTPREP;
985                         scsi_mq_uninit_cmd(cmd);
986                         scsi_mq_requeue_cmd(cmd);
987                 } else {
988                         scsi_release_buffers(cmd);
989                         scsi_requeue_command(q, cmd);
990                 }
991                 break;
992         case ACTION_RETRY:
993                 /* Retry the same command immediately */
994                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
995                 break;
996         case ACTION_DELAYED_RETRY:
997                 /* Retry the same command after a delay */
998                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
999                 break;
1000         }
1001 }
1002
1003 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1004 {
1005         int count;
1006
1007         /*
1008          * If sg table allocation fails, requeue request later.
1009          */
1010         if (unlikely(sg_alloc_table_chained(&sdb->table,
1011                         blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1012                 return BLKPREP_DEFER;
1013
1014         /* 
1015          * Next, walk the list, and fill in the addresses and sizes of
1016          * each segment.
1017          */
1018         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1019         BUG_ON(count > sdb->table.nents);
1020         sdb->table.nents = count;
1021         sdb->length = blk_rq_payload_bytes(req);
1022         return BLKPREP_OK;
1023 }
1024
1025 /*
1026  * Function:    scsi_init_io()
1027  *
1028  * Purpose:     SCSI I/O initialize function.
1029  *
1030  * Arguments:   cmd   - Command descriptor we wish to initialize
1031  *
1032  * Returns:     0 on success
1033  *              BLKPREP_DEFER if the failure is retryable
1034  *              BLKPREP_KILL if the failure is fatal
1035  */
1036 int scsi_init_io(struct scsi_cmnd *cmd)
1037 {
1038         struct scsi_device *sdev = cmd->device;
1039         struct request *rq = cmd->request;
1040         bool is_mq = (rq->mq_ctx != NULL);
1041         int error;
1042
1043         if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1044                 return -EINVAL;
1045
1046         error = scsi_init_sgtable(rq, &cmd->sdb);
1047         if (error)
1048                 goto err_exit;
1049
1050         if (blk_bidi_rq(rq)) {
1051                 if (!rq->q->mq_ops) {
1052                         struct scsi_data_buffer *bidi_sdb =
1053                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1054                         if (!bidi_sdb) {
1055                                 error = BLKPREP_DEFER;
1056                                 goto err_exit;
1057                         }
1058
1059                         rq->next_rq->special = bidi_sdb;
1060                 }
1061
1062                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1063                 if (error)
1064                         goto err_exit;
1065         }
1066
1067         if (blk_integrity_rq(rq)) {
1068                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1069                 int ivecs, count;
1070
1071                 if (prot_sdb == NULL) {
1072                         /*
1073                          * This can happen if someone (e.g. multipath)
1074                          * queues a command to a device on an adapter
1075                          * that does not support DIX.
1076                          */
1077                         WARN_ON_ONCE(1);
1078                         error = BLKPREP_KILL;
1079                         goto err_exit;
1080                 }
1081
1082                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1083
1084                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1085                                 prot_sdb->table.sgl)) {
1086                         error = BLKPREP_DEFER;
1087                         goto err_exit;
1088                 }
1089
1090                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1091                                                 prot_sdb->table.sgl);
1092                 BUG_ON(unlikely(count > ivecs));
1093                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1094
1095                 cmd->prot_sdb = prot_sdb;
1096                 cmd->prot_sdb->table.nents = count;
1097         }
1098
1099         return BLKPREP_OK;
1100 err_exit:
1101         if (is_mq) {
1102                 scsi_mq_free_sgtables(cmd);
1103         } else {
1104                 scsi_release_buffers(cmd);
1105                 cmd->request->special = NULL;
1106                 scsi_put_command(cmd);
1107                 put_device(&sdev->sdev_gendev);
1108         }
1109         return error;
1110 }
1111 EXPORT_SYMBOL(scsi_init_io);
1112
1113 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1114                 struct request *req)
1115 {
1116         struct scsi_cmnd *cmd;
1117
1118         if (!req->special) {
1119                 /* Bail if we can't get a reference to the device */
1120                 if (!get_device(&sdev->sdev_gendev))
1121                         return NULL;
1122
1123                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1124                 if (unlikely(!cmd)) {
1125                         put_device(&sdev->sdev_gendev);
1126                         return NULL;
1127                 }
1128                 req->special = cmd;
1129         } else {
1130                 cmd = req->special;
1131         }
1132
1133         /* pull a tag out of the request if we have one */
1134         cmd->tag = req->tag;
1135         cmd->request = req;
1136
1137         cmd->cmnd = req->cmd;
1138         cmd->prot_op = SCSI_PROT_NORMAL;
1139
1140         return cmd;
1141 }
1142
1143 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1144 {
1145         struct scsi_cmnd *cmd = req->special;
1146
1147         /*
1148          * BLOCK_PC requests may transfer data, in which case they must
1149          * a bio attached to them.  Or they might contain a SCSI command
1150          * that does not transfer data, in which case they may optionally
1151          * submit a request without an attached bio.
1152          */
1153         if (req->bio) {
1154                 int ret = scsi_init_io(cmd);
1155                 if (unlikely(ret))
1156                         return ret;
1157         } else {
1158                 BUG_ON(blk_rq_bytes(req));
1159
1160                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1161         }
1162
1163         cmd->cmd_len = req->cmd_len;
1164         cmd->transfersize = blk_rq_bytes(req);
1165         cmd->allowed = req->retries;
1166         return BLKPREP_OK;
1167 }
1168
1169 /*
1170  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1171  * that still need to be translated to SCSI CDBs from the ULD.
1172  */
1173 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1174 {
1175         struct scsi_cmnd *cmd = req->special;
1176
1177         if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1178                 int ret = sdev->handler->prep_fn(sdev, req);
1179                 if (ret != BLKPREP_OK)
1180                         return ret;
1181         }
1182
1183         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1184         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1185 }
1186
1187 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1188 {
1189         struct scsi_cmnd *cmd = req->special;
1190
1191         if (!blk_rq_bytes(req))
1192                 cmd->sc_data_direction = DMA_NONE;
1193         else if (rq_data_dir(req) == WRITE)
1194                 cmd->sc_data_direction = DMA_TO_DEVICE;
1195         else
1196                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1197
1198         switch (req->cmd_type) {
1199         case REQ_TYPE_FS:
1200                 return scsi_setup_fs_cmnd(sdev, req);
1201         case REQ_TYPE_BLOCK_PC:
1202                 return scsi_setup_blk_pc_cmnd(sdev, req);
1203         default:
1204                 return BLKPREP_KILL;
1205         }
1206 }
1207
1208 static int
1209 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1210 {
1211         int ret = BLKPREP_OK;
1212
1213         /*
1214          * If the device is not in running state we will reject some
1215          * or all commands.
1216          */
1217         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1218                 switch (sdev->sdev_state) {
1219                 case SDEV_OFFLINE:
1220                 case SDEV_TRANSPORT_OFFLINE:
1221                         /*
1222                          * If the device is offline we refuse to process any
1223                          * commands.  The device must be brought online
1224                          * before trying any recovery commands.
1225                          */
1226                         sdev_printk(KERN_ERR, sdev,
1227                                     "rejecting I/O to offline device\n");
1228                         ret = BLKPREP_KILL;
1229                         break;
1230                 case SDEV_DEL:
1231                         /*
1232                          * If the device is fully deleted, we refuse to
1233                          * process any commands as well.
1234                          */
1235                         sdev_printk(KERN_ERR, sdev,
1236                                     "rejecting I/O to dead device\n");
1237                         ret = BLKPREP_KILL;
1238                         break;
1239                 case SDEV_BLOCK:
1240                 case SDEV_CREATED_BLOCK:
1241                         ret = BLKPREP_DEFER;
1242                         break;
1243                 case SDEV_QUIESCE:
1244                         /*
1245                          * If the devices is blocked we defer normal commands.
1246                          */
1247                         if (!(req->rq_flags & RQF_PREEMPT))
1248                                 ret = BLKPREP_DEFER;
1249                         break;
1250                 default:
1251                         /*
1252                          * For any other not fully online state we only allow
1253                          * special commands.  In particular any user initiated
1254                          * command is not allowed.
1255                          */
1256                         if (!(req->rq_flags & RQF_PREEMPT))
1257                                 ret = BLKPREP_KILL;
1258                         break;
1259                 }
1260         }
1261         return ret;
1262 }
1263
1264 static int
1265 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1266 {
1267         struct scsi_device *sdev = q->queuedata;
1268
1269         switch (ret) {
1270         case BLKPREP_KILL:
1271         case BLKPREP_INVALID:
1272                 req->errors = DID_NO_CONNECT << 16;
1273                 /* release the command and kill it */
1274                 if (req->special) {
1275                         struct scsi_cmnd *cmd = req->special;
1276                         scsi_release_buffers(cmd);
1277                         scsi_put_command(cmd);
1278                         put_device(&sdev->sdev_gendev);
1279                         req->special = NULL;
1280                 }
1281                 break;
1282         case BLKPREP_DEFER:
1283                 /*
1284                  * If we defer, the blk_peek_request() returns NULL, but the
1285                  * queue must be restarted, so we schedule a callback to happen
1286                  * shortly.
