]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/scsi/scsi_lib.c
Merge tag 'sunxi-fixes-for-4.12' of https://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46
47 static inline struct kmem_cache *
48 scsi_select_sense_cache(struct Scsi_Host *shost)
49 {
50         return shost->unchecked_isa_dma ?
51                 scsi_sense_isadma_cache : scsi_sense_cache;
52 }
53
54 static void scsi_free_sense_buffer(struct Scsi_Host *shost,
55                 unsigned char *sense_buffer)
56 {
57         kmem_cache_free(scsi_select_sense_cache(shost), sense_buffer);
58 }
59
60 static unsigned char *scsi_alloc_sense_buffer(struct Scsi_Host *shost,
61         gfp_t gfp_mask, int numa_node)
62 {
63         return kmem_cache_alloc_node(scsi_select_sense_cache(shost), gfp_mask,
64                         numa_node);
65 }
66
67 int scsi_init_sense_cache(struct Scsi_Host *shost)
68 {
69         struct kmem_cache *cache;
70         int ret = 0;
71
72         cache = scsi_select_sense_cache(shost);
73         if (cache)
74                 return 0;
75
76         mutex_lock(&scsi_sense_cache_mutex);
77         if (shost->unchecked_isa_dma) {
78                 scsi_sense_isadma_cache =
79                         kmem_cache_create("scsi_sense_cache(DMA)",
80                         SCSI_SENSE_BUFFERSIZE, 0,
81                         SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
82                 if (!scsi_sense_isadma_cache)
83                         ret = -ENOMEM;
84         } else {
85                 scsi_sense_cache =
86                         kmem_cache_create("scsi_sense_cache",
87                         SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
88                 if (!scsi_sense_cache)
89                         ret = -ENOMEM;
90         }
91
92         mutex_unlock(&scsi_sense_cache_mutex);
93         return ret;
94 }
95
96 /*
97  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
98  * not change behaviour from the previous unplug mechanism, experimentation
99  * may prove this needs changing.
100  */
101 #define SCSI_QUEUE_DELAY        3
102
103 static void
104 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
105 {
106         struct Scsi_Host *host = cmd->device->host;
107         struct scsi_device *device = cmd->device;
108         struct scsi_target *starget = scsi_target(device);
109
110         /*
111          * Set the appropriate busy bit for the device/host.
112          *
113          * If the host/device isn't busy, assume that something actually
114          * completed, and that we should be able to queue a command now.
115          *
116          * Note that the prior mid-layer assumption that any host could
117          * always queue at least one command is now broken.  The mid-layer
118          * will implement a user specifiable stall (see
119          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
120          * if a command is requeued with no other commands outstanding
121          * either for the device or for the host.
122          */
123         switch (reason) {
124         case SCSI_MLQUEUE_HOST_BUSY:
125                 atomic_set(&host->host_blocked, host->max_host_blocked);
126                 break;
127         case SCSI_MLQUEUE_DEVICE_BUSY:
128         case SCSI_MLQUEUE_EH_RETRY:
129                 atomic_set(&device->device_blocked,
130                            device->max_device_blocked);
131                 break;
132         case SCSI_MLQUEUE_TARGET_BUSY:
133                 atomic_set(&starget->target_blocked,
134                            starget->max_target_blocked);
135                 break;
136         }
137 }
138
139 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
140 {
141         struct scsi_device *sdev = cmd->device;
142
143         blk_mq_requeue_request(cmd->request, true);
144         put_device(&sdev->sdev_gendev);
145 }
146
147 /**
148  * __scsi_queue_insert - private queue insertion
149  * @cmd: The SCSI command being requeued
150  * @reason:  The reason for the requeue
151  * @unbusy: Whether the queue should be unbusied
152  *
153  * This is a private queue insertion.  The public interface
154  * scsi_queue_insert() always assumes the queue should be unbusied
155  * because it's always called before the completion.  This function is
156  * for a requeue after completion, which should only occur in this
157  * file.
158  */
159 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
160 {
161         struct scsi_device *device = cmd->device;
162         struct request_queue *q = device->request_queue;
163         unsigned long flags;
164
165         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
166                 "Inserting command %p into mlqueue\n", cmd));
167
168         scsi_set_blocked(cmd, reason);
169
170         /*
171          * Decrement the counters, since these commands are no longer
172          * active on the host/device.
173          */
174         if (unbusy)
175                 scsi_device_unbusy(device);
176
177         /*
178          * Requeue this command.  It will go before all other commands
179          * that are already in the queue. Schedule requeue work under
180          * lock such that the kblockd_schedule_work() call happens
181          * before blk_cleanup_queue() finishes.
182          */
183         cmd->result = 0;
184         if (q->mq_ops) {
185                 scsi_mq_requeue_cmd(cmd);
186                 return;
187         }
188         spin_lock_irqsave(q->queue_lock, flags);
189         blk_requeue_request(q, cmd->request);
190         kblockd_schedule_work(&device->requeue_work);
191         spin_unlock_irqrestore(q->queue_lock, flags);
192 }
193
194 /*
195  * Function:    scsi_queue_insert()
196  *
197  * Purpose:     Insert a command in the midlevel queue.
198  *
199  * Arguments:   cmd    - command that we are adding to queue.
200  *              reason - why we are inserting command to queue.
201  *
202  * Lock status: Assumed that lock is not held upon entry.
203  *
204  * Returns:     Nothing.
205  *
206  * Notes:       We do this for one of two cases.  Either the host is busy
207  *              and it cannot accept any more commands for the time being,
208  *              or the device returned QUEUE_FULL and can accept no more
209  *              commands.
210  * Notes:       This could be called either from an interrupt context or a
211  *              normal process context.
212  */
213 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
214 {
215         __scsi_queue_insert(cmd, reason, 1);
216 }
217
218
219 /**
220  * scsi_execute - insert request and wait for the result
221  * @sdev:       scsi device
222  * @cmd:        scsi command
223  * @data_direction: data direction
224  * @buffer:     data buffer
225  * @bufflen:    len of buffer
226  * @sense:      optional sense buffer
227  * @sshdr:      optional decoded sense header
228  * @timeout:    request timeout in seconds
229  * @retries:    number of times to retry request
230  * @flags:      flags for ->cmd_flags
231  * @rq_flags:   flags for ->rq_flags
232  * @resid:      optional residual length
233  *
234  * Returns the scsi_cmnd result field if a command was executed, or a negative
235  * Linux error code if we didn't get that far.
236  */
237 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
238                  int data_direction, void *buffer, unsigned bufflen,
239                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
240                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
241                  int *resid)
242 {
243         struct request *req;
244         struct scsi_request *rq;
245         int ret = DRIVER_ERROR << 24;
246
247         req = blk_get_request(sdev->request_queue,
248                         data_direction == DMA_TO_DEVICE ?
249                         REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
250         if (IS_ERR(req))
251                 return ret;
252         rq = scsi_req(req);
253         scsi_req_init(req);
254
255         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
256                                         buffer, bufflen, __GFP_RECLAIM))
257                 goto out;
258
259         rq->cmd_len = COMMAND_SIZE(cmd[0]);
260         memcpy(rq->cmd, cmd, rq->cmd_len);
261         rq->retries = retries;
262         req->timeout = timeout;
263         req->cmd_flags |= flags;
264         req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
265
266         /*
267          * head injection *required* here otherwise quiesce won't work
268          */
269         blk_execute_rq(req->q, NULL, req, 1);
270
271         /*
272          * Some devices (USB mass-storage in particular) may transfer
273          * garbage data together with a residue indicating that the data
274          * is invalid.  Prevent the garbage from being misinterpreted
275          * and prevent security leaks by zeroing out the excess data.
276          */
277         if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
278                 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
279
280         if (resid)
281                 *resid = rq->resid_len;
282         if (sense && rq->sense_len)
283                 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
284         if (sshdr)
285                 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
286         ret = rq->result;
287  out:
288         blk_put_request(req);
289
290         return ret;
291 }
292 EXPORT_SYMBOL(scsi_execute);
293
294 /*
295  * Function:    scsi_init_cmd_errh()
296  *
297  * Purpose:     Initialize cmd fields related to error handling.
298  *
299  * Arguments:   cmd     - command that is ready to be queued.
300  *
301  * Notes:       This function has the job of initializing a number of
302  *              fields related to error handling.   Typically this will
303  *              be called once for each command, as required.
304  */
305 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
306 {
307         cmd->serial_number = 0;
308         scsi_set_resid(cmd, 0);
309         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
310         if (cmd->cmd_len == 0)
311                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
312 }
313
314 void scsi_device_unbusy(struct scsi_device *sdev)
315 {
316         struct Scsi_Host *shost = sdev->host;
317         struct scsi_target *starget = scsi_target(sdev);
318         unsigned long flags;
319
320         atomic_dec(&shost->host_busy);
321         if (starget->can_queue > 0)
322                 atomic_dec(&starget->target_busy);
323
324         if (unlikely(scsi_host_in_recovery(shost) &&
325                      (shost->host_failed || shost->host_eh_scheduled))) {
326                 spin_lock_irqsave(shost->host_lock, flags);
327                 scsi_eh_wakeup(shost);
328                 spin_unlock_irqrestore(shost->host_lock, flags);
329         }
330
331         atomic_dec(&sdev->device_busy);
332 }
333
334 static void scsi_kick_queue(struct request_queue *q)
335 {
336         if (q->mq_ops)
337                 blk_mq_start_hw_queues(q);
338         else
339                 blk_run_queue(q);
340 }
341
342 /*
343  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
344  * and call blk_run_queue for all the scsi_devices on the target -
345  * including current_sdev first.
346  *
347  * Called with *no* scsi locks held.
348  */
349 static void scsi_single_lun_run(struct scsi_device *current_sdev)
350 {
351         struct Scsi_Host *shost = current_sdev->host;
352         struct scsi_device *sdev, *tmp;
353         struct scsi_target *starget = scsi_target(current_sdev);
354         unsigned long flags;
355
356         spin_lock_irqsave(shost->host_lock, flags);
357         starget->starget_sdev_user = NULL;
358         spin_unlock_irqrestore(shost->host_lock, flags);
359
360         /*
361          * Call blk_run_queue for all LUNs on the target, starting with
362          * current_sdev. We race with others (to set starget_sdev_user),
363          * but in most cases, we will be first. Ideally, each LU on the
364          * target would get some limited time or requests on the target.
365          */
366         scsi_kick_queue(current_sdev->request_queue);
367
368         spin_lock_irqsave(shost->host_lock, flags);
369         if (starget->starget_sdev_user)
370                 goto out;
371         list_for_each_entry_safe(sdev, tmp, &starget->devices,
372                         same_target_siblings) {
373                 if (sdev == current_sdev)
374                         continue;
375                 if (scsi_device_get(sdev))
376                         continue;
377
378                 spin_unlock_irqrestore(shost->host_lock, flags);
379                 scsi_kick_queue(sdev->request_queue);
380                 spin_lock_irqsave(shost->host_lock, flags);
381         
382                 scsi_device_put(sdev);
383         }
384  out:
385         spin_unlock_irqrestore(shost->host_lock, flags);
386 }
387
388 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
389 {
390         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
391                 return true;
392         if (atomic_read(&sdev->device_blocked) > 0)
393                 return true;
394         return false;
395 }
396
397 static inline bool scsi_target_is_busy(struct scsi_target *starget)
398 {
399         if (starget->can_queue > 0) {
400                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
401                         return true;
402                 if (atomic_read(&starget->target_blocked) > 0)
403                         return true;
404         }
405         return false;
406 }
407
408 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
409 {
410         if (shost->can_queue > 0 &&
411             atomic_read(&shost->host_busy) >= shost->can_queue)
412                 return true;
413         if (atomic_read(&shost->host_blocked) > 0)
414                 return true;
415         if (shost->host_self_blocked)
416                 return true;
417         return false;
418 }
419
420 static void scsi_starved_list_run(struct Scsi_Host *shost)
421 {
422         LIST_HEAD(starved_list);
423         struct scsi_device *sdev;
424         unsigned long flags;
425
426         spin_lock_irqsave(shost->host_lock, flags);
427         list_splice_init(&shost->starved_list, &starved_list);
428
429         while (!list_empty(&starved_list)) {
430                 struct request_queue *slq;
431
432                 /*
433                  * As long as shost is accepting commands and we have
434                  * starved queues, call blk_run_queue. scsi_request_fn
435                  * drops the queue_lock and can add us back to the
436                  * starved_list.
437                  *
438                  * host_lock protects the starved_list and starved_entry.
439                  * scsi_request_fn must get the host_lock before checking
440                  * or modifying starved_list or starved_entry.
