]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/scsi/scsi_lib.c
b9298a499e19aa995a85975f36f20c12d810e4ca
[karo-tx-linux.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_dh.h>
34
35 #include <trace/events/scsi.h>
36
37 #include "scsi_priv.h"
38 #include "scsi_logging.h"
39
40 static struct kmem_cache *scsi_sdb_cache;
41 static struct kmem_cache *scsi_sense_cache;
42 static struct kmem_cache *scsi_sense_isadma_cache;
43 static DEFINE_MUTEX(scsi_sense_cache_mutex);
44
45 static inline struct kmem_cache *
46 scsi_select_sense_cache(struct Scsi_Host *shost)
47 {
48         return shost->unchecked_isa_dma ?
49                 scsi_sense_isadma_cache : scsi_sense_cache;
50 }
51
52 static void scsi_free_sense_buffer(struct Scsi_Host *shost,
53                 unsigned char *sense_buffer)
54 {
55         kmem_cache_free(scsi_select_sense_cache(shost), sense_buffer);
56 }
57
58 static unsigned char *scsi_alloc_sense_buffer(struct Scsi_Host *shost,
59         gfp_t gfp_mask, int numa_node)
60 {
61         return kmem_cache_alloc_node(scsi_select_sense_cache(shost), gfp_mask,
62                         numa_node);
63 }
64
65 int scsi_init_sense_cache(struct Scsi_Host *shost)
66 {
67         struct kmem_cache *cache;
68         int ret = 0;
69
70         cache = scsi_select_sense_cache(shost);
71         if (cache)
72                 return 0;
73
74         mutex_lock(&scsi_sense_cache_mutex);
75         if (shost->unchecked_isa_dma) {
76                 scsi_sense_isadma_cache =
77                         kmem_cache_create("scsi_sense_cache(DMA)",
78                         SCSI_SENSE_BUFFERSIZE, 0,
79                         SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
80                 if (!scsi_sense_isadma_cache)
81                         ret = -ENOMEM;
82         } else {
83                 scsi_sense_cache =
84                         kmem_cache_create("scsi_sense_cache",
85                         SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
86                 if (!scsi_sense_cache)
87                         ret = -ENOMEM;
88         }
89
90         mutex_unlock(&scsi_sense_cache_mutex);
91         return ret;
92 }
93
94 /*
95  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
96  * not change behaviour from the previous unplug mechanism, experimentation
97  * may prove this needs changing.
98  */
99 #define SCSI_QUEUE_DELAY        3
100
101 static void
102 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
103 {
104         struct Scsi_Host *host = cmd->device->host;
105         struct scsi_device *device = cmd->device;
106         struct scsi_target *starget = scsi_target(device);
107
108         /*
109          * Set the appropriate busy bit for the device/host.
110          *
111          * If the host/device isn't busy, assume that something actually
112          * completed, and that we should be able to queue a command now.
113          *
114          * Note that the prior mid-layer assumption that any host could
115          * always queue at least one command is now broken.  The mid-layer
116          * will implement a user specifiable stall (see
117          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
118          * if a command is requeued with no other commands outstanding
119          * either for the device or for the host.
120          */
121         switch (reason) {
122         case SCSI_MLQUEUE_HOST_BUSY:
123                 atomic_set(&host->host_blocked, host->max_host_blocked);
124                 break;
125         case SCSI_MLQUEUE_DEVICE_BUSY:
126         case SCSI_MLQUEUE_EH_RETRY:
127                 atomic_set(&device->device_blocked,
128                            device->max_device_blocked);
129                 break;
130         case SCSI_MLQUEUE_TARGET_BUSY:
131                 atomic_set(&starget->target_blocked,
132                            starget->max_target_blocked);
133                 break;
134         }
135 }
136
137 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
138 {
139         struct scsi_device *sdev = cmd->device;
140
141         blk_mq_requeue_request(cmd->request, true);
142         put_device(&sdev->sdev_gendev);
143 }
144
145 /**
146  * __scsi_queue_insert - private queue insertion
147  * @cmd: The SCSI command being requeued
148  * @reason:  The reason for the requeue
149  * @unbusy: Whether the queue should be unbusied
150  *
151  * This is a private queue insertion.  The public interface
152  * scsi_queue_insert() always assumes the queue should be unbusied
153  * because it's always called before the completion.  This function is
154  * for a requeue after completion, which should only occur in this
155  * file.
156  */
157 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
158 {
159         struct scsi_device *device = cmd->device;
160         struct request_queue *q = device->request_queue;
161         unsigned long flags;
162
163         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
164                 "Inserting command %p into mlqueue\n", cmd));
165
166         scsi_set_blocked(cmd, reason);
167
168         /*
169          * Decrement the counters, since these commands are no longer
170          * active on the host/device.
171          */
172         if (unbusy)
173                 scsi_device_unbusy(device);
174
175         /*
176          * Requeue this command.  It will go before all other commands
177          * that are already in the queue. Schedule requeue work under
178          * lock such that the kblockd_schedule_work() call happens
179          * before blk_cleanup_queue() finishes.
180          */
181         cmd->result = 0;
182         if (q->mq_ops) {
183                 scsi_mq_requeue_cmd(cmd);
184                 return;
185         }
186         spin_lock_irqsave(q->queue_lock, flags);
187         blk_requeue_request(q, cmd->request);
188         kblockd_schedule_work(&device->requeue_work);
189         spin_unlock_irqrestore(q->queue_lock, flags);
190 }
191
192 /*
193  * Function:    scsi_queue_insert()
194  *
195  * Purpose:     Insert a command in the midlevel queue.
196  *
197  * Arguments:   cmd    - command that we are adding to queue.
198  *              reason - why we are inserting command to queue.
199  *
200  * Lock status: Assumed that lock is not held upon entry.
201  *
202  * Returns:     Nothing.
203  *
204  * Notes:       We do this for one of two cases.  Either the host is busy
205  *              and it cannot accept any more commands for the time being,
206  *              or the device returned QUEUE_FULL and can accept no more
207  *              commands.
208  * Notes:       This could be called either from an interrupt context or a
209  *              normal process context.
210  */
211 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
212 {
213         __scsi_queue_insert(cmd, reason, 1);
214 }
215
216
217 /**
218  * scsi_execute - insert request and wait for the result
219  * @sdev:       scsi device
220  * @cmd:        scsi command
221  * @data_direction: data direction
222  * @buffer:     data buffer
223  * @bufflen:    len of buffer
224  * @sense:      optional sense buffer
225  * @sshdr:      optional decoded sense header
226  * @timeout:    request timeout in seconds
227  * @retries:    number of times to retry request
228  * @flags:      flags for ->cmd_flags
229  * @rq_flags:   flags for ->rq_flags
230  * @resid:      optional residual length
231  *
232  * Returns the scsi_cmnd result field if a command was executed, or a negative
233  * Linux error code if we didn't get that far.
234  */
235 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
236                  int data_direction, void *buffer, unsigned bufflen,
237                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
238                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
239                  int *resid)
240 {
241         struct request *req;
242         struct scsi_request *rq;
243         int ret = DRIVER_ERROR << 24;
244
245         req = blk_get_request(sdev->request_queue,
246                         data_direction == DMA_TO_DEVICE ?
247                         REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
248         if (IS_ERR(req))
249                 return ret;
250         rq = scsi_req(req);
251         scsi_req_init(req);
252
253         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
254                                         buffer, bufflen, __GFP_RECLAIM))
255                 goto out;
256
257         rq->cmd_len = COMMAND_SIZE(cmd[0]);
258         memcpy(rq->cmd, cmd, rq->cmd_len);
259         rq->retries = retries;
260         req->timeout = timeout;
261         req->cmd_flags |= flags;
262         req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
263
264         /*
265          * head injection *required* here otherwise quiesce won't work
266          */
267         blk_execute_rq(req->q, NULL, req, 1);
268
269         /*
270          * Some devices (USB mass-storage in particular) may transfer
271          * garbage data together with a residue indicating that the data
272          * is invalid.  Prevent the garbage from being misinterpreted
273          * and prevent security leaks by zeroing out the excess data.
274          */
275         if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
276                 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
277
278         if (resid)
279                 *resid = rq->resid_len;
280         if (sense && rq->sense_len)
281                 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
282         if (sshdr)
283                 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
284         ret = rq->result;
285  out:
286         blk_put_request(req);
287
288         return ret;
289 }
290 EXPORT_SYMBOL(scsi_execute);
291
292 /*
293  * Function:    scsi_init_cmd_errh()
294  *
295  * Purpose:     Initialize cmd fields related to error handling.
296  *
297  * Arguments:   cmd     - command that is ready to be queued.
298  *
299  * Notes:       This function has the job of initializing a number of
300  *              fields related to error handling.   Typically this will
301  *              be called once for each command, as required.
302  */
303 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
304 {
305         cmd->serial_number = 0;
306         scsi_set_resid(cmd, 0);
307         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
308         if (cmd->cmd_len == 0)
309                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
310 }
311
312 void scsi_device_unbusy(struct scsi_device *sdev)
313 {
314         struct Scsi_Host *shost = sdev->host;
315         struct scsi_target *starget = scsi_target(sdev);
316         unsigned long flags;
317
318         atomic_dec(&shost->host_busy);
319         if (starget->can_queue > 0)
320                 atomic_dec(&starget->target_busy);
321
322         if (unlikely(scsi_host_in_recovery(shost) &&
323                      (shost->host_failed || shost->host_eh_scheduled))) {
324                 spin_lock_irqsave(shost->host_lock, flags);
325                 scsi_eh_wakeup(shost);
326                 spin_unlock_irqrestore(shost->host_lock, flags);
327         }
328
329         atomic_dec(&sdev->device_busy);
330 }
331
332 static void scsi_kick_queue(struct request_queue *q)
333 {
334         if (q->mq_ops)
335                 blk_mq_start_hw_queues(q);
336         else
337                 blk_run_queue(q);
338 }
339
340 /*
341  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
342  * and call blk_run_queue for all the scsi_devices on the target -
343  * including current_sdev first.
344  *
345  * Called with *no* scsi locks held.
346  */
347 static void scsi_single_lun_run(struct scsi_device *current_sdev)
348 {
349         struct Scsi_Host *shost = current_sdev->host;
350         struct scsi_device *sdev, *tmp;
351         struct scsi_target *starget = scsi_target(current_sdev);
352         unsigned long flags;
353
354         spin_lock_irqsave(shost->host_lock, flags);
355         starget->starget_sdev_user = NULL;
356         spin_unlock_irqrestore(shost->host_lock, flags);
357
358         /*
359          * Call blk_run_queue for all LUNs on the target, starting with
360          * current_sdev. We race with others (to set starget_sdev_user),
361          * but in most cases, we will be first. Ideally, each LU on the
362          * target would get some limited time or requests on the target.
363          */
364         scsi_kick_queue(current_sdev->request_queue);
365
366         spin_lock_irqsave(shost->host_lock, flags);
367         if (starget->starget_sdev_user)
368                 goto out;
369         list_for_each_entry_safe(sdev, tmp, &starget->devices,
370                         same_target_siblings) {
371                 if (sdev == current_sdev)
372                         continue;
373                 if (scsi_device_get(sdev))
374                         continue;
375
376                 spin_unlock_irqrestore(shost->host_lock, flags);
377                 scsi_kick_queue(sdev->request_queue);
378                 spin_lock_irqsave(shost->host_lock, flags);
379         
380                 scsi_device_put(sdev);
381         }
382  out:
383         spin_unlock_irqrestore(shost->host_lock, flags);
384 }
385
386 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
387 {
388         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
389                 return true;
390         if (atomic_read(&sdev->device_blocked) > 0)
391                 return true;
392         return false;
393 }
394
395 static inline bool scsi_target_is_busy(struct scsi_target *starget)
396 {
397         if (starget->can_queue > 0) {
398                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
399                         return true;
400                 if (atomic_read(&starget->target_blocked) > 0)
401                         return true;
402         }
403         return false;
404 }
405
406 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
407 {
408         if (shost->can_queue > 0 &&
409             atomic_read(&shost->host_busy) >= shost->can_queue)
410                 return true;
411         if (atomic_read(&shost->host_blocked) > 0)
412                 return true;
413         if (shost->host_self_blocked)
414                 return true;
415         return false;
416 }
417
418 static void scsi_starved_list_run(struct Scsi_Host *shost)
419 {
420         LIST_HEAD(starved_list);
421         struct scsi_device *sdev;
422         unsigned long flags;
423
424         spin_lock_irqsave(shost->host_lock, flags);
425         list_splice_init(&shost->starved_list, &starved_list);
426
427         while (!list_empty(&starved_list)) {
428                 struct request_queue *slq;
429
430                 /*
431                  * As long as shost is accepting commands and we have
432                  * starved queues, call blk_run_queue. scsi_request_fn
433                  * drops the queue_lock and can add us back to the
434                  * starved_list.
435                  *
436                  * host_lock protects the starved_list and starved_entry.
437                  * scsi_request_fn must get the host_lock before checking
438                  * or modifying starved_list or starved_entry.
