]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/spi/spi-sun4i.c
Merge remote-tracking branch 'device-mapper/for-next'
[karo-tx-linux.git] / drivers / spi / spi-sun4i.c
1 /*
2  * Copyright (C) 2012 - 2014 Allwinner Tech
3  * Pan Nan <pannan@allwinnertech.com>
4  *
5  * Copyright (C) 2014 Maxime Ripard
6  * Maxime Ripard <maxime.ripard@free-electrons.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  */
13
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22
23 #include <linux/spi/spi.h>
24
25 #define SUN4I_FIFO_DEPTH                64
26
27 #define SUN4I_RXDATA_REG                0x00
28
29 #define SUN4I_TXDATA_REG                0x04
30
31 #define SUN4I_CTL_REG                   0x08
32 #define SUN4I_CTL_ENABLE                        BIT(0)
33 #define SUN4I_CTL_MASTER                        BIT(1)
34 #define SUN4I_CTL_CPHA                          BIT(2)
35 #define SUN4I_CTL_CPOL                          BIT(3)
36 #define SUN4I_CTL_CS_ACTIVE_LOW                 BIT(4)
37 #define SUN4I_CTL_LMTF                          BIT(6)
38 #define SUN4I_CTL_TF_RST                        BIT(8)
39 #define SUN4I_CTL_RF_RST                        BIT(9)
40 #define SUN4I_CTL_XCH                           BIT(10)
41 #define SUN4I_CTL_CS_MASK                       0x3000
42 #define SUN4I_CTL_CS(cs)                        (((cs) << 12) & SUN4I_CTL_CS_MASK)
43 #define SUN4I_CTL_DHB                           BIT(15)
44 #define SUN4I_CTL_CS_MANUAL                     BIT(16)
45 #define SUN4I_CTL_CS_LEVEL                      BIT(17)
46 #define SUN4I_CTL_TP                            BIT(18)
47
48 #define SUN4I_INT_CTL_REG               0x0c
49 #define SUN4I_INT_CTL_TC                        BIT(16)
50
51 #define SUN4I_INT_STA_REG               0x10
52
53 #define SUN4I_DMA_CTL_REG               0x14
54
55 #define SUN4I_WAIT_REG                  0x18
56
57 #define SUN4I_CLK_CTL_REG               0x1c
58 #define SUN4I_CLK_CTL_CDR2_MASK                 0xff
59 #define SUN4I_CLK_CTL_CDR2(div)                 ((div) & SUN4I_CLK_CTL_CDR2_MASK)
60 #define SUN4I_CLK_CTL_CDR1_MASK                 0xf
61 #define SUN4I_CLK_CTL_CDR1(div)                 (((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
62 #define SUN4I_CLK_CTL_DRS                       BIT(12)
63
64 #define SUN4I_BURST_CNT_REG             0x20
65 #define SUN4I_BURST_CNT(cnt)                    ((cnt) & 0xffffff)
66
67 #define SUN4I_XMIT_CNT_REG              0x24
68 #define SUN4I_XMIT_CNT(cnt)                     ((cnt) & 0xffffff)
69
70 #define SUN4I_FIFO_STA_REG              0x28
71 #define SUN4I_FIFO_STA_RF_CNT_MASK              0x7f
72 #define SUN4I_FIFO_STA_RF_CNT_BITS              0
73 #define SUN4I_FIFO_STA_TF_CNT_MASK              0x7f
74 #define SUN4I_FIFO_STA_TF_CNT_BITS              16
75
76 struct sun4i_spi {
77         struct spi_master       *master;
78         void __iomem            *base_addr;
79         struct clk              *hclk;
80         struct clk              *mclk;
81
82         struct completion       done;
83
84         const u8                *tx_buf;
85         u8                      *rx_buf;
86         int                     len;
87 };
88
89 static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg)
90 {
91         return readl(sspi->base_addr + reg);
92 }
93
94 static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
95 {
96         writel(value, sspi->base_addr + reg);
97 }
98
99 static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
100 {
101         u32 reg, cnt;
102         u8 byte;
103
104         /* See how much data is available */
105         reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
106         reg &= SUN4I_FIFO_STA_RF_CNT_MASK;
107         cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS;
108
109         if (len > cnt)
110                 len = cnt;
111
112         while (len--) {
113                 byte = readb(sspi->base_addr + SUN4I_RXDATA_REG);
114                 if (sspi->rx_buf)
115                         *sspi->rx_buf++ = byte;
116         }
117 }
118
119 static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
120 {
121         u8 byte;
122
123         if (len > sspi->len)
124                 len = sspi->len;
125
126         while (len--) {
127                 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
128                 writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG);
129                 sspi->len--;
130         }
131 }
132
133 static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
134 {
135         struct sun4i_spi *sspi = spi_master_get_devdata(spi->master);
136         u32 reg;
137
138         reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
139
140         reg &= ~SUN4I_CTL_CS_MASK;
141         reg |= SUN4I_CTL_CS(spi->chip_select);
142
143         /* We want to control the chip select manually */
144         reg |= SUN4I_CTL_CS_MANUAL;
145
146         if (enable)
147                 reg |= SUN4I_CTL_CS_LEVEL;
148         else
149                 reg &= ~SUN4I_CTL_CS_LEVEL;
150
151         /*
152          * Even though this looks irrelevant since we are supposed to
153          * be controlling the chip select manually, this bit also
154          * controls the levels of the chip select for inactive
155          * devices.