441                  */
442                 if (scsi_host_is_busy(shost))
443                         break;
444
445                 sdev = list_entry(starved_list.next,
446                                   struct scsi_device, starved_entry);
447                 list_del_init(&sdev->starved_entry);
448                 if (scsi_target_is_busy(scsi_target(sdev))) {
449                         list_move_tail(&sdev->starved_entry,
450                                        &shost->starved_list);
451                         continue;
452                 }
453
454                 /*
455                  * Once we drop the host lock, a racing scsi_remove_device()
456                  * call may remove the sdev from the starved list and destroy
457                  * it and the queue.  Mitigate by taking a reference to the
458                  * queue and never touching the sdev again after we drop the
459                  * host lock.  Note: if __scsi_remove_device() invokes
460                  * blk_cleanup_queue() before the queue is run from this
461                  * function then blk_run_queue() will return immediately since
462                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
463                  */
464                 slq = sdev->request_queue;
465                 if (!blk_get_queue(slq))
466                         continue;
467                 spin_unlock_irqrestore(shost->host_lock, flags);
468
469                 scsi_kick_queue(slq);
470                 blk_put_queue(slq);
471
472                 spin_lock_irqsave(shost->host_lock, flags);
473         }
474         /* put any unprocessed entries back */
475         list_splice(&starved_list, &shost->starved_list);
476         spin_unlock_irqrestore(shost->host_lock, flags);
477 }
478
479 /*
480  * Function:   scsi_run_queue()
481  *
482  * Purpose:    Select a proper request queue to serve next
483  *
484  * Arguments:  q       - last request's queue
485  *
486  * Returns:     Nothing
487  *
488  * Notes:      The previous command was completely finished, start
489  *             a new one if possible.
490  */
491 static void scsi_run_queue(struct request_queue *q)
492 {
493         struct scsi_device *sdev = q->queuedata;
494
495         if (scsi_target(sdev)->single_lun)
496                 scsi_single_lun_run(sdev);
497         if (!list_empty(&sdev->host->starved_list))
498                 scsi_starved_list_run(sdev->host);
499
500         if (q->mq_ops)
501                 blk_mq_run_hw_queues(q, false);
502         else
503                 blk_run_queue(q);
504 }
505
506 void scsi_requeue_run_queue(struct work_struct *work)
507 {
508         struct scsi_device *sdev;
509         struct request_queue *q;
510
511         sdev = container_of(work, struct scsi_device, requeue_work);
512         q = sdev->request_queue;
513         scsi_run_queue(q);
514 }
515
516 /*
517  * Function:    scsi_requeue_command()
518  *
519  * Purpose:     Handle post-processing of completed commands.
520  *
521  * Arguments:   q       - queue to operate on
522  *              cmd     - command that may need to be requeued.
523  *
524  * Returns:     Nothing
525  *
526  * Notes:       After command completion, there may be blocks left
527  *              over which weren't finished by the previous command
528  *              this can be for a number of reasons - the main one is
529  *              I/O errors in the middle of the request, in which case
530  *              we need to request the blocks that come after the bad
531  *              sector.
532  * Notes:       Upon return, cmd is a stale pointer.
533  */
534 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
535 {
536         struct scsi_device *sdev = cmd->device;
537         struct request *req = cmd->request;
538         unsigned long flags;
539
540         spin_lock_irqsave(q->queue_lock, flags);
541         blk_unprep_request(req);
542         req->special = NULL;
543         scsi_put_command(cmd);
544         blk_requeue_request(q, req);
545         spin_unlock_irqrestore(q->queue_lock, flags);
546
547         scsi_run_queue(q);
548
549         put_device(&sdev->sdev_gendev);
550 }
551
552 void scsi_run_host_queues(struct Scsi_Host *shost)
553 {
554         struct scsi_device *sdev;
555
556         shost_for_each_device(sdev, shost)
557                 scsi_run_queue(sdev->request_queue);
558 }
559
560 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
561 {
562         if (!blk_rq_is_passthrough(cmd->request)) {
563                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
564
565                 if (drv->uninit_command)
566                         drv->uninit_command(cmd);
567         }
568 }
569
570 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
571 {
572         struct scsi_data_buffer *sdb;
573
574         if (cmd->sdb.table.nents)
575                 sg_free_table_chained(&cmd->sdb.table, true);
576         if (cmd->request->next_rq) {
577                 sdb = cmd->request->next_rq->special;
578                 if (sdb)
579                         sg_free_table_chained(&sdb->table, true);
580         }
581         if (scsi_prot_sg_count(cmd))
582                 sg_free_table_chained(&cmd->prot_sdb->table, true);
583 }
584
585 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
586 {
587         struct scsi_device *sdev = cmd->device;
588         struct Scsi_Host *shost = sdev->host;
589         unsigned long flags;
590
591         scsi_mq_free_sgtables(cmd);
592         scsi_uninit_cmd(cmd);
593
594         if (shost->use_cmd_list) {
595                 BUG_ON(list_empty(&cmd->list));
596                 spin_lock_irqsave(&sdev->list_lock, flags);
597                 list_del_init(&cmd->list);
598                 spin_unlock_irqrestore(&sdev->list_lock, flags);
599         }
600 }
601
602 /*
603  * Function:    scsi_release_buffers()
604  *
605  * Purpose:     Free resources allocate for a scsi_command.
606  *
607  * Arguments:   cmd     - command that we are bailing.
608  *
609  * Lock status: Assumed that no lock is held upon entry.
610  *
611  * Returns:     Nothing
612  *
613  * Notes:       In the event that an upper level driver rejects a
614  *              command, we must release resources allocated during
615  *              the __init_io() function.  Primarily this would involve
616  *              the scatter-gather table.
617  */
618 static void scsi_release_buffers(struct scsi_cmnd *cmd)
619 {
620         if (cmd->sdb.table.nents)
621                 sg_free_table_chained(&cmd->sdb.table, false);
622
623         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
624
625         if (scsi_prot_sg_count(cmd))
626                 sg_free_table_chained(&cmd->prot_sdb->table, false);
627 }
628
629 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
630 {
631         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
632
633         sg_free_table_chained(&bidi_sdb->table, false);
634         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
635         cmd->request->next_rq->special = NULL;
636 }
637
638 static bool scsi_end_request(struct request *req, int error,
639                 unsigned int bytes, unsigned int bidi_bytes)
640 {
641         struct scsi_cmnd *cmd = req->special;
642         struct scsi_device *sdev = cmd->device;
643         struct request_queue *q = sdev->request_queue;
644
645         if (blk_update_request(req, error, bytes))
646                 return true;
647
648         /* Bidi request must be completed as a whole */
649         if (unlikely(bidi_bytes) &&
650             blk_update_request(req->next_rq, error, bidi_bytes))
651                 return true;
652
653         if (blk_queue_add_random(q))
654                 add_disk_randomness(req->rq_disk);
655
656         if (req->mq_ctx) {
657                 /*
658                  * In the MQ case the command gets freed by __blk_mq_end_request,
659                  * so we have to do all cleanup that depends on it earlier.
660                  *
661                  * We also can't kick the queues from irq context, so we
662                  * will have to defer it to a workqueue.
663                  */
664                 scsi_mq_uninit_cmd(cmd);
665
666                 __blk_mq_end_request(req, error);
667
668                 if (scsi_target(sdev)->single_lun ||
669                     !list_empty(&sdev->host->starved_list))
670                         kblockd_schedule_work(&sdev->requeue_work);
671                 else
672                         blk_mq_run_hw_queues(q, true);
673         } else {
674                 unsigned long flags;
675
676                 if (bidi_bytes)
677                         scsi_release_bidi_buffers(cmd);
678                 scsi_release_buffers(cmd);
679                 scsi_put_command(cmd);
680
681                 spin_lock_irqsave(q->queue_lock, flags);
682                 blk_finish_request(req, error);
683                 spin_unlock_irqrestore(q->queue_lock, flags);
684
685                 scsi_run_queue(q);
686         }
687
688         put_device(&sdev->sdev_gendev);
689         return false;
690 }
691
692 /**
693  * __scsi_error_from_host_byte - translate SCSI error code into errno
694  * @cmd:        SCSI command (unused)
695  * @result:     scsi error code
696  *
697  * Translate SCSI error code into standard UNIX errno.
698  * Return values:
699  * -ENOLINK     temporary transport failure
700  * -EREMOTEIO   permanent target failure, do not retry
701  * -EBADE       permanent nexus failure, retry on other path
702  * -ENOSPC      No write space available
703  * -ENODATA     Medium error
704  * -EIO         unspecified I/O error
705  */
706 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
707 {
708         int error = 0;
709
710         switch(host_byte(result)) {
711         case DID_TRANSPORT_FAILFAST:
712                 error = -ENOLINK;
713                 break;
714         case DID_TARGET_FAILURE:
715                 set_host_byte(cmd, DID_OK);
716                 error = -EREMOTEIO;
717                 break;
718         case DID_NEXUS_FAILURE:
719                 set_host_byte(cmd, DID_OK);
720                 error = -EBADE;
721                 break;
722         case DID_ALLOC_FAILURE:
723                 set_host_byte(cmd, DID_OK);
724                 error = -ENOSPC;
725                 break;
726         case DID_MEDIUM_ERROR:
727                 set_host_byte(cmd, DID_OK);
728                 error = -ENODATA;
729                 break;
730         default:
731                 error = -EIO;
732                 break;
733         }
734
735         return error;
736 }
737
738 /*
739  * Function:    scsi_io_completion()
740  *
741  * Purpose:     Completion processing for block device I/O requests.
742  *
743  * Arguments:   cmd   - command that is finished.
744  *
745  * Lock status: Assumed that no lock is held upon entry.
746  *
747  * Returns:     Nothing
748  *
749  * Notes:       We will finish off the specified number of sectors.  If we
750  *              are done, the command block will be released and the queue
751  *              function will be goosed.  If we are not done then we have to
752  *              figure out what to do next:
753  *
754  *              a) We can call scsi_requeue_command().  The request
755  *                 will be unprepared and put back on the queue.  Then
756  *                 a new command will be created for it.  This should
757  *                 be used if we made forward progress, or if we want
758  *                 to switch from READ(10) to READ(6) for example.
759  *
760  *              b) We can call __scsi_queue_insert().  The request will
761  *                 be put back on the queue and retried using the same
762  *                 command as before, possibly after a delay.
763  *
764  *              c) We can call scsi_end_request() with -EIO to fail
765  *                 the remainder of the request.
766  */
767 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
768 {
769         int result = cmd->result;
770         struct request_queue *q = cmd->device->request_queue;
771         struct request *req = cmd->request;
772         int error = 0;
773         struct scsi_sense_hdr sshdr;
774         bool sense_valid = false;
775         int sense_deferred = 0, level = 0;
776         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
777               ACTION_DELAYED_RETRY} action;
778         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
779
780         if (result) {
781                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
782                 if (sense_valid)
783                         sense_deferred = scsi_sense_is_deferred(&sshdr);
784         }
785
786         if (blk_rq_is_passthrough(req)) {
787                 if (result) {
788                         if (sense_valid) {
789                                 /*
790                                  * SG_IO wants current and deferred errors
791                                  */
792                                 scsi_req(req)->sense_len =
793                                         min(8 + cmd->sense_buffer[7],
794                                             SCSI_SENSE_BUFFERSIZE);
795                         }
796                         if (!sense_deferred)
797                                 error = __scsi_error_from_host_byte(cmd, result);
798                 }
799                 /*
800                  * __scsi_error_from_host_byte may have reset the host_byte
801                  */
802                 scsi_req(req)->result = cmd->result;
803                 scsi_req(req)->resid_len = scsi_get_resid(cmd);
804
805                 if (scsi_bidi_cmnd(cmd)) {
806                         /*
807                          * Bidi commands Must be complete as a whole,
808                          * both sides at once.
809                          */
810                         scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
811                         if (scsi_end_request(req, 0, blk_rq_bytes(req),
812                                         blk_rq_bytes(req->next_rq)))
813                                 BUG();
814                         return;
815                 }
816         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
817                 /*
818                  * Flush commands do not transfers any data, and thus cannot use
819                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
820                  * This sets the error explicitly for the problem case.
821                  */
822                 error = __scsi_error_from_host_byte(cmd, result);
823         }
824
825         /* no bidi support for !blk_rq_is_passthrough yet */
826         BUG_ON(blk_bidi_rq(req));
827
828         /*
829          * Next deal with any sectors which we were able to correctly
830          * handle.
831          */
832         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
833                 "%u sectors total, %d bytes done.\n",
834                 blk_rq_sectors(req), good_bytes));
835
836         /*
837          * Recovered errors need reporting, but they're always treated as
838          * success, so fiddle the result code here.  For passthrough requests
839          * we already took a copy of the original into sreq->result which
840          * is what gets returned to the user
841          */
842         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
843                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
844                  * print since caller wants ATA registers. Only occurs on
845                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
846                  */
847                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
848                         ;
849                 else if (!(req->rq_flags & RQF_QUIET))
850                         scsi_print_sense(cmd);
851                 result = 0;
852                 /* for passthrough error may be set */
853                 error = 0;
854         }
855
856         /*
857          * special case: failed zero length commands always need to
858          * drop down into the retry code. Otherwise, if we finished
859          * all bytes in the request we are done now.
860          */
861         if (!(blk_rq_bytes(req) == 0 && error) &&
862             !scsi_end_request(req, error, good_bytes, 0))
863                 return;
864
865         /*
866          * Kill remainder if no retrys.
867          */
868         if (error && scsi_noretry_cmd(cmd)) {
869                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
870                         BUG();
871                 return;
872         }
873
874         /*
875          * If there had been no error, but we have leftover bytes in the
876          * requeues just queue the command up again.
877          */
878         if (result == 0)
879                 goto requeue;
880
881         error = __scsi_error_from_host_byte(cmd, result);
882
883         if (host_byte(result) == DID_RESET) {
884                 /* Third party bus reset or reset for error recovery
885                  * reasons.  Just retry the command and see what
886                  * happens.