439                  */
440                 if (scsi_host_is_busy(shost))
441                         break;
442
443                 sdev = list_entry(starved_list.next,
444                                   struct scsi_device, starved_entry);
445                 list_del_init(&sdev->starved_entry);
446                 if (scsi_target_is_busy(scsi_target(sdev))) {
447                         list_move_tail(&sdev->starved_entry,
448                                        &shost->starved_list);
449                         continue;
450                 }
451
452                 /*
453                  * Once we drop the host lock, a racing scsi_remove_device()
454                  * call may remove the sdev from the starved list and destroy
455                  * it and the queue.  Mitigate by taking a reference to the
456                  * queue and never touching the sdev again after we drop the
457                  * host lock.  Note: if __scsi_remove_device() invokes
458                  * blk_cleanup_queue() before the queue is run from this
459                  * function then blk_run_queue() will return immediately since
460                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
461                  */
462                 slq = sdev->request_queue;
463                 if (!blk_get_queue(slq))
464                         continue;
465                 spin_unlock_irqrestore(shost->host_lock, flags);
466
467                 scsi_kick_queue(slq);
468                 blk_put_queue(slq);
469
470                 spin_lock_irqsave(shost->host_lock, flags);
471         }
472         /* put any unprocessed entries back */
473         list_splice(&starved_list, &shost->starved_list);
474         spin_unlock_irqrestore(shost->host_lock, flags);
475 }
476
477 /*
478  * Function:   scsi_run_queue()
479  *
480  * Purpose:    Select a proper request queue to serve next
481  *
482  * Arguments:  q       - last request's queue
483  *
484  * Returns:     Nothing
485  *
486  * Notes:      The previous command was completely finished, start
487  *             a new one if possible.
488  */
489 static void scsi_run_queue(struct request_queue *q)
490 {
491         struct scsi_device *sdev = q->queuedata;
492
493         if (scsi_target(sdev)->single_lun)
494                 scsi_single_lun_run(sdev);
495         if (!list_empty(&sdev->host->starved_list))
496                 scsi_starved_list_run(sdev->host);
497
498         if (q->mq_ops)
499                 blk_mq_run_hw_queues(q, false);
500         else
501                 blk_run_queue(q);
502 }
503
504 void scsi_requeue_run_queue(struct work_struct *work)
505 {
506         struct scsi_device *sdev;
507         struct request_queue *q;
508
509         sdev = container_of(work, struct scsi_device, requeue_work);
510         q = sdev->request_queue;
511         scsi_run_queue(q);
512 }
513
514 /*
515  * Function:    scsi_requeue_command()
516  *
517  * Purpose:     Handle post-processing of completed commands.
518  *
519  * Arguments:   q       - queue to operate on
520  *              cmd     - command that may need to be requeued.
521  *
522  * Returns:     Nothing
523  *
524  * Notes:       After command completion, there may be blocks left
525  *              over which weren't finished by the previous command
526  *              this can be for a number of reasons - the main one is
527  *              I/O errors in the middle of the request, in which case
528  *              we need to request the blocks that come after the bad
529  *              sector.
530  * Notes:       Upon return, cmd is a stale pointer.
531  */
532 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
533 {
534         struct scsi_device *sdev = cmd->device;
535         struct request *req = cmd->request;
536         unsigned long flags;
537
538         spin_lock_irqsave(q->queue_lock, flags);
539         blk_unprep_request(req);
540         req->special = NULL;
541         scsi_put_command(cmd);
542         blk_requeue_request(q, req);
543         spin_unlock_irqrestore(q->queue_lock, flags);
544
545         scsi_run_queue(q);
546
547         put_device(&sdev->sdev_gendev);
548 }
549
550 void scsi_run_host_queues(struct Scsi_Host *shost)
551 {
552         struct scsi_device *sdev;
553
554         shost_for_each_device(sdev, shost)
555                 scsi_run_queue(sdev->request_queue);
556 }
557
558 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
559 {
560         if (!blk_rq_is_passthrough(cmd->request)) {
561                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
562
563                 if (drv->uninit_command)
564                         drv->uninit_command(cmd);
565         }
566 }
567
568 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
569 {
570         struct scsi_data_buffer *sdb;
571
572         if (cmd->sdb.table.nents)
573                 sg_free_table_chained(&cmd->sdb.table, true);
574         if (cmd->request->next_rq) {
575                 sdb = cmd->request->next_rq->special;
576                 if (sdb)
577                         sg_free_table_chained(&sdb->table, true);
578         }
579         if (scsi_prot_sg_count(cmd))
580                 sg_free_table_chained(&cmd->prot_sdb->table, true);
581 }
582
583 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
584 {
585         struct scsi_device *sdev = cmd->device;
586         struct Scsi_Host *shost = sdev->host;
587         unsigned long flags;
588
589         scsi_mq_free_sgtables(cmd);
590         scsi_uninit_cmd(cmd);
591
592         if (shost->use_cmd_list) {
593                 BUG_ON(list_empty(&cmd->list));
594                 spin_lock_irqsave(&sdev->list_lock, flags);
595                 list_del_init(&cmd->list);
596                 spin_unlock_irqrestore(&sdev->list_lock, flags);
597         }
598 }
599
600 /*
601  * Function:    scsi_release_buffers()
602  *
603  * Purpose:     Free resources allocate for a scsi_command.
604  *
605  * Arguments:   cmd     - command that we are bailing.
606  *
607  * Lock status: Assumed that no lock is held upon entry.
608  *
609  * Returns:     Nothing
610  *
611  * Notes:       In the event that an upper level driver rejects a
612  *              command, we must release resources allocated during
613  *              the __init_io() function.  Primarily this would involve
614  *              the scatter-gather table.
615  */
616 static void scsi_release_buffers(struct scsi_cmnd *cmd)
617 {
618         if (cmd->sdb.table.nents)
619                 sg_free_table_chained(&cmd->sdb.table, false);
620
621         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
622
623         if (scsi_prot_sg_count(cmd))
624                 sg_free_table_chained(&cmd->prot_sdb->table, false);
625 }
626
627 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
628 {
629         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
630
631         sg_free_table_chained(&bidi_sdb->table, false);
632         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
633         cmd->request->next_rq->special = NULL;
634 }
635
636 static bool scsi_end_request(struct request *req, int error,
637                 unsigned int bytes, unsigned int bidi_bytes)
638 {
639         struct scsi_cmnd *cmd = req->special;
640         struct scsi_device *sdev = cmd->device;
641         struct request_queue *q = sdev->request_queue;
642
643         if (blk_update_request(req, error, bytes))
644                 return true;
645
646         /* Bidi request must be completed as a whole */
647         if (unlikely(bidi_bytes) &&
648             blk_update_request(req->next_rq, error, bidi_bytes))
649                 return true;
650
651         if (blk_queue_add_random(q))
652                 add_disk_randomness(req->rq_disk);
653
654         if (req->mq_ctx) {
655                 /*
656                  * In the MQ case the command gets freed by __blk_mq_end_request,
657                  * so we have to do all cleanup that depends on it earlier.
658                  *
659                  * We also can't kick the queues from irq context, so we
660                  * will have to defer it to a workqueue.
661                  */
662                 scsi_mq_uninit_cmd(cmd);
663
664                 __blk_mq_end_request(req, error);
665
666                 if (scsi_target(sdev)->single_lun ||
667                     !list_empty(&sdev->host->starved_list))
668                         kblockd_schedule_work(&sdev->requeue_work);
669                 else
670                         blk_mq_run_hw_queues(q, true);
671         } else {
672                 unsigned long flags;
673
674                 if (bidi_bytes)
675                         scsi_release_bidi_buffers(cmd);
676                 scsi_release_buffers(cmd);
677                 scsi_put_command(cmd);
678
679                 spin_lock_irqsave(q->queue_lock, flags);
680                 blk_finish_request(req, error);
681                 spin_unlock_irqrestore(q->queue_lock, flags);
682
683                 scsi_run_queue(q);
684         }
685
686         put_device(&sdev->sdev_gendev);
687         return false;
688 }
689
690 /**
691  * __scsi_error_from_host_byte - translate SCSI error code into errno
692  * @cmd:        SCSI command (unused)
693  * @result:     scsi error code
694  *
695  * Translate SCSI error code into standard UNIX errno.
696  * Return values:
697  * -ENOLINK     temporary transport failure
698  * -EREMOTEIO   permanent target failure, do not retry
699  * -EBADE       permanent nexus failure, retry on other path
700  * -ENOSPC      No write space available
701  * -ENODATA     Medium error
702  * -EIO         unspecified I/O error
703  */
704 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
705 {
706         int error = 0;
707
708         switch(host_byte(result)) {
709         case DID_TRANSPORT_FAILFAST:
710                 error = -ENOLINK;
711                 break;
712         case DID_TARGET_FAILURE:
713                 set_host_byte(cmd, DID_OK);
714                 error = -EREMOTEIO;
715                 break;
716         case DID_NEXUS_FAILURE:
717                 set_host_byte(cmd, DID_OK);
718                 error = -EBADE;
719                 break;
720         case DID_ALLOC_FAILURE:
721                 set_host_byte(cmd, DID_OK);
722                 error = -ENOSPC;
723                 break;
724         case DID_MEDIUM_ERROR:
725                 set_host_byte(cmd, DID_OK);
726                 error = -ENODATA;
727                 break;
728         default:
729                 error = -EIO;
730                 break;
731         }
732
733         return error;
734 }
735
736 /*
737  * Function:    scsi_io_completion()
738  *
739  * Purpose:     Completion processing for block device I/O requests.
740  *
741  * Arguments:   cmd   - command that is finished.
742  *
743  * Lock status: Assumed that no lock is held upon entry.
744  *
745  * Returns:     Nothing
746  *
747  * Notes:       We will finish off the specified number of sectors.  If we
748  *              are done, the command block will be released and the queue
749  *              function will be goosed.  If we are not done then we have to
750  *              figure out what to do next:
751  *
752  *              a) We can call scsi_requeue_command().  The request
753  *                 will be unprepared and put back on the queue.  Then
754  *                 a new command will be created for it.  This should
755  *                 be used if we made forward progress, or if we want
756  *                 to switch from READ(10) to READ(6) for example.
757  *
758  *              b) We can call __scsi_queue_insert().  The request will
759  *                 be put back on the queue and retried using the same
760  *                 command as before, possibly after a delay.
761  *
762  *              c) We can call scsi_end_request() with -EIO to fail
763  *                 the remainder of the request.
764  */
765 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
766 {
767         int result = cmd->result;
768         struct request_queue *q = cmd->device->request_queue;
769         struct request *req = cmd->request;
770         int error = 0;
771         struct scsi_sense_hdr sshdr;
772         bool sense_valid = false;
773         int sense_deferred = 0, level = 0;
774         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
775               ACTION_DELAYED_RETRY} action;
776         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
777
778         if (result) {
779                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
780                 if (sense_valid)
781                         sense_deferred = scsi_sense_is_deferred(&sshdr);
782         }
783
784         if (blk_rq_is_passthrough(req)) {
785                 if (result) {
786                         if (sense_valid) {
787                                 /*
788                                  * SG_IO wants current and deferred errors
789                                  */
790                                 scsi_req(req)->sense_len =
791                                         min(8 + cmd->sense_buffer[7],
792                                             SCSI_SENSE_BUFFERSIZE);
793                         }
794                         if (!sense_deferred)
795                                 error = __scsi_error_from_host_byte(cmd, result);
796                 }
797                 /*
798                  * __scsi_error_from_host_byte may have reset the host_byte
799                  */
800                 scsi_req(req)->result = cmd->result;
801                 scsi_req(req)->resid_len = scsi_get_resid(cmd);
802
803                 if (scsi_bidi_cmnd(cmd)) {
804                         /*
805                          * Bidi commands Must be complete as a whole,
806                          * both sides at once.
807                          */
808                         scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
809                         if (scsi_end_request(req, 0, blk_rq_bytes(req),
810                                         blk_rq_bytes(req->next_rq)))
811                                 BUG();
812                         return;
813                 }
814         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
815                 /*
816                  * Flush commands do not transfers any data, and thus cannot use
817                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
818                  * This sets the error explicitly for the problem case.
819                  */
820                 error = __scsi_error_from_host_byte(cmd, result);
821         }
822
823         /* no bidi support for !blk_rq_is_passthrough yet */
824         BUG_ON(blk_bidi_rq(req));
825
826         /*
827          * Next deal with any sectors which we were able to correctly
828          * handle.
829          */
830         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
831                 "%u sectors total, %d bytes done.\n",
832                 blk_rq_sectors(req), good_bytes));
833
834         /*
835          * Recovered errors need reporting, but they're always treated as
836          * success, so fiddle the result code here.  For passthrough requests
837          * we already took a copy of the original into sreq->result which
838          * is what gets returned to the user
839          */
840         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
841                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
842                  * print since caller wants ATA registers. Only occurs on
843                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
844                  */
845                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
846                         ;
847                 else if (!(req->rq_flags & RQF_QUIET))
848                         scsi_print_sense(cmd);
849                 result = 0;
850                 /* for passthrough error may be set */
851                 error = 0;
852         }
853
854         /*
855          * special case: failed zero length commands always need to
856          * drop down into the retry code. Otherwise, if we finished
857          * all bytes in the request we are done now.
858          */
859         if (!(blk_rq_bytes(req) == 0 && error) &&
860             !scsi_end_request(req, error, good_bytes, 0))
861                 return;
862
863         /*
864          * Kill remainder if no retrys.
