]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/staging/et131x/et131x.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless
[karo-tx-linux.git] / drivers / staging / et131x / et131x.c
1 /*
2  * Agere Systems Inc.
3  * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
4  *
5  * Copyright © 2005 Agere Systems Inc.
6  * All rights reserved.
7  *   http://www.agere.com
8  *
9  * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
10  *
11  *------------------------------------------------------------------------------
12  *
13  * SOFTWARE LICENSE
14  *
15  * This software is provided subject to the following terms and conditions,
16  * which you should read carefully before using the software.  Using this
17  * software indicates your acceptance of these terms and conditions.  If you do
18  * not agree with these terms and conditions, do not use the software.
19  *
20  * Copyright © 2005 Agere Systems Inc.
21  * All rights reserved.
22  *
23  * Redistribution and use in source or binary forms, with or without
24  * modifications, are permitted provided that the following conditions are met:
25  *
26  * . Redistributions of source code must retain the above copyright notice, this
27  *    list of conditions and the following Disclaimer as comments in the code as
28  *    well as in the documentation and/or other materials provided with the
29  *    distribution.
30  *
31  * . Redistributions in binary form must reproduce the above copyright notice,
32  *    this list of conditions and the following Disclaimer in the documentation
33  *    and/or other materials provided with the distribution.
34  *
35  * . Neither the name of Agere Systems Inc. nor the names of the contributors
36  *    may be used to endorse or promote products derived from this software
37  *    without specific prior written permission.
38  *
39  * Disclaimer
40  *
41  * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
42  * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
43  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
44  * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
45  * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
46  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
47  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
48  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
49  * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
50  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
51  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
52  * DAMAGE.
53  *
54  */
55
56 #include <linux/pci.h>
57 #include <linux/init.h>
58 #include <linux/module.h>
59 #include <linux/types.h>
60 #include <linux/kernel.h>
61
62 #include <linux/sched.h>
63 #include <linux/ptrace.h>
64 #include <linux/slab.h>
65 #include <linux/ctype.h>
66 #include <linux/string.h>
67 #include <linux/timer.h>
68 #include <linux/interrupt.h>
69 #include <linux/in.h>
70 #include <linux/delay.h>
71 #include <linux/bitops.h>
72 #include <linux/io.h>
73
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_arp.h>
78 #include <linux/ioport.h>
79 #include <linux/crc32.h>
80 #include <linux/random.h>
81 #include <linux/phy.h>
82
83 #include "et131x.h"
84
85 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
86 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
87 MODULE_LICENSE("Dual BSD/GPL");
88 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver "
89                    "for the ET1310 by Agere Systems");
90
91 /* EEPROM defines */
92 #define MAX_NUM_REGISTER_POLLS          1000
93 #define MAX_NUM_WRITE_RETRIES           2
94
95 /* MAC defines */
96 #define COUNTER_WRAP_16_BIT 0x10000
97 #define COUNTER_WRAP_12_BIT 0x1000
98
99 /* PCI defines */
100 #define INTERNAL_MEM_SIZE       0x400   /* 1024 of internal memory */
101 #define INTERNAL_MEM_RX_OFFSET  0x1FF   /* 50%   Tx, 50%   Rx */
102
103 /* ISR defines */
104 /*
105  * For interrupts, normal running is:
106  *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
107  *       watchdog_interrupt & txdma_xfer_done
108  *
109  * In both cases, when flow control is enabled for either Tx or bi-direction,
110  * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
111  * buffer rings are running low.
112  */
113 #define INT_MASK_DISABLE            0xffffffff
114
115 /* NOTE: Masking out MAC_STAT Interrupt for now...
116  * #define INT_MASK_ENABLE             0xfff6bf17
117  * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
118  */
119 #define INT_MASK_ENABLE             0xfffebf17
120 #define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
121
122 /* General defines */
123 /* Packet and header sizes */
124 #define NIC_MIN_PACKET_SIZE     60
125
126 /* Multicast list size */
127 #define NIC_MAX_MCAST_LIST      128
128
129 /* Supported Filters */
130 #define ET131X_PACKET_TYPE_DIRECTED             0x0001
131 #define ET131X_PACKET_TYPE_MULTICAST            0x0002
132 #define ET131X_PACKET_TYPE_BROADCAST            0x0004
133 #define ET131X_PACKET_TYPE_PROMISCUOUS          0x0008
134 #define ET131X_PACKET_TYPE_ALL_MULTICAST        0x0010
135
136 /* Tx Timeout */
137 #define ET131X_TX_TIMEOUT       (1 * HZ)
138 #define NIC_SEND_HANG_THRESHOLD 0
139
140 /* MP_TCB flags */
141 #define fMP_DEST_MULTI                  0x00000001
142 #define fMP_DEST_BROAD                  0x00000002
143
144 /* MP_ADAPTER flags */
145 #define fMP_ADAPTER_RECV_LOOKASIDE      0x00000004
146 #define fMP_ADAPTER_INTERRUPT_IN_USE    0x00000008
147
148 /* MP_SHARED flags */
149 #define fMP_ADAPTER_LOWER_POWER         0x00200000
150
151 #define fMP_ADAPTER_NON_RECOVER_ERROR   0x00800000
152 #define fMP_ADAPTER_HARDWARE_ERROR      0x04000000
153
154 #define fMP_ADAPTER_FAIL_SEND_MASK      0x3ff00000
155
156 /* Some offsets in PCI config space that are actually used. */
157 #define ET1310_PCI_MAC_ADDRESS          0xA4
158 #define ET1310_PCI_EEPROM_STATUS        0xB2
159 #define ET1310_PCI_ACK_NACK             0xC0
160 #define ET1310_PCI_REPLAY               0xC2
161 #define ET1310_PCI_L0L1LATENCY          0xCF
162
163 /* PCI Product IDs */
164 #define ET131X_PCI_DEVICE_ID_GIG        0xED00  /* ET1310 1000 Base-T 8 */
165 #define ET131X_PCI_DEVICE_ID_FAST       0xED01  /* ET1310 100  Base-T */
166
167 /* Define order of magnitude converter */
168 #define NANO_IN_A_MICRO 1000
169
170 #define PARM_RX_NUM_BUFS_DEF    4
171 #define PARM_RX_TIME_INT_DEF    10
172 #define PARM_RX_MEM_END_DEF     0x2bc
173 #define PARM_TX_TIME_INT_DEF    40
174 #define PARM_TX_NUM_BUFS_DEF    4
175 #define PARM_DMA_CACHE_DEF      0
176
177 /* RX defines */
178 #define USE_FBR0 1
179 #define FBR_CHUNKS 32
180 #define MAX_DESC_PER_RING_RX         1024
181
182 /* number of RFDs - default and min */
183 #ifdef USE_FBR0
184 #define RFD_LOW_WATER_MARK      40
185 #define NIC_DEFAULT_NUM_RFD     1024
186 #define NUM_FBRS                2
187 #else
188 #define RFD_LOW_WATER_MARK      20
189 #define NIC_DEFAULT_NUM_RFD     256
190 #define NUM_FBRS                1
191 #endif
192
193 #define NIC_MIN_NUM_RFD         64
194 #define NUM_PACKETS_HANDLED     256
195
196 #define ALCATEL_MULTICAST_PKT   0x01000000
197 #define ALCATEL_BROADCAST_PKT   0x02000000
198
199 /* typedefs for Free Buffer Descriptors */
200 struct fbr_desc {
201         u32 addr_lo;
202         u32 addr_hi;
203         u32 word2;              /* Bits 10-31 reserved, 0-9 descriptor */
204 };
205
206 /* Packet Status Ring Descriptors
207  *
208  * Word 0:
209  *
210  * top 16 bits are from the Alcatel Status Word as enumerated in
211  * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
212  *
213  * 0: hp                        hash pass
214  * 1: ipa                       IP checksum assist
215  * 2: ipp                       IP checksum pass
216  * 3: tcpa                      TCP checksum assist
217  * 4: tcpp                      TCP checksum pass
218  * 5: wol                       WOL Event
219  * 6: rxmac_error               RXMAC Error Indicator
220  * 7: drop                      Drop packet
221  * 8: ft                        Frame Truncated
222  * 9: jp                        Jumbo Packet
223  * 10: vp                       VLAN Packet
224  * 11-15: unused
225  * 16: asw_prev_pkt_dropped     e.g. IFG too small on previous
226  * 17: asw_RX_DV_event          short receive event detected
227  * 18: asw_false_carrier_event  bad carrier since last good packet
228  * 19: asw_code_err             one or more nibbles signalled as errors
229  * 20: asw_CRC_err              CRC error
230  * 21: asw_len_chk_err          frame length field incorrect
231  * 22: asw_too_long             frame length > 1518 bytes
232  * 23: asw_OK                   valid CRC + no code error
233  * 24: asw_multicast            has a multicast address
234  * 25: asw_broadcast            has a broadcast address
235  * 26: asw_dribble_nibble       spurious bits after EOP
236  * 27: asw_control_frame        is a control frame
237  * 28: asw_pause_frame          is a pause frame
238  * 29: asw_unsupported_op       unsupported OP code
239  * 30: asw_VLAN_tag             VLAN tag detected
240  * 31: asw_long_evt             Rx long event
241  *
242  * Word 1:
243  * 0-15: length                 length in bytes
244  * 16-25: bi                    Buffer Index
245  * 26-27: ri                    Ring Index
246  * 28-31: reserved
247  */
248
249 struct pkt_stat_desc {
250         u32 word0;
251         u32 word1;
252 };
253
254 /* Typedefs for the RX DMA status word */
255
256 /*
257  * rx status word 0 holds part of the status bits of the Rx DMA engine
258  * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
259  * which contains the Free Buffer ring 0 and 1 available offset.