887                  */
888                 action = ACTION_RETRY;
889         } else if (sense_valid && !sense_deferred) {
890                 switch (sshdr.sense_key) {
891                 case UNIT_ATTENTION:
892                         if (cmd->device->removable) {
893                                 /* Detected disc change.  Set a bit
894                                  * and quietly refuse further access.
895                                  */
896                                 cmd->device->changed = 1;
897                                 action = ACTION_FAIL;
898                         } else {
899                                 /* Must have been a power glitch, or a
900                                  * bus reset.  Could not have been a
901                                  * media change, so we just retry the
902                                  * command and see what happens.
903                                  */
904                                 action = ACTION_RETRY;
905                         }
906                         break;
907                 case ILLEGAL_REQUEST:
908                         /* If we had an ILLEGAL REQUEST returned, then
909                          * we may have performed an unsupported
910                          * command.  The only thing this should be
911                          * would be a ten byte read where only a six
912                          * byte read was supported.  Also, on a system
913                          * where READ CAPACITY failed, we may have
914                          * read past the end of the disk.
915                          */
916                         if ((cmd->device->use_10_for_rw &&
917                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
918                             (cmd->cmnd[0] == READ_10 ||
919                              cmd->cmnd[0] == WRITE_10)) {
920                                 /* This will issue a new 6-byte command. */
921                                 cmd->device->use_10_for_rw = 0;
922                                 action = ACTION_REPREP;
923                         } else if (sshdr.asc == 0x10) /* DIX */ {
924                                 action = ACTION_FAIL;
925                                 error = -EILSEQ;
926                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
927                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
928                                 action = ACTION_FAIL;
929                                 error = -EREMOTEIO;
930                         } else
931                                 action = ACTION_FAIL;
932                         break;
933                 case ABORTED_COMMAND:
934                         action = ACTION_FAIL;
935                         if (sshdr.asc == 0x10) /* DIF */
936                                 error = -EILSEQ;
937                         break;
938                 case NOT_READY:
939                         /* If the device is in the process of becoming
940                          * ready, or has a temporary blockage, retry.
941                          */
942                         if (sshdr.asc == 0x04) {
943                                 switch (sshdr.ascq) {
944                                 case 0x01: /* becoming ready */
945                                 case 0x04: /* format in progress */
946                                 case 0x05: /* rebuild in progress */
947                                 case 0x06: /* recalculation in progress */
948                                 case 0x07: /* operation in progress */
949                                 case 0x08: /* Long write in progress */
950                                 case 0x09: /* self test in progress */
951                                 case 0x14: /* space allocation in progress */
952                                         action = ACTION_DELAYED_RETRY;
953                                         break;
954                                 default:
955                                         action = ACTION_FAIL;
956                                         break;
957                                 }
958                         } else
959                                 action = ACTION_FAIL;
960                         break;
961                 case VOLUME_OVERFLOW:
962                         /* See SSC3rXX or current. */
963                         action = ACTION_FAIL;
964                         break;
965                 default:
966                         action = ACTION_FAIL;
967                         break;
968                 }
969         } else
970                 action = ACTION_FAIL;
971
972         if (action != ACTION_FAIL &&
973             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
974                 action = ACTION_FAIL;
975
976         switch (action) {
977         case ACTION_FAIL:
978                 /* Give up and fail the remainder of the request */
979                 if (!(req->rq_flags & RQF_QUIET)) {
980                         static DEFINE_RATELIMIT_STATE(_rs,
981                                         DEFAULT_RATELIMIT_INTERVAL,
982                                         DEFAULT_RATELIMIT_BURST);
983
984                         if (unlikely(scsi_logging_level))
985                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
986                                                        SCSI_LOG_MLCOMPLETE_BITS);
987
988                         /*
989                          * if logging is enabled the failure will be printed
990                          * in scsi_log_completion(), so avoid duplicate messages
991                          */
992                         if (!level && __ratelimit(&_rs)) {
993                                 scsi_print_result(cmd, NULL, FAILED);
994                                 if (driver_byte(result) & DRIVER_SENSE)
995                                         scsi_print_sense(cmd);
996                                 scsi_print_command(cmd);
997                         }
998                 }
999                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1000                         return;
1001                 /*FALLTHRU*/
1002         case ACTION_REPREP:
1003         requeue:
1004                 /* Unprep the request and put it back at the head of the queue.
1005                  * A new command will be prepared and issued.
1006                  */
1007                 if (q->mq_ops) {
1008                         cmd->request->rq_flags &= ~RQF_DONTPREP;
1009                         scsi_mq_uninit_cmd(cmd);
1010                         scsi_mq_requeue_cmd(cmd);
1011                 } else {
1012                         scsi_release_buffers(cmd);
1013                         scsi_requeue_command(q, cmd);
1014                 }
1015                 break;
1016         case ACTION_RETRY:
1017                 /* Retry the same command immediately */
1018                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1019                 break;
1020         case ACTION_DELAYED_RETRY:
1021                 /* Retry the same command after a delay */
1022                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1023                 break;
1024         }
1025 }
1026
1027 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1028 {
1029         int count;
1030
1031         /*
1032          * If sg table allocation fails, requeue request later.
1033          */
1034         if (unlikely(sg_alloc_table_chained(&sdb->table,
1035                         blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1036                 return BLKPREP_DEFER;
1037
1038         /* 
1039          * Next, walk the list, and fill in the addresses and sizes of
1040          * each segment.
1041          */
1042         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1043         BUG_ON(count > sdb->table.nents);
1044         sdb->table.nents = count;
1045         sdb->length = blk_rq_payload_bytes(req);
1046         return BLKPREP_OK;
1047 }
1048
1049 /*
1050  * Function:    scsi_init_io()
1051  *
1052  * Purpose:     SCSI I/O initialize function.
1053  *
1054  * Arguments:   cmd   - Command descriptor we wish to initialize
1055  *
1056  * Returns:     0 on success
1057  *              BLKPREP_DEFER if the failure is retryable
1058  *              BLKPREP_KILL if the failure is fatal
1059  */
1060 int scsi_init_io(struct scsi_cmnd *cmd)
1061 {
1062         struct scsi_device *sdev = cmd->device;
1063         struct request *rq = cmd->request;
1064         bool is_mq = (rq->mq_ctx != NULL);
1065         int error = BLKPREP_KILL;
1066
1067         if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1068                 goto err_exit;
1069
1070         error = scsi_init_sgtable(rq, &cmd->sdb);
1071         if (error)
1072                 goto err_exit;
1073
1074         if (blk_bidi_rq(rq)) {
1075                 if (!rq->q->mq_ops) {
1076                         struct scsi_data_buffer *bidi_sdb =
1077                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1078                         if (!bidi_sdb) {
1079                                 error = BLKPREP_DEFER;
1080                                 goto err_exit;
1081                         }
1082
1083                         rq->next_rq->special = bidi_sdb;
1084                 }
1085
1086                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1087                 if (error)
1088                         goto err_exit;
1089         }
1090
1091         if (blk_integrity_rq(rq)) {
1092                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1093                 int ivecs, count;
1094
1095                 if (prot_sdb == NULL) {
1096                         /*
1097                          * This can happen if someone (e.g. multipath)
1098                          * queues a command to a device on an adapter
1099                          * that does not support DIX.
1100                          */
1101                         WARN_ON_ONCE(1);
1102                         error = BLKPREP_KILL;
1103                         goto err_exit;
1104                 }
1105
1106                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1107
1108                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1109                                 prot_sdb->table.sgl)) {
1110                         error = BLKPREP_DEFER;
1111                         goto err_exit;
1112                 }
1113
1114                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1115                                                 prot_sdb->table.sgl);
1116                 BUG_ON(unlikely(count > ivecs));
1117                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1118
1119                 cmd->prot_sdb = prot_sdb;
1120                 cmd->prot_sdb->table.nents = count;
1121         }
1122
1123         return BLKPREP_OK;
1124 err_exit:
1125         if (is_mq) {
1126                 scsi_mq_free_sgtables(cmd);
1127         } else {
1128                 scsi_release_buffers(cmd);
1129                 cmd->request->special = NULL;
1130                 scsi_put_command(cmd);
1131                 put_device(&sdev->sdev_gendev);
1132         }
1133         return error;
1134 }
1135 EXPORT_SYMBOL(scsi_init_io);
1136
1137 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1138 {
1139         void *buf = cmd->sense_buffer;
1140         void *prot = cmd->prot_sdb;
1141         unsigned long flags;
1142
1143         /* zero out the cmd, except for the embedded scsi_request */
1144         memset((char *)cmd + sizeof(cmd->req), 0,
1145                 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1146
1147         cmd->device = dev;
1148         cmd->sense_buffer = buf;
1149         cmd->prot_sdb = prot;
1150         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1151         cmd->jiffies_at_alloc = jiffies;
1152
1153         spin_lock_irqsave(&dev->list_lock, flags);
1154         list_add_tail(&cmd->list, &dev->cmd_list);
1155         spin_unlock_irqrestore(&dev->list_lock, flags);
1156 }
1157
1158 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1159 {
1160         struct scsi_cmnd *cmd = req->special;
1161
1162         /*
1163          * Passthrough requests may transfer data, in which case they must
1164          * a bio attached to them.  Or they might contain a SCSI command
1165          * that does not transfer data, in which case they may optionally
1166          * submit a request without an attached bio.
1167          */
1168         if (req->bio) {
1169                 int ret = scsi_init_io(cmd);
1170                 if (unlikely(ret))
1171                         return ret;
1172         } else {
1173                 BUG_ON(blk_rq_bytes(req));
1174
1175                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1176         }
1177
1178         cmd->cmd_len = scsi_req(req)->cmd_len;
1179         cmd->cmnd = scsi_req(req)->cmd;
1180         cmd->transfersize = blk_rq_bytes(req);
1181         cmd->allowed = scsi_req(req)->retries;
1182         return BLKPREP_OK;
1183 }
1184
1185 /*
1186  * Setup a normal block command.  These are simple request from filesystems
1187  * that still need to be translated to SCSI CDBs from the ULD.
1188  */
1189 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1190 {
1191         struct scsi_cmnd *cmd = req->special;
1192
1193         if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1194                 int ret = sdev->handler->prep_fn(sdev, req);
1195                 if (ret != BLKPREP_OK)
1196                         return ret;
1197         }
1198
1199         cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1200         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1201         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1202 }
1203
1204 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1205 {
1206         struct scsi_cmnd *cmd = req->special;
1207
1208         if (!blk_rq_bytes(req))
1209                 cmd->sc_data_direction = DMA_NONE;
1210         else if (rq_data_dir(req) == WRITE)
1211                 cmd->sc_data_direction = DMA_TO_DEVICE;
1212         else
1213                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1214
1215         if (blk_rq_is_scsi(req))
1216                 return scsi_setup_scsi_cmnd(sdev, req);
1217         else
1218                 return scsi_setup_fs_cmnd(sdev, req);
1219 }
1220
1221 static int
1222 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1223 {
1224         int ret = BLKPREP_OK;
1225
1226         /*
1227          * If the device is not in running state we will reject some
1228          * or all commands.
1229          */
1230         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1231                 switch (sdev->sdev_state) {
1232                 case SDEV_OFFLINE:
1233                 case SDEV_TRANSPORT_OFFLINE:
1234                         /*
1235                          * If the device is offline we refuse to process any
1236                          * commands.  The device must be brought online
1237                          * before trying any recovery commands.
1238                          */
1239                         sdev_printk(KERN_ERR, sdev,
1240                                     "rejecting I/O to offline device\n");
1241                         ret = BLKPREP_KILL;
1242                         break;
1243                 case SDEV_DEL:
1244                         /*
1245                          * If the device is fully deleted, we refuse to
1246                          * process any commands as well.
1247                          */
1248                         sdev_printk(KERN_ERR, sdev,
1249                                     "rejecting I/O to dead device\n");
1250                         ret = BLKPREP_KILL;
1251                         break;
1252                 case SDEV_BLOCK:
1253                 case SDEV_CREATED_BLOCK:
1254                         ret = BLKPREP_DEFER;
1255                         break;
1256                 case SDEV_QUIESCE:
1257                         /*
1258                          * If the devices is blocked we defer normal commands.
1259                          */
1260                         if (!(req->rq_flags & RQF_PREEMPT))
1261                                 ret = BLKPREP_DEFER;
1262                         break;
1263                 default:
1264                         /*
1265                          * For any other not fully online state we only allow
1266                          * special commands.  In particular any user initiated
1267                          * command is not allowed.
1268                          */
1269                         if (!(req->rq_flags & RQF_PREEMPT))
1270                                 ret = BLKPREP_KILL;
1271                         break;
1272                 }
1273         }
1274         return ret;
1275 }
1276
1277 static int
1278 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1279 {
1280         struct scsi_device *sdev = q->queuedata;
1281
1282         switch (ret) {
1283         case BLKPREP_KILL:
1284         case BLKPREP_INVALID:
1285                 scsi_req(req)->result = DID_NO_CONNECT << 16;
1286                 /* release the command and kill it */
1287                 if (req->special) {
1288                         struct scsi_cmnd *cmd = req->special;
1289                         scsi_release_buffers(cmd);
1290                         scsi_put_command(cmd);
1291                         put_device(&sdev->sdev_gendev);
1292                         req->special = NULL;
1293                 }
1294                 break;
1295         case BLKPREP_DEFER:
1296                 /*
1297                  * If we defer, the blk_peek_request() returns NULL, but the
1298                  * queue must be restarted, so we schedule a callback to happen
1299                  * shortly.
