]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/scsi/scsi_lib.c
scsi: convert host_busy to atomic_t
[karo-tx-linux.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include <trace/events/scsi.h>
33
34 #include "scsi_priv.h"
35 #include "scsi_logging.h"
36
37
38 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
39 #define SG_MEMPOOL_SIZE         2
40
41 struct scsi_host_sg_pool {
42         size_t          size;
43         char            *name;
44         struct kmem_cache       *slab;
45         mempool_t       *pool;
46 };
47
48 #define SP(x) { x, "sgpool-" __stringify(x) }
49 #if (SCSI_MAX_SG_SEGMENTS < 32)
50 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
51 #endif
52 static struct scsi_host_sg_pool scsi_sg_pools[] = {
53         SP(8),
54         SP(16),
55 #if (SCSI_MAX_SG_SEGMENTS > 32)
56         SP(32),
57 #if (SCSI_MAX_SG_SEGMENTS > 64)
58         SP(64),
59 #if (SCSI_MAX_SG_SEGMENTS > 128)
60         SP(128),
61 #if (SCSI_MAX_SG_SEGMENTS > 256)
62 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
63 #endif
64 #endif
65 #endif
66 #endif
67         SP(SCSI_MAX_SG_SEGMENTS)
68 };
69 #undef SP
70
71 struct kmem_cache *scsi_sdb_cache;
72
73 /*
74  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
75  * not change behaviour from the previous unplug mechanism, experimentation
76  * may prove this needs changing.
77  */
78 #define SCSI_QUEUE_DELAY        3
79
80 static void
81 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
82 {
83         struct Scsi_Host *host = cmd->device->host;
84         struct scsi_device *device = cmd->device;
85         struct scsi_target *starget = scsi_target(device);
86
87         /*
88          * Set the appropriate busy bit for the device/host.
89          *
90          * If the host/device isn't busy, assume that something actually
91          * completed, and that we should be able to queue a command now.
92          *
93          * Note that the prior mid-layer assumption that any host could
94          * always queue at least one command is now broken.  The mid-layer
95          * will implement a user specifiable stall (see
96          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
97          * if a command is requeued with no other commands outstanding
98          * either for the device or for the host.
99          */
100         switch (reason) {
101         case SCSI_MLQUEUE_HOST_BUSY:
102                 host->host_blocked = host->max_host_blocked;
103                 break;
104         case SCSI_MLQUEUE_DEVICE_BUSY:
105         case SCSI_MLQUEUE_EH_RETRY:
106                 device->device_blocked = device->max_device_blocked;
107                 break;
108         case SCSI_MLQUEUE_TARGET_BUSY:
109                 starget->target_blocked = starget->max_target_blocked;
110                 break;
111         }
112 }
113
114 /**
115  * __scsi_queue_insert - private queue insertion
116  * @cmd: The SCSI command being requeued
117  * @reason:  The reason for the requeue
118  * @unbusy: Whether the queue should be unbusied
119  *
120  * This is a private queue insertion.  The public interface
121  * scsi_queue_insert() always assumes the queue should be unbusied
122  * because it's always called before the completion.  This function is
123  * for a requeue after completion, which should only occur in this
124  * file.
125  */
126 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
127 {
128         struct scsi_device *device = cmd->device;
129         struct request_queue *q = device->request_queue;
130         unsigned long flags;
131
132         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
133                 "Inserting command %p into mlqueue\n", cmd));
134
135         scsi_set_blocked(cmd, reason);
136
137         /*
138          * Decrement the counters, since these commands are no longer
139          * active on the host/device.
140          */
141         if (unbusy)
142                 scsi_device_unbusy(device);
143
144         /*
145          * Requeue this command.  It will go before all other commands
146          * that are already in the queue. Schedule requeue work under
147          * lock such that the kblockd_schedule_work() call happens
148          * before blk_cleanup_queue() finishes.
149          */
150         cmd->result = 0;
151         spin_lock_irqsave(q->queue_lock, flags);
152         blk_requeue_request(q, cmd->request);
153         kblockd_schedule_work(&device->requeue_work);
154         spin_unlock_irqrestore(q->queue_lock, flags);
155 }
156
157 /*
158  * Function:    scsi_queue_insert()
159  *
160  * Purpose:     Insert a command in the midlevel queue.
161  *
162  * Arguments:   cmd    - command that we are adding to queue.
163  *              reason - why we are inserting command to queue.
164  *
165  * Lock status: Assumed that lock is not held upon entry.
166  *
167  * Returns:     Nothing.
168  *
169  * Notes:       We do this for one of two cases.  Either the host is busy
170  *              and it cannot accept any more commands for the time being,
171  *              or the device returned QUEUE_FULL and can accept no more
172  *              commands.
173  * Notes:       This could be called either from an interrupt context or a
174  *              normal process context.
175  */
176 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
177 {
178         __scsi_queue_insert(cmd, reason, 1);
179 }
180 /**
181  * scsi_execute - insert request and wait for the result
182  * @sdev:       scsi device
183  * @cmd:        scsi command
184  * @data_direction: data direction
185  * @buffer:     data buffer
186  * @bufflen:    len of buffer
187  * @sense:      optional sense buffer
188  * @timeout:    request timeout in seconds
189  * @retries:    number of times to retry request
190  * @flags:      or into request flags;
191  * @resid:      optional residual length
192  *
193  * returns the req->errors value which is the scsi_cmnd result
194  * field.
195  */
196 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
197                  int data_direction, void *buffer, unsigned bufflen,
198                  unsigned char *sense, int timeout, int retries, u64 flags,
199                  int *resid)
200 {
201         struct request *req;
202         int write = (data_direction == DMA_TO_DEVICE);
203         int ret = DRIVER_ERROR << 24;
204
205         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
206         if (!req)
207                 return ret;
208         blk_rq_set_block_pc(req);
209
210         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
211                                         buffer, bufflen, __GFP_WAIT))
212                 goto out;
213
214         req->cmd_len = COMMAND_SIZE(cmd[0]);
215         memcpy(req->cmd, cmd, req->cmd_len);
216         req->sense = sense;
217         req->sense_len = 0;
218         req->retries = retries;
219         req->timeout = timeout;
220         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
221
222         /*
223          * head injection *required* here otherwise quiesce won't work
224          */
225         blk_execute_rq(req->q, NULL, req, 1);
226
227         /*
228          * Some devices (USB mass-storage in particular) may transfer
229          * garbage data together with a residue indicating that the data
230          * is invalid.  Prevent the garbage from being misinterpreted
231          * and prevent security leaks by zeroing out the excess data.
232          */
233         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
234                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
235
236         if (resid)
237                 *resid = req->resid_len;
238         ret = req->errors;
239  out:
240         blk_put_request(req);
241
242         return ret;
243 }
244 EXPORT_SYMBOL(scsi_execute);
245
246 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
247                      int data_direction, void *buffer, unsigned bufflen,
248                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
249                      int *resid, u64 flags)
250 {
251         char *sense = NULL;
252         int result;
253         
254         if (sshdr) {
255                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
256                 if (!sense)
257                         return DRIVER_ERROR << 24;
258         }
259         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
260                               sense, timeout, retries, flags, resid);
261         if (sshdr)
262                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
263
264         kfree(sense);
265         return result;
266 }
267 EXPORT_SYMBOL(scsi_execute_req_flags);
268
269 /*
270  * Function:    scsi_init_cmd_errh()
271  *
272  * Purpose:     Initialize cmd fields related to error handling.
273  *
274  * Arguments:   cmd     - command that is ready to be queued.
275  *
276  * Notes:       This function has the job of initializing a number of
277  *              fields related to error handling.   Typically this will
278  *              be called once for each command, as required.
279  */
280 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
281 {
282         cmd->serial_number = 0;
283         scsi_set_resid(cmd, 0);
284         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
285         if (cmd->cmd_len == 0)
286                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
287 }
288
289 void scsi_device_unbusy(struct scsi_device *sdev)
290 {
291         struct Scsi_Host *shost = sdev->host;
292         struct scsi_target *starget = scsi_target(sdev);
293         unsigned long flags;
294
295         atomic_dec(&shost->host_busy);
296         atomic_dec(&starget->target_busy);
297
298         if (unlikely(scsi_host_in_recovery(shost) &&
299                      (shost->host_failed || shost->host_eh_scheduled))) {
300                 spin_lock_irqsave(shost->host_lock, flags);
301                 scsi_eh_wakeup(shost);
302                 spin_unlock_irqrestore(shost->host_lock, flags);
303         }
304
305         spin_lock_irqsave(sdev->request_queue->queue_lock, flags);
306         sdev->device_busy--;
307         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
308 }
309
310 /*
311  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
312  * and call blk_run_queue for all the scsi_devices on the target -
313  * including current_sdev first.
314  *
315  * Called with *no* scsi locks held.
316  */
317 static void scsi_single_lun_run(struct scsi_device *current_sdev)
318 {
319         struct Scsi_Host *shost = current_sdev->host;
320         struct scsi_device *sdev, *tmp;
321         struct scsi_target *starget = scsi_target(current_sdev);
322         unsigned long flags;
323
324         spin_lock_irqsave(shost->host_lock, flags);
325         starget->starget_sdev_user = NULL;
326         spin_unlock_irqrestore(shost->host_lock, flags);
327
328         /*
329          * Call blk_run_queue for all LUNs on the target, starting with
330          * current_sdev. We race with others (to set starget_sdev_user),
331          * but in most cases, we will be first. Ideally, each LU on the
332          * target would get some limited time or requests on the target.
