]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/scsi/scsi_lib.c
Merge branch 'misc' into for-linus
[karo-tx-linux.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE         2
38
39 struct scsi_host_sg_pool {
40         size_t          size;
41         char            *name;
42         struct kmem_cache       *slab;
43         mempool_t       *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51         SP(8),
52         SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54         SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56         SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58         SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65         SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 #ifdef CONFIG_ACPI
72 #include <acpi/acpi_bus.h>
73
74 static bool acpi_scsi_bus_match(struct device *dev)
75 {
76         return dev->bus == &scsi_bus_type;
77 }
78
79 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus)
80 {
81         bus->match = acpi_scsi_bus_match;
82         return register_acpi_bus_type(bus);
83 }
84 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type);
85
86 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus)
87 {
88         unregister_acpi_bus_type(bus);
89 }
90 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type);
91 #endif
92
93 /*
94  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
95  * not change behaviour from the previous unplug mechanism, experimentation
96  * may prove this needs changing.
97  */
98 #define SCSI_QUEUE_DELAY        3
99
100 /*
101  * Function:    scsi_unprep_request()
102  *
103  * Purpose:     Remove all preparation done for a request, including its
104  *              associated scsi_cmnd, so that it can be requeued.
105  *
106  * Arguments:   req     - request to unprepare
107  *
108  * Lock status: Assumed that no locks are held upon entry.
109  *
110  * Returns:     Nothing.
111  */
112 static void scsi_unprep_request(struct request *req)
113 {
114         struct scsi_cmnd *cmd = req->special;
115
116         blk_unprep_request(req);
117         req->special = NULL;
118
119         scsi_put_command(cmd);
120 }
121
122 /**
123  * __scsi_queue_insert - private queue insertion
124  * @cmd: The SCSI command being requeued
125  * @reason:  The reason for the requeue
126  * @unbusy: Whether the queue should be unbusied
127  *
128  * This is a private queue insertion.  The public interface
129  * scsi_queue_insert() always assumes the queue should be unbusied
130  * because it's always called before the completion.  This function is
131  * for a requeue after completion, which should only occur in this
132  * file.
133  */
134 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
135 {
136         struct Scsi_Host *host = cmd->device->host;
137         struct scsi_device *device = cmd->device;
138         struct scsi_target *starget = scsi_target(device);
139         struct request_queue *q = device->request_queue;
140         unsigned long flags;
141
142         SCSI_LOG_MLQUEUE(1,
143                  printk("Inserting command %p into mlqueue\n", cmd));
144
145         /*
146          * Set the appropriate busy bit for the device/host.
147          *
148          * If the host/device isn't busy, assume that something actually
149          * completed, and that we should be able to queue a command now.
150          *
151          * Note that the prior mid-layer assumption that any host could
152          * always queue at least one command is now broken.  The mid-layer
153          * will implement a user specifiable stall (see
154          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
155          * if a command is requeued with no other commands outstanding
156          * either for the device or for the host.
157          */
158         switch (reason) {
159         case SCSI_MLQUEUE_HOST_BUSY:
160                 host->host_blocked = host->max_host_blocked;
161                 break;
162         case SCSI_MLQUEUE_DEVICE_BUSY:
163         case SCSI_MLQUEUE_EH_RETRY:
164                 device->device_blocked = device->max_device_blocked;
165                 break;
166         case SCSI_MLQUEUE_TARGET_BUSY:
167                 starget->target_blocked = starget->max_target_blocked;
168                 break;
169         }
170
171         /*
172          * Decrement the counters, since these commands are no longer
173          * active on the host/device.
174          */
175         if (unbusy)
176                 scsi_device_unbusy(device);
177
178         /*
179          * Requeue this command.  It will go before all other commands
180          * that are already in the queue. Schedule requeue work under
181          * lock such that the kblockd_schedule_work() call happens
182          * before blk_cleanup_queue() finishes.
183          */
184         spin_lock_irqsave(q->queue_lock, flags);
185         blk_requeue_request(q, cmd->request);
186         kblockd_schedule_work(q, &device->requeue_work);
187         spin_unlock_irqrestore(q->queue_lock, flags);
188 }
189
190 /*
191  * Function:    scsi_queue_insert()
192  *
193  * Purpose:     Insert a command in the midlevel queue.
194  *
195  * Arguments:   cmd    - command that we are adding to queue.
196  *              reason - why we are inserting command to queue.
197  *
198  * Lock status: Assumed that lock is not held upon entry.
199  *
200  * Returns:     Nothing.
201  *
202  * Notes:       We do this for one of two cases.  Either the host is busy
203  *              and it cannot accept any more commands for the time being,
204  *              or the device returned QUEUE_FULL and can accept no more
205  *              commands.
206  * Notes:       This could be called either from an interrupt context or a
207  *              normal process context.
208  */
209 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
210 {
211         __scsi_queue_insert(cmd, reason, 1);
212 }
213 /**
214  * scsi_execute - insert request and wait for the result
215  * @sdev:       scsi device
216  * @cmd:        scsi command
217  * @data_direction: data direction
218  * @buffer:     data buffer
219  * @bufflen:    len of buffer
220  * @sense:      optional sense buffer
221  * @timeout:    request timeout in seconds
222  * @retries:    number of times to retry request
223  * @flags:      or into request flags;
224  * @resid:      optional residual length
225  *
226  * returns the req->errors value which is the scsi_cmnd result
227  * field.
228  */
229 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
230                  int data_direction, void *buffer, unsigned bufflen,
231                  unsigned char *sense, int timeout, int retries, int flags,
232                  int *resid)
233 {
234         struct request *req;
235         int write = (data_direction == DMA_TO_DEVICE);
236         int ret = DRIVER_ERROR << 24;
237
238         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
239         if (!req)
240                 return ret;
241
242         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
243                                         buffer, bufflen, __GFP_WAIT))
244                 goto out;
245
246         req->cmd_len = COMMAND_SIZE(cmd[0]);
247         memcpy(req->cmd, cmd, req->cmd_len);
248         req->sense = sense;
249         req->sense_len = 0;
250         req->retries = retries;
251         req->timeout = timeout;
252         req->cmd_type = REQ_TYPE_BLOCK_PC;
253         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
254
255         /*
256          * head injection *required* here otherwise quiesce won't work
257          */
258         blk_execute_rq(req->q, NULL, req, 1);
259
260         /*
261          * Some devices (USB mass-storage in particular) may transfer
262          * garbage data together with a residue indicating that the data
263          * is invalid.  Prevent the garbage from being misinterpreted
264          * and prevent security leaks by zeroing out the excess data.
265          */
266         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
267                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
268
269         if (resid)
270                 *resid = req->resid_len;
271         ret = req->errors;
272  out:
273         blk_put_request(req);
274
275         return ret;
276 }
277 EXPORT_SYMBOL(scsi_execute);
278
279
280 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
281                      int data_direction, void *buffer, unsigned bufflen,
282                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
283                      int *resid)
284 {
285         char *sense = NULL;
286         int result;
287         
288         if (sshdr) {
289                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
290                 if (!sense)
291                         return DRIVER_ERROR << 24;
292         }
293         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
294                               sense, timeout, retries, 0, resid);
295         if (sshdr)
296                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
297
298         kfree(sense);
299         return result;
300 }
301 EXPORT_SYMBOL(scsi_execute_req);
302
303 /*
304  * Function:    scsi_init_cmd_errh()
305  *
306  * Purpose:     Initialize cmd fields related to error handling.
307  *
308  * Arguments:   cmd     - command that is ready to be queued.
309  *
310  * Notes:       This function has the job of initializing a number of
311  *              fields related to error handling.   Typically this will
312  *              be called once for each command, as required.
313  */
314 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
315 {
316         cmd->serial_number = 0;
317         scsi_set_resid(cmd, 0);
318         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
319         if (cmd->cmd_len == 0)
320                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
321 }
322
323 void scsi_device_unbusy(struct scsi_device *sdev)
324 {
325         struct Scsi_Host *shost = sdev->host;
326         struct scsi_target *starget = scsi_target(sdev);
327         unsigned long flags;
328
329         spin_lock_irqsave(shost->host_lock, flags);
330         shost->host_busy--;
331         starget->target_busy--;
332         if (unlikely(scsi_host_in_recovery(shost) &&
333                      (shost->host_failed || shost->host_eh_scheduled)))
334                 scsi_eh_wakeup(shost);
335         spin_unlock(shost->host_lock);
336         spin_lock(sdev->request_queue->queue_lock);
337         sdev->device_busy--;
338         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
339 }
340
341 /*
342  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
343  * and call blk_run_queue for all the scsi_devices on the target -
344  * including current_sdev first.
345  *
346  * Called with *no* scsi locks held.
347  */
348 static void scsi_single_lun_run(struct scsi_device *current_sdev)
349 {
350         struct Scsi_Host *shost = current_sdev->host;
351         struct scsi_device *sdev, *tmp;
352         struct scsi_target *starget = scsi_target(current_sdev);
353         unsigned long flags;
354
355         spin_lock_irqsave(shost->host_lock, flags);
356         starget->starget_sdev_user = NULL;
357         spin_unlock_irqrestore(shost->host_lock, flags);
358
359         /*
360          * Call blk_run_queue for all LUNs on the target, starting with
361          * current_sdev. We race with others (to set starget_sdev_user),
362          * but in most cases, we will be first. Ideally, each LU on the
363          * target would get some limited time or requests on the target.