1300                  */
1301                 if (atomic_read(&sdev->device_busy) == 0)
1302                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1303                 break;
1304         default:
1305                 req->rq_flags |= RQF_DONTPREP;
1306         }
1307
1308         return ret;
1309 }
1310
1311 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1312 {
1313         struct scsi_device *sdev = q->queuedata;
1314         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1315         int ret;
1316
1317         ret = scsi_prep_state_check(sdev, req);
1318         if (ret != BLKPREP_OK)
1319                 goto out;
1320
1321         if (!req->special) {
1322                 /* Bail if we can't get a reference to the device */
1323                 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1324                         ret = BLKPREP_DEFER;
1325                         goto out;
1326                 }
1327
1328                 scsi_init_command(sdev, cmd);
1329                 req->special = cmd;
1330         }
1331
1332         cmd->tag = req->tag;
1333         cmd->request = req;
1334         cmd->prot_op = SCSI_PROT_NORMAL;
1335
1336         ret = scsi_setup_cmnd(sdev, req);
1337 out:
1338         return scsi_prep_return(q, req, ret);
1339 }
1340
1341 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1342 {
1343         scsi_uninit_cmd(req->special);
1344 }
1345
1346 /*
1347  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1348  * return 0.
1349  *
1350  * Called with the queue_lock held.
1351  */
1352 static inline int scsi_dev_queue_ready(struct request_queue *q,
1353                                   struct scsi_device *sdev)
1354 {
1355         unsigned int busy;
1356
1357         busy = atomic_inc_return(&sdev->device_busy) - 1;
1358         if (atomic_read(&sdev->device_blocked)) {
1359                 if (busy)
1360                         goto out_dec;
1361
1362                 /*
1363                  * unblock after device_blocked iterates to zero
1364                  */
1365                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1366                         /*
1367                          * For the MQ case we take care of this in the caller.
1368                          */
1369                         if (!q->mq_ops)
1370                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1371                         goto out_dec;
1372                 }
1373                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1374                                    "unblocking device at zero depth\n"));
1375         }
1376
1377         if (busy >= sdev->queue_depth)
1378                 goto out_dec;
1379
1380         return 1;
1381 out_dec:
1382         atomic_dec(&sdev->device_busy);
1383         return 0;
1384 }
1385
1386 /*
1387  * scsi_target_queue_ready: checks if there we can send commands to target
1388  * @sdev: scsi device on starget to check.
1389  */
1390 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1391                                            struct scsi_device *sdev)
1392 {
1393         struct scsi_target *starget = scsi_target(sdev);
1394         unsigned int busy;
1395
1396         if (starget->single_lun) {
1397                 spin_lock_irq(shost->host_lock);
1398                 if (starget->starget_sdev_user &&
1399                     starget->starget_sdev_user != sdev) {
1400                         spin_unlock_irq(shost->host_lock);
1401                         return 0;
1402                 }
1403                 starget->starget_sdev_user = sdev;
1404                 spin_unlock_irq(shost->host_lock);
1405         }
1406
1407         if (starget->can_queue <= 0)
1408                 return 1;
1409
1410         busy = atomic_inc_return(&starget->target_busy) - 1;
1411         if (atomic_read(&starget->target_blocked) > 0) {
1412                 if (busy)
1413                         goto starved;
1414
1415                 /*
1416                  * unblock after target_blocked iterates to zero
1417                  */
1418                 if (atomic_dec_return(&starget->target_blocked) > 0)
1419                         goto out_dec;
1420
1421                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1422                                  "unblocking target at zero depth\n"));
1423         }
1424
1425         if (busy >= starget->can_queue)
1426                 goto starved;
1427
1428         return 1;
1429
1430 starved:
1431         spin_lock_irq(shost->host_lock);
1432         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1433         spin_unlock_irq(shost->host_lock);
1434 out_dec:
1435         if (starget->can_queue > 0)
1436                 atomic_dec(&starget->target_busy);
1437         return 0;
1438 }
1439
1440 /*
1441  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1442  * return 0. We must end up running the queue again whenever 0 is
1443  * returned, else IO can hang.
1444  */
1445 static inline int scsi_host_queue_ready(struct request_queue *q,
1446                                    struct Scsi_Host *shost,
1447                                    struct scsi_device *sdev)
1448 {
1449         unsigned int busy;
1450
1451         if (scsi_host_in_recovery(shost))
1452                 return 0;
1453
1454         busy = atomic_inc_return(&shost->host_busy) - 1;
1455         if (atomic_read(&shost->host_blocked) > 0) {
1456                 if (busy)
1457                         goto starved;
1458
1459                 /*
1460                  * unblock after host_blocked iterates to zero
1461                  */
1462                 if (atomic_dec_return(&shost->host_blocked) > 0)
1463                         goto out_dec;
1464
1465                 SCSI_LOG_MLQUEUE(3,
1466                         shost_printk(KERN_INFO, shost,
1467                                      "unblocking host at zero depth\n"));
1468         }
1469
1470         if (shost->can_queue > 0 && busy >= shost->can_queue)
1471                 goto starved;
1472         if (shost->host_self_blocked)
1473                 goto starved;
1474
1475         /* We're OK to process the command, so we can't be starved */
1476         if (!list_empty(&sdev->starved_entry)) {
1477                 spin_lock_irq(shost->host_lock);
1478                 if (!list_empty(&sdev->starved_entry))
1479                         list_del_init(&sdev->starved_entry);
1480                 spin_unlock_irq(shost->host_lock);
1481         }
1482
1483         return 1;
1484
1485 starved:
1486         spin_lock_irq(shost->host_lock);
1487         if (list_empty(&sdev->starved_entry))
1488                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1489         spin_unlock_irq(shost->host_lock);
1490 out_dec:
1491         atomic_dec(&shost->host_busy);
1492         return 0;
1493 }
1494
1495 /*
1496  * Busy state exporting function for request stacking drivers.
1497  *
1498  * For efficiency, no lock is taken to check the busy state of
1499  * shost/starget/sdev, since the returned value is not guaranteed and
1500  * may be changed after request stacking drivers call the function,
1501  * regardless of taking lock or not.
1502  *
1503  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1504  * needs to return 'not busy'. Otherwise, request stacking drivers
1505  * may hold requests forever.
1506  */
1507 static int scsi_lld_busy(struct request_queue *q)
1508 {
1509         struct scsi_device *sdev = q->queuedata;
1510         struct Scsi_Host *shost;
1511
1512         if (blk_queue_dying(q))
1513                 return 0;
1514
1515         shost = sdev->host;
1516
1517         /*
1518          * Ignore host/starget busy state.
1519          * Since block layer does not have a concept of fairness across
1520          * multiple queues, congestion of host/starget needs to be handled
1521          * in SCSI layer.
1522          */
1523         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1524                 return 1;
1525
1526         return 0;
1527 }
1528
1529 /*
1530  * Kill a request for a dead device
1531  */
1532 static void scsi_kill_request(struct request *req, struct request_queue *q)
1533 {
1534         struct scsi_cmnd *cmd = req->special;
1535         struct scsi_device *sdev;
1536         struct scsi_target *starget;
1537         struct Scsi_Host *shost;
1538
1539         blk_start_request(req);
1540
1541         scmd_printk(KERN_INFO, cmd, "killing request\n");
1542
1543         sdev = cmd->device;
1544         starget = scsi_target(sdev);
1545         shost = sdev->host;
1546         scsi_init_cmd_errh(cmd);
1547         cmd->result = DID_NO_CONNECT << 16;
1548         atomic_inc(&cmd->device->iorequest_cnt);
1549
1550         /*
1551          * SCSI request completion path will do scsi_device_unbusy(),
1552          * bump busy counts.  To bump the counters, we need to dance
1553          * with the locks as normal issue path does.
1554          */
1555         atomic_inc(&sdev->device_busy);
1556         atomic_inc(&shost->host_busy);
1557         if (starget->can_queue > 0)
1558                 atomic_inc(&starget->target_busy);
1559
1560         blk_complete_request(req);
1561 }
1562
1563 static void scsi_softirq_done(struct request *rq)
1564 {
1565         struct scsi_cmnd *cmd = rq->special;
1566         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1567         int disposition;
1568
1569         INIT_LIST_HEAD(&cmd->eh_entry);
1570
1571         atomic_inc(&cmd->device->iodone_cnt);
1572         if (cmd->result)
1573                 atomic_inc(&cmd->device->ioerr_cnt);
1574
1575         disposition = scsi_decide_disposition(cmd);
1576         if (disposition != SUCCESS &&
1577             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1578                 sdev_printk(KERN_ERR, cmd->device,
1579                             "timing out command, waited %lus\n",
1580                             wait_for/HZ);
1581                 disposition = SUCCESS;
1582         }
1583
1584         scsi_log_completion(cmd, disposition);
1585
1586         switch (disposition) {
1587                 case SUCCESS:
1588                         scsi_finish_command(cmd);
1589                         break;
1590                 case NEEDS_RETRY:
1591                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1592                         break;
1593                 case ADD_TO_MLQUEUE:
1594                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1595                         break;
1596                 default:
1597                         scsi_eh_scmd_add(cmd);
1598                         break;
1599         }
1600 }
1601
1602 /**
1603  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1604  * @cmd: command block we are dispatching.
1605  *
1606  * Return: nonzero return request was rejected and device's queue needs to be
1607  * plugged.
1608  */
1609 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1610 {
1611         struct Scsi_Host *host = cmd->device->host;
1612         int rtn = 0;
1613
1614         atomic_inc(&cmd->device->iorequest_cnt);
1615
1616         /* check if the device is still usable */
1617         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1618                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1619                  * returns an immediate error upwards, and signals
1620                  * that the device is no longer present */
1621                 cmd->result = DID_NO_CONNECT << 16;
1622                 goto done;
1623         }
1624
1625         /* Check to see if the scsi lld made this device blocked. */
1626         if (unlikely(scsi_device_blocked(cmd->device))) {
1627                 /*
1628                  * in blocked state, the command is just put back on
1629                  * the device queue.  The suspend state has already
1630                  * blocked the queue so future requests should not
1631                  * occur until the device transitions out of the
1632                  * suspend state.
1633                  */
1634                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1635                         "queuecommand : device blocked\n"));
1636                 return SCSI_MLQUEUE_DEVICE_BUSY;
1637         }
1638
1639         /* Store the LUN value in cmnd, if needed. */
1640         if (cmd->device->lun_in_cdb)
1641                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1642                                (cmd->device->lun << 5 & 0xe0);
1643
1644         scsi_log_send(cmd);
1645
1646         /*
1647          * Before we queue this command, check if the command
1648          * length exceeds what the host adapter can handle.
1649          */
1650         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1651                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1652                                "queuecommand : command too long. "
1653                                "cdb_size=%d host->max_cmd_len=%d\n",
1654                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1655                 cmd->result = (DID_ABORT << 16);
1656                 goto done;
1657         }
1658
1659         if (unlikely(host->shost_state == SHOST_DEL)) {
1660                 cmd->result = (DID_NO_CONNECT << 16);
1661                 goto done;
1662
1663         }
1664
1665         trace_scsi_dispatch_cmd_start(cmd);
1666         rtn = host->hostt->queuecommand(host, cmd);
1667         if (rtn) {
1668                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1669                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1670                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1671                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1672
1673                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1674                         "queuecommand : request rejected\n"));
1675         }
1676
1677         return rtn;
1678  done:
1679         cmd->scsi_done(cmd);
1680         return 0;
1681 }
1682
1683 /**
1684  * scsi_done - Invoke completion on finished SCSI command.
1685  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1686  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1687  *
1688  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1689  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1690  * calls blk_complete_request() for further processing.
1691  *
1692  * This function is interrupt context safe.
1693  */
1694 static void scsi_done(struct scsi_cmnd *cmd)
1695 {
1696         trace_scsi_dispatch_cmd_done(cmd);
1697         blk_complete_request(cmd->request);
1698 }
1699
1700 /*
1701  * Function:    scsi_request_fn()
1702  *
1703  * Purpose:     Main strategy routine for SCSI.
1704  *
1705  * Arguments:   q       - Pointer to actual queue.
1706  *
1707  * Returns:     Nothing
1708  *
1709  * Lock status: IO request lock assumed to be held when called.
1710  */
1711 static void scsi_request_fn(struct request_queue *q)
1712         __releases(q->queue_lock)
1713         __acquires(q->queue_lock)
1714 {
1715         struct scsi_device *sdev = q->queuedata;
1716         struct Scsi_Host *shost;
1717         struct scsi_cmnd *cmd;
1718         struct request *req;
1719
1720         /*
1721          * To start with, we keep looping until the queue is empty, or until
1722          * the host is no longer able to accept any more requests.
1723          */
1724         shost = sdev->host;
1725         for (;;) {
1726                 int rtn;
1727                 /*
1728                  * get next queueable request.  We do this early to make sure
1729                  * that the request is fully prepared even if we cannot
1730                  * accept it.