260  *
261  * bit 0-9 FBR1 offset
262  * bit 10 Wrap flag for FBR1
263  * bit 16-25 FBR0 offset
264  * bit 26 Wrap flag for FBR0
265  */
266
267 /*
268  * RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
269  * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
270  * which contains the Packet Status Ring available offset.
271  *
272  * bit 0-15 reserved
273  * bit 16-27 PSRoffset
274  * bit 28 PSRwrap
275  * bit 29-31 unused
276  */
277
278 /*
279  * struct rx_status_block is a structure representing the status of the Rx
280  * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
281  */
282 struct rx_status_block {
283         u32 word0;
284         u32 word1;
285 };
286
287 /*
288  * Structure for look-up table holding free buffer ring pointers, addresses
289  * and state.
290  */
291 struct fbr_lookup {
292         void            *virt[MAX_DESC_PER_RING_RX];
293         void            *buffer1[MAX_DESC_PER_RING_RX];
294         void            *buffer2[MAX_DESC_PER_RING_RX];
295         u32              bus_high[MAX_DESC_PER_RING_RX];
296         u32              bus_low[MAX_DESC_PER_RING_RX];
297         void            *ring_virtaddr;
298         dma_addr_t       ring_physaddr;
299         void            *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
300         dma_addr_t       mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
301         u64              real_physaddr;
302         u64              offset;
303         u32              local_full;
304         u32              num_entries;
305         u32              buffsize;
306 };
307
308 /*
309  * struct rx_ring is the sructure representing the adaptor's local
310  * reference(s) to the rings
311  *
312  ******************************************************************************
313  * IMPORTANT NOTE :- fbr_lookup *fbr[NUM_FBRS] uses index 0 to refer to FBR1
314  *                      and index 1 to refer to FRB0
315  ******************************************************************************
316  */
317 struct rx_ring {
318         struct fbr_lookup *fbr[NUM_FBRS];
319         void *ps_ring_virtaddr;
320         dma_addr_t ps_ring_physaddr;
321         u32 local_psr_full;
322         u32 psr_num_entries;
323
324         struct rx_status_block *rx_status_block;
325         dma_addr_t rx_status_bus;
326
327         /* RECV */
328         struct list_head recv_list;
329         u32 num_ready_recv;
330
331         u32 num_rfd;
332
333         bool unfinished_receives;
334
335         /* lookaside lists */
336         struct kmem_cache *recv_lookaside;
337 };
338
339 /* TX defines */
340 /*
341  * word 2 of the control bits in the Tx Descriptor ring for the ET-1310
342  *
343  * 0-15: length of packet
344  * 16-27: VLAN tag
345  * 28: VLAN CFI
346  * 29-31: VLAN priority
347  *
348  * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
349  *
350  * 0: last packet in the sequence
351  * 1: first packet in the sequence
352  * 2: interrupt the processor when this pkt sent
353  * 3: Control word - no packet data
354  * 4: Issue half-duplex backpressure : XON/XOFF
355  * 5: send pause frame
356  * 6: Tx frame has error
357  * 7: append CRC
358  * 8: MAC override
359  * 9: pad packet
360  * 10: Packet is a Huge packet
361  * 11: append VLAN tag
362  * 12: IP checksum assist
363  * 13: TCP checksum assist
364  * 14: UDP checksum assist
365  */
366
367 /* struct tx_desc represents each descriptor on the ring */
368 struct tx_desc {
369         u32 addr_hi;
370         u32 addr_lo;
371         u32 len_vlan;   /* control words how to xmit the */
372         u32 flags;      /* data (detailed above) */
373 };
374
375 /*
376  * The status of the Tx DMA engine it sits in free memory, and is pointed to
377  * by 0x101c / 0x1020. This is a DMA10 type
378  */
379
380 /* TCB (Transmit Control Block: Host Side) */
381 struct tcb {
382         struct tcb *next;       /* Next entry in ring */
383         u32 flags;              /* Our flags for the packet */
384         u32 count;              /* Used to spot stuck/lost packets */
385         u32 stale;              /* Used to spot stuck/lost packets */
386         struct sk_buff *skb;    /* Network skb we are tied to */
387         u32 index;              /* Ring indexes */
388         u32 index_start;
389 };
390
391 /* Structure representing our local reference(s) to the ring */
392 struct tx_ring {
393         /* TCB (Transmit Control Block) memory and lists */
394         struct tcb *tcb_ring;
395
396         /* List of TCBs that are ready to be used */
397         struct tcb *tcb_qhead;
398         struct tcb *tcb_qtail;
399
400         /* list of TCBs that are currently being sent.  NOTE that access to all
401          * three of these (including used) are controlled via the
402          * TCBSendQLock.  This lock should be secured prior to incementing /
403          * decrementing used, or any queue manipulation on send_head /
404          * tail
405          */
406         struct tcb *send_head;
407         struct tcb *send_tail;
408         int used;
409
410         /* The actual descriptor ring */
411         struct tx_desc *tx_desc_ring;
412         dma_addr_t tx_desc_ring_pa;
413
414         /* send_idx indicates where we last wrote to in the descriptor ring. */
415         u32 send_idx;
416
417         /* The location of the write-back status block */
418         u32 *tx_status;
419         dma_addr_t tx_status_pa;
420
421         /* Packets since the last IRQ: used for interrupt coalescing */
422         int since_irq;
423 };
424
425 /*
426  * Do not change these values: if changed, then change also in respective
427  * TXdma and Rxdma engines
428  */
429 #define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
430 #define NUM_TCB                      64
431
432 /*
433  * These values are all superseded by registry entries to facilitate tuning.