865          */
866         if (error && scsi_noretry_cmd(cmd)) {
867                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
868                         BUG();
869                 return;
870         }
871
872         /*
873          * If there had been no error, but we have leftover bytes in the
874          * requeues just queue the command up again.
875          */
876         if (result == 0)
877                 goto requeue;
878
879         error = __scsi_error_from_host_byte(cmd, result);
880
881         if (host_byte(result) == DID_RESET) {
882                 /* Third party bus reset or reset for error recovery
883                  * reasons.  Just retry the command and see what
884                  * happens.
885                  */
886                 action = ACTION_RETRY;
887         } else if (sense_valid && !sense_deferred) {
888                 switch (sshdr.sense_key) {
889                 case UNIT_ATTENTION:
890                         if (cmd->device->removable) {
891                                 /* Detected disc change.  Set a bit
892                                  * and quietly refuse further access.
893                                  */
894                                 cmd->device->changed = 1;
895                                 action = ACTION_FAIL;
896                         } else {
897                                 /* Must have been a power glitch, or a
898                                  * bus reset.  Could not have been a
899                                  * media change, so we just retry the
900                                  * command and see what happens.
901                                  */
902                                 action = ACTION_RETRY;
903                         }
904                         break;
905                 case ILLEGAL_REQUEST:
906                         /* If we had an ILLEGAL REQUEST returned, then
907                          * we may have performed an unsupported
908                          * command.  The only thing this should be
909                          * would be a ten byte read where only a six
910                          * byte read was supported.  Also, on a system
911                          * where READ CAPACITY failed, we may have
912                          * read past the end of the disk.
913                          */
914                         if ((cmd->device->use_10_for_rw &&
915                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
916                             (cmd->cmnd[0] == READ_10 ||
917                              cmd->cmnd[0] == WRITE_10)) {
918                                 /* This will issue a new 6-byte command. */
919                                 cmd->device->use_10_for_rw = 0;
920                                 action = ACTION_REPREP;
921                         } else if (sshdr.asc == 0x10) /* DIX */ {
922                                 action = ACTION_FAIL;
923                                 error = -EILSEQ;
924                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
925                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
926                                 action = ACTION_FAIL;
927                                 error = -EREMOTEIO;
928                         } else
929                                 action = ACTION_FAIL;
930                         break;
931                 case ABORTED_COMMAND:
932                         action = ACTION_FAIL;
933                         if (sshdr.asc == 0x10) /* DIF */
934                                 error = -EILSEQ;
935                         break;
936                 case NOT_READY:
937                         /* If the device is in the process of becoming
938                          * ready, or has a temporary blockage, retry.
939                          */
940                         if (sshdr.asc == 0x04) {
941                                 switch (sshdr.ascq) {
942                                 case 0x01: /* becoming ready */
943                                 case 0x04: /* format in progress */
944                                 case 0x05: /* rebuild in progress */
945                                 case 0x06: /* recalculation in progress */
946                                 case 0x07: /* operation in progress */
947                                 case 0x08: /* Long write in progress */
948                                 case 0x09: /* self test in progress */
949                                 case 0x14: /* space allocation in progress */
950                                         action = ACTION_DELAYED_RETRY;
951                                         break;
952                                 default:
953                                         action = ACTION_FAIL;
954                                         break;
955                                 }
956                         } else
957                                 action = ACTION_FAIL;
958                         break;
959                 case VOLUME_OVERFLOW:
960                         /* See SSC3rXX or current. */
961                         action = ACTION_FAIL;
962                         break;
963                 default:
964                         action = ACTION_FAIL;
965                         break;
966                 }
967         } else
968                 action = ACTION_FAIL;
969
970         if (action != ACTION_FAIL &&
971             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
972                 action = ACTION_FAIL;
973
974         switch (action) {
975         case ACTION_FAIL:
976                 /* Give up and fail the remainder of the request */
977                 if (!(req->rq_flags & RQF_QUIET)) {
978                         static DEFINE_RATELIMIT_STATE(_rs,
979                                         DEFAULT_RATELIMIT_INTERVAL,
980                                         DEFAULT_RATELIMIT_BURST);
981
982                         if (unlikely(scsi_logging_level))
983                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
984                                                        SCSI_LOG_MLCOMPLETE_BITS);
985
986                         /*
987                          * if logging is enabled the failure will be printed
988                          * in scsi_log_completion(), so avoid duplicate messages
989                          */
990                         if (!level && __ratelimit(&_rs)) {
991                                 scsi_print_result(cmd, NULL, FAILED);
992                                 if (driver_byte(result) & DRIVER_SENSE)
993                                         scsi_print_sense(cmd);
994                                 scsi_print_command(cmd);
995                         }
996                 }
997                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
998                         return;
999                 /*FALLTHRU*/
1000         case ACTION_REPREP:
1001         requeue:
1002                 /* Unprep the request and put it back at the head of the queue.
1003                  * A new command will be prepared and issued.
1004                  */
1005                 if (q->mq_ops) {
1006                         cmd->request->rq_flags &= ~RQF_DONTPREP;
1007                         scsi_mq_uninit_cmd(cmd);
1008                         scsi_mq_requeue_cmd(cmd);
1009                 } else {
1010                         scsi_release_buffers(cmd);
1011                         scsi_requeue_command(q, cmd);
1012                 }
1013                 break;
1014         case ACTION_RETRY:
1015                 /* Retry the same command immediately */
1016                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1017                 break;
1018         case ACTION_DELAYED_RETRY:
1019                 /* Retry the same command after a delay */
1020                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1021                 break;
1022         }
1023 }
1024
1025 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1026 {
1027         int count;
1028
1029         /*
1030          * If sg table allocation fails, requeue request later.
1031          */
1032         if (unlikely(sg_alloc_table_chained(&sdb->table,
1033                         blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1034                 return BLKPREP_DEFER;
1035
1036         /* 
1037          * Next, walk the list, and fill in the addresses and sizes of
1038          * each segment.
1039          */
1040         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1041         BUG_ON(count > sdb->table.nents);
1042         sdb->table.nents = count;
1043         sdb->length = blk_rq_payload_bytes(req);
1044         return BLKPREP_OK;
1045 }
1046
1047 /*
1048  * Function:    scsi_init_io()
1049  *
1050  * Purpose:     SCSI I/O initialize function.
1051  *
1052  * Arguments:   cmd   - Command descriptor we wish to initialize
1053  *
1054  * Returns:     0 on success
1055  *              BLKPREP_DEFER if the failure is retryable
1056  *              BLKPREP_KILL if the failure is fatal
1057  */
1058 int scsi_init_io(struct scsi_cmnd *cmd)
1059 {
1060         struct scsi_device *sdev = cmd->device;
1061         struct request *rq = cmd->request;
1062         bool is_mq = (rq->mq_ctx != NULL);
1063         int error;
1064
1065         if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1066                 return -EINVAL;
1067
1068         error = scsi_init_sgtable(rq, &cmd->sdb);
1069         if (error)
1070                 goto err_exit;
1071
1072         if (blk_bidi_rq(rq)) {
1073                 if (!rq->q->mq_ops) {
1074                         struct scsi_data_buffer *bidi_sdb =
1075                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1076                         if (!bidi_sdb) {
1077                                 error = BLKPREP_DEFER;
1078                                 goto err_exit;
1079                         }
1080
1081                         rq->next_rq->special = bidi_sdb;
1082                 }
1083
1084                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1085                 if (error)
1086                         goto err_exit;
1087         }
1088
1089         if (blk_integrity_rq(rq)) {
1090                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1091                 int ivecs, count;
1092
1093                 if (prot_sdb == NULL) {
1094                         /*
1095                          * This can happen if someone (e.g. multipath)
1096                          * queues a command to a device on an adapter
1097                          * that does not support DIX.
1098                          */
1099                         WARN_ON_ONCE(1);
1100                         error = BLKPREP_KILL;
1101                         goto err_exit;
1102                 }
1103
1104                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1105
1106                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1107                                 prot_sdb->table.sgl)) {
1108                         error = BLKPREP_DEFER;
1109                         goto err_exit;
1110                 }
1111
1112                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1113                                                 prot_sdb->table.sgl);
1114                 BUG_ON(unlikely(count > ivecs));
1115                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1116
1117                 cmd->prot_sdb = prot_sdb;
1118                 cmd->prot_sdb->table.nents = count;
1119         }
1120
1121         return BLKPREP_OK;
1122 err_exit:
1123         if (is_mq) {
1124                 scsi_mq_free_sgtables(cmd);
1125         } else {
1126                 scsi_release_buffers(cmd);
1127                 cmd->request->special = NULL;
1128                 scsi_put_command(cmd);
1129                 put_device(&sdev->sdev_gendev);
1130         }
1131         return error;
1132 }
1133 EXPORT_SYMBOL(scsi_init_io);
1134
1135 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1136 {
1137         void *buf = cmd->sense_buffer;
1138         void *prot = cmd->prot_sdb;
1139         unsigned long flags;
1140
1141         /* zero out the cmd, except for the embedded scsi_request */
1142         memset((char *)cmd + sizeof(cmd->req), 0,
1143                 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1144
1145         cmd->device = dev;
1146         cmd->sense_buffer = buf;
1147         cmd->prot_sdb = prot;
1148         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1149         cmd->jiffies_at_alloc = jiffies;
1150
1151         spin_lock_irqsave(&dev->list_lock, flags);
1152         list_add_tail(&cmd->list, &dev->cmd_list);
1153         spin_unlock_irqrestore(&dev->list_lock, flags);
1154 }
1155
1156 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1157 {
1158         struct scsi_cmnd *cmd = req->special;
1159
1160         /*
1161          * Passthrough requests may transfer data, in which case they must
1162          * a bio attached to them.  Or they might contain a SCSI command
1163          * that does not transfer data, in which case they may optionally
1164          * submit a request without an attached bio.
1165          */
1166         if (req->bio) {
1167                 int ret = scsi_init_io(cmd);
1168                 if (unlikely(ret))
1169                         return ret;
1170         } else {
1171                 BUG_ON(blk_rq_bytes(req));
1172
1173                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1174         }
1175
1176         cmd->cmd_len = scsi_req(req)->cmd_len;
1177         cmd->cmnd = scsi_req(req)->cmd;
1178         cmd->transfersize = blk_rq_bytes(req);
1179         cmd->allowed = scsi_req(req)->retries;
1180         return BLKPREP_OK;
1181 }
1182
1183 /*
1184  * Setup a normal block command.  These are simple request from filesystems
1185  * that still need to be translated to SCSI CDBs from the ULD.
1186  */
1187 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1188 {
1189         struct scsi_cmnd *cmd = req->special;
1190
1191         if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1192                 int ret = sdev->handler->prep_fn(sdev, req);
1193                 if (ret != BLKPREP_OK)
1194                         return ret;
1195         }
1196
1197         cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1198         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1199         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1200 }
1201
1202 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1203 {
1204         struct scsi_cmnd *cmd = req->special;
1205
1206         if (!blk_rq_bytes(req))
1207                 cmd->sc_data_direction = DMA_NONE;
1208         else if (rq_data_dir(req) == WRITE)
1209                 cmd->sc_data_direction = DMA_TO_DEVICE;
1210         else
1211                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1212
1213         if (blk_rq_is_scsi(req))
1214                 return scsi_setup_scsi_cmnd(sdev, req);
1215         else
1216                 return scsi_setup_fs_cmnd(sdev, req);
1217 }
1218
1219 static int
1220 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1221 {
1222         int ret = BLKPREP_OK;
1223
1224         /*
1225          * If the device is not in running state we will reject some
1226          * or all commands.
1227          */
1228         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1229                 switch (sdev->sdev_state) {
1230                 case SDEV_OFFLINE:
1231                 case SDEV_TRANSPORT_OFFLINE:
1232                         /*
1233                          * If the device is offline we refuse to process any
1234                          * commands.  The device must be brought online
1235                          * before trying any recovery commands.
1236                          */
1237                         sdev_printk(KERN_ERR, sdev,
1238                                     "rejecting I/O to offline device\n");
1239                         ret = BLKPREP_KILL;
1240                         break;
1241                 case SDEV_DEL:
1242                         /*
1243                          * If the device is fully deleted, we refuse to
1244                          * process any commands as well.
1245                          */
1246                         sdev_printk(KERN_ERR, sdev,
1247                                     "rejecting I/O to dead device\n");
1248                         ret = BLKPREP_KILL;
1249                         break;
1250                 case SDEV_BLOCK:
1251                 case SDEV_CREATED_BLOCK:
1252                         ret = BLKPREP_DEFER;
1253                         break;
1254                 case SDEV_QUIESCE:
1255                         /*
1256                          * If the devices is blocked we defer normal commands.
1257                          */
1258                         if (!(req->rq_flags & RQF_PREEMPT))
1259                                 ret = BLKPREP_DEFER;
1260                         break;
1261                 default:
1262                         /*
1263                          * For any other not fully online state we only allow
1264                          * special commands.  In particular any user initiated
1265                          * command is not allowed.