333          */
334         blk_run_queue(current_sdev->request_queue);
335
336         spin_lock_irqsave(shost->host_lock, flags);
337         if (starget->starget_sdev_user)
338                 goto out;
339         list_for_each_entry_safe(sdev, tmp, &starget->devices,
340                         same_target_siblings) {
341                 if (sdev == current_sdev)
342                         continue;
343                 if (scsi_device_get(sdev))
344                         continue;
345
346                 spin_unlock_irqrestore(shost->host_lock, flags);
347                 blk_run_queue(sdev->request_queue);
348                 spin_lock_irqsave(shost->host_lock, flags);
349         
350                 scsi_device_put(sdev);
351         }
352  out:
353         spin_unlock_irqrestore(shost->host_lock, flags);
354 }
355
356 static inline int scsi_device_is_busy(struct scsi_device *sdev)
357 {
358         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
359                 return 1;
360
361         return 0;
362 }
363
364 static inline int scsi_target_is_busy(struct scsi_target *starget)
365 {
366         return ((starget->can_queue > 0 &&
367                  atomic_read(&starget->target_busy) >= starget->can_queue) ||
368                  starget->target_blocked);
369 }
370
371 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
372 {
373         if ((shost->can_queue > 0 &&
374              atomic_read(&shost->host_busy) >= shost->can_queue) ||
375             shost->host_blocked || shost->host_self_blocked)
376                 return 1;
377
378         return 0;
379 }
380
381 static void scsi_starved_list_run(struct Scsi_Host *shost)
382 {
383         LIST_HEAD(starved_list);
384         struct scsi_device *sdev;
385         unsigned long flags;
386
387         spin_lock_irqsave(shost->host_lock, flags);
388         list_splice_init(&shost->starved_list, &starved_list);
389
390         while (!list_empty(&starved_list)) {
391                 struct request_queue *slq;
392
393                 /*
394                  * As long as shost is accepting commands and we have
395                  * starved queues, call blk_run_queue. scsi_request_fn
396                  * drops the queue_lock and can add us back to the
397                  * starved_list.
398                  *
399                  * host_lock protects the starved_list and starved_entry.
400                  * scsi_request_fn must get the host_lock before checking
401                  * or modifying starved_list or starved_entry.
402                  */
403                 if (scsi_host_is_busy(shost))
404                         break;
405
406                 sdev = list_entry(starved_list.next,
407                                   struct scsi_device, starved_entry);
408                 list_del_init(&sdev->starved_entry);
409                 if (scsi_target_is_busy(scsi_target(sdev))) {
410                         list_move_tail(&sdev->starved_entry,
411                                        &shost->starved_list);
412                         continue;
413                 }
414
415                 /*
416                  * Once we drop the host lock, a racing scsi_remove_device()
417                  * call may remove the sdev from the starved list and destroy
418                  * it and the queue.  Mitigate by taking a reference to the
419                  * queue and never touching the sdev again after we drop the
420                  * host lock.  Note: if __scsi_remove_device() invokes
421                  * blk_cleanup_queue() before the queue is run from this
422                  * function then blk_run_queue() will return immediately since
423                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
424                  */
425                 slq = sdev->request_queue;
426                 if (!blk_get_queue(slq))
427                         continue;
428                 spin_unlock_irqrestore(shost->host_lock, flags);
429
430                 blk_run_queue(slq);
431                 blk_put_queue(slq);
432
433                 spin_lock_irqsave(shost->host_lock, flags);
434         }
435         /* put any unprocessed entries back */
436         list_splice(&starved_list, &shost->starved_list);
437         spin_unlock_irqrestore(shost->host_lock, flags);
438 }
439
440 /*
441  * Function:   scsi_run_queue()
442  *
443  * Purpose:    Select a proper request queue to serve next
444  *
445  * Arguments:  q       - last request's queue
446  *
447  * Returns:     Nothing
448  *
449  * Notes:      The previous command was completely finished, start
450  *             a new one if possible.
451  */
452 static void scsi_run_queue(struct request_queue *q)
453 {
454         struct scsi_device *sdev = q->queuedata;
455
456         if (scsi_target(sdev)->single_lun)
457                 scsi_single_lun_run(sdev);
458         if (!list_empty(&sdev->host->starved_list))
459                 scsi_starved_list_run(sdev->host);
460
461         blk_run_queue(q);
462 }
463
464 void scsi_requeue_run_queue(struct work_struct *work)
465 {
466         struct scsi_device *sdev;
467         struct request_queue *q;
468
469         sdev = container_of(work, struct scsi_device, requeue_work);
470         q = sdev->request_queue;
471         scsi_run_queue(q);
472 }
473
474 /*
475  * Function:    scsi_requeue_command()
476  *
477  * Purpose:     Handle post-processing of completed commands.
478  *
479  * Arguments:   q       - queue to operate on
480  *              cmd     - command that may need to be requeued.
481  *
482  * Returns:     Nothing
483  *
484  * Notes:       After command completion, there may be blocks left
485  *              over which weren't finished by the previous command
486  *              this can be for a number of reasons - the main one is
487  *              I/O errors in the middle of the request, in which case
488  *              we need to request the blocks that come after the bad
489  *              sector.
490  * Notes:       Upon return, cmd is a stale pointer.
491  */
492 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
493 {
494         struct scsi_device *sdev = cmd->device;
495         struct request *req = cmd->request;
496         unsigned long flags;
497
498         spin_lock_irqsave(q->queue_lock, flags);
499         blk_unprep_request(req);
500         req->special = NULL;
501         scsi_put_command(cmd);
502         blk_requeue_request(q, req);
503         spin_unlock_irqrestore(q->queue_lock, flags);
504
505         scsi_run_queue(q);
506
507         put_device(&sdev->sdev_gendev);
508 }
509
510 void scsi_next_command(struct scsi_cmnd *cmd)
511 {
512         struct scsi_device *sdev = cmd->device;
513         struct request_queue *q = sdev->request_queue;
514
515         scsi_put_command(cmd);
516         scsi_run_queue(q);
517
518         put_device(&sdev->sdev_gendev);
519 }
520
521 void scsi_run_host_queues(struct Scsi_Host *shost)
522 {
523         struct scsi_device *sdev;
524
525         shost_for_each_device(sdev, shost)
526                 scsi_run_queue(sdev->request_queue);
527 }
528
529 static inline unsigned int scsi_sgtable_index(unsigned short nents)
530 {
531         unsigned int index;
532
533         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
534
535         if (nents <= 8)
536                 index = 0;
537         else
538                 index = get_count_order(nents) - 3;
539
540         return index;
541 }
542
543 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
544 {
545         struct scsi_host_sg_pool *sgp;
546
547         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
548         mempool_free(sgl, sgp->pool);
549 }
550
551 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
552 {
553         struct scsi_host_sg_pool *sgp;
554
555         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
556         return mempool_alloc(sgp->pool, gfp_mask);
557 }
558
559 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
560                               gfp_t gfp_mask)
561 {
562         int ret;
563
564         BUG_ON(!nents);
565
566         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
567                                gfp_mask, scsi_sg_alloc);
568         if (unlikely(ret))
569                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
570                                 scsi_sg_free);
571
572         return ret;
573 }
574
575 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
576 {
577         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
578 }
579
580 /*
581  * Function:    scsi_release_buffers()
582  *
583  * Purpose:     Free resources allocate for a scsi_command.
584  *
585  * Arguments:   cmd     - command that we are bailing.
586  *
587  * Lock status: Assumed that no lock is held upon entry.
588  *
589  * Returns:     Nothing
590  *
591  * Notes:       In the event that an upper level driver rejects a
592  *              command, we must release resources allocated during
593  *              the __init_io() function.  Primarily this would involve
594  *              the scatter-gather table.
595  */
596 static void scsi_release_buffers(struct scsi_cmnd *cmd)
597 {
598         if (cmd->sdb.table.nents)
599                 scsi_free_sgtable(&cmd->sdb);
600
601         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
602
603         if (scsi_prot_sg_count(cmd))
604                 scsi_free_sgtable(cmd->prot_sdb);
605 }
606
607 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
608 {
609         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
610
611         scsi_free_sgtable(bidi_sdb);
612         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
613         cmd->request->next_rq->special = NULL;
614 }
615
616 /**
617  * __scsi_error_from_host_byte - translate SCSI error code into errno
618  * @cmd:        SCSI command (unused)
619  * @result:     scsi error code
620  *
621  * Translate SCSI error code into standard UNIX errno.
622  * Return values:
623  * -ENOLINK     temporary transport failure
624  * -EREMOTEIO   permanent target failure, do not retry
625  * -EBADE       permanent nexus failure, retry on other path
626  * -ENOSPC      No write space available
627  * -ENODATA     Medium error
628  * -EIO         unspecified I/O error
629  */
630 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
631 {
632         int error = 0;
633
634         switch(host_byte(result)) {
635         case DID_TRANSPORT_FAILFAST:
636                 error = -ENOLINK;
637                 break;
638         case DID_TARGET_FAILURE:
639                 set_host_byte(cmd, DID_OK);
640                 error = -EREMOTEIO;
641                 break;
642         case DID_NEXUS_FAILURE:
643                 set_host_byte(cmd, DID_OK);
644                 error = -EBADE;
645                 break;
646         case DID_ALLOC_FAILURE:
647                 set_host_byte(cmd, DID_OK);
648                 error = -ENOSPC;
649                 break;
650         case DID_MEDIUM_ERROR:
651                 set_host_byte(cmd, DID_OK);
652                 error = -ENODATA;
653                 break;
654         default:
655                 error = -EIO;
656                 break;
657         }
658
659         return error;
660 }
661
662 /*
663  * Function:    scsi_io_completion()
664  *
665  * Purpose:     Completion processing for block device I/O requests.
666  *
667  * Arguments:   cmd   - command that is finished.
668  *
669  * Lock status: Assumed that no lock is held upon entry.
670  *
671  * Returns:     Nothing
672  *
673  * Notes:       We will finish off the specified number of sectors.  If we
674  *              are done, the command block will be released and the queue
675  *              function will be goosed.  If we are not done then we have to
676  *              figure out what to do next:
677  *
678  *              a) We can call scsi_requeue_command().  The request
679  *                 will be unprepared and put back on the queue.  Then
680  *                 a new command will be created for it.  This should
681  *                 be used if we made forward progress, or if we want
682  *                 to switch from READ(10) to READ(6) for example.
683  *
684  *              b) We can call __scsi_queue_insert().  The request will
685  *                 be put back on the queue and retried using the same
686  *                 command as before, possibly after a delay.
687  *
688  *              c) We can call blk_end_request() with -EIO to fail
689  *                 the remainder of the request.