434  * Once the desired performance has been achieved, the optimal registry values
435  * should be re-populated to these #defines:
436  */
437 #define TX_ERROR_PERIOD             1000
438
439 #define LO_MARK_PERCENT_FOR_PSR     15
440 #define LO_MARK_PERCENT_FOR_RX      15
441
442 /* RFD (Receive Frame Descriptor) */
443 struct rfd {
444         struct list_head list_node;
445         struct sk_buff *skb;
446         u32 len;        /* total size of receive frame */
447         u16 bufferindex;
448         u8 ringindex;
449 };
450
451 /* Flow Control */
452 #define FLOW_BOTH       0
453 #define FLOW_TXONLY     1
454 #define FLOW_RXONLY     2
455 #define FLOW_NONE       3
456
457 /* Struct to define some device statistics */
458 struct ce_stats {
459         /* MIB II variables
460          *
461          * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
462          * MUST have 32, then we'll need another way to perform atomic
463          * operations
464          */
465         u32             unicast_pkts_rcvd;
466         atomic_t        unicast_pkts_xmtd;
467         u32             multicast_pkts_rcvd;
468         atomic_t        multicast_pkts_xmtd;
469         u32             broadcast_pkts_rcvd;
470         atomic_t        broadcast_pkts_xmtd;
471         u32             rcvd_pkts_dropped;
472
473         /* Tx Statistics. */
474         u32             tx_underflows;
475
476         u32             tx_collisions;
477         u32             tx_excessive_collisions;
478         u32             tx_first_collisions;
479         u32             tx_late_collisions;
480         u32             tx_max_pkt_errs;
481         u32             tx_deferred;
482
483         /* Rx Statistics. */
484         u32             rx_overflows;
485
486         u32             rx_length_errs;
487         u32             rx_align_errs;
488         u32             rx_crc_errs;
489         u32             rx_code_violations;
490         u32             rx_other_errs;
491
492         u32             synchronous_iterations;
493         u32             interrupt_status;
494 };
495
496 /* The private adapter structure */
497 struct et131x_adapter {
498         struct net_device *netdev;
499         struct pci_dev *pdev;
500         struct mii_bus *mii_bus;
501         struct phy_device *phydev;
502         struct work_struct task;
503
504         /* Flags that indicate current state of the adapter */
505         u32 flags;
506
507         /* local link state, to determine if a state change has occurred */
508         int link;
509
510         /* Configuration  */
511         u8 rom_addr[ETH_ALEN];
512         u8 addr[ETH_ALEN];
513         bool has_eeprom;
514         u8 eeprom_data[2];
515
516         /* Spinlocks */
517         spinlock_t lock;
518
519         spinlock_t tcb_send_qlock;
520         spinlock_t tcb_ready_qlock;
521         spinlock_t send_hw_lock;
522
523         spinlock_t rcv_lock;
524         spinlock_t rcv_pend_lock;
525         spinlock_t fbr_lock;
526
527         spinlock_t phy_lock;
528
529         /* Packet Filter and look ahead size */
530         u32 packet_filter;
531
532         /* multicast list */
533         u32 multicast_addr_count;
534         u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
535
536         /* Pointer to the device's PCI register space */
537         struct address_map __iomem *regs;
538
539         /* Registry parameters */
540         u8 wanted_flow;         /* Flow we want for 802.3x flow control */
541         u32 registry_jumbo_packet;      /* Max supported ethernet packet size */
542
543         /* Derived from the registry: */
544         u8 flowcontrol;         /* flow control validated by the far-end */
545
546         /* Minimize init-time */
547         struct timer_list error_timer;
548
549         /* variable putting the phy into coma mode when boot up with no cable
550          * plugged in after 5 seconds
551          */
552         u8 boot_coma;
553
554         /* Next two used to save power information at power down. This
555          * information will be used during power up to set up parts of Power
556          * Management in JAGCore
557          */
558         u16 pdown_speed;
559         u8 pdown_duplex;
560
561         /* Tx Memory Variables */
562         struct tx_ring tx_ring;
563
564         /* Rx Memory Variables */
565         struct rx_ring rx_ring;
566
567         /* Stats */
568         struct ce_stats stats;
569
570         struct net_device_stats net_stats;
571 };
572
573 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
574 {
575         u32 reg;
576         int i;
577
578         /*
579          * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
580          *    bits 7,1:0 both equal to 1, at least once after reset.
581          *    Subsequent operations need only to check that bits 1:0 are equal
582          *    to 1 prior to starting a single byte read/write
583          */
584
585         for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
586                 /* Read registers grouped in DWORD1 */
587                 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
588                         return -EIO;
589
590                 /* I2C idle and Phy Queue Avail both true */
591                 if ((reg & 0x3000) == 0x3000) {
592                         if (status)
593                                 *status = reg;
594                         return reg & 0xFF;
595                 }
596         }
597         return -ETIMEDOUT;
598 }
599
600
601 /**
602  * eeprom_write - Write a byte to the ET1310's EEPROM
603  * @adapter: pointer to our private adapter structure
604  * @addr: the address to write
605  * @data: the value to write
606  *
607  * Returns 1 for a successful write.
608  */
609 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
610 {
611         struct pci_dev *pdev = adapter->pdev;
612         int index = 0;
613         int retries;
614         int err = 0;
615         int i2c_wack = 0;
616         int writeok = 0;
617         u32 status;
618         u32 val = 0;
619
620         /*
621          * For an EEPROM, an I2C single byte write is defined as a START
622          * condition followed by the device address, EEPROM address, one byte
623          * of data and a STOP condition.  The STOP condition will trigger the
624          * EEPROM's internally timed write cycle to the nonvolatile memory.
625          * All inputs are disabled during this write cycle and the EEPROM will
626          * not respond to any access until the internal write is complete.
627          */
628
629         err = eeprom_wait_ready(pdev, NULL);
630         if (err)
631                 return err;
632
633          /*
634          * 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
635          *    and bits 1:0 both =0.  Bit 5 should be set according to the
636          *    type of EEPROM being accessed (1=two byte addressing, 0=one
637          *    byte addressing).
638          */
639         if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
640                         LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
641                 return -EIO;
642
643         i2c_wack = 1;
644
645         /* Prepare EEPROM address for Step 3 */
646
647         for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
648                 /* Write the address to the LBCIF Address Register */
649                 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
650                         break;
651                 /*
652                  * Write the data to the LBCIF Data Register (the I2C write
653                  * will begin).
654                  */
655                 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
656                         break;
657                 /*
658                  * Monitor bit 1:0 of the LBCIF Status Register.  When bits
659                  * 1:0 are both equal to 1, the I2C write has completed and the
660                  * internal write cycle of the EEPROM is about to start.
661                  * (bits 1:0 = 01 is a legal state while waiting from both
662                  * equal to 1, but bits 1:0 = 10 is invalid and implies that
663                  * something is broken).
664                  */
665                 err = eeprom_wait_ready(pdev, &status);
666                 if (err < 0)
667                         return 0;
668
669                 /*
670                  * Check bit 3 of the LBCIF Status Register.  If  equal to 1,
671                  * an error has occurred.Don't break here if we are revision
672                  * 1, this is so we do a blind write for load bug.
673                  */
674                 if ((status & LBCIF_STATUS_GENERAL_ERROR)
675                         && adapter->pdev->revision == 0)
676                         break;
677
678                 /*
679                  * Check bit 2 of the LBCIF Status Register.  If equal to 1 an
680                  * ACK error has occurred on the address phase of the write.
681                  * This could be due to an actual hardware failure or the
682                  * EEPROM may still be in its internal write cycle from a
683                  * previous write. This write operation was ignored and must be
684                   *repeated later.
685                  */
686                 if (status & LBCIF_STATUS_ACK_ERROR) {
687                         /*
688                          * This could be due to an actual hardware failure
689                          * or the EEPROM may still be in its internal write
690                          * cycle from a previous write. This write operation
691                          * was ignored and must be repeated later.
692                          */
693                         udelay(10);
694                         continue;
695                 }
696
697                 writeok = 1;
698                 break;
699         }
700
701         /*
702          * Set bit 6 of the LBCIF Control Register = 0.
