]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/spi/atmel_spi.c
Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[mv-sheeva.git] / drivers / spi / atmel_spi.c
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22
23 #include <asm/io.h>
24 #include <mach/board.h>
25 #include <mach/gpio.h>
26 #include <mach/cpu.h>
27
28 #include "atmel_spi.h"
29
30 /*
31  * The core SPI transfer engine just talks to a register bank to set up
32  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
33  * framework provides the base clock, subdivided for each spi_device.
34  */
35 struct atmel_spi {
36         spinlock_t              lock;
37
38         void __iomem            *regs;
39         int                     irq;
40         struct clk              *clk;
41         struct platform_device  *pdev;
42         struct spi_device       *stay;
43
44         u8                      stopping;
45         struct list_head        queue;
46         struct spi_transfer     *current_transfer;
47         unsigned long           current_remaining_bytes;
48         struct spi_transfer     *next_transfer;
49         unsigned long           next_remaining_bytes;
50
51         void                    *buffer;
52         dma_addr_t              buffer_dma;
53 };
54
55 /* Controller-specific per-slave state */
56 struct atmel_spi_device {
57         unsigned int            npcs_pin;
58         u32                     csr;
59 };
60
61 #define BUFFER_SIZE             PAGE_SIZE
62 #define INVALID_DMA_ADDRESS     0xffffffff
63
64 /*
65  * Version 2 of the SPI controller has
66  *  - CR.LASTXFER
67  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
68  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
69  *  - SPI_CSRx.CSAAT
70  *  - SPI_CSRx.SBCR allows faster clocking
71  *
72  * We can determine the controller version by reading the VERSION
73  * register, but I haven't checked that it exists on all chips, and
74  * this is cheaper anyway.
75  */
76 static bool atmel_spi_is_v2(void)
77 {
78         return !cpu_is_at91rm9200();
79 }
80
81 /*
82  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
83  * they assume that spi slave device state will not change on deselect, so
84  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
85  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
86  * controllers have CSAAT and friends.
87  *
88  * Since the CSAAT functionality is a bit weird on newer controllers as
89  * well, we use GPIO to control nCSx pins on all controllers, updating
90  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
91  * support active-high chipselects despite the controller's belief that
92  * only active-low devices/systems exists.
93  *
94  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
95  * right when driven with GPIO.  ("Mode Fault does not allow more than one
96  * Master on Chip Select 0.")  No workaround exists for that ... so for
97  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
98  * and (c) will trigger that first erratum in some cases.
99  *
100  * TODO: Test if the atmel_spi_is_v2() branch below works on
101  * AT91RM9200 if we use some other register than CSR0. However, don't
102  * do this unconditionally since AP7000 has an errata where the BITS
103  * field in CSR0 overrides all other CSRs.
104  */
105
106 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
107 {
108         struct atmel_spi_device *asd = spi->controller_state;
109         unsigned active = spi->mode & SPI_CS_HIGH;
110         u32 mr;
111
112         if (atmel_spi_is_v2()) {
113                 /*
114                  * Always use CSR0. This ensures that the clock
115                  * switches to the correct idle polarity before we
116                  * toggle the CS.
117                  */
118                 spi_writel(as, CSR0, asd->csr);
119                 spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
120                                 | SPI_BIT(MSTR));
121                 mr = spi_readl(as, MR);
122                 gpio_set_value(asd->npcs_pin, active);
123         } else {
124                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
125                 int i;
126                 u32 csr;
127
128                 /* Make sure clock polarity is correct */
129                 for (i = 0; i < spi->master->num_chipselect; i++) {
130                         csr = spi_readl(as, CSR0 + 4 * i);
131                         if ((csr ^ cpol) & SPI_BIT(CPOL))
132                                 spi_writel(as, CSR0 + 4 * i,
133                                                 csr ^ SPI_BIT(CPOL));
134                 }
135
136                 mr = spi_readl(as, MR);
137                 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
138                 if (spi->chip_select != 0)
139                         gpio_set_value(asd->npcs_pin, active);
140                 spi_writel(as, MR, mr);
141         }
142
143         dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
144                         asd->npcs_pin, active ? " (high)" : "",
145                         mr);
146 }
147
148 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
149 {
150         struct atmel_spi_device *asd = spi->controller_state;
151         unsigned active = spi->mode & SPI_CS_HIGH;
152         u32 mr;
153
154         /* only deactivate *this* device; sometimes transfers to
155          * another device may be active when this routine is called.