690  */
691 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
692 {
693         int result = cmd->result;
694         struct request_queue *q = cmd->device->request_queue;
695         struct request *req = cmd->request;
696         int error = 0;
697         struct scsi_sense_hdr sshdr;
698         int sense_valid = 0;
699         int sense_deferred = 0;
700         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
701               ACTION_DELAYED_RETRY} action;
702         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
703
704         if (result) {
705                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
706                 if (sense_valid)
707                         sense_deferred = scsi_sense_is_deferred(&sshdr);
708         }
709
710         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
711                 if (result) {
712                         if (sense_valid && req->sense) {
713                                 /*
714                                  * SG_IO wants current and deferred errors
715                                  */
716                                 int len = 8 + cmd->sense_buffer[7];
717
718                                 if (len > SCSI_SENSE_BUFFERSIZE)
719                                         len = SCSI_SENSE_BUFFERSIZE;
720                                 memcpy(req->sense, cmd->sense_buffer,  len);
721                                 req->sense_len = len;
722                         }
723                         if (!sense_deferred)
724                                 error = __scsi_error_from_host_byte(cmd, result);
725                 }
726                 /*
727                  * __scsi_error_from_host_byte may have reset the host_byte
728                  */
729                 req->errors = cmd->result;
730
731                 req->resid_len = scsi_get_resid(cmd);
732
733                 if (scsi_bidi_cmnd(cmd)) {
734                         /*
735                          * Bidi commands Must be complete as a whole,
736                          * both sides at once.
737                          */
738                         req->next_rq->resid_len = scsi_in(cmd)->resid;
739
740                         scsi_release_buffers(cmd);
741                         scsi_release_bidi_buffers(cmd);
742
743                         blk_end_request_all(req, 0);
744
745                         scsi_next_command(cmd);
746                         return;
747                 }
748         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
749                 /*
750                  * Certain non BLOCK_PC requests are commands that don't
751                  * actually transfer anything (FLUSH), so cannot use
752                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
753                  * This sets the error explicitly for the problem case.
754                  */
755                 error = __scsi_error_from_host_byte(cmd, result);
756         }
757
758         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
759         BUG_ON(blk_bidi_rq(req));
760
761         /*
762          * Next deal with any sectors which we were able to correctly
763          * handle.
764          */
765         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
766                 "%u sectors total, %d bytes done.\n",
767                 blk_rq_sectors(req), good_bytes));
768
769         /*
770          * Recovered errors need reporting, but they're always treated
771          * as success, so fiddle the result code here.  For BLOCK_PC
772          * we already took a copy of the original into rq->errors which
773          * is what gets returned to the user
774          */
775         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
776                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
777                  * print since caller wants ATA registers. Only occurs on
778                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
779                  */
780                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
781                         ;
782                 else if (!(req->cmd_flags & REQ_QUIET))
783                         scsi_print_sense("", cmd);
784                 result = 0;
785                 /* BLOCK_PC may have set error */
786                 error = 0;
787         }
788
789         /*
790          * If we finished all bytes in the request we are done now.
791          */
792         if (!blk_end_request(req, error, good_bytes))
793                 goto next_command;
794
795         /*
796          * Kill remainder if no retrys.
797          */
798         if (error && scsi_noretry_cmd(cmd)) {
799                 blk_end_request_all(req, error);
800                 goto next_command;
801         }
802
803         /*
804          * If there had been no error, but we have leftover bytes in the
805          * requeues just queue the command up again.
806          */
807         if (result == 0)
808                 goto requeue;
809
810         error = __scsi_error_from_host_byte(cmd, result);
811
812         if (host_byte(result) == DID_RESET) {
813                 /* Third party bus reset or reset for error recovery
814                  * reasons.  Just retry the command and see what
815                  * happens.
816                  */
817                 action = ACTION_RETRY;
818         } else if (sense_valid && !sense_deferred) {
819                 switch (sshdr.sense_key) {
820                 case UNIT_ATTENTION:
821                         if (cmd->device->removable) {
822                                 /* Detected disc change.  Set a bit
823                                  * and quietly refuse further access.
824                                  */
825                                 cmd->device->changed = 1;
826                                 action = ACTION_FAIL;
827                         } else {
828                                 /* Must have been a power glitch, or a
829                                  * bus reset.  Could not have been a
830                                  * media change, so we just retry the
831                                  * command and see what happens.
832                                  */
833                                 action = ACTION_RETRY;
834                         }
835                         break;
836                 case ILLEGAL_REQUEST:
837                         /* If we had an ILLEGAL REQUEST returned, then
838                          * we may have performed an unsupported
839                          * command.  The only thing this should be
840                          * would be a ten byte read where only a six
841                          * byte read was supported.  Also, on a system
842                          * where READ CAPACITY failed, we may have
843                          * read past the end of the disk.
844                          */
845                         if ((cmd->device->use_10_for_rw &&
846                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
847                             (cmd->cmnd[0] == READ_10 ||
848                              cmd->cmnd[0] == WRITE_10)) {
849                                 /* This will issue a new 6-byte command. */
850                                 cmd->device->use_10_for_rw = 0;
851                                 action = ACTION_REPREP;
852                         } else if (sshdr.asc == 0x10) /* DIX */ {
853                                 action = ACTION_FAIL;
854                                 error = -EILSEQ;
855                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
856                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
857                                 action = ACTION_FAIL;
858                                 error = -EREMOTEIO;
859                         } else
860                                 action = ACTION_FAIL;
861                         break;
862                 case ABORTED_COMMAND:
863                         action = ACTION_FAIL;
864                         if (sshdr.asc == 0x10) /* DIF */
865                                 error = -EILSEQ;
866                         break;
867                 case NOT_READY:
868                         /* If the device is in the process of becoming
869                          * ready, or has a temporary blockage, retry.
870                          */
871                         if (sshdr.asc == 0x04) {
872                                 switch (sshdr.ascq) {
873                                 case 0x01: /* becoming ready */
874                                 case 0x04: /* format in progress */
875                                 case 0x05: /* rebuild in progress */
876                                 case 0x06: /* recalculation in progress */
877                                 case 0x07: /* operation in progress */
878                                 case 0x08: /* Long write in progress */
879                                 case 0x09: /* self test in progress */
880                                 case 0x14: /* space allocation in progress */
881                                         action = ACTION_DELAYED_RETRY;
882                                         break;
883                                 default:
884                                         action = ACTION_FAIL;
885                                         break;
886                                 }
887                         } else
888                                 action = ACTION_FAIL;
889                         break;
890                 case VOLUME_OVERFLOW:
891                         /* See SSC3rXX or current. */
892                         action = ACTION_FAIL;
893                         break;
894                 default:
895                         action = ACTION_FAIL;
896                         break;
897                 }
898         } else
899                 action = ACTION_FAIL;
900
901         if (action != ACTION_FAIL &&
902             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
903                 action = ACTION_FAIL;
904
905         switch (action) {
906         case ACTION_FAIL:
907                 /* Give up and fail the remainder of the request */
908                 if (!(req->cmd_flags & REQ_QUIET)) {
909                         scsi_print_result(cmd);
910                         if (driver_byte(result) & DRIVER_SENSE)
911                                 scsi_print_sense("", cmd);
912                         scsi_print_command(cmd);
913                 }
914                 if (!blk_end_request_err(req, error))
915                         goto next_command;
916                 /*FALLTHRU*/
917         case ACTION_REPREP:
918         requeue:
919                 /* Unprep the request and put it back at the head of the queue.
920                  * A new command will be prepared and issued.
921                  */
922                 scsi_release_buffers(cmd);
923                 scsi_requeue_command(q, cmd);
924                 break;
925         case ACTION_RETRY:
926                 /* Retry the same command immediately */
927                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
928                 break;
929         case ACTION_DELAYED_RETRY:
930                 /* Retry the same command after a delay */
931                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
932                 break;
933         }
934         return;
935
936 next_command:
937         scsi_release_buffers(cmd);
938         scsi_next_command(cmd);
939 }
940
941 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
942                              gfp_t gfp_mask)
943 {
944         int count;
945
946         /*
947          * If sg table allocation fails, requeue request later.
948          */
949         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
950                                         gfp_mask))) {
951                 return BLKPREP_DEFER;
952         }
953
954         /* 
955          * Next, walk the list, and fill in the addresses and sizes of
956          * each segment.
957          */
958         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
959         BUG_ON(count > sdb->table.nents);
960         sdb->table.nents = count;
961         sdb->length = blk_rq_bytes(req);
962         return BLKPREP_OK;
963 }
964
965 /*
966  * Function:    scsi_init_io()
967  *
968  * Purpose:     SCSI I/O initialize function.
969  *
970  * Arguments:   cmd   - Command descriptor we wish to initialize
971  *
972  * Returns:     0 on success
973  *              BLKPREP_DEFER if the failure is retryable
974  *              BLKPREP_KILL if the failure is fatal
975  */
976 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
977 {
978         struct scsi_device *sdev = cmd->device;
979         struct request *rq = cmd->request;
980         int error;
981
982         BUG_ON(!rq->nr_phys_segments);
983
984         error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
985         if (error)
986                 goto err_exit;
987
988         if (blk_bidi_rq(rq)) {
989                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
990                         scsi_sdb_cache, GFP_ATOMIC);
991                 if (!bidi_sdb) {
992                         error = BLKPREP_DEFER;
993                         goto err_exit;
994                 }
995
996                 rq->next_rq->special = bidi_sdb;
997                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
998                 if (error)
999                         goto err_exit;
1000         }
1001
1002         if (blk_integrity_rq(rq)) {
1003                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1004                 int ivecs, count;
1005
1006                 BUG_ON(prot_sdb == NULL);
1007                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1008
1009                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1010                         error = BLKPREP_DEFER;
1011                         goto err_exit;
1012                 }
1013
1014                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1015                                                 prot_sdb->table.sgl);
1016                 BUG_ON(unlikely(count > ivecs));
1017                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1018
1019                 cmd->prot_sdb = prot_sdb;
1020                 cmd->prot_sdb->table.nents = count;
1021         }
1022
1023         return BLKPREP_OK ;
1024
1025 err_exit:
1026         scsi_release_buffers(cmd);
1027         cmd->request->special = NULL;
1028         scsi_put_command(cmd);
1029         put_device(&sdev->sdev_gendev);
1030         return error;
1031 }
1032 EXPORT_SYMBOL(scsi_init_io);
1033
1034 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1035                 struct request *req)
1036 {
1037         struct scsi_cmnd *cmd;
1038
1039         if (!req->special) {
1040                 /* Bail if we can't get a reference to the device */
1041                 if (!get_device(&sdev->sdev_gendev))
1042                         return NULL;
1043
1044                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1045                 if (unlikely(!cmd)) {
1046                         put_device(&sdev->sdev_gendev);
1047                         return NULL;
1048                 }
1049                 req->special = cmd;
1050         } else {
1051                 cmd = req->special;
1052         }
1053
1054         /* pull a tag out of the request if we have one */
1055         cmd->tag = req->tag;
1056         cmd->request = req;
1057
1058         cmd->cmnd = req->cmd;
1059         cmd->prot_op = SCSI_PROT_NORMAL;
1060
1061         return cmd;
1062 }
1063
1064 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1065 {
1066         struct scsi_cmnd *cmd = req->special;
1067
1068         /*
1069          * BLOCK_PC requests may transfer data, in which case they must
1070          * a bio attached to them.  Or they might contain a SCSI command
1071          * that does not transfer data, in which case they may optionally
1072          * submit a request without an attached bio.