703          */
704         udelay(10);
705
706         while (i2c_wack) {
707                 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
708                         LBCIF_CONTROL_LBCIF_ENABLE))
709                         writeok = 0;
710
711                 /* Do read until internal ACK_ERROR goes away meaning write
712                  * completed
713                  */
714                 do {
715                         pci_write_config_dword(pdev,
716                                                LBCIF_ADDRESS_REGISTER,
717                                                addr);
718                         do {
719                                 pci_read_config_dword(pdev,
720                                         LBCIF_DATA_REGISTER, &val);
721                         } while ((val & 0x00010000) == 0);
722                 } while (val & 0x00040000);
723
724                 if ((val & 0xFF00) != 0xC000 || index == 10000)
725                         break;
726                 index++;
727         }
728         return writeok ? 0 : -EIO;
729 }
730
731 /**
732  * eeprom_read - Read a byte from the ET1310's EEPROM
733  * @adapter: pointer to our private adapter structure
734  * @addr: the address from which to read
735  * @pdata: a pointer to a byte in which to store the value of the read
736  * @eeprom_id: the ID of the EEPROM
737  * @addrmode: how the EEPROM is to be accessed
738  *
739  * Returns 1 for a successful read
740  */
741 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
742 {
743         struct pci_dev *pdev = adapter->pdev;
744         int err;
745         u32 status;
746
747         /*
748          * A single byte read is similar to the single byte write, with the
749          * exception of the data flow:
750          */
751
752         err = eeprom_wait_ready(pdev, NULL);
753         if (err)
754                 return err;
755         /*
756          * Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
757          * and bits 1:0 both =0.  Bit 5 should be set according to the type
758          * of EEPROM being accessed (1=two byte addressing, 0=one byte
759          * addressing).
760          */
761         if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
762                                   LBCIF_CONTROL_LBCIF_ENABLE))
763                 return -EIO;
764         /*
765          * Write the address to the LBCIF Address Register (I2C read will
766          * begin).
767          */
768         if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
769                 return -EIO;
770         /*
771          * Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
772          * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
773          * has occurred).
774          */
775         err = eeprom_wait_ready(pdev, &status);
776         if (err < 0)
777                 return err;
778         /*
779          * Regardless of error status, read data byte from LBCIF Data
780          * Register.
781          */
782         *pdata = err;
783         /*
784          * Check bit 2 of the LBCIF Status Register.  If = 1,
785          * then an error has occurred.
786          */
787         return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
788 }
789
790 static int et131x_init_eeprom(struct et131x_adapter *adapter)
791 {
792         struct pci_dev *pdev = adapter->pdev;
793         u8 eestatus;
794
795         /* We first need to check the EEPROM Status code located at offset
796          * 0xB2 of config space
797          */
798         pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS,
799                                       &eestatus);
800
801         /* THIS IS A WORKAROUND:
802          * I need to call this function twice to get my card in a
803          * LG M1 Express Dual running. I tried also a msleep before this
804          * function, because I thought there could be some time condidions
805          * but it didn't work. Call the whole function twice also work.
806          */
807         if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
808                 dev_err(&pdev->dev,
809                        "Could not read PCI config space for EEPROM Status\n");
810                 return -EIO;
811         }
812
813         /* Determine if the error(s) we care about are present. If they are
814          * present we need to fail.
815          */
816         if (eestatus & 0x4C) {
817                 int write_failed = 0;
818                 if (pdev->revision == 0x01) {
819                         int     i;
820                         static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
821
822                         /* Re-write the first 4 bytes if we have an eeprom
823                          * present and the revision id is 1, this fixes the
824                          * corruption seen with 1310 B Silicon
825                          */
826                         for (i = 0; i < 3; i++)
827                                 if (eeprom_write(adapter, i, eedata[i]) < 0)
828                                         write_failed = 1;
829                 }
830                 if (pdev->revision  != 0x01 || write_failed) {
831                         dev_err(&pdev->dev,
832                             "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
833
834                         /* This error could mean that there was an error
835                          * reading the eeprom or that the eeprom doesn't exist.
836                          * We will treat each case the same and not try to
837                          * gather additional information that normally would
838                          * come from the eeprom, like MAC Address
839                          */
840                         adapter->has_eeprom = 0;
841                         return -EIO;
842                 }
843         }
844         adapter->has_eeprom = 1;
845
846         /* Read the EEPROM for information regarding LED behavior. Refer to
847          * ET1310_phy.c, et131x_xcvr_init(), for its use.
848          */
849         eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
850         eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
851
852         if (adapter->eeprom_data[0] != 0xcd)
853                 /* Disable all optional features */
854                 adapter->eeprom_data[1] = 0x00;
855
856         return 0;
857 }
858
859 /**
860  * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
861  * @adapter: pointer to our adapter structure
862  */
863 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
864 {
865         /* Setup the receive dma configuration register for normal operation */
866         u32 csr =  0x2000;      /* FBR1 enable */
867
868         if (adapter->rx_ring.fbr[0]->buffsize == 4096)
869                 csr |= 0x0800;
870         else if (adapter->rx_ring.fbr[0]->buffsize == 8192)
871                 csr |= 0x1000;
872         else if (adapter->rx_ring.fbr[0]->buffsize == 16384)
873                 csr |= 0x1800;
874 #ifdef USE_FBR0
875         csr |= 0x0400;          /* FBR0 enable */
876         if (adapter->rx_ring.fbr[1]->buffsize == 256)
877                 csr |= 0x0100;
878         else if (adapter->rx_ring.fbr[1]->buffsize == 512)
879                 csr |= 0x0200;
880         else if (adapter->rx_ring.fbr[1]->buffsize == 1024)
881                 csr |= 0x0300;
882 #endif
883         writel(csr, &adapter->regs->rxdma.csr);
884
885         csr = readl(&adapter->regs->rxdma.csr);
886         if ((csr & 0x00020000) != 0) {
887                 udelay(5);
888                 csr = readl(&adapter->regs->rxdma.csr);
889                 if ((csr & 0x00020000) != 0) {
890                         dev_err(&adapter->pdev->dev,
891                             "RX Dma failed to exit halt state.  CSR 0x%08x\n",
892                                 csr);
893                 }
894         }
895 }
896
897 /**
898  * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
899  * @adapter: pointer to our adapter structure
900  */
901 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
902 {
903         u32 csr;
904         /* Setup the receive dma configuration register */
905         writel(0x00002001, &adapter->regs->rxdma.csr);
906         csr = readl(&adapter->regs->rxdma.csr);
907         if ((csr & 0x00020000) == 0) {  /* Check halt status (bit 17) */
908                 udelay(5);
909                 csr = readl(&adapter->regs->rxdma.csr);
910                 if ((csr & 0x00020000) == 0)
911                         dev_err(&adapter->pdev->dev,
912                         "RX Dma failed to enter halt state. CSR 0x%08x\n",
913                                 csr);
914         }
915 }
916
917 /**
918  * et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
919  * @adapter: pointer to our adapter structure
920  *
921  * Mainly used after a return to the D0 (full-power) state from a lower state.
922  */
923 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
924 {
925         /* Setup the transmit dma configuration register for normal
926          * operation
927          */
928         writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
929                                         &adapter->regs->txdma.csr);
930 }
931
932 static inline void add_10bit(u32 *v, int n)
933 {
934         *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
935 }
936
937 static inline void add_12bit(u32 *v, int n)
938 {
939         *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
940 }
941
942 /**
943  * et1310_config_mac_regs1 - Initialize the first part of MAC regs
944  * @adapter: pointer to our adapter structure
945  */
946 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
947 {
948         struct mac_regs __iomem *macregs = &adapter->regs->mac;
949         u32 station1;
950         u32 station2;
951         u32 ipg;
952
953         /* First we need to reset everything.  Write to MAC configuration
954          * register 1 to perform reset.
955          */
956         writel(0xC00F0000, &macregs->cfg1);
957
958         /* Next lets configure the MAC Inter-packet gap register */
959         ipg = 0x38005860;               /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
960         ipg |= 0x50 << 8;               /* ifg enforce 0x50 */
961         writel(ipg, &macregs->ipg);
962
963         /* Next lets configure the MAC Half Duplex register */
964         /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
965         writel(0x00A1F037, &macregs->hfdp);
966
967         /* Next lets configure the MAC Interface Control register */
968         writel(0, &macregs->if_ctrl);
969
970         /* Let's move on to setting up the mii management configuration */
971         writel(0x07, &macregs->mii_mgmt_cfg);   /* Clock reset 0x7 */
972
973         /* Next lets configure the MAC Station Address register.  These
974          * values are read from the EEPROM during initialization and stored
975          * in the adapter structure.  We write what is stored in the adapter
976          * structure to the MAC Station Address registers high and low.  This
977          * station address is used for generating and checking pause control
978          * packets.
