]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/scsi/scsi_lib.c
Merge branch 'hpfs'
[karo-tx-linux.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33
34
35 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE         2
37
38 struct scsi_host_sg_pool {
39         size_t          size;
40         char            *name;
41         struct kmem_cache       *slab;
42         mempool_t       *pool;
43 };
44
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50         SP(8),
51         SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53         SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55         SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57         SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64         SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67
68 struct kmem_cache *scsi_sdb_cache;
69
70 /*
71  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
72  * not change behaviour from the previous unplug mechanism, experimentation
73  * may prove this needs changing.
74  */
75 #define SCSI_QUEUE_DELAY        3
76
77 static void scsi_run_queue(struct request_queue *q);
78
79 /*
80  * Function:    scsi_unprep_request()
81  *
82  * Purpose:     Remove all preparation done for a request, including its
83  *              associated scsi_cmnd, so that it can be requeued.
84  *
85  * Arguments:   req     - request to unprepare
86  *
87  * Lock status: Assumed that no locks are held upon entry.
88  *
89  * Returns:     Nothing.
90  */
91 static void scsi_unprep_request(struct request *req)
92 {
93         struct scsi_cmnd *cmd = req->special;
94
95         blk_unprep_request(req);
96         req->special = NULL;
97
98         scsi_put_command(cmd);
99 }
100
101 /**
102  * __scsi_queue_insert - private queue insertion
103  * @cmd: The SCSI command being requeued
104  * @reason:  The reason for the requeue
105  * @unbusy: Whether the queue should be unbusied
106  *
107  * This is a private queue insertion.  The public interface
108  * scsi_queue_insert() always assumes the queue should be unbusied
109  * because it's always called before the completion.  This function is
110  * for a requeue after completion, which should only occur in this
111  * file.
112  */
113 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
114 {
115         struct Scsi_Host *host = cmd->device->host;
116         struct scsi_device *device = cmd->device;
117         struct scsi_target *starget = scsi_target(device);
118         struct request_queue *q = device->request_queue;
119         unsigned long flags;
120
121         SCSI_LOG_MLQUEUE(1,
122                  printk("Inserting command %p into mlqueue\n", cmd));
123
124         /*
125          * Set the appropriate busy bit for the device/host.
126          *
127          * If the host/device isn't busy, assume that something actually
128          * completed, and that we should be able to queue a command now.
129          *
130          * Note that the prior mid-layer assumption that any host could
131          * always queue at least one command is now broken.  The mid-layer
132          * will implement a user specifiable stall (see
133          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
134          * if a command is requeued with no other commands outstanding
135          * either for the device or for the host.
136          */
137         switch (reason) {
138         case SCSI_MLQUEUE_HOST_BUSY:
139                 host->host_blocked = host->max_host_blocked;
140                 break;
141         case SCSI_MLQUEUE_DEVICE_BUSY:
142                 device->device_blocked = device->max_device_blocked;
143                 break;
144         case SCSI_MLQUEUE_TARGET_BUSY:
145                 starget->target_blocked = starget->max_target_blocked;
146                 break;
147         }
148
149         /*
150          * Decrement the counters, since these commands are no longer
151          * active on the host/device.
152          */
153         if (unbusy)
154                 scsi_device_unbusy(device);
155
156         /*
157          * Requeue this command.  It will go before all other commands
158          * that are already in the queue.
159          */
160         spin_lock_irqsave(q->queue_lock, flags);
161         blk_requeue_request(q, cmd->request);
162         spin_unlock_irqrestore(q->queue_lock, flags);
163
164         scsi_run_queue(q);
165
166         return 0;
167 }
168
169 /*
170  * Function:    scsi_queue_insert()
171  *
172  * Purpose:     Insert a command in the midlevel queue.
173  *
174  * Arguments:   cmd    - command that we are adding to queue.
175  *              reason - why we are inserting command to queue.
176  *
177  * Lock status: Assumed that lock is not held upon entry.
178  *
179  * Returns:     Nothing.
180  *
181  * Notes:       We do this for one of two cases.  Either the host is busy
182  *              and it cannot accept any more commands for the time being,
183  *              or the device returned QUEUE_FULL and can accept no more
184  *              commands.
185  * Notes:       This could be called either from an interrupt context or a
186  *              normal process context.
187  */
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189 {
190         return __scsi_queue_insert(cmd, reason, 1);
191 }
192 /**
193  * scsi_execute - insert request and wait for the result
194  * @sdev:       scsi device
195  * @cmd:        scsi command
196  * @data_direction: data direction
197  * @buffer:     data buffer
198  * @bufflen:    len of buffer
199  * @sense:      optional sense buffer
200  * @timeout:    request timeout in seconds
201  * @retries:    number of times to retry request
202  * @flags:      or into request flags;
203  * @resid:      optional residual length
204  *
205  * returns the req->errors value which is the scsi_cmnd result
206  * field.
207  */
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209                  int data_direction, void *buffer, unsigned bufflen,
210                  unsigned char *sense, int timeout, int retries, int flags,
211                  int *resid)
212 {
213         struct request *req;
214         int write = (data_direction == DMA_TO_DEVICE);
215         int ret = DRIVER_ERROR << 24;
216
217         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218
219         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
220                                         buffer, bufflen, __GFP_WAIT))
221                 goto out;
222
223         req->cmd_len = COMMAND_SIZE(cmd[0]);
224         memcpy(req->cmd, cmd, req->cmd_len);
225         req->sense = sense;
226         req->sense_len = 0;
227         req->retries = retries;
228         req->timeout = timeout;
229         req->cmd_type = REQ_TYPE_BLOCK_PC;
230         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231
232         /*
233          * head injection *required* here otherwise quiesce won't work
234          */
235         blk_execute_rq(req->q, NULL, req, 1);
236
237         /*
238          * Some devices (USB mass-storage in particular) may transfer
239          * garbage data together with a residue indicating that the data
240          * is invalid.  Prevent the garbage from being misinterpreted
241          * and prevent security leaks by zeroing out the excess data.
242          */
243         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245
246         if (resid)
247                 *resid = req->resid_len;
248         ret = req->errors;
249  out:
250         blk_put_request(req);
251
252         return ret;
253 }
254 EXPORT_SYMBOL(scsi_execute);
255
256
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258                      int data_direction, void *buffer, unsigned bufflen,
259                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
260                      int *resid)
261 {
262         char *sense = NULL;
263         int result;
264         
265         if (sshdr) {
266                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267                 if (!sense)
268                         return DRIVER_ERROR << 24;
269         }
270         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271                               sense, timeout, retries, 0, resid);
272         if (sshdr)
273                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274
275         kfree(sense);
276         return result;
277 }
278 EXPORT_SYMBOL(scsi_execute_req);
279
280 /*
281  * Function:    scsi_init_cmd_errh()
282  *
283  * Purpose:     Initialize cmd fields related to error handling.
284  *
285  * Arguments:   cmd     - command that is ready to be queued.
286  *
287  * Notes:       This function has the job of initializing a number of
288  *              fields related to error handling.   Typically this will
289  *              be called once for each command, as required.
290  */
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292 {
293         cmd->serial_number = 0;
294         scsi_set_resid(cmd, 0);
295         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296         if (cmd->cmd_len == 0)
297                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
298 }
299
300 void scsi_device_unbusy(struct scsi_device *sdev)
301 {
302         struct Scsi_Host *shost = sdev->host;
303         struct scsi_target *starget = scsi_target(sdev);
304         unsigned long flags;
305
306         spin_lock_irqsave(shost->host_lock, flags);
307         shost->host_busy--;
308         starget->target_busy--;
309         if (unlikely(scsi_host_in_recovery(shost) &&
310                      (shost->host_failed || shost->host_eh_scheduled)))
311                 scsi_eh_wakeup(shost);
312         spin_unlock(shost->host_lock);
313         spin_lock(sdev->request_queue->queue_lock);
314         sdev->device_busy--;
315         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316 }
317
318 /*
319  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320  * and call blk_run_queue for all the scsi_devices on the target -
321  * including current_sdev first.
322  *
323  * Called with *no* scsi locks held.
324  */
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
326 {
327         struct Scsi_Host *shost = current_sdev->host;
328         struct scsi_device *sdev, *tmp;
329         struct scsi_target *starget = scsi_target(current_sdev);
330         unsigned long flags;
331
332         spin_lock_irqsave(shost->host_lock, flags);
333         starget->starget_sdev_user = NULL;
334         spin_unlock_irqrestore(shost->host_lock, flags);
335
336         /*
337          * Call blk_run_queue for all LUNs on the target, starting with
338          * current_sdev. We race with others (to set starget_sdev_user),
339          * but in most cases, we will be first. Ideally, each LU on the
340          * target would get some limited time or requests on the target.
341          */
342         blk_run_queue(current_sdev->request_queue);
343
344         spin_lock_irqsave(shost->host_lock, flags);
345         if (starget->starget_sdev_user)
346                 goto out;
347         list_for_each_entry_safe(sdev, tmp, &starget->devices,
348                         same_target_siblings) {
349                 if (sdev == current_sdev)
350                         continue;
351                 if (scsi_device_get(sdev))
352                         continue;
353
354                 spin_unlock_irqrestore(shost->host_lock, flags);
355                 blk_run_queue(sdev->request_queue);
356                 spin_lock_irqsave(shost->host_lock, flags);
357         
358                 scsi_device_put(sdev);
359         }
360  out:
361         spin_unlock_irqrestore(shost->host_lock, flags);
362 }
363
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
365 {
366         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367                 return 1;
368
369         return 0;
370 }
371
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
373 {
374         return ((starget->can_queue > 0 &&
375                  starget->target_busy >= starget->can_queue) ||
376                  starget->target_blocked);
377 }
378
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380 {
381         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382             shost->host_blocked || shost->host_self_blocked)
383                 return 1;
384
385         return 0;
386 }
387
388 /*
389  * Function:    scsi_run_queue()
390  *
391  * Purpose:     Select a proper request queue to serve next
392  *
393  * Arguments:   q       - last request's queue
394  *
395  * Returns:     Nothing
396  *
397  * Notes:       The previous command was completely finished, start
398  *              a new one if possible.