1266                          */
1267                         if (!(req->rq_flags & RQF_PREEMPT))
1268                                 ret = BLKPREP_KILL;
1269                         break;
1270                 }
1271         }
1272         return ret;
1273 }
1274
1275 static int
1276 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1277 {
1278         struct scsi_device *sdev = q->queuedata;
1279
1280         switch (ret) {
1281         case BLKPREP_KILL:
1282         case BLKPREP_INVALID:
1283                 scsi_req(req)->result = DID_NO_CONNECT << 16;
1284                 /* release the command and kill it */
1285                 if (req->special) {
1286                         struct scsi_cmnd *cmd = req->special;
1287                         scsi_release_buffers(cmd);
1288                         scsi_put_command(cmd);
1289                         put_device(&sdev->sdev_gendev);
1290                         req->special = NULL;
1291                 }
1292                 break;
1293         case BLKPREP_DEFER:
1294                 /*
1295                  * If we defer, the blk_peek_request() returns NULL, but the
1296                  * queue must be restarted, so we schedule a callback to happen
1297                  * shortly.
1298                  */
1299                 if (atomic_read(&sdev->device_busy) == 0)
1300                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1301                 break;
1302         default:
1303                 req->rq_flags |= RQF_DONTPREP;
1304         }
1305
1306         return ret;
1307 }
1308
1309 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1310 {
1311         struct scsi_device *sdev = q->queuedata;
1312         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1313         int ret;
1314
1315         ret = scsi_prep_state_check(sdev, req);
1316         if (ret != BLKPREP_OK)
1317                 goto out;
1318
1319         if (!req->special) {
1320                 /* Bail if we can't get a reference to the device */
1321                 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1322                         ret = BLKPREP_DEFER;
1323                         goto out;
1324                 }
1325
1326                 scsi_init_command(sdev, cmd);
1327                 req->special = cmd;
1328         }
1329
1330         cmd->tag = req->tag;
1331         cmd->request = req;
1332         cmd->prot_op = SCSI_PROT_NORMAL;
1333
1334         ret = scsi_setup_cmnd(sdev, req);
1335 out:
1336         return scsi_prep_return(q, req, ret);
1337 }
1338
1339 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1340 {
1341         scsi_uninit_cmd(req->special);
1342 }
1343
1344 /*
1345  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1346  * return 0.
1347  *
1348  * Called with the queue_lock held.
1349  */
1350 static inline int scsi_dev_queue_ready(struct request_queue *q,
1351                                   struct scsi_device *sdev)
1352 {
1353         unsigned int busy;
1354
1355         busy = atomic_inc_return(&sdev->device_busy) - 1;
1356         if (atomic_read(&sdev->device_blocked)) {
1357                 if (busy)
1358                         goto out_dec;
1359
1360                 /*
1361                  * unblock after device_blocked iterates to zero
1362                  */
1363                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1364                         /*
1365                          * For the MQ case we take care of this in the caller.
1366                          */
1367                         if (!q->mq_ops)
1368                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1369                         goto out_dec;
1370                 }
1371                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1372                                    "unblocking device at zero depth\n"));
1373         }
1374
1375         if (busy >= sdev->queue_depth)
1376                 goto out_dec;
1377
1378         return 1;
1379 out_dec:
1380         atomic_dec(&sdev->device_busy);
1381         return 0;
1382 }
1383
1384 /*
1385  * scsi_target_queue_ready: checks if there we can send commands to target
1386  * @sdev: scsi device on starget to check.
1387  */
1388 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1389                                            struct scsi_device *sdev)
1390 {
1391         struct scsi_target *starget = scsi_target(sdev);
1392         unsigned int busy;
1393
1394         if (starget->single_lun) {
1395                 spin_lock_irq(shost->host_lock);
1396                 if (starget->starget_sdev_user &&
1397                     starget->starget_sdev_user != sdev) {
1398                         spin_unlock_irq(shost->host_lock);
1399                         return 0;
1400                 }
1401                 starget->starget_sdev_user = sdev;
1402                 spin_unlock_irq(shost->host_lock);
1403         }
1404
1405         if (starget->can_queue <= 0)
1406                 return 1;
1407
1408         busy = atomic_inc_return(&starget->target_busy) - 1;
1409         if (atomic_read(&starget->target_blocked) > 0) {
1410                 if (busy)
1411                         goto starved;
1412
1413                 /*
1414                  * unblock after target_blocked iterates to zero
1415                  */
1416                 if (atomic_dec_return(&starget->target_blocked) > 0)
1417                         goto out_dec;
1418
1419                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1420                                  "unblocking target at zero depth\n"));
1421         }
1422
1423         if (busy >= starget->can_queue)
1424                 goto starved;
1425
1426         return 1;
1427
1428 starved:
1429         spin_lock_irq(shost->host_lock);
1430         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1431         spin_unlock_irq(shost->host_lock);
1432 out_dec:
1433         if (starget->can_queue > 0)
1434                 atomic_dec(&starget->target_busy);
1435         return 0;
1436 }
1437
1438 /*
1439  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1440  * return 0. We must end up running the queue again whenever 0 is
1441  * returned, else IO can hang.
1442  */
1443 static inline int scsi_host_queue_ready(struct request_queue *q,
1444                                    struct Scsi_Host *shost,
1445                                    struct scsi_device *sdev)
1446 {
1447         unsigned int busy;
1448
1449         if (scsi_host_in_recovery(shost))
1450                 return 0;
1451
1452         busy = atomic_inc_return(&shost->host_busy) - 1;
1453         if (atomic_read(&shost->host_blocked) > 0) {
1454                 if (busy)
1455                         goto starved;
1456
1457                 /*
1458                  * unblock after host_blocked iterates to zero
1459                  */
1460                 if (atomic_dec_return(&shost->host_blocked) > 0)
1461                         goto out_dec;
1462
1463                 SCSI_LOG_MLQUEUE(3,
1464                         shost_printk(KERN_INFO, shost,
1465                                      "unblocking host at zero depth\n"));
1466         }
1467
1468         if (shost->can_queue > 0 && busy >= shost->can_queue)
1469                 goto starved;
1470         if (shost->host_self_blocked)
1471                 goto starved;
1472
1473         /* We're OK to process the command, so we can't be starved */
1474         if (!list_empty(&sdev->starved_entry)) {
1475                 spin_lock_irq(shost->host_lock);
1476                 if (!list_empty(&sdev->starved_entry))
1477                         list_del_init(&sdev->starved_entry);
1478                 spin_unlock_irq(shost->host_lock);
1479         }
1480
1481         return 1;
1482
1483 starved:
1484         spin_lock_irq(shost->host_lock);
1485         if (list_empty(&sdev->starved_entry))
1486                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1487         spin_unlock_irq(shost->host_lock);
1488 out_dec:
1489         atomic_dec(&shost->host_busy);
1490         return 0;
1491 }
1492
1493 /*
1494  * Busy state exporting function for request stacking drivers.
1495  *
1496  * For efficiency, no lock is taken to check the busy state of
1497  * shost/starget/sdev, since the returned value is not guaranteed and
1498  * may be changed after request stacking drivers call the function,
1499  * regardless of taking lock or not.
1500  *
1501  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1502  * needs to return 'not busy'. Otherwise, request stacking drivers
1503  * may hold requests forever.
1504  */
1505 static int scsi_lld_busy(struct request_queue *q)
1506 {
1507         struct scsi_device *sdev = q->queuedata;
1508         struct Scsi_Host *shost;
1509
1510         if (blk_queue_dying(q))
1511                 return 0;
1512
1513         shost = sdev->host;
1514
1515         /*
1516          * Ignore host/starget busy state.
1517          * Since block layer does not have a concept of fairness across
1518          * multiple queues, congestion of host/starget needs to be handled
1519          * in SCSI layer.
1520          */
1521         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1522                 return 1;
1523
1524         return 0;
1525 }
1526
1527 /*
1528  * Kill a request for a dead device
1529  */
1530 static void scsi_kill_request(struct request *req, struct request_queue *q)
1531 {
1532         struct scsi_cmnd *cmd = req->special;
1533         struct scsi_device *sdev;
1534         struct scsi_target *starget;
1535         struct Scsi_Host *shost;
1536
1537         blk_start_request(req);
1538
1539         scmd_printk(KERN_INFO, cmd, "killing request\n");
1540
1541         sdev = cmd->device;
1542         starget = scsi_target(sdev);
1543         shost = sdev->host;
1544         scsi_init_cmd_errh(cmd);
1545         cmd->result = DID_NO_CONNECT << 16;
1546         atomic_inc(&cmd->device->iorequest_cnt);
1547
1548         /*
1549          * SCSI request completion path will do scsi_device_unbusy(),
1550          * bump busy counts.  To bump the counters, we need to dance
1551          * with the locks as normal issue path does.
1552          */
1553         atomic_inc(&sdev->device_busy);
1554         atomic_inc(&shost->host_busy);
1555         if (starget->can_queue > 0)
1556                 atomic_inc(&starget->target_busy);
1557
1558         blk_complete_request(req);
1559 }
1560
1561 static void scsi_softirq_done(struct request *rq)
1562 {
1563         struct scsi_cmnd *cmd = rq->special;
1564         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1565         int disposition;
1566
1567         INIT_LIST_HEAD(&cmd->eh_entry);
1568
1569         atomic_inc(&cmd->device->iodone_cnt);
1570         if (cmd->result)
1571                 atomic_inc(&cmd->device->ioerr_cnt);
1572
1573         disposition = scsi_decide_disposition(cmd);
1574         if (disposition != SUCCESS &&
1575             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1576                 sdev_printk(KERN_ERR, cmd->device,
1577                             "timing out command, waited %lus\n",
1578                             wait_for/HZ);
1579                 disposition = SUCCESS;
1580         }
1581
1582         scsi_log_completion(cmd, disposition);
1583
1584         switch (disposition) {
1585                 case SUCCESS:
1586                         scsi_finish_command(cmd);
1587                         break;
1588                 case NEEDS_RETRY:
1589                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1590                         break;
1591                 case ADD_TO_MLQUEUE:
1592                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1593                         break;
1594                 default:
1595                         if (!scsi_eh_scmd_add(cmd, 0))
1596                                 scsi_finish_command(cmd);
1597         }
1598 }
1599
1600 /**
1601  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1602  * @cmd: command block we are dispatching.
1603  *
1604  * Return: nonzero return request was rejected and device's queue needs to be
1605  * plugged.
1606  */
1607 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1608 {
1609         struct Scsi_Host *host = cmd->device->host;
1610         int rtn = 0;
1611
1612         atomic_inc(&cmd->device->iorequest_cnt);
1613
1614         /* check if the device is still usable */
1615         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1616                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1617                  * returns an immediate error upwards, and signals
1618                  * that the device is no longer present */
1619                 cmd->result = DID_NO_CONNECT << 16;
1620                 goto done;
1621         }
1622
1623         /* Check to see if the scsi lld made this device blocked. */
1624         if (unlikely(scsi_device_blocked(cmd->device))) {
1625                 /*
1626                  * in blocked state, the command is just put back on
1627                  * the device queue.  The suspend state has already
1628                  * blocked the queue so future requests should not
1629                  * occur until the device transitions out of the
1630                  * suspend state.
1631                  */
1632                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1633                         "queuecommand : device blocked\n"));
1634                 return SCSI_MLQUEUE_DEVICE_BUSY;
1635         }
1636
1637         /* Store the LUN value in cmnd, if needed. */
1638         if (cmd->device->lun_in_cdb)
1639                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1640                                (cmd->device->lun << 5 & 0xe0);
1641
1642         scsi_log_send(cmd);
1643
1644         /*
1645          * Before we queue this command, check if the command
1646          * length exceeds what the host adapter can handle.
1647          */
1648         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1649                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1650                                "queuecommand : command too long. "
1651                                "cdb_size=%d host->max_cmd_len=%d\n",
1652                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1653                 cmd->result = (DID_ABORT << 16);
1654                 goto done;
1655         }
1656
1657         if (unlikely(host->shost_state == SHOST_DEL)) {
1658                 cmd->result = (DID_NO_CONNECT << 16);
1659                 goto done;
1660
1661         }
1662
1663         trace_scsi_dispatch_cmd_start(cmd);
1664         rtn = host->hostt->queuecommand(host, cmd);
1665         if (rtn) {
1666                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1667                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1668                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1669                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1670
1671                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1672                         "queuecommand : request rejected\n"));
1673         }
1674
1675         return rtn;
1676  done:
1677         cmd->scsi_done(cmd);
1678         return 0;
1679 }
1680
1681 /**
1682  * scsi_done - Invoke completion on finished SCSI command.
1683  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1684  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1685  *
1686  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1687  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1688  * calls blk_complete_request() for further processing.
1689  *
1690  * This function is interrupt context safe.
1691  */
1692 static void scsi_done(struct scsi_cmnd *cmd)
1693 {
1694         trace_scsi_dispatch_cmd_done(cmd);
1695         blk_complete_request(cmd->request);
1696 }
1697
1698 /*
1699  * Function:    scsi_request_fn()
1700  *
1701  * Purpose:     Main strategy routine for SCSI.
1702  *
1703  * Arguments:   q       - Pointer to actual queue.
1704  *
1705  * Returns:     Nothing
1706  *
1707  * Lock status: IO request lock assumed to be held when called.
1708  */
1709 static void scsi_request_fn(struct request_queue *q)
1710         __releases(q->queue_lock)
1711         __acquires(q->queue_lock)
1712 {
1713         struct scsi_device *sdev = q->queuedata;
1714         struct Scsi_Host *shost;
1715         struct scsi_cmnd *cmd;
1716         struct request *req;
1717
1718         /*
1719          * To start with, we keep looping until the queue is empty, or until
1720          * the host is no longer able to accept any more requests.