979          */
980         station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
981                    (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
982         station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
983                    (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
984                    (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
985                     adapter->addr[2];
986         writel(station1, &macregs->station_addr_1);
987         writel(station2, &macregs->station_addr_2);
988
989         /* Max ethernet packet in bytes that will be passed by the mac without
990          * being truncated.  Allow the MAC to pass 4 more than our max packet
991          * size.  This is 4 for the Ethernet CRC.
992          *
993          * Packets larger than (registry_jumbo_packet) that do not contain a
994          * VLAN ID will be dropped by the Rx function.
995          */
996         writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
997
998         /* clear out MAC config reset */
999         writel(0, &macregs->cfg1);
1000 }
1001
1002 /**
1003  * et1310_config_mac_regs2 - Initialize the second part of MAC regs
1004  * @adapter: pointer to our adapter structure
1005  */
1006 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
1007 {
1008         int32_t delay = 0;
1009         struct mac_regs __iomem *mac = &adapter->regs->mac;
1010         struct phy_device *phydev = adapter->phydev;
1011         u32 cfg1;
1012         u32 cfg2;
1013         u32 ifctrl;
1014         u32 ctl;
1015
1016         ctl = readl(&adapter->regs->txmac.ctl);
1017         cfg1 = readl(&mac->cfg1);
1018         cfg2 = readl(&mac->cfg2);
1019         ifctrl = readl(&mac->if_ctrl);
1020
1021         /* Set up the if mode bits */
1022         cfg2 &= ~0x300;
1023         if (phydev && phydev->speed == SPEED_1000) {
1024                 cfg2 |= 0x200;
1025                 /* Phy mode bit */
1026                 ifctrl &= ~(1 << 24);
1027         } else {
1028                 cfg2 |= 0x100;
1029                 ifctrl |= (1 << 24);
1030         }
1031
1032         /* We need to enable Rx/Tx */
1033         cfg1 |= CFG1_RX_ENABLE | CFG1_TX_ENABLE | CFG1_TX_FLOW;
1034         /* Initialize loop back to off */
1035         cfg1 &= ~(CFG1_LOOPBACK | CFG1_RX_FLOW);
1036         if (adapter->flowcontrol == FLOW_RXONLY ||
1037                                 adapter->flowcontrol == FLOW_BOTH)
1038                 cfg1 |= CFG1_RX_FLOW;
1039         writel(cfg1, &mac->cfg1);
1040
1041         /* Now we need to initialize the MAC Configuration 2 register */
1042         /* preamble 7, check length, huge frame off, pad crc, crc enable
1043            full duplex off */
1044         cfg2 |= 0x7016;
1045         cfg2 &= ~0x0021;
1046
1047         /* Turn on duplex if needed */
1048         if (phydev && phydev->duplex == DUPLEX_FULL)
1049                 cfg2 |= 0x01;
1050
1051         ifctrl &= ~(1 << 26);
1052         if (phydev && phydev->duplex == DUPLEX_HALF)
1053                 ifctrl |= (1<<26);      /* Enable ghd */
1054
1055         writel(ifctrl, &mac->if_ctrl);
1056         writel(cfg2, &mac->cfg2);
1057
1058         do {
1059                 udelay(10);
1060                 delay++;
1061                 cfg1 = readl(&mac->cfg1);
1062         } while ((cfg1 & CFG1_WAIT) != CFG1_WAIT && delay < 100);
1063
1064         if (delay == 100) {
1065                 dev_warn(&adapter->pdev->dev,
1066                     "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1067                         cfg1);
1068         }
1069
1070         /* Enable txmac */
1071         ctl |= 0x09;    /* TX mac enable, FC disable */
1072         writel(ctl, &adapter->regs->txmac.ctl);
1073
1074         /* Ready to start the RXDMA/TXDMA engine */
1075         if (adapter->flags & fMP_ADAPTER_LOWER_POWER) {
1076                 et131x_rx_dma_enable(adapter);
1077                 et131x_tx_dma_enable(adapter);
1078         }
1079 }
1080
1081 /**
1082  * et1310_in_phy_coma - check if the device is in phy coma
1083  * @adapter: pointer to our adapter structure
1084  *
1085  * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1086  */
1087 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
1088 {
1089         u32 pmcsr;
1090
1091         pmcsr = readl(&adapter->regs->global.pm_csr);
1092
1093         return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1094 }
1095
1096 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1097 {
1098         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1099         u32 hash1 = 0;
1100         u32 hash2 = 0;
1101         u32 hash3 = 0;
1102         u32 hash4 = 0;
1103         u32 pm_csr;
1104
1105         /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1106          * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
1107          * specified) then we should pass NO multi-cast addresses to the
1108          * driver.
1109          */
1110         if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1111                 int i;
1112
1113                 /* Loop through our multicast array and set up the device */
1114                 for (i = 0; i < adapter->multicast_addr_count; i++) {
1115                         u32 result;
1116
1117                         result = ether_crc(6, adapter->multicast_list[i]);
1118
1119                         result = (result & 0x3F800000) >> 23;
1120
1121                         if (result < 32) {
1122                                 hash1 |= (1 << result);
1123                         } else if ((31 < result) && (result < 64)) {
1124                                 result -= 32;
1125                                 hash2 |= (1 << result);
1126                         } else if ((63 < result) && (result < 96)) {
1127                                 result -= 64;
1128                                 hash3 |= (1 << result);
1129                         } else {
1130                                 result -= 96;
1131                                 hash4 |= (1 << result);
1132                         }
1133                 }
1134         }
1135
1136         /* Write out the new hash to the device */
1137         pm_csr = readl(&adapter->regs->global.pm_csr);
1138         if (!et1310_in_phy_coma(adapter)) {
1139                 writel(hash1, &rxmac->multi_hash1);
1140                 writel(hash2, &rxmac->multi_hash2);
1141                 writel(hash3, &rxmac->multi_hash3);
1142                 writel(hash4, &rxmac->multi_hash4);
1143         }
1144 }
1145
1146 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1147 {
1148         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1149         u32 uni_pf1;
1150         u32 uni_pf2;
1151         u32 uni_pf3;
1152         u32 pm_csr;
1153
1154         /* Set up unicast packet filter reg 3 to be the first two octets of
1155          * the MAC address for both address
1156          *
1157          * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1158          * MAC address for second address
1159          *
1160          * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1161          * MAC address for first address
1162          */
1163         uni_pf3 = (adapter->addr[0] << ET_UNI_PF_ADDR2_1_SHIFT) |
1164                   (adapter->addr[1] << ET_UNI_PF_ADDR2_2_SHIFT) |
1165                   (adapter->addr[0] << ET_UNI_PF_ADDR1_1_SHIFT) |
1166                    adapter->addr[1];
1167
1168         uni_pf2 = (adapter->addr[2] << ET_UNI_PF_ADDR2_3_SHIFT) |
1169                   (adapter->addr[3] << ET_UNI_PF_ADDR2_4_SHIFT) |
1170                   (adapter->addr[4] << ET_UNI_PF_ADDR2_5_SHIFT) |
1171                    adapter->addr[5];
1172
1173         uni_pf1 = (adapter->addr[2] << ET_UNI_PF_ADDR1_3_SHIFT) |
1174                   (adapter->addr[3] << ET_UNI_PF_ADDR1_4_SHIFT) |
1175                   (adapter->addr[4] << ET_UNI_PF_ADDR1_5_SHIFT) |
1176                    adapter->addr[5];
1177
1178         pm_csr = readl(&adapter->regs->global.pm_csr);
1179         if (!et1310_in_phy_coma(adapter)) {
1180                 writel(uni_pf1, &rxmac->uni_pf_addr1);
1181                 writel(uni_pf2, &rxmac->uni_pf_addr2);
1182                 writel(uni_pf3, &rxmac->uni_pf_addr3);
1183         }
1184 }
1185
1186 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1187 {
1188         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1189         struct phy_device *phydev = adapter->phydev;
1190         u32 sa_lo;
1191         u32 sa_hi = 0;
1192         u32 pf_ctrl = 0;
1193
1194         /* Disable the MAC while it is being configured (also disable WOL) */
1195         writel(0x8, &rxmac->ctrl);
1196
1197         /* Initialize WOL to disabled. */
1198         writel(0, &rxmac->crc0);
1199         writel(0, &rxmac->crc12);
1200         writel(0, &rxmac->crc34);
1201
1202         /* We need to set the WOL mask0 - mask4 next.  We initialize it to
1203          * its default Values of 0x00000000 because there are not WOL masks
1204          * as of this time.