1287                  */
1288                 if (atomic_read(&sdev->device_busy) == 0)
1289                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1290                 break;
1291         default:
1292                 req->rq_flags |= RQF_DONTPREP;
1293         }
1294
1295         return ret;
1296 }
1297
1298 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1299 {
1300         struct scsi_device *sdev = q->queuedata;
1301         struct scsi_cmnd *cmd;
1302         int ret;
1303
1304         ret = scsi_prep_state_check(sdev, req);
1305         if (ret != BLKPREP_OK)
1306                 goto out;
1307
1308         cmd = scsi_get_cmd_from_req(sdev, req);
1309         if (unlikely(!cmd)) {
1310                 ret = BLKPREP_DEFER;
1311                 goto out;
1312         }
1313
1314         ret = scsi_setup_cmnd(sdev, req);
1315 out:
1316         return scsi_prep_return(q, req, ret);
1317 }
1318
1319 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1320 {
1321         scsi_uninit_cmd(req->special);
1322 }
1323
1324 /*
1325  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1326  * return 0.
1327  *
1328  * Called with the queue_lock held.
1329  */
1330 static inline int scsi_dev_queue_ready(struct request_queue *q,
1331                                   struct scsi_device *sdev)
1332 {
1333         unsigned int busy;
1334
1335         busy = atomic_inc_return(&sdev->device_busy) - 1;
1336         if (atomic_read(&sdev->device_blocked)) {
1337                 if (busy)
1338                         goto out_dec;
1339
1340                 /*
1341                  * unblock after device_blocked iterates to zero
1342                  */
1343                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1344                         /*
1345                          * For the MQ case we take care of this in the caller.
1346                          */
1347                         if (!q->mq_ops)
1348                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1349                         goto out_dec;
1350                 }
1351                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1352                                    "unblocking device at zero depth\n"));
1353         }
1354
1355         if (busy >= sdev->queue_depth)
1356                 goto out_dec;
1357
1358         return 1;
1359 out_dec:
1360         atomic_dec(&sdev->device_busy);
1361         return 0;
1362 }
1363
1364 /*
1365  * scsi_target_queue_ready: checks if there we can send commands to target
1366  * @sdev: scsi device on starget to check.
1367  */
1368 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1369                                            struct scsi_device *sdev)
1370 {
1371         struct scsi_target *starget = scsi_target(sdev);
1372         unsigned int busy;
1373
1374         if (starget->single_lun) {
1375                 spin_lock_irq(shost->host_lock);
1376                 if (starget->starget_sdev_user &&
1377                     starget->starget_sdev_user != sdev) {
1378                         spin_unlock_irq(shost->host_lock);
1379                         return 0;
1380                 }
1381                 starget->starget_sdev_user = sdev;
1382                 spin_unlock_irq(shost->host_lock);
1383         }
1384
1385         if (starget->can_queue <= 0)
1386                 return 1;
1387
1388         busy = atomic_inc_return(&starget->target_busy) - 1;
1389         if (atomic_read(&starget->target_blocked) > 0) {
1390                 if (busy)
1391                         goto starved;
1392
1393                 /*
1394                  * unblock after target_blocked iterates to zero
1395                  */
1396                 if (atomic_dec_return(&starget->target_blocked) > 0)
1397                         goto out_dec;
1398
1399                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1400                                  "unblocking target at zero depth\n"));
1401         }
1402
1403         if (busy >= starget->can_queue)
1404                 goto starved;
1405
1406         return 1;
1407
1408 starved:
1409         spin_lock_irq(shost->host_lock);
1410         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1411         spin_unlock_irq(shost->host_lock);
1412 out_dec:
1413         if (starget->can_queue > 0)
1414                 atomic_dec(&starget->target_busy);
1415         return 0;
1416 }
1417
1418 /*
1419  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1420  * return 0. We must end up running the queue again whenever 0 is
1421  * returned, else IO can hang.
1422  */
1423 static inline int scsi_host_queue_ready(struct request_queue *q,
1424                                    struct Scsi_Host *shost,
1425                                    struct scsi_device *sdev)
1426 {
1427         unsigned int busy;
1428
1429         if (scsi_host_in_recovery(shost))
1430                 return 0;
1431
1432         busy = atomic_inc_return(&shost->host_busy) - 1;
1433         if (atomic_read(&shost->host_blocked) > 0) {
1434                 if (busy)
1435                         goto starved;
1436
1437                 /*
1438                  * unblock after host_blocked iterates to zero
1439                  */
1440                 if (atomic_dec_return(&shost->host_blocked) > 0)
1441                         goto out_dec;
1442
1443                 SCSI_LOG_MLQUEUE(3,
1444                         shost_printk(KERN_INFO, shost,
1445                                      "unblocking host at zero depth\n"));
1446         }
1447
1448         if (shost->can_queue > 0 && busy >= shost->can_queue)
1449                 goto starved;
1450         if (shost->host_self_blocked)
1451                 goto starved;
1452
1453         /* We're OK to process the command, so we can't be starved */
1454         if (!list_empty(&sdev->starved_entry)) {
1455                 spin_lock_irq(shost->host_lock);
1456                 if (!list_empty(&sdev->starved_entry))
1457                         list_del_init(&sdev->starved_entry);
1458                 spin_unlock_irq(shost->host_lock);
1459         }
1460
1461         return 1;
1462
1463 starved:
1464         spin_lock_irq(shost->host_lock);
1465         if (list_empty(&sdev->starved_entry))
1466                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1467         spin_unlock_irq(shost->host_lock);
1468 out_dec:
1469         atomic_dec(&shost->host_busy);
1470         return 0;
1471 }
1472
1473 /*
1474  * Busy state exporting function for request stacking drivers.
1475  *
1476  * For efficiency, no lock is taken to check the busy state of
1477  * shost/starget/sdev, since the returned value is not guaranteed and
1478  * may be changed after request stacking drivers call the function,
1479  * regardless of taking lock or not.
1480  *
1481  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1482  * needs to return 'not busy'. Otherwise, request stacking drivers
1483  * may hold requests forever.
1484  */
1485 static int scsi_lld_busy(struct request_queue *q)
1486 {
1487         struct scsi_device *sdev = q->queuedata;
1488         struct Scsi_Host *shost;
1489
1490         if (blk_queue_dying(q))
1491                 return 0;
1492
1493         shost = sdev->host;
1494
1495         /*
1496          * Ignore host/starget busy state.
1497          * Since block layer does not have a concept of fairness across
1498          * multiple queues, congestion of host/starget needs to be handled
1499          * in SCSI layer.
1500          */
1501         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1502                 return 1;
1503
1504         return 0;
1505 }
1506
1507 /*
1508  * Kill a request for a dead device
1509  */
1510 static void scsi_kill_request(struct request *req, struct request_queue *q)
1511 {
1512         struct scsi_cmnd *cmd = req->special;
1513         struct scsi_device *sdev;
1514         struct scsi_target *starget;
1515         struct Scsi_Host *shost;
1516
1517         blk_start_request(req);
1518
1519         scmd_printk(KERN_INFO, cmd, "killing request\n");
1520
1521         sdev = cmd->device;
1522         starget = scsi_target(sdev);
1523         shost = sdev->host;
1524         scsi_init_cmd_errh(cmd);
1525         cmd->result = DID_NO_CONNECT << 16;
1526         atomic_inc(&cmd->device->iorequest_cnt);
1527
1528         /*
1529          * SCSI request completion path will do scsi_device_unbusy(),
1530          * bump busy counts.  To bump the counters, we need to dance
1531          * with the locks as normal issue path does.
1532          */
1533         atomic_inc(&sdev->device_busy);
1534         atomic_inc(&shost->host_busy);
1535         if (starget->can_queue > 0)
1536                 atomic_inc(&starget->target_busy);
1537
1538         blk_complete_request(req);
1539 }
1540
1541 static void scsi_softirq_done(struct request *rq)
1542 {
1543         struct scsi_cmnd *cmd = rq->special;
1544         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1545         int disposition;
1546
1547         INIT_LIST_HEAD(&cmd->eh_entry);
1548
1549         atomic_inc(&cmd->device->iodone_cnt);
1550         if (cmd->result)
1551                 atomic_inc(&cmd->device->ioerr_cnt);
1552
1553         disposition = scsi_decide_disposition(cmd);
1554         if (disposition != SUCCESS &&
1555             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1556                 sdev_printk(KERN_ERR, cmd->device,
1557                             "timing out command, waited %lus\n",
1558                             wait_for/HZ);
1559                 disposition = SUCCESS;
1560         }
1561
1562         scsi_log_completion(cmd, disposition);
1563
1564         switch (disposition) {
1565                 case SUCCESS:
1566                         scsi_finish_command(cmd);
1567                         break;
1568                 case NEEDS_RETRY:
1569                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1570                         break;
1571                 case ADD_TO_MLQUEUE:
1572                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1573                         break;
1574                 default:
1575                         if (!scsi_eh_scmd_add(cmd, 0))
1576                                 scsi_finish_command(cmd);
1577         }
1578 }
1579
1580 /**
1581  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1582  * @cmd: command block we are dispatching.