1721          */
1722         shost = sdev->host;
1723         for (;;) {
1724                 int rtn;
1725                 /*
1726                  * get next queueable request.  We do this early to make sure
1727                  * that the request is fully prepared even if we cannot
1728                  * accept it.
1729                  */
1730                 req = blk_peek_request(q);
1731                 if (!req)
1732                         break;
1733
1734                 if (unlikely(!scsi_device_online(sdev))) {
1735                         sdev_printk(KERN_ERR, sdev,
1736                                     "rejecting I/O to offline device\n");
1737                         scsi_kill_request(req, q);
1738                         continue;
1739                 }
1740
1741                 if (!scsi_dev_queue_ready(q, sdev))
1742                         break;
1743
1744                 /*
1745                  * Remove the request from the request list.
1746                  */
1747                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1748                         blk_start_request(req);
1749
1750                 spin_unlock_irq(q->queue_lock);
1751                 cmd = req->special;
1752                 if (unlikely(cmd == NULL)) {
1753                         printk(KERN_CRIT "impossible request in %s.\n"
1754                                          "please mail a stack trace to "
1755                                          "linux-scsi@vger.kernel.org\n",
1756                                          __func__);
1757                         blk_dump_rq_flags(req, "foo");
1758                         BUG();
1759                 }
1760
1761                 /*
1762                  * We hit this when the driver is using a host wide
1763                  * tag map. For device level tag maps the queue_depth check
1764                  * in the device ready fn would prevent us from trying
1765                  * to allocate a tag. Since the map is a shared host resource
1766                  * we add the dev to the starved list so it eventually gets
1767                  * a run when a tag is freed.
1768                  */
1769                 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1770                         spin_lock_irq(shost->host_lock);
1771                         if (list_empty(&sdev->starved_entry))
1772                                 list_add_tail(&sdev->starved_entry,
1773                                               &shost->starved_list);
1774                         spin_unlock_irq(shost->host_lock);
1775                         goto not_ready;
1776                 }
1777
1778                 if (!scsi_target_queue_ready(shost, sdev))
1779                         goto not_ready;
1780
1781                 if (!scsi_host_queue_ready(q, shost, sdev))
1782                         goto host_not_ready;
1783         
1784                 if (sdev->simple_tags)
1785                         cmd->flags |= SCMD_TAGGED;
1786                 else
1787                         cmd->flags &= ~SCMD_TAGGED;
1788
1789                 /*
1790                  * Finally, initialize any error handling parameters, and set up
1791                  * the timers for timeouts.
1792                  */
1793                 scsi_init_cmd_errh(cmd);
1794
1795                 /*
1796                  * Dispatch the command to the low-level driver.
1797                  */
1798                 cmd->scsi_done = scsi_done;
1799                 rtn = scsi_dispatch_cmd(cmd);
1800                 if (rtn) {
1801                         scsi_queue_insert(cmd, rtn);
1802                         spin_lock_irq(q->queue_lock);
1803                         goto out_delay;
1804                 }
1805                 spin_lock_irq(q->queue_lock);
1806         }
1807
1808         return;
1809
1810  host_not_ready:
1811         if (scsi_target(sdev)->can_queue > 0)
1812                 atomic_dec(&scsi_target(sdev)->target_busy);
1813  not_ready:
1814         /*
1815          * lock q, handle tag, requeue req, and decrement device_busy. We
1816          * must return with queue_lock held.
1817          *
1818          * Decrementing device_busy without checking it is OK, as all such
1819          * cases (host limits or settings) should run the queue at some
1820          * later time.
1821          */
1822         spin_lock_irq(q->queue_lock);
1823         blk_requeue_request(q, req);
1824         atomic_dec(&sdev->device_busy);
1825 out_delay:
1826         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1827                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1828 }
1829
1830 static inline int prep_to_mq(int ret)
1831 {
1832         switch (ret) {
1833         case BLKPREP_OK:
1834                 return BLK_MQ_RQ_QUEUE_OK;
1835         case BLKPREP_DEFER:
1836                 return BLK_MQ_RQ_QUEUE_BUSY;
1837         default:
1838                 return BLK_MQ_RQ_QUEUE_ERROR;
1839         }
1840 }
1841
1842 static int scsi_mq_prep_fn(struct request *req)
1843 {
1844         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1845         struct scsi_device *sdev = req->q->queuedata;
1846         struct Scsi_Host *shost = sdev->host;
1847         unsigned char *sense_buf = cmd->sense_buffer;
1848         struct scatterlist *sg;
1849
1850         /* zero out the cmd, except for the embedded scsi_request */
1851         memset((char *)cmd + sizeof(cmd->req), 0,
1852                 sizeof(*cmd) - sizeof(cmd->req));
1853
1854         req->special = cmd;
1855
1856         cmd->request = req;
1857         cmd->device = sdev;
1858         cmd->sense_buffer = sense_buf;
1859
1860         cmd->tag = req->tag;
1861
1862         cmd->prot_op = SCSI_PROT_NORMAL;
1863
1864         INIT_LIST_HEAD(&cmd->list);
1865         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1866         cmd->jiffies_at_alloc = jiffies;
1867
1868         if (shost->use_cmd_list) {
1869                 spin_lock_irq(&sdev->list_lock);
1870                 list_add_tail(&cmd->list, &sdev->cmd_list);
1871                 spin_unlock_irq(&sdev->list_lock);
1872         }
1873
1874         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1875         cmd->sdb.table.sgl = sg;
1876
1877         if (scsi_host_get_prot(shost)) {
1878                 cmd->prot_sdb = (void *)sg +
1879                         min_t(unsigned int,
1880                               shost->sg_tablesize, SG_CHUNK_SIZE) *
1881                         sizeof(struct scatterlist);
1882                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1883
1884                 cmd->prot_sdb->table.sgl =
1885                         (struct scatterlist *)(cmd->prot_sdb + 1);
1886         }
1887
1888         if (blk_bidi_rq(req)) {
1889                 struct request *next_rq = req->next_rq;
1890                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1891
1892                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1893                 bidi_sdb->table.sgl =
1894                         (struct scatterlist *)(bidi_sdb + 1);
1895
1896                 next_rq->special = bidi_sdb;
1897         }
1898
1899         blk_mq_start_request(req);
1900
1901         return scsi_setup_cmnd(sdev, req);
1902 }
1903
1904 static void scsi_mq_done(struct scsi_cmnd *cmd)
1905 {
1906         trace_scsi_dispatch_cmd_done(cmd);
1907         blk_mq_complete_request(cmd->request, 0);
1908 }
1909
1910 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1911                          const struct blk_mq_queue_data *bd)
1912 {
1913         struct request *req = bd->rq;
1914         struct request_queue *q = req->q;
1915         struct scsi_device *sdev = q->queuedata;
1916         struct Scsi_Host *shost = sdev->host;
1917         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1918         int ret;
1919         int reason;
1920
1921         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1922         if (ret != BLK_MQ_RQ_QUEUE_OK)
1923                 goto out;
1924
1925         ret = BLK_MQ_RQ_QUEUE_BUSY;
1926         if (!get_device(&sdev->sdev_gendev))
1927                 goto out;
1928
1929         if (!scsi_dev_queue_ready(q, sdev))
1930                 goto out_put_device;
1931         if (!scsi_target_queue_ready(shost, sdev))
1932                 goto out_dec_device_busy;
1933         if (!scsi_host_queue_ready(q, shost, sdev))
1934                 goto out_dec_target_busy;
1935
1936         if (!(req->rq_flags & RQF_DONTPREP)) {
1937                 ret = prep_to_mq(scsi_mq_prep_fn(req));
1938                 if (ret != BLK_MQ_RQ_QUEUE_OK)
1939                         goto out_dec_host_busy;
1940                 req->rq_flags |= RQF_DONTPREP;
1941         } else {
1942                 blk_mq_start_request(req);
1943         }
1944
1945         if (sdev->simple_tags)
1946                 cmd->flags |= SCMD_TAGGED;
1947         else
1948                 cmd->flags &= ~SCMD_TAGGED;
1949
1950         scsi_init_cmd_errh(cmd);
1951         cmd->scsi_done = scsi_mq_done;
1952
1953         reason = scsi_dispatch_cmd(cmd);
1954         if (reason) {
1955                 scsi_set_blocked(cmd, reason);
1956                 ret = BLK_MQ_RQ_QUEUE_BUSY;
1957                 goto out_dec_host_busy;
1958         }
1959
1960         return BLK_MQ_RQ_QUEUE_OK;
1961
1962 out_dec_host_busy:
1963         atomic_dec(&shost->host_busy);
1964 out_dec_target_busy:
1965         if (scsi_target(sdev)->can_queue > 0)
1966                 atomic_dec(&scsi_target(sdev)->target_busy);
1967 out_dec_device_busy:
1968         atomic_dec(&sdev->device_busy);
1969 out_put_device:
1970         put_device(&sdev->sdev_gendev);
1971 out:
1972         switch (ret) {
1973         case BLK_MQ_RQ_QUEUE_BUSY:
1974                 if (atomic_read(&sdev->device_busy) == 0 &&
1975                     !scsi_device_blocked(sdev))
1976                         blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1977                 break;
1978         case BLK_MQ_RQ_QUEUE_ERROR:
1979                 /*
1980                  * Make sure to release all allocated ressources when
1981                  * we hit an error, as we will never see this command
1982                  * again.
1983                  */
1984                 if (req->rq_flags & RQF_DONTPREP)
1985                         scsi_mq_uninit_cmd(cmd);
1986                 break;
1987         default:
1988                 break;
1989         }
1990         return ret;
1991 }
1992
1993 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1994                 bool reserved)
1995 {
1996         if (reserved)
1997                 return BLK_EH_RESET_TIMER;
1998         return scsi_times_out(req);
1999 }
2000
2001 static int scsi_init_request(void *data, struct request *rq,
2002                 unsigned int hctx_idx, unsigned int request_idx,
2003                 unsigned int numa_node)
2004 {
2005         struct Scsi_Host *shost = data;
2006         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2007
2008         cmd->sense_buffer =
2009                 scsi_alloc_sense_buffer(shost, GFP_KERNEL, numa_node);
2010         if (!cmd->sense_buffer)
2011                 return -ENOMEM;
2012         cmd->req.sense = cmd->sense_buffer;
2013         return 0;
2014 }
2015
2016 static void scsi_exit_request(void *data, struct request *rq,
2017                 unsigned int hctx_idx, unsigned int request_idx)
2018 {
2019         struct Scsi_Host *shost = data;
2020         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2021
2022         scsi_free_sense_buffer(shost, cmd->sense_buffer);
2023 }
2024
2025 static int scsi_map_queues(struct blk_mq_tag_set *set)
2026 {
2027         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2028
2029         if (shost->hostt->map_queues)
2030                 return shost->hostt->map_queues(shost);
2031         return blk_mq_map_queues(set);
2032 }
2033
2034 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2035 {
2036         struct device *host_dev;
2037         u64 bounce_limit = 0xffffffff;
2038
2039         if (shost->unchecked_isa_dma)
2040                 return BLK_BOUNCE_ISA;
2041         /*
2042          * Platforms with virtual-DMA translation
2043          * hardware have no practical limit.
2044          */
2045         if (!PCI_DMA_BUS_IS_PHYS)
2046                 return BLK_BOUNCE_ANY;
2047
2048         host_dev = scsi_get_device(shost);
2049         if (host_dev && host_dev->dma_mask)
2050                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2051
2052         return bounce_limit;
2053 }
2054
2055 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2056 {
2057         struct device *dev = shost->dma_dev;
2058
2059         /*
2060          * this limit is imposed by hardware restrictions
2061          */
2062         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2063                                         SG_MAX_SEGMENTS));
2064
2065         if (scsi_host_prot_dma(shost)) {
2066                 shost->sg_prot_tablesize =
2067                         min_not_zero(shost->sg_prot_tablesize,
2068                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2069                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2070                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2071         }
2072
2073         blk_queue_max_hw_sectors(q, shost->max_sectors);
2074         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2075         blk_queue_segment_boundary(q, shost->dma_boundary);
2076         dma_set_seg_boundary(dev, shost->dma_boundary);
2077
2078         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2079
2080         if (!shost->use_clustering)
2081                 q->limits.cluster = 0;
2082
2083         /*
2084          * set a reasonable default alignment on word boundaries: the
2085          * host and device may alter it using
2086          * blk_queue_update_dma_alignment() later.