1205          */
1206         writel(0, &rxmac->mask0_word0);
1207         writel(0, &rxmac->mask0_word1);
1208         writel(0, &rxmac->mask0_word2);
1209         writel(0, &rxmac->mask0_word3);
1210
1211         writel(0, &rxmac->mask1_word0);
1212         writel(0, &rxmac->mask1_word1);
1213         writel(0, &rxmac->mask1_word2);
1214         writel(0, &rxmac->mask1_word3);
1215
1216         writel(0, &rxmac->mask2_word0);
1217         writel(0, &rxmac->mask2_word1);
1218         writel(0, &rxmac->mask2_word2);
1219         writel(0, &rxmac->mask2_word3);
1220
1221         writel(0, &rxmac->mask3_word0);
1222         writel(0, &rxmac->mask3_word1);
1223         writel(0, &rxmac->mask3_word2);
1224         writel(0, &rxmac->mask3_word3);
1225
1226         writel(0, &rxmac->mask4_word0);
1227         writel(0, &rxmac->mask4_word1);
1228         writel(0, &rxmac->mask4_word2);
1229         writel(0, &rxmac->mask4_word3);
1230
1231         /* Lets setup the WOL Source Address */
1232         sa_lo = (adapter->addr[2] << ET_WOL_LO_SA3_SHIFT) |
1233                 (adapter->addr[3] << ET_WOL_LO_SA4_SHIFT) |
1234                 (adapter->addr[4] << ET_WOL_LO_SA5_SHIFT) |
1235                  adapter->addr[5];
1236         writel(sa_lo, &rxmac->sa_lo);
1237
1238         sa_hi = (u32) (adapter->addr[0] << ET_WOL_HI_SA1_SHIFT) |
1239                        adapter->addr[1];
1240         writel(sa_hi, &rxmac->sa_hi);
1241
1242         /* Disable all Packet Filtering */
1243         writel(0, &rxmac->pf_ctrl);
1244
1245         /* Let's initialize the Unicast Packet filtering address */
1246         if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1247                 et1310_setup_device_for_unicast(adapter);
1248                 pf_ctrl |= 4;   /* Unicast filter */
1249         } else {
1250                 writel(0, &rxmac->uni_pf_addr1);
1251                 writel(0, &rxmac->uni_pf_addr2);
1252                 writel(0, &rxmac->uni_pf_addr3);
1253         }
1254
1255         /* Let's initialize the Multicast hash */
1256         if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1257                 pf_ctrl |= 2;   /* Multicast filter */
1258                 et1310_setup_device_for_multicast(adapter);
1259         }
1260
1261         /* Runt packet filtering.  Didn't work in version A silicon. */
1262         pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << 16;
1263         pf_ctrl |= 8;   /* Fragment filter */
1264
1265         if (adapter->registry_jumbo_packet > 8192)
1266                 /* In order to transmit jumbo packets greater than 8k, the
1267                  * FIFO between RxMAC and RxDMA needs to be reduced in size
1268                  * to (16k - Jumbo packet size).  In order to implement this,
1269                  * we must use "cut through" mode in the RxMAC, which chops
1270                  * packets down into segments which are (max_size * 16).  In
1271                  * this case we selected 256 bytes, since this is the size of
1272                  * the PCI-Express TLP's that the 1310 uses.
1273                  *
1274                  * seg_en on, fc_en off, size 0x10
1275                  */
1276                 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1277         else
1278                 writel(0, &rxmac->mcif_ctrl_max_seg);
1279
1280         /* Initialize the MCIF water marks */
1281         writel(0, &rxmac->mcif_water_mark);
1282
1283         /*  Initialize the MIF control */
1284         writel(0, &rxmac->mif_ctrl);
1285
1286         /* Initialize the Space Available Register */
1287         writel(0, &rxmac->space_avail);
1288
1289         /* Initialize the the mif_ctrl register
1290          * bit 3:  Receive code error. One or more nibbles were signaled as
1291          *         errors  during the reception of the packet.  Clear this
1292          *         bit in Gigabit, set it in 100Mbit.  This was derived
1293          *         experimentally at UNH.
1294          * bit 4:  Receive CRC error. The packet's CRC did not match the
1295          *         internally generated CRC.
1296          * bit 5:  Receive length check error. Indicates that frame length
1297          *         field value in the packet does not match the actual data
1298          *         byte length and is not a type field.
1299          * bit 16: Receive frame truncated.
1300          * bit 17: Drop packet enable
1301          */
1302         if (phydev && phydev->speed == SPEED_100)
1303                 writel(0x30038, &rxmac->mif_ctrl);
1304         else
1305                 writel(0x30030, &rxmac->mif_ctrl);
1306
1307         /* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1308          * filter is always enabled since it is where the runt packets are
1309          * supposed to be dropped.  For version A silicon, runt packet
1310          * dropping doesn't work, so it is disabled in the pf_ctrl register,
1311          * but we still leave the packet filter on.
1312          */
1313         writel(pf_ctrl, &rxmac->pf_ctrl);
1314         writel(0x9, &rxmac->ctrl);
1315 }
1316
1317 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1318 {
1319         struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1320
1321         /* We need to update the Control Frame Parameters
1322          * cfpt - control frame pause timer set to 64 (0x40)
1323          * cfep - control frame extended pause timer set to 0x0
1324          */
1325         if (adapter->flowcontrol == FLOW_NONE)
1326                 writel(0, &txmac->cf_param);
1327         else
1328                 writel(0x40, &txmac->cf_param);
1329 }
1330
1331 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1332 {
1333         struct macstat_regs __iomem *macstat =
1334                 &adapter->regs->macstat;
1335
1336         /* Next we need to initialize all the macstat registers to zero on
1337          * the device.
