]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/scsi/scsi_lib.c
[SCSI] Fix race between starved list and device removal
[karo-tx-linux.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE         2
38
39 struct scsi_host_sg_pool {
40         size_t          size;
41         char            *name;
42         struct kmem_cache       *slab;
43         mempool_t       *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51         SP(8),
52         SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54         SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56         SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58         SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65         SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 #ifdef CONFIG_ACPI
72 #include <acpi/acpi_bus.h>
73
74 static bool acpi_scsi_bus_match(struct device *dev)
75 {
76         return dev->bus == &scsi_bus_type;
77 }
78
79 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus)
80 {
81         bus->match = acpi_scsi_bus_match;
82         return register_acpi_bus_type(bus);
83 }
84 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type);
85
86 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus)
87 {
88         unregister_acpi_bus_type(bus);
89 }
90 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type);
91 #endif
92
93 /*
94  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
95  * not change behaviour from the previous unplug mechanism, experimentation
96  * may prove this needs changing.
97  */
98 #define SCSI_QUEUE_DELAY        3
99
100 /*
101  * Function:    scsi_unprep_request()
102  *
103  * Purpose:     Remove all preparation done for a request, including its
104  *              associated scsi_cmnd, so that it can be requeued.
105  *
106  * Arguments:   req     - request to unprepare
107  *
108  * Lock status: Assumed that no locks are held upon entry.
109  *
110  * Returns:     Nothing.
111  */
112 static void scsi_unprep_request(struct request *req)
113 {
114         struct scsi_cmnd *cmd = req->special;
115
116         blk_unprep_request(req);
117         req->special = NULL;
118
119         scsi_put_command(cmd);
120 }
121
122 /**
123  * __scsi_queue_insert - private queue insertion
124  * @cmd: The SCSI command being requeued
125  * @reason:  The reason for the requeue
126  * @unbusy: Whether the queue should be unbusied
127  *
128  * This is a private queue insertion.  The public interface
129  * scsi_queue_insert() always assumes the queue should be unbusied
130  * because it's always called before the completion.  This function is
131  * for a requeue after completion, which should only occur in this
132  * file.
133  */
134 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
135 {
136         struct Scsi_Host *host = cmd->device->host;
137         struct scsi_device *device = cmd->device;
138         struct scsi_target *starget = scsi_target(device);
139         struct request_queue *q = device->request_queue;
140         unsigned long flags;
141
142         SCSI_LOG_MLQUEUE(1,
143                  printk("Inserting command %p into mlqueue\n", cmd));
144
145         /*
146          * Set the appropriate busy bit for the device/host.
147          *
148          * If the host/device isn't busy, assume that something actually
149          * completed, and that we should be able to queue a command now.
150          *
151          * Note that the prior mid-layer assumption that any host could
152          * always queue at least one command is now broken.  The mid-layer
153          * will implement a user specifiable stall (see
154          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
155          * if a command is requeued with no other commands outstanding
156          * either for the device or for the host.
157          */
158         switch (reason) {
159         case SCSI_MLQUEUE_HOST_BUSY:
160                 host->host_blocked = host->max_host_blocked;
161                 break;
162         case SCSI_MLQUEUE_DEVICE_BUSY:
163         case SCSI_MLQUEUE_EH_RETRY:
164                 device->device_blocked = device->max_device_blocked;
165                 break;
166         case SCSI_MLQUEUE_TARGET_BUSY:
167                 starget->target_blocked = starget->max_target_blocked;
168                 break;
169         }
170
171         /*
172          * Decrement the counters, since these commands are no longer
173          * active on the host/device.
174          */
175         if (unbusy)
176                 scsi_device_unbusy(device);
177
178         /*
179          * Requeue this command.  It will go before all other commands
180          * that are already in the queue. Schedule requeue work under
181          * lock such that the kblockd_schedule_work() call happens
182          * before blk_cleanup_queue() finishes.
183          */
184         spin_lock_irqsave(q->queue_lock, flags);
185         blk_requeue_request(q, cmd->request);
186         kblockd_schedule_work(q, &device->requeue_work);
187         spin_unlock_irqrestore(q->queue_lock, flags);
188 }
189
190 /*
191  * Function:    scsi_queue_insert()
192  *
193  * Purpose:     Insert a command in the midlevel queue.
194  *
195  * Arguments:   cmd    - command that we are adding to queue.
196  *              reason - why we are inserting command to queue.
197  *
198  * Lock status: Assumed that lock is not held upon entry.
199  *
200  * Returns:     Nothing.
201  *
202  * Notes:       We do this for one of two cases.  Either the host is busy
203  *              and it cannot accept any more commands for the time being,
204  *              or the device returned QUEUE_FULL and can accept no more
205  *              commands.
206  * Notes:       This could be called either from an interrupt context or a
207  *              normal process context.
208  */
209 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
210 {
211         __scsi_queue_insert(cmd, reason, 1);
212 }
213 /**
214  * scsi_execute - insert request and wait for the result
215  * @sdev:       scsi device
216  * @cmd:        scsi command
217  * @data_direction: data direction
218  * @buffer:     data buffer
219  * @bufflen:    len of buffer
220  * @sense:      optional sense buffer
221  * @timeout:    request timeout in seconds
222  * @retries:    number of times to retry request
223  * @flags:      or into request flags;
224  * @resid:      optional residual length
225  *
226  * returns the req->errors value which is the scsi_cmnd result
227  * field.
228  */
229 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
230                  int data_direction, void *buffer, unsigned bufflen,
231                  unsigned char *sense, int timeout, int retries, int flags,
232                  int *resid)
233 {
234         struct request *req;
235         int write = (data_direction == DMA_TO_DEVICE);
236         int ret = DRIVER_ERROR << 24;
237
238         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
239         if (!req)
240                 return ret;
241
242         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
243                                         buffer, bufflen, __GFP_WAIT))
244                 goto out;
245
246         req->cmd_len = COMMAND_SIZE(cmd[0]);
247         memcpy(req->cmd, cmd, req->cmd_len);
248         req->sense = sense;
249         req->sense_len = 0;
250         req->retries = retries;
251         req->timeout = timeout;
252         req->cmd_type = REQ_TYPE_BLOCK_PC;
253         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
254
255         /*
256          * head injection *required* here otherwise quiesce won't work
257          */
258         blk_execute_rq(req->q, NULL, req, 1);
259
260         /*
261          * Some devices (USB mass-storage in particular) may transfer
262          * garbage data together with a residue indicating that the data
263          * is invalid.  Prevent the garbage from being misinterpreted
264          * and prevent security leaks by zeroing out the excess data.
265          */
266         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
267                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
268
269         if (resid)
270                 *resid = req->resid_len;
271         ret = req->errors;
272  out:
273         blk_put_request(req);
274
275         return ret;
276 }
277 EXPORT_SYMBOL(scsi_execute);
278
279 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
280                      int data_direction, void *buffer, unsigned bufflen,
281                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
282                      int *resid, int flags)
283 {
284         char *sense = NULL;
285         int result;
286         
287         if (sshdr) {
288                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
289                 if (!sense)
290                         return DRIVER_ERROR << 24;
291         }
292         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
293                               sense, timeout, retries, flags, resid);
294         if (sshdr)
295                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
296
297         kfree(sense);
298         return result;
299 }
300 EXPORT_SYMBOL(scsi_execute_req_flags);
301
302 /*
303  * Function:    scsi_init_cmd_errh()
304  *
305  * Purpose:     Initialize cmd fields related to error handling.
306  *
307  * Arguments:   cmd     - command that is ready to be queued.
308  *
309  * Notes:       This function has the job of initializing a number of
310  *              fields related to error handling.   Typically this will
311  *              be called once for each command, as required.
312  */
313 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
314 {
315         cmd->serial_number = 0;
316         scsi_set_resid(cmd, 0);
317         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
318         if (cmd->cmd_len == 0)
319                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
320 }
321
322 void scsi_device_unbusy(struct scsi_device *sdev)
323 {
324         struct Scsi_Host *shost = sdev->host;
325         struct scsi_target *starget = scsi_target(sdev);
326         unsigned long flags;
327
328         spin_lock_irqsave(shost->host_lock, flags);
329         shost->host_busy--;
330         starget->target_busy--;
331         if (unlikely(scsi_host_in_recovery(shost) &&
332                      (shost->host_failed || shost->host_eh_scheduled)))
333                 scsi_eh_wakeup(shost);
334         spin_unlock(shost->host_lock);
335         spin_lock(sdev->request_queue->queue_lock);
336         sdev->device_busy--;
337         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
338 }
339
340 /*
341  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
342  * and call blk_run_queue for all the scsi_devices on the target -
343  * including current_sdev first.
344  *
345  * Called with *no* scsi locks held.
346  */
347 static void scsi_single_lun_run(struct scsi_device *current_sdev)
348 {
349         struct Scsi_Host *shost = current_sdev->host;
350         struct scsi_device *sdev, *tmp;
351         struct scsi_target *starget = scsi_target(current_sdev);
352         unsigned long flags;
353
354         spin_lock_irqsave(shost->host_lock, flags);
355         starget->starget_sdev_user = NULL;
356         spin_unlock_irqrestore(shost->host_lock, flags);
357
358         /*
359          * Call blk_run_queue for all LUNs on the target, starting with
360          * current_sdev. We race with others (to set starget_sdev_user),
361          * but in most cases, we will be first. Ideally, each LU on the
362          * target would get some limited time or requests on the target.