2087          */
2088         blk_queue_dma_alignment(q, 0x03);
2089 }
2090 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2091
2092 static int scsi_init_rq(struct request_queue *q, struct request *rq, gfp_t gfp)
2093 {
2094         struct Scsi_Host *shost = q->rq_alloc_data;
2095         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2096
2097         memset(cmd, 0, sizeof(*cmd));
2098
2099         cmd->sense_buffer = scsi_alloc_sense_buffer(shost, gfp, NUMA_NO_NODE);
2100         if (!cmd->sense_buffer)
2101                 goto fail;
2102         cmd->req.sense = cmd->sense_buffer;
2103
2104         if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2105                 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2106                 if (!cmd->prot_sdb)
2107                         goto fail_free_sense;
2108         }
2109
2110         return 0;
2111
2112 fail_free_sense:
2113         scsi_free_sense_buffer(shost, cmd->sense_buffer);
2114 fail:
2115         return -ENOMEM;
2116 }
2117
2118 static void scsi_exit_rq(struct request_queue *q, struct request *rq)
2119 {
2120         struct Scsi_Host *shost = q->rq_alloc_data;
2121         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2122
2123         if (cmd->prot_sdb)
2124                 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2125         scsi_free_sense_buffer(shost, cmd->sense_buffer);
2126 }
2127
2128 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2129 {
2130         struct Scsi_Host *shost = sdev->host;
2131         struct request_queue *q;
2132
2133         q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2134         if (!q)
2135                 return NULL;
2136         q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2137         q->rq_alloc_data = shost;
2138         q->request_fn = scsi_request_fn;
2139         q->init_rq_fn = scsi_init_rq;
2140         q->exit_rq_fn = scsi_exit_rq;
2141
2142         if (blk_init_allocated_queue(q) < 0) {
2143                 blk_cleanup_queue(q);
2144                 return NULL;
2145         }
2146
2147         __scsi_init_queue(shost, q);
2148         blk_queue_prep_rq(q, scsi_prep_fn);
2149         blk_queue_unprep_rq(q, scsi_unprep_fn);
2150         blk_queue_softirq_done(q, scsi_softirq_done);
2151         blk_queue_rq_timed_out(q, scsi_times_out);
2152         blk_queue_lld_busy(q, scsi_lld_busy);
2153         return q;
2154 }
2155
2156 static const struct blk_mq_ops scsi_mq_ops = {
2157         .queue_rq       = scsi_queue_rq,
2158         .complete       = scsi_softirq_done,
2159         .timeout        = scsi_timeout,
2160         .init_request   = scsi_init_request,
2161         .exit_request   = scsi_exit_request,
2162         .map_queues     = scsi_map_queues,
2163 };
2164
2165 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2166 {
2167         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2168         if (IS_ERR(sdev->request_queue))
2169                 return NULL;
2170
2171         sdev->request_queue->queuedata = sdev;
2172         __scsi_init_queue(sdev->host, sdev->request_queue);
2173         return sdev->request_queue;
2174 }
2175
2176 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2177 {
2178         unsigned int cmd_size, sgl_size, tbl_size;
2179
2180         tbl_size = shost->sg_tablesize;
2181         if (tbl_size > SG_CHUNK_SIZE)
2182                 tbl_size = SG_CHUNK_SIZE;
2183         sgl_size = tbl_size * sizeof(struct scatterlist);
2184         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2185         if (scsi_host_get_prot(shost))
2186                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2187
2188         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2189         shost->tag_set.ops = &scsi_mq_ops;
2190         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2191         shost->tag_set.queue_depth = shost->can_queue;
2192         shost->tag_set.cmd_size = cmd_size;
2193         shost->tag_set.numa_node = NUMA_NO_NODE;
2194         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2195         shost->tag_set.flags |=
2196                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2197         shost->tag_set.driver_data = shost;
2198
2199         return blk_mq_alloc_tag_set(&shost->tag_set);
2200 }
2201
2202 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2203 {
2204         blk_mq_free_tag_set(&shost->tag_set);
2205 }
2206
2207 /**
2208  * scsi_device_from_queue - return sdev associated with a request_queue
2209  * @q: The request queue to return the sdev from
2210  *
2211  * Return the sdev associated with a request queue or NULL if the
2212  * request_queue does not reference a SCSI device.
2213  */
2214 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2215 {
2216         struct scsi_device *sdev = NULL;
2217
2218         if (q->mq_ops) {
2219                 if (q->mq_ops == &scsi_mq_ops)
2220                         sdev = q->queuedata;
2221         } else if (q->request_fn == scsi_request_fn)
2222                 sdev = q->queuedata;
2223         if (!sdev || !get_device(&sdev->sdev_gendev))
2224                 sdev = NULL;
2225
2226         return sdev;
2227 }
2228 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2229
2230 /*
2231  * Function:    scsi_block_requests()
2232  *
2233  * Purpose:     Utility function used by low-level drivers to prevent further
2234  *              commands from being queued to the device.
2235  *
2236  * Arguments:   shost       - Host in question
2237  *
2238  * Returns:     Nothing
2239  *
2240  * Lock status: No locks are assumed held.
2241  *
2242  * Notes:       There is no timer nor any other means by which the requests
2243  *              get unblocked other than the low-level driver calling
2244  *              scsi_unblock_requests().
2245  */
2246 void scsi_block_requests(struct Scsi_Host *shost)
2247 {
2248         shost->host_self_blocked = 1;
2249 }
2250 EXPORT_SYMBOL(scsi_block_requests);
2251
2252 /*
2253  * Function:    scsi_unblock_requests()
2254  *
2255  * Purpose:     Utility function used by low-level drivers to allow further
2256  *              commands from being queued to the device.
2257  *
2258  * Arguments:   shost       - Host in question
2259  *
2260  * Returns:     Nothing
2261  *
2262  * Lock status: No locks are assumed held.
2263  *
2264  * Notes:       There is no timer nor any other means by which the requests
2265  *              get unblocked other than the low-level driver calling
2266  *              scsi_unblock_requests().
2267  *
2268  *              This is done as an API function so that changes to the
2269  *              internals of the scsi mid-layer won't require wholesale
2270  *              changes to drivers that use this feature.
2271  */
2272 void scsi_unblock_requests(struct Scsi_Host *shost)
2273 {
2274         shost->host_self_blocked = 0;
2275         scsi_run_host_queues(shost);
2276 }
2277 EXPORT_SYMBOL(scsi_unblock_requests);
2278
2279 int __init scsi_init_queue(void)
2280 {
2281         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2282                                            sizeof(struct scsi_data_buffer),
2283                                            0, 0, NULL);
2284         if (!scsi_sdb_cache) {
2285                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2286                 return -ENOMEM;
2287         }
2288
2289         return 0;
2290 }
2291
2292 void scsi_exit_queue(void)
2293 {
2294         kmem_cache_destroy(scsi_sense_cache);
2295         kmem_cache_destroy(scsi_sense_isadma_cache);
2296         kmem_cache_destroy(scsi_sdb_cache);
2297 }
2298
2299 /**
2300  *      scsi_mode_select - issue a mode select
2301  *      @sdev:  SCSI device to be queried
2302  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2303  *      @sp:    Save page bit (0 == don't save, 1 == save)
2304  *      @modepage: mode page being requested
2305  *      @buffer: request buffer (may not be smaller than eight bytes)
2306  *      @len:   length of request buffer.
2307  *      @timeout: command timeout
2308  *      @retries: number of retries before failing
2309  *      @data: returns a structure abstracting the mode header data
2310  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2311  *              must be SCSI_SENSE_BUFFERSIZE big.
2312  *
2313  *      Returns zero if successful; negative error number or scsi
2314  *      status on error
2315  *
2316  */
2317 int
2318 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2319                  unsigned char *buffer, int len, int timeout, int retries,
2320                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2321 {
2322         unsigned char cmd[10];
2323         unsigned char *real_buffer;
2324         int ret;
2325
2326         memset(cmd, 0, sizeof(cmd));
2327         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2328
2329         if (sdev->use_10_for_ms) {
2330                 if (len > 65535)
2331                         return -EINVAL;
2332                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2333                 if (!real_buffer)
2334                         return -ENOMEM;
2335                 memcpy(real_buffer + 8, buffer, len);
2336                 len += 8;
2337                 real_buffer[0] = 0;
2338                 real_buffer[1] = 0;
2339                 real_buffer[2] = data->medium_type;
2340                 real_buffer[3] = data->device_specific;
2341                 real_buffer[4] = data->longlba ? 0x01 : 0;
2342                 real_buffer[5] = 0;
2343                 real_buffer[6] = data->block_descriptor_length >> 8;
2344                 real_buffer[7] = data->block_descriptor_length;
2345
2346                 cmd[0] = MODE_SELECT_10;
2347                 cmd[7] = len >> 8;
2348                 cmd[8] = len;
2349         } else {
2350                 if (len > 255 || data->block_descriptor_length > 255 ||
2351                     data->longlba)
2352                         return -EINVAL;
2353
2354                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2355                 if (!real_buffer)
2356                         return -ENOMEM;
2357                 memcpy(real_buffer + 4, buffer, len);
2358                 len += 4;
2359                 real_buffer[0] = 0;
2360                 real_buffer[1] = data->medium_type;
2361                 real_buffer[2] = data->device_specific;
2362                 real_buffer[3] = data->block_descriptor_length;
2363                 
2364
2365                 cmd[0] = MODE_SELECT;
2366                 cmd[4] = len;
2367         }
2368
2369         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2370                                sshdr, timeout, retries, NULL);
2371         kfree(real_buffer);
2372         return ret;
2373 }
2374 EXPORT_SYMBOL_GPL(scsi_mode_select);
2375
2376 /**
2377  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2378  *      @sdev:  SCSI device to be queried
2379  *      @dbd:   set if mode sense will allow block descriptors to be returned
2380  *      @modepage: mode page being requested
2381  *      @buffer: request buffer (may not be smaller than eight bytes)
2382  *      @len:   length of request buffer.
2383  *      @timeout: command timeout
2384  *      @retries: number of retries before failing
2385  *      @data: returns a structure abstracting the mode header data
2386  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2387  *              must be SCSI_SENSE_BUFFERSIZE big.
2388  *
2389  *      Returns zero if unsuccessful, or the header offset (either 4
2390  *      or 8 depending on whether a six or ten byte command was
2391  *      issued) if successful.
2392  */
2393 int
2394 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2395                   unsigned char *buffer, int len, int timeout, int retries,
2396                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2397 {
2398         unsigned char cmd[12];
2399         int use_10_for_ms;
2400         int header_length;
2401         int result, retry_count = retries;
2402         struct scsi_sense_hdr my_sshdr;
2403
2404         memset(data, 0, sizeof(*data));
2405         memset(&cmd[0], 0, 12);
2406         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2407         cmd[2] = modepage;
2408
2409         /* caller might not be interested in sense, but we need it */
2410         if (!sshdr)
2411                 sshdr = &my_sshdr;
2412
2413  retry:
2414         use_10_for_ms = sdev->use_10_for_ms;
2415
2416         if (use_10_for_ms) {
2417                 if (len < 8)
2418                         len = 8;
2419
2420                 cmd[0] = MODE_SENSE_10;
2421                 cmd[8] = len;
2422                 header_length = 8;
2423         } else {
2424                 if (len < 4)
2425                         len = 4;
2426
2427                 cmd[0] = MODE_SENSE;
2428                 cmd[4] = len;
2429                 header_length = 4;
2430         }
2431
2432         memset(buffer, 0, len);
2433
2434         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2435                                   sshdr, timeout, retries, NULL);
2436
2437         /* This code looks awful: what it's doing is making sure an
2438          * ILLEGAL REQUEST sense return identifies the actual command
2439          * byte as the problem.  MODE_SENSE commands can return
2440          * ILLEGAL REQUEST if the code page isn't supported */
2441
2442         if (use_10_for_ms && !scsi_status_is_good(result) &&
2443             (driver_byte(result) & DRIVER_SENSE)) {
2444                 if (scsi_sense_valid(sshdr)) {
2445                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2446                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2447                                 /* 
2448                                  * Invalid command operation code
2449                                  */
2450                                 sdev->use_10_for_ms = 0;
2451                                 goto retry;
2452                         }
2453                 }
2454         }
2455
2456         if(scsi_status_is_good(result)) {
2457                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2458                              (modepage == 6 || modepage == 8))) {
2459                         /* Initio breakage? */
2460                         header_length = 0;
2461                         data->length = 13;
2462                         data->medium_type = 0;
2463                         data->device_specific = 0;
2464                         data->longlba = 0;
2465                         data->block_descriptor_length = 0;
2466                 } else if(use_10_for_ms) {
2467                         data->length = buffer[0]*256 + buffer[1] + 2;
2468                         data->medium_type = buffer[2];
2469                         data->device_specific = buffer[3];
2470                         data->longlba = buffer[4] & 0x01;
2471                         data->block_descriptor_length = buffer[6]*256
2472                                 + buffer[7];
2473                 } else {
2474                         data->length = buffer[0] + 1;
2475                         data->medium_type = buffer[1];
2476                         data->device_specific = buffer[2];
2477                         data->block_descriptor_length = buffer[3];
2478                 }
2479                 data->header_length = header_length;
2480         } else if ((status_byte(result) == CHECK_CONDITION) &&
2481                    scsi_sense_valid(sshdr) &&
2482                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2483                 retry_count--;
2484                 goto retry;
2485         }
2486
2487         return result;
2488 }
2489 EXPORT_SYMBOL(scsi_mode_sense);
2490
2491 /**
2492  *      scsi_test_unit_ready - test if unit is ready
2493  *      @sdev:  scsi device to change the state of.
2494  *      @timeout: command timeout
2495  *      @retries: number of retries before failing
2496  *      @sshdr: outpout pointer for decoded sense information.
2497  *
2498  *      Returns zero if unsuccessful or an error if TUR failed.  For
2499  *      removable media, UNIT_ATTENTION sets ->changed flag.