156          */
157         mr = spi_readl(as, MR);
158         if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
159                 mr = SPI_BFINS(PCS, 0xf, mr);
160                 spi_writel(as, MR, mr);
161         }
162
163         dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
164                         asd->npcs_pin, active ? " (low)" : "",
165                         mr);
166
167         if (atmel_spi_is_v2() || spi->chip_select != 0)
168                 gpio_set_value(asd->npcs_pin, !active);
169 }
170
171 static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
172                                         struct spi_transfer *xfer)
173 {
174         return msg->transfers.prev == &xfer->transfer_list;
175 }
176
177 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
178 {
179         return xfer->delay_usecs == 0 && !xfer->cs_change;
180 }
181
182 static void atmel_spi_next_xfer_data(struct spi_master *master,
183                                 struct spi_transfer *xfer,
184                                 dma_addr_t *tx_dma,
185                                 dma_addr_t *rx_dma,
186                                 u32 *plen)
187 {
188         struct atmel_spi        *as = spi_master_get_devdata(master);
189         u32                     len = *plen;
190
191         /* use scratch buffer only when rx or tx data is unspecified */
192         if (xfer->rx_buf)
193                 *rx_dma = xfer->rx_dma + xfer->len - *plen;
194         else {
195                 *rx_dma = as->buffer_dma;
196                 if (len > BUFFER_SIZE)
197                         len = BUFFER_SIZE;
198         }
199         if (xfer->tx_buf)
200                 *tx_dma = xfer->tx_dma + xfer->len - *plen;
201         else {
202                 *tx_dma = as->buffer_dma;
203                 if (len > BUFFER_SIZE)
204                         len = BUFFER_SIZE;
205                 memset(as->buffer, 0, len);
206                 dma_sync_single_for_device(&as->pdev->dev,
207                                 as->buffer_dma, len, DMA_TO_DEVICE);
208         }
209
210         *plen = len;
211 }
212
213 /*
214  * Submit next transfer for DMA.
215  * lock is held, spi irq is blocked
216  */
217 static void atmel_spi_next_xfer(struct spi_master *master,
218                                 struct spi_message *msg)
219 {
220         struct atmel_spi        *as = spi_master_get_devdata(master);
221         struct spi_transfer     *xfer;
222         u32                     len, remaining;
223         u32                     ieval;
224         dma_addr_t              tx_dma, rx_dma;
225
226         if (!as->current_transfer)
227                 xfer = list_entry(msg->transfers.next,
228                                 struct spi_transfer, transfer_list);
229         else if (!as->next_transfer)
230                 xfer = list_entry(as->current_transfer->transfer_list.next,
231                                 struct spi_transfer, transfer_list);
232         else
233                 xfer = NULL;
234
235         if (xfer) {
236                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
237
238                 len = xfer->len;
239                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
240                 remaining = xfer->len - len;
241
242                 spi_writel(as, RPR, rx_dma);
243                 spi_writel(as, TPR, tx_dma);
244
245                 if (msg->spi->bits_per_word > 8)
246                         len >>= 1;
247                 spi_writel(as, RCR, len);
248                 spi_writel(as, TCR, len);
249
250                 dev_dbg(&msg->spi->dev,
251                         "  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
252                         xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
253                         xfer->rx_buf, xfer->rx_dma);
254         } else {
255                 xfer = as->next_transfer;
256                 remaining = as->next_remaining_bytes;
257         }
258
259         as->current_transfer = xfer;
260         as->current_remaining_bytes = remaining;
261
262         if (remaining > 0)
263                 len = remaining;
264         else if (!atmel_spi_xfer_is_last(msg, xfer)
265                         && atmel_spi_xfer_can_be_chained(xfer)) {
266                 xfer = list_entry(xfer->transfer_list.next,
267                                 struct spi_transfer, transfer_list);
268                 len = xfer->len;
269         } else
270                 xfer = NULL;
271
272         as->next_transfer = xfer;
273
274         if (xfer) {
275                 u32     total;
276
277                 total = len;
278                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
279                 as->next_remaining_bytes = total - len;
280
281                 spi_writel(as, RNPR, rx_dma);
282                 spi_writel(as, TNPR, tx_dma);
283
284                 if (msg->spi->bits_per_word > 8)
285                         len >>= 1;
286                 spi_writel(as, RNCR, len);
287                 spi_writel(as, TNCR, len);
288
289                 dev_dbg(&msg->spi->dev,
290                         "  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
291                         xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
292                         xfer->rx_buf, xfer->rx_dma);
293                 ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
294         } else {
295                 spi_writel(as, RNCR, 0);
296                 spi_writel(as, TNCR, 0);
297                 ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
298         }
299
300         /* REVISIT: We're waiting for ENDRX before we start the next
301          * transfer because we need to handle some difficult timing
302          * issues otherwise. If we wait for ENDTX in one transfer and
303          * then starts waiting for ENDRX in the next, it's difficult
304          * to tell the difference between the ENDRX interrupt we're
305          * actually waiting for and the ENDRX interrupt of the
306          * previous transfer.