1338          */
1339         writel(0, &macstat->txrx_0_64_byte_frames);
1340         writel(0, &macstat->txrx_65_127_byte_frames);
1341         writel(0, &macstat->txrx_128_255_byte_frames);
1342         writel(0, &macstat->txrx_256_511_byte_frames);
1343         writel(0, &macstat->txrx_512_1023_byte_frames);
1344         writel(0, &macstat->txrx_1024_1518_byte_frames);
1345         writel(0, &macstat->txrx_1519_1522_gvln_frames);
1346
1347         writel(0, &macstat->rx_bytes);
1348         writel(0, &macstat->rx_packets);
1349         writel(0, &macstat->rx_fcs_errs);
1350         writel(0, &macstat->rx_multicast_packets);
1351         writel(0, &macstat->rx_broadcast_packets);
1352         writel(0, &macstat->rx_control_frames);
1353         writel(0, &macstat->rx_pause_frames);
1354         writel(0, &macstat->rx_unknown_opcodes);
1355         writel(0, &macstat->rx_align_errs);
1356         writel(0, &macstat->rx_frame_len_errs);
1357         writel(0, &macstat->rx_code_errs);
1358         writel(0, &macstat->rx_carrier_sense_errs);
1359         writel(0, &macstat->rx_undersize_packets);
1360         writel(0, &macstat->rx_oversize_packets);
1361         writel(0, &macstat->rx_fragment_packets);
1362         writel(0, &macstat->rx_jabbers);
1363         writel(0, &macstat->rx_drops);
1364
1365         writel(0, &macstat->tx_bytes);
1366         writel(0, &macstat->tx_packets);
1367         writel(0, &macstat->tx_multicast_packets);
1368         writel(0, &macstat->tx_broadcast_packets);
1369         writel(0, &macstat->tx_pause_frames);
1370         writel(0, &macstat->tx_deferred);
1371         writel(0, &macstat->tx_excessive_deferred);
1372         writel(0, &macstat->tx_single_collisions);
1373         writel(0, &macstat->tx_multiple_collisions);
1374         writel(0, &macstat->tx_late_collisions);
1375         writel(0, &macstat->tx_excessive_collisions);
1376         writel(0, &macstat->tx_total_collisions);
1377         writel(0, &macstat->tx_pause_honored_frames);
1378         writel(0, &macstat->tx_drops);
1379         writel(0, &macstat->tx_jabbers);
1380         writel(0, &macstat->tx_fcs_errs);
1381         writel(0, &macstat->tx_control_frames);
1382         writel(0, &macstat->tx_oversize_frames);
1383         writel(0, &macstat->tx_undersize_frames);
1384         writel(0, &macstat->tx_fragments);
1385         writel(0, &macstat->carry_reg1);
1386         writel(0, &macstat->carry_reg2);
1387
1388         /* Unmask any counters that we want to track the overflow of.
1389          * Initially this will be all counters.  It may become clear later
1390          * that we do not need to track all counters.
1391          */
1392         writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1393         writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1394 }
1395
1396 /**
1397  * et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1398  * @adapter: pointer to our private adapter structure
1399  * @addr: the address of the transceiver
1400  * @reg: the register to read
1401  * @value: pointer to a 16-bit value in which the value will be stored
1402  *
1403  * Returns 0 on success, errno on failure (as defined in errno.h)
1404  */
1405 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1406               u8 reg, u16 *value)
1407 {
1408         struct mac_regs __iomem *mac = &adapter->regs->mac;
1409         int status = 0;
1410         u32 delay = 0;
1411         u32 mii_addr;
1412         u32 mii_cmd;
1413         u32 mii_indicator;
1414
1415         /* Save a local copy of the registers we are dealing with so we can
1416          * set them back
1417          */
1418         mii_addr = readl(&mac->mii_mgmt_addr);
1419         mii_cmd = readl(&mac->mii_mgmt_cmd);
1420
1421         /* Stop the current operation */
1422         writel(0, &mac->mii_mgmt_cmd);
1423
1424         /* Set up the register we need to read from on the correct PHY */
1425         writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1426
1427         writel(0x1, &mac->mii_mgmt_cmd);
1428
1429         do {
1430                 udelay(50);
1431                 delay++;
1432                 mii_indicator = readl(&mac->mii_mgmt_indicator);
1433         } while ((mii_indicator & MGMT_WAIT) && delay < 50);
1434
1435         /* If we hit the max delay, we could not read the register */
1436         if (delay == 50) {
1437                 dev_warn(&adapter->pdev->dev,
1438                             "reg 0x%08x could not be read\n", reg);
1439                 dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1440                             mii_indicator);
1441
1442                 status = -EIO;
1443         }
1444
1445         /* If we hit here we were able to read the register and we need to
1446          * return the value to the caller */
1447         *value = readl(&mac->mii_mgmt_stat) & 0xFFFF;
1448
1449         /* Stop the read operation */
1450         writel(0, &mac->mii_mgmt_cmd);
1451
1452         /* set the registers we touched back to the state at which we entered
1453          * this function
1454          */
1455         writel(mii_addr, &mac->mii_mgmt_addr);
1456         writel(mii_cmd, &mac->mii_mgmt_cmd);
1457
1458         return status;
1459 }
1460
1461 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1462 {
1463         struct phy_device *phydev = adapter->phydev;
1464
1465         if (!phydev)
1466                 return -EIO;
1467
1468         return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1469 }
1470
1471 /**
1472  * et131x_mii_write - Write to a PHY register through the MII interface of the MAC
1473  * @adapter: pointer to our private adapter structure
1474  * @reg: the register to read
1475  * @value: 16-bit value to write
1476  *
1477  * FIXME: one caller in netdev still
1478  *
1479  * Return 0 on success, errno on failure (as defined in errno.h)
1480  */
1481 static int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
1482 {
1483         struct mac_regs __iomem *mac = &adapter->regs->mac;
1484         struct phy_device *phydev = adapter->phydev;
1485         int status = 0;
1486         u8 addr;
1487         u32 delay = 0;
1488         u32 mii_addr;
1489         u32 mii_cmd;
1490         u32 mii_indicator;
1491
1492         if (!phydev)
1493                 return -EIO;
1494
1495         addr = phydev->addr;
1496
1497         /* Save a local copy of the registers we are dealing with so we can
1498          * set them back
1499          */
1500         mii_addr = readl(&mac->mii_mgmt_addr);
1501         mii_cmd = readl(&mac->mii_mgmt_cmd);
1502
1503         /* Stop the current operation */
1504         writel(0, &mac->mii_mgmt_cmd);
1505
1506         /* Set up the register we need to write to on the correct PHY */
1507         writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1508
1509         /* Add the value to write to the registers to the mac */
1510         writel(value, &mac->mii_mgmt_ctrl);
1511
1512         do {
1513                 udelay(50);
1514                 delay++;
1515                 mii_indicator = readl(&mac->mii_mgmt_indicator);
1516         } while ((mii_indicator & MGMT_BUSY) && delay < 100);
1517
1518         /* If we hit the max delay, we could not write the register */
1519         if (delay == 100) {
1520                 u16 tmp;
1521
1522                 dev_warn(&adapter->pdev->dev,
1523                     "reg 0x%08x could not be written", reg);
1524                 dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1525                             mii_indicator);
1526                 dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1527                             readl(&mac->mii_mgmt_cmd));
1528
1529                 et131x_mii_read(adapter, reg, &tmp);
1530
1531                 status = -EIO;
1532         }
1533         /* Stop the write operation */
1534         writel(0, &mac->mii_mgmt_cmd);
1535
1536         /*
1537          * set the registers we touched back to the state at which we entered
1538          * this function
1539          */
1540         writel(mii_addr, &mac->mii_mgmt_addr);
1541         writel(mii_cmd, &mac->mii_mgmt_cmd);
1542
1543         return status;
1544 }
1545
1546 /* Still used from _mac for BIT_READ */
1547 static void et1310_phy_access_mii_bit(struct et131x_adapter *adapter,
1548                                       u16 action, u16 regnum, u16 bitnum,
1549                                       u8 *value)
1550 {
1551         u16 reg;
1552         u16 mask = 0x0001 << bitnum;
1553
1554         /* Read the requested register */
1555         et131x_mii_read(adapter, regnum, &reg);
1556
1557         switch (action) {
1558         case TRUEPHY_BIT_READ:
1559                 *value = (reg & mask) >> bitnum;
1560                 break;
1561
1562         case TRUEPHY_BIT_SET:
1563                 et131x_mii_write(adapter, regnum, reg | mask);
1564                 break;
1565
1566         case TRUEPHY_BIT_CLEAR:
1567                 et131x_mii_write(adapter, regnum, reg & ~mask);
1568                 break;
1569
1570         default:
1571                 break;
1572         }
1573 }
1574
1575 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1576 {
1577         struct phy_device *phydev = adapter->phydev;
1578
1579         if (phydev->duplex == DUPLEX_HALF) {