1583  *
1584  * Return: nonzero return request was rejected and device's queue needs to be
1585  * plugged.
1586  */
1587 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1588 {
1589         struct Scsi_Host *host = cmd->device->host;
1590         int rtn = 0;
1591
1592         atomic_inc(&cmd->device->iorequest_cnt);
1593
1594         /* check if the device is still usable */
1595         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1596                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1597                  * returns an immediate error upwards, and signals
1598                  * that the device is no longer present */
1599                 cmd->result = DID_NO_CONNECT << 16;
1600                 goto done;
1601         }
1602
1603         /* Check to see if the scsi lld made this device blocked. */
1604         if (unlikely(scsi_device_blocked(cmd->device))) {
1605                 /*
1606                  * in blocked state, the command is just put back on
1607                  * the device queue.  The suspend state has already
1608                  * blocked the queue so future requests should not
1609                  * occur until the device transitions out of the
1610                  * suspend state.
1611                  */
1612                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1613                         "queuecommand : device blocked\n"));
1614                 return SCSI_MLQUEUE_DEVICE_BUSY;
1615         }
1616
1617         /* Store the LUN value in cmnd, if needed. */
1618         if (cmd->device->lun_in_cdb)
1619                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1620                                (cmd->device->lun << 5 & 0xe0);
1621
1622         scsi_log_send(cmd);
1623
1624         /*
1625          * Before we queue this command, check if the command
1626          * length exceeds what the host adapter can handle.
1627          */
1628         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1629                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1630                                "queuecommand : command too long. "
1631                                "cdb_size=%d host->max_cmd_len=%d\n",
1632                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1633                 cmd->result = (DID_ABORT << 16);
1634                 goto done;
1635         }
1636
1637         if (unlikely(host->shost_state == SHOST_DEL)) {
1638                 cmd->result = (DID_NO_CONNECT << 16);
1639                 goto done;
1640
1641         }
1642
1643         trace_scsi_dispatch_cmd_start(cmd);
1644         rtn = host->hostt->queuecommand(host, cmd);
1645         if (rtn) {
1646                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1647                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1648                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1649                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1650
1651                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1652                         "queuecommand : request rejected\n"));
1653         }
1654
1655         return rtn;
1656  done:
1657         cmd->scsi_done(cmd);
1658         return 0;
1659 }
1660
1661 /**
1662  * scsi_done - Invoke completion on finished SCSI command.
1663  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1664  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1665  *
1666  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1667  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1668  * calls blk_complete_request() for further processing.
1669  *
1670  * This function is interrupt context safe.
1671  */
1672 static void scsi_done(struct scsi_cmnd *cmd)
1673 {
1674         trace_scsi_dispatch_cmd_done(cmd);
1675         blk_complete_request(cmd->request);
1676 }
1677
1678 /*
1679  * Function:    scsi_request_fn()
1680  *
1681  * Purpose:     Main strategy routine for SCSI.
1682  *
1683  * Arguments:   q       - Pointer to actual queue.
1684  *
1685  * Returns:     Nothing
1686  *
1687  * Lock status: IO request lock assumed to be held when called.
1688  */
1689 static void scsi_request_fn(struct request_queue *q)
1690         __releases(q->queue_lock)
1691         __acquires(q->queue_lock)
1692 {
1693         struct scsi_device *sdev = q->queuedata;
1694         struct Scsi_Host *shost;
1695         struct scsi_cmnd *cmd;
1696         struct request *req;
1697
1698         /*
1699          * To start with, we keep looping until the queue is empty, or until
1700          * the host is no longer able to accept any more requests.
1701          */
1702         shost = sdev->host;
1703         for (;;) {
1704                 int rtn;
1705                 /*
1706                  * get next queueable request.  We do this early to make sure
1707                  * that the request is fully prepared even if we cannot
1708                  * accept it.
1709                  */
1710                 req = blk_peek_request(q);
1711                 if (!req)
1712                         break;
1713
1714                 if (unlikely(!scsi_device_online(sdev))) {
1715                         sdev_printk(KERN_ERR, sdev,
1716                                     "rejecting I/O to offline device\n");
1717                         scsi_kill_request(req, q);
1718                         continue;
1719                 }
1720
1721                 if (!scsi_dev_queue_ready(q, sdev))
1722                         break;
1723
1724                 /*
1725                  * Remove the request from the request list.
1726                  */
1727                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1728                         blk_start_request(req);
1729
1730                 spin_unlock_irq(q->queue_lock);
1731                 cmd = req->special;
1732                 if (unlikely(cmd == NULL)) {
1733                         printk(KERN_CRIT "impossible request in %s.\n"
1734                                          "please mail a stack trace to "
1735                                          "linux-scsi@vger.kernel.org\n",
1736                                          __func__);
1737                         blk_dump_rq_flags(req, "foo");
1738                         BUG();
1739                 }
1740
1741                 /*
1742                  * We hit this when the driver is using a host wide
1743                  * tag map. For device level tag maps the queue_depth check
1744                  * in the device ready fn would prevent us from trying
1745                  * to allocate a tag. Since the map is a shared host resource
1746                  * we add the dev to the starved list so it eventually gets
1747                  * a run when a tag is freed.
1748                  */
1749                 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1750                         spin_lock_irq(shost->host_lock);
1751                         if (list_empty(&sdev->starved_entry))
1752                                 list_add_tail(&sdev->starved_entry,
1753                                               &shost->starved_list);
1754                         spin_unlock_irq(shost->host_lock);
1755                         goto not_ready;
1756                 }
1757
1758                 if (!scsi_target_queue_ready(shost, sdev))
1759                         goto not_ready;
1760
1761                 if (!scsi_host_queue_ready(q, shost, sdev))
1762                         goto host_not_ready;
1763         
1764                 if (sdev->simple_tags)
1765                         cmd->flags |= SCMD_TAGGED;
1766                 else
1767                         cmd->flags &= ~SCMD_TAGGED;
1768
1769                 /*
1770                  * Finally, initialize any error handling parameters, and set up
1771                  * the timers for timeouts.
1772                  */
1773                 scsi_init_cmd_errh(cmd);
1774
1775                 /*
1776                  * Dispatch the command to the low-level driver.
1777                  */
1778                 cmd->scsi_done = scsi_done;
1779                 rtn = scsi_dispatch_cmd(cmd);
1780                 if (rtn) {
1781                         scsi_queue_insert(cmd, rtn);
1782                         spin_lock_irq(q->queue_lock);
1783                         goto out_delay;
1784                 }
1785                 spin_lock_irq(q->queue_lock);
1786         }
1787
1788         return;
1789
1790  host_not_ready:
1791         if (scsi_target(sdev)->can_queue > 0)
1792                 atomic_dec(&scsi_target(sdev)->target_busy);
1793  not_ready:
1794         /*
1795          * lock q, handle tag, requeue req, and decrement device_busy. We
1796          * must return with queue_lock held.
1797          *
1798          * Decrementing device_busy without checking it is OK, as all such
1799          * cases (host limits or settings) should run the queue at some
1800          * later time.