2500  **/
2501 int
2502 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2503                      struct scsi_sense_hdr *sshdr)
2504 {
2505         char cmd[] = {
2506                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2507         };
2508         int result;
2509
2510         /* try to eat the UNIT_ATTENTION if there are enough retries */
2511         do {
2512                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2513                                           timeout, retries, NULL);
2514                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2515                     sshdr->sense_key == UNIT_ATTENTION)
2516                         sdev->changed = 1;
2517         } while (scsi_sense_valid(sshdr) &&
2518                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2519
2520         return result;
2521 }
2522 EXPORT_SYMBOL(scsi_test_unit_ready);
2523
2524 /**
2525  *      scsi_device_set_state - Take the given device through the device state model.
2526  *      @sdev:  scsi device to change the state of.
2527  *      @state: state to change to.
2528  *
2529  *      Returns zero if unsuccessful or an error if the requested 
2530  *      transition is illegal.
2531  */
2532 int
2533 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2534 {
2535         enum scsi_device_state oldstate = sdev->sdev_state;
2536
2537         if (state == oldstate)
2538                 return 0;
2539
2540         switch (state) {
2541         case SDEV_CREATED:
2542                 switch (oldstate) {
2543                 case SDEV_CREATED_BLOCK:
2544                         break;
2545                 default:
2546                         goto illegal;
2547                 }
2548                 break;
2549                         
2550         case SDEV_RUNNING:
2551                 switch (oldstate) {
2552                 case SDEV_CREATED:
2553                 case SDEV_OFFLINE:
2554                 case SDEV_TRANSPORT_OFFLINE:
2555                 case SDEV_QUIESCE:
2556                 case SDEV_BLOCK:
2557                         break;
2558                 default:
2559                         goto illegal;
2560                 }
2561                 break;
2562
2563         case SDEV_QUIESCE:
2564                 switch (oldstate) {
2565                 case SDEV_RUNNING:
2566                 case SDEV_OFFLINE:
2567                 case SDEV_TRANSPORT_OFFLINE:
2568                         break;
2569                 default:
2570                         goto illegal;
2571                 }
2572                 break;
2573
2574         case SDEV_OFFLINE:
2575         case SDEV_TRANSPORT_OFFLINE:
2576                 switch (oldstate) {
2577                 case SDEV_CREATED:
2578                 case SDEV_RUNNING:
2579                 case SDEV_QUIESCE:
2580                 case SDEV_BLOCK:
2581                         break;
2582                 default:
2583                         goto illegal;
2584                 }
2585                 break;
2586
2587         case SDEV_BLOCK:
2588                 switch (oldstate) {
2589                 case SDEV_RUNNING:
2590                 case SDEV_CREATED_BLOCK:
2591                         break;
2592                 default:
2593                         goto illegal;
2594                 }
2595                 break;
2596
2597         case SDEV_CREATED_BLOCK:
2598                 switch (oldstate) {
2599                 case SDEV_CREATED:
2600                         break;
2601                 default:
2602                         goto illegal;
2603                 }
2604                 break;
2605
2606         case SDEV_CANCEL:
2607                 switch (oldstate) {
2608                 case SDEV_CREATED:
2609                 case SDEV_RUNNING:
2610                 case SDEV_QUIESCE:
2611                 case SDEV_OFFLINE:
2612                 case SDEV_TRANSPORT_OFFLINE:
2613                 case SDEV_BLOCK:
2614                         break;
2615                 default:
2616                         goto illegal;
2617                 }
2618                 break;
2619
2620         case SDEV_DEL:
2621                 switch (oldstate) {
2622                 case SDEV_CREATED:
2623                 case SDEV_RUNNING:
2624                 case SDEV_OFFLINE:
2625                 case SDEV_TRANSPORT_OFFLINE:
2626                 case SDEV_CANCEL:
2627                 case SDEV_CREATED_BLOCK:
2628                         break;
2629                 default:
2630                         goto illegal;
2631                 }
2632                 break;
2633
2634         }
2635         sdev->sdev_state = state;
2636         return 0;
2637
2638  illegal:
2639         SCSI_LOG_ERROR_RECOVERY(1,
2640                                 sdev_printk(KERN_ERR, sdev,
2641                                             "Illegal state transition %s->%s",
2642                                             scsi_device_state_name(oldstate),
2643                                             scsi_device_state_name(state))
2644                                 );
2645         return -EINVAL;
2646 }
2647 EXPORT_SYMBOL(scsi_device_set_state);
2648
2649 /**
2650  *      sdev_evt_emit - emit a single SCSI device uevent
2651  *      @sdev: associated SCSI device
2652  *      @evt: event to emit
2653  *
2654  *      Send a single uevent (scsi_event) to the associated scsi_device.
2655  */
2656 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2657 {
2658         int idx = 0;
2659         char *envp[3];
2660
2661         switch (evt->evt_type) {
2662         case SDEV_EVT_MEDIA_CHANGE:
2663                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2664                 break;
2665         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2666                 scsi_rescan_device(&sdev->sdev_gendev);
2667                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2668                 break;
2669         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2670                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2671                 break;
2672         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2673                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2674                 break;
2675         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2676                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2677                 break;
2678         case SDEV_EVT_LUN_CHANGE_REPORTED:
2679                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2680                 break;
2681         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2682                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2683                 break;
2684         default:
2685                 /* do nothing */
2686                 break;
2687         }
2688
2689         envp[idx++] = NULL;
2690
2691         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2692 }
2693
2694 /**
2695  *      sdev_evt_thread - send a uevent for each scsi event
2696  *      @work: work struct for scsi_device
2697  *
2698  *      Dispatch queued events to their associated scsi_device kobjects
2699  *      as uevents.
2700  */
2701 void scsi_evt_thread(struct work_struct *work)
2702 {
2703         struct scsi_device *sdev;
2704         enum scsi_device_event evt_type;
2705         LIST_HEAD(event_list);
2706
2707         sdev = container_of(work, struct scsi_device, event_work);
2708
2709         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2710                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2711                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2712
2713         while (1) {
2714                 struct scsi_event *evt;
2715                 struct list_head *this, *tmp;
2716                 unsigned long flags;
2717
2718                 spin_lock_irqsave(&sdev->list_lock, flags);
2719                 list_splice_init(&sdev->event_list, &event_list);
2720                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2721
2722                 if (list_empty(&event_list))
2723                         break;
2724
2725                 list_for_each_safe(this, tmp, &event_list) {
2726                         evt = list_entry(this, struct scsi_event, node);
2727                         list_del(&evt->node);
2728                         scsi_evt_emit(sdev, evt);
2729                         kfree(evt);
2730                 }
2731         }
2732 }
2733
2734 /**
2735  *      sdev_evt_send - send asserted event to uevent thread
2736  *      @sdev: scsi_device event occurred on
2737  *      @evt: event to send
2738  *
2739  *      Assert scsi device event asynchronously.
2740  */
2741 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2742 {
2743         unsigned long flags;
2744
2745 #if 0
2746         /* FIXME: currently this check eliminates all media change events
2747          * for polled devices.  Need to update to discriminate between AN
2748          * and polled events */
2749         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2750                 kfree(evt);
2751                 return;
2752         }
2753 #endif
2754
2755         spin_lock_irqsave(&sdev->list_lock, flags);
2756         list_add_tail(&evt->node, &sdev->event_list);
2757         schedule_work(&sdev->event_work);
2758         spin_unlock_irqrestore(&sdev->list_lock, flags);
2759 }
2760 EXPORT_SYMBOL_GPL(sdev_evt_send);
2761
2762 /**
2763  *      sdev_evt_alloc - allocate a new scsi event
2764  *      @evt_type: type of event to allocate
2765  *      @gfpflags: GFP flags for allocation
2766  *
2767  *      Allocates and returns a new scsi_event.
2768  */
2769 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2770                                   gfp_t gfpflags)
2771 {
2772         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2773         if (!evt)
2774                 return NULL;
2775
2776         evt->evt_type = evt_type;
2777         INIT_LIST_HEAD(&evt->node);
2778
2779         /* evt_type-specific initialization, if any */
2780         switch (evt_type) {
2781         case SDEV_EVT_MEDIA_CHANGE:
2782         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2783         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2784         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2785         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2786         case SDEV_EVT_LUN_CHANGE_REPORTED:
2787         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2788         default:
2789                 /* do nothing */
2790                 break;
2791         }
2792
2793         return evt;
2794 }
2795 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2796
2797 /**
2798  *      sdev_evt_send_simple - send asserted event to uevent thread
2799  *      @sdev: scsi_device event occurred on
2800  *      @evt_type: type of event to send
2801  *      @gfpflags: GFP flags for allocation
2802  *
2803  *      Assert scsi device event asynchronously, given an event type.
2804  */
2805 void sdev_evt_send_simple(struct scsi_device *sdev,
2806                           enum scsi_device_event evt_type, gfp_t gfpflags)
2807 {
2808         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2809         if (!evt) {
2810                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2811                             evt_type);
2812                 return;
2813         }
2814
2815         sdev_evt_send(sdev, evt);
2816 }
2817 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2818
2819 /**
2820  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2821  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2822  */
2823 static int scsi_request_fn_active(struct scsi_device *sdev)
2824 {
2825         struct request_queue *q = sdev->request_queue;
2826         int request_fn_active;
2827
2828         WARN_ON_ONCE(sdev->host->use_blk_mq);
2829
2830         spin_lock_irq(q->queue_lock);
2831         request_fn_active = q->request_fn_active;
2832         spin_unlock_irq(q->queue_lock);
2833
2834         return request_fn_active;
2835 }
2836
2837 /**
2838  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2839  * @sdev: SCSI device pointer.
2840  *
2841  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2842  * invoked from scsi_request_fn() have finished.
2843  */
2844 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2845 {
2846         WARN_ON_ONCE(sdev->host->use_blk_mq);
2847
2848         while (scsi_request_fn_active(sdev))
2849                 msleep(20);
2850 }
2851
2852 /**
2853  *      scsi_device_quiesce - Block user issued commands.
2854  *      @sdev:  scsi device to quiesce.
2855  *
2856  *      This works by trying to transition to the SDEV_QUIESCE state
2857  *      (which must be a legal transition).  When the device is in this
2858  *      state, only special requests will be accepted, all others will
2859  *      be deferred.  Since special requests may also be requeued requests,
2860  *      a successful return doesn't guarantee the device will be 
2861  *      totally quiescent.
2862  *
2863  *      Must be called with user context, may sleep.
2864  *
2865  *      Returns zero if unsuccessful or an error if not.
2866  */
2867 int
2868 scsi_device_quiesce(struct scsi_device *sdev)
2869 {
2870         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2871         if (err)
2872                 return err;
2873
2874         scsi_run_queue(sdev->request_queue);
2875         while (atomic_read(&sdev->device_busy)) {
2876                 msleep_interruptible(200);
2877                 scsi_run_queue(sdev->request_queue);
2878         }
2879         return 0;
2880 }
2881 EXPORT_SYMBOL(scsi_device_quiesce);
2882
2883 /**
2884  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2885  *      @sdev:  scsi device to resume.
2886  *
2887  *      Moves the device from quiesced back to running and restarts the
2888  *      queues.
2889  *
2890  *      Must be called with user context, may sleep.
2891  */
2892 void scsi_device_resume(struct scsi_device *sdev)
2893 {
2894         /* check if the device state was mutated prior to resume, and if
2895          * so assume the state is being managed elsewhere (for example
2896          * device deleted during suspend)
2897          */
2898         if (sdev->sdev_state != SDEV_QUIESCE ||
2899             scsi_device_set_state(sdev, SDEV_RUNNING))
2900                 return;
2901         scsi_run_queue(sdev->request_queue);
2902 }
2903 EXPORT_SYMBOL(scsi_device_resume);
2904
2905 static void
2906 device_quiesce_fn(struct scsi_device *sdev, void *data)
2907 {
2908         scsi_device_quiesce(sdev);
2909 }
2910
2911 void
2912 scsi_target_quiesce(struct scsi_target *starget)
2913 {
2914         starget_for_each_device(starget, NULL, device_quiesce_fn);
2915 }
2916 EXPORT_SYMBOL(scsi_target_quiesce);
2917
2918 static void
2919 device_resume_fn(struct scsi_device *sdev, void *data)
2920 {
2921         scsi_device_resume(sdev);
2922 }
2923
2924 void
2925 scsi_target_resume(struct scsi_target *starget)
2926 {
2927         starget_for_each_device(starget, NULL, device_resume_fn);
2928 }
2929 EXPORT_SYMBOL(scsi_target_resume);
2930
2931 /**
2932  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2933  * @sdev:       device to block
2934  * @wait:       Whether or not to wait until ongoing .queuecommand() /
2935  *              .queue_rq() calls have finished.
2936  *
2937  * Block request made by scsi lld's to temporarily stop all
2938  * scsi commands on the specified device. May sleep.
2939  *
2940  * Returns zero if successful or error if not
2941  *
2942  * Notes:       
2943  *      This routine transitions the device to the SDEV_BLOCK state
2944  *      (which must be a legal transition).  When the device is in this
2945  *      state, all commands are deferred until the scsi lld reenables
2946  *      the device with scsi_device_unblock or device_block_tmo fires.
2947  *
2948  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
2949  * scsi_internal_device_block() has blocked a SCSI device and also
2950  * remove the rport mutex lock and unlock calls from srp_queuecommand().