363          */
364         blk_run_queue(current_sdev->request_queue);
365
366         spin_lock_irqsave(shost->host_lock, flags);
367         if (starget->starget_sdev_user)
368                 goto out;
369         list_for_each_entry_safe(sdev, tmp, &starget->devices,
370                         same_target_siblings) {
371                 if (sdev == current_sdev)
372                         continue;
373                 if (scsi_device_get(sdev))
374                         continue;
375
376                 spin_unlock_irqrestore(shost->host_lock, flags);
377                 blk_run_queue(sdev->request_queue);
378                 spin_lock_irqsave(shost->host_lock, flags);
379         
380                 scsi_device_put(sdev);
381         }
382  out:
383         spin_unlock_irqrestore(shost->host_lock, flags);
384 }
385
386 static inline int scsi_device_is_busy(struct scsi_device *sdev)
387 {
388         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
389                 return 1;
390
391         return 0;
392 }
393
394 static inline int scsi_target_is_busy(struct scsi_target *starget)
395 {
396         return ((starget->can_queue > 0 &&
397                  starget->target_busy >= starget->can_queue) ||
398                  starget->target_blocked);
399 }
400
401 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
402 {
403         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
404             shost->host_blocked || shost->host_self_blocked)
405                 return 1;
406
407         return 0;
408 }
409
410 /*
411  * Function:    scsi_run_queue()
412  *
413  * Purpose:     Select a proper request queue to serve next
414  *
415  * Arguments:   q       - last request's queue
416  *
417  * Returns:     Nothing
418  *
419  * Notes:       The previous command was completely finished, start
420  *              a new one if possible.
421  */
422 static void scsi_run_queue(struct request_queue *q)
423 {
424         struct scsi_device *sdev = q->queuedata;
425         struct Scsi_Host *shost;
426         LIST_HEAD(starved_list);
427         unsigned long flags;
428
429         shost = sdev->host;
430         if (scsi_target(sdev)->single_lun)
431                 scsi_single_lun_run(sdev);
432
433         spin_lock_irqsave(shost->host_lock, flags);
434         list_splice_init(&shost->starved_list, &starved_list);
435
436         while (!list_empty(&starved_list)) {
437                 struct request_queue *slq;
438
439                 /*
440                  * As long as shost is accepting commands and we have
441                  * starved queues, call blk_run_queue. scsi_request_fn
442                  * drops the queue_lock and can add us back to the
443                  * starved_list.
444                  *
445                  * host_lock protects the starved_list and starved_entry.
446                  * scsi_request_fn must get the host_lock before checking
447                  * or modifying starved_list or starved_entry.
448                  */
449                 if (scsi_host_is_busy(shost))
450                         break;
451
452                 sdev = list_entry(starved_list.next,
453                                   struct scsi_device, starved_entry);
454                 list_del_init(&sdev->starved_entry);
455                 if (scsi_target_is_busy(scsi_target(sdev))) {
456                         list_move_tail(&sdev->starved_entry,
457                                        &shost->starved_list);
458                         continue;
459                 }
460
461                 /*
462                  * Once we drop the host lock, a racing scsi_remove_device()
463                  * call may remove the sdev from the starved list and destroy
464                  * it and the queue.  Mitigate by taking a reference to the
465                  * queue and never touching the sdev again after we drop the
466                  * host lock.  Note: if __scsi_remove_device() invokes
467                  * blk_cleanup_queue() before the queue is run from this
468                  * function then blk_run_queue() will return immediately since
469                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
470                  */
471                 slq = sdev->request_queue;
472                 if (!blk_get_queue(slq))
473                         continue;
474                 spin_unlock_irqrestore(shost->host_lock, flags);
475
476                 blk_run_queue(slq);
477                 blk_put_queue(slq);
478
479                 spin_lock_irqsave(shost->host_lock, flags);
480         }
481         /* put any unprocessed entries back */
482         list_splice(&starved_list, &shost->starved_list);
483         spin_unlock_irqrestore(shost->host_lock, flags);
484
485         blk_run_queue(q);
486 }
487
488 void scsi_requeue_run_queue(struct work_struct *work)
489 {
490         struct scsi_device *sdev;
491         struct request_queue *q;
492
493         sdev = container_of(work, struct scsi_device, requeue_work);
494         q = sdev->request_queue;
495         scsi_run_queue(q);
496 }
497
498 /*
499  * Function:    scsi_requeue_command()
500  *
501  * Purpose:     Handle post-processing of completed commands.
502  *
503  * Arguments:   q       - queue to operate on
504  *              cmd     - command that may need to be requeued.
505  *
506  * Returns:     Nothing
507  *
508  * Notes:       After command completion, there may be blocks left
509  *              over which weren't finished by the previous command
510  *              this can be for a number of reasons - the main one is
511  *              I/O errors in the middle of the request, in which case
512  *              we need to request the blocks that come after the bad
513  *              sector.
514  * Notes:       Upon return, cmd is a stale pointer.
515  */
516 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
517 {
518         struct scsi_device *sdev = cmd->device;
519         struct request *req = cmd->request;
520         unsigned long flags;
521
522         /*
523          * We need to hold a reference on the device to avoid the queue being
524          * killed after the unlock and before scsi_run_queue is invoked which
525          * may happen because scsi_unprep_request() puts the command which
526          * releases its reference on the device.
527          */
528         get_device(&sdev->sdev_gendev);
529
530         spin_lock_irqsave(q->queue_lock, flags);
531         scsi_unprep_request(req);
532         blk_requeue_request(q, req);
533         spin_unlock_irqrestore(q->queue_lock, flags);
534
535         scsi_run_queue(q);
536
537         put_device(&sdev->sdev_gendev);
538 }
539
540 void scsi_next_command(struct scsi_cmnd *cmd)
541 {
542         struct scsi_device *sdev = cmd->device;
543         struct request_queue *q = sdev->request_queue;
544
545         /* need to hold a reference on the device before we let go of the cmd */
546         get_device(&sdev->sdev_gendev);
547
548         scsi_put_command(cmd);
549         scsi_run_queue(q);
550
551         /* ok to remove device now */
552         put_device(&sdev->sdev_gendev);
553 }
554
555 void scsi_run_host_queues(struct Scsi_Host *shost)
556 {
557         struct scsi_device *sdev;
558
559         shost_for_each_device(sdev, shost)
560                 scsi_run_queue(sdev->request_queue);
561 }
562
563 static void __scsi_release_buffers(struct scsi_cmnd *, int);
564
565 /*
566  * Function:    scsi_end_request()
567  *
568  * Purpose:     Post-processing of completed commands (usually invoked at end
569  *              of upper level post-processing and scsi_io_completion).
570  *
571  * Arguments:   cmd      - command that is complete.
572  *              error    - 0 if I/O indicates success, < 0 for I/O error.
573  *              bytes    - number of bytes of completed I/O
574  *              requeue  - indicates whether we should requeue leftovers.
575  *
576  * Lock status: Assumed that lock is not held upon entry.
577  *
578  * Returns:     cmd if requeue required, NULL otherwise.
579  *
580  * Notes:       This is called for block device requests in order to
581  *              mark some number of sectors as complete.
582  * 
583  *              We are guaranteeing that the request queue will be goosed
584  *              at some point during this call.
585  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
586  */
587 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
588                                           int bytes, int requeue)
589 {
590         struct request_queue *q = cmd->device->request_queue;
591         struct request *req = cmd->request;
592
593         /*
594          * If there are blocks left over at the end, set up the command
595          * to queue the remainder of them.
596          */
597         if (blk_end_request(req, error, bytes)) {
598                 /* kill remainder if no retrys */
599                 if (error && scsi_noretry_cmd(cmd))
600                         blk_end_request_all(req, error);
601                 else {
602                         if (requeue) {
603                                 /*
604                                  * Bleah.  Leftovers again.  Stick the
605                                  * leftovers in the front of the
606                                  * queue, and goose the queue again.
607                                  */
608                                 scsi_release_buffers(cmd);
609                                 scsi_requeue_command(q, cmd);
610                                 cmd = NULL;
611                         }
612                         return cmd;
613                 }
614         }
615
616         /*
617          * This will goose the queue request function at the end, so we don't
618          * need to worry about launching another command.
619          */
620         __scsi_release_buffers(cmd, 0);
621         scsi_next_command(cmd);
622         return NULL;
623 }
624
625 static inline unsigned int scsi_sgtable_index(unsigned short nents)
626 {
627         unsigned int index;
628
629         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
630
631         if (nents <= 8)
632                 index = 0;
633         else
634                 index = get_count_order(nents) - 3;
635
636         return index;
637 }
638
639 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
640 {
641         struct scsi_host_sg_pool *sgp;
642
643         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
644         mempool_free(sgl, sgp->pool);
645 }
646
647 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
648 {
649         struct scsi_host_sg_pool *sgp;
650
651         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
652         return mempool_alloc(sgp->pool, gfp_mask);
653 }
654
655 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
656                               gfp_t gfp_mask)
657 {
658         int ret;
659
660         BUG_ON(!nents);
661
662         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
663                                gfp_mask, scsi_sg_alloc);
664         if (unlikely(ret))
665                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
666                                 scsi_sg_free);
667
668         return ret;
669 }
670
671 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
672 {
673         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
674 }
675
676 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
677 {
678
679         if (cmd->sdb.table.nents)
680                 scsi_free_sgtable(&cmd->sdb);
681
682         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
683
684         if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
685                 struct scsi_data_buffer *bidi_sdb =
686                         cmd->request->next_rq->special;
687                 scsi_free_sgtable(bidi_sdb);
688                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
689                 cmd->request->next_rq->special = NULL;
690         }
691
692         if (scsi_prot_sg_count(cmd))
693                 scsi_free_sgtable(cmd->prot_sdb);
694 }
695
696 /*
697  * Function:    scsi_release_buffers()
698  *
699  * Purpose:     Completion processing for block device I/O requests.
700  *
701  * Arguments:   cmd     - command that we are bailing.
702  *
703  * Lock status: Assumed that no lock is held upon entry.
704  *
705  * Returns:     Nothing
706  *
707  * Notes:       In the event that an upper level driver rejects a
708  *              command, we must release resources allocated during
709  *              the __init_io() function.  Primarily this would involve
710  *              the scatter-gather table, and potentially any bounce
711  *              buffers.