1731                  */
1732                 req = blk_peek_request(q);
1733                 if (!req)
1734                         break;
1735
1736                 if (unlikely(!scsi_device_online(sdev))) {
1737                         sdev_printk(KERN_ERR, sdev,
1738                                     "rejecting I/O to offline device\n");
1739                         scsi_kill_request(req, q);
1740                         continue;
1741                 }
1742
1743                 if (!scsi_dev_queue_ready(q, sdev))
1744                         break;
1745
1746                 /*
1747                  * Remove the request from the request list.
1748                  */
1749                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1750                         blk_start_request(req);
1751
1752                 spin_unlock_irq(q->queue_lock);
1753                 cmd = req->special;
1754                 if (unlikely(cmd == NULL)) {
1755                         printk(KERN_CRIT "impossible request in %s.\n"
1756                                          "please mail a stack trace to "
1757                                          "linux-scsi@vger.kernel.org\n",
1758                                          __func__);
1759                         blk_dump_rq_flags(req, "foo");
1760                         BUG();
1761                 }
1762
1763                 /*
1764                  * We hit this when the driver is using a host wide
1765                  * tag map. For device level tag maps the queue_depth check
1766                  * in the device ready fn would prevent us from trying
1767                  * to allocate a tag. Since the map is a shared host resource
1768                  * we add the dev to the starved list so it eventually gets
1769                  * a run when a tag is freed.
1770                  */
1771                 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1772                         spin_lock_irq(shost->host_lock);
1773                         if (list_empty(&sdev->starved_entry))
1774                                 list_add_tail(&sdev->starved_entry,
1775                                               &shost->starved_list);
1776                         spin_unlock_irq(shost->host_lock);
1777                         goto not_ready;
1778                 }
1779
1780                 if (!scsi_target_queue_ready(shost, sdev))
1781                         goto not_ready;
1782
1783                 if (!scsi_host_queue_ready(q, shost, sdev))
1784                         goto host_not_ready;
1785         
1786                 if (sdev->simple_tags)
1787                         cmd->flags |= SCMD_TAGGED;
1788                 else
1789                         cmd->flags &= ~SCMD_TAGGED;
1790
1791                 /*
1792                  * Finally, initialize any error handling parameters, and set up
1793                  * the timers for timeouts.
1794                  */
1795                 scsi_init_cmd_errh(cmd);
1796
1797                 /*
1798                  * Dispatch the command to the low-level driver.
1799                  */
1800                 cmd->scsi_done = scsi_done;
1801                 rtn = scsi_dispatch_cmd(cmd);
1802                 if (rtn) {
1803                         scsi_queue_insert(cmd, rtn);
1804                         spin_lock_irq(q->queue_lock);
1805                         goto out_delay;
1806                 }
1807                 spin_lock_irq(q->queue_lock);
1808         }
1809
1810         return;
1811
1812  host_not_ready:
1813         if (scsi_target(sdev)->can_queue > 0)
1814                 atomic_dec(&scsi_target(sdev)->target_busy);
1815  not_ready:
1816         /*
1817          * lock q, handle tag, requeue req, and decrement device_busy. We
1818          * must return with queue_lock held.
1819          *
1820          * Decrementing device_busy without checking it is OK, as all such
1821          * cases (host limits or settings) should run the queue at some
1822          * later time.
1823          */
1824         spin_lock_irq(q->queue_lock);
1825         blk_requeue_request(q, req);
1826         atomic_dec(&sdev->device_busy);
1827 out_delay:
1828         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1829                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1830 }
1831
1832 static inline int prep_to_mq(int ret)
1833 {
1834         switch (ret) {
1835         case BLKPREP_OK:
1836                 return BLK_MQ_RQ_QUEUE_OK;
1837         case BLKPREP_DEFER:
1838                 return BLK_MQ_RQ_QUEUE_BUSY;
1839         default:
1840                 return BLK_MQ_RQ_QUEUE_ERROR;
1841         }
1842 }
1843
1844 static int scsi_mq_prep_fn(struct request *req)
1845 {
1846         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1847         struct scsi_device *sdev = req->q->queuedata;
1848         struct Scsi_Host *shost = sdev->host;
1849         unsigned char *sense_buf = cmd->sense_buffer;
1850         struct scatterlist *sg;
1851
1852         /* zero out the cmd, except for the embedded scsi_request */
1853         memset((char *)cmd + sizeof(cmd->req), 0,
1854                 sizeof(*cmd) - sizeof(cmd->req));
1855
1856         req->special = cmd;
1857
1858         cmd->request = req;
1859         cmd->device = sdev;
1860         cmd->sense_buffer = sense_buf;
1861
1862         cmd->tag = req->tag;
1863
1864         cmd->prot_op = SCSI_PROT_NORMAL;
1865
1866         INIT_LIST_HEAD(&cmd->list);
1867         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1868         cmd->jiffies_at_alloc = jiffies;
1869
1870         if (shost->use_cmd_list) {
1871                 spin_lock_irq(&sdev->list_lock);
1872                 list_add_tail(&cmd->list, &sdev->cmd_list);
1873                 spin_unlock_irq(&sdev->list_lock);
1874         }
1875
1876         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1877         cmd->sdb.table.sgl = sg;
1878
1879         if (scsi_host_get_prot(shost)) {
1880                 cmd->prot_sdb = (void *)sg +
1881                         min_t(unsigned int,
1882                               shost->sg_tablesize, SG_CHUNK_SIZE) *
1883                         sizeof(struct scatterlist);
1884                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1885
1886                 cmd->prot_sdb->table.sgl =
1887                         (struct scatterlist *)(cmd->prot_sdb + 1);
1888         }
1889
1890         if (blk_bidi_rq(req)) {
1891                 struct request *next_rq = req->next_rq;
1892                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1893
1894                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1895                 bidi_sdb->table.sgl =
1896                         (struct scatterlist *)(bidi_sdb + 1);
1897
1898                 next_rq->special = bidi_sdb;
1899         }
1900
1901         blk_mq_start_request(req);
1902
1903         return scsi_setup_cmnd(sdev, req);
1904 }
1905
1906 static void scsi_mq_done(struct scsi_cmnd *cmd)
1907 {
1908         trace_scsi_dispatch_cmd_done(cmd);
1909         blk_mq_complete_request(cmd->request);
1910 }
1911
1912 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1913                          const struct blk_mq_queue_data *bd)
1914 {
1915         struct request *req = bd->rq;
1916         struct request_queue *q = req->q;
1917         struct scsi_device *sdev = q->queuedata;
1918         struct Scsi_Host *shost = sdev->host;
1919         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1920         int ret;
1921         int reason;
1922
1923         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1924         if (ret != BLK_MQ_RQ_QUEUE_OK)
1925                 goto out;
1926
1927         ret = BLK_MQ_RQ_QUEUE_BUSY;
1928         if (!get_device(&sdev->sdev_gendev))
1929                 goto out;
1930
1931         if (!scsi_dev_queue_ready(q, sdev))
1932                 goto out_put_device;
1933         if (!scsi_target_queue_ready(shost, sdev))
1934                 goto out_dec_device_busy;
1935         if (!scsi_host_queue_ready(q, shost, sdev))
1936                 goto out_dec_target_busy;
1937
1938         if (!(req->rq_flags & RQF_DONTPREP)) {
1939                 ret = prep_to_mq(scsi_mq_prep_fn(req));
1940                 if (ret != BLK_MQ_RQ_QUEUE_OK)
1941                         goto out_dec_host_busy;
1942                 req->rq_flags |= RQF_DONTPREP;
1943         } else {
1944                 blk_mq_start_request(req);
1945         }
1946
1947         if (sdev->simple_tags)
1948                 cmd->flags |= SCMD_TAGGED;
1949         else
1950                 cmd->flags &= ~SCMD_TAGGED;
1951
1952         scsi_init_cmd_errh(cmd);
1953         cmd->scsi_done = scsi_mq_done;
1954
1955         reason = scsi_dispatch_cmd(cmd);
1956         if (reason) {
1957                 scsi_set_blocked(cmd, reason);
1958                 ret = BLK_MQ_RQ_QUEUE_BUSY;
1959                 goto out_dec_host_busy;
1960         }
1961
1962         return BLK_MQ_RQ_QUEUE_OK;
1963
1964 out_dec_host_busy:
1965         atomic_dec(&shost->host_busy);
1966 out_dec_target_busy:
1967         if (scsi_target(sdev)->can_queue > 0)
1968                 atomic_dec(&scsi_target(sdev)->target_busy);
1969 out_dec_device_busy:
1970         atomic_dec(&sdev->device_busy);
1971 out_put_device:
1972         put_device(&sdev->sdev_gendev);
1973 out:
1974         switch (ret) {
1975         case BLK_MQ_RQ_QUEUE_BUSY:
1976                 if (atomic_read(&sdev->device_busy) == 0 &&
1977                     !scsi_device_blocked(sdev))
1978                         blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1979                 break;
1980         case BLK_MQ_RQ_QUEUE_ERROR:
1981                 /*
1982                  * Make sure to release all allocated ressources when
1983                  * we hit an error, as we will never see this command
1984                  * again.
1985                  */
1986                 if (req->rq_flags & RQF_DONTPREP)
1987                         scsi_mq_uninit_cmd(cmd);
1988                 break;
1989         default:
1990                 break;
1991         }
1992         return ret;
1993 }
1994
1995 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1996                 bool reserved)
1997 {
1998         if (reserved)
1999                 return BLK_EH_RESET_TIMER;
2000         return scsi_times_out(req);
2001 }
2002
2003 static int scsi_init_request(struct blk_mq_tag_set *set, struct request *rq,
2004                 unsigned int hctx_idx, unsigned int numa_node)
2005 {
2006         struct Scsi_Host *shost = set->driver_data;
2007         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2008
2009         cmd->sense_buffer =
2010                 scsi_alloc_sense_buffer(shost, GFP_KERNEL, numa_node);
2011         if (!cmd->sense_buffer)
2012                 return -ENOMEM;
2013         cmd->req.sense = cmd->sense_buffer;
2014         return 0;
2015 }
2016
2017 static void scsi_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2018                 unsigned int hctx_idx)
2019 {
2020         struct Scsi_Host *shost = set->driver_data;
2021         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2022
2023         scsi_free_sense_buffer(shost, cmd->sense_buffer);
2024 }
2025
2026 static int scsi_map_queues(struct blk_mq_tag_set *set)
2027 {
2028         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2029
2030         if (shost->hostt->map_queues)
2031                 return shost->hostt->map_queues(shost);
2032         return blk_mq_map_queues(set);
2033 }
2034
2035 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2036 {
2037         struct device *host_dev;
2038         u64 bounce_limit = 0xffffffff;
2039
2040         if (shost->unchecked_isa_dma)
2041                 return BLK_BOUNCE_ISA;
2042         /*
2043          * Platforms with virtual-DMA translation
2044          * hardware have no practical limit.
2045          */
2046         if (!PCI_DMA_BUS_IS_PHYS)
2047                 return BLK_BOUNCE_ANY;
2048
2049         host_dev = scsi_get_device(shost);
2050         if (host_dev && host_dev->dma_mask)
2051                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2052
2053         return bounce_limit;
2054 }
2055
2056 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2057 {
2058         struct device *dev = shost->dma_dev;
2059
2060         /*
2061          * this limit is imposed by hardware restrictions
2062          */
2063         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2064                                         SG_MAX_SEGMENTS));
2065
2066         if (scsi_host_prot_dma(shost)) {
2067                 shost->sg_prot_tablesize =
2068                         min_not_zero(shost->sg_prot_tablesize,
2069                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2070                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2071                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2072         }
2073
2074         blk_queue_max_hw_sectors(q, shost->max_sectors);
2075         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2076         blk_queue_segment_boundary(q, shost->dma_boundary);
2077         dma_set_seg_boundary(dev, shost->dma_boundary);
2078
2079         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2080
2081         if (!shost->use_clustering)
2082                 q->limits.cluster = 0;
2083
2084         /*
2085          * set a reasonable default alignment on word boundaries: the
2086          * host and device may alter it using
2087          * blk_queue_update_dma_alignment() later.