364          */
365         blk_run_queue(current_sdev->request_queue);
366
367         spin_lock_irqsave(shost->host_lock, flags);
368         if (starget->starget_sdev_user)
369                 goto out;
370         list_for_each_entry_safe(sdev, tmp, &starget->devices,
371                         same_target_siblings) {
372                 if (sdev == current_sdev)
373                         continue;
374                 if (scsi_device_get(sdev))
375                         continue;
376
377                 spin_unlock_irqrestore(shost->host_lock, flags);
378                 blk_run_queue(sdev->request_queue);
379                 spin_lock_irqsave(shost->host_lock, flags);
380         
381                 scsi_device_put(sdev);
382         }
383  out:
384         spin_unlock_irqrestore(shost->host_lock, flags);
385 }
386
387 static inline int scsi_device_is_busy(struct scsi_device *sdev)
388 {
389         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
390                 return 1;
391
392         return 0;
393 }
394
395 static inline int scsi_target_is_busy(struct scsi_target *starget)
396 {
397         return ((starget->can_queue > 0 &&
398                  starget->target_busy >= starget->can_queue) ||
399                  starget->target_blocked);
400 }
401
402 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
403 {
404         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
405             shost->host_blocked || shost->host_self_blocked)
406                 return 1;
407
408         return 0;
409 }
410
411 /*
412  * Function:    scsi_run_queue()
413  *
414  * Purpose:     Select a proper request queue to serve next
415  *
416  * Arguments:   q       - last request's queue
417  *
418  * Returns:     Nothing
419  *
420  * Notes:       The previous command was completely finished, start
421  *              a new one if possible.
422  */
423 static void scsi_run_queue(struct request_queue *q)
424 {
425         struct scsi_device *sdev = q->queuedata;
426         struct Scsi_Host *shost;
427         LIST_HEAD(starved_list);
428         unsigned long flags;
429
430         shost = sdev->host;
431         if (scsi_target(sdev)->single_lun)
432                 scsi_single_lun_run(sdev);
433
434         spin_lock_irqsave(shost->host_lock, flags);
435         list_splice_init(&shost->starved_list, &starved_list);
436
437         while (!list_empty(&starved_list)) {
438                 /*
439                  * As long as shost is accepting commands and we have
440                  * starved queues, call blk_run_queue. scsi_request_fn
441                  * drops the queue_lock and can add us back to the
442                  * starved_list.
443                  *
444                  * host_lock protects the starved_list and starved_entry.
445                  * scsi_request_fn must get the host_lock before checking
446                  * or modifying starved_list or starved_entry.
447                  */
448                 if (scsi_host_is_busy(shost))
449                         break;
450
451                 sdev = list_entry(starved_list.next,
452                                   struct scsi_device, starved_entry);
453                 list_del_init(&sdev->starved_entry);
454                 if (scsi_target_is_busy(scsi_target(sdev))) {
455                         list_move_tail(&sdev->starved_entry,
456                                        &shost->starved_list);
457                         continue;
458                 }
459
460                 spin_unlock(shost->host_lock);
461                 spin_lock(sdev->request_queue->queue_lock);
462                 __blk_run_queue(sdev->request_queue);
463                 spin_unlock(sdev->request_queue->queue_lock);
464                 spin_lock(shost->host_lock);
465         }
466         /* put any unprocessed entries back */
467         list_splice(&starved_list, &shost->starved_list);
468         spin_unlock_irqrestore(shost->host_lock, flags);
469
470         blk_run_queue(q);
471 }
472
473 void scsi_requeue_run_queue(struct work_struct *work)
474 {
475         struct scsi_device *sdev;
476         struct request_queue *q;
477
478         sdev = container_of(work, struct scsi_device, requeue_work);
479         q = sdev->request_queue;
480         scsi_run_queue(q);
481 }
482
483 /*
484  * Function:    scsi_requeue_command()
485  *
486  * Purpose:     Handle post-processing of completed commands.
487  *
488  * Arguments:   q       - queue to operate on
489  *              cmd     - command that may need to be requeued.
490  *
491  * Returns:     Nothing
492  *
493  * Notes:       After command completion, there may be blocks left
494  *              over which weren't finished by the previous command
495  *              this can be for a number of reasons - the main one is
496  *              I/O errors in the middle of the request, in which case
497  *              we need to request the blocks that come after the bad
498  *              sector.
499  * Notes:       Upon return, cmd is a stale pointer.
500  */
501 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
502 {
503         struct scsi_device *sdev = cmd->device;
504         struct request *req = cmd->request;
505         unsigned long flags;
506
507         /*
508          * We need to hold a reference on the device to avoid the queue being
509          * killed after the unlock and before scsi_run_queue is invoked which
510          * may happen because scsi_unprep_request() puts the command which
511          * releases its reference on the device.
512          */
513         get_device(&sdev->sdev_gendev);
514
515         spin_lock_irqsave(q->queue_lock, flags);
516         scsi_unprep_request(req);
517         blk_requeue_request(q, req);
518         spin_unlock_irqrestore(q->queue_lock, flags);
519
520         scsi_run_queue(q);
521
522         put_device(&sdev->sdev_gendev);
523 }
524
525 void scsi_next_command(struct scsi_cmnd *cmd)
526 {
527         struct scsi_device *sdev = cmd->device;
528         struct request_queue *q = sdev->request_queue;
529
530         /* need to hold a reference on the device before we let go of the cmd */
531         get_device(&sdev->sdev_gendev);
532
533         scsi_put_command(cmd);
534         scsi_run_queue(q);
535
536         /* ok to remove device now */
537         put_device(&sdev->sdev_gendev);
538 }
539
540 void scsi_run_host_queues(struct Scsi_Host *shost)
541 {
542         struct scsi_device *sdev;
543
544         shost_for_each_device(sdev, shost)
545                 scsi_run_queue(sdev->request_queue);
546 }
547
548 static void __scsi_release_buffers(struct scsi_cmnd *, int);
549
550 /*
551  * Function:    scsi_end_request()
552  *
553  * Purpose:     Post-processing of completed commands (usually invoked at end
554  *              of upper level post-processing and scsi_io_completion).
555  *
556  * Arguments:   cmd      - command that is complete.
557  *              error    - 0 if I/O indicates success, < 0 for I/O error.
558  *              bytes    - number of bytes of completed I/O
559  *              requeue  - indicates whether we should requeue leftovers.
560  *
561  * Lock status: Assumed that lock is not held upon entry.
562  *
563  * Returns:     cmd if requeue required, NULL otherwise.
564  *
565  * Notes:       This is called for block device requests in order to
566  *              mark some number of sectors as complete.
567  * 
568  *              We are guaranteeing that the request queue will be goosed
569  *              at some point during this call.
570  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
571  */
572 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
573                                           int bytes, int requeue)
574 {
575         struct request_queue *q = cmd->device->request_queue;
576         struct request *req = cmd->request;
577
578         /*
579          * If there are blocks left over at the end, set up the command
580          * to queue the remainder of them.
581          */
582         if (blk_end_request(req, error, bytes)) {
583                 /* kill remainder if no retrys */
584                 if (error && scsi_noretry_cmd(cmd))
585                         blk_end_request_all(req, error);
586                 else {
587                         if (requeue) {
588                                 /*
589                                  * Bleah.  Leftovers again.  Stick the
590                                  * leftovers in the front of the
591                                  * queue, and goose the queue again.
592                                  */
593                                 scsi_release_buffers(cmd);
594                                 scsi_requeue_command(q, cmd);
595                                 cmd = NULL;
596                         }
597                         return cmd;
598                 }
599         }
600
601         /*
602          * This will goose the queue request function at the end, so we don't
603          * need to worry about launching another command.
604          */
605         __scsi_release_buffers(cmd, 0);
606         scsi_next_command(cmd);
607         return NULL;
608 }
609
610 static inline unsigned int scsi_sgtable_index(unsigned short nents)
611 {
612         unsigned int index;
613
614         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
615
616         if (nents <= 8)
617                 index = 0;
618         else
619                 index = get_count_order(nents) - 3;
620
621         return index;
622 }
623
624 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
625 {
626         struct scsi_host_sg_pool *sgp;
627
628         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
629         mempool_free(sgl, sgp->pool);
630 }
631
632 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
633 {
634         struct scsi_host_sg_pool *sgp;
635
636         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
637         return mempool_alloc(sgp->pool, gfp_mask);
638 }
639
640 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
641                               gfp_t gfp_mask)
642 {
643         int ret;
644
645         BUG_ON(!nents);
646
647         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
648                                gfp_mask, scsi_sg_alloc);
649         if (unlikely(ret))
650                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
651                                 scsi_sg_free);
652
653         return ret;
654 }
655
656 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
657 {
658         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
659 }
660
661 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
662 {
663
664         if (cmd->sdb.table.nents)
665                 scsi_free_sgtable(&cmd->sdb);
666
667         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
668
669         if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
670                 struct scsi_data_buffer *bidi_sdb =
671                         cmd->request->next_rq->special;
672                 scsi_free_sgtable(bidi_sdb);
673                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
674                 cmd->request->next_rq->special = NULL;
675         }
676
677         if (scsi_prot_sg_count(cmd))
678                 scsi_free_sgtable(cmd->prot_sdb);
679 }
680
681 /*
682  * Function:    scsi_release_buffers()
683  *
684  * Purpose:     Completion processing for block device I/O requests.
685  *
686  * Arguments:   cmd     - command that we are bailing.
687  *
688  * Lock status: Assumed that no lock is held upon entry.
689  *
690  * Returns:     Nothing
691  *
692  * Notes:       In the event that an upper level driver rejects a
693  *              command, we must release resources allocated during
694  *              the __init_io() function.  Primarily this would involve
695  *              the scatter-gather table, and potentially any bounce
696  *              buffers.
697  */
698 void scsi_release_buffers(struct scsi_cmnd *cmd)
699 {
700         __scsi_release_buffers(cmd, 1);
701 }
702 EXPORT_SYMBOL(scsi_release_buffers);
703
704 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
705 {
706         int error = 0;
707
708         switch(host_byte(result)) {
709         case DID_TRANSPORT_FAILFAST:
710                 error = -ENOLINK;
711                 break;
712         case DID_TARGET_FAILURE:
713                 set_host_byte(cmd, DID_OK);
714                 error = -EREMOTEIO;
715                 break;
716         case DID_NEXUS_FAILURE:
717                 set_host_byte(cmd, DID_OK);
718                 error = -EBADE;
719                 break;
720         default:
721                 error = -EIO;
722                 break;
723         }
724
725         return error;
726 }
727
728 /*
729  * Function:    scsi_io_completion()
730  *
731  * Purpose:     Completion processing for block device I/O requests.