712  */
713 void scsi_release_buffers(struct scsi_cmnd *cmd)
714 {
715         __scsi_release_buffers(cmd, 1);
716 }
717 EXPORT_SYMBOL(scsi_release_buffers);
718
719 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
720 {
721         int error = 0;
722
723         switch(host_byte(result)) {
724         case DID_TRANSPORT_FAILFAST:
725                 error = -ENOLINK;
726                 break;
727         case DID_TARGET_FAILURE:
728                 set_host_byte(cmd, DID_OK);
729                 error = -EREMOTEIO;
730                 break;
731         case DID_NEXUS_FAILURE:
732                 set_host_byte(cmd, DID_OK);
733                 error = -EBADE;
734                 break;
735         default:
736                 error = -EIO;
737                 break;
738         }
739
740         return error;
741 }
742
743 /*
744  * Function:    scsi_io_completion()
745  *
746  * Purpose:     Completion processing for block device I/O requests.
747  *
748  * Arguments:   cmd   - command that is finished.
749  *
750  * Lock status: Assumed that no lock is held upon entry.
751  *
752  * Returns:     Nothing
753  *
754  * Notes:       This function is matched in terms of capabilities to
755  *              the function that created the scatter-gather list.
756  *              In other words, if there are no bounce buffers
757  *              (the normal case for most drivers), we don't need
758  *              the logic to deal with cleaning up afterwards.
759  *
760  *              We must call scsi_end_request().  This will finish off
761  *              the specified number of sectors.  If we are done, the
762  *              command block will be released and the queue function
763  *              will be goosed.  If we are not done then we have to
764  *              figure out what to do next:
765  *
766  *              a) We can call scsi_requeue_command().  The request
767  *                 will be unprepared and put back on the queue.  Then
768  *                 a new command will be created for it.  This should
769  *                 be used if we made forward progress, or if we want
770  *                 to switch from READ(10) to READ(6) for example.
771  *
772  *              b) We can call scsi_queue_insert().  The request will
773  *                 be put back on the queue and retried using the same
774  *                 command as before, possibly after a delay.
775  *
776  *              c) We can call blk_end_request() with -EIO to fail
777  *                 the remainder of the request.
778  */
779 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
780 {
781         int result = cmd->result;
782         struct request_queue *q = cmd->device->request_queue;
783         struct request *req = cmd->request;
784         int error = 0;
785         struct scsi_sense_hdr sshdr;
786         int sense_valid = 0;
787         int sense_deferred = 0;
788         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
789               ACTION_DELAYED_RETRY} action;
790         char *description = NULL;
791
792         if (result) {
793                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
794                 if (sense_valid)
795                         sense_deferred = scsi_sense_is_deferred(&sshdr);
796         }
797
798         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
799                 if (result) {
800                         if (sense_valid && req->sense) {
801                                 /*
802                                  * SG_IO wants current and deferred errors
803                                  */
804                                 int len = 8 + cmd->sense_buffer[7];
805
806                                 if (len > SCSI_SENSE_BUFFERSIZE)
807                                         len = SCSI_SENSE_BUFFERSIZE;
808                                 memcpy(req->sense, cmd->sense_buffer,  len);
809                                 req->sense_len = len;
810                         }
811                         if (!sense_deferred)
812                                 error = __scsi_error_from_host_byte(cmd, result);
813                 }
814                 /*
815                  * __scsi_error_from_host_byte may have reset the host_byte
816                  */
817                 req->errors = cmd->result;
818
819                 req->resid_len = scsi_get_resid(cmd);
820
821                 if (scsi_bidi_cmnd(cmd)) {
822                         /*
823                          * Bidi commands Must be complete as a whole,
824                          * both sides at once.
825                          */
826                         req->next_rq->resid_len = scsi_in(cmd)->resid;
827
828                         scsi_release_buffers(cmd);
829                         blk_end_request_all(req, 0);
830
831                         scsi_next_command(cmd);
832                         return;
833                 }
834         }
835
836         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
837         BUG_ON(blk_bidi_rq(req));
838
839         /*
840          * Next deal with any sectors which we were able to correctly
841          * handle.
842          */
843         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
844                                       "%d bytes done.\n",
845                                       blk_rq_sectors(req), good_bytes));
846
847         /*
848          * Recovered errors need reporting, but they're always treated
849          * as success, so fiddle the result code here.  For BLOCK_PC
850          * we already took a copy of the original into rq->errors which
851          * is what gets returned to the user
852          */
853         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
854                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
855                  * print since caller wants ATA registers. Only occurs on
856                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
857                  */
858                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
859                         ;
860                 else if (!(req->cmd_flags & REQ_QUIET))
861                         scsi_print_sense("", cmd);
862                 result = 0;
863                 /* BLOCK_PC may have set error */
864                 error = 0;
865         }
866
867         /*
868          * A number of bytes were successfully read.  If there
869          * are leftovers and there is some kind of error
870          * (result != 0), retry the rest.
871          */
872         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
873                 return;
874
875         error = __scsi_error_from_host_byte(cmd, result);
876
877         if (host_byte(result) == DID_RESET) {
878                 /* Third party bus reset or reset for error recovery
879                  * reasons.  Just retry the command and see what
880                  * happens.
881                  */
882                 action = ACTION_RETRY;
883         } else if (sense_valid && !sense_deferred) {
884                 switch (sshdr.sense_key) {
885                 case UNIT_ATTENTION:
886                         if (cmd->device->removable) {
887                                 /* Detected disc change.  Set a bit
888                                  * and quietly refuse further access.
889                                  */
890                                 cmd->device->changed = 1;
891                                 description = "Media Changed";
892                                 action = ACTION_FAIL;
893                         } else {
894                                 /* Must have been a power glitch, or a
895                                  * bus reset.  Could not have been a
896                                  * media change, so we just retry the
897                                  * command and see what happens.
898                                  */
899                                 action = ACTION_RETRY;
900                         }
901                         break;
902                 case ILLEGAL_REQUEST:
903                         /* If we had an ILLEGAL REQUEST returned, then
904                          * we may have performed an unsupported
905                          * command.  The only thing this should be
906                          * would be a ten byte read where only a six
907                          * byte read was supported.  Also, on a system
908                          * where READ CAPACITY failed, we may have
909                          * read past the end of the disk.
910                          */
911                         if ((cmd->device->use_10_for_rw &&
912                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
913                             (cmd->cmnd[0] == READ_10 ||
914                              cmd->cmnd[0] == WRITE_10)) {
915                                 /* This will issue a new 6-byte command. */
916                                 cmd->device->use_10_for_rw = 0;
917                                 action = ACTION_REPREP;
918                         } else if (sshdr.asc == 0x10) /* DIX */ {
919                                 description = "Host Data Integrity Failure";
920                                 action = ACTION_FAIL;
921                                 error = -EILSEQ;
922                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
923                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
924                                 switch (cmd->cmnd[0]) {
925                                 case UNMAP:
926                                         description = "Discard failure";
927                                         break;
928                                 case WRITE_SAME:
929                                 case WRITE_SAME_16:
930                                         if (cmd->cmnd[1] & 0x8)
931                                                 description = "Discard failure";
932                                         else
933                                                 description =
934                                                         "Write same failure";
935                                         break;
936                                 default:
937                                         description = "Invalid command failure";
938                                         break;
939                                 }
940                                 action = ACTION_FAIL;
941                                 error = -EREMOTEIO;
942                         } else
943                                 action = ACTION_FAIL;
944                         break;
945                 case ABORTED_COMMAND:
946                         action = ACTION_FAIL;
947                         if (sshdr.asc == 0x10) { /* DIF */
948                                 description = "Target Data Integrity Failure";
949                                 error = -EILSEQ;
950                         }
951                         break;
952                 case NOT_READY:
953                         /* If the device is in the process of becoming
954                          * ready, or has a temporary blockage, retry.
955                          */
956                         if (sshdr.asc == 0x04) {
957                                 switch (sshdr.ascq) {
958                                 case 0x01: /* becoming ready */
959                                 case 0x04: /* format in progress */
960                                 case 0x05: /* rebuild in progress */
961                                 case 0x06: /* recalculation in progress */
962                                 case 0x07: /* operation in progress */
963                                 case 0x08: /* Long write in progress */
964                                 case 0x09: /* self test in progress */
965                                 case 0x14: /* space allocation in progress */
966                                         action = ACTION_DELAYED_RETRY;
967                                         break;
968                                 default:
969                                         description = "Device not ready";
970                                         action = ACTION_FAIL;
971                                         break;
972                                 }
973                         } else {
974                                 description = "Device not ready";
975                                 action = ACTION_FAIL;
976                         }
977                         break;
978                 case VOLUME_OVERFLOW:
979                         /* See SSC3rXX or current. */
980                         action = ACTION_FAIL;
981                         break;
982                 default:
983                         description = "Unhandled sense code";
984                         action = ACTION_FAIL;
985                         break;
986                 }
987         } else {
988                 description = "Unhandled error code";
989                 action = ACTION_FAIL;
990         }
991
992         switch (action) {
993         case ACTION_FAIL:
994                 /* Give up and fail the remainder of the request */
995                 scsi_release_buffers(cmd);
996                 if (!(req->cmd_flags & REQ_QUIET)) {
997                         if (description)
998                                 scmd_printk(KERN_INFO, cmd, "%s\n",
999                                             description);
1000                         scsi_print_result(cmd);
1001                         if (driver_byte(result) & DRIVER_SENSE)
1002                                 scsi_print_sense("", cmd);
1003                         scsi_print_command(cmd);
1004                 }
1005                 if (blk_end_request_err(req, error))
1006                         scsi_requeue_command(q, cmd);
1007                 else
1008                         scsi_next_command(cmd);
1009                 break;
1010         case ACTION_REPREP:
1011                 /* Unprep the request and put it back at the head of the queue.
1012                  * A new command will be prepared and issued.
1013                  */
1014                 scsi_release_buffers(cmd);
1015                 scsi_requeue_command(q, cmd);
1016                 break;
1017         case ACTION_RETRY:
1018                 /* Retry the same command immediately */
1019                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1020                 break;
1021         case ACTION_DELAYED_RETRY:
1022                 /* Retry the same command after a delay */
1023                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1024                 break;
1025         }
1026 }
1027
1028 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1029                              gfp_t gfp_mask)
1030 {
1031         int count;
1032
1033         /*
1034          * If sg table allocation fails, requeue request later.