399  */
400 static void scsi_run_queue(struct request_queue *q)
401 {
402         struct scsi_device *sdev = q->queuedata;
403         struct Scsi_Host *shost;
404         LIST_HEAD(starved_list);
405         unsigned long flags;
406
407         /* if the device is dead, sdev will be NULL, so no queue to run */
408         if (!sdev)
409                 return;
410
411         shost = sdev->host;
412         if (scsi_target(sdev)->single_lun)
413                 scsi_single_lun_run(sdev);
414
415         spin_lock_irqsave(shost->host_lock, flags);
416         list_splice_init(&shost->starved_list, &starved_list);
417
418         while (!list_empty(&starved_list)) {
419                 /*
420                  * As long as shost is accepting commands and we have
421                  * starved queues, call blk_run_queue. scsi_request_fn
422                  * drops the queue_lock and can add us back to the
423                  * starved_list.
424                  *
425                  * host_lock protects the starved_list and starved_entry.
426                  * scsi_request_fn must get the host_lock before checking
427                  * or modifying starved_list or starved_entry.
428                  */
429                 if (scsi_host_is_busy(shost))
430                         break;
431
432                 sdev = list_entry(starved_list.next,
433                                   struct scsi_device, starved_entry);
434                 list_del_init(&sdev->starved_entry);
435                 if (scsi_target_is_busy(scsi_target(sdev))) {
436                         list_move_tail(&sdev->starved_entry,
437                                        &shost->starved_list);
438                         continue;
439                 }
440
441                 blk_run_queue_async(sdev->request_queue);
442         }
443         /* put any unprocessed entries back */
444         list_splice(&starved_list, &shost->starved_list);
445         spin_unlock_irqrestore(shost->host_lock, flags);
446
447         blk_run_queue(q);
448 }
449
450 /*
451  * Function:    scsi_requeue_command()
452  *
453  * Purpose:     Handle post-processing of completed commands.
454  *
455  * Arguments:   q       - queue to operate on
456  *              cmd     - command that may need to be requeued.
457  *
458  * Returns:     Nothing
459  *
460  * Notes:       After command completion, there may be blocks left
461  *              over which weren't finished by the previous command
462  *              this can be for a number of reasons - the main one is
463  *              I/O errors in the middle of the request, in which case
464  *              we need to request the blocks that come after the bad
465  *              sector.
466  * Notes:       Upon return, cmd is a stale pointer.
467  */
468 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
469 {
470         struct request *req = cmd->request;
471         unsigned long flags;
472
473         spin_lock_irqsave(q->queue_lock, flags);
474         scsi_unprep_request(req);
475         blk_requeue_request(q, req);
476         spin_unlock_irqrestore(q->queue_lock, flags);
477
478         scsi_run_queue(q);
479 }
480
481 void scsi_next_command(struct scsi_cmnd *cmd)
482 {
483         struct scsi_device *sdev = cmd->device;
484         struct request_queue *q = sdev->request_queue;
485
486         /* need to hold a reference on the device before we let go of the cmd */
487         get_device(&sdev->sdev_gendev);
488
489         scsi_put_command(cmd);
490         scsi_run_queue(q);
491
492         /* ok to remove device now */
493         put_device(&sdev->sdev_gendev);
494 }
495
496 void scsi_run_host_queues(struct Scsi_Host *shost)
497 {
498         struct scsi_device *sdev;
499
500         shost_for_each_device(sdev, shost)
501                 scsi_run_queue(sdev->request_queue);
502 }
503
504 static void __scsi_release_buffers(struct scsi_cmnd *, int);
505
506 /*
507  * Function:    scsi_end_request()
508  *
509  * Purpose:     Post-processing of completed commands (usually invoked at end
510  *              of upper level post-processing and scsi_io_completion).
511  *
512  * Arguments:   cmd      - command that is complete.
513  *              error    - 0 if I/O indicates success, < 0 for I/O error.
514  *              bytes    - number of bytes of completed I/O
515  *              requeue  - indicates whether we should requeue leftovers.
516  *
517  * Lock status: Assumed that lock is not held upon entry.
518  *
519  * Returns:     cmd if requeue required, NULL otherwise.
520  *
521  * Notes:       This is called for block device requests in order to
522  *              mark some number of sectors as complete.
523  * 
524  *              We are guaranteeing that the request queue will be goosed
525  *              at some point during this call.
526  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
527  */
528 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
529                                           int bytes, int requeue)
530 {
531         struct request_queue *q = cmd->device->request_queue;
532         struct request *req = cmd->request;
533
534         /*
535          * If there are blocks left over at the end, set up the command
536          * to queue the remainder of them.
537          */
538         if (blk_end_request(req, error, bytes)) {
539                 /* kill remainder if no retrys */
540                 if (error && scsi_noretry_cmd(cmd))
541                         blk_end_request_all(req, error);
542                 else {
543                         if (requeue) {
544                                 /*
545                                  * Bleah.  Leftovers again.  Stick the
546                                  * leftovers in the front of the
547                                  * queue, and goose the queue again.
548                                  */
549                                 scsi_release_buffers(cmd);
550                                 scsi_requeue_command(q, cmd);
551                                 cmd = NULL;
552                         }
553                         return cmd;
554                 }
555         }
556
557         /*
558          * This will goose the queue request function at the end, so we don't
559          * need to worry about launching another command.
560          */
561         __scsi_release_buffers(cmd, 0);
562         scsi_next_command(cmd);
563         return NULL;
564 }
565
566 static inline unsigned int scsi_sgtable_index(unsigned short nents)
567 {
568         unsigned int index;
569
570         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
571
572         if (nents <= 8)
573                 index = 0;
574         else
575                 index = get_count_order(nents) - 3;
576
577         return index;
578 }
579
580 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
581 {
582         struct scsi_host_sg_pool *sgp;
583
584         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
585         mempool_free(sgl, sgp->pool);
586 }
587
588 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
589 {
590         struct scsi_host_sg_pool *sgp;
591
592         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
593         return mempool_alloc(sgp->pool, gfp_mask);
594 }
595
596 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
597                               gfp_t gfp_mask)
598 {
599         int ret;
600
601         BUG_ON(!nents);
602
603         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
604                                gfp_mask, scsi_sg_alloc);
605         if (unlikely(ret))
606                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
607                                 scsi_sg_free);
608
609         return ret;
610 }
611
612 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
613 {
614         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
615 }
616
617 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
618 {
619
620         if (cmd->sdb.table.nents)
621                 scsi_free_sgtable(&cmd->sdb);
622
623         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
624
625         if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
626                 struct scsi_data_buffer *bidi_sdb =
627                         cmd->request->next_rq->special;
628                 scsi_free_sgtable(bidi_sdb);
629                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
630                 cmd->request->next_rq->special = NULL;
631         }
632
633         if (scsi_prot_sg_count(cmd))
634                 scsi_free_sgtable(cmd->prot_sdb);
635 }
636
637 /*
638  * Function:    scsi_release_buffers()
639  *
640  * Purpose:     Completion processing for block device I/O requests.
641  *
642  * Arguments:   cmd     - command that we are bailing.
643  *
644  * Lock status: Assumed that no lock is held upon entry.
645  *
646  * Returns:     Nothing
647  *
648  * Notes:       In the event that an upper level driver rejects a
649  *              command, we must release resources allocated during
650  *              the __init_io() function.  Primarily this would involve
651  *              the scatter-gather table, and potentially any bounce
652  *              buffers.
653  */
654 void scsi_release_buffers(struct scsi_cmnd *cmd)
655 {
656         __scsi_release_buffers(cmd, 1);
657 }
658 EXPORT_SYMBOL(scsi_release_buffers);
659
660 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
661 {
662         int error = 0;
663
664         switch(host_byte(result)) {
665         case DID_TRANSPORT_FAILFAST:
666                 error = -ENOLINK;
667                 break;
668         case DID_TARGET_FAILURE:
669                 cmd->result |= (DID_OK << 16);
670                 error = -EREMOTEIO;
671                 break;
672         case DID_NEXUS_FAILURE:
673                 cmd->result |= (DID_OK << 16);
674                 error = -EBADE;
675                 break;
676         default:
677                 error = -EIO;
678                 break;
679         }
680
681         return error;
682 }
683
684 /*
685  * Function:    scsi_io_completion()
686  *
687  * Purpose:     Completion processing for block device I/O requests.
688  *
689  * Arguments:   cmd   - command that is finished.
690  *
691  * Lock status: Assumed that no lock is held upon entry.
692  *
693  * Returns:     Nothing
694  *
695  * Notes:       This function is matched in terms of capabilities to
696  *              the function that created the scatter-gather list.
697  *              In other words, if there are no bounce buffers
698  *              (the normal case for most drivers), we don't need
699  *              the logic to deal with cleaning up afterwards.
700  *
701  *              We must call scsi_end_request().  This will finish off
702  *              the specified number of sectors.  If we are done, the
703  *              command block will be released and the queue function
704  *              will be goosed.  If we are not done then we have to
705  *              figure out what to do next:
706  *
707  *              a) We can call scsi_requeue_command().  The request
708  *                 will be unprepared and put back on the queue.  Then
709  *                 a new command will be created for it.  This should
710  *                 be used if we made forward progress, or if we want
711  *                 to switch from READ(10) to READ(6) for example.