732  *
733  * Arguments:   cmd   - command that is finished.
734  *
735  * Lock status: Assumed that no lock is held upon entry.
736  *
737  * Returns:     Nothing
738  *
739  * Notes:       This function is matched in terms of capabilities to
740  *              the function that created the scatter-gather list.
741  *              In other words, if there are no bounce buffers
742  *              (the normal case for most drivers), we don't need
743  *              the logic to deal with cleaning up afterwards.
744  *
745  *              We must call scsi_end_request().  This will finish off
746  *              the specified number of sectors.  If we are done, the
747  *              command block will be released and the queue function
748  *              will be goosed.  If we are not done then we have to
749  *              figure out what to do next:
750  *
751  *              a) We can call scsi_requeue_command().  The request
752  *                 will be unprepared and put back on the queue.  Then
753  *                 a new command will be created for it.  This should
754  *                 be used if we made forward progress, or if we want
755  *                 to switch from READ(10) to READ(6) for example.
756  *
757  *              b) We can call scsi_queue_insert().  The request will
758  *                 be put back on the queue and retried using the same
759  *                 command as before, possibly after a delay.
760  *
761  *              c) We can call blk_end_request() with -EIO to fail
762  *                 the remainder of the request.
763  */
764 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
765 {
766         int result = cmd->result;
767         struct request_queue *q = cmd->device->request_queue;
768         struct request *req = cmd->request;
769         int error = 0;
770         struct scsi_sense_hdr sshdr;
771         int sense_valid = 0;
772         int sense_deferred = 0;
773         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
774               ACTION_DELAYED_RETRY} action;
775         char *description = NULL;
776
777         if (result) {
778                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
779                 if (sense_valid)
780                         sense_deferred = scsi_sense_is_deferred(&sshdr);
781         }
782
783         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
784                 if (result) {
785                         if (sense_valid && req->sense) {
786                                 /*
787                                  * SG_IO wants current and deferred errors
788                                  */
789                                 int len = 8 + cmd->sense_buffer[7];
790
791                                 if (len > SCSI_SENSE_BUFFERSIZE)
792                                         len = SCSI_SENSE_BUFFERSIZE;
793                                 memcpy(req->sense, cmd->sense_buffer,  len);
794                                 req->sense_len = len;
795                         }
796                         if (!sense_deferred)
797                                 error = __scsi_error_from_host_byte(cmd, result);
798                 }
799                 /*
800                  * __scsi_error_from_host_byte may have reset the host_byte
801                  */
802                 req->errors = cmd->result;
803
804                 req->resid_len = scsi_get_resid(cmd);
805
806                 if (scsi_bidi_cmnd(cmd)) {
807                         /*
808                          * Bidi commands Must be complete as a whole,
809                          * both sides at once.
810                          */
811                         req->next_rq->resid_len = scsi_in(cmd)->resid;
812
813                         scsi_release_buffers(cmd);
814                         blk_end_request_all(req, 0);
815
816                         scsi_next_command(cmd);
817                         return;
818                 }
819         }
820
821         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
822         BUG_ON(blk_bidi_rq(req));
823
824         /*
825          * Next deal with any sectors which we were able to correctly
826          * handle.
827          */
828         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
829                                       "%d bytes done.\n",
830                                       blk_rq_sectors(req), good_bytes));
831
832         /*
833          * Recovered errors need reporting, but they're always treated
834          * as success, so fiddle the result code here.  For BLOCK_PC
835          * we already took a copy of the original into rq->errors which
836          * is what gets returned to the user
837          */
838         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
839                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
840                  * print since caller wants ATA registers. Only occurs on
841                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
842                  */
843                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
844                         ;
845                 else if (!(req->cmd_flags & REQ_QUIET))
846                         scsi_print_sense("", cmd);
847                 result = 0;
848                 /* BLOCK_PC may have set error */
849                 error = 0;
850         }
851
852         /*
853          * A number of bytes were successfully read.  If there
854          * are leftovers and there is some kind of error
855          * (result != 0), retry the rest.
856          */
857         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
858                 return;
859
860         error = __scsi_error_from_host_byte(cmd, result);
861
862         if (host_byte(result) == DID_RESET) {
863                 /* Third party bus reset or reset for error recovery
864                  * reasons.  Just retry the command and see what
865                  * happens.
866                  */
867                 action = ACTION_RETRY;
868         } else if (sense_valid && !sense_deferred) {
869                 switch (sshdr.sense_key) {
870                 case UNIT_ATTENTION:
871                         if (cmd->device->removable) {
872                                 /* Detected disc change.  Set a bit
873                                  * and quietly refuse further access.
874                                  */
875                                 cmd->device->changed = 1;
876                                 description = "Media Changed";
877                                 action = ACTION_FAIL;
878                         } else {
879                                 /* Must have been a power glitch, or a
880                                  * bus reset.  Could not have been a
881                                  * media change, so we just retry the
882                                  * command and see what happens.
883                                  */
884                                 action = ACTION_RETRY;
885                         }
886                         break;
887                 case ILLEGAL_REQUEST:
888                         /* If we had an ILLEGAL REQUEST returned, then
889                          * we may have performed an unsupported
890                          * command.  The only thing this should be
891                          * would be a ten byte read where only a six
892                          * byte read was supported.  Also, on a system
893                          * where READ CAPACITY failed, we may have
894                          * read past the end of the disk.
895                          */
896                         if ((cmd->device->use_10_for_rw &&
897                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
898                             (cmd->cmnd[0] == READ_10 ||
899                              cmd->cmnd[0] == WRITE_10)) {
900                                 /* This will issue a new 6-byte command. */
901                                 cmd->device->use_10_for_rw = 0;
902                                 action = ACTION_REPREP;
903                         } else if (sshdr.asc == 0x10) /* DIX */ {
904                                 description = "Host Data Integrity Failure";
905                                 action = ACTION_FAIL;
906                                 error = -EILSEQ;
907                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
908                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
909                                 switch (cmd->cmnd[0]) {
910                                 case UNMAP:
911                                         description = "Discard failure";
912                                         break;
913                                 case WRITE_SAME:
914                                 case WRITE_SAME_16:
915                                         if (cmd->cmnd[1] & 0x8)
916                                                 description = "Discard failure";
917                                         else
918                                                 description =
919                                                         "Write same failure";
920                                         break;
921                                 default:
922                                         description = "Invalid command failure";
923                                         break;
924                                 }
925                                 action = ACTION_FAIL;
926                                 error = -EREMOTEIO;
927                         } else
928                                 action = ACTION_FAIL;
929                         break;
930                 case ABORTED_COMMAND:
931                         action = ACTION_FAIL;
932                         if (sshdr.asc == 0x10) { /* DIF */
933                                 description = "Target Data Integrity Failure";
934                                 error = -EILSEQ;
935                         }
936                         break;
937                 case NOT_READY:
938                         /* If the device is in the process of becoming
939                          * ready, or has a temporary blockage, retry.
940                          */
941                         if (sshdr.asc == 0x04) {
942                                 switch (sshdr.ascq) {
943                                 case 0x01: /* becoming ready */
944                                 case 0x04: /* format in progress */
945                                 case 0x05: /* rebuild in progress */
946                                 case 0x06: /* recalculation in progress */
947                                 case 0x07: /* operation in progress */
948                                 case 0x08: /* Long write in progress */
949                                 case 0x09: /* self test in progress */
950                                 case 0x14: /* space allocation in progress */
951                                         action = ACTION_DELAYED_RETRY;
952                                         break;
953                                 default:
954                                         description = "Device not ready";
955                                         action = ACTION_FAIL;
956                                         break;
957                                 }
958                         } else {
959                                 description = "Device not ready";
960                                 action = ACTION_FAIL;
961                         }
962                         break;
963                 case VOLUME_OVERFLOW:
964                         /* See SSC3rXX or current. */
965                         action = ACTION_FAIL;
966                         break;
967                 default:
968                         description = "Unhandled sense code";
969                         action = ACTION_FAIL;
970                         break;
971                 }
972         } else {
973                 description = "Unhandled error code";
974                 action = ACTION_FAIL;
975         }
976
977         switch (action) {
978         case ACTION_FAIL:
979                 /* Give up and fail the remainder of the request */
980                 scsi_release_buffers(cmd);
981                 if (!(req->cmd_flags & REQ_QUIET)) {
982                         if (description)
983                                 scmd_printk(KERN_INFO, cmd, "%s\n",
984                                             description);
985                         scsi_print_result(cmd);
986                         if (driver_byte(result) & DRIVER_SENSE)
987                                 scsi_print_sense("", cmd);
988                         scsi_print_command(cmd);
989                 }
990                 if (blk_end_request_err(req, error))
991                         scsi_requeue_command(q, cmd);
992                 else
993                         scsi_next_command(cmd);
994                 break;
995         case ACTION_REPREP:
996                 /* Unprep the request and put it back at the head of the queue.
997                  * A new command will be prepared and issued.
998                  */
999                 scsi_release_buffers(cmd);
1000                 scsi_requeue_command(q, cmd);
1001                 break;
1002         case ACTION_RETRY:
1003                 /* Retry the same command immediately */
1004                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1005                 break;
1006         case ACTION_DELAYED_RETRY:
1007                 /* Retry the same command after a delay */
1008                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1009                 break;
1010         }
1011 }
1012
1013 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1014                              gfp_t gfp_mask)
1015 {
1016         int count;
1017
1018         /*
1019          * If sg table allocation fails, requeue request later.
1020          */
1021         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1022                                         gfp_mask))) {
1023                 return BLKPREP_DEFER;
1024         }
1025
1026         req->buffer = NULL;
1027
1028         /* 
1029          * Next, walk the list, and fill in the addresses and sizes of
1030          * each segment.