1035          */
1036         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1037                                         gfp_mask))) {
1038                 return BLKPREP_DEFER;
1039         }
1040
1041         req->buffer = NULL;
1042
1043         /* 
1044          * Next, walk the list, and fill in the addresses and sizes of
1045          * each segment.
1046          */
1047         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1048         BUG_ON(count > sdb->table.nents);
1049         sdb->table.nents = count;
1050         sdb->length = blk_rq_bytes(req);
1051         return BLKPREP_OK;
1052 }
1053
1054 /*
1055  * Function:    scsi_init_io()
1056  *
1057  * Purpose:     SCSI I/O initialize function.
1058  *
1059  * Arguments:   cmd   - Command descriptor we wish to initialize
1060  *
1061  * Returns:     0 on success
1062  *              BLKPREP_DEFER if the failure is retryable
1063  *              BLKPREP_KILL if the failure is fatal
1064  */
1065 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1066 {
1067         struct request *rq = cmd->request;
1068
1069         int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1070         if (error)
1071                 goto err_exit;
1072
1073         if (blk_bidi_rq(rq)) {
1074                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1075                         scsi_sdb_cache, GFP_ATOMIC);
1076                 if (!bidi_sdb) {
1077                         error = BLKPREP_DEFER;
1078                         goto err_exit;
1079                 }
1080
1081                 rq->next_rq->special = bidi_sdb;
1082                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1083                 if (error)
1084                         goto err_exit;
1085         }
1086
1087         if (blk_integrity_rq(rq)) {
1088                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1089                 int ivecs, count;
1090
1091                 BUG_ON(prot_sdb == NULL);
1092                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1093
1094                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1095                         error = BLKPREP_DEFER;
1096                         goto err_exit;
1097                 }
1098
1099                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1100                                                 prot_sdb->table.sgl);
1101                 BUG_ON(unlikely(count > ivecs));
1102                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1103
1104                 cmd->prot_sdb = prot_sdb;
1105                 cmd->prot_sdb->table.nents = count;
1106         }
1107
1108         return BLKPREP_OK ;
1109
1110 err_exit:
1111         scsi_release_buffers(cmd);
1112         cmd->request->special = NULL;
1113         scsi_put_command(cmd);
1114         return error;
1115 }
1116 EXPORT_SYMBOL(scsi_init_io);
1117
1118 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1119                 struct request *req)
1120 {
1121         struct scsi_cmnd *cmd;
1122
1123         if (!req->special) {
1124                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1125                 if (unlikely(!cmd))
1126                         return NULL;
1127                 req->special = cmd;
1128         } else {
1129                 cmd = req->special;
1130         }
1131
1132         /* pull a tag out of the request if we have one */
1133         cmd->tag = req->tag;
1134         cmd->request = req;
1135
1136         cmd->cmnd = req->cmd;
1137         cmd->prot_op = SCSI_PROT_NORMAL;
1138
1139         return cmd;
1140 }
1141
1142 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1143 {
1144         struct scsi_cmnd *cmd;
1145         int ret = scsi_prep_state_check(sdev, req);
1146
1147         if (ret != BLKPREP_OK)
1148                 return ret;
1149
1150         cmd = scsi_get_cmd_from_req(sdev, req);
1151         if (unlikely(!cmd))
1152                 return BLKPREP_DEFER;
1153
1154         /*
1155          * BLOCK_PC requests may transfer data, in which case they must
1156          * a bio attached to them.  Or they might contain a SCSI command
1157          * that does not transfer data, in which case they may optionally
1158          * submit a request without an attached bio.
1159          */
1160         if (req->bio) {
1161                 int ret;
1162
1163                 BUG_ON(!req->nr_phys_segments);
1164
1165                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1166                 if (unlikely(ret))
1167                         return ret;
1168         } else {
1169                 BUG_ON(blk_rq_bytes(req));
1170
1171                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1172                 req->buffer = NULL;
1173         }
1174
1175         cmd->cmd_len = req->cmd_len;
1176         if (!blk_rq_bytes(req))
1177                 cmd->sc_data_direction = DMA_NONE;
1178         else if (rq_data_dir(req) == WRITE)
1179                 cmd->sc_data_direction = DMA_TO_DEVICE;
1180         else
1181                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1182         
1183         cmd->transfersize = blk_rq_bytes(req);
1184         cmd->allowed = req->retries;
1185         return BLKPREP_OK;
1186 }
1187 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1188
1189 /*
1190  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1191  * from filesystems that still need to be translated to SCSI CDBs from
1192  * the ULD.
1193  */
1194 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1195 {
1196         struct scsi_cmnd *cmd;
1197         int ret = scsi_prep_state_check(sdev, req);
1198
1199         if (ret != BLKPREP_OK)
1200                 return ret;
1201
1202         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1203                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1204                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1205                 if (ret != BLKPREP_OK)
1206                         return ret;
1207         }
1208
1209         /*
1210          * Filesystem requests must transfer data.
1211          */
1212         BUG_ON(!req->nr_phys_segments);
1213
1214         cmd = scsi_get_cmd_from_req(sdev, req);
1215         if (unlikely(!cmd))
1216                 return BLKPREP_DEFER;
1217
1218         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1219         return scsi_init_io(cmd, GFP_ATOMIC);
1220 }
1221 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1222
1223 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1224 {
1225         int ret = BLKPREP_OK;
1226
1227         /*
1228          * If the device is not in running state we will reject some
1229          * or all commands.
1230          */
1231         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1232                 switch (sdev->sdev_state) {
1233                 case SDEV_OFFLINE:
1234                 case SDEV_TRANSPORT_OFFLINE:
1235                         /*
1236                          * If the device is offline we refuse to process any
1237                          * commands.  The device must be brought online
1238                          * before trying any recovery commands.
1239                          */
1240                         sdev_printk(KERN_ERR, sdev,
1241                                     "rejecting I/O to offline device\n");
1242                         ret = BLKPREP_KILL;
1243                         break;
1244                 case SDEV_DEL:
1245                         /*
1246                          * If the device is fully deleted, we refuse to
1247                          * process any commands as well.
1248                          */
1249                         sdev_printk(KERN_ERR, sdev,
1250                                     "rejecting I/O to dead device\n");
1251                         ret = BLKPREP_KILL;
1252                         break;
1253                 case SDEV_QUIESCE:
1254                 case SDEV_BLOCK:
1255                 case SDEV_CREATED_BLOCK:
1256                         /*
1257                          * If the devices is blocked we defer normal commands.
1258                          */
1259                         if (!(req->cmd_flags & REQ_PREEMPT))
1260                                 ret = BLKPREP_DEFER;
1261                         break;
1262                 default:
1263                         /*
1264                          * For any other not fully online state we only allow
1265                          * special commands.  In particular any user initiated
1266                          * command is not allowed.
1267                          */
1268                         if (!(req->cmd_flags & REQ_PREEMPT))
1269                                 ret = BLKPREP_KILL;
1270                         break;
1271                 }
1272         }
1273         return ret;
1274 }
1275 EXPORT_SYMBOL(scsi_prep_state_check);
1276
1277 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1278 {
1279         struct scsi_device *sdev = q->queuedata;
1280
1281         switch (ret) {
1282         case BLKPREP_KILL:
1283                 req->errors = DID_NO_CONNECT << 16;
1284                 /* release the command and kill it */
1285                 if (req->special) {
1286                         struct scsi_cmnd *cmd = req->special;
1287                         scsi_release_buffers(cmd);
1288                         scsi_put_command(cmd);
1289                         req->special = NULL;
1290                 }
1291                 break;
1292         case BLKPREP_DEFER:
1293                 /*
1294                  * If we defer, the blk_peek_request() returns NULL, but the
1295                  * queue must be restarted, so we schedule a callback to happen
1296                  * shortly.
1297                  */
1298                 if (sdev->device_busy == 0)
1299                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1300                 break;
1301         default:
1302                 req->cmd_flags |= REQ_DONTPREP;
1303         }
1304
1305         return ret;
1306 }
1307 EXPORT_SYMBOL(scsi_prep_return);
1308
1309 int scsi_prep_fn(struct request_queue *q, struct request *req)
1310 {
1311         struct scsi_device *sdev = q->queuedata;
1312         int ret = BLKPREP_KILL;
1313
1314         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1315                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1316         return scsi_prep_return(q, req, ret);
1317 }
1318 EXPORT_SYMBOL(scsi_prep_fn);
1319
1320 /*
1321  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1322  * return 0.
1323  *
1324  * Called with the queue_lock held.
1325  */
1326 static inline int scsi_dev_queue_ready(struct request_queue *q,
1327                                   struct scsi_device *sdev)
1328 {
1329         if (sdev->device_busy == 0 && sdev->device_blocked) {
1330                 /*
1331                  * unblock after device_blocked iterates to zero
1332                  */
1333                 if (--sdev->device_blocked == 0) {
1334                         SCSI_LOG_MLQUEUE(3,
1335                                    sdev_printk(KERN_INFO, sdev,
1336                                    "unblocking device at zero depth\n"));
1337                 } else {
1338                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1339                         return 0;
1340                 }
1341         }
1342         if (scsi_device_is_busy(sdev))
1343                 return 0;
1344
1345         return 1;
1346 }
1347
1348
1349 /*
1350  * scsi_target_queue_ready: checks if there we can send commands to target
1351  * @sdev: scsi device on starget to check.
1352  *
1353  * Called with the host lock held.
1354  */
1355 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1356                                            struct scsi_device *sdev)
1357 {
1358         struct scsi_target *starget = scsi_target(sdev);
1359
1360         if (starget->single_lun) {
1361                 if (starget->starget_sdev_user &&
1362                     starget->starget_sdev_user != sdev)
1363                         return 0;
1364                 starget->starget_sdev_user = sdev;
1365         }
1366
1367         if (starget->target_busy == 0 && starget->target_blocked) {
1368                 /*
1369                  * unblock after target_blocked iterates to zero
1370                  */
1371                 if (--starget->target_blocked == 0) {
1372                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1373                                          "unblocking target at zero depth\n"));
1374                 } else
1375                         return 0;
1376         }
1377
1378         if (scsi_target_is_busy(starget)) {
1379                 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1380                 return 0;
1381         }
1382
1383         return 1;
1384 }
1385
1386 /*
1387  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1388  * return 0. We must end up running the queue again whenever 0 is
1389  * returned, else IO can hang.