1801          */
1802         spin_lock_irq(q->queue_lock);
1803         blk_requeue_request(q, req);
1804         atomic_dec(&sdev->device_busy);
1805 out_delay:
1806         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1807                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1808 }
1809
1810 static inline int prep_to_mq(int ret)
1811 {
1812         switch (ret) {
1813         case BLKPREP_OK:
1814                 return BLK_MQ_RQ_QUEUE_OK;
1815         case BLKPREP_DEFER:
1816                 return BLK_MQ_RQ_QUEUE_BUSY;
1817         default:
1818                 return BLK_MQ_RQ_QUEUE_ERROR;
1819         }
1820 }
1821
1822 static int scsi_mq_prep_fn(struct request *req)
1823 {
1824         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1825         struct scsi_device *sdev = req->q->queuedata;
1826         struct Scsi_Host *shost = sdev->host;
1827         unsigned char *sense_buf = cmd->sense_buffer;
1828         struct scatterlist *sg;
1829
1830         memset(cmd, 0, sizeof(struct scsi_cmnd));
1831
1832         req->special = cmd;
1833
1834         cmd->request = req;
1835         cmd->device = sdev;
1836         cmd->sense_buffer = sense_buf;
1837
1838         cmd->tag = req->tag;
1839
1840         cmd->cmnd = req->cmd;
1841         cmd->prot_op = SCSI_PROT_NORMAL;
1842
1843         INIT_LIST_HEAD(&cmd->list);
1844         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1845         cmd->jiffies_at_alloc = jiffies;
1846
1847         if (shost->use_cmd_list) {
1848                 spin_lock_irq(&sdev->list_lock);
1849                 list_add_tail(&cmd->list, &sdev->cmd_list);
1850                 spin_unlock_irq(&sdev->list_lock);
1851         }
1852
1853         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1854         cmd->sdb.table.sgl = sg;
1855
1856         if (scsi_host_get_prot(shost)) {
1857                 cmd->prot_sdb = (void *)sg +
1858                         min_t(unsigned int,
1859                               shost->sg_tablesize, SG_CHUNK_SIZE) *
1860                         sizeof(struct scatterlist);
1861                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1862
1863                 cmd->prot_sdb->table.sgl =
1864                         (struct scatterlist *)(cmd->prot_sdb + 1);
1865         }
1866
1867         if (blk_bidi_rq(req)) {
1868                 struct request *next_rq = req->next_rq;
1869                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1870
1871                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1872                 bidi_sdb->table.sgl =
1873                         (struct scatterlist *)(bidi_sdb + 1);
1874
1875                 next_rq->special = bidi_sdb;
1876         }
1877
1878         blk_mq_start_request(req);
1879
1880         return scsi_setup_cmnd(sdev, req);
1881 }
1882
1883 static void scsi_mq_done(struct scsi_cmnd *cmd)
1884 {
1885         trace_scsi_dispatch_cmd_done(cmd);
1886         blk_mq_complete_request(cmd->request, cmd->request->errors);
1887 }
1888
1889 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1890                          const struct blk_mq_queue_data *bd)
1891 {
1892         struct request *req = bd->rq;
1893         struct request_queue *q = req->q;
1894         struct scsi_device *sdev = q->queuedata;
1895         struct Scsi_Host *shost = sdev->host;
1896         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1897         int ret;
1898         int reason;
1899
1900         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1901         if (ret != BLK_MQ_RQ_QUEUE_OK)
1902                 goto out;
1903
1904         ret = BLK_MQ_RQ_QUEUE_BUSY;
1905         if (!get_device(&sdev->sdev_gendev))
1906                 goto out;
1907
1908         if (!scsi_dev_queue_ready(q, sdev))
1909                 goto out_put_device;
1910         if (!scsi_target_queue_ready(shost, sdev))
1911                 goto out_dec_device_busy;
1912         if (!scsi_host_queue_ready(q, shost, sdev))
1913                 goto out_dec_target_busy;
1914
1915
1916         if (!(req->rq_flags & RQF_DONTPREP)) {
1917                 ret = prep_to_mq(scsi_mq_prep_fn(req));
1918                 if (ret != BLK_MQ_RQ_QUEUE_OK)
1919                         goto out_dec_host_busy;
1920                 req->rq_flags |= RQF_DONTPREP;
1921         } else {
1922                 blk_mq_start_request(req);
1923         }
1924
1925         if (sdev->simple_tags)
1926                 cmd->flags |= SCMD_TAGGED;
1927         else
1928                 cmd->flags &= ~SCMD_TAGGED;
1929
1930         scsi_init_cmd_errh(cmd);
1931         cmd->scsi_done = scsi_mq_done;
1932
1933         reason = scsi_dispatch_cmd(cmd);
1934         if (reason) {
1935                 scsi_set_blocked(cmd, reason);
1936                 ret = BLK_MQ_RQ_QUEUE_BUSY;
1937                 goto out_dec_host_busy;
1938         }
1939
1940         return BLK_MQ_RQ_QUEUE_OK;
1941
1942 out_dec_host_busy:
1943         atomic_dec(&shost->host_busy);
1944 out_dec_target_busy:
1945         if (scsi_target(sdev)->can_queue > 0)
1946                 atomic_dec(&scsi_target(sdev)->target_busy);
1947 out_dec_device_busy:
1948         atomic_dec(&sdev->device_busy);
1949 out_put_device:
1950         put_device(&sdev->sdev_gendev);
1951 out:
1952         switch (ret) {
1953         case BLK_MQ_RQ_QUEUE_BUSY:
1954                 if (atomic_read(&sdev->device_busy) == 0 &&
1955                     !scsi_device_blocked(sdev))
1956                         blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1957                 break;
1958         case BLK_MQ_RQ_QUEUE_ERROR:
1959                 /*
1960                  * Make sure to release all allocated ressources when
1961                  * we hit an error, as we will never see this command
1962                  * again.
1963                  */
1964                 if (req->rq_flags & RQF_DONTPREP)
1965                         scsi_mq_uninit_cmd(cmd);
1966                 break;
1967         default:
1968                 break;
1969         }
1970         return ret;
1971 }
1972
1973 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1974                 bool reserved)
1975 {
1976         if (reserved)
1977                 return BLK_EH_RESET_TIMER;
1978         return scsi_times_out(req);
1979 }
1980
1981 static int scsi_init_request(void *data, struct request *rq,
1982                 unsigned int hctx_idx, unsigned int request_idx,
1983                 unsigned int numa_node)
1984 {
1985         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1986
1987         cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1988                         numa_node);
1989         if (!cmd->sense_buffer)
1990                 return -ENOMEM;
1991         return 0;
1992 }
1993
1994 static void scsi_exit_request(void *data, struct request *rq,
1995                 unsigned int hctx_idx, unsigned int request_idx)
1996 {
1997         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1998
1999         kfree(cmd->sense_buffer);
2000 }
2001
2002 static int scsi_map_queues(struct blk_mq_tag_set *set)
2003 {
2004         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2005
2006         if (shost->hostt->map_queues)
2007                 return shost->hostt->map_queues(shost);
2008         return blk_mq_map_queues(set);
2009 }
2010
2011 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2012 {
2013         struct device *host_dev;
2014         u64 bounce_limit = 0xffffffff;
2015
2016         if (shost->unchecked_isa_dma)
2017                 return BLK_BOUNCE_ISA;
2018         /*
2019          * Platforms with virtual-DMA translation
2020          * hardware have no practical limit.
2021          */
2022         if (!PCI_DMA_BUS_IS_PHYS)
2023                 return BLK_BOUNCE_ANY;
2024
2025         host_dev = scsi_get_device(shost);
2026         if (host_dev && host_dev->dma_mask)
2027                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2028
2029         return bounce_limit;
2030 }
2031
2032 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2033 {
2034         struct device *dev = shost->dma_dev;
2035
2036         /*
2037          * this limit is imposed by hardware restrictions
2038          */
2039         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2040                                         SG_MAX_SEGMENTS));
2041
2042         if (scsi_host_prot_dma(shost)) {
2043                 shost->sg_prot_tablesize =
2044                         min_not_zero(shost->sg_prot_tablesize,
2045                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2046                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2047                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2048         }
2049
2050         blk_queue_max_hw_sectors(q, shost->max_sectors);
2051         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2052         blk_queue_segment_boundary(q, shost->dma_boundary);
2053         dma_set_seg_boundary(dev, shost->dma_boundary);
2054
2055         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2056
2057         if (!shost->use_clustering)
2058                 q->limits.cluster = 0;
2059
2060         /*
2061          * set a reasonable default alignment on word boundaries: the
2062          * host and device may alter it using
2063          * blk_queue_update_dma_alignment() later.
2064          */
2065         blk_queue_dma_alignment(q, 0x03);
2066 }
2067
2068 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2069                                          request_fn_proc *request_fn)
2070 {
2071         struct request_queue *q;
2072
2073         q = blk_init_queue(request_fn, NULL);
2074         if (!q)
2075                 return NULL;
2076         __scsi_init_queue(shost, q);
2077         return q;
2078 }
2079 EXPORT_SYMBOL(__scsi_alloc_queue);
2080
2081 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2082 {
2083         struct request_queue *q;
2084
2085         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2086         if (!q)
2087                 return NULL;
2088
2089         blk_queue_prep_rq(q, scsi_prep_fn);
2090         blk_queue_unprep_rq(q, scsi_unprep_fn);
2091         blk_queue_softirq_done(q, scsi_softirq_done);
2092         blk_queue_rq_timed_out(q, scsi_times_out);
2093         blk_queue_lld_busy(q, scsi_lld_busy);
2094         return q;
2095 }
2096
2097 static struct blk_mq_ops scsi_mq_ops = {
2098         .queue_rq       = scsi_queue_rq,
2099         .complete       = scsi_softirq_done,
2100         .timeout        = scsi_timeout,
2101         .init_request   = scsi_init_request,
2102         .exit_request   = scsi_exit_request,
2103         .map_queues     = scsi_map_queues,
2104 };
2105
2106 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2107 {
2108         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2109         if (IS_ERR(sdev->request_queue))
2110                 return NULL;
2111
2112         sdev->request_queue->queuedata = sdev;
2113         __scsi_init_queue(sdev->host, sdev->request_queue);
2114         return sdev->request_queue;
2115 }
2116
2117 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2118 {
2119         unsigned int cmd_size, sgl_size, tbl_size;
2120
2121         tbl_size = shost->sg_tablesize;
2122         if (tbl_size > SG_CHUNK_SIZE)
2123                 tbl_size = SG_CHUNK_SIZE;
2124         sgl_size = tbl_size * sizeof(struct scatterlist);
2125         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2126         if (scsi_host_get_prot(shost))
2127                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2128
2129         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2130         shost->tag_set.ops = &scsi_mq_ops;
2131         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2132         shost->tag_set.queue_depth = shost->can_queue;
2133         shost->tag_set.cmd_size = cmd_size;
2134         shost->tag_set.numa_node = NUMA_NO_NODE;
2135         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2136         shost->tag_set.flags |=
2137                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2138         shost->tag_set.driver_data = shost;
2139
2140         return blk_mq_alloc_tag_set(&shost->tag_set);
2141 }
2142
2143 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2144 {
2145         blk_mq_free_tag_set(&shost->tag_set);
2146 }
2147
2148 /*
2149  * Function:    scsi_block_requests()
2150  *
2151  * Purpose:     Utility function used by low-level drivers to prevent further
2152  *              commands from being queued to the device.