2088          */
2089         blk_queue_dma_alignment(q, 0x03);
2090 }
2091 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2092
2093 static int scsi_init_rq(struct request_queue *q, struct request *rq, gfp_t gfp)
2094 {
2095         struct Scsi_Host *shost = q->rq_alloc_data;
2096         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2097
2098         memset(cmd, 0, sizeof(*cmd));
2099
2100         cmd->sense_buffer = scsi_alloc_sense_buffer(shost, gfp, NUMA_NO_NODE);
2101         if (!cmd->sense_buffer)
2102                 goto fail;
2103         cmd->req.sense = cmd->sense_buffer;
2104
2105         if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2106                 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2107                 if (!cmd->prot_sdb)
2108                         goto fail_free_sense;
2109         }
2110
2111         return 0;
2112
2113 fail_free_sense:
2114         scsi_free_sense_buffer(shost, cmd->sense_buffer);
2115 fail:
2116         return -ENOMEM;
2117 }
2118
2119 static void scsi_exit_rq(struct request_queue *q, struct request *rq)
2120 {
2121         struct Scsi_Host *shost = q->rq_alloc_data;
2122         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2123
2124         if (cmd->prot_sdb)
2125                 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2126         scsi_free_sense_buffer(shost, cmd->sense_buffer);
2127 }
2128
2129 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2130 {
2131         struct Scsi_Host *shost = sdev->host;
2132         struct request_queue *q;
2133
2134         q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2135         if (!q)
2136                 return NULL;
2137         q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2138         q->rq_alloc_data = shost;
2139         q->request_fn = scsi_request_fn;
2140         q->init_rq_fn = scsi_init_rq;
2141         q->exit_rq_fn = scsi_exit_rq;
2142
2143         if (blk_init_allocated_queue(q) < 0) {
2144                 blk_cleanup_queue(q);
2145                 return NULL;
2146         }
2147
2148         __scsi_init_queue(shost, q);
2149         blk_queue_prep_rq(q, scsi_prep_fn);
2150         blk_queue_unprep_rq(q, scsi_unprep_fn);
2151         blk_queue_softirq_done(q, scsi_softirq_done);
2152         blk_queue_rq_timed_out(q, scsi_times_out);
2153         blk_queue_lld_busy(q, scsi_lld_busy);
2154         return q;
2155 }
2156
2157 static const struct blk_mq_ops scsi_mq_ops = {
2158         .queue_rq       = scsi_queue_rq,
2159         .complete       = scsi_softirq_done,
2160         .timeout        = scsi_timeout,
2161 #ifdef CONFIG_BLK_DEBUG_FS
2162         .show_rq        = scsi_show_rq,
2163 #endif
2164         .init_request   = scsi_init_request,
2165         .exit_request   = scsi_exit_request,
2166         .map_queues     = scsi_map_queues,
2167 };
2168
2169 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2170 {
2171         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2172         if (IS_ERR(sdev->request_queue))
2173                 return NULL;
2174
2175         sdev->request_queue->queuedata = sdev;
2176         __scsi_init_queue(sdev->host, sdev->request_queue);
2177         return sdev->request_queue;
2178 }
2179
2180 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2181 {
2182         unsigned int cmd_size, sgl_size, tbl_size;
2183
2184         tbl_size = shost->sg_tablesize;
2185         if (tbl_size > SG_CHUNK_SIZE)
2186                 tbl_size = SG_CHUNK_SIZE;
2187         sgl_size = tbl_size * sizeof(struct scatterlist);
2188         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2189         if (scsi_host_get_prot(shost))
2190                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2191
2192         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2193         shost->tag_set.ops = &scsi_mq_ops;
2194         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2195         shost->tag_set.queue_depth = shost->can_queue;
2196         shost->tag_set.cmd_size = cmd_size;
2197         shost->tag_set.numa_node = NUMA_NO_NODE;
2198         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2199         shost->tag_set.flags |=
2200                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2201         shost->tag_set.driver_data = shost;
2202
2203         return blk_mq_alloc_tag_set(&shost->tag_set);
2204 }
2205
2206 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2207 {
2208         blk_mq_free_tag_set(&shost->tag_set);
2209 }
2210
2211 /**
2212  * scsi_device_from_queue - return sdev associated with a request_queue
2213  * @q: The request queue to return the sdev from
2214  *
2215  * Return the sdev associated with a request queue or NULL if the
2216  * request_queue does not reference a SCSI device.
2217  */
2218 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2219 {
2220         struct scsi_device *sdev = NULL;
2221
2222         if (q->mq_ops) {
2223                 if (q->mq_ops == &scsi_mq_ops)
2224                         sdev = q->queuedata;
2225         } else if (q->request_fn == scsi_request_fn)
2226                 sdev = q->queuedata;
2227         if (!sdev || !get_device(&sdev->sdev_gendev))
2228                 sdev = NULL;
2229
2230         return sdev;
2231 }
2232 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2233
2234 /*
2235  * Function:    scsi_block_requests()
2236  *
2237  * Purpose:     Utility function used by low-level drivers to prevent further
2238  *              commands from being queued to the device.
2239  *
2240  * Arguments:   shost       - Host in question
2241  *
2242  * Returns:     Nothing
2243  *
2244  * Lock status: No locks are assumed held.
2245  *
2246  * Notes:       There is no timer nor any other means by which the requests
2247  *              get unblocked other than the low-level driver calling
2248  *              scsi_unblock_requests().
2249  */
2250 void scsi_block_requests(struct Scsi_Host *shost)
2251 {
2252         shost->host_self_blocked = 1;
2253 }
2254 EXPORT_SYMBOL(scsi_block_requests);
2255
2256 /*
2257  * Function:    scsi_unblock_requests()
2258  *
2259  * Purpose:     Utility function used by low-level drivers to allow further
2260  *              commands from being queued to the device.
2261  *
2262  * Arguments:   shost       - Host in question
2263  *
2264  * Returns:     Nothing
2265  *
2266  * Lock status: No locks are assumed held.
2267  *
2268  * Notes:       There is no timer nor any other means by which the requests
2269  *              get unblocked other than the low-level driver calling
2270  *              scsi_unblock_requests().
2271  *
2272  *              This is done as an API function so that changes to the
2273  *              internals of the scsi mid-layer won't require wholesale
2274  *              changes to drivers that use this feature.
2275  */
2276 void scsi_unblock_requests(struct Scsi_Host *shost)
2277 {
2278         shost->host_self_blocked = 0;
2279         scsi_run_host_queues(shost);
2280 }
2281 EXPORT_SYMBOL(scsi_unblock_requests);
2282
2283 int __init scsi_init_queue(void)
2284 {
2285         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2286                                            sizeof(struct scsi_data_buffer),
2287                                            0, 0, NULL);
2288         if (!scsi_sdb_cache) {
2289                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2290                 return -ENOMEM;
2291         }
2292
2293         return 0;
2294 }
2295
2296 void scsi_exit_queue(void)
2297 {
2298         kmem_cache_destroy(scsi_sense_cache);
2299         kmem_cache_destroy(scsi_sense_isadma_cache);
2300         kmem_cache_destroy(scsi_sdb_cache);
2301 }
2302
2303 /**
2304  *      scsi_mode_select - issue a mode select
2305  *      @sdev:  SCSI device to be queried
2306  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2307  *      @sp:    Save page bit (0 == don't save, 1 == save)
2308  *      @modepage: mode page being requested
2309  *      @buffer: request buffer (may not be smaller than eight bytes)
2310  *      @len:   length of request buffer.
2311  *      @timeout: command timeout
2312  *      @retries: number of retries before failing
2313  *      @data: returns a structure abstracting the mode header data
2314  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2315  *              must be SCSI_SENSE_BUFFERSIZE big.
2316  *
2317  *      Returns zero if successful; negative error number or scsi
2318  *      status on error
2319  *
2320  */
2321 int
2322 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2323                  unsigned char *buffer, int len, int timeout, int retries,
2324                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2325 {
2326         unsigned char cmd[10];
2327         unsigned char *real_buffer;
2328         int ret;
2329
2330         memset(cmd, 0, sizeof(cmd));
2331         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2332
2333         if (sdev->use_10_for_ms) {
2334                 if (len > 65535)
2335                         return -EINVAL;
2336                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2337                 if (!real_buffer)
2338                         return -ENOMEM;
2339                 memcpy(real_buffer + 8, buffer, len);
2340                 len += 8;
2341                 real_buffer[0] = 0;
2342                 real_buffer[1] = 0;
2343                 real_buffer[2] = data->medium_type;
2344                 real_buffer[3] = data->device_specific;
2345                 real_buffer[4] = data->longlba ? 0x01 : 0;
2346                 real_buffer[5] = 0;
2347                 real_buffer[6] = data->block_descriptor_length >> 8;
2348                 real_buffer[7] = data->block_descriptor_length;
2349
2350                 cmd[0] = MODE_SELECT_10;
2351                 cmd[7] = len >> 8;
2352                 cmd[8] = len;
2353         } else {
2354                 if (len > 255 || data->block_descriptor_length > 255 ||
2355                     data->longlba)
2356                         return -EINVAL;
2357
2358                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2359                 if (!real_buffer)
2360                         return -ENOMEM;
2361                 memcpy(real_buffer + 4, buffer, len);
2362                 len += 4;
2363                 real_buffer[0] = 0;
2364                 real_buffer[1] = data->medium_type;
2365                 real_buffer[2] = data->device_specific;
2366                 real_buffer[3] = data->block_descriptor_length;
2367                 
2368
2369                 cmd[0] = MODE_SELECT;
2370                 cmd[4] = len;
2371         }
2372
2373         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2374                                sshdr, timeout, retries, NULL);
2375         kfree(real_buffer);
2376         return ret;
2377 }
2378 EXPORT_SYMBOL_GPL(scsi_mode_select);
2379
2380 /**
2381  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2382  *      @sdev:  SCSI device to be queried
2383  *      @dbd:   set if mode sense will allow block descriptors to be returned
2384  *      @modepage: mode page being requested
2385  *      @buffer: request buffer (may not be smaller than eight bytes)
2386  *      @len:   length of request buffer.
2387  *      @timeout: command timeout
2388  *      @retries: number of retries before failing
2389  *      @data: returns a structure abstracting the mode header data
2390  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2391  *              must be SCSI_SENSE_BUFFERSIZE big.
2392  *
2393  *      Returns zero if unsuccessful, or the header offset (either 4
2394  *      or 8 depending on whether a six or ten byte command was
2395  *      issued) if successful.
2396  */
2397 int
2398 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2399                   unsigned char *buffer, int len, int timeout, int retries,
2400                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2401 {
2402         unsigned char cmd[12];
2403         int use_10_for_ms;
2404         int header_length;
2405         int result, retry_count = retries;
2406         struct scsi_sense_hdr my_sshdr;
2407
2408         memset(data, 0, sizeof(*data));
2409         memset(&cmd[0], 0, 12);
2410         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2411         cmd[2] = modepage;
2412
2413         /* caller might not be interested in sense, but we need it */
2414         if (!sshdr)
2415                 sshdr = &my_sshdr;
2416
2417  retry:
2418         use_10_for_ms = sdev->use_10_for_ms;
2419
2420         if (use_10_for_ms) {
2421                 if (len < 8)
2422                         len = 8;
2423
2424                 cmd[0] = MODE_SENSE_10;
2425                 cmd[8] = len;
2426                 header_length = 8;
2427         } else {
2428                 if (len < 4)
2429                         len = 4;
2430
2431                 cmd[0] = MODE_SENSE;
2432                 cmd[4] = len;
2433                 header_length = 4;
2434         }
2435
2436         memset(buffer, 0, len);
2437
2438         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2439                                   sshdr, timeout, retries, NULL);
2440
2441         /* This code looks awful: what it's doing is making sure an
2442          * ILLEGAL REQUEST sense return identifies the actual command
2443          * byte as the problem.  MODE_SENSE commands can return
2444          * ILLEGAL REQUEST if the code page isn't supported */
2445
2446         if (use_10_for_ms && !scsi_status_is_good(result) &&
2447             (driver_byte(result) & DRIVER_SENSE)) {
2448                 if (scsi_sense_valid(sshdr)) {
2449                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2450                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2451                                 /* 
2452                                  * Invalid command operation code
2453                                  */
2454                                 sdev->use_10_for_ms = 0;
2455                                 goto retry;
2456                         }
2457                 }
2458         }
2459
2460         if(scsi_status_is_good(result)) {
2461                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2462                              (modepage == 6 || modepage == 8))) {
2463                         /* Initio breakage? */
2464                         header_length = 0;
2465                         data->length = 13;
2466                         data->medium_type = 0;
2467                         data->device_specific = 0;
2468                         data->longlba = 0;
2469                         data->block_descriptor_length = 0;
2470                 } else if(use_10_for_ms) {
2471                         data->length = buffer[0]*256 + buffer[1] + 2;
2472                         data->medium_type = buffer[2];
2473                         data->device_specific = buffer[3];
2474                         data->longlba = buffer[4] & 0x01;
2475                         data->block_descriptor_length = buffer[6]*256
2476                                 + buffer[7];
2477                 } else {
2478                         data->length = buffer[0] + 1;
2479                         data->medium_type = buffer[1];
2480                         data->device_specific = buffer[2];
2481                         data->block_descriptor_length = buffer[3];
2482                 }
2483                 data->header_length = header_length;
2484         } else if ((status_byte(result) == CHECK_CONDITION) &&
2485                    scsi_sense_valid(sshdr) &&
2486                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2487                 retry_count--;
2488                 goto retry;
2489         }
2490
2491         return result;
2492 }
2493 EXPORT_SYMBOL(scsi_mode_sense);
2494
2495 /**
2496  *      scsi_test_unit_ready - test if unit is ready
2497  *      @sdev:  scsi device to change the state of.
2498  *      @timeout: command timeout
2499  *      @retries: number of retries before failing
2500  *      @sshdr: outpout pointer for decoded sense information.
2501  *
2502  *      Returns zero if unsuccessful or an error if TUR failed.  For
2503  *      removable media, UNIT_ATTENTION sets ->changed flag.