307          *
308          * It should be doable, though. Just not now...
309          */
310         spi_writel(as, IER, ieval);
311         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
312 }
313
314 static void atmel_spi_next_message(struct spi_master *master)
315 {
316         struct atmel_spi        *as = spi_master_get_devdata(master);
317         struct spi_message      *msg;
318         struct spi_device       *spi;
319
320         BUG_ON(as->current_transfer);
321
322         msg = list_entry(as->queue.next, struct spi_message, queue);
323         spi = msg->spi;
324
325         dev_dbg(master->dev.parent, "start message %p for %s\n",
326                         msg, dev_name(&spi->dev));
327
328         /* select chip if it's not still active */
329         if (as->stay) {
330                 if (as->stay != spi) {
331                         cs_deactivate(as, as->stay);
332                         cs_activate(as, spi);
333                 }
334                 as->stay = NULL;
335         } else
336                 cs_activate(as, spi);
337
338         atmel_spi_next_xfer(master, msg);
339 }
340
341 /*
342  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
343  *  - The buffer is either valid for CPU access, else NULL
344  *  - If the buffer is valid, so is its DMA addresss
345  *
346  * This driver manages the dma addresss unless message->is_dma_mapped.
347  */
348 static int
349 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
350 {
351         struct device   *dev = &as->pdev->dev;
352
353         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
354         if (xfer->tx_buf) {
355                 /* tx_buf is a const void* where we need a void * for the dma
356                  * mapping */
357                 void *nonconst_tx = (void *)xfer->tx_buf;
358
359                 xfer->tx_dma = dma_map_single(dev,
360                                 nonconst_tx, xfer->len,
361                                 DMA_TO_DEVICE);
362                 if (dma_mapping_error(dev, xfer->tx_dma))
363                         return -ENOMEM;
364         }
365         if (xfer->rx_buf) {
366                 xfer->rx_dma = dma_map_single(dev,
367                                 xfer->rx_buf, xfer->len,
368                                 DMA_FROM_DEVICE);
369                 if (dma_mapping_error(dev, xfer->rx_dma)) {
370                         if (xfer->tx_buf)
371                                 dma_unmap_single(dev,
372                                                 xfer->tx_dma, xfer->len,
373                                                 DMA_TO_DEVICE);
374                         return -ENOMEM;
375                 }
376         }
377         return 0;
378 }
379
380 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
381                                      struct spi_transfer *xfer)
382 {
383         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
384                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
385                                  xfer->len, DMA_TO_DEVICE);
386         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
387                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
388                                  xfer->len, DMA_FROM_DEVICE);
389 }
390
391 static void
392 atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
393                 struct spi_message *msg, int status, int stay)
394 {
395         if (!stay || status < 0)
396                 cs_deactivate(as, msg->spi);
397         else
398                 as->stay = msg->spi;
399
400         list_del(&msg->queue);
401         msg->status = status;
402
403         dev_dbg(master->dev.parent,
404                 "xfer complete: %u bytes transferred\n",
405                 msg->actual_length);
406
407         spin_unlock(&as->lock);
408         msg->complete(msg->context);
409         spin_lock(&as->lock);
410
411         as->current_transfer = NULL;
412         as->next_transfer = NULL;
413
414         /* continue if needed */
415         if (list_empty(&as->queue) || as->stopping)
416                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
417         else
418                 atmel_spi_next_message(master);
419 }
420
421 static irqreturn_t
422 atmel_spi_interrupt(int irq, void *dev_id)
423 {
424         struct spi_master       *master = dev_id;
425         struct atmel_spi        *as = spi_master_get_devdata(master);
426         struct spi_message      *msg;