2153  *
2154  * Arguments:   shost       - Host in question
2155  *
2156  * Returns:     Nothing
2157  *
2158  * Lock status: No locks are assumed held.
2159  *
2160  * Notes:       There is no timer nor any other means by which the requests
2161  *              get unblocked other than the low-level driver calling
2162  *              scsi_unblock_requests().
2163  */
2164 void scsi_block_requests(struct Scsi_Host *shost)
2165 {
2166         shost->host_self_blocked = 1;
2167 }
2168 EXPORT_SYMBOL(scsi_block_requests);
2169
2170 /*
2171  * Function:    scsi_unblock_requests()
2172  *
2173  * Purpose:     Utility function used by low-level drivers to allow further
2174  *              commands from being queued to the device.
2175  *
2176  * Arguments:   shost       - Host in question
2177  *
2178  * Returns:     Nothing
2179  *
2180  * Lock status: No locks are assumed held.
2181  *
2182  * Notes:       There is no timer nor any other means by which the requests
2183  *              get unblocked other than the low-level driver calling
2184  *              scsi_unblock_requests().
2185  *
2186  *              This is done as an API function so that changes to the
2187  *              internals of the scsi mid-layer won't require wholesale
2188  *              changes to drivers that use this feature.
2189  */
2190 void scsi_unblock_requests(struct Scsi_Host *shost)
2191 {
2192         shost->host_self_blocked = 0;
2193         scsi_run_host_queues(shost);
2194 }
2195 EXPORT_SYMBOL(scsi_unblock_requests);
2196
2197 int __init scsi_init_queue(void)
2198 {
2199         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2200                                            sizeof(struct scsi_data_buffer),
2201                                            0, 0, NULL);
2202         if (!scsi_sdb_cache) {
2203                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2204                 return -ENOMEM;
2205         }
2206
2207         return 0;
2208 }
2209
2210 void scsi_exit_queue(void)
2211 {
2212         kmem_cache_destroy(scsi_sdb_cache);
2213 }
2214
2215 /**
2216  *      scsi_mode_select - issue a mode select
2217  *      @sdev:  SCSI device to be queried
2218  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2219  *      @sp:    Save page bit (0 == don't save, 1 == save)
2220  *      @modepage: mode page being requested
2221  *      @buffer: request buffer (may not be smaller than eight bytes)
2222  *      @len:   length of request buffer.
2223  *      @timeout: command timeout
2224  *      @retries: number of retries before failing
2225  *      @data: returns a structure abstracting the mode header data
2226  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2227  *              must be SCSI_SENSE_BUFFERSIZE big.
2228  *
2229  *      Returns zero if successful; negative error number or scsi
2230  *      status on error
2231  *
2232  */
2233 int
2234 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2235                  unsigned char *buffer, int len, int timeout, int retries,
2236                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2237 {
2238         unsigned char cmd[10];
2239         unsigned char *real_buffer;
2240         int ret;
2241
2242         memset(cmd, 0, sizeof(cmd));
2243         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2244
2245         if (sdev->use_10_for_ms) {
2246                 if (len > 65535)
2247                         return -EINVAL;
2248                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2249                 if (!real_buffer)
2250                         return -ENOMEM;
2251                 memcpy(real_buffer + 8, buffer, len);
2252                 len += 8;
2253                 real_buffer[0] = 0;
2254                 real_buffer[1] = 0;
2255                 real_buffer[2] = data->medium_type;
2256                 real_buffer[3] = data->device_specific;
2257                 real_buffer[4] = data->longlba ? 0x01 : 0;
2258                 real_buffer[5] = 0;
2259                 real_buffer[6] = data->block_descriptor_length >> 8;
2260                 real_buffer[7] = data->block_descriptor_length;
2261
2262                 cmd[0] = MODE_SELECT_10;
2263                 cmd[7] = len >> 8;
2264                 cmd[8] = len;
2265         } else {
2266                 if (len > 255 || data->block_descriptor_length > 255 ||
2267                     data->longlba)
2268                         return -EINVAL;
2269
2270                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2271                 if (!real_buffer)
2272                         return -ENOMEM;
2273                 memcpy(real_buffer + 4, buffer, len);
2274                 len += 4;
2275                 real_buffer[0] = 0;
2276                 real_buffer[1] = data->medium_type;
2277                 real_buffer[2] = data->device_specific;
2278                 real_buffer[3] = data->block_descriptor_length;
2279                 
2280
2281                 cmd[0] = MODE_SELECT;
2282                 cmd[4] = len;
2283         }
2284
2285         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2286                                sshdr, timeout, retries, NULL);
2287         kfree(real_buffer);
2288         return ret;
2289 }
2290 EXPORT_SYMBOL_GPL(scsi_mode_select);
2291
2292 /**
2293  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2294  *      @sdev:  SCSI device to be queried
2295  *      @dbd:   set if mode sense will allow block descriptors to be returned
2296  *      @modepage: mode page being requested
2297  *      @buffer: request buffer (may not be smaller than eight bytes)
2298  *      @len:   length of request buffer.
2299  *      @timeout: command timeout
2300  *      @retries: number of retries before failing
2301  *      @data: returns a structure abstracting the mode header data
2302  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2303  *              must be SCSI_SENSE_BUFFERSIZE big.
2304  *
2305  *      Returns zero if unsuccessful, or the header offset (either 4
2306  *      or 8 depending on whether a six or ten byte command was
2307  *      issued) if successful.
2308  */
2309 int
2310 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2311                   unsigned char *buffer, int len, int timeout, int retries,
2312                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2313 {
2314         unsigned char cmd[12];
2315         int use_10_for_ms;
2316         int header_length;
2317         int result, retry_count = retries;
2318         struct scsi_sense_hdr my_sshdr;
2319
2320         memset(data, 0, sizeof(*data));
2321         memset(&cmd[0], 0, 12);
2322         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2323         cmd[2] = modepage;
2324
2325         /* caller might not be interested in sense, but we need it */
2326         if (!sshdr)
2327                 sshdr = &my_sshdr;
2328
2329  retry:
2330         use_10_for_ms = sdev->use_10_for_ms;
2331
2332         if (use_10_for_ms) {
2333                 if (len < 8)
2334                         len = 8;
2335
2336                 cmd[0] = MODE_SENSE_10;
2337                 cmd[8] = len;
2338                 header_length = 8;
2339         } else {
2340                 if (len < 4)
2341                         len = 4;
2342
2343                 cmd[0] = MODE_SENSE;
2344                 cmd[4] = len;
2345                 header_length = 4;
2346         }
2347
2348         memset(buffer, 0, len);
2349
2350         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2351                                   sshdr, timeout, retries, NULL);
2352
2353         /* This code looks awful: what it's doing is making sure an
2354          * ILLEGAL REQUEST sense return identifies the actual command
2355          * byte as the problem.  MODE_SENSE commands can return
2356          * ILLEGAL REQUEST if the code page isn't supported */
2357
2358         if (use_10_for_ms && !scsi_status_is_good(result) &&
2359             (driver_byte(result) & DRIVER_SENSE)) {
2360                 if (scsi_sense_valid(sshdr)) {
2361                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2362                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2363                                 /* 
2364                                  * Invalid command operation code
2365                                  */
2366                                 sdev->use_10_for_ms = 0;
2367                                 goto retry;
2368                         }
2369                 }
2370         }
2371
2372         if(scsi_status_is_good(result)) {
2373                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2374                              (modepage == 6 || modepage == 8))) {
2375                         /* Initio breakage? */
2376                         header_length = 0;
2377                         data->length = 13;
2378                         data->medium_type = 0;
2379                         data->device_specific = 0;
2380                         data->longlba = 0;
2381                         data->block_descriptor_length = 0;
2382                 } else if(use_10_for_ms) {
2383                         data->length = buffer[0]*256 + buffer[1] + 2;
2384                         data->medium_type = buffer[2];
2385                         data->device_specific = buffer[3];
2386                         data->longlba = buffer[4] & 0x01;
2387                         data->block_descriptor_length = buffer[6]*256
2388                                 + buffer[7];
2389                 } else {
2390                         data->length = buffer[0] + 1;
2391                         data->medium_type = buffer[1];
2392                         data->device_specific = buffer[2];
2393                         data->block_descriptor_length = buffer[3];
2394                 }
2395                 data->header_length = header_length;
2396         } else if ((status_byte(result) == CHECK_CONDITION) &&
2397                    scsi_sense_valid(sshdr) &&
2398                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2399                 retry_count--;
2400                 goto retry;
2401         }
2402
2403         return result;
2404 }
2405 EXPORT_SYMBOL(scsi_mode_sense);
2406
2407 /**
2408  *      scsi_test_unit_ready - test if unit is ready
2409  *      @sdev:  scsi device to change the state of.