2504  **/
2505 int
2506 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2507                      struct scsi_sense_hdr *sshdr)
2508 {
2509         char cmd[] = {
2510                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2511         };
2512         int result;
2513
2514         /* try to eat the UNIT_ATTENTION if there are enough retries */
2515         do {
2516                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2517                                           timeout, retries, NULL);
2518                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2519                     sshdr->sense_key == UNIT_ATTENTION)
2520                         sdev->changed = 1;
2521         } while (scsi_sense_valid(sshdr) &&
2522                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2523
2524         return result;
2525 }
2526 EXPORT_SYMBOL(scsi_test_unit_ready);
2527
2528 /**
2529  *      scsi_device_set_state - Take the given device through the device state model.
2530  *      @sdev:  scsi device to change the state of.
2531  *      @state: state to change to.
2532  *
2533  *      Returns zero if unsuccessful or an error if the requested 
2534  *      transition is illegal.
2535  */
2536 int
2537 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2538 {
2539         enum scsi_device_state oldstate = sdev->sdev_state;
2540
2541         if (state == oldstate)
2542                 return 0;
2543
2544         switch (state) {
2545         case SDEV_CREATED:
2546                 switch (oldstate) {
2547                 case SDEV_CREATED_BLOCK:
2548                         break;
2549                 default:
2550                         goto illegal;
2551                 }
2552                 break;
2553                         
2554         case SDEV_RUNNING:
2555                 switch (oldstate) {
2556                 case SDEV_CREATED:
2557                 case SDEV_OFFLINE:
2558                 case SDEV_TRANSPORT_OFFLINE:
2559                 case SDEV_QUIESCE:
2560                 case SDEV_BLOCK:
2561                         break;
2562                 default:
2563                         goto illegal;
2564                 }
2565                 break;
2566
2567         case SDEV_QUIESCE:
2568                 switch (oldstate) {
2569                 case SDEV_RUNNING:
2570                 case SDEV_OFFLINE:
2571                 case SDEV_TRANSPORT_OFFLINE:
2572                         break;
2573                 default:
2574                         goto illegal;
2575                 }
2576                 break;
2577
2578         case SDEV_OFFLINE:
2579         case SDEV_TRANSPORT_OFFLINE:
2580                 switch (oldstate) {
2581                 case SDEV_CREATED:
2582                 case SDEV_RUNNING:
2583                 case SDEV_QUIESCE:
2584                 case SDEV_BLOCK:
2585                         break;
2586                 default:
2587                         goto illegal;
2588                 }
2589                 break;
2590
2591         case SDEV_BLOCK:
2592                 switch (oldstate) {
2593                 case SDEV_RUNNING:
2594                 case SDEV_CREATED_BLOCK:
2595                         break;
2596                 default:
2597                         goto illegal;
2598                 }
2599                 break;
2600
2601         case SDEV_CREATED_BLOCK:
2602                 switch (oldstate) {
2603                 case SDEV_CREATED:
2604                         break;
2605                 default:
2606                         goto illegal;
2607                 }
2608                 break;
2609
2610         case SDEV_CANCEL:
2611                 switch (oldstate) {
2612                 case SDEV_CREATED:
2613                 case SDEV_RUNNING:
2614                 case SDEV_QUIESCE:
2615                 case SDEV_OFFLINE:
2616                 case SDEV_TRANSPORT_OFFLINE:
2617                 case SDEV_BLOCK:
2618                         break;
2619                 default:
2620                         goto illegal;
2621                 }
2622                 break;
2623
2624         case SDEV_DEL:
2625                 switch (oldstate) {
2626                 case SDEV_CREATED:
2627                 case SDEV_RUNNING:
2628                 case SDEV_OFFLINE:
2629                 case SDEV_TRANSPORT_OFFLINE:
2630                 case SDEV_CANCEL:
2631                 case SDEV_CREATED_BLOCK:
2632                         break;
2633                 default:
2634                         goto illegal;
2635                 }
2636                 break;
2637
2638         }
2639         sdev->sdev_state = state;
2640         return 0;
2641
2642  illegal:
2643         SCSI_LOG_ERROR_RECOVERY(1,
2644                                 sdev_printk(KERN_ERR, sdev,
2645                                             "Illegal state transition %s->%s",
2646                                             scsi_device_state_name(oldstate),
2647                                             scsi_device_state_name(state))
2648                                 );
2649         return -EINVAL;
2650 }
2651 EXPORT_SYMBOL(scsi_device_set_state);
2652
2653 /**
2654  *      sdev_evt_emit - emit a single SCSI device uevent
2655  *      @sdev: associated SCSI device
2656  *      @evt: event to emit
2657  *
2658  *      Send a single uevent (scsi_event) to the associated scsi_device.
2659  */
2660 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2661 {
2662         int idx = 0;
2663         char *envp[3];
2664
2665         switch (evt->evt_type) {
2666         case SDEV_EVT_MEDIA_CHANGE:
2667                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2668                 break;
2669         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2670                 scsi_rescan_device(&sdev->sdev_gendev);
2671                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2672                 break;
2673         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2674                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2675                 break;
2676         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2677                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2678                 break;
2679         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2680                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2681                 break;
2682         case SDEV_EVT_LUN_CHANGE_REPORTED:
2683                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2684                 break;
2685         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2686                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2687                 break;
2688         default:
2689                 /* do nothing */
2690                 break;
2691         }
2692
2693         envp[idx++] = NULL;
2694
2695         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2696 }
2697
2698 /**
2699  *      sdev_evt_thread - send a uevent for each scsi event
2700  *      @work: work struct for scsi_device
2701  *
2702  *      Dispatch queued events to their associated scsi_device kobjects
2703  *      as uevents.
2704  */
2705 void scsi_evt_thread(struct work_struct *work)
2706 {
2707         struct scsi_device *sdev;
2708         enum scsi_device_event evt_type;
2709         LIST_HEAD(event_list);
2710
2711         sdev = container_of(work, struct scsi_device, event_work);
2712
2713         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2714                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2715                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2716
2717         while (1) {
2718                 struct scsi_event *evt;
2719                 struct list_head *this, *tmp;
2720                 unsigned long flags;
2721
2722                 spin_lock_irqsave(&sdev->list_lock, flags);
2723                 list_splice_init(&sdev->event_list, &event_list);
2724                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2725
2726                 if (list_empty(&event_list))
2727                         break;
2728
2729                 list_for_each_safe(this, tmp, &event_list) {
2730                         evt = list_entry(this, struct scsi_event, node);
2731                         list_del(&evt->node);
2732                         scsi_evt_emit(sdev, evt);
2733                         kfree(evt);
2734                 }
2735         }
2736 }
2737
2738 /**
2739  *      sdev_evt_send - send asserted event to uevent thread
2740  *      @sdev: scsi_device event occurred on
2741  *      @evt: event to send
2742  *
2743  *      Assert scsi device event asynchronously.
2744  */
2745 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2746 {
2747         unsigned long flags;
2748
2749 #if 0
2750         /* FIXME: currently this check eliminates all media change events
2751          * for polled devices.  Need to update to discriminate between AN
2752          * and polled events */
2753         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2754                 kfree(evt);
2755                 return;
2756         }
2757 #endif
2758
2759         spin_lock_irqsave(&sdev->list_lock, flags);
2760         list_add_tail(&evt->node, &sdev->event_list);
2761         schedule_work(&sdev->event_work);
2762         spin_unlock_irqrestore(&sdev->list_lock, flags);
2763 }
2764 EXPORT_SYMBOL_GPL(sdev_evt_send);
2765
2766 /**
2767  *      sdev_evt_alloc - allocate a new scsi event
2768  *      @evt_type: type of event to allocate
2769  *      @gfpflags: GFP flags for allocation
2770  *
2771  *      Allocates and returns a new scsi_event.
2772  */
2773 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2774                                   gfp_t gfpflags)
2775 {
2776         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2777         if (!evt)
2778                 return NULL;
2779
2780         evt->evt_type = evt_type;
2781         INIT_LIST_HEAD(&evt->node);
2782
2783         /* evt_type-specific initialization, if any */
2784         switch (evt_type) {
2785         case SDEV_EVT_MEDIA_CHANGE:
2786         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2787         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2788         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2789         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2790         case SDEV_EVT_LUN_CHANGE_REPORTED:
2791         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2792         default:
2793                 /* do nothing */
2794                 break;
2795         }
2796
2797         return evt;
2798 }
2799 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2800
2801 /**
2802  *      sdev_evt_send_simple - send asserted event to uevent thread
2803  *      @sdev: scsi_device event occurred on
2804  *      @evt_type: type of event to send
2805  *      @gfpflags: GFP flags for allocation
2806  *
2807  *      Assert scsi device event asynchronously, given an event type.
2808  */
2809 void sdev_evt_send_simple(struct scsi_device *sdev,
2810                           enum scsi_device_event evt_type, gfp_t gfpflags)
2811 {
2812         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2813         if (!evt) {
2814                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2815                             evt_type);
2816                 return;
2817         }
2818
2819         sdev_evt_send(sdev, evt);
2820 }
2821 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2822
2823 /**
2824  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2825  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2826  */
2827 static int scsi_request_fn_active(struct scsi_device *sdev)
2828 {
2829         struct request_queue *q = sdev->request_queue;
2830         int request_fn_active;
2831
2832         WARN_ON_ONCE(sdev->host->use_blk_mq);
2833
2834         spin_lock_irq(q->queue_lock);
2835         request_fn_active = q->request_fn_active;
2836         spin_unlock_irq(q->queue_lock);
2837
2838         return request_fn_active;
2839 }
2840
2841 /**
2842  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2843  * @sdev: SCSI device pointer.
2844  *
2845  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2846  * invoked from scsi_request_fn() have finished.
2847  */
2848 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2849 {
2850         WARN_ON_ONCE(sdev->host->use_blk_mq);
2851
2852         while (scsi_request_fn_active(sdev))
2853                 msleep(20);
2854 }
2855
2856 /**
2857  *      scsi_device_quiesce - Block user issued commands.
2858  *      @sdev:  scsi device to quiesce.
2859  *
2860  *      This works by trying to transition to the SDEV_QUIESCE state
2861  *      (which must be a legal transition).  When the device is in this
2862  *      state, only special requests will be accepted, all others will
2863  *      be deferred.  Since special requests may also be requeued requests,
2864  *      a successful return doesn't guarantee the device will be 
2865  *      totally quiescent.
2866  *
2867  *      Must be called with user context, may sleep.
2868  *
2869  *      Returns zero if unsuccessful or an error if not.
2870  */
2871 int
2872 scsi_device_quiesce(struct scsi_device *sdev)
2873 {
2874         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2875         if (err)
2876                 return err;
2877
2878         scsi_run_queue(sdev->request_queue);
2879         while (atomic_read(&sdev->device_busy)) {
2880                 msleep_interruptible(200);
2881                 scsi_run_queue(sdev->request_queue);
2882         }
2883         return 0;
2884 }
2885 EXPORT_SYMBOL(scsi_device_quiesce);
2886
2887 /**
2888  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2889  *      @sdev:  scsi device to resume.
2890  *
2891  *      Moves the device from quiesced back to running and restarts the
2892  *      queues.
2893  *
2894  *      Must be called with user context, may sleep.
2895  */
2896 void scsi_device_resume(struct scsi_device *sdev)
2897 {
2898         /* check if the device state was mutated prior to resume, and if
2899          * so assume the state is being managed elsewhere (for example
2900          * device deleted during suspend)
2901          */
2902         if (sdev->sdev_state != SDEV_QUIESCE ||
2903             scsi_device_set_state(sdev, SDEV_RUNNING))
2904                 return;
2905         scsi_run_queue(sdev->request_queue);
2906 }
2907 EXPORT_SYMBOL(scsi_device_resume);
2908
2909 static void
2910 device_quiesce_fn(struct scsi_device *sdev, void *data)
2911 {
2912         scsi_device_quiesce(sdev);
2913 }
2914
2915 void
2916 scsi_target_quiesce(struct scsi_target *starget)
2917 {
2918         starget_for_each_device(starget, NULL, device_quiesce_fn);
2919 }
2920 EXPORT_SYMBOL(scsi_target_quiesce);
2921
2922 static void
2923 device_resume_fn(struct scsi_device *sdev, void *data)
2924 {
2925         scsi_device_resume(sdev);
2926 }
2927
2928 void
2929 scsi_target_resume(struct scsi_target *starget)
2930 {
2931         starget_for_each_device(starget, NULL, device_resume_fn);
2932 }
2933 EXPORT_SYMBOL(scsi_target_resume);
2934
2935 /**
2936  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2937  * @sdev:       device to block
2938  * @wait:       Whether or not to wait until ongoing .queuecommand() /
2939  *              .queue_rq() calls have finished.
2940  *
2941  * Block request made by scsi lld's to temporarily stop all
2942  * scsi commands on the specified device. May sleep.
2943  *
2944  * Returns zero if successful or error if not
2945  *
2946  * Notes:       
2947  *      This routine transitions the device to the SDEV_BLOCK state
2948  *      (which must be a legal transition).  When the device is in this
2949  *      state, all commands are deferred until the scsi lld reenables
2950  *      the device with scsi_device_unblock or device_block_tmo fires.
2951  *
2952  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
2953  * scsi_internal_device_block() has blocked a SCSI device and also
2954  * remove the rport mutex lock and unlock calls from srp_queuecommand().