1073          */
1074         if (req->bio) {
1075                 int ret = scsi_init_io(cmd, GFP_ATOMIC);
1076                 if (unlikely(ret))
1077                         return ret;
1078         } else {
1079                 BUG_ON(blk_rq_bytes(req));
1080
1081                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1082         }
1083
1084         cmd->cmd_len = req->cmd_len;
1085         cmd->transfersize = blk_rq_bytes(req);
1086         cmd->allowed = req->retries;
1087         return BLKPREP_OK;
1088 }
1089
1090 /*
1091  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1092  * that still need to be translated to SCSI CDBs from the ULD.
1093  */
1094 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1095 {
1096         struct scsi_cmnd *cmd = req->special;
1097
1098         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1099                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1100                 int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1101                 if (ret != BLKPREP_OK)
1102                         return ret;
1103         }
1104
1105         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1106         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1107 }
1108
1109 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1110 {
1111         struct scsi_cmnd *cmd = req->special;
1112
1113         if (!blk_rq_bytes(req))
1114                 cmd->sc_data_direction = DMA_NONE;
1115         else if (rq_data_dir(req) == WRITE)
1116                 cmd->sc_data_direction = DMA_TO_DEVICE;
1117         else
1118                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1119
1120         switch (req->cmd_type) {
1121         case REQ_TYPE_FS:
1122                 return scsi_setup_fs_cmnd(sdev, req);
1123         case REQ_TYPE_BLOCK_PC:
1124                 return scsi_setup_blk_pc_cmnd(sdev, req);
1125         default:
1126                 return BLKPREP_KILL;
1127         }
1128 }
1129
1130 static int
1131 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1132 {
1133         int ret = BLKPREP_OK;
1134
1135         /*
1136          * If the device is not in running state we will reject some
1137          * or all commands.
1138          */
1139         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1140                 switch (sdev->sdev_state) {
1141                 case SDEV_OFFLINE:
1142                 case SDEV_TRANSPORT_OFFLINE:
1143                         /*
1144                          * If the device is offline we refuse to process any
1145                          * commands.  The device must be brought online
1146                          * before trying any recovery commands.
1147                          */
1148                         sdev_printk(KERN_ERR, sdev,
1149                                     "rejecting I/O to offline device\n");
1150                         ret = BLKPREP_KILL;
1151                         break;
1152                 case SDEV_DEL:
1153                         /*
1154                          * If the device is fully deleted, we refuse to
1155                          * process any commands as well.
1156                          */
1157                         sdev_printk(KERN_ERR, sdev,
1158                                     "rejecting I/O to dead device\n");
1159                         ret = BLKPREP_KILL;
1160                         break;
1161                 case SDEV_QUIESCE:
1162                 case SDEV_BLOCK:
1163                 case SDEV_CREATED_BLOCK:
1164                         /*
1165                          * If the devices is blocked we defer normal commands.
1166                          */
1167                         if (!(req->cmd_flags & REQ_PREEMPT))
1168                                 ret = BLKPREP_DEFER;
1169                         break;
1170                 default:
1171                         /*
1172                          * For any other not fully online state we only allow
1173                          * special commands.  In particular any user initiated
1174                          * command is not allowed.
1175                          */
1176                         if (!(req->cmd_flags & REQ_PREEMPT))
1177                                 ret = BLKPREP_KILL;
1178                         break;
1179                 }
1180         }
1181         return ret;
1182 }
1183
1184 static int
1185 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1186 {
1187         struct scsi_device *sdev = q->queuedata;
1188
1189         switch (ret) {
1190         case BLKPREP_KILL:
1191                 req->errors = DID_NO_CONNECT << 16;
1192                 /* release the command and kill it */
1193                 if (req->special) {
1194                         struct scsi_cmnd *cmd = req->special;
1195                         scsi_release_buffers(cmd);
1196                         scsi_put_command(cmd);
1197                         put_device(&sdev->sdev_gendev);
1198                         req->special = NULL;
1199                 }
1200                 break;
1201         case BLKPREP_DEFER:
1202                 /*
1203                  * If we defer, the blk_peek_request() returns NULL, but the
1204                  * queue must be restarted, so we schedule a callback to happen
1205                  * shortly.
1206                  */
1207                 if (sdev->device_busy == 0)
1208                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1209                 break;
1210         default:
1211                 req->cmd_flags |= REQ_DONTPREP;
1212         }
1213
1214         return ret;
1215 }
1216
1217 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1218 {
1219         struct scsi_device *sdev = q->queuedata;
1220         struct scsi_cmnd *cmd;
1221         int ret;
1222
1223         ret = scsi_prep_state_check(sdev, req);
1224         if (ret != BLKPREP_OK)
1225                 goto out;
1226
1227         cmd = scsi_get_cmd_from_req(sdev, req);
1228         if (unlikely(!cmd)) {
1229                 ret = BLKPREP_DEFER;
1230                 goto out;
1231         }
1232
1233         ret = scsi_setup_cmnd(sdev, req);
1234 out:
1235         return scsi_prep_return(q, req, ret);
1236 }
1237
1238 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1239 {
1240         if (req->cmd_type == REQ_TYPE_FS) {
1241                 struct scsi_cmnd *cmd = req->special;
1242                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
1243
1244                 if (drv->uninit_command)
1245                         drv->uninit_command(cmd);
1246         }
1247 }
1248
1249 /*
1250  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1251  * return 0.
1252  *
1253  * Called with the queue_lock held.
1254  */
1255 static inline int scsi_dev_queue_ready(struct request_queue *q,
1256                                   struct scsi_device *sdev)
1257 {
1258         if (sdev->device_busy == 0 && sdev->device_blocked) {
1259                 /*
1260                  * unblock after device_blocked iterates to zero
1261                  */
1262                 if (--sdev->device_blocked == 0) {
1263                         SCSI_LOG_MLQUEUE(3,
1264                                    sdev_printk(KERN_INFO, sdev,
1265                                    "unblocking device at zero depth\n"));
1266                 } else {
1267                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1268                         return 0;
1269                 }
1270         }
1271         if (scsi_device_is_busy(sdev))
1272                 return 0;
1273
1274         return 1;
1275 }
1276
1277
1278 /*
1279  * scsi_target_queue_ready: checks if there we can send commands to target
1280  * @sdev: scsi device on starget to check.
1281  */
1282 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1283                                            struct scsi_device *sdev)
1284 {
1285         struct scsi_target *starget = scsi_target(sdev);
1286         unsigned int busy;
1287
1288         if (starget->single_lun) {
1289                 spin_lock_irq(shost->host_lock);
1290                 if (starget->starget_sdev_user &&
1291                     starget->starget_sdev_user != sdev) {
1292                         spin_unlock_irq(shost->host_lock);
1293                         return 0;
1294                 }
1295                 starget->starget_sdev_user = sdev;
1296                 spin_unlock_irq(shost->host_lock);
1297         }
1298
1299         busy = atomic_inc_return(&starget->target_busy) - 1;
1300         if (starget->target_blocked) {
1301                 if (busy)
1302                         goto starved;
1303
1304                 /*
1305                  * unblock after target_blocked iterates to zero
1306                  */
1307                 spin_lock_irq(shost->host_lock);
1308                 if (--starget->target_blocked != 0) {
1309                         spin_unlock_irq(shost->host_lock);
1310                         goto out_dec;
1311                 }
1312                 spin_unlock_irq(shost->host_lock);
1313
1314                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1315                                  "unblocking target at zero depth\n"));
1316         }
1317
1318         if (starget->can_queue > 0 && busy >= starget->can_queue)
1319                 goto starved;
1320
1321         return 1;
1322
1323 starved:
1324         spin_lock_irq(shost->host_lock);
1325         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1326         spin_unlock_irq(shost->host_lock);
1327 out_dec:
1328         atomic_dec(&starget->target_busy);
1329         return 0;
1330 }
1331
1332 /*
1333  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1334  * return 0. We must end up running the queue again whenever 0 is
1335  * returned, else IO can hang.