2410  *      @timeout: command timeout
2411  *      @retries: number of retries before failing
2412  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2413  *              returning sense. Make sure that this is cleared before passing
2414  *              in.
2415  *
2416  *      Returns zero if unsuccessful or an error if TUR failed.  For
2417  *      removable media, UNIT_ATTENTION sets ->changed flag.
2418  **/
2419 int
2420 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2421                      struct scsi_sense_hdr *sshdr_external)
2422 {
2423         char cmd[] = {
2424                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2425         };
2426         struct scsi_sense_hdr *sshdr;
2427         int result;
2428
2429         if (!sshdr_external)
2430                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2431         else
2432                 sshdr = sshdr_external;
2433
2434         /* try to eat the UNIT_ATTENTION if there are enough retries */
2435         do {
2436                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2437                                           timeout, retries, NULL);
2438                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2439                     sshdr->sense_key == UNIT_ATTENTION)
2440                         sdev->changed = 1;
2441         } while (scsi_sense_valid(sshdr) &&
2442                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2443
2444         if (!sshdr_external)
2445                 kfree(sshdr);
2446         return result;
2447 }
2448 EXPORT_SYMBOL(scsi_test_unit_ready);
2449
2450 /**
2451  *      scsi_device_set_state - Take the given device through the device state model.
2452  *      @sdev:  scsi device to change the state of.
2453  *      @state: state to change to.
2454  *
2455  *      Returns zero if unsuccessful or an error if the requested 
2456  *      transition is illegal.
2457  */
2458 int
2459 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2460 {
2461         enum scsi_device_state oldstate = sdev->sdev_state;
2462
2463         if (state == oldstate)
2464                 return 0;
2465
2466         switch (state) {
2467         case SDEV_CREATED:
2468                 switch (oldstate) {
2469                 case SDEV_CREATED_BLOCK:
2470                         break;
2471                 default:
2472                         goto illegal;
2473                 }
2474                 break;
2475                         
2476         case SDEV_RUNNING:
2477                 switch (oldstate) {
2478                 case SDEV_CREATED:
2479                 case SDEV_OFFLINE:
2480                 case SDEV_TRANSPORT_OFFLINE:
2481                 case SDEV_QUIESCE:
2482                 case SDEV_BLOCK:
2483                         break;
2484                 default:
2485                         goto illegal;
2486                 }
2487                 break;
2488
2489         case SDEV_QUIESCE:
2490                 switch (oldstate) {
2491                 case SDEV_RUNNING:
2492                 case SDEV_OFFLINE:
2493                 case SDEV_TRANSPORT_OFFLINE:
2494                         break;
2495                 default:
2496                         goto illegal;
2497                 }
2498                 break;
2499
2500         case SDEV_OFFLINE:
2501         case SDEV_TRANSPORT_OFFLINE:
2502                 switch (oldstate) {
2503                 case SDEV_CREATED:
2504                 case SDEV_RUNNING:
2505                 case SDEV_QUIESCE:
2506                 case SDEV_BLOCK:
2507                         break;
2508                 default:
2509                         goto illegal;
2510                 }
2511                 break;
2512
2513         case SDEV_BLOCK:
2514                 switch (oldstate) {
2515                 case SDEV_RUNNING:
2516                 case SDEV_CREATED_BLOCK:
2517                         break;
2518                 default:
2519                         goto illegal;
2520                 }
2521                 break;
2522
2523         case SDEV_CREATED_BLOCK:
2524                 switch (oldstate) {
2525                 case SDEV_CREATED:
2526                         break;
2527                 default:
2528                         goto illegal;
2529                 }
2530                 break;
2531
2532         case SDEV_CANCEL:
2533                 switch (oldstate) {
2534                 case SDEV_CREATED:
2535                 case SDEV_RUNNING:
2536                 case SDEV_QUIESCE:
2537                 case SDEV_OFFLINE:
2538                 case SDEV_TRANSPORT_OFFLINE:
2539                 case SDEV_BLOCK:
2540                         break;
2541                 default:
2542                         goto illegal;
2543                 }
2544                 break;
2545
2546         case SDEV_DEL:
2547                 switch (oldstate) {
2548                 case SDEV_CREATED:
2549                 case SDEV_RUNNING:
2550                 case SDEV_OFFLINE:
2551                 case SDEV_TRANSPORT_OFFLINE:
2552                 case SDEV_CANCEL:
2553                 case SDEV_CREATED_BLOCK:
2554                         break;
2555                 default:
2556                         goto illegal;
2557                 }
2558                 break;
2559
2560         }
2561         sdev->sdev_state = state;
2562         return 0;
2563
2564  illegal:
2565         SCSI_LOG_ERROR_RECOVERY(1,
2566                                 sdev_printk(KERN_ERR, sdev,
2567                                             "Illegal state transition %s->%s",
2568                                             scsi_device_state_name(oldstate),
2569                                             scsi_device_state_name(state))
2570                                 );
2571         return -EINVAL;
2572 }
2573 EXPORT_SYMBOL(scsi_device_set_state);
2574
2575 /**
2576  *      sdev_evt_emit - emit a single SCSI device uevent
2577  *      @sdev: associated SCSI device
2578  *      @evt: event to emit
2579  *
2580  *      Send a single uevent (scsi_event) to the associated scsi_device.
2581  */
2582 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2583 {
2584         int idx = 0;
2585         char *envp[3];
2586
2587         switch (evt->evt_type) {
2588         case SDEV_EVT_MEDIA_CHANGE:
2589                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2590                 break;
2591         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2592                 scsi_rescan_device(&sdev->sdev_gendev);
2593                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2594                 break;
2595         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2596                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2597                 break;
2598         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2599                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2600                 break;
2601         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2602                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2603                 break;
2604         case SDEV_EVT_LUN_CHANGE_REPORTED:
2605                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2606                 break;
2607         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2608                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2609                 break;
2610         default:
2611                 /* do nothing */
2612                 break;
2613         }
2614
2615         envp[idx++] = NULL;
2616
2617         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2618 }
2619
2620 /**
2621  *      sdev_evt_thread - send a uevent for each scsi event
2622  *      @work: work struct for scsi_device
2623  *
2624  *      Dispatch queued events to their associated scsi_device kobjects
2625  *      as uevents.
2626  */
2627 void scsi_evt_thread(struct work_struct *work)
2628 {
2629         struct scsi_device *sdev;
2630         enum scsi_device_event evt_type;
2631         LIST_HEAD(event_list);
2632
2633         sdev = container_of(work, struct scsi_device, event_work);
2634
2635         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2636                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2637                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2638
2639         while (1) {
2640                 struct scsi_event *evt;
2641                 struct list_head *this, *tmp;
2642                 unsigned long flags;
2643
2644                 spin_lock_irqsave(&sdev->list_lock, flags);
2645                 list_splice_init(&sdev->event_list, &event_list);
2646                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2647
2648                 if (list_empty(&event_list))
2649                         break;
2650
2651                 list_for_each_safe(this, tmp, &event_list) {
2652                         evt = list_entry(this, struct scsi_event, node);
2653                         list_del(&evt->node);
2654                         scsi_evt_emit(sdev, evt);
2655                         kfree(evt);
2656                 }
2657         }
2658 }
2659
2660 /**
2661  *      sdev_evt_send - send asserted event to uevent thread
2662  *      @sdev: scsi_device event occurred on
2663  *      @evt: event to send
2664  *
2665  *      Assert scsi device event asynchronously.
2666  */
2667 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2668 {
2669         unsigned long flags;
2670
2671 #if 0
2672         /* FIXME: currently this check eliminates all media change events
2673          * for polled devices.  Need to update to discriminate between AN
2674          * and polled events */
2675         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2676                 kfree(evt);
2677                 return;
2678         }
2679 #endif
2680
2681         spin_lock_irqsave(&sdev->list_lock, flags);
2682         list_add_tail(&evt->node, &sdev->event_list);
2683         schedule_work(&sdev->event_work);
2684         spin_unlock_irqrestore(&sdev->list_lock, flags);
2685 }
2686 EXPORT_SYMBOL_GPL(sdev_evt_send);
2687
2688 /**
2689  *      sdev_evt_alloc - allocate a new scsi event
2690  *      @evt_type: type of event to allocate
2691  *      @gfpflags: GFP flags for allocation
2692  *
2693  *      Allocates and returns a new scsi_event.
2694  */
2695 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2696                                   gfp_t gfpflags)
2697 {
2698         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2699         if (!evt)
2700                 return NULL;
2701
2702         evt->evt_type = evt_type;
2703         INIT_LIST_HEAD(&evt->node);
2704
2705         /* evt_type-specific initialization, if any */
2706         switch (evt_type) {
2707         case SDEV_EVT_MEDIA_CHANGE:
2708         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2709         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2710         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2711         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2712         case SDEV_EVT_LUN_CHANGE_REPORTED:
2713         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2714         default:
2715                 /* do nothing */
2716                 break;
2717         }
2718
2719         return evt;
2720 }
2721 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2722
2723 /**
2724  *      sdev_evt_send_simple - send asserted event to uevent thread
2725  *      @sdev: scsi_device event occurred on
2726  *      @evt_type: type of event to send
2727  *      @gfpflags: GFP flags for allocation
2728  *
2729  *      Assert scsi device event asynchronously, given an event type.