1390  *
1391  * Called with host_lock held.
1392  */
1393 static inline int scsi_host_queue_ready(struct request_queue *q,
1394                                    struct Scsi_Host *shost,
1395                                    struct scsi_device *sdev)
1396 {
1397         if (scsi_host_in_recovery(shost))
1398                 return 0;
1399         if (shost->host_busy == 0 && shost->host_blocked) {
1400                 /*
1401                  * unblock after host_blocked iterates to zero
1402                  */
1403                 if (--shost->host_blocked == 0) {
1404                         SCSI_LOG_MLQUEUE(3,
1405                                 printk("scsi%d unblocking host at zero depth\n",
1406                                         shost->host_no));
1407                 } else {
1408                         return 0;
1409                 }
1410         }
1411         if (scsi_host_is_busy(shost)) {
1412                 if (list_empty(&sdev->starved_entry))
1413                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1414                 return 0;
1415         }
1416
1417         /* We're OK to process the command, so we can't be starved */
1418         if (!list_empty(&sdev->starved_entry))
1419                 list_del_init(&sdev->starved_entry);
1420
1421         return 1;
1422 }
1423
1424 /*
1425  * Busy state exporting function for request stacking drivers.
1426  *
1427  * For efficiency, no lock is taken to check the busy state of
1428  * shost/starget/sdev, since the returned value is not guaranteed and
1429  * may be changed after request stacking drivers call the function,
1430  * regardless of taking lock or not.
1431  *
1432  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1433  * needs to return 'not busy'. Otherwise, request stacking drivers
1434  * may hold requests forever.
1435  */
1436 static int scsi_lld_busy(struct request_queue *q)
1437 {
1438         struct scsi_device *sdev = q->queuedata;
1439         struct Scsi_Host *shost;
1440
1441         if (blk_queue_dying(q))
1442                 return 0;
1443
1444         shost = sdev->host;
1445
1446         /*
1447          * Ignore host/starget busy state.
1448          * Since block layer does not have a concept of fairness across
1449          * multiple queues, congestion of host/starget needs to be handled
1450          * in SCSI layer.
1451          */
1452         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1453                 return 1;
1454
1455         return 0;
1456 }
1457
1458 /*
1459  * Kill a request for a dead device
1460  */
1461 static void scsi_kill_request(struct request *req, struct request_queue *q)
1462 {
1463         struct scsi_cmnd *cmd = req->special;
1464         struct scsi_device *sdev;
1465         struct scsi_target *starget;
1466         struct Scsi_Host *shost;
1467
1468         blk_start_request(req);
1469
1470         scmd_printk(KERN_INFO, cmd, "killing request\n");
1471
1472         sdev = cmd->device;
1473         starget = scsi_target(sdev);
1474         shost = sdev->host;
1475         scsi_init_cmd_errh(cmd);
1476         cmd->result = DID_NO_CONNECT << 16;
1477         atomic_inc(&cmd->device->iorequest_cnt);
1478
1479         /*
1480          * SCSI request completion path will do scsi_device_unbusy(),
1481          * bump busy counts.  To bump the counters, we need to dance
1482          * with the locks as normal issue path does.
1483          */
1484         sdev->device_busy++;
1485         spin_unlock(sdev->request_queue->queue_lock);
1486         spin_lock(shost->host_lock);
1487         shost->host_busy++;
1488         starget->target_busy++;
1489         spin_unlock(shost->host_lock);
1490         spin_lock(sdev->request_queue->queue_lock);
1491
1492         blk_complete_request(req);
1493 }
1494
1495 static void scsi_softirq_done(struct request *rq)
1496 {
1497         struct scsi_cmnd *cmd = rq->special;
1498         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1499         int disposition;
1500
1501         INIT_LIST_HEAD(&cmd->eh_entry);
1502
1503         atomic_inc(&cmd->device->iodone_cnt);
1504         if (cmd->result)
1505                 atomic_inc(&cmd->device->ioerr_cnt);
1506
1507         disposition = scsi_decide_disposition(cmd);
1508         if (disposition != SUCCESS &&
1509             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1510                 sdev_printk(KERN_ERR, cmd->device,
1511                             "timing out command, waited %lus\n",
1512                             wait_for/HZ);
1513                 disposition = SUCCESS;
1514         }
1515                         
1516         scsi_log_completion(cmd, disposition);
1517
1518         switch (disposition) {
1519                 case SUCCESS:
1520                         scsi_finish_command(cmd);
1521                         break;
1522                 case NEEDS_RETRY:
1523                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1524                         break;
1525                 case ADD_TO_MLQUEUE:
1526                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1527                         break;
1528                 default:
1529                         if (!scsi_eh_scmd_add(cmd, 0))
1530                                 scsi_finish_command(cmd);
1531         }
1532 }
1533
1534 /*
1535  * Function:    scsi_request_fn()
1536  *
1537  * Purpose:     Main strategy routine for SCSI.
1538  *
1539  * Arguments:   q       - Pointer to actual queue.
1540  *
1541  * Returns:     Nothing
1542  *
1543  * Lock status: IO request lock assumed to be held when called.
1544  */
1545 static void scsi_request_fn(struct request_queue *q)
1546 {
1547         struct scsi_device *sdev = q->queuedata;
1548         struct Scsi_Host *shost;
1549         struct scsi_cmnd *cmd;
1550         struct request *req;
1551
1552         if(!get_device(&sdev->sdev_gendev))
1553                 /* We must be tearing the block queue down already */
1554                 return;
1555
1556         /*
1557          * To start with, we keep looping until the queue is empty, or until
1558          * the host is no longer able to accept any more requests.
1559          */
1560         shost = sdev->host;
1561         for (;;) {
1562                 int rtn;
1563                 /*
1564                  * get next queueable request.  We do this early to make sure
1565                  * that the request is fully prepared even if we cannot 
1566                  * accept it.
1567                  */
1568                 req = blk_peek_request(q);
1569                 if (!req || !scsi_dev_queue_ready(q, sdev))
1570                         break;
1571
1572                 if (unlikely(!scsi_device_online(sdev))) {
1573                         sdev_printk(KERN_ERR, sdev,
1574                                     "rejecting I/O to offline device\n");
1575                         scsi_kill_request(req, q);
1576                         continue;
1577                 }
1578
1579
1580                 /*
1581                  * Remove the request from the request list.
1582                  */
1583                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1584                         blk_start_request(req);
1585                 sdev->device_busy++;
1586
1587                 spin_unlock(q->queue_lock);
1588                 cmd = req->special;
1589                 if (unlikely(cmd == NULL)) {
1590                         printk(KERN_CRIT "impossible request in %s.\n"
1591                                          "please mail a stack trace to "
1592                                          "linux-scsi@vger.kernel.org\n",
1593                                          __func__);
1594                         blk_dump_rq_flags(req, "foo");
1595                         BUG();
1596                 }
1597                 spin_lock(shost->host_lock);
1598
1599                 /*
1600                  * We hit this when the driver is using a host wide
1601                  * tag map. For device level tag maps the queue_depth check
1602                  * in the device ready fn would prevent us from trying
1603                  * to allocate a tag. Since the map is a shared host resource
1604                  * we add the dev to the starved list so it eventually gets
1605                  * a run when a tag is freed.
1606                  */
1607                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1608                         if (list_empty(&sdev->starved_entry))
1609                                 list_add_tail(&sdev->starved_entry,
1610                                               &shost->starved_list);
1611                         goto not_ready;
1612                 }
1613
1614                 if (!scsi_target_queue_ready(shost, sdev))
1615                         goto not_ready;
1616
1617                 if (!scsi_host_queue_ready(q, shost, sdev))
1618                         goto not_ready;
1619
1620                 scsi_target(sdev)->target_busy++;
1621                 shost->host_busy++;
1622
1623                 /*
1624                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1625                  *              take the lock again.
1626                  */
1627                 spin_unlock_irq(shost->host_lock);
1628
1629                 /*
1630                  * Finally, initialize any error handling parameters, and set up
1631                  * the timers for timeouts.
1632                  */
1633                 scsi_init_cmd_errh(cmd);
1634
1635                 /*
1636                  * Dispatch the command to the low-level driver.
1637                  */
1638                 rtn = scsi_dispatch_cmd(cmd);
1639                 spin_lock_irq(q->queue_lock);
1640                 if (rtn)
1641                         goto out_delay;
1642         }
1643
1644         goto out;
1645
1646  not_ready:
1647         spin_unlock_irq(shost->host_lock);
1648
1649         /*
1650          * lock q, handle tag, requeue req, and decrement device_busy. We
1651          * must return with queue_lock held.
1652          *
1653          * Decrementing device_busy without checking it is OK, as all such
1654          * cases (host limits or settings) should run the queue at some
1655          * later time.
1656          */
1657         spin_lock_irq(q->queue_lock);
1658         blk_requeue_request(q, req);
1659         sdev->device_busy--;
1660 out_delay:
1661         if (sdev->device_busy == 0)
1662                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1663 out:
1664         /* must be careful here...if we trigger the ->remove() function
1665          * we cannot be holding the q lock */
1666         spin_unlock_irq(q->queue_lock);
1667         put_device(&sdev->sdev_gendev);
1668         spin_lock_irq(q->queue_lock);
1669 }
1670
1671 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1672 {
1673         struct device *host_dev;
1674         u64 bounce_limit = 0xffffffff;
1675
1676         if (shost->unchecked_isa_dma)
1677                 return BLK_BOUNCE_ISA;
1678         /*
1679          * Platforms with virtual-DMA translation
1680          * hardware have no practical limit.