2951  */
2952 int
2953 scsi_internal_device_block(struct scsi_device *sdev, bool wait)
2954 {
2955         struct request_queue *q = sdev->request_queue;
2956         unsigned long flags;
2957         int err = 0;
2958
2959         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2960         if (err) {
2961                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2962
2963                 if (err)
2964                         return err;
2965         }
2966
2967         /* 
2968          * The device has transitioned to SDEV_BLOCK.  Stop the
2969          * block layer from calling the midlayer with this device's
2970          * request queue. 
2971          */
2972         if (q->mq_ops) {
2973                 if (wait)
2974                         blk_mq_quiesce_queue(q);
2975                 else
2976                         blk_mq_stop_hw_queues(q);
2977         } else {
2978                 spin_lock_irqsave(q->queue_lock, flags);
2979                 blk_stop_queue(q);
2980                 spin_unlock_irqrestore(q->queue_lock, flags);
2981                 if (wait)
2982                         scsi_wait_for_queuecommand(sdev);
2983         }
2984
2985         return 0;
2986 }
2987 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2988  
2989 /**
2990  * scsi_internal_device_unblock - resume a device after a block request
2991  * @sdev:       device to resume
2992  * @new_state:  state to set devices to after unblocking
2993  *
2994  * Called by scsi lld's or the midlayer to restart the device queue
2995  * for the previously suspended scsi device.  Called from interrupt or
2996  * normal process context.
2997  *
2998  * Returns zero if successful or error if not.
2999  *
3000  * Notes:       
3001  *      This routine transitions the device to the SDEV_RUNNING state
3002  *      or to one of the offline states (which must be a legal transition)
3003  *      allowing the midlayer to goose the queue for this device.
3004  */
3005 int
3006 scsi_internal_device_unblock(struct scsi_device *sdev,
3007                              enum scsi_device_state new_state)
3008 {
3009         struct request_queue *q = sdev->request_queue; 
3010         unsigned long flags;
3011
3012         /*
3013          * Try to transition the scsi device to SDEV_RUNNING or one of the
3014          * offlined states and goose the device queue if successful.
3015          */
3016         if ((sdev->sdev_state == SDEV_BLOCK) ||
3017             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3018                 sdev->sdev_state = new_state;
3019         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3020                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3021                     new_state == SDEV_OFFLINE)
3022                         sdev->sdev_state = new_state;
3023                 else
3024                         sdev->sdev_state = SDEV_CREATED;
3025         } else if (sdev->sdev_state != SDEV_CANCEL &&
3026                  sdev->sdev_state != SDEV_OFFLINE)
3027                 return -EINVAL;
3028
3029         if (q->mq_ops) {
3030                 blk_mq_start_stopped_hw_queues(q, false);
3031         } else {
3032                 spin_lock_irqsave(q->queue_lock, flags);
3033                 blk_start_queue(q);
3034                 spin_unlock_irqrestore(q->queue_lock, flags);
3035         }
3036
3037         return 0;
3038 }
3039 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3040
3041 static void
3042 device_block(struct scsi_device *sdev, void *data)
3043 {
3044         scsi_internal_device_block(sdev, true);
3045 }
3046
3047 static int
3048 target_block(struct device *dev, void *data)
3049 {
3050         if (scsi_is_target_device(dev))
3051                 starget_for_each_device(to_scsi_target(dev), NULL,
3052                                         device_block);
3053         return 0;
3054 }
3055
3056 void
3057 scsi_target_block(struct device *dev)
3058 {
3059         if (scsi_is_target_device(dev))
3060                 starget_for_each_device(to_scsi_target(dev), NULL,
3061                                         device_block);
3062         else
3063                 device_for_each_child(dev, NULL, target_block);
3064 }
3065 EXPORT_SYMBOL_GPL(scsi_target_block);
3066
3067 static void
3068 device_unblock(struct scsi_device *sdev, void *data)
3069 {
3070         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3071 }
3072
3073 static int
3074 target_unblock(struct device *dev, void *data)
3075 {
3076         if (scsi_is_target_device(dev))
3077                 starget_for_each_device(to_scsi_target(dev), data,
3078                                         device_unblock);
3079         return 0;
3080 }
3081
3082 void
3083 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3084 {
3085         if (scsi_is_target_device(dev))
3086                 starget_for_each_device(to_scsi_target(dev), &new_state,
3087                                         device_unblock);
3088         else
3089                 device_for_each_child(dev, &new_state, target_unblock);
3090 }
3091 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3092
3093 /**
3094  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3095  * @sgl:        scatter-gather list
3096  * @sg_count:   number of segments in sg
3097  * @offset:     offset in bytes into sg, on return offset into the mapped area
3098  * @len:        bytes to map, on return number of bytes mapped
3099  *
3100  * Returns virtual address of the start of the mapped page
3101  */
3102 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3103                           size_t *offset, size_t *len)
3104 {
3105         int i;
3106         size_t sg_len = 0, len_complete = 0;
3107         struct scatterlist *sg;
3108         struct page *page;
3109
3110         WARN_ON(!irqs_disabled());
3111
3112         for_each_sg(sgl, sg, sg_count, i) {
3113                 len_complete = sg_len; /* Complete sg-entries */
3114                 sg_len += sg->length;
3115                 if (sg_len > *offset)
3116                         break;
3117         }
3118
3119         if (unlikely(i == sg_count)) {
3120                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3121                         "elements %d\n",
3122                        __func__, sg_len, *offset, sg_count);
3123                 WARN_ON(1);
3124                 return NULL;
3125         }
3126
3127         /* Offset starting from the beginning of first page in this sg-entry */
3128         *offset = *offset - len_complete + sg->offset;
3129
3130         /* Assumption: contiguous pages can be accessed as "page + i" */
3131         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3132         *offset &= ~PAGE_MASK;
3133
3134         /* Bytes in this sg-entry from *offset to the end of the page */
3135         sg_len = PAGE_SIZE - *offset;
3136         if (*len > sg_len)
3137                 *len = sg_len;
3138
3139         return kmap_atomic(page);
3140 }
3141 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3142
3143 /**
3144  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3145  * @virt:       virtual address to be unmapped
3146  */
3147 void scsi_kunmap_atomic_sg(void *virt)
3148 {
3149         kunmap_atomic(virt);
3150 }
3151 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3152
3153 void sdev_disable_disk_events(struct scsi_device *sdev)
3154 {
3155         atomic_inc(&sdev->disk_events_disable_depth);
3156 }
3157 EXPORT_SYMBOL(sdev_disable_disk_events);
3158
3159 void sdev_enable_disk_events(struct scsi_device *sdev)
3160 {
3161         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3162                 return;
3163         atomic_dec(&sdev->disk_events_disable_depth);
3164 }
3165 EXPORT_SYMBOL(sdev_enable_disk_events);
3166
3167 /**
3168  * scsi_vpd_lun_id - return a unique device identification
3169  * @sdev: SCSI device
3170  * @id:   buffer for the identification
3171  * @id_len:  length of the buffer
3172  *
3173  * Copies a unique device identification into @id based
3174  * on the information in the VPD page 0x83 of the device.
3175  * The string will be formatted as a SCSI name string.
3176  *
3177  * Returns the length of the identification or error on failure.
3178  * If the identifier is longer than the supplied buffer the actual
3179  * identifier length is returned and the buffer is not zero-padded.
3180  */
3181 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3182 {
3183         u8 cur_id_type = 0xff;
3184         u8 cur_id_size = 0;
3185         unsigned char *d, *cur_id_str;
3186         unsigned char __rcu *vpd_pg83;
3187         int id_size = -EINVAL;
3188
3189         rcu_read_lock();
3190         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3191         if (!vpd_pg83) {
3192                 rcu_read_unlock();
3193                 return -ENXIO;
3194         }
3195
3196         /*
3197          * Look for the correct descriptor.
3198          * Order of preference for lun descriptor:
3199          * - SCSI name string
3200          * - NAA IEEE Registered Extended
3201          * - EUI-64 based 16-byte
3202          * - EUI-64 based 12-byte
3203          * - NAA IEEE Registered
3204          * - NAA IEEE Extended
3205          * - T10 Vendor ID
3206          * as longer descriptors reduce the likelyhood
3207          * of identification clashes.
3208          */
3209
3210         /* The id string must be at least 20 bytes + terminating NULL byte */
3211         if (id_len < 21) {
3212                 rcu_read_unlock();
3213                 return -EINVAL;
3214         }
3215
3216         memset(id, 0, id_len);
3217         d = vpd_pg83 + 4;
3218         while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3219                 /* Skip designators not referring to the LUN */
3220                 if ((d[1] & 0x30) != 0x00)
3221                         goto next_desig;
3222
3223                 switch (d[1] & 0xf) {
3224                 case 0x1:
3225                         /* T10 Vendor ID */
3226                         if (cur_id_size > d[3])
3227                                 break;
3228                         /* Prefer anything */
3229                         if (cur_id_type > 0x01 && cur_id_type != 0xff)
3230                                 break;
3231                         cur_id_size = d[3];
3232                         if (cur_id_size + 4 > id_len)
3233                                 cur_id_size = id_len - 4;
3234                         cur_id_str = d + 4;
3235                         cur_id_type = d[1] & 0xf;
3236                         id_size = snprintf(id, id_len, "t10.%*pE",
3237                                            cur_id_size, cur_id_str);
3238                         break;
3239                 case 0x2:
3240                         /* EUI-64 */
3241                         if (cur_id_size > d[3])
3242                                 break;
3243                         /* Prefer NAA IEEE Registered Extended */
3244                         if (cur_id_type == 0x3 &&
3245                             cur_id_size == d[3])
3246                                 break;
3247                         cur_id_size = d[3];
3248                         cur_id_str = d + 4;
3249                         cur_id_type = d[1] & 0xf;
3250                         switch (cur_id_size) {
3251                         case 8:
3252                                 id_size = snprintf(id, id_len,
3253                                                    "eui.%8phN",
3254                                                    cur_id_str);
3255                                 break;
3256                         case 12:
3257                                 id_size = snprintf(id, id_len,
3258                                                    "eui.%12phN",
3259                                                    cur_id_str);
3260                                 break;
3261                         case 16:
3262                                 id_size = snprintf(id, id_len,
3263                                                    "eui.%16phN",
3264                                                    cur_id_str);
3265                                 break;
3266                         default:
3267                                 cur_id_size = 0;
3268                                 break;
3269                         }
3270                         break;
3271                 case 0x3:
3272                         /* NAA */
3273                         if (cur_id_size > d[3])
3274                                 break;
3275                         cur_id_size = d[3];
3276                         cur_id_str = d + 4;
3277                         cur_id_type = d[1] & 0xf;
3278                         switch (cur_id_size) {
3279                         case 8:
3280                                 id_size = snprintf(id, id_len,
3281                                                    "naa.%8phN",
3282                                                    cur_id_str);
3283                                 break;
3284                         case 16:
3285                                 id_size = snprintf(id, id_len,
3286                                                    "naa.%16phN",
3287                                                    cur_id_str);
3288                                 break;
3289                         default:
3290                                 cur_id_size = 0;
3291                                 break;
3292                         }
3293                         break;
3294                 case 0x8:
3295                         /* SCSI name string */
3296                         if (cur_id_size + 4 > d[3])
3297                                 break;
3298                         /* Prefer others for truncated descriptor */
3299                         if (cur_id_size && d[3] > id_len)
3300                                 break;
3301                         cur_id_size = id_size = d[3];
3302                         cur_id_str = d + 4;
3303                         cur_id_type = d[1] & 0xf;
3304                         if (cur_id_size >= id_len)
3305                                 cur_id_size = id_len - 1;
3306                         memcpy(id, cur_id_str, cur_id_size);
3307                         /* Decrease priority for truncated descriptor */
3308                         if (cur_id_size != id_size)
3309                                 cur_id_size = 6;
3310                         break;
3311                 default:
3312                         break;
3313                 }
3314 next_desig:
3315                 d += d[3] + 4;
3316         }
3317         rcu_read_unlock();
3318
3319         return id_size;
3320 }
3321 EXPORT_SYMBOL(scsi_vpd_lun_id);
3322
3323 /*
3324  * scsi_vpd_tpg_id - return a target port group identifier
3325  * @sdev: SCSI device
3326  *
3327  * Returns the Target Port Group identifier from the information
3328  * froom VPD page 0x83 of the device.
3329  *
3330  * Returns the identifier or error on failure.
3331  */
3332 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3333 {
3334         unsigned char *d;
3335         unsigned char __rcu *vpd_pg83;
3336         int group_id = -EAGAIN, rel_port = -1;
3337
3338         rcu_read_lock();
3339         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3340         if (!vpd_pg83) {
3341                 rcu_read_unlock();
3342                 return -ENXIO;
3343         }
3344
3345         d = sdev->vpd_pg83 + 4;
3346         while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3347                 switch (d[1] & 0xf) {
3348                 case 0x4:
3349                         /* Relative target port */
3350                         rel_port = get_unaligned_be16(&d[6]);
3351                         break;
3352                 case 0x5:
3353                         /* Target port group */
3354                         group_id = get_unaligned_be16(&d[6]);
3355                         break;
3356                 default:
3357                         break;
3358                 }
3359                 d += d[3] + 4;
3360         }
3361         rcu_read_unlock();
3362
3363         if (group_id >= 0 && rel_id && rel_port != -1)
3364                 *rel_id = rel_port;
3365
3366         return group_id;
3367 }
3368 EXPORT_SYMBOL(scsi_vpd_tpg_id);