2730  */
2731 void sdev_evt_send_simple(struct scsi_device *sdev,
2732                           enum scsi_device_event evt_type, gfp_t gfpflags)
2733 {
2734         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2735         if (!evt) {
2736                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2737                             evt_type);
2738                 return;
2739         }
2740
2741         sdev_evt_send(sdev, evt);
2742 }
2743 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2744
2745 /**
2746  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2747  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2748  */
2749 static int scsi_request_fn_active(struct scsi_device *sdev)
2750 {
2751         struct request_queue *q = sdev->request_queue;
2752         int request_fn_active;
2753
2754         WARN_ON_ONCE(sdev->host->use_blk_mq);
2755
2756         spin_lock_irq(q->queue_lock);
2757         request_fn_active = q->request_fn_active;
2758         spin_unlock_irq(q->queue_lock);
2759
2760         return request_fn_active;
2761 }
2762
2763 /**
2764  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2765  * @sdev: SCSI device pointer.
2766  *
2767  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2768  * invoked from scsi_request_fn() have finished.
2769  */
2770 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2771 {
2772         WARN_ON_ONCE(sdev->host->use_blk_mq);
2773
2774         while (scsi_request_fn_active(sdev))
2775                 msleep(20);
2776 }
2777
2778 /**
2779  *      scsi_device_quiesce - Block user issued commands.
2780  *      @sdev:  scsi device to quiesce.
2781  *
2782  *      This works by trying to transition to the SDEV_QUIESCE state
2783  *      (which must be a legal transition).  When the device is in this
2784  *      state, only special requests will be accepted, all others will
2785  *      be deferred.  Since special requests may also be requeued requests,
2786  *      a successful return doesn't guarantee the device will be 
2787  *      totally quiescent.
2788  *
2789  *      Must be called with user context, may sleep.
2790  *
2791  *      Returns zero if unsuccessful or an error if not.
2792  */
2793 int
2794 scsi_device_quiesce(struct scsi_device *sdev)
2795 {
2796         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2797         if (err)
2798                 return err;
2799
2800         scsi_run_queue(sdev->request_queue);
2801         while (atomic_read(&sdev->device_busy)) {
2802                 msleep_interruptible(200);
2803                 scsi_run_queue(sdev->request_queue);
2804         }
2805         return 0;
2806 }
2807 EXPORT_SYMBOL(scsi_device_quiesce);
2808
2809 /**
2810  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2811  *      @sdev:  scsi device to resume.
2812  *
2813  *      Moves the device from quiesced back to running and restarts the
2814  *      queues.
2815  *
2816  *      Must be called with user context, may sleep.
2817  */
2818 void scsi_device_resume(struct scsi_device *sdev)
2819 {
2820         /* check if the device state was mutated prior to resume, and if
2821          * so assume the state is being managed elsewhere (for example
2822          * device deleted during suspend)
2823          */
2824         if (sdev->sdev_state != SDEV_QUIESCE ||
2825             scsi_device_set_state(sdev, SDEV_RUNNING))
2826                 return;
2827         scsi_run_queue(sdev->request_queue);
2828 }
2829 EXPORT_SYMBOL(scsi_device_resume);
2830
2831 static void
2832 device_quiesce_fn(struct scsi_device *sdev, void *data)
2833 {
2834         scsi_device_quiesce(sdev);
2835 }
2836
2837 void
2838 scsi_target_quiesce(struct scsi_target *starget)
2839 {
2840         starget_for_each_device(starget, NULL, device_quiesce_fn);
2841 }
2842 EXPORT_SYMBOL(scsi_target_quiesce);
2843
2844 static void
2845 device_resume_fn(struct scsi_device *sdev, void *data)
2846 {
2847         scsi_device_resume(sdev);
2848 }
2849
2850 void
2851 scsi_target_resume(struct scsi_target *starget)
2852 {
2853         starget_for_each_device(starget, NULL, device_resume_fn);
2854 }
2855 EXPORT_SYMBOL(scsi_target_resume);
2856
2857 /**
2858  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2859  * @sdev:       device to block
2860  *
2861  * Block request made by scsi lld's to temporarily stop all
2862  * scsi commands on the specified device. May sleep.
2863  *
2864  * Returns zero if successful or error if not
2865  *
2866  * Notes:       
2867  *      This routine transitions the device to the SDEV_BLOCK state
2868  *      (which must be a legal transition).  When the device is in this
2869  *      state, all commands are deferred until the scsi lld reenables
2870  *      the device with scsi_device_unblock or device_block_tmo fires.
2871  *
2872  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
2873  * scsi_internal_device_block() has blocked a SCSI device and also
2874  * remove the rport mutex lock and unlock calls from srp_queuecommand().
2875  */
2876 int
2877 scsi_internal_device_block(struct scsi_device *sdev)
2878 {
2879         struct request_queue *q = sdev->request_queue;
2880         unsigned long flags;
2881         int err = 0;
2882
2883         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2884         if (err) {
2885                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2886
2887                 if (err)
2888                         return err;
2889         }
2890
2891         /* 
2892          * The device has transitioned to SDEV_BLOCK.  Stop the
2893          * block layer from calling the midlayer with this device's
2894          * request queue. 
2895          */
2896         if (q->mq_ops) {
2897                 blk_mq_quiesce_queue(q);
2898         } else {
2899                 spin_lock_irqsave(q->queue_lock, flags);
2900                 blk_stop_queue(q);
2901                 spin_unlock_irqrestore(q->queue_lock, flags);
2902                 scsi_wait_for_queuecommand(sdev);
2903         }
2904
2905         return 0;
2906 }
2907 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2908  
2909 /**
2910  * scsi_internal_device_unblock - resume a device after a block request
2911  * @sdev:       device to resume
2912  * @new_state:  state to set devices to after unblocking
2913  *
2914  * Called by scsi lld's or the midlayer to restart the device queue
2915  * for the previously suspended scsi device.  Called from interrupt or
2916  * normal process context.
2917  *
2918  * Returns zero if successful or error if not.
2919  *
2920  * Notes:       
2921  *      This routine transitions the device to the SDEV_RUNNING state
2922  *      or to one of the offline states (which must be a legal transition)
2923  *      allowing the midlayer to goose the queue for this device.
2924  */
2925 int
2926 scsi_internal_device_unblock(struct scsi_device *sdev,
2927                              enum scsi_device_state new_state)
2928 {
2929         struct request_queue *q = sdev->request_queue; 
2930         unsigned long flags;
2931
2932         /*
2933          * Try to transition the scsi device to SDEV_RUNNING or one of the
2934          * offlined states and goose the device queue if successful.