1681          */
1682         if (!PCI_DMA_BUS_IS_PHYS)
1683                 return BLK_BOUNCE_ANY;
1684
1685         host_dev = scsi_get_device(shost);
1686         if (host_dev && host_dev->dma_mask)
1687                 bounce_limit = *host_dev->dma_mask;
1688
1689         return bounce_limit;
1690 }
1691 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1692
1693 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1694                                          request_fn_proc *request_fn)
1695 {
1696         struct request_queue *q;
1697         struct device *dev = shost->dma_dev;
1698
1699         q = blk_init_queue(request_fn, NULL);
1700         if (!q)
1701                 return NULL;
1702
1703         /*
1704          * this limit is imposed by hardware restrictions
1705          */
1706         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1707                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1708
1709         if (scsi_host_prot_dma(shost)) {
1710                 shost->sg_prot_tablesize =
1711                         min_not_zero(shost->sg_prot_tablesize,
1712                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1713                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1714                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1715         }
1716
1717         blk_queue_max_hw_sectors(q, shost->max_sectors);
1718         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1719         blk_queue_segment_boundary(q, shost->dma_boundary);
1720         dma_set_seg_boundary(dev, shost->dma_boundary);
1721
1722         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1723
1724         if (!shost->use_clustering)
1725                 q->limits.cluster = 0;
1726
1727         /*
1728          * set a reasonable default alignment on word boundaries: the
1729          * host and device may alter it using
1730          * blk_queue_update_dma_alignment() later.
1731          */
1732         blk_queue_dma_alignment(q, 0x03);
1733
1734         return q;
1735 }
1736 EXPORT_SYMBOL(__scsi_alloc_queue);
1737
1738 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1739 {
1740         struct request_queue *q;
1741
1742         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1743         if (!q)
1744                 return NULL;
1745
1746         blk_queue_prep_rq(q, scsi_prep_fn);
1747         blk_queue_softirq_done(q, scsi_softirq_done);
1748         blk_queue_rq_timed_out(q, scsi_times_out);
1749         blk_queue_lld_busy(q, scsi_lld_busy);
1750         return q;
1751 }
1752
1753 /*
1754  * Function:    scsi_block_requests()
1755  *
1756  * Purpose:     Utility function used by low-level drivers to prevent further
1757  *              commands from being queued to the device.
1758  *
1759  * Arguments:   shost       - Host in question
1760  *
1761  * Returns:     Nothing
1762  *
1763  * Lock status: No locks are assumed held.
1764  *
1765  * Notes:       There is no timer nor any other means by which the requests
1766  *              get unblocked other than the low-level driver calling
1767  *              scsi_unblock_requests().
1768  */
1769 void scsi_block_requests(struct Scsi_Host *shost)
1770 {
1771         shost->host_self_blocked = 1;
1772 }
1773 EXPORT_SYMBOL(scsi_block_requests);
1774
1775 /*
1776  * Function:    scsi_unblock_requests()
1777  *
1778  * Purpose:     Utility function used by low-level drivers to allow further
1779  *              commands from being queued to the device.
1780  *
1781  * Arguments:   shost       - Host in question
1782  *
1783  * Returns:     Nothing
1784  *
1785  * Lock status: No locks are assumed held.
1786  *
1787  * Notes:       There is no timer nor any other means by which the requests
1788  *              get unblocked other than the low-level driver calling
1789  *              scsi_unblock_requests().
1790  *
1791  *              This is done as an API function so that changes to the
1792  *              internals of the scsi mid-layer won't require wholesale
1793  *              changes to drivers that use this feature.
1794  */
1795 void scsi_unblock_requests(struct Scsi_Host *shost)
1796 {
1797         shost->host_self_blocked = 0;
1798         scsi_run_host_queues(shost);
1799 }
1800 EXPORT_SYMBOL(scsi_unblock_requests);
1801
1802 int __init scsi_init_queue(void)
1803 {
1804         int i;
1805
1806         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1807                                            sizeof(struct scsi_data_buffer),
1808                                            0, 0, NULL);
1809         if (!scsi_sdb_cache) {
1810                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1811                 return -ENOMEM;
1812         }
1813
1814         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1815                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1816                 int size = sgp->size * sizeof(struct scatterlist);
1817
1818                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1819                                 SLAB_HWCACHE_ALIGN, NULL);
1820                 if (!sgp->slab) {
1821                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1822                                         sgp->name);
1823                         goto cleanup_sdb;
1824                 }
1825
1826                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1827                                                      sgp->slab);
1828                 if (!sgp->pool) {
1829                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1830                                         sgp->name);
1831                         goto cleanup_sdb;
1832                 }
1833         }
1834
1835         return 0;
1836
1837 cleanup_sdb:
1838         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1839                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1840                 if (sgp->pool)
1841                         mempool_destroy(sgp->pool);
1842                 if (sgp->slab)
1843                         kmem_cache_destroy(sgp->slab);
1844         }
1845         kmem_cache_destroy(scsi_sdb_cache);
1846
1847         return -ENOMEM;
1848 }
1849
1850 void scsi_exit_queue(void)
1851 {
1852         int i;
1853
1854         kmem_cache_destroy(scsi_sdb_cache);
1855
1856         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1857                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1858                 mempool_destroy(sgp->pool);
1859                 kmem_cache_destroy(sgp->slab);
1860         }
1861 }
1862
1863 /**
1864  *      scsi_mode_select - issue a mode select
1865  *      @sdev:  SCSI device to be queried
1866  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1867  *      @sp:    Save page bit (0 == don't save, 1 == save)
1868  *      @modepage: mode page being requested
1869  *      @buffer: request buffer (may not be smaller than eight bytes)
1870  *      @len:   length of request buffer.
1871  *      @timeout: command timeout
1872  *      @retries: number of retries before failing
1873  *      @data: returns a structure abstracting the mode header data
1874  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1875  *              must be SCSI_SENSE_BUFFERSIZE big.
1876  *
1877  *      Returns zero if successful; negative error number or scsi
1878  *      status on error
1879  *
1880  */
1881 int
1882 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1883                  unsigned char *buffer, int len, int timeout, int retries,
1884                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1885 {
1886         unsigned char cmd[10];
1887         unsigned char *real_buffer;
1888         int ret;
1889
1890         memset(cmd, 0, sizeof(cmd));
1891         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1892
1893         if (sdev->use_10_for_ms) {
1894                 if (len > 65535)
1895                         return -EINVAL;
1896                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1897                 if (!real_buffer)
1898                         return -ENOMEM;
1899                 memcpy(real_buffer + 8, buffer, len);
1900                 len += 8;
1901                 real_buffer[0] = 0;
1902                 real_buffer[1] = 0;
1903                 real_buffer[2] = data->medium_type;
1904                 real_buffer[3] = data->device_specific;
1905                 real_buffer[4] = data->longlba ? 0x01 : 0;
1906                 real_buffer[5] = 0;
1907                 real_buffer[6] = data->block_descriptor_length >> 8;
1908                 real_buffer[7] = data->block_descriptor_length;
1909
1910                 cmd[0] = MODE_SELECT_10;
1911                 cmd[7] = len >> 8;
1912                 cmd[8] = len;
1913         } else {
1914                 if (len > 255 || data->block_descriptor_length > 255 ||
1915                     data->longlba)
1916                         return -EINVAL;
1917
1918                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1919                 if (!real_buffer)
1920                         return -ENOMEM;
1921                 memcpy(real_buffer + 4, buffer, len);
1922                 len += 4;
1923                 real_buffer[0] = 0;
1924                 real_buffer[1] = data->medium_type;
1925                 real_buffer[2] = data->device_specific;
1926                 real_buffer[3] = data->block_descriptor_length;
1927                 
1928
1929                 cmd[0] = MODE_SELECT;
1930                 cmd[4] = len;
1931         }
1932
1933         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1934                                sshdr, timeout, retries, NULL);
1935         kfree(real_buffer);
1936         return ret;
1937 }
1938 EXPORT_SYMBOL_GPL(scsi_mode_select);
1939
1940 /**
1941  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1942  *      @sdev:  SCSI device to be queried
1943  *      @dbd:   set if mode sense will allow block descriptors to be returned
1944  *      @modepage: mode page being requested
1945  *      @buffer: request buffer (may not be smaller than eight bytes)
1946  *      @len:   length of request buffer.
1947  *      @timeout: command timeout
1948  *      @retries: number of retries before failing
1949  *      @data: returns a structure abstracting the mode header data
1950  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1951  *              must be SCSI_SENSE_BUFFERSIZE big.
1952  *
1953  *      Returns zero if unsuccessful, or the header offset (either 4
1954  *      or 8 depending on whether a six or ten byte command was
1955  *      issued) if successful.
1956  */
1957 int
1958 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1959                   unsigned char *buffer, int len, int timeout, int retries,
1960                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1961 {
1962         unsigned char cmd[12];
1963         int use_10_for_ms;
1964         int header_length;
1965         int result;
1966         struct scsi_sense_hdr my_sshdr;
1967
1968         memset(data, 0, sizeof(*data));
1969         memset(&cmd[0], 0, 12);
1970         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1971         cmd[2] = modepage;
1972
1973         /* caller might not be interested in sense, but we need it */
1974         if (!sshdr)
1975                 sshdr = &my_sshdr;
1976
1977  retry:
1978         use_10_for_ms = sdev->use_10_for_ms;
1979
1980         if (use_10_for_ms) {
1981                 if (len < 8)
1982                         len = 8;
1983
1984                 cmd[0] = MODE_SENSE_10;
1985                 cmd[8] = len;
1986                 header_length = 8;
1987         } else {
1988                 if (len < 4)
1989                         len = 4;
1990
1991                 cmd[0] = MODE_SENSE;
1992                 cmd[4] = len;
1993                 header_length = 4;
1994         }
1995
1996         memset(buffer, 0, len);
1997
1998         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1999                                   sshdr, timeout, retries, NULL);
2000
2001         /* This code looks awful: what it's doing is making sure an
2002          * ILLEGAL REQUEST sense return identifies the actual command
2003          * byte as the problem.  MODE_SENSE commands can return
2004          * ILLEGAL REQUEST if the code page isn't supported */
2005
2006         if (use_10_for_ms && !scsi_status_is_good(result) &&
2007             (driver_byte(result) & DRIVER_SENSE)) {
2008                 if (scsi_sense_valid(sshdr)) {
2009                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2010                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2011                                 /* 
2012                                  * Invalid command operation code
2013                                  */
2014                                 sdev->use_10_for_ms = 0;
2015                                 goto retry;
2016                         }
2017                 }
2018         }
2019
2020         if(scsi_status_is_good(result)) {
2021                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2022                              (modepage == 6 || modepage == 8))) {
2023                         /* Initio breakage? */
2024                         header_length = 0;
2025                         data->length = 13;
2026                         data->medium_type = 0;
2027                         data->device_specific = 0;
2028                         data->longlba = 0;
2029                         data->block_descriptor_length = 0;
2030                 } else if(use_10_for_ms) {
2031                         data->length = buffer[0]*256 + buffer[1] + 2;
2032                         data->medium_type = buffer[2];
2033                         data->device_specific = buffer[3];
2034                         data->longlba = buffer[4] & 0x01;
2035                         data->block_descriptor_length = buffer[6]*256
2036                                 + buffer[7];
2037                 } else {
2038                         data->length = buffer[0] + 1;
2039                         data->medium_type = buffer[1];
2040                         data->device_specific = buffer[2];
2041                         data->block_descriptor_length = buffer[3];
2042                 }
2043                 data->header_length = header_length;
2044         }
2045
2046         return result;
2047 }
2048 EXPORT_SYMBOL(scsi_mode_sense);
2049
2050 /**
2051  *      scsi_test_unit_ready - test if unit is ready
2052  *      @sdev:  scsi device to change the state of.