427         struct spi_transfer     *xfer;
428         u32                     status, pending, imr;
429         int                     ret = IRQ_NONE;
430
431         spin_lock(&as->lock);
432
433         xfer = as->current_transfer;
434         msg = list_entry(as->queue.next, struct spi_message, queue);
435
436         imr = spi_readl(as, IMR);
437         status = spi_readl(as, SR);
438         pending = status & imr;
439
440         if (pending & SPI_BIT(OVRES)) {
441                 int timeout;
442
443                 ret = IRQ_HANDLED;
444
445                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
446                                      | SPI_BIT(OVRES)));
447
448                 /*
449                  * When we get an overrun, we disregard the current
450                  * transfer. Data will not be copied back from any
451                  * bounce buffer and msg->actual_len will not be
452                  * updated with the last xfer.
453                  *
454                  * We will also not process any remaning transfers in
455                  * the message.
456                  *
457                  * First, stop the transfer and unmap the DMA buffers.
458                  */
459                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
460                 if (!msg->is_dma_mapped)
461                         atmel_spi_dma_unmap_xfer(master, xfer);
462
463                 /* REVISIT: udelay in irq is unfriendly */
464                 if (xfer->delay_usecs)
465                         udelay(xfer->delay_usecs);
466
467                 dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
468                          spi_readl(as, TCR), spi_readl(as, RCR));
469
470                 /*
471                  * Clean up DMA registers and make sure the data
472                  * registers are empty.
473                  */
474                 spi_writel(as, RNCR, 0);
475                 spi_writel(as, TNCR, 0);
476                 spi_writel(as, RCR, 0);
477                 spi_writel(as, TCR, 0);
478                 for (timeout = 1000; timeout; timeout--)
479                         if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
480                                 break;
481                 if (!timeout)
482                         dev_warn(master->dev.parent,
483                                  "timeout waiting for TXEMPTY");
484                 while (spi_readl(as, SR) & SPI_BIT(RDRF))
485                         spi_readl(as, RDR);
486
487                 /* Clear any overrun happening while cleaning up */
488                 spi_readl(as, SR);
489
490                 atmel_spi_msg_done(master, as, msg, -EIO, 0);
491         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
492                 ret = IRQ_HANDLED;
493
494                 spi_writel(as, IDR, pending);
495
496                 if (as->current_remaining_bytes == 0) {
497                         msg->actual_length += xfer->len;
498
499                         if (!msg->is_dma_mapped)
500                                 atmel_spi_dma_unmap_xfer(master, xfer);
501
502                         /* REVISIT: udelay in irq is unfriendly */
503                         if (xfer->delay_usecs)
504                                 udelay(xfer->delay_usecs);
505
506                         if (atmel_spi_xfer_is_last(msg, xfer)) {
507                                 /* report completed message */
508                                 atmel_spi_msg_done(master, as, msg, 0,
509                                                 xfer->cs_change);
510                         } else {
511                                 if (xfer->cs_change) {
512                                         cs_deactivate(as, msg->spi);
513                                         udelay(1);
514                                         cs_activate(as, msg->spi);
515                                 }
516
517                                 /*
518                                  * Not done yet. Submit the next transfer.
519                                  *
520                                  * FIXME handle protocol options for xfer
521                                  */
522                                 atmel_spi_next_xfer(master, msg);
523                         }
524                 } else {
525                         /*
526                          * Keep going, we still have data to send in
527                          * the current transfer.