1336  */
1337 static inline int scsi_host_queue_ready(struct request_queue *q,
1338                                    struct Scsi_Host *shost,
1339                                    struct scsi_device *sdev)
1340 {
1341         unsigned int busy;
1342
1343         if (scsi_host_in_recovery(shost))
1344                 return 0;
1345
1346         busy = atomic_inc_return(&shost->host_busy) - 1;
1347         if (shost->host_blocked) {
1348                 if (busy)
1349                         goto starved;
1350
1351                 /*
1352                  * unblock after host_blocked iterates to zero
1353                  */
1354                 spin_lock_irq(shost->host_lock);
1355                 if (--shost->host_blocked != 0) {
1356                         spin_unlock_irq(shost->host_lock);
1357                         goto out_dec;
1358                 }
1359                 spin_unlock_irq(shost->host_lock);
1360
1361                 SCSI_LOG_MLQUEUE(3,
1362                         shost_printk(KERN_INFO, shost,
1363                                      "unblocking host at zero depth\n"));
1364         }
1365
1366         if (shost->can_queue > 0 && busy >= shost->can_queue)
1367                 goto starved;
1368         if (shost->host_self_blocked)
1369                 goto starved;
1370
1371         /* We're OK to process the command, so we can't be starved */
1372         if (!list_empty(&sdev->starved_entry)) {
1373                 spin_lock_irq(shost->host_lock);
1374                 if (!list_empty(&sdev->starved_entry))
1375                         list_del_init(&sdev->starved_entry);
1376                 spin_unlock_irq(shost->host_lock);
1377         }
1378
1379         return 1;
1380
1381 starved:
1382         spin_lock_irq(shost->host_lock);
1383         if (list_empty(&sdev->starved_entry))
1384                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1385         spin_unlock_irq(shost->host_lock);
1386 out_dec:
1387         atomic_dec(&shost->host_busy);
1388         return 0;
1389 }
1390
1391 /*
1392  * Busy state exporting function for request stacking drivers.
1393  *
1394  * For efficiency, no lock is taken to check the busy state of
1395  * shost/starget/sdev, since the returned value is not guaranteed and
1396  * may be changed after request stacking drivers call the function,
1397  * regardless of taking lock or not.
1398  *
1399  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1400  * needs to return 'not busy'. Otherwise, request stacking drivers
1401  * may hold requests forever.
1402  */
1403 static int scsi_lld_busy(struct request_queue *q)
1404 {
1405         struct scsi_device *sdev = q->queuedata;
1406         struct Scsi_Host *shost;
1407
1408         if (blk_queue_dying(q))
1409                 return 0;
1410
1411         shost = sdev->host;
1412
1413         /*
1414          * Ignore host/starget busy state.
1415          * Since block layer does not have a concept of fairness across
1416          * multiple queues, congestion of host/starget needs to be handled
1417          * in SCSI layer.
1418          */
1419         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1420                 return 1;
1421
1422         return 0;
1423 }
1424
1425 /*
1426  * Kill a request for a dead device
1427  */
1428 static void scsi_kill_request(struct request *req, struct request_queue *q)
1429 {
1430         struct scsi_cmnd *cmd = req->special;
1431         struct scsi_device *sdev;
1432         struct scsi_target *starget;
1433         struct Scsi_Host *shost;
1434
1435         blk_start_request(req);
1436
1437         scmd_printk(KERN_INFO, cmd, "killing request\n");
1438
1439         sdev = cmd->device;
1440         starget = scsi_target(sdev);
1441         shost = sdev->host;
1442         scsi_init_cmd_errh(cmd);
1443         cmd->result = DID_NO_CONNECT << 16;
1444         atomic_inc(&cmd->device->iorequest_cnt);
1445
1446         /*
1447          * SCSI request completion path will do scsi_device_unbusy(),
1448          * bump busy counts.  To bump the counters, we need to dance
1449          * with the locks as normal issue path does.
1450          */
1451         sdev->device_busy++;
1452         atomic_inc(&shost->host_busy);
1453         atomic_inc(&starget->target_busy);
1454
1455         blk_complete_request(req);
1456 }
1457
1458 static void scsi_softirq_done(struct request *rq)
1459 {
1460         struct scsi_cmnd *cmd = rq->special;
1461         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1462         int disposition;
1463
1464         INIT_LIST_HEAD(&cmd->eh_entry);
1465
1466         atomic_inc(&cmd->device->iodone_cnt);
1467         if (cmd->result)
1468                 atomic_inc(&cmd->device->ioerr_cnt);
1469
1470         disposition = scsi_decide_disposition(cmd);
1471         if (disposition != SUCCESS &&
1472             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1473                 sdev_printk(KERN_ERR, cmd->device,
1474                             "timing out command, waited %lus\n",
1475                             wait_for/HZ);
1476                 disposition = SUCCESS;
1477         }
1478
1479         scsi_log_completion(cmd, disposition);
1480
1481         switch (disposition) {
1482                 case SUCCESS:
1483                         scsi_finish_command(cmd);
1484                         break;
1485                 case NEEDS_RETRY:
1486                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1487                         break;
1488                 case ADD_TO_MLQUEUE:
1489                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1490                         break;
1491                 default:
1492                         if (!scsi_eh_scmd_add(cmd, 0))
1493                                 scsi_finish_command(cmd);
1494         }
1495 }
1496
1497 /**
1498  * scsi_done - Invoke completion on finished SCSI command.
1499  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1500  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1501  *
1502  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1503  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1504  * calls blk_complete_request() for further processing.
1505  *
1506  * This function is interrupt context safe.
1507  */
1508 static void scsi_done(struct scsi_cmnd *cmd)
1509 {
1510         trace_scsi_dispatch_cmd_done(cmd);
1511         blk_complete_request(cmd->request);
1512 }
1513
1514 /*
1515  * Function:    scsi_request_fn()
1516  *
1517  * Purpose:     Main strategy routine for SCSI.
1518  *
1519  * Arguments:   q       - Pointer to actual queue.
1520  *
1521  * Returns:     Nothing
1522  *
1523  * Lock status: IO request lock assumed to be held when called.
1524  */
1525 static void scsi_request_fn(struct request_queue *q)
1526         __releases(q->queue_lock)
1527         __acquires(q->queue_lock)
1528 {
1529         struct scsi_device *sdev = q->queuedata;
1530         struct Scsi_Host *shost;
1531         struct scsi_cmnd *cmd;
1532         struct request *req;
1533
1534         /*
1535          * To start with, we keep looping until the queue is empty, or until
1536          * the host is no longer able to accept any more requests.
1537          */
1538         shost = sdev->host;
1539         for (;;) {
1540                 int rtn;
1541                 /*
1542                  * get next queueable request.  We do this early to make sure
1543                  * that the request is fully prepared even if we cannot
1544                  * accept it.
1545                  */
1546                 req = blk_peek_request(q);
1547                 if (!req || !scsi_dev_queue_ready(q, sdev))
1548                         break;
1549
1550                 if (unlikely(!scsi_device_online(sdev))) {
1551                         sdev_printk(KERN_ERR, sdev,
1552                                     "rejecting I/O to offline device\n");
1553                         scsi_kill_request(req, q);
1554                         continue;
1555                 }
1556
1557
1558                 /*
1559                  * Remove the request from the request list.
1560                  */
1561                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1562                         blk_start_request(req);
1563                 sdev->device_busy++;
1564
1565                 spin_unlock_irq(q->queue_lock);
1566                 cmd = req->special;
1567                 if (unlikely(cmd == NULL)) {
1568                         printk(KERN_CRIT "impossible request in %s.\n"
1569                                          "please mail a stack trace to "
1570                                          "linux-scsi@vger.kernel.org\n",
1571                                          __func__);
1572                         blk_dump_rq_flags(req, "foo");
1573                         BUG();
1574                 }
1575
1576                 /*
1577                  * We hit this when the driver is using a host wide
1578                  * tag map. For device level tag maps the queue_depth check
1579                  * in the device ready fn would prevent us from trying
1580                  * to allocate a tag. Since the map is a shared host resource
1581                  * we add the dev to the starved list so it eventually gets
1582                  * a run when a tag is freed.
1583                  */
1584                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1585                         spin_lock_irq(shost->host_lock);
1586                         if (list_empty(&sdev->starved_entry))
1587                                 list_add_tail(&sdev->starved_entry,
1588                                               &shost->starved_list);
1589                         spin_unlock_irq(shost->host_lock);
1590                         goto not_ready;
1591                 }
1592
1593                 if (!scsi_target_queue_ready(shost, sdev))
1594                         goto not_ready;
1595
1596                 if (!scsi_host_queue_ready(q, shost, sdev))
1597                         goto host_not_ready;
1598
1599                 /*
1600                  * Finally, initialize any error handling parameters, and set up
1601                  * the timers for timeouts.
1602                  */
1603                 scsi_init_cmd_errh(cmd);
1604
1605                 /*
1606                  * Dispatch the command to the low-level driver.
1607                  */
1608                 cmd->scsi_done = scsi_done;
1609                 rtn = scsi_dispatch_cmd(cmd);
1610                 if (rtn) {
1611                         scsi_queue_insert(cmd, rtn);
1612                         spin_lock_irq(q->queue_lock);
1613                         goto out_delay;
1614                 }
1615                 spin_lock_irq(q->queue_lock);
1616         }
1617
1618         return;
1619
1620  host_not_ready:
1621         atomic_dec(&scsi_target(sdev)->target_busy);
1622  not_ready:
1623         /*
1624          * lock q, handle tag, requeue req, and decrement device_busy. We
1625          * must return with queue_lock held.
1626          *
1627          * Decrementing device_busy without checking it is OK, as all such
1628          * cases (host limits or settings) should run the queue at some
1629          * later time.
1630          */
1631         spin_lock_irq(q->queue_lock);
1632         blk_requeue_request(q, req);
1633         sdev->device_busy--;
1634 out_delay:
1635         if (sdev->device_busy == 0 && !scsi_device_blocked(sdev))
1636                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1637 }
1638
1639 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1640 {
1641         struct device *host_dev;
1642         u64 bounce_limit = 0xffffffff;
1643
1644         if (shost->unchecked_isa_dma)
1645                 return BLK_BOUNCE_ISA;
1646         /*
1647          * Platforms with virtual-DMA translation
1648          * hardware have no practical limit.