2053  *      @timeout: command timeout
2054  *      @retries: number of retries before failing
2055  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2056  *              returning sense. Make sure that this is cleared before passing
2057  *              in.
2058  *
2059  *      Returns zero if unsuccessful or an error if TUR failed.  For
2060  *      removable media, UNIT_ATTENTION sets ->changed flag.
2061  **/
2062 int
2063 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2064                      struct scsi_sense_hdr *sshdr_external)
2065 {
2066         char cmd[] = {
2067                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2068         };
2069         struct scsi_sense_hdr *sshdr;
2070         int result;
2071
2072         if (!sshdr_external)
2073                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2074         else
2075                 sshdr = sshdr_external;
2076
2077         /* try to eat the UNIT_ATTENTION if there are enough retries */
2078         do {
2079                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2080                                           timeout, retries, NULL);
2081                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2082                     sshdr->sense_key == UNIT_ATTENTION)
2083                         sdev->changed = 1;
2084         } while (scsi_sense_valid(sshdr) &&
2085                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2086
2087         if (!sshdr_external)
2088                 kfree(sshdr);
2089         return result;
2090 }
2091 EXPORT_SYMBOL(scsi_test_unit_ready);
2092
2093 /**
2094  *      scsi_device_set_state - Take the given device through the device state model.
2095  *      @sdev:  scsi device to change the state of.
2096  *      @state: state to change to.
2097  *
2098  *      Returns zero if unsuccessful or an error if the requested 
2099  *      transition is illegal.
2100  */
2101 int
2102 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2103 {
2104         enum scsi_device_state oldstate = sdev->sdev_state;
2105
2106         if (state == oldstate)
2107                 return 0;
2108
2109         switch (state) {
2110         case SDEV_CREATED:
2111                 switch (oldstate) {
2112                 case SDEV_CREATED_BLOCK:
2113                         break;
2114                 default:
2115                         goto illegal;
2116                 }
2117                 break;
2118                         
2119         case SDEV_RUNNING:
2120                 switch (oldstate) {
2121                 case SDEV_CREATED:
2122                 case SDEV_OFFLINE:
2123                 case SDEV_TRANSPORT_OFFLINE:
2124                 case SDEV_QUIESCE:
2125                 case SDEV_BLOCK:
2126                         break;
2127                 default:
2128                         goto illegal;
2129                 }
2130                 break;
2131
2132         case SDEV_QUIESCE:
2133                 switch (oldstate) {
2134                 case SDEV_RUNNING:
2135                 case SDEV_OFFLINE:
2136                 case SDEV_TRANSPORT_OFFLINE:
2137                         break;
2138                 default:
2139                         goto illegal;
2140                 }
2141                 break;
2142
2143         case SDEV_OFFLINE:
2144         case SDEV_TRANSPORT_OFFLINE:
2145                 switch (oldstate) {
2146                 case SDEV_CREATED:
2147                 case SDEV_RUNNING:
2148                 case SDEV_QUIESCE:
2149                 case SDEV_BLOCK:
2150                         break;
2151                 default:
2152                         goto illegal;
2153                 }
2154                 break;
2155
2156         case SDEV_BLOCK:
2157                 switch (oldstate) {
2158                 case SDEV_RUNNING:
2159                 case SDEV_CREATED_BLOCK:
2160                         break;
2161                 default:
2162                         goto illegal;
2163                 }
2164                 break;
2165
2166         case SDEV_CREATED_BLOCK:
2167                 switch (oldstate) {
2168                 case SDEV_CREATED:
2169                         break;
2170                 default:
2171                         goto illegal;
2172                 }
2173                 break;
2174
2175         case SDEV_CANCEL:
2176                 switch (oldstate) {
2177                 case SDEV_CREATED:
2178                 case SDEV_RUNNING:
2179                 case SDEV_QUIESCE:
2180                 case SDEV_OFFLINE:
2181                 case SDEV_TRANSPORT_OFFLINE:
2182                 case SDEV_BLOCK:
2183                         break;
2184                 default:
2185                         goto illegal;
2186                 }
2187                 break;
2188
2189         case SDEV_DEL:
2190                 switch (oldstate) {
2191                 case SDEV_CREATED:
2192                 case SDEV_RUNNING:
2193                 case SDEV_OFFLINE:
2194                 case SDEV_TRANSPORT_OFFLINE:
2195                 case SDEV_CANCEL:
2196                         break;
2197                 default:
2198                         goto illegal;
2199                 }
2200                 break;
2201
2202         }
2203         sdev->sdev_state = state;
2204         return 0;
2205
2206  illegal:
2207         SCSI_LOG_ERROR_RECOVERY(1, 
2208                                 sdev_printk(KERN_ERR, sdev,
2209                                             "Illegal state transition %s->%s\n",
2210                                             scsi_device_state_name(oldstate),
2211                                             scsi_device_state_name(state))
2212                                 );
2213         return -EINVAL;
2214 }
2215 EXPORT_SYMBOL(scsi_device_set_state);
2216
2217 /**
2218  *      sdev_evt_emit - emit a single SCSI device uevent
2219  *      @sdev: associated SCSI device
2220  *      @evt: event to emit
2221  *
2222  *      Send a single uevent (scsi_event) to the associated scsi_device.
2223  */
2224 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2225 {
2226         int idx = 0;
2227         char *envp[3];
2228
2229         switch (evt->evt_type) {
2230         case SDEV_EVT_MEDIA_CHANGE:
2231                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2232                 break;
2233
2234         default:
2235                 /* do nothing */
2236                 break;
2237         }
2238
2239         envp[idx++] = NULL;
2240
2241         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2242 }
2243
2244 /**
2245  *      sdev_evt_thread - send a uevent for each scsi event
2246  *      @work: work struct for scsi_device
2247  *
2248  *      Dispatch queued events to their associated scsi_device kobjects
2249  *      as uevents.
2250  */
2251 void scsi_evt_thread(struct work_struct *work)
2252 {
2253         struct scsi_device *sdev;
2254         LIST_HEAD(event_list);
2255
2256         sdev = container_of(work, struct scsi_device, event_work);
2257
2258         while (1) {
2259                 struct scsi_event *evt;
2260                 struct list_head *this, *tmp;
2261                 unsigned long flags;
2262
2263                 spin_lock_irqsave(&sdev->list_lock, flags);
2264                 list_splice_init(&sdev->event_list, &event_list);
2265                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2266
2267                 if (list_empty(&event_list))
2268                         break;
2269
2270                 list_for_each_safe(this, tmp, &event_list) {
2271                         evt = list_entry(this, struct scsi_event, node);
2272                         list_del(&evt->node);
2273                         scsi_evt_emit(sdev, evt);
2274                         kfree(evt);
2275                 }
2276         }
2277 }
2278
2279 /**
2280  *      sdev_evt_send - send asserted event to uevent thread
2281  *      @sdev: scsi_device event occurred on
2282  *      @evt: event to send
2283  *
2284  *      Assert scsi device event asynchronously.
2285  */
2286 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2287 {
2288         unsigned long flags;
2289
2290 #if 0
2291         /* FIXME: currently this check eliminates all media change events
2292          * for polled devices.  Need to update to discriminate between AN
2293          * and polled events */
2294         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2295                 kfree(evt);
2296                 return;
2297         }
2298 #endif
2299
2300         spin_lock_irqsave(&sdev->list_lock, flags);
2301         list_add_tail(&evt->node, &sdev->event_list);
2302         schedule_work(&sdev->event_work);
2303         spin_unlock_irqrestore(&sdev->list_lock, flags);
2304 }
2305 EXPORT_SYMBOL_GPL(sdev_evt_send);
2306
2307 /**
2308  *      sdev_evt_alloc - allocate a new scsi event
2309  *      @evt_type: type of event to allocate
2310  *      @gfpflags: GFP flags for allocation
2311  *
2312  *      Allocates and returns a new scsi_event.
2313  */
2314 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2315                                   gfp_t gfpflags)
2316 {
2317         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2318         if (!evt)
2319                 return NULL;
2320
2321         evt->evt_type = evt_type;
2322         INIT_LIST_HEAD(&evt->node);
2323
2324         /* evt_type-specific initialization, if any */
2325         switch (evt_type) {
2326         case SDEV_EVT_MEDIA_CHANGE:
2327         default:
2328                 /* do nothing */
2329                 break;
2330         }
2331
2332         return evt;
2333 }
2334 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2335
2336 /**
2337  *      sdev_evt_send_simple - send asserted event to uevent thread
2338  *      @sdev: scsi_device event occurred on
2339  *      @evt_type: type of event to send
2340  *      @gfpflags: GFP flags for allocation
2341  *
2342  *      Assert scsi device event asynchronously, given an event type.