1031          */
1032         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1033         BUG_ON(count > sdb->table.nents);
1034         sdb->table.nents = count;
1035         sdb->length = blk_rq_bytes(req);
1036         return BLKPREP_OK;
1037 }
1038
1039 /*
1040  * Function:    scsi_init_io()
1041  *
1042  * Purpose:     SCSI I/O initialize function.
1043  *
1044  * Arguments:   cmd   - Command descriptor we wish to initialize
1045  *
1046  * Returns:     0 on success
1047  *              BLKPREP_DEFER if the failure is retryable
1048  *              BLKPREP_KILL if the failure is fatal
1049  */
1050 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1051 {
1052         struct request *rq = cmd->request;
1053
1054         int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1055         if (error)
1056                 goto err_exit;
1057
1058         if (blk_bidi_rq(rq)) {
1059                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1060                         scsi_sdb_cache, GFP_ATOMIC);
1061                 if (!bidi_sdb) {
1062                         error = BLKPREP_DEFER;
1063                         goto err_exit;
1064                 }
1065
1066                 rq->next_rq->special = bidi_sdb;
1067                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1068                 if (error)
1069                         goto err_exit;
1070         }
1071
1072         if (blk_integrity_rq(rq)) {
1073                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1074                 int ivecs, count;
1075
1076                 BUG_ON(prot_sdb == NULL);
1077                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1078
1079                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1080                         error = BLKPREP_DEFER;
1081                         goto err_exit;
1082                 }
1083
1084                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1085                                                 prot_sdb->table.sgl);
1086                 BUG_ON(unlikely(count > ivecs));
1087                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1088
1089                 cmd->prot_sdb = prot_sdb;
1090                 cmd->prot_sdb->table.nents = count;
1091         }
1092
1093         return BLKPREP_OK ;
1094
1095 err_exit:
1096         scsi_release_buffers(cmd);
1097         cmd->request->special = NULL;
1098         scsi_put_command(cmd);
1099         return error;
1100 }
1101 EXPORT_SYMBOL(scsi_init_io);
1102
1103 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1104                 struct request *req)
1105 {
1106         struct scsi_cmnd *cmd;
1107
1108         if (!req->special) {
1109                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1110                 if (unlikely(!cmd))
1111                         return NULL;
1112                 req->special = cmd;
1113         } else {
1114                 cmd = req->special;
1115         }
1116
1117         /* pull a tag out of the request if we have one */
1118         cmd->tag = req->tag;
1119         cmd->request = req;
1120
1121         cmd->cmnd = req->cmd;
1122         cmd->prot_op = SCSI_PROT_NORMAL;
1123
1124         return cmd;
1125 }
1126
1127 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1128 {
1129         struct scsi_cmnd *cmd;
1130         int ret = scsi_prep_state_check(sdev, req);
1131
1132         if (ret != BLKPREP_OK)
1133                 return ret;
1134
1135         cmd = scsi_get_cmd_from_req(sdev, req);
1136         if (unlikely(!cmd))
1137                 return BLKPREP_DEFER;
1138
1139         /*
1140          * BLOCK_PC requests may transfer data, in which case they must
1141          * a bio attached to them.  Or they might contain a SCSI command
1142          * that does not transfer data, in which case they may optionally
1143          * submit a request without an attached bio.
1144          */
1145         if (req->bio) {
1146                 int ret;
1147
1148                 BUG_ON(!req->nr_phys_segments);
1149
1150                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1151                 if (unlikely(ret))
1152                         return ret;
1153         } else {
1154                 BUG_ON(blk_rq_bytes(req));
1155
1156                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1157                 req->buffer = NULL;
1158         }
1159
1160         cmd->cmd_len = req->cmd_len;
1161         if (!blk_rq_bytes(req))
1162                 cmd->sc_data_direction = DMA_NONE;
1163         else if (rq_data_dir(req) == WRITE)
1164                 cmd->sc_data_direction = DMA_TO_DEVICE;
1165         else
1166                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1167         
1168         cmd->transfersize = blk_rq_bytes(req);
1169         cmd->allowed = req->retries;
1170         return BLKPREP_OK;
1171 }
1172 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1173
1174 /*
1175  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1176  * from filesystems that still need to be translated to SCSI CDBs from
1177  * the ULD.
1178  */
1179 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1180 {
1181         struct scsi_cmnd *cmd;
1182         int ret = scsi_prep_state_check(sdev, req);
1183
1184         if (ret != BLKPREP_OK)
1185                 return ret;
1186
1187         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1188                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1189                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1190                 if (ret != BLKPREP_OK)
1191                         return ret;
1192         }
1193
1194         /*
1195          * Filesystem requests must transfer data.
1196          */
1197         BUG_ON(!req->nr_phys_segments);
1198
1199         cmd = scsi_get_cmd_from_req(sdev, req);
1200         if (unlikely(!cmd))
1201                 return BLKPREP_DEFER;
1202
1203         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1204         return scsi_init_io(cmd, GFP_ATOMIC);
1205 }
1206 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1207
1208 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1209 {
1210         int ret = BLKPREP_OK;
1211
1212         /*
1213          * If the device is not in running state we will reject some
1214          * or all commands.
1215          */
1216         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1217                 switch (sdev->sdev_state) {
1218                 case SDEV_OFFLINE:
1219                 case SDEV_TRANSPORT_OFFLINE:
1220                         /*
1221                          * If the device is offline we refuse to process any
1222                          * commands.  The device must be brought online
1223                          * before trying any recovery commands.
1224                          */
1225                         sdev_printk(KERN_ERR, sdev,
1226                                     "rejecting I/O to offline device\n");
1227                         ret = BLKPREP_KILL;
1228                         break;
1229                 case SDEV_DEL:
1230                         /*
1231                          * If the device is fully deleted, we refuse to
1232                          * process any commands as well.
1233                          */
1234                         sdev_printk(KERN_ERR, sdev,
1235                                     "rejecting I/O to dead device\n");
1236                         ret = BLKPREP_KILL;
1237                         break;
1238                 case SDEV_QUIESCE:
1239                 case SDEV_BLOCK:
1240                 case SDEV_CREATED_BLOCK:
1241                         /*
1242                          * If the devices is blocked we defer normal commands.
1243                          */
1244                         if (!(req->cmd_flags & REQ_PREEMPT))
1245                                 ret = BLKPREP_DEFER;
1246                         break;
1247                 default:
1248                         /*
1249                          * For any other not fully online state we only allow
1250                          * special commands.  In particular any user initiated
1251                          * command is not allowed.
1252                          */
1253                         if (!(req->cmd_flags & REQ_PREEMPT))
1254                                 ret = BLKPREP_KILL;
1255                         break;
1256                 }
1257         }
1258         return ret;
1259 }
1260 EXPORT_SYMBOL(scsi_prep_state_check);
1261
1262 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1263 {
1264         struct scsi_device *sdev = q->queuedata;
1265
1266         switch (ret) {
1267         case BLKPREP_KILL:
1268                 req->errors = DID_NO_CONNECT << 16;
1269                 /* release the command and kill it */
1270                 if (req->special) {
1271                         struct scsi_cmnd *cmd = req->special;
1272                         scsi_release_buffers(cmd);
1273                         scsi_put_command(cmd);
1274                         req->special = NULL;
1275                 }
1276                 break;
1277         case BLKPREP_DEFER:
1278                 /*
1279                  * If we defer, the blk_peek_request() returns NULL, but the
1280                  * queue must be restarted, so we schedule a callback to happen
1281                  * shortly.
1282                  */
1283                 if (sdev->device_busy == 0)
1284                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1285                 break;
1286         default:
1287                 req->cmd_flags |= REQ_DONTPREP;
1288         }
1289
1290         return ret;
1291 }
1292 EXPORT_SYMBOL(scsi_prep_return);
1293
1294 int scsi_prep_fn(struct request_queue *q, struct request *req)
1295 {
1296         struct scsi_device *sdev = q->queuedata;
1297         int ret = BLKPREP_KILL;
1298
1299         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1300                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1301         return scsi_prep_return(q, req, ret);
1302 }
1303 EXPORT_SYMBOL(scsi_prep_fn);
1304
1305 /*
1306  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1307  * return 0.
1308  *
1309  * Called with the queue_lock held.
1310  */
1311 static inline int scsi_dev_queue_ready(struct request_queue *q,
1312                                   struct scsi_device *sdev)
1313 {
1314         if (sdev->device_busy == 0 && sdev->device_blocked) {
1315                 /*
1316                  * unblock after device_blocked iterates to zero
1317                  */
1318                 if (--sdev->device_blocked == 0) {
1319                         SCSI_LOG_MLQUEUE(3,
1320                                    sdev_printk(KERN_INFO, sdev,
1321                                    "unblocking device at zero depth\n"));
1322                 } else {
1323                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1324                         return 0;
1325                 }
1326         }
1327         if (scsi_device_is_busy(sdev))
1328                 return 0;
1329
1330         return 1;
1331 }
1332
1333
1334 /*
1335  * scsi_target_queue_ready: checks if there we can send commands to target
1336  * @sdev: scsi device on starget to check.
1337  *
1338  * Called with the host lock held.
1339  */
1340 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1341                                            struct scsi_device *sdev)
1342 {
1343         struct scsi_target *starget = scsi_target(sdev);
1344
1345         if (starget->single_lun) {
1346                 if (starget->starget_sdev_user &&
1347                     starget->starget_sdev_user != sdev)
1348                         return 0;
1349                 starget->starget_sdev_user = sdev;
1350         }
1351
1352         if (starget->target_busy == 0 && starget->target_blocked) {
1353                 /*
1354                  * unblock after target_blocked iterates to zero
1355                  */
1356                 if (--starget->target_blocked == 0) {
1357                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1358                                          "unblocking target at zero depth\n"));
1359                 } else
1360                         return 0;
1361         }
1362
1363         if (scsi_target_is_busy(starget)) {
1364                 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1365                 return 0;
1366         }
1367
1368         return 1;
1369 }
1370
1371 /*
1372  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1373  * return 0. We must end up running the queue again whenever 0 is
1374  * returned, else IO can hang.