1649          */
1650         if (!PCI_DMA_BUS_IS_PHYS)
1651                 return BLK_BOUNCE_ANY;
1652
1653         host_dev = scsi_get_device(shost);
1654         if (host_dev && host_dev->dma_mask)
1655                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1656
1657         return bounce_limit;
1658 }
1659
1660 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1661                                          request_fn_proc *request_fn)
1662 {
1663         struct request_queue *q;
1664         struct device *dev = shost->dma_dev;
1665
1666         q = blk_init_queue(request_fn, NULL);
1667         if (!q)
1668                 return NULL;
1669
1670         /*
1671          * this limit is imposed by hardware restrictions
1672          */
1673         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1674                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1675
1676         if (scsi_host_prot_dma(shost)) {
1677                 shost->sg_prot_tablesize =
1678                         min_not_zero(shost->sg_prot_tablesize,
1679                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1680                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1681                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1682         }
1683
1684         blk_queue_max_hw_sectors(q, shost->max_sectors);
1685         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1686         blk_queue_segment_boundary(q, shost->dma_boundary);
1687         dma_set_seg_boundary(dev, shost->dma_boundary);
1688
1689         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1690
1691         if (!shost->use_clustering)
1692                 q->limits.cluster = 0;
1693
1694         /*
1695          * set a reasonable default alignment on word boundaries: the
1696          * host and device may alter it using
1697          * blk_queue_update_dma_alignment() later.
1698          */
1699         blk_queue_dma_alignment(q, 0x03);
1700
1701         return q;
1702 }
1703 EXPORT_SYMBOL(__scsi_alloc_queue);
1704
1705 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1706 {
1707         struct request_queue *q;
1708
1709         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1710         if (!q)
1711                 return NULL;
1712
1713         blk_queue_prep_rq(q, scsi_prep_fn);
1714         blk_queue_unprep_rq(q, scsi_unprep_fn);
1715         blk_queue_softirq_done(q, scsi_softirq_done);
1716         blk_queue_rq_timed_out(q, scsi_times_out);
1717         blk_queue_lld_busy(q, scsi_lld_busy);
1718         return q;
1719 }
1720
1721 /*
1722  * Function:    scsi_block_requests()
1723  *
1724  * Purpose:     Utility function used by low-level drivers to prevent further
1725  *              commands from being queued to the device.
1726  *
1727  * Arguments:   shost       - Host in question
1728  *
1729  * Returns:     Nothing
1730  *
1731  * Lock status: No locks are assumed held.
1732  *
1733  * Notes:       There is no timer nor any other means by which the requests
1734  *              get unblocked other than the low-level driver calling
1735  *              scsi_unblock_requests().
1736  */
1737 void scsi_block_requests(struct Scsi_Host *shost)
1738 {
1739         shost->host_self_blocked = 1;
1740 }
1741 EXPORT_SYMBOL(scsi_block_requests);
1742
1743 /*
1744  * Function:    scsi_unblock_requests()
1745  *
1746  * Purpose:     Utility function used by low-level drivers to allow further
1747  *              commands from being queued to the device.
1748  *
1749  * Arguments:   shost       - Host in question
1750  *
1751  * Returns:     Nothing
1752  *
1753  * Lock status: No locks are assumed held.
1754  *
1755  * Notes:       There is no timer nor any other means by which the requests
1756  *              get unblocked other than the low-level driver calling
1757  *              scsi_unblock_requests().
1758  *
1759  *              This is done as an API function so that changes to the
1760  *              internals of the scsi mid-layer won't require wholesale
1761  *              changes to drivers that use this feature.
1762  */
1763 void scsi_unblock_requests(struct Scsi_Host *shost)
1764 {
1765         shost->host_self_blocked = 0;
1766         scsi_run_host_queues(shost);
1767 }
1768 EXPORT_SYMBOL(scsi_unblock_requests);
1769
1770 int __init scsi_init_queue(void)
1771 {
1772         int i;
1773
1774         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1775                                            sizeof(struct scsi_data_buffer),
1776                                            0, 0, NULL);
1777         if (!scsi_sdb_cache) {
1778                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1779                 return -ENOMEM;
1780         }
1781
1782         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1783                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1784                 int size = sgp->size * sizeof(struct scatterlist);
1785
1786                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1787                                 SLAB_HWCACHE_ALIGN, NULL);
1788                 if (!sgp->slab) {
1789                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1790                                         sgp->name);
1791                         goto cleanup_sdb;
1792                 }
1793
1794                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1795                                                      sgp->slab);
1796                 if (!sgp->pool) {
1797                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1798                                         sgp->name);
1799                         goto cleanup_sdb;
1800                 }
1801         }
1802
1803         return 0;
1804
1805 cleanup_sdb:
1806         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1807                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1808                 if (sgp->pool)
1809                         mempool_destroy(sgp->pool);
1810                 if (sgp->slab)
1811                         kmem_cache_destroy(sgp->slab);
1812         }
1813         kmem_cache_destroy(scsi_sdb_cache);
1814
1815         return -ENOMEM;
1816 }
1817
1818 void scsi_exit_queue(void)
1819 {
1820         int i;
1821
1822         kmem_cache_destroy(scsi_sdb_cache);
1823
1824         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1825                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1826                 mempool_destroy(sgp->pool);
1827                 kmem_cache_destroy(sgp->slab);
1828         }
1829 }
1830
1831 /**
1832  *      scsi_mode_select - issue a mode select
1833  *      @sdev:  SCSI device to be queried
1834  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1835  *      @sp:    Save page bit (0 == don't save, 1 == save)
1836  *      @modepage: mode page being requested
1837  *      @buffer: request buffer (may not be smaller than eight bytes)
1838  *      @len:   length of request buffer.
1839  *      @timeout: command timeout
1840  *      @retries: number of retries before failing
1841  *      @data: returns a structure abstracting the mode header data
1842  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1843  *              must be SCSI_SENSE_BUFFERSIZE big.
1844  *
1845  *      Returns zero if successful; negative error number or scsi
1846  *      status on error
1847  *
1848  */
1849 int
1850 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1851                  unsigned char *buffer, int len, int timeout, int retries,
1852                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1853 {
1854         unsigned char cmd[10];
1855         unsigned char *real_buffer;
1856         int ret;
1857
1858         memset(cmd, 0, sizeof(cmd));
1859         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1860
1861         if (sdev->use_10_for_ms) {
1862                 if (len > 65535)
1863                         return -EINVAL;
1864                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1865                 if (!real_buffer)
1866                         return -ENOMEM;
1867                 memcpy(real_buffer + 8, buffer, len);
1868                 len += 8;
1869                 real_buffer[0] = 0;
1870                 real_buffer[1] = 0;
1871                 real_buffer[2] = data->medium_type;
1872                 real_buffer[3] = data->device_specific;
1873                 real_buffer[4] = data->longlba ? 0x01 : 0;
1874                 real_buffer[5] = 0;
1875                 real_buffer[6] = data->block_descriptor_length >> 8;
1876                 real_buffer[7] = data->block_descriptor_length;
1877
1878                 cmd[0] = MODE_SELECT_10;
1879                 cmd[7] = len >> 8;
1880                 cmd[8] = len;
1881         } else {
1882                 if (len > 255 || data->block_descriptor_length > 255 ||
1883                     data->longlba)
1884                         return -EINVAL;
1885
1886                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1887                 if (!real_buffer)
1888                         return -ENOMEM;
1889                 memcpy(real_buffer + 4, buffer, len);
1890                 len += 4;
1891                 real_buffer[0] = 0;
1892                 real_buffer[1] = data->medium_type;
1893                 real_buffer[2] = data->device_specific;
1894                 real_buffer[3] = data->block_descriptor_length;
1895                 
1896
1897                 cmd[0] = MODE_SELECT;
1898                 cmd[4] = len;
1899         }
1900
1901         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1902                                sshdr, timeout, retries, NULL);
1903         kfree(real_buffer);
1904         return ret;
1905 }
1906 EXPORT_SYMBOL_GPL(scsi_mode_select);
1907
1908 /**
1909  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1910  *      @sdev:  SCSI device to be queried
1911  *      @dbd:   set if mode sense will allow block descriptors to be returned
1912  *      @modepage: mode page being requested
1913  *      @buffer: request buffer (may not be smaller than eight bytes)
1914  *      @len:   length of request buffer.
1915  *      @timeout: command timeout
1916  *      @retries: number of retries before failing
1917  *      @data: returns a structure abstracting the mode header data
1918  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1919  *              must be SCSI_SENSE_BUFFERSIZE big.
1920  *
1921  *      Returns zero if unsuccessful, or the header offset (either 4
1922  *      or 8 depending on whether a six or ten byte command was
1923  *      issued) if successful.
1924  */
1925 int
1926 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1927                   unsigned char *buffer, int len, int timeout, int retries,
1928                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1929 {
1930         unsigned char cmd[12];
1931         int use_10_for_ms;
1932         int header_length;
1933         int result;
1934         struct scsi_sense_hdr my_sshdr;
1935
1936         memset(data, 0, sizeof(*data));
1937         memset(&cmd[0], 0, 12);
1938         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1939         cmd[2] = modepage;
1940
1941         /* caller might not be interested in sense, but we need it */
1942         if (!sshdr)
1943                 sshdr = &my_sshdr;
1944
1945  retry:
1946         use_10_for_ms = sdev->use_10_for_ms;
1947
1948         if (use_10_for_ms) {
1949                 if (len < 8)
1950                         len = 8;
1951
1952                 cmd[0] = MODE_SENSE_10;
1953                 cmd[8] = len;
1954                 header_length = 8;
1955         } else {
1956                 if (len < 4)
1957                         len = 4;
1958
1959                 cmd[0] = MODE_SENSE;
1960                 cmd[4] = len;
1961                 header_length = 4;
1962         }
1963
1964         memset(buffer, 0, len);
1965
1966         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1967                                   sshdr, timeout, retries, NULL);
1968
1969         /* This code looks awful: what it's doing is making sure an
1970          * ILLEGAL REQUEST sense return identifies the actual command
1971          * byte as the problem.  MODE_SENSE commands can return
1972          * ILLEGAL REQUEST if the code page isn't supported */
1973
1974         if (use_10_for_ms && !scsi_status_is_good(result) &&
1975             (driver_byte(result) & DRIVER_SENSE)) {
1976                 if (scsi_sense_valid(sshdr)) {
1977                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1978                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1979                                 /* 
1980                                  * Invalid command operation code
1981                                  */
1982                                 sdev->use_10_for_ms = 0;
1983                                 goto retry;
1984                         }
1985                 }
1986         }
1987
1988         if(scsi_status_is_good(result)) {
1989                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1990                              (modepage == 6 || modepage == 8))) {
1991                         /* Initio breakage? */
1992                         header_length = 0;
1993                         data->length = 13;
1994                         data->medium_type = 0;
1995                         data->device_specific = 0;
1996                         data->longlba = 0;
1997                         data->block_descriptor_length = 0;
1998                 } else if(use_10_for_ms) {
1999                         data->length = buffer[0]*256 + buffer[1] + 2;
2000                         data->medium_type = buffer[2];
2001                         data->device_specific = buffer[3];
2002                         data->longlba = buffer[4] & 0x01;
2003                         data->block_descriptor_length = buffer[6]*256
2004                                 + buffer[7];
2005                 } else {
2006                         data->length = buffer[0] + 1;
2007                         data->medium_type = buffer[1];
2008                         data->device_specific = buffer[2];
2009                         data->block_descriptor_length = buffer[3];
2010                 }
2011                 data->header_length = header_length;
2012         }
2013
2014         return result;
2015 }
2016 EXPORT_SYMBOL(scsi_mode_sense);
2017
2018 /**
2019  *      scsi_test_unit_ready - test if unit is ready
2020  *      @sdev:  scsi device to change the state of.