2343  */
2344 void sdev_evt_send_simple(struct scsi_device *sdev,
2345                           enum scsi_device_event evt_type, gfp_t gfpflags)
2346 {
2347         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2348         if (!evt) {
2349                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2350                             evt_type);
2351                 return;
2352         }
2353
2354         sdev_evt_send(sdev, evt);
2355 }
2356 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2357
2358 /**
2359  *      scsi_device_quiesce - Block user issued commands.
2360  *      @sdev:  scsi device to quiesce.
2361  *
2362  *      This works by trying to transition to the SDEV_QUIESCE state
2363  *      (which must be a legal transition).  When the device is in this
2364  *      state, only special requests will be accepted, all others will
2365  *      be deferred.  Since special requests may also be requeued requests,
2366  *      a successful return doesn't guarantee the device will be 
2367  *      totally quiescent.
2368  *
2369  *      Must be called with user context, may sleep.
2370  *
2371  *      Returns zero if unsuccessful or an error if not.
2372  */
2373 int
2374 scsi_device_quiesce(struct scsi_device *sdev)
2375 {
2376         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2377         if (err)
2378                 return err;
2379
2380         scsi_run_queue(sdev->request_queue);
2381         while (sdev->device_busy) {
2382                 msleep_interruptible(200);
2383                 scsi_run_queue(sdev->request_queue);
2384         }
2385         return 0;
2386 }
2387 EXPORT_SYMBOL(scsi_device_quiesce);
2388
2389 /**
2390  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2391  *      @sdev:  scsi device to resume.
2392  *
2393  *      Moves the device from quiesced back to running and restarts the
2394  *      queues.
2395  *
2396  *      Must be called with user context, may sleep.
2397  */
2398 void scsi_device_resume(struct scsi_device *sdev)
2399 {
2400         /* check if the device state was mutated prior to resume, and if
2401          * so assume the state is being managed elsewhere (for example
2402          * device deleted during suspend)
2403          */
2404         if (sdev->sdev_state != SDEV_QUIESCE ||
2405             scsi_device_set_state(sdev, SDEV_RUNNING))
2406                 return;
2407         scsi_run_queue(sdev->request_queue);
2408 }
2409 EXPORT_SYMBOL(scsi_device_resume);
2410
2411 static void
2412 device_quiesce_fn(struct scsi_device *sdev, void *data)
2413 {
2414         scsi_device_quiesce(sdev);
2415 }
2416
2417 void
2418 scsi_target_quiesce(struct scsi_target *starget)
2419 {
2420         starget_for_each_device(starget, NULL, device_quiesce_fn);
2421 }
2422 EXPORT_SYMBOL(scsi_target_quiesce);
2423
2424 static void
2425 device_resume_fn(struct scsi_device *sdev, void *data)
2426 {
2427         scsi_device_resume(sdev);
2428 }
2429
2430 void
2431 scsi_target_resume(struct scsi_target *starget)
2432 {
2433         starget_for_each_device(starget, NULL, device_resume_fn);
2434 }
2435 EXPORT_SYMBOL(scsi_target_resume);
2436
2437 /**
2438  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2439  * @sdev:       device to block
2440  *
2441  * Block request made by scsi lld's to temporarily stop all
2442  * scsi commands on the specified device.  Called from interrupt
2443  * or normal process context.
2444  *
2445  * Returns zero if successful or error if not
2446  *
2447  * Notes:       
2448  *      This routine transitions the device to the SDEV_BLOCK state
2449  *      (which must be a legal transition).  When the device is in this
2450  *      state, all commands are deferred until the scsi lld reenables
2451  *      the device with scsi_device_unblock or device_block_tmo fires.
2452  */
2453 int
2454 scsi_internal_device_block(struct scsi_device *sdev)
2455 {
2456         struct request_queue *q = sdev->request_queue;
2457         unsigned long flags;
2458         int err = 0;
2459
2460         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2461         if (err) {
2462                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2463
2464                 if (err)
2465                         return err;
2466         }
2467
2468         /* 
2469          * The device has transitioned to SDEV_BLOCK.  Stop the
2470          * block layer from calling the midlayer with this device's
2471          * request queue. 
2472          */
2473         spin_lock_irqsave(q->queue_lock, flags);
2474         blk_stop_queue(q);
2475         spin_unlock_irqrestore(q->queue_lock, flags);
2476
2477         return 0;
2478 }
2479 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2480  
2481 /**
2482  * scsi_internal_device_unblock - resume a device after a block request
2483  * @sdev:       device to resume
2484  * @new_state:  state to set devices to after unblocking
2485  *
2486  * Called by scsi lld's or the midlayer to restart the device queue
2487  * for the previously suspended scsi device.  Called from interrupt or
2488  * normal process context.
2489  *
2490  * Returns zero if successful or error if not.
2491  *
2492  * Notes:       
2493  *      This routine transitions the device to the SDEV_RUNNING state
2494  *      or to one of the offline states (which must be a legal transition)
2495  *      allowing the midlayer to goose the queue for this device.
2496  */
2497 int
2498 scsi_internal_device_unblock(struct scsi_device *sdev,
2499                              enum scsi_device_state new_state)
2500 {
2501         struct request_queue *q = sdev->request_queue; 
2502         unsigned long flags;
2503
2504         /*
2505          * Try to transition the scsi device to SDEV_RUNNING or one of the
2506          * offlined states and goose the device queue if successful.
2507          */
2508         if ((sdev->sdev_state == SDEV_BLOCK) ||
2509             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2510                 sdev->sdev_state = new_state;
2511         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2512                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2513                     new_state == SDEV_OFFLINE)
2514                         sdev->sdev_state = new_state;
2515                 else
2516                         sdev->sdev_state = SDEV_CREATED;
2517         } else if (sdev->sdev_state != SDEV_CANCEL &&
2518                  sdev->sdev_state != SDEV_OFFLINE)
2519                 return -EINVAL;
2520
2521         spin_lock_irqsave(q->queue_lock, flags);
2522         blk_start_queue(q);
2523         spin_unlock_irqrestore(q->queue_lock, flags);
2524
2525         return 0;
2526 }
2527 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2528
2529 static void
2530 device_block(struct scsi_device *sdev, void *data)
2531 {
2532         scsi_internal_device_block(sdev);
2533 }
2534
2535 static int
2536 target_block(struct device *dev, void *data)
2537 {
2538         if (scsi_is_target_device(dev))
2539                 starget_for_each_device(to_scsi_target(dev), NULL,
2540                                         device_block);
2541         return 0;
2542 }
2543
2544 void
2545 scsi_target_block(struct device *dev)
2546 {
2547         if (scsi_is_target_device(dev))
2548                 starget_for_each_device(to_scsi_target(dev), NULL,
2549                                         device_block);
2550         else
2551                 device_for_each_child(dev, NULL, target_block);
2552 }
2553 EXPORT_SYMBOL_GPL(scsi_target_block);
2554
2555 static void
2556 device_unblock(struct scsi_device *sdev, void *data)
2557 {
2558         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2559 }
2560
2561 static int
2562 target_unblock(struct device *dev, void *data)
2563 {
2564         if (scsi_is_target_device(dev))
2565                 starget_for_each_device(to_scsi_target(dev), data,
2566                                         device_unblock);
2567         return 0;
2568 }
2569
2570 void
2571 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2572 {
2573         if (scsi_is_target_device(dev))
2574                 starget_for_each_device(to_scsi_target(dev), &new_state,
2575                                         device_unblock);
2576         else
2577                 device_for_each_child(dev, &new_state, target_unblock);
2578 }
2579 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2580
2581 /**
2582  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2583  * @sgl:        scatter-gather list
2584  * @sg_count:   number of segments in sg
2585  * @offset:     offset in bytes into sg, on return offset into the mapped area
2586  * @len:        bytes to map, on return number of bytes mapped
2587  *
2588  * Returns virtual address of the start of the mapped page
2589  */
2590 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2591                           size_t *offset, size_t *len)
2592 {
2593         int i;
2594         size_t sg_len = 0, len_complete = 0;
2595         struct scatterlist *sg;
2596         struct page *page;
2597
2598         WARN_ON(!irqs_disabled());
2599
2600         for_each_sg(sgl, sg, sg_count, i) {
2601                 len_complete = sg_len; /* Complete sg-entries */
2602                 sg_len += sg->length;
2603                 if (sg_len > *offset)
2604                         break;
2605         }
2606
2607         if (unlikely(i == sg_count)) {
2608                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2609                         "elements %d\n",
2610                        __func__, sg_len, *offset, sg_count);
2611                 WARN_ON(1);
2612                 return NULL;
2613         }
2614
2615         /* Offset starting from the beginning of first page in this sg-entry */
2616         *offset = *offset - len_complete + sg->offset;
2617
2618         /* Assumption: contiguous pages can be accessed as "page + i" */
2619         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2620         *offset &= ~PAGE_MASK;
2621
2622         /* Bytes in this sg-entry from *offset to the end of the page */
2623         sg_len = PAGE_SIZE - *offset;
2624         if (*len > sg_len)
2625                 *len = sg_len;
2626
2627         return kmap_atomic(page);
2628 }
2629 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2630
2631 /**
2632  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2633  * @virt:       virtual address to be unmapped
2634  */
2635 void scsi_kunmap_atomic_sg(void *virt)
2636 {
2637         kunmap_atomic(virt);
2638 }
2639 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2640
2641 void sdev_disable_disk_events(struct scsi_device *sdev)
2642 {
2643         atomic_inc(&sdev->disk_events_disable_depth);
2644 }
2645 EXPORT_SYMBOL(sdev_disable_disk_events);
2646
2647 void sdev_enable_disk_events(struct scsi_device *sdev)
2648 {
2649         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2650                 return;
2651         atomic_dec(&sdev->disk_events_disable_depth);
2652 }
2653 EXPORT_SYMBOL(sdev_enable_disk_events);