1375  *
1376  * Called with host_lock held.
1377  */
1378 static inline int scsi_host_queue_ready(struct request_queue *q,
1379                                    struct Scsi_Host *shost,
1380                                    struct scsi_device *sdev)
1381 {
1382         if (scsi_host_in_recovery(shost))
1383                 return 0;
1384         if (shost->host_busy == 0 && shost->host_blocked) {
1385                 /*
1386                  * unblock after host_blocked iterates to zero
1387                  */
1388                 if (--shost->host_blocked == 0) {
1389                         SCSI_LOG_MLQUEUE(3,
1390                                 printk("scsi%d unblocking host at zero depth\n",
1391                                         shost->host_no));
1392                 } else {
1393                         return 0;
1394                 }
1395         }
1396         if (scsi_host_is_busy(shost)) {
1397                 if (list_empty(&sdev->starved_entry))
1398                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1399                 return 0;
1400         }
1401
1402         /* We're OK to process the command, so we can't be starved */
1403         if (!list_empty(&sdev->starved_entry))
1404                 list_del_init(&sdev->starved_entry);
1405
1406         return 1;
1407 }
1408
1409 /*
1410  * Busy state exporting function for request stacking drivers.
1411  *
1412  * For efficiency, no lock is taken to check the busy state of
1413  * shost/starget/sdev, since the returned value is not guaranteed and
1414  * may be changed after request stacking drivers call the function,
1415  * regardless of taking lock or not.
1416  *
1417  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1418  * needs to return 'not busy'. Otherwise, request stacking drivers
1419  * may hold requests forever.
1420  */
1421 static int scsi_lld_busy(struct request_queue *q)
1422 {
1423         struct scsi_device *sdev = q->queuedata;
1424         struct Scsi_Host *shost;
1425
1426         if (blk_queue_dying(q))
1427                 return 0;
1428
1429         shost = sdev->host;
1430
1431         /*
1432          * Ignore host/starget busy state.
1433          * Since block layer does not have a concept of fairness across
1434          * multiple queues, congestion of host/starget needs to be handled
1435          * in SCSI layer.
1436          */
1437         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1438                 return 1;
1439
1440         return 0;
1441 }
1442
1443 /*
1444  * Kill a request for a dead device
1445  */
1446 static void scsi_kill_request(struct request *req, struct request_queue *q)
1447 {
1448         struct scsi_cmnd *cmd = req->special;
1449         struct scsi_device *sdev;
1450         struct scsi_target *starget;
1451         struct Scsi_Host *shost;
1452
1453         blk_start_request(req);
1454
1455         scmd_printk(KERN_INFO, cmd, "killing request\n");
1456
1457         sdev = cmd->device;
1458         starget = scsi_target(sdev);
1459         shost = sdev->host;
1460         scsi_init_cmd_errh(cmd);
1461         cmd->result = DID_NO_CONNECT << 16;
1462         atomic_inc(&cmd->device->iorequest_cnt);
1463
1464         /*
1465          * SCSI request completion path will do scsi_device_unbusy(),
1466          * bump busy counts.  To bump the counters, we need to dance
1467          * with the locks as normal issue path does.
1468          */
1469         sdev->device_busy++;
1470         spin_unlock(sdev->request_queue->queue_lock);
1471         spin_lock(shost->host_lock);
1472         shost->host_busy++;
1473         starget->target_busy++;
1474         spin_unlock(shost->host_lock);
1475         spin_lock(sdev->request_queue->queue_lock);
1476
1477         blk_complete_request(req);
1478 }
1479
1480 static void scsi_softirq_done(struct request *rq)
1481 {
1482         struct scsi_cmnd *cmd = rq->special;
1483         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1484         int disposition;
1485
1486         INIT_LIST_HEAD(&cmd->eh_entry);
1487
1488         atomic_inc(&cmd->device->iodone_cnt);
1489         if (cmd->result)
1490                 atomic_inc(&cmd->device->ioerr_cnt);
1491
1492         disposition = scsi_decide_disposition(cmd);
1493         if (disposition != SUCCESS &&
1494             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1495                 sdev_printk(KERN_ERR, cmd->device,
1496                             "timing out command, waited %lus\n",
1497                             wait_for/HZ);
1498                 disposition = SUCCESS;
1499         }
1500                         
1501         scsi_log_completion(cmd, disposition);
1502
1503         switch (disposition) {
1504                 case SUCCESS:
1505                         scsi_finish_command(cmd);
1506                         break;
1507                 case NEEDS_RETRY:
1508                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1509                         break;
1510                 case ADD_TO_MLQUEUE:
1511                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1512                         break;
1513                 default:
1514                         if (!scsi_eh_scmd_add(cmd, 0))
1515                                 scsi_finish_command(cmd);
1516         }
1517 }
1518
1519 /*
1520  * Function:    scsi_request_fn()
1521  *
1522  * Purpose:     Main strategy routine for SCSI.
1523  *
1524  * Arguments:   q       - Pointer to actual queue.
1525  *
1526  * Returns:     Nothing
1527  *
1528  * Lock status: IO request lock assumed to be held when called.
1529  */
1530 static void scsi_request_fn(struct request_queue *q)
1531 {
1532         struct scsi_device *sdev = q->queuedata;
1533         struct Scsi_Host *shost;
1534         struct scsi_cmnd *cmd;
1535         struct request *req;
1536
1537         if(!get_device(&sdev->sdev_gendev))
1538                 /* We must be tearing the block queue down already */
1539                 return;
1540
1541         /*
1542          * To start with, we keep looping until the queue is empty, or until
1543          * the host is no longer able to accept any more requests.
1544          */
1545         shost = sdev->host;
1546         for (;;) {
1547                 int rtn;
1548                 /*
1549                  * get next queueable request.  We do this early to make sure
1550                  * that the request is fully prepared even if we cannot 
1551                  * accept it.
1552                  */
1553                 req = blk_peek_request(q);
1554                 if (!req || !scsi_dev_queue_ready(q, sdev))
1555                         break;
1556
1557                 if (unlikely(!scsi_device_online(sdev))) {
1558                         sdev_printk(KERN_ERR, sdev,
1559                                     "rejecting I/O to offline device\n");
1560                         scsi_kill_request(req, q);
1561                         continue;
1562                 }
1563
1564
1565                 /*
1566                  * Remove the request from the request list.
1567                  */
1568                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1569                         blk_start_request(req);
1570                 sdev->device_busy++;
1571
1572                 spin_unlock(q->queue_lock);
1573                 cmd = req->special;
1574                 if (unlikely(cmd == NULL)) {
1575                         printk(KERN_CRIT "impossible request in %s.\n"
1576                                          "please mail a stack trace to "
1577                                          "linux-scsi@vger.kernel.org\n",
1578                                          __func__);
1579                         blk_dump_rq_flags(req, "foo");
1580                         BUG();
1581                 }
1582                 spin_lock(shost->host_lock);
1583
1584                 /*
1585                  * We hit this when the driver is using a host wide
1586                  * tag map. For device level tag maps the queue_depth check
1587                  * in the device ready fn would prevent us from trying
1588                  * to allocate a tag. Since the map is a shared host resource
1589                  * we add the dev to the starved list so it eventually gets
1590                  * a run when a tag is freed.
1591                  */
1592                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1593                         if (list_empty(&sdev->starved_entry))
1594                                 list_add_tail(&sdev->starved_entry,
1595                                               &shost->starved_list);
1596                         goto not_ready;
1597                 }
1598
1599                 if (!scsi_target_queue_ready(shost, sdev))
1600                         goto not_ready;
1601
1602                 if (!scsi_host_queue_ready(q, shost, sdev))
1603                         goto not_ready;
1604
1605                 scsi_target(sdev)->target_busy++;
1606                 shost->host_busy++;
1607
1608                 /*
1609                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1610                  *              take the lock again.
1611                  */
1612                 spin_unlock_irq(shost->host_lock);
1613
1614                 /*
1615                  * Finally, initialize any error handling parameters, and set up
1616                  * the timers for timeouts.
1617                  */
1618                 scsi_init_cmd_errh(cmd);
1619
1620                 /*
1621                  * Dispatch the command to the low-level driver.
1622                  */
1623                 rtn = scsi_dispatch_cmd(cmd);
1624                 spin_lock_irq(q->queue_lock);
1625                 if (rtn)
1626                         goto out_delay;
1627         }
1628
1629         goto out;
1630
1631  not_ready:
1632         spin_unlock_irq(shost->host_lock);
1633
1634         /*
1635          * lock q, handle tag, requeue req, and decrement device_busy. We
1636          * must return with queue_lock held.
1637          *
1638          * Decrementing device_busy without checking it is OK, as all such
1639          * cases (host limits or settings) should run the queue at some
1640          * later time.
1641          */
1642         spin_lock_irq(q->queue_lock);
1643         blk_requeue_request(q, req);
1644         sdev->device_busy--;
1645 out_delay:
1646         if (sdev->device_busy == 0)
1647                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1648 out:
1649         /* must be careful here...if we trigger the ->remove() function
1650          * we cannot be holding the q lock */
1651         spin_unlock_irq(q->queue_lock);
1652         put_device(&sdev->sdev_gendev);
1653         spin_lock_irq(q->queue_lock);
1654 }
1655
1656 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1657 {
1658         struct device *host_dev;
1659         u64 bounce_limit = 0xffffffff;
1660
1661         if (shost->unchecked_isa_dma)
1662                 return BLK_BOUNCE_ISA;
1663         /*
1664          * Platforms with virtual-DMA translation
1665          * hardware have no practical limit.