156          *
157          * If we don't set it, the chip select level will go low by
158          * default when the device is idle, which is not really
159          * expected in the common case where the chip select is active
160          * low.
161          */
162         if (spi->mode & SPI_CS_HIGH)
163                 reg &= ~SUN4I_CTL_CS_ACTIVE_LOW;
164         else
165                 reg |= SUN4I_CTL_CS_ACTIVE_LOW;
166
167         sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
168 }
169
170 static int sun4i_spi_transfer_one(struct spi_master *master,
171                                   struct spi_device *spi,
172                                   struct spi_transfer *tfr)
173 {
174         struct sun4i_spi *sspi = spi_master_get_devdata(master);
175         unsigned int mclk_rate, div, timeout;
176         unsigned int tx_len = 0;
177         int ret = 0;
178         u32 reg;
179
180         /* We don't support transfer larger than the FIFO */
181         if (tfr->len > SUN4I_FIFO_DEPTH)
182                 return -EINVAL;
183
184         reinit_completion(&sspi->done);
185         sspi->tx_buf = tfr->tx_buf;
186         sspi->rx_buf = tfr->rx_buf;
187         sspi->len = tfr->len;
188
189         /* Clear pending interrupts */
190         sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0);
191
192
193         reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
194
195         /* Reset FIFOs */
196         sun4i_spi_write(sspi, SUN4I_CTL_REG,
197                         reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST);
198
199         /*
200          * Setup the transfer control register: Chip Select,
201          * polarities, etc.
202          */
203         if (spi->mode & SPI_CPOL)
204                 reg |= SUN4I_CTL_CPOL;
205         else
206                 reg &= ~SUN4I_CTL_CPOL;
207
208         if (spi->mode & SPI_CPHA)
209                 reg |= SUN4I_CTL_CPHA;
210         else
211                 reg &= ~SUN4I_CTL_CPHA;
212
213         if (spi->mode & SPI_LSB_FIRST)
214                 reg |= SUN4I_CTL_LMTF;
215         else
216                 reg &= ~SUN4I_CTL_LMTF;
217
218
219         /*
220          * If it's a TX only transfer, we don't want to fill the RX
221          * FIFO with bogus data
222          */
223         if (sspi->rx_buf)
224                 reg &= ~SUN4I_CTL_DHB;
225         else
226                 reg |= SUN4I_CTL_DHB;
227
228         sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
229
230         /* Ensure that we have a parent clock fast enough */
231         mclk_rate = clk_get_rate(sspi->mclk);
232         if (mclk_rate < (2 * tfr->speed_hz)) {
233                 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
234                 mclk_rate = clk_get_rate(sspi->mclk);
235         }
236
237         /*
238          * Setup clock divider.
239          *
240          * We have two choices there. Either we can use the clock
241          * divide rate 1, which is calculated thanks to this formula:
242          * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
243          * Or we can use CDR2, which is calculated with the formula:
244          * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
245          * Wether we use the former or the latter is set through the
246          * DRS bit.
247          *
248          * First try CDR2, and if we can't reach the expected
249          * frequency, fall back to CDR1.
250          */
251         div = mclk_rate / (2 * tfr->speed_hz);
252         if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
253                 if (div > 0)
254                         div--;
255
256                 reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
257         } else {
258                 div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
259                 reg = SUN4I_CLK_CTL_CDR1(div);
260         }
261
262         sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg);
263
264         /* Setup the transfer now... */
265         if (sspi->tx_buf)
266                 tx_len = tfr->len;
267
268         /* Setup the counters */
269         sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len));
270         sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len));
271
272         /* Fill the TX FIFO */
273         sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH);
274
275         /* Enable the interrupts */
276         sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, SUN4I_INT_CTL_TC);
277
278         /* Start the transfer */
279         reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
280         sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH);
281
282         timeout = wait_for_completion_timeout(&sspi->done,
283                                               msecs_to_jiffies(1000));
284         if (!timeout) {
285                 ret = -ETIMEDOUT;
286                 goto out;
287         }
288
289         sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
290
291 out:
292         sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
293
294         return ret;
295 }
296
297 static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
298 {
299         struct sun4i_spi *sspi = dev_id;
300         u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG);
301
302         /* Transfer complete */
303         if (status & SUN4I_INT_CTL_TC) {
304                 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
305                 complete(&sspi->done);
306                 return IRQ_HANDLED;
307         }
308
309         return IRQ_NONE;
310 }
311