712  *
713  *              b) We can call scsi_queue_insert().  The request will
714  *                 be put back on the queue and retried using the same
715  *                 command as before, possibly after a delay.
716  *
717  *              c) We can call blk_end_request() with -EIO to fail
718  *                 the remainder of the request.
719  */
720 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
721 {
722         int result = cmd->result;
723         struct request_queue *q = cmd->device->request_queue;
724         struct request *req = cmd->request;
725         int error = 0;
726         struct scsi_sense_hdr sshdr;
727         int sense_valid = 0;
728         int sense_deferred = 0;
729         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
730               ACTION_DELAYED_RETRY} action;
731         char *description = NULL;
732
733         if (result) {
734                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
735                 if (sense_valid)
736                         sense_deferred = scsi_sense_is_deferred(&sshdr);
737         }
738
739         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
740                 req->errors = result;
741                 if (result) {
742                         if (sense_valid && req->sense) {
743                                 /*
744                                  * SG_IO wants current and deferred errors
745                                  */
746                                 int len = 8 + cmd->sense_buffer[7];
747
748                                 if (len > SCSI_SENSE_BUFFERSIZE)
749                                         len = SCSI_SENSE_BUFFERSIZE;
750                                 memcpy(req->sense, cmd->sense_buffer,  len);
751                                 req->sense_len = len;
752                         }
753                         if (!sense_deferred)
754                                 error = __scsi_error_from_host_byte(cmd, result);
755                 }
756
757                 req->resid_len = scsi_get_resid(cmd);
758
759                 if (scsi_bidi_cmnd(cmd)) {
760                         /*
761                          * Bidi commands Must be complete as a whole,
762                          * both sides at once.
763                          */
764                         req->next_rq->resid_len = scsi_in(cmd)->resid;
765
766                         scsi_release_buffers(cmd);
767                         blk_end_request_all(req, 0);
768
769                         scsi_next_command(cmd);
770                         return;
771                 }
772         }
773
774         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
775         BUG_ON(blk_bidi_rq(req));
776
777         /*
778          * Next deal with any sectors which we were able to correctly
779          * handle.
780          */
781         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
782                                       "%d bytes done.\n",
783                                       blk_rq_sectors(req), good_bytes));
784
785         /*
786          * Recovered errors need reporting, but they're always treated
787          * as success, so fiddle the result code here.  For BLOCK_PC
788          * we already took a copy of the original into rq->errors which
789          * is what gets returned to the user
790          */
791         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
792                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
793                  * print since caller wants ATA registers. Only occurs on
794                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
795                  */
796                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
797                         ;
798                 else if (!(req->cmd_flags & REQ_QUIET))
799                         scsi_print_sense("", cmd);
800                 result = 0;
801                 /* BLOCK_PC may have set error */
802                 error = 0;
803         }
804
805         /*
806          * A number of bytes were successfully read.  If there
807          * are leftovers and there is some kind of error
808          * (result != 0), retry the rest.
809          */
810         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
811                 return;
812
813         error = __scsi_error_from_host_byte(cmd, result);
814
815         if (host_byte(result) == DID_RESET) {
816                 /* Third party bus reset or reset for error recovery
817                  * reasons.  Just retry the command and see what
818                  * happens.
819                  */
820                 action = ACTION_RETRY;
821         } else if (sense_valid && !sense_deferred) {
822                 switch (sshdr.sense_key) {
823                 case UNIT_ATTENTION:
824                         if (cmd->device->removable) {
825                                 /* Detected disc change.  Set a bit
826                                  * and quietly refuse further access.
827                                  */
828                                 cmd->device->changed = 1;
829                                 description = "Media Changed";
830                                 action = ACTION_FAIL;
831                         } else {
832                                 /* Must have been a power glitch, or a
833                                  * bus reset.  Could not have been a
834                                  * media change, so we just retry the
835                                  * command and see what happens.
836                                  */
837                                 action = ACTION_RETRY;
838                         }
839                         break;
840                 case ILLEGAL_REQUEST:
841                         /* If we had an ILLEGAL REQUEST returned, then
842                          * we may have performed an unsupported
843                          * command.  The only thing this should be
844                          * would be a ten byte read where only a six
845                          * byte read was supported.  Also, on a system
846                          * where READ CAPACITY failed, we may have
847                          * read past the end of the disk.
848                          */
849                         if ((cmd->device->use_10_for_rw &&
850                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
851                             (cmd->cmnd[0] == READ_10 ||
852                              cmd->cmnd[0] == WRITE_10)) {
853                                 /* This will issue a new 6-byte command. */
854                                 cmd->device->use_10_for_rw = 0;
855                                 action = ACTION_REPREP;
856                         } else if (sshdr.asc == 0x10) /* DIX */ {
857                                 description = "Host Data Integrity Failure";
858                                 action = ACTION_FAIL;
859                                 error = -EILSEQ;
860                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
861                         } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
862                                    (cmd->cmnd[0] == UNMAP ||
863                                     cmd->cmnd[0] == WRITE_SAME_16 ||
864                                     cmd->cmnd[0] == WRITE_SAME)) {
865                                 description = "Discard failure";
866                                 action = ACTION_FAIL;
867                         } else
868                                 action = ACTION_FAIL;
869                         break;
870                 case ABORTED_COMMAND:
871                         action = ACTION_FAIL;
872                         if (sshdr.asc == 0x10) { /* DIF */
873                                 description = "Target Data Integrity Failure";
874                                 error = -EILSEQ;
875                         }
876                         break;
877                 case NOT_READY:
878                         /* If the device is in the process of becoming
879                          * ready, or has a temporary blockage, retry.
880                          */
881                         if (sshdr.asc == 0x04) {
882                                 switch (sshdr.ascq) {
883                                 case 0x01: /* becoming ready */
884                                 case 0x04: /* format in progress */
885                                 case 0x05: /* rebuild in progress */
886                                 case 0x06: /* recalculation in progress */
887                                 case 0x07: /* operation in progress */
888                                 case 0x08: /* Long write in progress */
889                                 case 0x09: /* self test in progress */
890                                 case 0x14: /* space allocation in progress */
891                                         action = ACTION_DELAYED_RETRY;
892                                         break;
893                                 default:
894                                         description = "Device not ready";
895                                         action = ACTION_FAIL;
896                                         break;
897                                 }
898                         } else {
899                                 description = "Device not ready";
900                                 action = ACTION_FAIL;
901                         }
902                         break;
903                 case VOLUME_OVERFLOW:
904                         /* See SSC3rXX or current. */
905                         action = ACTION_FAIL;
906                         break;
907                 default:
908                         description = "Unhandled sense code";
909                         action = ACTION_FAIL;
910                         break;
911                 }
912         } else {
913                 description = "Unhandled error code";
914                 action = ACTION_FAIL;
915         }
916
917         switch (action) {
918         case ACTION_FAIL:
919                 /* Give up and fail the remainder of the request */
920                 scsi_release_buffers(cmd);
921                 if (!(req->cmd_flags & REQ_QUIET)) {
922                         if (description)
923                                 scmd_printk(KERN_INFO, cmd, "%s\n",
924                                             description);
925                         scsi_print_result(cmd);
926                         if (driver_byte(result) & DRIVER_SENSE)
927                                 scsi_print_sense("", cmd);
928                         scsi_print_command(cmd);
929                 }
930                 if (blk_end_request_err(req, error))
931                         scsi_requeue_command(q, cmd);
932                 else
933                         scsi_next_command(cmd);
934                 break;
935         case ACTION_REPREP:
936                 /* Unprep the request and put it back at the head of the queue.
937                  * A new command will be prepared and issued.
938                  */
939                 scsi_release_buffers(cmd);
940                 scsi_requeue_command(q, cmd);
941                 break;
942         case ACTION_RETRY:
943                 /* Retry the same command immediately */
944                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
945                 break;
946         case ACTION_DELAYED_RETRY:
947                 /* Retry the same command after a delay */
948                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
949                 break;
950         }
951 }
952
953 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
954                              gfp_t gfp_mask)
955 {
956         int count;
957
958         /*
959          * If sg table allocation fails, requeue request later.
960          */
961         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
962                                         gfp_mask))) {
963                 return BLKPREP_DEFER;
964         }
965
966         req->buffer = NULL;
967
968         /* 
969          * Next, walk the list, and fill in the addresses and sizes of
970          * each segment.
971          */
972         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
973         BUG_ON(count > sdb->table.nents);
974         sdb->table.nents = count;
975         sdb->length = blk_rq_bytes(req);
976         return BLKPREP_OK;
977 }
978
979 /*
980  * Function:    scsi_init_io()
981  *
982  * Purpose:     SCSI I/O initialize function.
