]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/spi/spi-sun4i.c
Merge remote-tracking branch 'asoc/fix/dapm' into asoc-linus
[karo-tx-linux.git] / drivers / spi / spi-sun4i.c
1 /*
2  * Copyright (C) 2012 - 2014 Allwinner Tech
3  * Pan Nan <pannan@allwinnertech.com>
4  *
5  * Copyright (C) 2014 Maxime Ripard
6  * Maxime Ripard <maxime.ripard@free-electrons.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  */
13
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22
23 #include <linux/spi/spi.h>
24
25 #define SUN4I_FIFO_DEPTH                64
26
27 #define SUN4I_RXDATA_REG                0x00
28
29 #define SUN4I_TXDATA_REG                0x04
30
31 #define SUN4I_CTL_REG                   0x08
32 #define SUN4I_CTL_ENABLE                        BIT(0)
33 #define SUN4I_CTL_MASTER                        BIT(1)
34 #define SUN4I_CTL_CPHA                          BIT(2)
35 #define SUN4I_CTL_CPOL                          BIT(3)
36 #define SUN4I_CTL_CS_ACTIVE_LOW                 BIT(4)
37 #define SUN4I_CTL_LMTF                          BIT(6)
38 #define SUN4I_CTL_TF_RST                        BIT(8)
39 #define SUN4I_CTL_RF_RST                        BIT(9)
40 #define SUN4I_CTL_XCH                           BIT(10)
41 #define SUN4I_CTL_CS_MASK                       0x3000
42 #define SUN4I_CTL_CS(cs)                        (((cs) << 12) & SUN4I_CTL_CS_MASK)
43 #define SUN4I_CTL_DHB                           BIT(15)
44 #define SUN4I_CTL_CS_MANUAL                     BIT(16)
45 #define SUN4I_CTL_CS_LEVEL                      BIT(17)
46 #define SUN4I_CTL_TP                            BIT(18)
47
48 #define SUN4I_INT_CTL_REG               0x0c
49 #define SUN4I_INT_CTL_TC                        BIT(16)
50
51 #define SUN4I_INT_STA_REG               0x10
52
53 #define SUN4I_DMA_CTL_REG               0x14
54
55 #define SUN4I_WAIT_REG                  0x18
56
57 #define SUN4I_CLK_CTL_REG               0x1c
58 #define SUN4I_CLK_CTL_CDR2_MASK                 0xff
59 #define SUN4I_CLK_CTL_CDR2(div)                 ((div) & SUN4I_CLK_CTL_CDR2_MASK)
60 #define SUN4I_CLK_CTL_CDR1_MASK                 0xf
61 #define SUN4I_CLK_CTL_CDR1(div)                 (((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
62 #define SUN4I_CLK_CTL_DRS                       BIT(12)
63
64 #define SUN4I_BURST_CNT_REG             0x20
65 #define SUN4I_BURST_CNT(cnt)                    ((cnt) & 0xffffff)
66
67 #define SUN4I_XMIT_CNT_REG              0x24
68 #define SUN4I_XMIT_CNT(cnt)                     ((cnt) & 0xffffff)
69
70 #define SUN4I_FIFO_STA_REG              0x28
71 #define SUN4I_FIFO_STA_RF_CNT_MASK              0x7f
72 #define SUN4I_FIFO_STA_RF_CNT_BITS              0
73 #define SUN4I_FIFO_STA_TF_CNT_MASK              0x7f
74 #define SUN4I_FIFO_STA_TF_CNT_BITS              16
75
76 struct sun4i_spi {
77         struct spi_master       *master;
78         void __iomem            *base_addr;
79         struct clk              *hclk;
80         struct clk              *mclk;
81
82         struct completion       done;
83
84         const u8                *tx_buf;
85         u8                      *rx_buf;
86         int                     len;
87 };
88
89 static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg)
90 {
91         return readl(sspi->base_addr + reg);
92 }
93
94 static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
95 {
96         writel(value, sspi->base_addr + reg);
97 }
98
99 static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
100 {
101         u32 reg, cnt;
102         u8 byte;
103
104         /* See how much data is available */
105         reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
106         reg &= SUN4I_FIFO_STA_RF_CNT_MASK;
107         cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS;
108
109         if (len > cnt)
110                 len = cnt;
111
112         while (len--) {
113                 byte = readb(sspi->base_addr + SUN4I_RXDATA_REG);
114                 if (sspi->rx_buf)
115                         *sspi->rx_buf++ = byte;
116         }
117 }
118
119 static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
120 {
121         u8 byte;
122
123         if (len > sspi->len)
124                 len = sspi->len;