1666          */
1667         if (!PCI_DMA_BUS_IS_PHYS)
1668                 return BLK_BOUNCE_ANY;
1669
1670         host_dev = scsi_get_device(shost);
1671         if (host_dev && host_dev->dma_mask)
1672                 bounce_limit = *host_dev->dma_mask;
1673
1674         return bounce_limit;
1675 }
1676 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1677
1678 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1679                                          request_fn_proc *request_fn)
1680 {
1681         struct request_queue *q;
1682         struct device *dev = shost->dma_dev;
1683
1684         q = blk_init_queue(request_fn, NULL);
1685         if (!q)
1686                 return NULL;
1687
1688         /*
1689          * this limit is imposed by hardware restrictions
1690          */
1691         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1692                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1693
1694         if (scsi_host_prot_dma(shost)) {
1695                 shost->sg_prot_tablesize =
1696                         min_not_zero(shost->sg_prot_tablesize,
1697                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1698                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1699                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1700         }
1701
1702         blk_queue_max_hw_sectors(q, shost->max_sectors);
1703         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1704         blk_queue_segment_boundary(q, shost->dma_boundary);
1705         dma_set_seg_boundary(dev, shost->dma_boundary);
1706
1707         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1708
1709         if (!shost->use_clustering)
1710                 q->limits.cluster = 0;
1711
1712         /*
1713          * set a reasonable default alignment on word boundaries: the
1714          * host and device may alter it using
1715          * blk_queue_update_dma_alignment() later.
1716          */
1717         blk_queue_dma_alignment(q, 0x03);
1718
1719         return q;
1720 }
1721 EXPORT_SYMBOL(__scsi_alloc_queue);
1722
1723 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1724 {
1725         struct request_queue *q;
1726
1727         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1728         if (!q)
1729                 return NULL;
1730
1731         blk_queue_prep_rq(q, scsi_prep_fn);
1732         blk_queue_softirq_done(q, scsi_softirq_done);
1733         blk_queue_rq_timed_out(q, scsi_times_out);
1734         blk_queue_lld_busy(q, scsi_lld_busy);
1735         return q;
1736 }
1737
1738 /*
1739  * Function:    scsi_block_requests()
1740  *
1741  * Purpose:     Utility function used by low-level drivers to prevent further
1742  *              commands from being queued to the device.
1743  *
1744  * Arguments:   shost       - Host in question
1745  *
1746  * Returns:     Nothing
1747  *
1748  * Lock status: No locks are assumed held.
1749  *
1750  * Notes:       There is no timer nor any other means by which the requests
1751  *              get unblocked other than the low-level driver calling
1752  *              scsi_unblock_requests().
1753  */
1754 void scsi_block_requests(struct Scsi_Host *shost)
1755 {
1756         shost->host_self_blocked = 1;
1757 }
1758 EXPORT_SYMBOL(scsi_block_requests);
1759
1760 /*
1761  * Function:    scsi_unblock_requests()
1762  *
1763  * Purpose:     Utility function used by low-level drivers to allow further
1764  *              commands from being queued to the device.
1765  *
1766  * Arguments:   shost       - Host in question
1767  *
1768  * Returns:     Nothing
1769  *
1770  * Lock status: No locks are assumed held.
1771  *
1772  * Notes:       There is no timer nor any other means by which the requests
1773  *              get unblocked other than the low-level driver calling
1774  *              scsi_unblock_requests().
1775  *
1776  *              This is done as an API function so that changes to the
1777  *              internals of the scsi mid-layer won't require wholesale
1778  *              changes to drivers that use this feature.
1779  */
1780 void scsi_unblock_requests(struct Scsi_Host *shost)
1781 {
1782         shost->host_self_blocked = 0;
1783         scsi_run_host_queues(shost);
1784 }
1785 EXPORT_SYMBOL(scsi_unblock_requests);
1786
1787 int __init scsi_init_queue(void)
1788 {
1789         int i;
1790
1791         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1792                                            sizeof(struct scsi_data_buffer),
1793                                            0, 0, NULL);
1794         if (!scsi_sdb_cache) {
1795                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1796                 return -ENOMEM;
1797         }
1798
1799         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1800                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1801                 int size = sgp->size * sizeof(struct scatterlist);
1802
1803                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1804                                 SLAB_HWCACHE_ALIGN, NULL);
1805                 if (!sgp->slab) {
1806                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1807                                         sgp->name);
1808                         goto cleanup_sdb;
1809                 }
1810
1811                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1812                                                      sgp->slab);
1813                 if (!sgp->pool) {
1814                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1815                                         sgp->name);
1816                         goto cleanup_sdb;
1817                 }
1818         }
1819
1820         return 0;
1821
1822 cleanup_sdb:
1823         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1824                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1825                 if (sgp->pool)
1826                         mempool_destroy(sgp->pool);
1827                 if (sgp->slab)
1828                         kmem_cache_destroy(sgp->slab);
1829         }
1830         kmem_cache_destroy(scsi_sdb_cache);
1831
1832         return -ENOMEM;
1833 }
1834
1835 void scsi_exit_queue(void)
1836 {
1837         int i;
1838
1839         kmem_cache_destroy(scsi_sdb_cache);
1840
1841         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1842                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1843                 mempool_destroy(sgp->pool);
1844                 kmem_cache_destroy(sgp->slab);
1845         }
1846 }
1847
1848 /**
1849  *      scsi_mode_select - issue a mode select
1850  *      @sdev:  SCSI device to be queried
1851  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1852  *      @sp:    Save page bit (0 == don't save, 1 == save)
1853  *      @modepage: mode page being requested
1854  *      @buffer: request buffer (may not be smaller than eight bytes)
1855  *      @len:   length of request buffer.
1856  *      @timeout: command timeout
1857  *      @retries: number of retries before failing
1858  *      @data: returns a structure abstracting the mode header data
1859  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1860  *              must be SCSI_SENSE_BUFFERSIZE big.
1861  *
1862  *      Returns zero if successful; negative error number or scsi
1863  *      status on error
1864  *
1865  */
1866 int
1867 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1868                  unsigned char *buffer, int len, int timeout, int retries,
1869                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1870 {
1871         unsigned char cmd[10];
1872         unsigned char *real_buffer;
1873         int ret;
1874
1875         memset(cmd, 0, sizeof(cmd));
1876         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1877
1878         if (sdev->use_10_for_ms) {
1879                 if (len > 65535)
1880                         return -EINVAL;
1881                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1882                 if (!real_buffer)
1883                         return -ENOMEM;
1884                 memcpy(real_buffer + 8, buffer, len);
1885                 len += 8;
1886                 real_buffer[0] = 0;
1887                 real_buffer[1] = 0;
1888                 real_buffer[2] = data->medium_type;
1889                 real_buffer[3] = data->device_specific;
1890                 real_buffer[4] = data->longlba ? 0x01 : 0;
1891                 real_buffer[5] = 0;
1892                 real_buffer[6] = data->block_descriptor_length >> 8;
1893                 real_buffer[7] = data->block_descriptor_length;
1894
1895                 cmd[0] = MODE_SELECT_10;
1896                 cmd[7] = len >> 8;
1897                 cmd[8] = len;
1898         } else {
1899                 if (len > 255 || data->block_descriptor_length > 255 ||
1900                     data->longlba)
1901                         return -EINVAL;
1902
1903                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1904                 if (!real_buffer)
1905                         return -ENOMEM;
1906                 memcpy(real_buffer + 4, buffer, len);
1907                 len += 4;
1908                 real_buffer[0] = 0;
1909                 real_buffer[1] = data->medium_type;
1910                 real_buffer[2] = data->device_specific;
1911                 real_buffer[3] = data->block_descriptor_length;
1912                 
1913
1914                 cmd[0] = MODE_SELECT;
1915                 cmd[4] = len;
1916         }
1917
1918         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1919                                sshdr, timeout, retries, NULL);
1920         kfree(real_buffer);
1921         return ret;
1922 }
1923 EXPORT_SYMBOL_GPL(scsi_mode_select);
1924
1925 /**
1926  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1927  *      @sdev:  SCSI device to be queried
1928  *      @dbd:   set if mode sense will allow block descriptors to be returned
1929  *      @modepage: mode page being requested
1930  *      @buffer: request buffer (may not be smaller than eight bytes)
1931  *      @len:   length of request buffer.
1932  *      @timeout: command timeout
1933  *      @retries: number of retries before failing
1934  *      @data: returns a structure abstracting the mode header data
1935  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1936  *              must be SCSI_SENSE_BUFFERSIZE big.
1937  *
1938  *      Returns zero if unsuccessful, or the header offset (either 4
1939  *      or 8 depending on whether a six or ten byte command was
1940  *      issued) if successful.
1941  */
1942 int
1943 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1944                   unsigned char *buffer, int len, int timeout, int retries,
1945                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1946 {
1947         unsigned char cmd[12];
1948         int use_10_for_ms;
1949         int header_length;
1950         int result;
1951         struct scsi_sense_hdr my_sshdr;
1952
1953         memset(data, 0, sizeof(*data));
1954         memset(&cmd[0], 0, 12);
1955         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1956         cmd[2] = modepage;
1957
1958         /* caller might not be interested in sense, but we need it */
1959         if (!sshdr)
1960                 sshdr = &my_sshdr;
1961
1962  retry:
1963         use_10_for_ms = sdev->use_10_for_ms;
1964
1965         if (use_10_for_ms) {
1966                 if (len < 8)
1967                         len = 8;
1968
1969                 cmd[0] = MODE_SENSE_10;
1970                 cmd[8] = len;
1971                 header_length = 8;
1972         } else {
1973                 if (len < 4)
1974                         len = 4;
1975
1976                 cmd[0] = MODE_SENSE;
1977                 cmd[4] = len;
1978                 header_length = 4;
1979         }
1980
1981         memset(buffer, 0, len);
1982
1983         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1984                                   sshdr, timeout, retries, NULL);
1985
1986         /* This code looks awful: what it's doing is making sure an
1987          * ILLEGAL REQUEST sense return identifies the actual command
1988          * byte as the problem.  MODE_SENSE commands can return
1989          * ILLEGAL REQUEST if the code page isn't supported */
1990
1991         if (use_10_for_ms && !scsi_status_is_good(result) &&
1992             (driver_byte(result) & DRIVER_SENSE)) {
1993                 if (scsi_sense_valid(sshdr)) {
1994                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1995                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1996                                 /* 
1997                                  * Invalid command operation code
1998                                  */
1999                                 sdev->use_10_for_ms = 0;
2000                                 goto retry;
2001                         }
2002                 }
2003         }
2004
2005         if(scsi_status_is_good(result)) {
2006                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2007                              (modepage == 6 || modepage == 8))) {
2008                         /* Initio breakage? */
2009                         header_length = 0;
2010                         data->length = 13;
2011                         data->medium_type = 0;
2012                         data->device_specific = 0;
2013                         data->longlba = 0;
2014                         data->block_descriptor_length = 0;
2015                 } else if(use_10_for_ms) {
2016                         data->length = buffer[0]*256 + buffer[1] + 2;
2017                         data->medium_type = buffer[2];
2018                         data->device_specific = buffer[3];
2019                         data->longlba = buffer[4] & 0x01;
2020                         data->block_descriptor_length = buffer[6]*256
2021                                 + buffer[7];
2022                 } else {
2023                         data->length = buffer[0] + 1;
2024                         data->medium_type = buffer[1];
2025                         data->device_specific = buffer[2];
2026                         data->block_descriptor_length = buffer[3];
2027                 }
2028                 data->header_length = header_length;
2029         }
2030
2031         return result;
2032 }
2033 EXPORT_SYMBOL(scsi_mode_sense);
2034
2035 /**
2036  *      scsi_test_unit_ready - test if unit is ready
2037  *      @sdev:  scsi device to change the state of.