983  *
984  * Arguments:   cmd   - Command descriptor we wish to initialize
985  *
986  * Returns:     0 on success
987  *              BLKPREP_DEFER if the failure is retryable
988  *              BLKPREP_KILL if the failure is fatal
989  */
990 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
991 {
992         struct request *rq = cmd->request;
993
994         int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
995         if (error)
996                 goto err_exit;
997
998         if (blk_bidi_rq(rq)) {
999                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1000                         scsi_sdb_cache, GFP_ATOMIC);
1001                 if (!bidi_sdb) {
1002                         error = BLKPREP_DEFER;
1003                         goto err_exit;
1004                 }
1005
1006                 rq->next_rq->special = bidi_sdb;
1007                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1008                 if (error)
1009                         goto err_exit;
1010         }
1011
1012         if (blk_integrity_rq(rq)) {
1013                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1014                 int ivecs, count;
1015
1016                 BUG_ON(prot_sdb == NULL);
1017                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1018
1019                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1020                         error = BLKPREP_DEFER;
1021                         goto err_exit;
1022                 }
1023
1024                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1025                                                 prot_sdb->table.sgl);
1026                 BUG_ON(unlikely(count > ivecs));
1027                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1028
1029                 cmd->prot_sdb = prot_sdb;
1030                 cmd->prot_sdb->table.nents = count;
1031         }
1032
1033         return BLKPREP_OK ;
1034
1035 err_exit:
1036         scsi_release_buffers(cmd);
1037         cmd->request->special = NULL;
1038         scsi_put_command(cmd);
1039         return error;
1040 }
1041 EXPORT_SYMBOL(scsi_init_io);
1042
1043 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1044                 struct request *req)
1045 {
1046         struct scsi_cmnd *cmd;
1047
1048         if (!req->special) {
1049                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1050                 if (unlikely(!cmd))
1051                         return NULL;
1052                 req->special = cmd;
1053         } else {
1054                 cmd = req->special;
1055         }
1056
1057         /* pull a tag out of the request if we have one */
1058         cmd->tag = req->tag;
1059         cmd->request = req;
1060
1061         cmd->cmnd = req->cmd;
1062         cmd->prot_op = SCSI_PROT_NORMAL;
1063
1064         return cmd;
1065 }
1066
1067 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1068 {
1069         struct scsi_cmnd *cmd;
1070         int ret = scsi_prep_state_check(sdev, req);
1071
1072         if (ret != BLKPREP_OK)
1073                 return ret;
1074
1075         cmd = scsi_get_cmd_from_req(sdev, req);
1076         if (unlikely(!cmd))
1077                 return BLKPREP_DEFER;
1078
1079         /*
1080          * BLOCK_PC requests may transfer data, in which case they must
1081          * a bio attached to them.  Or they might contain a SCSI command
1082          * that does not transfer data, in which case they may optionally
1083          * submit a request without an attached bio.
1084          */
1085         if (req->bio) {
1086                 int ret;
1087
1088                 BUG_ON(!req->nr_phys_segments);
1089
1090                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1091                 if (unlikely(ret))
1092                         return ret;
1093         } else {
1094                 BUG_ON(blk_rq_bytes(req));
1095
1096                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1097                 req->buffer = NULL;
1098         }
1099
1100         cmd->cmd_len = req->cmd_len;
1101         if (!blk_rq_bytes(req))
1102                 cmd->sc_data_direction = DMA_NONE;
1103         else if (rq_data_dir(req) == WRITE)
1104                 cmd->sc_data_direction = DMA_TO_DEVICE;
1105         else
1106                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1107         
1108         cmd->transfersize = blk_rq_bytes(req);
1109         cmd->allowed = req->retries;
1110         return BLKPREP_OK;
1111 }
1112 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1113
1114 /*
1115  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1116  * from filesystems that still need to be translated to SCSI CDBs from
1117  * the ULD.
1118  */
1119 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1120 {
1121         struct scsi_cmnd *cmd;
1122         int ret = scsi_prep_state_check(sdev, req);
1123
1124         if (ret != BLKPREP_OK)
1125                 return ret;
1126
1127         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1128                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1129                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1130                 if (ret != BLKPREP_OK)
1131                         return ret;
1132         }
1133
1134         /*
1135          * Filesystem requests must transfer data.
1136          */
1137         BUG_ON(!req->nr_phys_segments);
1138
1139         cmd = scsi_get_cmd_from_req(sdev, req);
1140         if (unlikely(!cmd))
1141                 return BLKPREP_DEFER;
1142
1143         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1144         return scsi_init_io(cmd, GFP_ATOMIC);
1145 }
1146 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1147
1148 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1149 {
1150         int ret = BLKPREP_OK;
1151
1152         /*
1153          * If the device is not in running state we will reject some
1154          * or all commands.
1155          */
1156         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1157                 switch (sdev->sdev_state) {
1158                 case SDEV_OFFLINE:
1159                         /*
1160                          * If the device is offline we refuse to process any
1161                          * commands.  The device must be brought online
1162                          * before trying any recovery commands.
1163                          */
1164                         sdev_printk(KERN_ERR, sdev,
1165                                     "rejecting I/O to offline device\n");
1166                         ret = BLKPREP_KILL;
1167                         break;
1168                 case SDEV_DEL:
1169                         /*
1170                          * If the device is fully deleted, we refuse to
1171                          * process any commands as well.
1172                          */
1173                         sdev_printk(KERN_ERR, sdev,
1174                                     "rejecting I/O to dead device\n");
1175                         ret = BLKPREP_KILL;
1176                         break;
1177                 case SDEV_QUIESCE:
1178                 case SDEV_BLOCK:
1179                 case SDEV_CREATED_BLOCK:
1180                         /*
1181                          * If the devices is blocked we defer normal commands.
1182                          */
1183                         if (!(req->cmd_flags & REQ_PREEMPT))
1184                                 ret = BLKPREP_DEFER;
1185                         break;
1186                 default:
1187                         /*
1188                          * For any other not fully online state we only allow
1189                          * special commands.  In particular any user initiated
1190                          * command is not allowed.
1191                          */
1192                         if (!(req->cmd_flags & REQ_PREEMPT))
1193                                 ret = BLKPREP_KILL;
1194                         break;
1195                 }
1196         }
1197         return ret;
1198 }
1199 EXPORT_SYMBOL(scsi_prep_state_check);
1200
1201 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1202 {
1203         struct scsi_device *sdev = q->queuedata;
1204
1205         switch (ret) {
1206         case BLKPREP_KILL:
1207                 req->errors = DID_NO_CONNECT << 16;
1208                 /* release the command and kill it */
1209                 if (req->special) {
1210                         struct scsi_cmnd *cmd = req->special;
1211                         scsi_release_buffers(cmd);
1212                         scsi_put_command(cmd);
1213                         req->special = NULL;
1214                 }
1215                 break;
1216         case BLKPREP_DEFER:
1217                 /*
1218                  * If we defer, the blk_peek_request() returns NULL, but the
1219                  * queue must be restarted, so we schedule a callback to happen
1220                  * shortly.
1221                  */
1222                 if (sdev->device_busy == 0)
1223                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1224                 break;
1225         default:
1226                 req->cmd_flags |= REQ_DONTPREP;
1227         }
1228
1229         return ret;
1230 }
1231 EXPORT_SYMBOL(scsi_prep_return);
1232
1233 int scsi_prep_fn(struct request_queue *q, struct request *req)
1234 {
1235         struct scsi_device *sdev = q->queuedata;
1236         int ret = BLKPREP_KILL;
1237
1238         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1239                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1240         return scsi_prep_return(q, req, ret);
1241 }
1242 EXPORT_SYMBOL(scsi_prep_fn);
1243
1244 /*
1245  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1246  * return 0.
1247  *
1248  * Called with the queue_lock held.
1249  */
1250 static inline int scsi_dev_queue_ready(struct request_queue *q,
1251                                   struct scsi_device *sdev)
1252 {
1253         if (sdev->device_busy == 0 && sdev->device_blocked) {
1254                 /*
1255                  * unblock after device_blocked iterates to zero
1256                  */
1257                 if (--sdev->device_blocked == 0) {
1258                         SCSI_LOG_MLQUEUE(3,
1259                                    sdev_printk(KERN_INFO, sdev,
1260                                    "unblocking device at zero depth\n"));
1261                 } else {
1262                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1263                         return 0;
1264                 }
1265         }
1266         if (scsi_device_is_busy(sdev))
1267                 return 0;
1268
1269         return 1;
1270 }
1271
1272
1273 /*
1274  * scsi_target_queue_ready: checks if there we can send commands to target
1275  * @sdev: scsi device on starget to check.
1276  *
1277  * Called with the host lock held.
1278  */
1279 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1280                                            struct scsi_device *sdev)
1281 {
1282         struct scsi_target *starget = scsi_target(sdev);
1283
1284         if (starget->single_lun) {
1285                 if (starget->starget_sdev_user &&
1286                     starget->starget_sdev_user != sdev)
1287                         return 0;
1288                 starget->starget_sdev_user = sdev;
1289         }
1290
1291         if (starget->target_busy == 0 && starget->target_blocked) {
1292                 /*
1293                  * unblock after target_blocked iterates to zero
1294                  */
1295                 if (--starget->target_blocked == 0) {
1296                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1297                                          "unblocking target at zero depth\n"));
1298                 } else
1299                         return 0;
1300         }
1301
1302         if (scsi_target_is_busy(starget)) {
1303                 if (list_empty(&sdev->starved_entry))
1304                         list_add_tail(&sdev->starved_entry,
1305                                       &shost->starved_list);
1306                 return 0;
1307         }
1308
1309         /* We're OK to process the command, so we can't be starved */
1310         if (!list_empty(&sdev->starved_entry))
1311                 list_del_init(&sdev->starved_entry);
1312         return 1;
1313 }
1314
1315 /*
1316  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1317  * return 0. We must end up running the queue again whenever 0 is
1318  * returned, else IO can hang.
1319  *
1320  * Called with host_lock held.