2955  */
2956 int
2957 scsi_internal_device_block(struct scsi_device *sdev, bool wait)
2958 {
2959         struct request_queue *q = sdev->request_queue;
2960         unsigned long flags;
2961         int err = 0;
2962
2963         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2964         if (err) {
2965                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2966
2967                 if (err)
2968                         return err;
2969         }
2970
2971         /* 
2972          * The device has transitioned to SDEV_BLOCK.  Stop the
2973          * block layer from calling the midlayer with this device's
2974          * request queue. 
2975          */
2976         if (q->mq_ops) {
2977                 if (wait)
2978                         blk_mq_quiesce_queue(q);
2979                 else
2980                         blk_mq_stop_hw_queues(q);
2981         } else {
2982                 spin_lock_irqsave(q->queue_lock, flags);
2983                 blk_stop_queue(q);
2984                 spin_unlock_irqrestore(q->queue_lock, flags);
2985                 if (wait)
2986                         scsi_wait_for_queuecommand(sdev);
2987         }
2988
2989         return 0;
2990 }
2991 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2992  
2993 /**
2994  * scsi_internal_device_unblock - resume a device after a block request
2995  * @sdev:       device to resume
2996  * @new_state:  state to set devices to after unblocking
2997  *
2998  * Called by scsi lld's or the midlayer to restart the device queue
2999  * for the previously suspended scsi device.  Called from interrupt or
3000  * normal process context.
3001  *
3002  * Returns zero if successful or error if not.
3003  *
3004  * Notes:       
3005  *      This routine transitions the device to the SDEV_RUNNING state
3006  *      or to one of the offline states (which must be a legal transition)
3007  *      allowing the midlayer to goose the queue for this device.
3008  */
3009 int
3010 scsi_internal_device_unblock(struct scsi_device *sdev,
3011                              enum scsi_device_state new_state)
3012 {
3013         struct request_queue *q = sdev->request_queue; 
3014         unsigned long flags;
3015
3016         /*
3017          * Try to transition the scsi device to SDEV_RUNNING or one of the
3018          * offlined states and goose the device queue if successful.
3019          */
3020         if ((sdev->sdev_state == SDEV_BLOCK) ||
3021             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3022                 sdev->sdev_state = new_state;
3023         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3024                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3025                     new_state == SDEV_OFFLINE)
3026                         sdev->sdev_state = new_state;
3027                 else
3028                         sdev->sdev_state = SDEV_CREATED;
3029         } else if (sdev->sdev_state != SDEV_CANCEL &&
3030                  sdev->sdev_state != SDEV_OFFLINE)
3031                 return -EINVAL;
3032
3033         if (q->mq_ops) {
3034                 blk_mq_start_stopped_hw_queues(q, false);
3035         } else {
3036                 spin_lock_irqsave(q->queue_lock, flags);
3037                 blk_start_queue(q);
3038                 spin_unlock_irqrestore(q->queue_lock, flags);
3039         }
3040
3041         return 0;
3042 }
3043 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3044
3045 static void
3046 device_block(struct scsi_device *sdev, void *data)
3047 {
3048         scsi_internal_device_block(sdev, true);
3049 }
3050
3051 static int
3052 target_block(struct device *dev, void *data)
3053 {
3054         if (scsi_is_target_device(dev))
3055                 starget_for_each_device(to_scsi_target(dev), NULL,
3056                                         device_block);
3057         return 0;
3058 }
3059
3060 void
3061 scsi_target_block(struct device *dev)
3062 {
3063         if (scsi_is_target_device(dev))
3064                 starget_for_each_device(to_scsi_target(dev), NULL,
3065                                         device_block);
3066         else
3067                 device_for_each_child(dev, NULL, target_block);
3068 }
3069 EXPORT_SYMBOL_GPL(scsi_target_block);
3070
3071 static void
3072 device_unblock(struct scsi_device *sdev, void *data)
3073 {
3074         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3075 }
3076
3077 static int
3078 target_unblock(struct device *dev, void *data)
3079 {
3080         if (scsi_is_target_device(dev))
3081                 starget_for_each_device(to_scsi_target(dev), data,
3082                                         device_unblock);
3083         return 0;
3084 }
3085
3086 void
3087 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3088 {
3089         if (scsi_is_target_device(dev))
3090                 starget_for_each_device(to_scsi_target(dev), &new_state,
3091                                         device_unblock);
3092         else
3093                 device_for_each_child(dev, &new_state, target_unblock);
3094 }
3095 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3096
3097 /**
3098  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3099  * @sgl:        scatter-gather list
3100  * @sg_count:   number of segments in sg
3101  * @offset:     offset in bytes into sg, on return offset into the mapped area
3102  * @len:        bytes to map, on return number of bytes mapped
3103  *
3104  * Returns virtual address of the start of the mapped page
3105  */
3106 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3107                           size_t *offset, size_t *len)
3108 {
3109         int i;
3110         size_t sg_len = 0, len_complete = 0;
3111         struct scatterlist *sg;
3112         struct page *page;
3113
3114         WARN_ON(!irqs_disabled());
3115
3116         for_each_sg(sgl, sg, sg_count, i) {
3117                 len_complete = sg_len; /* Complete sg-entries */
3118                 sg_len += sg->length;
3119                 if (sg_len > *offset)
3120                         break;
3121         }
3122
3123         if (unlikely(i == sg_count)) {
3124                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3125                         "elements %d\n",
3126                        __func__, sg_len, *offset, sg_count);
3127                 WARN_ON(1);
3128                 return NULL;
3129         }
3130
3131         /* Offset starting from the beginning of first page in this sg-entry */
3132         *offset = *offset - len_complete + sg->offset;
3133
3134         /* Assumption: contiguous pages can be accessed as "page + i" */
3135         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3136         *offset &= ~PAGE_MASK;
3137
3138         /* Bytes in this sg-entry from *offset to the end of the page */
3139         sg_len = PAGE_SIZE - *offset;
3140         if (*len > sg_len)
3141                 *len = sg_len;
3142
3143         return kmap_atomic(page);
3144 }
3145 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3146
3147 /**
3148  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3149  * @virt:       virtual address to be unmapped
3150  */
3151 void scsi_kunmap_atomic_sg(void *virt)
3152 {
3153         kunmap_atomic(virt);
3154 }
3155 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3156
3157 void sdev_disable_disk_events(struct scsi_device *sdev)
3158 {
3159         atomic_inc(&sdev->disk_events_disable_depth);
3160 }
3161 EXPORT_SYMBOL(sdev_disable_disk_events);
3162
3163 void sdev_enable_disk_events(struct scsi_device *sdev)
3164 {
3165         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3166                 return;
3167         atomic_dec(&sdev->disk_events_disable_depth);
3168 }
3169 EXPORT_SYMBOL(sdev_enable_disk_events);
3170
3171 /**
3172  * scsi_vpd_lun_id - return a unique device identification
3173  * @sdev: SCSI device
3174  * @id:   buffer for the identification
3175  * @id_len:  length of the buffer
3176  *
3177  * Copies a unique device identification into @id based
3178  * on the information in the VPD page 0x83 of the device.
3179  * The string will be formatted as a SCSI name string.
3180  *
3181  * Returns the length of the identification or error on failure.
3182  * If the identifier is longer than the supplied buffer the actual
3183  * identifier length is returned and the buffer is not zero-padded.
3184  */
3185 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3186 {
3187         u8 cur_id_type = 0xff;
3188         u8 cur_id_size = 0;
3189         unsigned char *d, *cur_id_str;
3190         unsigned char __rcu *vpd_pg83;
3191         int id_size = -EINVAL;
3192
3193         rcu_read_lock();
3194         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3195         if (!vpd_pg83) {
3196                 rcu_read_unlock();
3197                 return -ENXIO;
3198         }
3199
3200         /*
3201          * Look for the correct descriptor.
3202          * Order of preference for lun descriptor:
3203          * - SCSI name string
3204          * - NAA IEEE Registered Extended
3205          * - EUI-64 based 16-byte
3206          * - EUI-64 based 12-byte
3207          * - NAA IEEE Registered
3208          * - NAA IEEE Extended
3209          * - T10 Vendor ID
3210          * as longer descriptors reduce the likelyhood
3211          * of identification clashes.
3212          */
3213
3214         /* The id string must be at least 20 bytes + terminating NULL byte */
3215         if (id_len < 21) {
3216                 rcu_read_unlock();
3217                 return -EINVAL;
3218         }
3219
3220         memset(id, 0, id_len);
3221         d = vpd_pg83 + 4;
3222         while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3223                 /* Skip designators not referring to the LUN */
3224                 if ((d[1] & 0x30) != 0x00)
3225                         goto next_desig;
3226
3227                 switch (d[1] & 0xf) {
3228                 case 0x1:
3229                         /* T10 Vendor ID */
3230                         if (cur_id_size > d[3])
3231                                 break;
3232                         /* Prefer anything */
3233                         if (cur_id_type > 0x01 && cur_id_type != 0xff)
3234                                 break;
3235                         cur_id_size = d[3];
3236                         if (cur_id_size + 4 > id_len)
3237                                 cur_id_size = id_len - 4;
3238                         cur_id_str = d + 4;
3239                         cur_id_type = d[1] & 0xf;
3240                         id_size = snprintf(id, id_len, "t10.%*pE",
3241                                            cur_id_size, cur_id_str);
3242                         break;
3243                 case 0x2:
3244                         /* EUI-64 */
3245                         if (cur_id_size > d[3])
3246                                 break;
3247                         /* Prefer NAA IEEE Registered Extended */
3248                         if (cur_id_type == 0x3 &&
3249                             cur_id_size == d[3])
3250                                 break;
3251                         cur_id_size = d[3];
3252                         cur_id_str = d + 4;
3253                         cur_id_type = d[1] & 0xf;
3254                         switch (cur_id_size) {
3255                         case 8:
3256                                 id_size = snprintf(id, id_len,
3257                                                    "eui.%8phN",
3258                                                    cur_id_str);
3259                                 break;
3260                         case 12:
3261                                 id_size = snprintf(id, id_len,
3262                                                    "eui.%12phN",
3263                                                    cur_id_str);
3264                                 break;
3265                         case 16:
3266                                 id_size = snprintf(id, id_len,
3267                                                    "eui.%16phN",
3268                                                    cur_id_str);
3269                                 break;
3270                         default:
3271                                 cur_id_size = 0;
3272                                 break;
3273                         }
3274                         break;
3275                 case 0x3:
3276                         /* NAA */
3277                         if (cur_id_size > d[3])
3278                                 break;
3279                         cur_id_size = d[3];
3280                         cur_id_str = d + 4;
3281                         cur_id_type = d[1] & 0xf;
3282                         switch (cur_id_size) {
3283                         case 8:
3284                                 id_size = snprintf(id, id_len,
3285                                                    "naa.%8phN",
3286                                                    cur_id_str);
3287                                 break;
3288                         case 16:
3289                                 id_size = snprintf(id, id_len,
3290                                                    "naa.%16phN",
3291                                                    cur_id_str);
3292                                 break;
3293                         default:
3294                                 cur_id_size = 0;
3295                                 break;
3296                         }
3297                         break;
3298                 case 0x8:
3299                         /* SCSI name string */
3300                         if (cur_id_size + 4 > d[3])
3301                                 break;
3302                         /* Prefer others for truncated descriptor */
3303                         if (cur_id_size && d[3] > id_len)
3304                                 break;
3305                         cur_id_size = id_size = d[3];
3306                         cur_id_str = d + 4;
3307                         cur_id_type = d[1] & 0xf;
3308                         if (cur_id_size >= id_len)
3309                                 cur_id_size = id_len - 1;
3310                         memcpy(id, cur_id_str, cur_id_size);
3311                         /* Decrease priority for truncated descriptor */
3312                         if (cur_id_size != id_size)
3313                                 cur_id_size = 6;
3314                         break;
3315                 default:
3316                         break;
3317                 }
3318 next_desig:
3319                 d += d[3] + 4;
3320         }
3321         rcu_read_unlock();
3322
3323         return id_size;
3324 }
3325 EXPORT_SYMBOL(scsi_vpd_lun_id);
3326
3327 /*
3328  * scsi_vpd_tpg_id - return a target port group identifier
3329  * @sdev: SCSI device
3330  *
3331  * Returns the Target Port Group identifier from the information
3332  * froom VPD page 0x83 of the device.
3333  *
3334  * Returns the identifier or error on failure.
3335  */
3336 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3337 {
3338         unsigned char *d;
3339         unsigned char __rcu *vpd_pg83;
3340         int group_id = -EAGAIN, rel_port = -1;
3341
3342         rcu_read_lock();
3343         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3344         if (!vpd_pg83) {
3345                 rcu_read_unlock();
3346                 return -ENXIO;
3347         }
3348
3349         d = sdev->vpd_pg83 + 4;
3350         while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3351                 switch (d[1] & 0xf) {
3352                 case 0x4:
3353                         /* Relative target port */
3354                         rel_port = get_unaligned_be16(&d[6]);
3355                         break;
3356                 case 0x5:
3357                         /* Target port group */
3358                         group_id = get_unaligned_be16(&d[6]);
3359                         break;
3360                 default:
3361                         break;
3362                 }
3363                 d += d[3] + 4;
3364         }
3365         rcu_read_unlock();
3366
3367         if (group_id >= 0 && rel_id && rel_port != -1)
3368                 *rel_id = rel_port;
3369
3370         return group_id;
3371 }
3372 EXPORT_SYMBOL(scsi_vpd_tpg_id);