528                          */
529                         atmel_spi_next_xfer(master, msg);
530                 }
531         }
532
533         spin_unlock(&as->lock);
534
535         return ret;
536 }
537
538 static int atmel_spi_setup(struct spi_device *spi)
539 {
540         struct atmel_spi        *as;
541         struct atmel_spi_device *asd;
542         u32                     scbr, csr;
543         unsigned int            bits = spi->bits_per_word;
544         unsigned long           bus_hz;
545         unsigned int            npcs_pin;
546         int                     ret;
547
548         as = spi_master_get_devdata(spi->master);
549
550         if (as->stopping)
551                 return -ESHUTDOWN;
552
553         if (spi->chip_select > spi->master->num_chipselect) {
554                 dev_dbg(&spi->dev,
555                                 "setup: invalid chipselect %u (%u defined)\n",
556                                 spi->chip_select, spi->master->num_chipselect);
557                 return -EINVAL;
558         }
559
560         if (bits < 8 || bits > 16) {
561                 dev_dbg(&spi->dev,
562                                 "setup: invalid bits_per_word %u (8 to 16)\n",
563                                 bits);
564                 return -EINVAL;
565         }
566
567         /* see notes above re chipselect */
568         if (!atmel_spi_is_v2()
569                         && spi->chip_select == 0
570                         && (spi->mode & SPI_CS_HIGH)) {
571                 dev_dbg(&spi->dev, "setup: can't be active-high\n");
572                 return -EINVAL;
573         }
574
575         /* v1 chips start out at half the peripheral bus speed. */
576         bus_hz = clk_get_rate(as->clk);
577         if (!atmel_spi_is_v2())
578                 bus_hz /= 2;
579
580         if (spi->max_speed_hz) {
581                 /*
582                  * Calculate the lowest divider that satisfies the
583                  * constraint, assuming div32/fdiv/mbz == 0.
584                  */
585                 scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
586
587                 /*
588                  * If the resulting divider doesn't fit into the
589                  * register bitfield, we can't satisfy the constraint.
590                  */
591                 if (scbr >= (1 << SPI_SCBR_SIZE)) {
592                         dev_dbg(&spi->dev,
593                                 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
594                                 spi->max_speed_hz, scbr, bus_hz/255);
595                         return -EINVAL;
596                 }
597         } else
598                 /* speed zero means "as slow as possible" */
599                 scbr = 0xff;
600
601         csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
602         if (spi->mode & SPI_CPOL)
603                 csr |= SPI_BIT(CPOL);
604         if (!(spi->mode & SPI_CPHA))
605                 csr |= SPI_BIT(NCPHA);
606
607         /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
608          *
609          * DLYBCT would add delays between words, slowing down transfers.
610          * It could potentially be useful to cope with DMA bottlenecks, but
611          * in those cases it's probably best to just use a lower bitrate.
612          */
613         csr |= SPI_BF(DLYBS, 0);
614         csr |= SPI_BF(DLYBCT, 0);
615
616         /* chipselect must have been muxed as GPIO (e.g. in board setup) */
617         npcs_pin = (unsigned int)spi->controller_data;
618         asd = spi->controller_state;
619         if (!asd) {
620                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
621                 if (!asd)
622                         return -ENOMEM;
623
624                 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
625                 if (ret) {
626                         kfree(asd);
627                         return ret;
628                 }
629
630                 asd->npcs_pin = npcs_pin;
631                 spi->controller_state = asd;
632                 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
633         } else {
634                 unsigned long           flags;
635
636                 spin_lock_irqsave(&as->lock, flags);
637                 if (as->stay == spi)
638                         as->stay = NULL;
639                 cs_deactivate(as, spi);
640                 spin_unlock_irqrestore(&as->lock, flags);
641         }
642
643         asd->csr = csr;
644
645         dev_dbg(&spi->dev,
646                 "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
647                 bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
648
649         if (!atmel_spi_is_v2())
650                 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
651
652         return 0;
653 }
654
655 static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
656 {
657         struct atmel_spi        *as;
658         struct spi_transfer     *xfer;
659         unsigned long           flags;
660         struct device           *controller = spi->master->dev.parent;
661         u8                      bits;
662         struct atmel_spi_device *asd;
663
664         as = spi_master_get_devdata(spi->master);
665
666         dev_dbg(controller, "new message %p submitted for %s\n",
667                         msg, dev_name(&spi->dev));
668
669         if (unlikely(list_empty(&msg->transfers)))
670                 return -EINVAL;
671
672         if (as->stopping)
673                 return -ESHUTDOWN;
674
675         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
676                 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
677                         dev_dbg(&spi->dev, "missing rx or tx buf\n");
678                         return -EINVAL;
679                 }
680
681                 if (xfer->bits_per_word) {
682                         asd = spi->controller_state;
683                         bits = (asd->csr >> 4) & 0xf;
684                         if (bits != xfer->bits_per_word - 8) {
685                                 dev_dbg(&spi->dev, "you can't yet change "
686                                          "bits_per_word in transfers\n");
687                                 return -ENOPROTOOPT;
688                         }
689                 }
690
691                 /* FIXME implement these protocol options!! */
692                 if (xfer->speed_hz) {
693                         dev_dbg(&spi->dev, "no protocol options yet\n");
694                         return -ENOPROTOOPT;
695                 }
696
697                 /*
698                  * DMA map early, for performance (empties dcache ASAP) and
699                  * better fault reporting.  This is a DMA-only driver.