2021  *      @timeout: command timeout
2022  *      @retries: number of retries before failing
2023  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2024  *              returning sense. Make sure that this is cleared before passing
2025  *              in.
2026  *
2027  *      Returns zero if unsuccessful or an error if TUR failed.  For
2028  *      removable media, UNIT_ATTENTION sets ->changed flag.
2029  **/
2030 int
2031 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2032                      struct scsi_sense_hdr *sshdr_external)
2033 {
2034         char cmd[] = {
2035                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2036         };
2037         struct scsi_sense_hdr *sshdr;
2038         int result;
2039
2040         if (!sshdr_external)
2041                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2042         else
2043                 sshdr = sshdr_external;
2044
2045         /* try to eat the UNIT_ATTENTION if there are enough retries */
2046         do {
2047                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2048                                           timeout, retries, NULL);
2049                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2050                     sshdr->sense_key == UNIT_ATTENTION)
2051                         sdev->changed = 1;
2052         } while (scsi_sense_valid(sshdr) &&
2053                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2054
2055         if (!sshdr_external)
2056                 kfree(sshdr);
2057         return result;
2058 }
2059 EXPORT_SYMBOL(scsi_test_unit_ready);
2060
2061 /**
2062  *      scsi_device_set_state - Take the given device through the device state model.
2063  *      @sdev:  scsi device to change the state of.
2064  *      @state: state to change to.
2065  *
2066  *      Returns zero if unsuccessful or an error if the requested 
2067  *      transition is illegal.
2068  */
2069 int
2070 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2071 {
2072         enum scsi_device_state oldstate = sdev->sdev_state;
2073
2074         if (state == oldstate)
2075                 return 0;
2076
2077         switch (state) {
2078         case SDEV_CREATED:
2079                 switch (oldstate) {
2080                 case SDEV_CREATED_BLOCK:
2081                         break;
2082                 default:
2083                         goto illegal;
2084                 }
2085                 break;
2086                         
2087         case SDEV_RUNNING:
2088                 switch (oldstate) {
2089                 case SDEV_CREATED:
2090                 case SDEV_OFFLINE:
2091                 case SDEV_TRANSPORT_OFFLINE:
2092                 case SDEV_QUIESCE:
2093                 case SDEV_BLOCK:
2094                         break;
2095                 default:
2096                         goto illegal;
2097                 }
2098                 break;
2099
2100         case SDEV_QUIESCE:
2101                 switch (oldstate) {
2102                 case SDEV_RUNNING:
2103                 case SDEV_OFFLINE:
2104                 case SDEV_TRANSPORT_OFFLINE:
2105                         break;
2106                 default:
2107                         goto illegal;
2108                 }
2109                 break;
2110
2111         case SDEV_OFFLINE:
2112         case SDEV_TRANSPORT_OFFLINE:
2113                 switch (oldstate) {
2114                 case SDEV_CREATED:
2115                 case SDEV_RUNNING:
2116                 case SDEV_QUIESCE:
2117                 case SDEV_BLOCK:
2118                         break;
2119                 default:
2120                         goto illegal;
2121                 }
2122                 break;
2123
2124         case SDEV_BLOCK:
2125                 switch (oldstate) {
2126                 case SDEV_RUNNING:
2127                 case SDEV_CREATED_BLOCK:
2128                         break;
2129                 default:
2130                         goto illegal;
2131                 }
2132                 break;
2133
2134         case SDEV_CREATED_BLOCK:
2135                 switch (oldstate) {
2136                 case SDEV_CREATED:
2137                         break;
2138                 default:
2139                         goto illegal;
2140                 }
2141                 break;
2142
2143         case SDEV_CANCEL:
2144                 switch (oldstate) {
2145                 case SDEV_CREATED:
2146                 case SDEV_RUNNING:
2147                 case SDEV_QUIESCE:
2148                 case SDEV_OFFLINE:
2149                 case SDEV_TRANSPORT_OFFLINE:
2150                 case SDEV_BLOCK:
2151                         break;
2152                 default:
2153                         goto illegal;
2154                 }
2155                 break;
2156
2157         case SDEV_DEL:
2158                 switch (oldstate) {
2159                 case SDEV_CREATED:
2160                 case SDEV_RUNNING:
2161                 case SDEV_OFFLINE:
2162                 case SDEV_TRANSPORT_OFFLINE:
2163                 case SDEV_CANCEL:
2164                 case SDEV_CREATED_BLOCK:
2165                         break;
2166                 default:
2167                         goto illegal;
2168                 }
2169                 break;
2170
2171         }
2172         sdev->sdev_state = state;
2173         return 0;
2174
2175  illegal:
2176         SCSI_LOG_ERROR_RECOVERY(1,
2177                                 sdev_printk(KERN_ERR, sdev,
2178                                             "Illegal state transition %s->%s",
2179                                             scsi_device_state_name(oldstate),
2180                                             scsi_device_state_name(state))
2181                                 );
2182         return -EINVAL;
2183 }
2184 EXPORT_SYMBOL(scsi_device_set_state);
2185
2186 /**
2187  *      sdev_evt_emit - emit a single SCSI device uevent
2188  *      @sdev: associated SCSI device
2189  *      @evt: event to emit
2190  *
2191  *      Send a single uevent (scsi_event) to the associated scsi_device.
2192  */
2193 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2194 {
2195         int idx = 0;
2196         char *envp[3];
2197
2198         switch (evt->evt_type) {
2199         case SDEV_EVT_MEDIA_CHANGE:
2200                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2201                 break;
2202         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2203                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2204                 break;
2205         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2206                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2207                 break;
2208         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2209                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2210                 break;
2211         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2212                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2213                 break;
2214         case SDEV_EVT_LUN_CHANGE_REPORTED:
2215                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2216                 break;
2217         default:
2218                 /* do nothing */
2219                 break;
2220         }
2221
2222         envp[idx++] = NULL;
2223
2224         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2225 }
2226
2227 /**
2228  *      sdev_evt_thread - send a uevent for each scsi event
2229  *      @work: work struct for scsi_device
2230  *
2231  *      Dispatch queued events to their associated scsi_device kobjects
2232  *      as uevents.
2233  */
2234 void scsi_evt_thread(struct work_struct *work)
2235 {
2236         struct scsi_device *sdev;
2237         enum scsi_device_event evt_type;
2238         LIST_HEAD(event_list);
2239
2240         sdev = container_of(work, struct scsi_device, event_work);
2241
2242         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2243                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2244                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2245
2246         while (1) {
2247                 struct scsi_event *evt;
2248                 struct list_head *this, *tmp;
2249                 unsigned long flags;
2250
2251                 spin_lock_irqsave(&sdev->list_lock, flags);
2252                 list_splice_init(&sdev->event_list, &event_list);
2253                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2254
2255                 if (list_empty(&event_list))
2256                         break;
2257
2258                 list_for_each_safe(this, tmp, &event_list) {
2259                         evt = list_entry(this, struct scsi_event, node);
2260                         list_del(&evt->node);
2261                         scsi_evt_emit(sdev, evt);
2262                         kfree(evt);
2263                 }
2264         }
2265 }
2266
2267 /**
2268  *      sdev_evt_send - send asserted event to uevent thread
2269  *      @sdev: scsi_device event occurred on
2270  *      @evt: event to send
2271  *
2272  *      Assert scsi device event asynchronously.
2273  */
2274 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2275 {
2276         unsigned long flags;
2277
2278 #if 0
2279         /* FIXME: currently this check eliminates all media change events
2280          * for polled devices.  Need to update to discriminate between AN
2281          * and polled events */
2282         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2283                 kfree(evt);
2284                 return;
2285         }
2286 #endif
2287
2288         spin_lock_irqsave(&sdev->list_lock, flags);
2289         list_add_tail(&evt->node, &sdev->event_list);
2290         schedule_work(&sdev->event_work);
2291         spin_unlock_irqrestore(&sdev->list_lock, flags);
2292 }
2293 EXPORT_SYMBOL_GPL(sdev_evt_send);
2294
2295 /**
2296  *      sdev_evt_alloc - allocate a new scsi event
2297  *      @evt_type: type of event to allocate
2298  *      @gfpflags: GFP flags for allocation
2299  *
2300  *      Allocates and returns a new scsi_event.
2301  */
2302 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2303                                   gfp_t gfpflags)
2304 {
2305         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2306         if (!evt)
2307                 return NULL;
2308
2309         evt->evt_type = evt_type;
2310         INIT_LIST_HEAD(&evt->node);
2311
2312         /* evt_type-specific initialization, if any */
2313         switch (evt_type) {
2314         case SDEV_EVT_MEDIA_CHANGE:
2315         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2316         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2317         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2318         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2319         case SDEV_EVT_LUN_CHANGE_REPORTED:
2320         default:
2321                 /* do nothing */
2322                 break;
2323         }
2324
2325         return evt;
2326 }
2327 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2328
2329 /**
2330  *      sdev_evt_send_simple - send asserted event to uevent thread
2331  *      @sdev: scsi_device event occurred on
2332  *      @evt_type: type of event to send
2333  *      @gfpflags: GFP flags for allocation
2334  *
2335  *      Assert scsi device event asynchronously, given an event type.