312 static int sun4i_spi_runtime_resume(struct device *dev)
313 {
314         struct spi_master *master = dev_get_drvdata(dev);
315         struct sun4i_spi *sspi = spi_master_get_devdata(master);
316         int ret;
317
318         ret = clk_prepare_enable(sspi->hclk);
319         if (ret) {
320                 dev_err(dev, "Couldn't enable AHB clock\n");
321                 goto out;
322         }
323
324         ret = clk_prepare_enable(sspi->mclk);
325         if (ret) {
326                 dev_err(dev, "Couldn't enable module clock\n");
327                 goto err;
328         }
329
330         sun4i_spi_write(sspi, SUN4I_CTL_REG,
331                         SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP);
332
333         return 0;
334
335 err:
336         clk_disable_unprepare(sspi->hclk);
337 out:
338         return ret;
339 }
340
341 static int sun4i_spi_runtime_suspend(struct device *dev)
342 {
343         struct spi_master *master = dev_get_drvdata(dev);
344         struct sun4i_spi *sspi = spi_master_get_devdata(master);
345
346         clk_disable_unprepare(sspi->mclk);
347         clk_disable_unprepare(sspi->hclk);
348
349         return 0;
350 }
351
352 static int sun4i_spi_probe(struct platform_device *pdev)
353 {
354         struct spi_master *master;
355         struct sun4i_spi *sspi;
356         struct resource *res;
357         int ret = 0, irq;
358
359         master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi));
360         if (!master) {
361                 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
362                 return -ENOMEM;
363         }
364
365         platform_set_drvdata(pdev, master);
366         sspi = spi_master_get_devdata(master);
367
368         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
369         sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
370         if (IS_ERR(sspi->base_addr)) {
371                 ret = PTR_ERR(sspi->base_addr);
372                 goto err_free_master;
373         }
374
375         irq = platform_get_irq(pdev, 0);
376         if (irq < 0) {
377                 dev_err(&pdev->dev, "No spi IRQ specified\n");
378                 ret = -ENXIO;
379                 goto err_free_master;
380         }
381
382         ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler,
383                                0, "sun4i-spi", sspi);
384         if (ret) {
385                 dev_err(&pdev->dev, "Cannot request IRQ\n");
386                 goto err_free_master;
387         }
388
389         sspi->master = master;
390         master->set_cs = sun4i_spi_set_cs;
391         master->transfer_one = sun4i_spi_transfer_one;
392         master->num_chipselect = 4;
393         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
394         master->bits_per_word_mask = SPI_BPW_MASK(8);
395         master->dev.of_node = pdev->dev.of_node;
396         master->auto_runtime_pm = true;
397
398         sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
399         if (IS_ERR(sspi->hclk)) {
400                 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
401                 ret = PTR_ERR(sspi->hclk);
402                 goto err_free_master;
403         }
404
405         sspi->mclk = devm_clk_get(&pdev->dev, "mod");
406         if (IS_ERR(sspi->mclk)) {
407                 dev_err(&pdev->dev, "Unable to acquire module clock\n");
408                 ret = PTR_ERR(sspi->mclk);
409                 goto err_free_master;
410         }
411
412         init_completion(&sspi->done);
413
414         /*
415          * This wake-up/shutdown pattern is to be able to have the
416          * device woken up, even if runtime_pm is disabled
417          */
418         ret = sun4i_spi_runtime_resume(&pdev->dev);
419         if (ret) {
420                 dev_err(&pdev->dev, "Couldn't resume the device\n");
421                 goto err_free_master;
422         }
423
424         pm_runtime_set_active(&pdev->dev);
425         pm_runtime_enable(&pdev->dev);
426         pm_runtime_idle(&pdev->dev);
427
428         ret = devm_spi_register_master(&pdev->dev, master);
429         if (ret) {
430                 dev_err(&pdev->dev, "cannot register SPI master\n");
431                 goto err_pm_disable;
432         }
433
434         return 0;
435
436 err_pm_disable:
437         pm_runtime_disable(&pdev->dev);
438         sun4i_spi_runtime_suspend(&pdev->dev);
439 err_free_master:
440         spi_master_put(master);
441         return ret;
442 }
443
444 static int sun4i_spi_remove(struct platform_device *pdev)
445 {
446         pm_runtime_disable(&pdev->dev);
447
448         return 0;
449 }
450
451 static const struct of_device_id sun4i_spi_match[] = {
452         { .compatible = "allwinner,sun4i-a10-spi", },
453         {}
454 };
455 MODULE_DEVICE_TABLE(of, sun4i_spi_match);
456
457 static const struct dev_pm_ops sun4i_spi_pm_ops = {
458         .runtime_resume         = sun4i_spi_runtime_resume,
459         .runtime_suspend        = sun4i_spi_runtime_suspend,
460 };
461
462 static struct platform_driver sun4i_spi_driver = {
463         .probe  = sun4i_spi_probe,
464         .remove = sun4i_spi_remove,
465         .driver = {
466                 .name           = "sun4i-spi",
467                 .of_match_table = sun4i_spi_match,
468                 .pm             = &sun4i_spi_pm_ops,
469         },
470 };
471 module_platform_driver(sun4i_spi_driver);
472
473 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
474 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
475 MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
476 MODULE_LICENSE("GPL");