700                  *
701                  * NOTE that if dma_unmap_single() ever starts to do work on
702                  * platforms supported by this driver, we would need to clean
703                  * up mappings for previously-mapped transfers.
704                  */
705                 if (!msg->is_dma_mapped) {
706                         if (atmel_spi_dma_map_xfer(as, xfer) < 0)
707                                 return -ENOMEM;
708                 }
709         }
710
711 #ifdef VERBOSE
712         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
713                 dev_dbg(controller,
714                         "  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
715                         xfer, xfer->len,
716                         xfer->tx_buf, xfer->tx_dma,
717                         xfer->rx_buf, xfer->rx_dma);
718         }
719 #endif
720
721         msg->status = -EINPROGRESS;
722         msg->actual_length = 0;
723
724         spin_lock_irqsave(&as->lock, flags);
725         list_add_tail(&msg->queue, &as->queue);
726         if (!as->current_transfer)
727                 atmel_spi_next_message(spi->master);
728         spin_unlock_irqrestore(&as->lock, flags);
729
730         return 0;
731 }
732
733 static void atmel_spi_cleanup(struct spi_device *spi)
734 {
735         struct atmel_spi        *as = spi_master_get_devdata(spi->master);
736         struct atmel_spi_device *asd = spi->controller_state;
737         unsigned                gpio = (unsigned) spi->controller_data;
738         unsigned long           flags;
739
740         if (!asd)
741                 return;
742
743         spin_lock_irqsave(&as->lock, flags);
744         if (as->stay == spi) {
745                 as->stay = NULL;
746                 cs_deactivate(as, spi);
747         }
748         spin_unlock_irqrestore(&as->lock, flags);
749
750         spi->controller_state = NULL;
751         gpio_free(gpio);
752         kfree(asd);
753 }
754
755 /*-------------------------------------------------------------------------*/
756
757 static int __init atmel_spi_probe(struct platform_device *pdev)
758 {
759         struct resource         *regs;
760         int                     irq;
761         struct clk              *clk;
762         int                     ret;
763         struct spi_master       *master;
764         struct atmel_spi        *as;
765
766         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
767         if (!regs)
768                 return -ENXIO;
769
770         irq = platform_get_irq(pdev, 0);
771         if (irq < 0)
772                 return irq;
773
774         clk = clk_get(&pdev->dev, "spi_clk");
775         if (IS_ERR(clk))
776                 return PTR_ERR(clk);
777
778         /* setup spi core then atmel-specific driver state */
779         ret = -ENOMEM;
780         master = spi_alloc_master(&pdev->dev, sizeof *as);
781         if (!master)
782                 goto out_free;
783
784         /* the spi->mode bits understood by this driver: */
785         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
786
787         master->bus_num = pdev->id;
788         master->num_chipselect = 4;
789         master->setup = atmel_spi_setup;
790         master->transfer = atmel_spi_transfer;
791         master->cleanup = atmel_spi_cleanup;
792         platform_set_drvdata(pdev, master);
793
794         as = spi_master_get_devdata(master);
795
796         /*
797          * Scratch buffer is used for throwaway rx and tx data.
798          * It's coherent to minimize dcache pollution.