2038  *      @timeout: command timeout
2039  *      @retries: number of retries before failing
2040  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2041  *              returning sense. Make sure that this is cleared before passing
2042  *              in.
2043  *
2044  *      Returns zero if unsuccessful or an error if TUR failed.  For
2045  *      removable media, UNIT_ATTENTION sets ->changed flag.
2046  **/
2047 int
2048 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2049                      struct scsi_sense_hdr *sshdr_external)
2050 {
2051         char cmd[] = {
2052                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2053         };
2054         struct scsi_sense_hdr *sshdr;
2055         int result;
2056
2057         if (!sshdr_external)
2058                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2059         else
2060                 sshdr = sshdr_external;
2061
2062         /* try to eat the UNIT_ATTENTION if there are enough retries */
2063         do {
2064                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2065                                           timeout, retries, NULL);
2066                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2067                     sshdr->sense_key == UNIT_ATTENTION)
2068                         sdev->changed = 1;
2069         } while (scsi_sense_valid(sshdr) &&
2070                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2071
2072         if (!sshdr_external)
2073                 kfree(sshdr);
2074         return result;
2075 }
2076 EXPORT_SYMBOL(scsi_test_unit_ready);
2077
2078 /**
2079  *      scsi_device_set_state - Take the given device through the device state model.
2080  *      @sdev:  scsi device to change the state of.
2081  *      @state: state to change to.
2082  *
2083  *      Returns zero if unsuccessful or an error if the requested 
2084  *      transition is illegal.
2085  */
2086 int
2087 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2088 {
2089         enum scsi_device_state oldstate = sdev->sdev_state;
2090
2091         if (state == oldstate)
2092                 return 0;
2093
2094         switch (state) {
2095         case SDEV_CREATED:
2096                 switch (oldstate) {
2097                 case SDEV_CREATED_BLOCK:
2098                         break;
2099                 default:
2100                         goto illegal;
2101                 }
2102                 break;
2103                         
2104         case SDEV_RUNNING:
2105                 switch (oldstate) {
2106                 case SDEV_CREATED:
2107                 case SDEV_OFFLINE:
2108                 case SDEV_TRANSPORT_OFFLINE:
2109                 case SDEV_QUIESCE:
2110                 case SDEV_BLOCK:
2111                         break;
2112                 default:
2113                         goto illegal;
2114                 }
2115                 break;
2116
2117         case SDEV_QUIESCE:
2118                 switch (oldstate) {
2119                 case SDEV_RUNNING:
2120                 case SDEV_OFFLINE:
2121                 case SDEV_TRANSPORT_OFFLINE:
2122                         break;
2123                 default:
2124                         goto illegal;
2125                 }
2126                 break;
2127
2128         case SDEV_OFFLINE:
2129         case SDEV_TRANSPORT_OFFLINE:
2130                 switch (oldstate) {
2131                 case SDEV_CREATED:
2132                 case SDEV_RUNNING:
2133                 case SDEV_QUIESCE:
2134                 case SDEV_BLOCK:
2135                         break;
2136                 default:
2137                         goto illegal;
2138                 }
2139                 break;
2140
2141         case SDEV_BLOCK:
2142                 switch (oldstate) {
2143                 case SDEV_RUNNING:
2144                 case SDEV_CREATED_BLOCK:
2145                         break;
2146                 default:
2147                         goto illegal;
2148                 }
2149                 break;
2150
2151         case SDEV_CREATED_BLOCK:
2152                 switch (oldstate) {
2153                 case SDEV_CREATED:
2154                         break;
2155                 default:
2156                         goto illegal;
2157                 }
2158                 break;
2159
2160         case SDEV_CANCEL:
2161                 switch (oldstate) {
2162                 case SDEV_CREATED:
2163                 case SDEV_RUNNING:
2164                 case SDEV_QUIESCE:
2165                 case SDEV_OFFLINE:
2166                 case SDEV_TRANSPORT_OFFLINE:
2167                 case SDEV_BLOCK:
2168                         break;
2169                 default:
2170                         goto illegal;
2171                 }
2172                 break;
2173
2174         case SDEV_DEL:
2175                 switch (oldstate) {
2176                 case SDEV_CREATED:
2177                 case SDEV_RUNNING:
2178                 case SDEV_OFFLINE:
2179                 case SDEV_TRANSPORT_OFFLINE:
2180                 case SDEV_CANCEL:
2181                         break;
2182                 default:
2183                         goto illegal;
2184                 }
2185                 break;
2186
2187         }
2188         sdev->sdev_state = state;
2189         return 0;
2190
2191  illegal:
2192         SCSI_LOG_ERROR_RECOVERY(1, 
2193                                 sdev_printk(KERN_ERR, sdev,
2194                                             "Illegal state transition %s->%s\n",
2195                                             scsi_device_state_name(oldstate),
2196                                             scsi_device_state_name(state))
2197                                 );
2198         return -EINVAL;
2199 }
2200 EXPORT_SYMBOL(scsi_device_set_state);
2201
2202 /**
2203  *      sdev_evt_emit - emit a single SCSI device uevent
2204  *      @sdev: associated SCSI device
2205  *      @evt: event to emit
2206  *
2207  *      Send a single uevent (scsi_event) to the associated scsi_device.
2208  */
2209 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2210 {
2211         int idx = 0;
2212         char *envp[3];
2213
2214         switch (evt->evt_type) {
2215         case SDEV_EVT_MEDIA_CHANGE:
2216                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2217                 break;
2218
2219         default:
2220                 /* do nothing */
2221                 break;
2222         }
2223
2224         envp[idx++] = NULL;
2225
2226         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2227 }
2228
2229 /**
2230  *      sdev_evt_thread - send a uevent for each scsi event
2231  *      @work: work struct for scsi_device
2232  *
2233  *      Dispatch queued events to their associated scsi_device kobjects
2234  *      as uevents.
2235  */
2236 void scsi_evt_thread(struct work_struct *work)
2237 {
2238         struct scsi_device *sdev;
2239         LIST_HEAD(event_list);
2240
2241         sdev = container_of(work, struct scsi_device, event_work);
2242
2243         while (1) {
2244                 struct scsi_event *evt;
2245                 struct list_head *this, *tmp;
2246                 unsigned long flags;
2247
2248                 spin_lock_irqsave(&sdev->list_lock, flags);
2249                 list_splice_init(&sdev->event_list, &event_list);
2250                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2251
2252                 if (list_empty(&event_list))
2253                         break;
2254
2255                 list_for_each_safe(this, tmp, &event_list) {
2256                         evt = list_entry(this, struct scsi_event, node);
2257                         list_del(&evt->node);
2258                         scsi_evt_emit(sdev, evt);
2259                         kfree(evt);
2260                 }
2261         }
2262 }
2263
2264 /**
2265  *      sdev_evt_send - send asserted event to uevent thread
2266  *      @sdev: scsi_device event occurred on
2267  *      @evt: event to send
2268  *
2269  *      Assert scsi device event asynchronously.
2270  */
2271 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2272 {
2273         unsigned long flags;
2274
2275 #if 0
2276         /* FIXME: currently this check eliminates all media change events
2277          * for polled devices.  Need to update to discriminate between AN
2278          * and polled events */
2279         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2280                 kfree(evt);
2281                 return;
2282         }
2283 #endif
2284
2285         spin_lock_irqsave(&sdev->list_lock, flags);
2286         list_add_tail(&evt->node, &sdev->event_list);
2287         schedule_work(&sdev->event_work);
2288         spin_unlock_irqrestore(&sdev->list_lock, flags);
2289 }
2290 EXPORT_SYMBOL_GPL(sdev_evt_send);
2291
2292 /**
2293  *      sdev_evt_alloc - allocate a new scsi event
2294  *      @evt_type: type of event to allocate
2295  *      @gfpflags: GFP flags for allocation
2296  *
2297  *      Allocates and returns a new scsi_event.
2298  */
2299 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2300                                   gfp_t gfpflags)
2301 {
2302         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2303         if (!evt)
2304                 return NULL;
2305
2306         evt->evt_type = evt_type;
2307         INIT_LIST_HEAD(&evt->node);
2308
2309         /* evt_type-specific initialization, if any */
2310         switch (evt_type) {
2311         case SDEV_EVT_MEDIA_CHANGE:
2312         default:
2313                 /* do nothing */
2314                 break;
2315         }
2316
2317         return evt;
2318 }
2319 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2320
2321 /**
2322  *      sdev_evt_send_simple - send asserted event to uevent thread
2323  *      @sdev: scsi_device event occurred on
2324  *      @evt_type: type of event to send
2325  *      @gfpflags: GFP flags for allocation
2326  *
2327  *      Assert scsi device event asynchronously, given an event type.