2336  */
2337 void sdev_evt_send_simple(struct scsi_device *sdev,
2338                           enum scsi_device_event evt_type, gfp_t gfpflags)
2339 {
2340         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2341         if (!evt) {
2342                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2343                             evt_type);
2344                 return;
2345         }
2346
2347         sdev_evt_send(sdev, evt);
2348 }
2349 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2350
2351 /**
2352  *      scsi_device_quiesce - Block user issued commands.
2353  *      @sdev:  scsi device to quiesce.
2354  *
2355  *      This works by trying to transition to the SDEV_QUIESCE state
2356  *      (which must be a legal transition).  When the device is in this
2357  *      state, only special requests will be accepted, all others will
2358  *      be deferred.  Since special requests may also be requeued requests,
2359  *      a successful return doesn't guarantee the device will be 
2360  *      totally quiescent.
2361  *
2362  *      Must be called with user context, may sleep.
2363  *
2364  *      Returns zero if unsuccessful or an error if not.
2365  */
2366 int
2367 scsi_device_quiesce(struct scsi_device *sdev)
2368 {
2369         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2370         if (err)
2371                 return err;
2372
2373         scsi_run_queue(sdev->request_queue);
2374         while (sdev->device_busy) {
2375                 msleep_interruptible(200);
2376                 scsi_run_queue(sdev->request_queue);
2377         }
2378         return 0;
2379 }
2380 EXPORT_SYMBOL(scsi_device_quiesce);
2381
2382 /**
2383  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2384  *      @sdev:  scsi device to resume.
2385  *
2386  *      Moves the device from quiesced back to running and restarts the
2387  *      queues.
2388  *
2389  *      Must be called with user context, may sleep.
2390  */
2391 void scsi_device_resume(struct scsi_device *sdev)
2392 {
2393         /* check if the device state was mutated prior to resume, and if
2394          * so assume the state is being managed elsewhere (for example
2395          * device deleted during suspend)
2396          */
2397         if (sdev->sdev_state != SDEV_QUIESCE ||
2398             scsi_device_set_state(sdev, SDEV_RUNNING))
2399                 return;
2400         scsi_run_queue(sdev->request_queue);
2401 }
2402 EXPORT_SYMBOL(scsi_device_resume);
2403
2404 static void
2405 device_quiesce_fn(struct scsi_device *sdev, void *data)
2406 {
2407         scsi_device_quiesce(sdev);
2408 }
2409
2410 void
2411 scsi_target_quiesce(struct scsi_target *starget)
2412 {
2413         starget_for_each_device(starget, NULL, device_quiesce_fn);
2414 }
2415 EXPORT_SYMBOL(scsi_target_quiesce);
2416
2417 static void
2418 device_resume_fn(struct scsi_device *sdev, void *data)
2419 {
2420         scsi_device_resume(sdev);
2421 }
2422
2423 void
2424 scsi_target_resume(struct scsi_target *starget)
2425 {
2426         starget_for_each_device(starget, NULL, device_resume_fn);
2427 }
2428 EXPORT_SYMBOL(scsi_target_resume);
2429
2430 /**
2431  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2432  * @sdev:       device to block
2433  *
2434  * Block request made by scsi lld's to temporarily stop all
2435  * scsi commands on the specified device.  Called from interrupt
2436  * or normal process context.
2437  *
2438  * Returns zero if successful or error if not
2439  *
2440  * Notes:       
2441  *      This routine transitions the device to the SDEV_BLOCK state
2442  *      (which must be a legal transition).  When the device is in this
2443  *      state, all commands are deferred until the scsi lld reenables
2444  *      the device with scsi_device_unblock or device_block_tmo fires.
2445  */
2446 int
2447 scsi_internal_device_block(struct scsi_device *sdev)
2448 {
2449         struct request_queue *q = sdev->request_queue;
2450         unsigned long flags;
2451         int err = 0;
2452
2453         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2454         if (err) {
2455                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2456
2457                 if (err)
2458                         return err;
2459         }
2460
2461         /* 
2462          * The device has transitioned to SDEV_BLOCK.  Stop the
2463          * block layer from calling the midlayer with this device's
2464          * request queue. 
2465          */
2466         spin_lock_irqsave(q->queue_lock, flags);
2467         blk_stop_queue(q);
2468         spin_unlock_irqrestore(q->queue_lock, flags);
2469
2470         return 0;
2471 }
2472 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2473  
2474 /**
2475  * scsi_internal_device_unblock - resume a device after a block request
2476  * @sdev:       device to resume
2477  * @new_state:  state to set devices to after unblocking
2478  *
2479  * Called by scsi lld's or the midlayer to restart the device queue
2480  * for the previously suspended scsi device.  Called from interrupt or
2481  * normal process context.
2482  *
2483  * Returns zero if successful or error if not.
2484  *
2485  * Notes:       
2486  *      This routine transitions the device to the SDEV_RUNNING state
2487  *      or to one of the offline states (which must be a legal transition)
2488  *      allowing the midlayer to goose the queue for this device.
2489  */
2490 int
2491 scsi_internal_device_unblock(struct scsi_device *sdev,
2492                              enum scsi_device_state new_state)
2493 {
2494         struct request_queue *q = sdev->request_queue; 
2495         unsigned long flags;
2496
2497         /*
2498          * Try to transition the scsi device to SDEV_RUNNING or one of the
2499          * offlined states and goose the device queue if successful.
2500          */
2501         if ((sdev->sdev_state == SDEV_BLOCK) ||
2502             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2503                 sdev->sdev_state = new_state;
2504         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2505                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2506                     new_state == SDEV_OFFLINE)
2507                         sdev->sdev_state = new_state;
2508                 else
2509                         sdev->sdev_state = SDEV_CREATED;
2510         } else if (sdev->sdev_state != SDEV_CANCEL &&
2511                  sdev->sdev_state != SDEV_OFFLINE)
2512                 return -EINVAL;
2513
2514         spin_lock_irqsave(q->queue_lock, flags);
2515         blk_start_queue(q);
2516         spin_unlock_irqrestore(q->queue_lock, flags);
2517
2518         return 0;
2519 }
2520 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2521
2522 static void
2523 device_block(struct scsi_device *sdev, void *data)
2524 {
2525         scsi_internal_device_block(sdev);
2526 }
2527
2528 static int
2529 target_block(struct device *dev, void *data)
2530 {
2531         if (scsi_is_target_device(dev))
2532                 starget_for_each_device(to_scsi_target(dev), NULL,
2533                                         device_block);
2534         return 0;
2535 }
2536
2537 void
2538 scsi_target_block(struct device *dev)
2539 {
2540         if (scsi_is_target_device(dev))
2541                 starget_for_each_device(to_scsi_target(dev), NULL,
2542                                         device_block);
2543         else
2544                 device_for_each_child(dev, NULL, target_block);
2545 }
2546 EXPORT_SYMBOL_GPL(scsi_target_block);
2547
2548 static void
2549 device_unblock(struct scsi_device *sdev, void *data)
2550 {
2551         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2552 }
2553
2554 static int
2555 target_unblock(struct device *dev, void *data)
2556 {
2557         if (scsi_is_target_device(dev))
2558                 starget_for_each_device(to_scsi_target(dev), data,
2559                                         device_unblock);
2560         return 0;
2561 }
2562
2563 void
2564 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2565 {
2566         if (scsi_is_target_device(dev))
2567                 starget_for_each_device(to_scsi_target(dev), &new_state,
2568                                         device_unblock);
2569         else
2570                 device_for_each_child(dev, &new_state, target_unblock);
2571 }
2572 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2573
2574 /**
2575  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2576  * @sgl:        scatter-gather list
2577  * @sg_count:   number of segments in sg
2578  * @offset:     offset in bytes into sg, on return offset into the mapped area
2579  * @len:        bytes to map, on return number of bytes mapped
2580  *
2581  * Returns virtual address of the start of the mapped page
2582  */
2583 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2584                           size_t *offset, size_t *len)
2585 {
2586         int i;
2587         size_t sg_len = 0, len_complete = 0;
2588         struct scatterlist *sg;
2589         struct page *page;
2590
2591         WARN_ON(!irqs_disabled());
2592
2593         for_each_sg(sgl, sg, sg_count, i) {
2594                 len_complete = sg_len; /* Complete sg-entries */
2595                 sg_len += sg->length;
2596                 if (sg_len > *offset)
2597                         break;
2598         }
2599
2600         if (unlikely(i == sg_count)) {
2601                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2602                         "elements %d\n",
2603                        __func__, sg_len, *offset, sg_count);
2604                 WARN_ON(1);
2605                 return NULL;
2606         }
2607
2608         /* Offset starting from the beginning of first page in this sg-entry */
2609         *offset = *offset - len_complete + sg->offset;
2610
2611         /* Assumption: contiguous pages can be accessed as "page + i" */
2612         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2613         *offset &= ~PAGE_MASK;
2614
2615         /* Bytes in this sg-entry from *offset to the end of the page */
2616         sg_len = PAGE_SIZE - *offset;
2617         if (*len > sg_len)
2618                 *len = sg_len;
2619
2620         return kmap_atomic(page);
2621 }
2622 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2623
2624 /**
2625  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2626  * @virt:       virtual address to be unmapped
2627  */
2628 void scsi_kunmap_atomic_sg(void *virt)
2629 {
2630         kunmap_atomic(virt);
2631 }
2632 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2633
2634 void sdev_disable_disk_events(struct scsi_device *sdev)
2635 {
2636         atomic_inc(&sdev->disk_events_disable_depth);
2637 }
2638 EXPORT_SYMBOL(sdev_disable_disk_events);
2639
2640 void sdev_enable_disk_events(struct scsi_device *sdev)
2641 {
2642         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2643                 return;
2644         atomic_dec(&sdev->disk_events_disable_depth);
2645 }
2646 EXPORT_SYMBOL(sdev_enable_disk_events);