799          */
800         as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
801                                         &as->buffer_dma, GFP_KERNEL);
802         if (!as->buffer)
803                 goto out_free;
804
805         spin_lock_init(&as->lock);
806         INIT_LIST_HEAD(&as->queue);
807         as->pdev = pdev;
808         as->regs = ioremap(regs->start, resource_size(regs));
809         if (!as->regs)
810                 goto out_free_buffer;
811         as->irq = irq;
812         as->clk = clk;
813
814         ret = request_irq(irq, atmel_spi_interrupt, 0,
815                         dev_name(&pdev->dev), master);
816         if (ret)
817                 goto out_unmap_regs;
818
819         /* Initialize the hardware */
820         clk_enable(clk);
821         spi_writel(as, CR, SPI_BIT(SWRST));
822         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
823         spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
824         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
825         spi_writel(as, CR, SPI_BIT(SPIEN));
826
827         /* go! */
828         dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
829                         (unsigned long)regs->start, irq);
830
831         ret = spi_register_master(master);
832         if (ret)
833                 goto out_reset_hw;
834
835         return 0;
836
837 out_reset_hw:
838         spi_writel(as, CR, SPI_BIT(SWRST));
839         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
840         clk_disable(clk);
841         free_irq(irq, master);
842 out_unmap_regs:
843         iounmap(as->regs);
844 out_free_buffer:
845         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
846                         as->buffer_dma);
847 out_free:
848         clk_put(clk);
849         spi_master_put(master);
850         return ret;
851 }
852
853 static int __exit atmel_spi_remove(struct platform_device *pdev)
854 {
855         struct spi_master       *master = platform_get_drvdata(pdev);
856         struct atmel_spi        *as = spi_master_get_devdata(master);
857         struct spi_message      *msg;
858
859         /* reset the hardware and block queue progress */
860         spin_lock_irq(&as->lock);
861         as->stopping = 1;
862         spi_writel(as, CR, SPI_BIT(SWRST));
863         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
864         spi_readl(as, SR);
865         spin_unlock_irq(&as->lock);
866
867         /* Terminate remaining queued transfers */
868         list_for_each_entry(msg, &as->queue, queue) {
869                 /* REVISIT unmapping the dma is a NOP on ARM and AVR32
870                  * but we shouldn't depend on that...
871                  */
872                 msg->status = -ESHUTDOWN;
873                 msg->complete(msg->context);
874         }
875
876         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
877                         as->buffer_dma);
878
879         clk_disable(as->clk);
880         clk_put(as->clk);
881         free_irq(as->irq, master);
882         iounmap(as->regs);
883
884         spi_unregister_master(master);
885
886         return 0;
887 }
888
889 #ifdef  CONFIG_PM
890
891 static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
892 {
893         struct spi_master       *master = platform_get_drvdata(pdev);
894         struct atmel_spi        *as = spi_master_get_devdata(master);
895
896         clk_disable(as->clk);
897         return 0;
898 }
899
900 static int atmel_spi_resume(struct platform_device *pdev)
901 {
902         struct spi_master       *master = platform_get_drvdata(pdev);
903         struct atmel_spi        *as = spi_master_get_devdata(master);
904
905         clk_enable(as->clk);
906         return 0;
907 }
908
909 #else
910 #define atmel_spi_suspend       NULL
911 #define atmel_spi_resume        NULL
912 #endif
913
914
915 static struct platform_driver atmel_spi_driver = {
916         .driver         = {
917                 .name   = "atmel_spi",
918                 .owner  = THIS_MODULE,
919         },
920         .suspend        = atmel_spi_suspend,
921         .resume         = atmel_spi_resume,
922         .remove         = __exit_p(atmel_spi_remove),
923 };
924
925 static int __init atmel_spi_init(void)
926 {
927         return platform_driver_probe(&atmel_spi_driver, atmel_spi_probe);
928 }
929 module_init(atmel_spi_init);
930
931 static void __exit atmel_spi_exit(void)
932 {
933         platform_driver_unregister(&atmel_spi_driver);
934 }
935 module_exit(atmel_spi_exit);
936
937 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
938 MODULE_AUTHOR("Haavard Skinnemoen <hskinnemoen@atmel.com>");
939 MODULE_LICENSE("GPL");
940 MODULE_ALIAS("platform:atmel_spi");