1321  */
1322 static inline int scsi_host_queue_ready(struct request_queue *q,
1323                                    struct Scsi_Host *shost,
1324                                    struct scsi_device *sdev)
1325 {
1326         if (scsi_host_in_recovery(shost))
1327                 return 0;
1328         if (shost->host_busy == 0 && shost->host_blocked) {
1329                 /*
1330                  * unblock after host_blocked iterates to zero
1331                  */
1332                 if (--shost->host_blocked == 0) {
1333                         SCSI_LOG_MLQUEUE(3,
1334                                 printk("scsi%d unblocking host at zero depth\n",
1335                                         shost->host_no));
1336                 } else {
1337                         return 0;
1338                 }
1339         }
1340         if (scsi_host_is_busy(shost)) {
1341                 if (list_empty(&sdev->starved_entry))
1342                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1343                 return 0;
1344         }
1345
1346         /* We're OK to process the command, so we can't be starved */
1347         if (!list_empty(&sdev->starved_entry))
1348                 list_del_init(&sdev->starved_entry);
1349
1350         return 1;
1351 }
1352
1353 /*
1354  * Busy state exporting function for request stacking drivers.
1355  *
1356  * For efficiency, no lock is taken to check the busy state of
1357  * shost/starget/sdev, since the returned value is not guaranteed and
1358  * may be changed after request stacking drivers call the function,
1359  * regardless of taking lock or not.
1360  *
1361  * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1362  * (e.g. !sdev), scsi needs to return 'not busy'.
1363  * Otherwise, request stacking drivers may hold requests forever.
1364  */
1365 static int scsi_lld_busy(struct request_queue *q)
1366 {
1367         struct scsi_device *sdev = q->queuedata;
1368         struct Scsi_Host *shost;
1369         struct scsi_target *starget;
1370
1371         if (!sdev)
1372                 return 0;
1373
1374         shost = sdev->host;
1375         starget = scsi_target(sdev);
1376
1377         if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1378             scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1379                 return 1;
1380
1381         return 0;
1382 }
1383
1384 /*
1385  * Kill a request for a dead device
1386  */
1387 static void scsi_kill_request(struct request *req, struct request_queue *q)
1388 {
1389         struct scsi_cmnd *cmd = req->special;
1390         struct scsi_device *sdev;
1391         struct scsi_target *starget;
1392         struct Scsi_Host *shost;
1393
1394         blk_start_request(req);
1395
1396         sdev = cmd->device;
1397         starget = scsi_target(sdev);
1398         shost = sdev->host;
1399         scsi_init_cmd_errh(cmd);
1400         cmd->result = DID_NO_CONNECT << 16;
1401         atomic_inc(&cmd->device->iorequest_cnt);
1402
1403         /*
1404          * SCSI request completion path will do scsi_device_unbusy(),
1405          * bump busy counts.  To bump the counters, we need to dance
1406          * with the locks as normal issue path does.
1407          */
1408         sdev->device_busy++;
1409         spin_unlock(sdev->request_queue->queue_lock);
1410         spin_lock(shost->host_lock);
1411         shost->host_busy++;
1412         starget->target_busy++;
1413         spin_unlock(shost->host_lock);
1414         spin_lock(sdev->request_queue->queue_lock);
1415
1416         blk_complete_request(req);
1417 }
1418
1419 static void scsi_softirq_done(struct request *rq)
1420 {
1421         struct scsi_cmnd *cmd = rq->special;
1422         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1423         int disposition;
1424
1425         INIT_LIST_HEAD(&cmd->eh_entry);
1426
1427         atomic_inc(&cmd->device->iodone_cnt);
1428         if (cmd->result)
1429                 atomic_inc(&cmd->device->ioerr_cnt);
1430
1431         disposition = scsi_decide_disposition(cmd);
1432         if (disposition != SUCCESS &&
1433             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1434                 sdev_printk(KERN_ERR, cmd->device,
1435                             "timing out command, waited %lus\n",
1436                             wait_for/HZ);
1437                 disposition = SUCCESS;
1438         }
1439                         
1440         scsi_log_completion(cmd, disposition);
1441
1442         switch (disposition) {
1443                 case SUCCESS:
1444                         scsi_finish_command(cmd);
1445                         break;
1446                 case NEEDS_RETRY:
1447                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1448                         break;
1449                 case ADD_TO_MLQUEUE:
1450                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1451                         break;
1452                 default:
1453                         if (!scsi_eh_scmd_add(cmd, 0))
1454                                 scsi_finish_command(cmd);
1455         }
1456 }
1457
1458 /*
1459  * Function:    scsi_request_fn()
1460  *
1461  * Purpose:     Main strategy routine for SCSI.
1462  *
1463  * Arguments:   q       - Pointer to actual queue.
1464  *
1465  * Returns:     Nothing
1466  *
1467  * Lock status: IO request lock assumed to be held when called.
1468  */
1469 static void scsi_request_fn(struct request_queue *q)
1470 {
1471         struct scsi_device *sdev = q->queuedata;
1472         struct Scsi_Host *shost;
1473         struct scsi_cmnd *cmd;
1474         struct request *req;
1475
1476         if (!sdev) {
1477                 printk("scsi: killing requests for dead queue\n");
1478                 while ((req = blk_peek_request(q)) != NULL)
1479                         scsi_kill_request(req, q);
1480                 return;
1481         }
1482
1483         if(!get_device(&sdev->sdev_gendev))
1484                 /* We must be tearing the block queue down already */
1485                 return;
1486
1487         /*
1488          * To start with, we keep looping until the queue is empty, or until
1489          * the host is no longer able to accept any more requests.
1490          */
1491         shost = sdev->host;
1492         for (;;) {
1493                 int rtn;
1494                 /*
1495                  * get next queueable request.  We do this early to make sure
1496                  * that the request is fully prepared even if we cannot 
1497                  * accept it.
1498                  */
1499                 req = blk_peek_request(q);
1500                 if (!req || !scsi_dev_queue_ready(q, sdev))
1501                         break;
1502
1503                 if (unlikely(!scsi_device_online(sdev))) {
1504                         sdev_printk(KERN_ERR, sdev,
1505                                     "rejecting I/O to offline device\n");
1506                         scsi_kill_request(req, q);
1507                         continue;
1508                 }
1509
1510
1511                 /*
1512                  * Remove the request from the request list.
1513                  */
1514                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1515                         blk_start_request(req);
1516                 sdev->device_busy++;
1517
1518                 spin_unlock(q->queue_lock);
1519                 cmd = req->special;
1520                 if (unlikely(cmd == NULL)) {
1521                         printk(KERN_CRIT "impossible request in %s.\n"
1522                                          "please mail a stack trace to "
1523                                          "linux-scsi@vger.kernel.org\n",
1524                                          __func__);
1525                         blk_dump_rq_flags(req, "foo");
1526                         BUG();
1527                 }
1528                 spin_lock(shost->host_lock);
1529
1530                 /*
1531                  * We hit this when the driver is using a host wide
1532                  * tag map. For device level tag maps the queue_depth check
1533                  * in the device ready fn would prevent us from trying
1534                  * to allocate a tag. Since the map is a shared host resource
1535                  * we add the dev to the starved list so it eventually gets
1536                  * a run when a tag is freed.
1537                  */
1538                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1539                         if (list_empty(&sdev->starved_entry))
1540                                 list_add_tail(&sdev->starved_entry,
1541                                               &shost->starved_list);
1542                         goto not_ready;
1543                 }
1544
1545                 if (!scsi_target_queue_ready(shost, sdev))
1546                         goto not_ready;
1547
1548                 if (!scsi_host_queue_ready(q, shost, sdev))
1549                         goto not_ready;
1550
1551                 scsi_target(sdev)->target_busy++;
1552                 shost->host_busy++;
1553
1554                 /*
1555                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1556                  *              take the lock again.
1557                  */
1558                 spin_unlock_irq(shost->host_lock);
1559
1560                 /*
1561                  * Finally, initialize any error handling parameters, and set up
1562                  * the timers for timeouts.
1563                  */
1564                 scsi_init_cmd_errh(cmd);
1565
1566                 /*
1567                  * Dispatch the command to the low-level driver.
1568                  */
1569                 rtn = scsi_dispatch_cmd(cmd);
1570                 spin_lock_irq(q->queue_lock);
1571                 if (rtn)
1572                         goto out_delay;
1573         }
1574
1575         goto out;
1576
1577  not_ready:
1578         spin_unlock_irq(shost->host_lock);
1579
1580         /*
1581          * lock q, handle tag, requeue req, and decrement device_busy. We
1582          * must return with queue_lock held.
1583          *
1584          * Decrementing device_busy without checking it is OK, as all such
1585          * cases (host limits or settings) should run the queue at some
1586          * later time.
1587          */
1588         spin_lock_irq(q->queue_lock);
1589         blk_requeue_request(q, req);
1590         sdev->device_busy--;
1591 out_delay:
1592         if (sdev->device_busy == 0)
1593                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1594 out:
1595         /* must be careful here...if we trigger the ->remove() function
1596          * we cannot be holding the q lock */
1597         spin_unlock_irq(q->queue_lock);
1598         put_device(&sdev->sdev_gendev);
1599         spin_lock_irq(q->queue_lock);
1600 }
1601
1602 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1603 {
1604         struct device *host_dev;
1605         u64 bounce_limit = 0xffffffff;
1606
1607         if (shost->unchecked_isa_dma)
1608                 return BLK_BOUNCE_ISA;
1609         /*
1610          * Platforms with virtual-DMA translation
1611          * hardware have no practical limit.