125
126         while (len--) {
127                 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
128                 writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG);
129                 sspi->len--;
130         }
131 }
132
133 static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
134 {
135         struct sun4i_spi *sspi = spi_master_get_devdata(spi->master);
136         u32 reg;
137
138         reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
139
140         reg &= ~SUN4I_CTL_CS_MASK;
141         reg |= SUN4I_CTL_CS(spi->chip_select);
142
143         /* We want to control the chip select manually */
144         reg |= SUN4I_CTL_CS_MANUAL;
145
146         if (enable)
147                 reg |= SUN4I_CTL_CS_LEVEL;
148         else
149                 reg &= ~SUN4I_CTL_CS_LEVEL;
150
151         /*
152          * Even though this looks irrelevant since we are supposed to
153          * be controlling the chip select manually, this bit also
154          * controls the levels of the chip select for inactive
155          * devices.
156          *
157          * If we don't set it, the chip select level will go low by
158          * default when the device is idle, which is not really
159          * expected in the common case where the chip select is active
160          * low.
161          */
162         if (spi->mode & SPI_CS_HIGH)
163                 reg &= ~SUN4I_CTL_CS_ACTIVE_LOW;
164         else
165                 reg |= SUN4I_CTL_CS_ACTIVE_LOW;
166
167         sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
168 }
169
170 static size_t sun4i_spi_max_transfer_size(struct spi_device *spi)
171 {
172         return SUN4I_FIFO_DEPTH - 1;
173 }
174
175 static int sun4i_spi_transfer_one(struct spi_master *master,
176                                   struct spi_device *spi,
177                                   struct spi_transfer *tfr)
178 {
179         struct sun4i_spi *sspi = spi_master_get_devdata(master);
180         unsigned int mclk_rate, div, timeout;
181         unsigned int start, end, tx_time;
182         unsigned int tx_len = 0;
183         int ret = 0;
184         u32 reg;
185
186         /* We don't support transfer larger than the FIFO */
187         if (tfr->len > SUN4I_FIFO_DEPTH)
188                 return -EMSGSIZE;
189
190         if (tfr->tx_buf && tfr->len >= SUN4I_FIFO_DEPTH)
191                 return -EMSGSIZE;
192
193         reinit_completion(&sspi->done);
194         sspi->tx_buf = tfr->tx_buf;
195         sspi->rx_buf = tfr->rx_buf;
196         sspi->len = tfr->len;
197
198         /* Clear pending interrupts */
199         sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0);
200
201
202         reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
203
204         /* Reset FIFOs */
205         sun4i_spi_write(sspi, SUN4I_CTL_REG,
206                         reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST);
207
208         /*
209          * Setup the transfer control register: Chip Select,
210          * polarities, etc.
211          */
212         if (spi->mode & SPI_CPOL)
213                 reg |= SUN4I_CTL_CPOL;
214         else
215                 reg &= ~SUN4I_CTL_CPOL;
216
217         if (spi->mode & SPI_CPHA)
218                 reg |= SUN4I_CTL_CPHA;
219         else
220                 reg &= ~SUN4I_CTL_CPHA;
221
222         if (spi->mode & SPI_LSB_FIRST)
223                 reg |= SUN4I_CTL_LMTF;
224         else
225                 reg &= ~SUN4I_CTL_LMTF;
226
227
228         /*
229          * If it's a TX only transfer, we don't want to fill the RX
230          * FIFO with bogus data
231          */
232         if (sspi->rx_buf)
233                 reg &= ~SUN4I_CTL_DHB;
234         else
235                 reg |= SUN4I_CTL_DHB;
236
237         sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
238
239         /* Ensure that we have a parent clock fast enough */
240         mclk_rate = clk_get_rate(sspi->mclk);
241         if (mclk_rate < (2 * tfr->speed_hz)) {
242                 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
243                 mclk_rate = clk_get_rate(sspi->mclk);
244         }
245
246         /*
247          * Setup clock divider.