2935          */
2936         if ((sdev->sdev_state == SDEV_BLOCK) ||
2937             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2938                 sdev->sdev_state = new_state;
2939         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2940                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2941                     new_state == SDEV_OFFLINE)
2942                         sdev->sdev_state = new_state;
2943                 else
2944                         sdev->sdev_state = SDEV_CREATED;
2945         } else if (sdev->sdev_state != SDEV_CANCEL &&
2946                  sdev->sdev_state != SDEV_OFFLINE)
2947                 return -EINVAL;
2948
2949         if (q->mq_ops) {
2950                 blk_mq_start_stopped_hw_queues(q, false);
2951         } else {
2952                 spin_lock_irqsave(q->queue_lock, flags);
2953                 blk_start_queue(q);
2954                 spin_unlock_irqrestore(q->queue_lock, flags);
2955         }
2956
2957         return 0;
2958 }
2959 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2960
2961 static void
2962 device_block(struct scsi_device *sdev, void *data)
2963 {
2964         scsi_internal_device_block(sdev);
2965 }
2966
2967 static int
2968 target_block(struct device *dev, void *data)
2969 {
2970         if (scsi_is_target_device(dev))
2971                 starget_for_each_device(to_scsi_target(dev), NULL,
2972                                         device_block);
2973         return 0;
2974 }
2975
2976 void
2977 scsi_target_block(struct device *dev)
2978 {
2979         if (scsi_is_target_device(dev))
2980                 starget_for_each_device(to_scsi_target(dev), NULL,
2981                                         device_block);
2982         else
2983                 device_for_each_child(dev, NULL, target_block);
2984 }
2985 EXPORT_SYMBOL_GPL(scsi_target_block);
2986
2987 static void
2988 device_unblock(struct scsi_device *sdev, void *data)
2989 {
2990         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2991 }
2992
2993 static int
2994 target_unblock(struct device *dev, void *data)
2995 {
2996         if (scsi_is_target_device(dev))
2997                 starget_for_each_device(to_scsi_target(dev), data,
2998                                         device_unblock);
2999         return 0;
3000 }
3001
3002 void
3003 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3004 {
3005         if (scsi_is_target_device(dev))
3006                 starget_for_each_device(to_scsi_target(dev), &new_state,
3007                                         device_unblock);
3008         else
3009                 device_for_each_child(dev, &new_state, target_unblock);
3010 }
3011 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3012
3013 /**
3014  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3015  * @sgl:        scatter-gather list
3016  * @sg_count:   number of segments in sg
3017  * @offset:     offset in bytes into sg, on return offset into the mapped area
3018  * @len:        bytes to map, on return number of bytes mapped
3019  *
3020  * Returns virtual address of the start of the mapped page
3021  */
3022 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3023                           size_t *offset, size_t *len)
3024 {
3025         int i;
3026         size_t sg_len = 0, len_complete = 0;
3027         struct scatterlist *sg;
3028         struct page *page;
3029
3030         WARN_ON(!irqs_disabled());
3031
3032         for_each_sg(sgl, sg, sg_count, i) {
3033                 len_complete = sg_len; /* Complete sg-entries */
3034                 sg_len += sg->length;
3035                 if (sg_len > *offset)
3036                         break;
3037         }
3038
3039         if (unlikely(i == sg_count)) {
3040                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3041                         "elements %d\n",
3042                        __func__, sg_len, *offset, sg_count);
3043                 WARN_ON(1);
3044                 return NULL;
3045         }
3046
3047         /* Offset starting from the beginning of first page in this sg-entry */
3048         *offset = *offset - len_complete + sg->offset;
3049
3050         /* Assumption: contiguous pages can be accessed as "page + i" */
3051         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3052         *offset &= ~PAGE_MASK;
3053
3054         /* Bytes in this sg-entry from *offset to the end of the page */
3055         sg_len = PAGE_SIZE - *offset;
3056         if (*len > sg_len)
3057                 *len = sg_len;
3058
3059         return kmap_atomic(page);
3060 }
3061 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3062
3063 /**
3064  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3065  * @virt:       virtual address to be unmapped
3066  */
3067 void scsi_kunmap_atomic_sg(void *virt)
3068 {
3069         kunmap_atomic(virt);
3070 }
3071 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3072
3073 void sdev_disable_disk_events(struct scsi_device *sdev)
3074 {
3075         atomic_inc(&sdev->disk_events_disable_depth);
3076 }
3077 EXPORT_SYMBOL(sdev_disable_disk_events);
3078
3079 void sdev_enable_disk_events(struct scsi_device *sdev)
3080 {
3081         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3082                 return;
3083         atomic_dec(&sdev->disk_events_disable_depth);
3084 }
3085 EXPORT_SYMBOL(sdev_enable_disk_events);
3086
3087 /**
3088  * scsi_vpd_lun_id - return a unique device identification
3089  * @sdev: SCSI device
3090  * @id:   buffer for the identification
3091  * @id_len:  length of the buffer
3092  *
3093  * Copies a unique device identification into @id based
3094  * on the information in the VPD page 0x83 of the device.
3095  * The string will be formatted as a SCSI name string.
3096  *
3097  * Returns the length of the identification or error on failure.
3098  * If the identifier is longer than the supplied buffer the actual
3099  * identifier length is returned and the buffer is not zero-padded.
3100  */
3101 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3102 {
3103         u8 cur_id_type = 0xff;
3104         u8 cur_id_size = 0;
3105         unsigned char *d, *cur_id_str;
3106         unsigned char __rcu *vpd_pg83;
3107         int id_size = -EINVAL;
3108
3109         rcu_read_lock();
3110         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3111         if (!vpd_pg83) {
3112                 rcu_read_unlock();
3113                 return -ENXIO;
3114         }
3115
3116         /*
3117          * Look for the correct descriptor.
3118          * Order of preference for lun descriptor:
3119          * - SCSI name string
3120          * - NAA IEEE Registered Extended
3121          * - EUI-64 based 16-byte
3122          * - EUI-64 based 12-byte
3123          * - NAA IEEE Registered
3124          * - NAA IEEE Extended
3125          * - T10 Vendor ID
3126          * as longer descriptors reduce the likelyhood
3127          * of identification clashes.
3128          */
3129
3130         /* The id string must be at least 20 bytes + terminating NULL byte */
3131         if (id_len < 21) {
3132                 rcu_read_unlock();
3133                 return -EINVAL;
3134         }
3135
3136         memset(id, 0, id_len);
3137         d = vpd_pg83 + 4;
3138         while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3139                 /* Skip designators not referring to the LUN */
3140                 if ((d[1] & 0x30) != 0x00)
3141                         goto next_desig;
3142
3143                 switch (d[1] & 0xf) {
3144                 case 0x1:
3145                         /* T10 Vendor ID */
3146                         if (cur_id_size > d[3])
3147                                 break;
3148                         /* Prefer anything */
3149                         if (cur_id_type > 0x01 && cur_id_type != 0xff)
3150                                 break;
3151                         cur_id_size = d[3];
3152                         if (cur_id_size + 4 > id_len)
3153                                 cur_id_size = id_len - 4;
3154                         cur_id_str = d + 4;
3155                         cur_id_type = d[1] & 0xf;
3156                         id_size = snprintf(id, id_len, "t10.%*pE",
3157                                            cur_id_size, cur_id_str);
3158                         break;
3159                 case 0x2:
3160                         /* EUI-64 */
3161                         if (cur_id_size > d[3])
3162                                 break;
3163                         /* Prefer NAA IEEE Registered Extended */
3164                         if (cur_id_type == 0x3 &&
3165                             cur_id_size == d[3])
3166                                 break;
3167                         cur_id_size = d[3];
3168                         cur_id_str = d + 4;
3169                         cur_id_type = d[1] & 0xf;
3170                         switch (cur_id_size) {
3171                         case 8:
3172                                 id_size = snprintf(id, id_len,
3173                                                    "eui.%8phN",
3174                                                    cur_id_str);
3175                                 break;
3176                         case 12:
3177                                 id_size = snprintf(id, id_len,
3178                                                    "eui.%12phN",
3179                                                    cur_id_str);
3180                                 break;
3181                         case 16:
3182                                 id_size = snprintf(id, id_len,
3183                                                    "eui.%16phN",
3184                                                    cur_id_str);
3185                                 break;
3186                         default:
3187                                 cur_id_size = 0;
3188                                 break;
3189                         }
3190                         break;
3191                 case 0x3:
3192                         /* NAA */
3193                         if (cur_id_size > d[3])
3194                                 break;
3195                         cur_id_size = d[3];
3196                         cur_id_str = d + 4;
3197                         cur_id_type = d[1] & 0xf;
3198                         switch (cur_id_size) {
3199                         case 8:
3200                                 id_size = snprintf(id, id_len,
3201                                                    "naa.%8phN",
3202                                                    cur_id_str);
3203                                 break;
3204                         case 16:
3205                                 id_size = snprintf(id, id_len,
3206                                                    "naa.%16phN",
3207                                                    cur_id_str);
3208                                 break;
3209                         default:
3210                                 cur_id_size = 0;
3211                                 break;
3212                         }
3213                         break;
3214                 case 0x8:
3215                         /* SCSI name string */
3216                         if (cur_id_size + 4 > d[3])
3217                                 break;
3218                         /* Prefer others for truncated descriptor */
3219                         if (cur_id_size && d[3] > id_len)
3220                                 break;
3221                         cur_id_size = id_size = d[3];
3222                         cur_id_str = d + 4;
3223                         cur_id_type = d[1] & 0xf;
3224                         if (cur_id_size >= id_len)
3225                                 cur_id_size = id_len - 1;
3226                         memcpy(id, cur_id_str, cur_id_size);
3227                         /* Decrease priority for truncated descriptor */
3228                         if (cur_id_size != id_size)
3229                                 cur_id_size = 6;
3230                         break;
3231                 default:
3232                         break;
3233                 }
3234 next_desig:
3235                 d += d[3] + 4;
3236         }
3237         rcu_read_unlock();
3238
3239         return id_size;
3240 }
3241 EXPORT_SYMBOL(scsi_vpd_lun_id);
3242
3243 /*
3244  * scsi_vpd_tpg_id - return a target port group identifier
3245  * @sdev: SCSI device
3246  *
3247  * Returns the Target Port Group identifier from the information
3248  * froom VPD page 0x83 of the device.
3249  *
3250  * Returns the identifier or error on failure.
3251  */
3252 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3253 {
3254         unsigned char *d;
3255         unsigned char __rcu *vpd_pg83;
3256         int group_id = -EAGAIN, rel_port = -1;
3257
3258         rcu_read_lock();
3259         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3260         if (!vpd_pg83) {
3261                 rcu_read_unlock();
3262                 return -ENXIO;
3263         }
3264
3265         d = sdev->vpd_pg83 + 4;
3266         while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3267                 switch (d[1] & 0xf) {
3268                 case 0x4:
3269                         /* Relative target port */
3270                         rel_port = get_unaligned_be16(&d[6]);
3271                         break;
3272                 case 0x5:
3273                         /* Target port group */
3274                         group_id = get_unaligned_be16(&d[6]);
3275                         break;
3276                 default:
3277                         break;
3278                 }
3279                 d += d[3] + 4;
3280         }
3281         rcu_read_unlock();
3282
3283         if (group_id >= 0 && rel_id && rel_port != -1)
3284                 *rel_id = rel_port;
3285
3286         return group_id;
3287 }
3288 EXPORT_SYMBOL(scsi_vpd_tpg_id);