1612          */
1613         if (!PCI_DMA_BUS_IS_PHYS)
1614                 return BLK_BOUNCE_ANY;
1615
1616         host_dev = scsi_get_device(shost);
1617         if (host_dev && host_dev->dma_mask)
1618                 bounce_limit = *host_dev->dma_mask;
1619
1620         return bounce_limit;
1621 }
1622 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1623
1624 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1625                                          request_fn_proc *request_fn)
1626 {
1627         struct request_queue *q;
1628         struct device *dev = shost->shost_gendev.parent;
1629
1630         q = blk_init_queue(request_fn, NULL);
1631         if (!q)
1632                 return NULL;
1633
1634         /*
1635          * this limit is imposed by hardware restrictions
1636          */
1637         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1638                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1639
1640         if (scsi_host_prot_dma(shost)) {
1641                 shost->sg_prot_tablesize =
1642                         min_not_zero(shost->sg_prot_tablesize,
1643                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1644                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1645                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1646         }
1647
1648         blk_queue_max_hw_sectors(q, shost->max_sectors);
1649         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1650         blk_queue_segment_boundary(q, shost->dma_boundary);
1651         dma_set_seg_boundary(dev, shost->dma_boundary);
1652
1653         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1654
1655         if (!shost->use_clustering)
1656                 q->limits.cluster = 0;
1657
1658         /*
1659          * set a reasonable default alignment on word boundaries: the
1660          * host and device may alter it using
1661          * blk_queue_update_dma_alignment() later.
1662          */
1663         blk_queue_dma_alignment(q, 0x03);
1664
1665         return q;
1666 }
1667 EXPORT_SYMBOL(__scsi_alloc_queue);
1668
1669 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1670 {
1671         struct request_queue *q;
1672
1673         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1674         if (!q)
1675                 return NULL;
1676
1677         blk_queue_prep_rq(q, scsi_prep_fn);
1678         blk_queue_softirq_done(q, scsi_softirq_done);
1679         blk_queue_rq_timed_out(q, scsi_times_out);
1680         blk_queue_lld_busy(q, scsi_lld_busy);
1681         return q;
1682 }
1683
1684 void scsi_free_queue(struct request_queue *q)
1685 {
1686         blk_cleanup_queue(q);
1687 }
1688
1689 /*
1690  * Function:    scsi_block_requests()
1691  *
1692  * Purpose:     Utility function used by low-level drivers to prevent further
1693  *              commands from being queued to the device.
1694  *
1695  * Arguments:   shost       - Host in question
1696  *
1697  * Returns:     Nothing
1698  *
1699  * Lock status: No locks are assumed held.
1700  *
1701  * Notes:       There is no timer nor any other means by which the requests
1702  *              get unblocked other than the low-level driver calling
1703  *              scsi_unblock_requests().
1704  */
1705 void scsi_block_requests(struct Scsi_Host *shost)
1706 {
1707         shost->host_self_blocked = 1;
1708 }
1709 EXPORT_SYMBOL(scsi_block_requests);
1710
1711 /*
1712  * Function:    scsi_unblock_requests()
1713  *
1714  * Purpose:     Utility function used by low-level drivers to allow further
1715  *              commands from being queued to the device.
1716  *
1717  * Arguments:   shost       - Host in question
1718  *
1719  * Returns:     Nothing
1720  *
1721  * Lock status: No locks are assumed held.
1722  *
1723  * Notes:       There is no timer nor any other means by which the requests
1724  *              get unblocked other than the low-level driver calling
1725  *              scsi_unblock_requests().
1726  *
1727  *              This is done as an API function so that changes to the
1728  *              internals of the scsi mid-layer won't require wholesale
1729  *              changes to drivers that use this feature.
1730  */
1731 void scsi_unblock_requests(struct Scsi_Host *shost)
1732 {
1733         shost->host_self_blocked = 0;
1734         scsi_run_host_queues(shost);
1735 }
1736 EXPORT_SYMBOL(scsi_unblock_requests);
1737
1738 int __init scsi_init_queue(void)
1739 {
1740         int i;
1741
1742         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1743                                            sizeof(struct scsi_data_buffer),
1744                                            0, 0, NULL);
1745         if (!scsi_sdb_cache) {
1746                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1747                 return -ENOMEM;
1748         }
1749
1750         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1751                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1752                 int size = sgp->size * sizeof(struct scatterlist);
1753
1754                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1755                                 SLAB_HWCACHE_ALIGN, NULL);
1756                 if (!sgp->slab) {
1757                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1758                                         sgp->name);
1759                         goto cleanup_sdb;
1760                 }
1761
1762                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1763                                                      sgp->slab);
1764                 if (!sgp->pool) {
1765                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1766                                         sgp->name);
1767                         goto cleanup_sdb;
1768                 }
1769         }
1770
1771         return 0;
1772
1773 cleanup_sdb:
1774         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1775                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1776                 if (sgp->pool)
1777                         mempool_destroy(sgp->pool);
1778                 if (sgp->slab)
1779                         kmem_cache_destroy(sgp->slab);
1780         }
1781         kmem_cache_destroy(scsi_sdb_cache);
1782
1783         return -ENOMEM;
1784 }
1785
1786 void scsi_exit_queue(void)
1787 {
1788         int i;
1789
1790         kmem_cache_destroy(scsi_sdb_cache);
1791
1792         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1793                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1794                 mempool_destroy(sgp->pool);
1795                 kmem_cache_destroy(sgp->slab);
1796         }
1797 }
1798
1799 /**
1800  *      scsi_mode_select - issue a mode select
1801  *      @sdev:  SCSI device to be queried
1802  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1803  *      @sp:    Save page bit (0 == don't save, 1 == save)
1804  *      @modepage: mode page being requested
1805  *      @buffer: request buffer (may not be smaller than eight bytes)
1806  *      @len:   length of request buffer.
1807  *      @timeout: command timeout
1808  *      @retries: number of retries before failing
1809  *      @data: returns a structure abstracting the mode header data
1810  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1811  *              must be SCSI_SENSE_BUFFERSIZE big.
1812  *
1813  *      Returns zero if successful; negative error number or scsi
1814  *      status on error
1815  *
1816  */
1817 int
1818 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1819                  unsigned char *buffer, int len, int timeout, int retries,
1820                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1821 {
1822         unsigned char cmd[10];
1823         unsigned char *real_buffer;
1824         int ret;
1825
1826         memset(cmd, 0, sizeof(cmd));
1827         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1828
1829         if (sdev->use_10_for_ms) {
1830                 if (len > 65535)
1831                         return -EINVAL;
1832                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1833                 if (!real_buffer)
1834                         return -ENOMEM;
1835                 memcpy(real_buffer + 8, buffer, len);
1836                 len += 8;
1837                 real_buffer[0] = 0;
1838                 real_buffer[1] = 0;
1839                 real_buffer[2] = data->medium_type;
1840                 real_buffer[3] = data->device_specific;
1841                 real_buffer[4] = data->longlba ? 0x01 : 0;
1842                 real_buffer[5] = 0;
1843                 real_buffer[6] = data->block_descriptor_length >> 8;
1844                 real_buffer[7] = data->block_descriptor_length;
1845
1846                 cmd[0] = MODE_SELECT_10;
1847                 cmd[7] = len >> 8;
1848                 cmd[8] = len;
1849         } else {
1850                 if (len > 255 || data->block_descriptor_length > 255 ||
1851                     data->longlba)
1852                         return -EINVAL;
1853
1854                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1855                 if (!real_buffer)
1856                         return -ENOMEM;
1857                 memcpy(real_buffer + 4, buffer, len);
1858                 len += 4;
1859                 real_buffer[0] = 0;
1860                 real_buffer[1] = data->medium_type;
1861                 real_buffer[2] = data->device_specific;
1862                 real_buffer[3] = data->block_descriptor_length;
1863                 
1864
1865                 cmd[0] = MODE_SELECT;
1866                 cmd[4] = len;
1867         }
1868
1869         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1870                                sshdr, timeout, retries, NULL);
1871         kfree(real_buffer);
1872         return ret;
1873 }
1874 EXPORT_SYMBOL_GPL(scsi_mode_select);
1875
1876 /**
1877  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1878  *      @sdev:  SCSI device to be queried
1879  *      @dbd:   set if mode sense will allow block descriptors to be returned
1880  *      @modepage: mode page being requested
1881  *      @buffer: request buffer (may not be smaller than eight bytes)
1882  *      @len:   length of request buffer.
1883  *      @timeout: command timeout
1884  *      @retries: number of retries before failing
1885  *      @data: returns a structure abstracting the mode header data
1886  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1887  *              must be SCSI_SENSE_BUFFERSIZE big.
1888  *
1889  *      Returns zero if unsuccessful, or the header offset (either 4
1890  *      or 8 depending on whether a six or ten byte command was
1891  *      issued) if successful.