248          *
249          * We have two choices there. Either we can use the clock
250          * divide rate 1, which is calculated thanks to this formula:
251          * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
252          * Or we can use CDR2, which is calculated with the formula:
253          * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
254          * Wether we use the former or the latter is set through the
255          * DRS bit.
256          *
257          * First try CDR2, and if we can't reach the expected
258          * frequency, fall back to CDR1.
259          */
260         div = mclk_rate / (2 * tfr->speed_hz);
261         if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
262                 if (div > 0)
263                         div--;
264
265                 reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
266         } else {
267                 div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
268                 reg = SUN4I_CLK_CTL_CDR1(div);
269         }
270
271         sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg);
272
273         /* Setup the transfer now... */
274         if (sspi->tx_buf)
275                 tx_len = tfr->len;
276
277         /* Setup the counters */
278         sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len));
279         sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len));
280
281         /*
282          * Fill the TX FIFO
283          * Filling the FIFO fully causes timeout for some reason
284          * at least on spi2 on A10s
285          */
286         sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH - 1);
287
288         /* Enable the interrupts */
289         sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, SUN4I_INT_CTL_TC);
290
291         /* Start the transfer */
292         reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
293         sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH);
294
295         tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
296         start = jiffies;
297         timeout = wait_for_completion_timeout(&sspi->done,
298                                               msecs_to_jiffies(tx_time));
299         end = jiffies;
300         if (!timeout) {
301                 dev_warn(&master->dev,
302                          "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
303                          dev_name(&spi->dev), tfr->len, tfr->speed_hz,
304                          jiffies_to_msecs(end - start), tx_time);
305                 ret = -ETIMEDOUT;
306                 goto out;
307         }
308
309         sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
310
311 out:
312         sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
313
314         return ret;
315 }
316
317 static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
318 {
319         struct sun4i_spi *sspi = dev_id;
320         u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG);
321
322         /* Transfer complete */
323         if (status & SUN4I_INT_CTL_TC) {
324                 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
325                 complete(&sspi->done);
326                 return IRQ_HANDLED;
327         }
328
329         return IRQ_NONE;
330 }
331
332 static int sun4i_spi_runtime_resume(struct device *dev)
333 {
334         struct spi_master *master = dev_get_drvdata(dev);
335         struct sun4i_spi *sspi = spi_master_get_devdata(master);
336         int ret;
337
338         ret = clk_prepare_enable(sspi->hclk);
339         if (ret) {
340                 dev_err(dev, "Couldn't enable AHB clock\n");
341                 goto out;
342         }
343
344         ret = clk_prepare_enable(sspi->mclk);
345         if (ret) {
346                 dev_err(dev, "Couldn't enable module clock\n");
347                 goto err;
348         }
349
350         sun4i_spi_write(sspi, SUN4I_CTL_REG,
351                         SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP);
352
353         return 0;
354
355 err:
356         clk_disable_unprepare(sspi->hclk);
357 out:
358         return ret;
359 }
360
361 static int sun4i_spi_runtime_suspend(struct device *dev)
362 {
363         struct spi_master *master = dev_get_drvdata(dev);
364         struct sun4i_spi *sspi = spi_master_get_devdata(master);
365
366         clk_disable_unprepare(sspi->mclk);
367         clk_disable_unprepare(sspi->hclk);
368
369         return 0;
370 }
371
372 static int sun4i_spi_probe(struct platform_device *pdev)