2328  */
2329 void sdev_evt_send_simple(struct scsi_device *sdev,
2330                           enum scsi_device_event evt_type, gfp_t gfpflags)
2331 {
2332         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2333         if (!evt) {
2334                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2335                             evt_type);
2336                 return;
2337         }
2338
2339         sdev_evt_send(sdev, evt);
2340 }
2341 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2342
2343 /**
2344  *      scsi_device_quiesce - Block user issued commands.
2345  *      @sdev:  scsi device to quiesce.
2346  *
2347  *      This works by trying to transition to the SDEV_QUIESCE state
2348  *      (which must be a legal transition).  When the device is in this
2349  *      state, only special requests will be accepted, all others will
2350  *      be deferred.  Since special requests may also be requeued requests,
2351  *      a successful return doesn't guarantee the device will be 
2352  *      totally quiescent.
2353  *
2354  *      Must be called with user context, may sleep.
2355  *
2356  *      Returns zero if unsuccessful or an error if not.
2357  */
2358 int
2359 scsi_device_quiesce(struct scsi_device *sdev)
2360 {
2361         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2362         if (err)
2363                 return err;
2364
2365         scsi_run_queue(sdev->request_queue);
2366         while (sdev->device_busy) {
2367                 msleep_interruptible(200);
2368                 scsi_run_queue(sdev->request_queue);
2369         }
2370         return 0;
2371 }
2372 EXPORT_SYMBOL(scsi_device_quiesce);
2373
2374 /**
2375  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2376  *      @sdev:  scsi device to resume.
2377  *
2378  *      Moves the device from quiesced back to running and restarts the
2379  *      queues.
2380  *
2381  *      Must be called with user context, may sleep.
2382  */
2383 void scsi_device_resume(struct scsi_device *sdev)
2384 {
2385         /* check if the device state was mutated prior to resume, and if
2386          * so assume the state is being managed elsewhere (for example
2387          * device deleted during suspend)
2388          */
2389         if (sdev->sdev_state != SDEV_QUIESCE ||
2390             scsi_device_set_state(sdev, SDEV_RUNNING))
2391                 return;
2392         scsi_run_queue(sdev->request_queue);
2393 }
2394 EXPORT_SYMBOL(scsi_device_resume);
2395
2396 static void
2397 device_quiesce_fn(struct scsi_device *sdev, void *data)
2398 {
2399         scsi_device_quiesce(sdev);
2400 }
2401
2402 void
2403 scsi_target_quiesce(struct scsi_target *starget)
2404 {
2405         starget_for_each_device(starget, NULL, device_quiesce_fn);
2406 }
2407 EXPORT_SYMBOL(scsi_target_quiesce);
2408
2409 static void
2410 device_resume_fn(struct scsi_device *sdev, void *data)
2411 {
2412         scsi_device_resume(sdev);
2413 }
2414
2415 void
2416 scsi_target_resume(struct scsi_target *starget)
2417 {
2418         starget_for_each_device(starget, NULL, device_resume_fn);
2419 }
2420 EXPORT_SYMBOL(scsi_target_resume);
2421
2422 /**
2423  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2424  * @sdev:       device to block
2425  *
2426  * Block request made by scsi lld's to temporarily stop all
2427  * scsi commands on the specified device.  Called from interrupt
2428  * or normal process context.
2429  *
2430  * Returns zero if successful or error if not
2431  *
2432  * Notes:       
2433  *      This routine transitions the device to the SDEV_BLOCK state
2434  *      (which must be a legal transition).  When the device is in this
2435  *      state, all commands are deferred until the scsi lld reenables
2436  *      the device with scsi_device_unblock or device_block_tmo fires.
2437  */
2438 int
2439 scsi_internal_device_block(struct scsi_device *sdev)
2440 {
2441         struct request_queue *q = sdev->request_queue;
2442         unsigned long flags;
2443         int err = 0;
2444
2445         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2446         if (err) {
2447                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2448
2449                 if (err)
2450                         return err;
2451         }
2452
2453         /* 
2454          * The device has transitioned to SDEV_BLOCK.  Stop the
2455          * block layer from calling the midlayer with this device's
2456          * request queue. 
2457          */
2458         spin_lock_irqsave(q->queue_lock, flags);
2459         blk_stop_queue(q);
2460         spin_unlock_irqrestore(q->queue_lock, flags);
2461
2462         return 0;
2463 }
2464 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2465  
2466 /**
2467  * scsi_internal_device_unblock - resume a device after a block request
2468  * @sdev:       device to resume
2469  * @new_state:  state to set devices to after unblocking
2470  *
2471  * Called by scsi lld's or the midlayer to restart the device queue
2472  * for the previously suspended scsi device.  Called from interrupt or
2473  * normal process context.
2474  *
2475  * Returns zero if successful or error if not.
2476  *
2477  * Notes:       
2478  *      This routine transitions the device to the SDEV_RUNNING state
2479  *      or to one of the offline states (which must be a legal transition)
2480  *      allowing the midlayer to goose the queue for this device.
2481  */
2482 int
2483 scsi_internal_device_unblock(struct scsi_device *sdev,
2484                              enum scsi_device_state new_state)
2485 {
2486         struct request_queue *q = sdev->request_queue; 
2487         unsigned long flags;
2488
2489         /*
2490          * Try to transition the scsi device to SDEV_RUNNING or one of the
2491          * offlined states and goose the device queue if successful.
2492          */
2493         if ((sdev->sdev_state == SDEV_BLOCK) ||
2494             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2495                 sdev->sdev_state = new_state;
2496         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2497                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2498                     new_state == SDEV_OFFLINE)
2499                         sdev->sdev_state = new_state;
2500                 else
2501                         sdev->sdev_state = SDEV_CREATED;
2502         } else if (sdev->sdev_state != SDEV_CANCEL &&
2503                  sdev->sdev_state != SDEV_OFFLINE)
2504                 return -EINVAL;
2505
2506         spin_lock_irqsave(q->queue_lock, flags);
2507         blk_start_queue(q);
2508         spin_unlock_irqrestore(q->queue_lock, flags);
2509
2510         return 0;
2511 }
2512 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2513
2514 static void
2515 device_block(struct scsi_device *sdev, void *data)
2516 {
2517         scsi_internal_device_block(sdev);
2518 }
2519
2520 static int
2521 target_block(struct device *dev, void *data)
2522 {
2523         if (scsi_is_target_device(dev))
2524                 starget_for_each_device(to_scsi_target(dev), NULL,
2525                                         device_block);
2526         return 0;
2527 }
2528
2529 void
2530 scsi_target_block(struct device *dev)
2531 {
2532         if (scsi_is_target_device(dev))
2533                 starget_for_each_device(to_scsi_target(dev), NULL,
2534                                         device_block);
2535         else
2536                 device_for_each_child(dev, NULL, target_block);
2537 }
2538 EXPORT_SYMBOL_GPL(scsi_target_block);
2539
2540 static void
2541 device_unblock(struct scsi_device *sdev, void *data)
2542 {
2543         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2544 }
2545
2546 static int
2547 target_unblock(struct device *dev, void *data)
2548 {
2549         if (scsi_is_target_device(dev))
2550                 starget_for_each_device(to_scsi_target(dev), data,
2551                                         device_unblock);
2552         return 0;
2553 }
2554
2555 void
2556 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2557 {
2558         if (scsi_is_target_device(dev))
2559                 starget_for_each_device(to_scsi_target(dev), &new_state,
2560                                         device_unblock);
2561         else
2562                 device_for_each_child(dev, &new_state, target_unblock);
2563 }
2564 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2565
2566 /**
2567  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2568  * @sgl:        scatter-gather list
2569  * @sg_count:   number of segments in sg
2570  * @offset:     offset in bytes into sg, on return offset into the mapped area
2571  * @len:        bytes to map, on return number of bytes mapped
2572  *
2573  * Returns virtual address of the start of the mapped page
2574  */
2575 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2576                           size_t *offset, size_t *len)
2577 {
2578         int i;
2579         size_t sg_len = 0, len_complete = 0;
2580         struct scatterlist *sg;
2581         struct page *page;
2582
2583         WARN_ON(!irqs_disabled());
2584
2585         for_each_sg(sgl, sg, sg_count, i) {
2586                 len_complete = sg_len; /* Complete sg-entries */
2587                 sg_len += sg->length;
2588                 if (sg_len > *offset)
2589                         break;
2590         }
2591
2592         if (unlikely(i == sg_count)) {
2593                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2594                         "elements %d\n",
2595                        __func__, sg_len, *offset, sg_count);
2596                 WARN_ON(1);
2597                 return NULL;
2598         }
2599
2600         /* Offset starting from the beginning of first page in this sg-entry */
2601         *offset = *offset - len_complete + sg->offset;
2602
2603         /* Assumption: contiguous pages can be accessed as "page + i" */
2604         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2605         *offset &= ~PAGE_MASK;
2606
2607         /* Bytes in this sg-entry from *offset to the end of the page */
2608         sg_len = PAGE_SIZE - *offset;
2609         if (*len > sg_len)
2610                 *len = sg_len;
2611
2612         return kmap_atomic(page);
2613 }
2614 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2615
2616 /**
2617  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2618  * @virt:       virtual address to be unmapped
2619  */
2620 void scsi_kunmap_atomic_sg(void *virt)
2621 {
2622         kunmap_atomic(virt);
2623 }
2624 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2625
2626 void sdev_disable_disk_events(struct scsi_device *sdev)
2627 {
2628         atomic_inc(&sdev->disk_events_disable_depth);
2629 }
2630 EXPORT_SYMBOL(sdev_disable_disk_events);
2631
2632 void sdev_enable_disk_events(struct scsi_device *sdev)
2633 {
2634         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2635                 return;
2636         atomic_dec(&sdev->disk_events_disable_depth);
2637 }
2638 EXPORT_SYMBOL(sdev_enable_disk_events);