1892  */
1893 int
1894 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1895                   unsigned char *buffer, int len, int timeout, int retries,
1896                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1897 {
1898         unsigned char cmd[12];
1899         int use_10_for_ms;
1900         int header_length;
1901         int result;
1902         struct scsi_sense_hdr my_sshdr;
1903
1904         memset(data, 0, sizeof(*data));
1905         memset(&cmd[0], 0, 12);
1906         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1907         cmd[2] = modepage;
1908
1909         /* caller might not be interested in sense, but we need it */
1910         if (!sshdr)
1911                 sshdr = &my_sshdr;
1912
1913  retry:
1914         use_10_for_ms = sdev->use_10_for_ms;
1915
1916         if (use_10_for_ms) {
1917                 if (len < 8)
1918                         len = 8;
1919
1920                 cmd[0] = MODE_SENSE_10;
1921                 cmd[8] = len;
1922                 header_length = 8;
1923         } else {
1924                 if (len < 4)
1925                         len = 4;
1926
1927                 cmd[0] = MODE_SENSE;
1928                 cmd[4] = len;
1929                 header_length = 4;
1930         }
1931
1932         memset(buffer, 0, len);
1933
1934         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1935                                   sshdr, timeout, retries, NULL);
1936
1937         /* This code looks awful: what it's doing is making sure an
1938          * ILLEGAL REQUEST sense return identifies the actual command
1939          * byte as the problem.  MODE_SENSE commands can return
1940          * ILLEGAL REQUEST if the code page isn't supported */
1941
1942         if (use_10_for_ms && !scsi_status_is_good(result) &&
1943             (driver_byte(result) & DRIVER_SENSE)) {
1944                 if (scsi_sense_valid(sshdr)) {
1945                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1946                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1947                                 /* 
1948                                  * Invalid command operation code
1949                                  */
1950                                 sdev->use_10_for_ms = 0;
1951                                 goto retry;
1952                         }
1953                 }
1954         }
1955
1956         if(scsi_status_is_good(result)) {
1957                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1958                              (modepage == 6 || modepage == 8))) {
1959                         /* Initio breakage? */
1960                         header_length = 0;
1961                         data->length = 13;
1962                         data->medium_type = 0;
1963                         data->device_specific = 0;
1964                         data->longlba = 0;
1965                         data->block_descriptor_length = 0;
1966                 } else if(use_10_for_ms) {
1967                         data->length = buffer[0]*256 + buffer[1] + 2;
1968                         data->medium_type = buffer[2];
1969                         data->device_specific = buffer[3];
1970                         data->longlba = buffer[4] & 0x01;
1971                         data->block_descriptor_length = buffer[6]*256
1972                                 + buffer[7];
1973                 } else {
1974                         data->length = buffer[0] + 1;
1975                         data->medium_type = buffer[1];
1976                         data->device_specific = buffer[2];
1977                         data->block_descriptor_length = buffer[3];
1978                 }
1979                 data->header_length = header_length;
1980         }
1981
1982         return result;
1983 }
1984 EXPORT_SYMBOL(scsi_mode_sense);
1985
1986 /**
1987  *      scsi_test_unit_ready - test if unit is ready
1988  *      @sdev:  scsi device to change the state of.
1989  *      @timeout: command timeout
1990  *      @retries: number of retries before failing
1991  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1992  *              returning sense. Make sure that this is cleared before passing
1993  *              in.
1994  *
1995  *      Returns zero if unsuccessful or an error if TUR failed.  For
1996  *      removable media, UNIT_ATTENTION sets ->changed flag.
1997  **/
1998 int
1999 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2000                      struct scsi_sense_hdr *sshdr_external)
2001 {
2002         char cmd[] = {
2003                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2004         };
2005         struct scsi_sense_hdr *sshdr;
2006         int result;
2007
2008         if (!sshdr_external)
2009                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2010         else
2011                 sshdr = sshdr_external;
2012
2013         /* try to eat the UNIT_ATTENTION if there are enough retries */
2014         do {
2015                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2016                                           timeout, retries, NULL);
2017                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2018                     sshdr->sense_key == UNIT_ATTENTION)
2019                         sdev->changed = 1;
2020         } while (scsi_sense_valid(sshdr) &&
2021                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2022
2023         if (!sshdr_external)
2024                 kfree(sshdr);
2025         return result;
2026 }
2027 EXPORT_SYMBOL(scsi_test_unit_ready);
2028
2029 /**
2030  *      scsi_device_set_state - Take the given device through the device state model.
2031  *      @sdev:  scsi device to change the state of.
2032  *      @state: state to change to.
2033  *
2034  *      Returns zero if unsuccessful or an error if the requested 
2035  *      transition is illegal.
2036  */
2037 int
2038 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2039 {
2040         enum scsi_device_state oldstate = sdev->sdev_state;
2041
2042         if (state == oldstate)
2043                 return 0;
2044
2045         switch (state) {
2046         case SDEV_CREATED:
2047                 switch (oldstate) {
2048                 case SDEV_CREATED_BLOCK:
2049                         break;
2050                 default:
2051                         goto illegal;
2052                 }
2053                 break;
2054                         
2055         case SDEV_RUNNING:
2056                 switch (oldstate) {
2057                 case SDEV_CREATED:
2058                 case SDEV_OFFLINE:
2059                 case SDEV_QUIESCE:
2060                 case SDEV_BLOCK:
2061                         break;
2062                 default:
2063                         goto illegal;
2064                 }
2065                 break;
2066
2067         case SDEV_QUIESCE:
2068                 switch (oldstate) {
2069                 case SDEV_RUNNING:
2070                 case SDEV_OFFLINE:
2071                         break;
2072                 default:
2073                         goto illegal;
2074                 }
2075                 break;
2076
2077         case SDEV_OFFLINE:
2078                 switch (oldstate) {
2079                 case SDEV_CREATED:
2080                 case SDEV_RUNNING:
2081                 case SDEV_QUIESCE:
2082                 case SDEV_BLOCK:
2083                         break;
2084                 default:
2085                         goto illegal;
2086                 }
2087                 break;
2088
2089         case SDEV_BLOCK:
2090                 switch (oldstate) {
2091                 case SDEV_RUNNING:
2092                 case SDEV_CREATED_BLOCK:
2093                         break;
2094                 default:
2095                         goto illegal;
2096                 }
2097                 break;
2098
2099         case SDEV_CREATED_BLOCK:
2100                 switch (oldstate) {
2101                 case SDEV_CREATED:
2102                         break;
2103                 default:
2104                         goto illegal;
2105                 }
2106                 break;
2107
2108         case SDEV_CANCEL:
2109                 switch (oldstate) {
2110                 case SDEV_CREATED:
2111                 case SDEV_RUNNING:
2112                 case SDEV_QUIESCE:
2113                 case SDEV_OFFLINE:
2114                 case SDEV_BLOCK:
2115                         break;
2116                 default:
2117                         goto illegal;
2118                 }
2119                 break;
2120
2121         case SDEV_DEL:
2122                 switch (oldstate) {
2123                 case SDEV_CREATED:
2124                 case SDEV_RUNNING:
2125                 case SDEV_OFFLINE:
2126                 case SDEV_CANCEL:
2127                         break;
2128                 default:
2129                         goto illegal;
2130                 }
2131                 break;
2132
2133         }
2134         sdev->sdev_state = state;
2135         return 0;
2136
2137  illegal:
2138         SCSI_LOG_ERROR_RECOVERY(1, 
2139                                 sdev_printk(KERN_ERR, sdev,
2140                                             "Illegal state transition %s->%s\n",
2141                                             scsi_device_state_name(oldstate),
2142                                             scsi_device_state_name(state))
2143                                 );
2144         return -EINVAL;
2145 }
2146 EXPORT_SYMBOL(scsi_device_set_state);
2147
2148 /**
2149  *      sdev_evt_emit - emit a single SCSI device uevent
2150  *      @sdev: associated SCSI device
2151  *      @evt: event to emit
2152  *
2153  *      Send a single uevent (scsi_event) to the associated scsi_device.
2154  */
2155 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2156 {
2157         int idx = 0;
2158         char *envp[3];
2159
2160         switch (evt->evt_type) {
2161         case SDEV_EVT_MEDIA_CHANGE:
2162                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2163                 break;
2164
2165         default:
2166                 /* do nothing */
2167                 break;
2168         }
2169
2170         envp[idx++] = NULL;
2171
2172         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2173 }
2174
2175 /**
2176  *      sdev_evt_thread - send a uevent for each scsi event
2177  *      @work: work struct for scsi_device
2178  *
2179  *      Dispatch queued events to their associated scsi_device kobjects
2180  *      as uevents.
2181  */
2182 void scsi_evt_thread(struct work_struct *work)
2183 {
2184         struct scsi_device *sdev;
2185         LIST_HEAD(event_list);
2186
2187         sdev = container_of(work, struct scsi_device, event_work);
2188
2189         while (1) {
2190                 struct scsi_event *evt;
2191                 struct list_head *this, *tmp;
2192                 unsigned long flags;
2193
2194                 spin_lock_irqsave(&sdev->list_lock, flags);
2195                 list_splice_init(&sdev->event_list, &event_list);
2196                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2197
2198                 if (list_empty(&event_list))
2199                         break;
2200
2201                 list_for_each_safe(this, tmp, &event_list) {
2202                         evt = list_entry(this, struct scsi_event, node);
2203                         list_del(&evt->node);
2204                         scsi_evt_emit(sdev, evt);
2205                         kfree(evt);
2206                 }
2207         }
2208 }
2209
2210 /**
2211  *      sdev_evt_send - send asserted event to uevent thread
2212  *      @sdev: scsi_device event occurred on
2213  *      @evt: event to send
2214  *
2215  *      Assert scsi device event asynchronously.
2216  */
2217 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2218 {
2219         unsigned long flags;
2220
2221 #if 0
2222         /* FIXME: currently this check eliminates all media change events
2223          * for polled devices.  Need to update to discriminate between AN
2224          * and polled events */
2225         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2226                 kfree(evt);
2227                 return;
2228         }
2229 #endif
2230
2231         spin_lock_irqsave(&sdev->list_lock, flags);
2232         list_add_tail(&evt->node, &sdev->event_list);
2233         schedule_work(&sdev->event_work);
2234         spin_unlock_irqrestore(&sdev->list_lock, flags);
2235 }
2236 EXPORT_SYMBOL_GPL(sdev_evt_send);
2237
2238 /**
2239  *      sdev_evt_alloc - allocate a new scsi event
2240  *      @evt_type: type of event to allocate
2241  *      @gfpflags: GFP flags for allocation
2242  *
2243  *      Allocates and returns a new scsi_event.