373 {
374         struct spi_master *master;
375         struct sun4i_spi *sspi;
376         struct resource *res;
377         int ret = 0, irq;
378
379         master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi));
380         if (!master) {
381                 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
382                 return -ENOMEM;
383         }
384
385         platform_set_drvdata(pdev, master);
386         sspi = spi_master_get_devdata(master);
387
388         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
389         sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
390         if (IS_ERR(sspi->base_addr)) {
391                 ret = PTR_ERR(sspi->base_addr);
392                 goto err_free_master;
393         }
394
395         irq = platform_get_irq(pdev, 0);
396         if (irq < 0) {
397                 dev_err(&pdev->dev, "No spi IRQ specified\n");
398                 ret = -ENXIO;
399                 goto err_free_master;
400         }
401
402         ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler,
403                                0, "sun4i-spi", sspi);
404         if (ret) {
405                 dev_err(&pdev->dev, "Cannot request IRQ\n");
406                 goto err_free_master;
407         }
408
409         sspi->master = master;
410         master->max_speed_hz = 100 * 1000 * 1000;
411         master->min_speed_hz = 3 * 1000;
412         master->set_cs = sun4i_spi_set_cs;
413         master->transfer_one = sun4i_spi_transfer_one;
414         master->num_chipselect = 4;
415         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
416         master->bits_per_word_mask = SPI_BPW_MASK(8);
417         master->dev.of_node = pdev->dev.of_node;
418         master->auto_runtime_pm = true;
419         master->max_transfer_size = sun4i_spi_max_transfer_size;
420
421         sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
422         if (IS_ERR(sspi->hclk)) {
423                 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
424                 ret = PTR_ERR(sspi->hclk);
425                 goto err_free_master;
426         }
427
428         sspi->mclk = devm_clk_get(&pdev->dev, "mod");
429         if (IS_ERR(sspi->mclk)) {
430                 dev_err(&pdev->dev, "Unable to acquire module clock\n");
431                 ret = PTR_ERR(sspi->mclk);
432                 goto err_free_master;
433         }
434
435         init_completion(&sspi->done);
436
437         /*
438          * This wake-up/shutdown pattern is to be able to have the
439          * device woken up, even if runtime_pm is disabled
440          */
441         ret = sun4i_spi_runtime_resume(&pdev->dev);
442         if (ret) {
443                 dev_err(&pdev->dev, "Couldn't resume the device\n");
444                 goto err_free_master;
445         }
446
447         pm_runtime_set_active(&pdev->dev);
448         pm_runtime_enable(&pdev->dev);
449         pm_runtime_idle(&pdev->dev);
450
451         ret = devm_spi_register_master(&pdev->dev, master);
452         if (ret) {
453                 dev_err(&pdev->dev, "cannot register SPI master\n");
454                 goto err_pm_disable;
455         }
456
457         return 0;
458
459 err_pm_disable:
460         pm_runtime_disable(&pdev->dev);
461         sun4i_spi_runtime_suspend(&pdev->dev);
462 err_free_master:
463         spi_master_put(master);
464         return ret;
465 }
466
467 static int sun4i_spi_remove(struct platform_device *pdev)
468 {
469         pm_runtime_disable(&pdev->dev);
470
471         return 0;
472 }
473
474 static const struct of_device_id sun4i_spi_match[] = {
475         { .compatible = "allwinner,sun4i-a10-spi", },
476         {}
477 };
478 MODULE_DEVICE_TABLE(of, sun4i_spi_match);
479
480 static const struct dev_pm_ops sun4i_spi_pm_ops = {
481         .runtime_resume         = sun4i_spi_runtime_resume,
482         .runtime_suspend        = sun4i_spi_runtime_suspend,
483 };
484
485 static struct platform_driver sun4i_spi_driver = {
486         .probe  = sun4i_spi_probe,
487         .remove = sun4i_spi_remove,
488         .driver = {
489                 .name           = "sun4i-spi",
490                 .of_match_table = sun4i_spi_match,
491                 .pm             = &sun4i_spi_pm_ops,
492         },
493 };
494 module_platform_driver(sun4i_spi_driver);
495
496 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
497 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
498 MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
499 MODULE_LICENSE("GPL");