2244  */
2245 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2246                                   gfp_t gfpflags)
2247 {
2248         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2249         if (!evt)
2250                 return NULL;
2251
2252         evt->evt_type = evt_type;
2253         INIT_LIST_HEAD(&evt->node);
2254
2255         /* evt_type-specific initialization, if any */
2256         switch (evt_type) {
2257         case SDEV_EVT_MEDIA_CHANGE:
2258         default:
2259                 /* do nothing */
2260                 break;
2261         }
2262
2263         return evt;
2264 }
2265 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2266
2267 /**
2268  *      sdev_evt_send_simple - send asserted event to uevent thread
2269  *      @sdev: scsi_device event occurred on
2270  *      @evt_type: type of event to send
2271  *      @gfpflags: GFP flags for allocation
2272  *
2273  *      Assert scsi device event asynchronously, given an event type.
2274  */
2275 void sdev_evt_send_simple(struct scsi_device *sdev,
2276                           enum scsi_device_event evt_type, gfp_t gfpflags)
2277 {
2278         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2279         if (!evt) {
2280                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2281                             evt_type);
2282                 return;
2283         }
2284
2285         sdev_evt_send(sdev, evt);
2286 }
2287 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2288
2289 /**
2290  *      scsi_device_quiesce - Block user issued commands.
2291  *      @sdev:  scsi device to quiesce.
2292  *
2293  *      This works by trying to transition to the SDEV_QUIESCE state
2294  *      (which must be a legal transition).  When the device is in this
2295  *      state, only special requests will be accepted, all others will
2296  *      be deferred.  Since special requests may also be requeued requests,
2297  *      a successful return doesn't guarantee the device will be 
2298  *      totally quiescent.
2299  *
2300  *      Must be called with user context, may sleep.
2301  *
2302  *      Returns zero if unsuccessful or an error if not.
2303  */
2304 int
2305 scsi_device_quiesce(struct scsi_device *sdev)
2306 {
2307         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2308         if (err)
2309                 return err;
2310
2311         scsi_run_queue(sdev->request_queue);
2312         while (sdev->device_busy) {
2313                 msleep_interruptible(200);
2314                 scsi_run_queue(sdev->request_queue);
2315         }
2316         return 0;
2317 }
2318 EXPORT_SYMBOL(scsi_device_quiesce);
2319
2320 /**
2321  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2322  *      @sdev:  scsi device to resume.
2323  *
2324  *      Moves the device from quiesced back to running and restarts the
2325  *      queues.
2326  *
2327  *      Must be called with user context, may sleep.
2328  */
2329 void
2330 scsi_device_resume(struct scsi_device *sdev)
2331 {
2332         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2333                 return;
2334         scsi_run_queue(sdev->request_queue);
2335 }
2336 EXPORT_SYMBOL(scsi_device_resume);
2337
2338 static void
2339 device_quiesce_fn(struct scsi_device *sdev, void *data)
2340 {
2341         scsi_device_quiesce(sdev);
2342 }
2343
2344 void
2345 scsi_target_quiesce(struct scsi_target *starget)
2346 {
2347         starget_for_each_device(starget, NULL, device_quiesce_fn);
2348 }
2349 EXPORT_SYMBOL(scsi_target_quiesce);
2350
2351 static void
2352 device_resume_fn(struct scsi_device *sdev, void *data)
2353 {
2354         scsi_device_resume(sdev);
2355 }
2356
2357 void
2358 scsi_target_resume(struct scsi_target *starget)
2359 {
2360         starget_for_each_device(starget, NULL, device_resume_fn);
2361 }
2362 EXPORT_SYMBOL(scsi_target_resume);
2363
2364 /**
2365  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2366  * @sdev:       device to block
2367  *
2368  * Block request made by scsi lld's to temporarily stop all
2369  * scsi commands on the specified device.  Called from interrupt
2370  * or normal process context.
2371  *
2372  * Returns zero if successful or error if not
2373  *
2374  * Notes:       
2375  *      This routine transitions the device to the SDEV_BLOCK state
2376  *      (which must be a legal transition).  When the device is in this
2377  *      state, all commands are deferred until the scsi lld reenables
2378  *      the device with scsi_device_unblock or device_block_tmo fires.
2379  *      This routine assumes the host_lock is held on entry.
2380  */
2381 int
2382 scsi_internal_device_block(struct scsi_device *sdev)
2383 {
2384         struct request_queue *q = sdev->request_queue;
2385         unsigned long flags;
2386         int err = 0;
2387
2388         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2389         if (err) {
2390                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2391
2392                 if (err)
2393                         return err;
2394         }
2395
2396         /* 
2397          * The device has transitioned to SDEV_BLOCK.  Stop the
2398          * block layer from calling the midlayer with this device's
2399          * request queue. 
2400          */
2401         spin_lock_irqsave(q->queue_lock, flags);
2402         blk_stop_queue(q);
2403         spin_unlock_irqrestore(q->queue_lock, flags);
2404
2405         return 0;
2406 }
2407 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2408  
2409 /**
2410  * scsi_internal_device_unblock - resume a device after a block request
2411  * @sdev:       device to resume
2412  *
2413  * Called by scsi lld's or the midlayer to restart the device queue
2414  * for the previously suspended scsi device.  Called from interrupt or
2415  * normal process context.
2416  *
2417  * Returns zero if successful or error if not.
2418  *
2419  * Notes:       
2420  *      This routine transitions the device to the SDEV_RUNNING state
2421  *      (which must be a legal transition) allowing the midlayer to
2422  *      goose the queue for this device.  This routine assumes the 
2423  *      host_lock is held upon entry.
2424  */
2425 int
2426 scsi_internal_device_unblock(struct scsi_device *sdev)
2427 {
2428         struct request_queue *q = sdev->request_queue; 
2429         unsigned long flags;
2430         
2431         /* 
2432          * Try to transition the scsi device to SDEV_RUNNING
2433          * and goose the device queue if successful.  
2434          */
2435         if (sdev->sdev_state == SDEV_BLOCK)
2436                 sdev->sdev_state = SDEV_RUNNING;
2437         else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2438                 sdev->sdev_state = SDEV_CREATED;
2439         else if (sdev->sdev_state != SDEV_CANCEL &&
2440                  sdev->sdev_state != SDEV_OFFLINE)
2441                 return -EINVAL;
2442
2443         spin_lock_irqsave(q->queue_lock, flags);
2444         blk_start_queue(q);
2445         spin_unlock_irqrestore(q->queue_lock, flags);
2446
2447         return 0;
2448 }
2449 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2450
2451 static void
2452 device_block(struct scsi_device *sdev, void *data)
2453 {
2454         scsi_internal_device_block(sdev);
2455 }
2456
2457 static int
2458 target_block(struct device *dev, void *data)
2459 {
2460         if (scsi_is_target_device(dev))
2461                 starget_for_each_device(to_scsi_target(dev), NULL,
2462                                         device_block);
2463         return 0;
2464 }
2465
2466 void
2467 scsi_target_block(struct device *dev)
2468 {
2469         if (scsi_is_target_device(dev))
2470                 starget_for_each_device(to_scsi_target(dev), NULL,
2471                                         device_block);
2472         else
2473                 device_for_each_child(dev, NULL, target_block);
2474 }
2475 EXPORT_SYMBOL_GPL(scsi_target_block);
2476
2477 static void
2478 device_unblock(struct scsi_device *sdev, void *data)
2479 {
2480         scsi_internal_device_unblock(sdev);
2481 }
2482
2483 static int
2484 target_unblock(struct device *dev, void *data)
2485 {
2486         if (scsi_is_target_device(dev))
2487                 starget_for_each_device(to_scsi_target(dev), NULL,
2488                                         device_unblock);
2489         return 0;
2490 }
2491
2492 void
2493 scsi_target_unblock(struct device *dev)
2494 {
2495         if (scsi_is_target_device(dev))
2496                 starget_for_each_device(to_scsi_target(dev), NULL,
2497                                         device_unblock);
2498         else
2499                 device_for_each_child(dev, NULL, target_unblock);
2500 }
2501 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2502
2503 /**
2504  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2505  * @sgl:        scatter-gather list
2506  * @sg_count:   number of segments in sg
2507  * @offset:     offset in bytes into sg, on return offset into the mapped area
2508  * @len:        bytes to map, on return number of bytes mapped
2509  *
2510  * Returns virtual address of the start of the mapped page
2511  */
2512 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2513                           size_t *offset, size_t *len)
2514 {
2515         int i;
2516         size_t sg_len = 0, len_complete = 0;
2517         struct scatterlist *sg;
2518         struct page *page;
2519
2520         WARN_ON(!irqs_disabled());
2521
2522         for_each_sg(sgl, sg, sg_count, i) {
2523                 len_complete = sg_len; /* Complete sg-entries */
2524                 sg_len += sg->length;
2525                 if (sg_len > *offset)
2526                         break;
2527         }
2528
2529         if (unlikely(i == sg_count)) {
2530                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2531                         "elements %d\n",
2532                        __func__, sg_len, *offset, sg_count);
2533                 WARN_ON(1);
2534                 return NULL;
2535         }
2536
2537         /* Offset starting from the beginning of first page in this sg-entry */
2538         *offset = *offset - len_complete + sg->offset;
2539
2540         /* Assumption: contiguous pages can be accessed as "page + i" */
2541         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2542         *offset &= ~PAGE_MASK;
2543
2544         /* Bytes in this sg-entry from *offset to the end of the page */
2545         sg_len = PAGE_SIZE - *offset;
2546         if (*len > sg_len)
2547                 *len = sg_len;
2548
2549         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2550 }
2551 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2552
2553 /**
2554  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2555  * @virt:       virtual address to be unmapped
2556  */
2557 void scsi_kunmap_atomic_sg(void *virt)
2558 {
2559         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2560 }
2561 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);