1580                 adapter->flowcontrol = FLOW_NONE;
1581         } else {
1582                 char remote_pause, remote_async_pause;
1583
1584                 et1310_phy_access_mii_bit(adapter,
1585                                 TRUEPHY_BIT_READ, 5, 10, &remote_pause);
1586                 et1310_phy_access_mii_bit(adapter,
1587                                 TRUEPHY_BIT_READ, 5, 11,
1588                                 &remote_async_pause);
1589
1590                 if ((remote_pause == TRUEPHY_BIT_SET) &&
1591                     (remote_async_pause == TRUEPHY_BIT_SET)) {
1592                         adapter->flowcontrol = adapter->wanted_flow;
1593                 } else if ((remote_pause == TRUEPHY_BIT_SET) &&
1594                            (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1595                         if (adapter->wanted_flow == FLOW_BOTH)
1596                                 adapter->flowcontrol = FLOW_BOTH;
1597                         else
1598                                 adapter->flowcontrol = FLOW_NONE;
1599                 } else if ((remote_pause == TRUEPHY_BIT_CLEAR) &&
1600                            (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1601                         adapter->flowcontrol = FLOW_NONE;
1602                 } else {/* if (remote_pause == TRUEPHY_CLEAR_BIT &&
1603                                remote_async_pause == TRUEPHY_SET_BIT) */
1604                         if (adapter->wanted_flow == FLOW_BOTH)
1605                                 adapter->flowcontrol = FLOW_RXONLY;
1606                         else
1607                                 adapter->flowcontrol = FLOW_NONE;
1608                 }
1609         }
1610 }
1611
1612 /**
1613  * et1310_update_macstat_host_counters - Update the local copy of the statistics
1614  * @adapter: pointer to the adapter structure
1615  */
1616 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1617 {
1618         struct ce_stats *stats = &adapter->stats;
1619         struct macstat_regs __iomem *macstat =
1620                 &adapter->regs->macstat;
1621
1622         stats->tx_collisions           += readl(&macstat->tx_total_collisions);
1623         stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1624         stats->tx_deferred             += readl(&macstat->tx_deferred);
1625         stats->tx_excessive_collisions +=
1626                                 readl(&macstat->tx_multiple_collisions);
1627         stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1628         stats->tx_underflows           += readl(&macstat->tx_undersize_frames);
1629         stats->tx_max_pkt_errs         += readl(&macstat->tx_oversize_frames);
1630
1631         stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1632         stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1633         stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1634         stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1635         stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1636         stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1637         stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1638 }
1639
1640 /**
1641  * et1310_handle_macstat_interrupt
1642  * @adapter: pointer to the adapter structure
1643  *
1644  * One of the MACSTAT counters has wrapped.  Update the local copy of
1645  * the statistics held in the adapter structure, checking the "wrap"
1646  * bit for each counter.
1647  */
1648 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1649 {
1650         u32 carry_reg1;
1651         u32 carry_reg2;
1652
1653         /* Read the interrupt bits from the register(s).  These are Clear On
1654          * Write.
1655          */
1656         carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1657         carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1658
1659         writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1660         writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1661
1662         /* We need to do update the host copy of all the MAC_STAT counters.
1663          * For each counter, check it's overflow bit.  If the overflow bit is
1664          * set, then increment the host version of the count by one complete
1665          * revolution of the counter.  This routine is called when the counter
1666          * block indicates that one of the counters has wrapped.
1667          */
1668         if (carry_reg1 & (1 << 14))
1669                 adapter->stats.rx_code_violations       += COUNTER_WRAP_16_BIT;
1670         if (carry_reg1 & (1 << 8))
1671                 adapter->stats.rx_align_errs    += COUNTER_WRAP_12_BIT;
1672         if (carry_reg1 & (1 << 7))
1673                 adapter->stats.rx_length_errs   += COUNTER_WRAP_16_BIT;
1674         if (carry_reg1 & (1 << 2))
1675                 adapter->stats.rx_other_errs    += COUNTER_WRAP_16_BIT;
1676         if (carry_reg1 & (1 << 6))
1677                 adapter->stats.rx_crc_errs      += COUNTER_WRAP_16_BIT;
1678         if (carry_reg1 & (1 << 3))
1679                 adapter->stats.rx_overflows     += COUNTER_WRAP_16_BIT;
1680         if (carry_reg1 & (1 << 0))
1681                 adapter->stats.rcvd_pkts_dropped        += COUNTER_WRAP_16_BIT;
1682         if (carry_reg2 & (1 << 16))
1683                 adapter->stats.tx_max_pkt_errs  += COUNTER_WRAP_12_BIT;
1684         if (carry_reg2 & (1 << 15))
1685                 adapter->stats.tx_underflows    += COUNTER_WRAP_12_BIT;
1686         if (carry_reg2 & (1 << 6))
1687                 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1688         if (carry_reg2 & (1 << 8))
1689                 adapter->stats.tx_deferred      += COUNTER_WRAP_12_BIT;
1690         if (carry_reg2 & (1 << 5))
1691                 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1692         if (carry_reg2 & (1 << 4))
1693                 adapter->stats.tx_late_collisions       += COUNTER_WRAP_12_BIT;
1694         if (carry_reg2 & (1 << 2))
1695                 adapter->stats.tx_collisions    += COUNTER_WRAP_12_BIT;
1696 }
1697
1698 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1699 {
1700         struct net_device *netdev = bus->priv;
1701         struct et131x_adapter *adapter = netdev_priv(netdev);
1702         u16 value;
1703         int ret;
1704
1705         ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1706
1707         if (ret < 0)
1708                 return ret;
1709         else
1710                 return value;
1711 }
1712
1713 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr, int reg, u16 value)
1714 {
1715         struct net_device *netdev = bus->priv;
1716         struct et131x_adapter *adapter = netdev_priv(netdev);
1717
1718         return et131x_mii_write(adapter, reg, value);
1719 }
1720
1721 static int et131x_mdio_reset(struct mii_bus *bus)
1722 {
1723         struct net_device *netdev = bus->priv;
1724         struct et131x_adapter *adapter = netdev_priv(netdev);
1725
1726         et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1727
1728         return 0;
1729 }
1730
1731 /**
1732  *      et1310_phy_power_down   -       PHY power control
1733  *      @adapter: device to control
1734  *      @down: true for off/false for back on
1735  *
1736  *      one hundred, ten, one thousand megs
1737  *      How would you like to have your LAN accessed
1738  *      Can't you see that this code processed
1739  *      Phy power, phy power..
1740  */
1741 static void et1310_phy_power_down(struct et131x_adapter *adapter, bool down)
1742 {
1743         u16 data;
1744
1745         et131x_mii_read(adapter, MII_BMCR, &data);
1746         data &= ~BMCR_PDOWN;
1747         if (down)
1748                 data |= BMCR_PDOWN;
1749         et131x_mii_write(adapter, MII_BMCR, data);
1750 }
1751
1752 /**
1753  * et131x_xcvr_init - Init the phy if we are setting it into force mode
1754  * @adapter: pointer to our private adapter structure
1755  *
1756  */
1757 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1758 {
1759         u16 imr;
1760         u16 isr;
1761         u16 lcr2;
1762
1763         et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &isr);
1764         et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &imr);
1765
1766         /* Set the link status interrupt only.  Bad behavior when link status
1767          * and auto neg are set, we run into a nested interrupt problem
1768          */
1769         imr |= (ET_PHY_INT_MASK_AUTONEGSTAT &
1770                 ET_PHY_INT_MASK_LINKSTAT &
1771                 ET_PHY_INT_MASK_ENABLE);
1772
1773         et131x_mii_write(adapter, PHY_INTERRUPT_MASK, imr);
1774
1775         /* Set the LED behavior such that LED 1 indicates speed (off =
1776          * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1777          * link and activity (on for link, blink off for activity).
1778          *
1779          * NOTE: Some customizations have been added here for specific
1780          * vendors; The LED behavior is now determined by vendor data in the
1781          * EEPROM. However, the above description is the default.
1782          */
1783         if ((adapter->eeprom_data[1] & 0x4) == 0) {
1784                 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1785
1786                 lcr2 &= (ET_LED2_LED_100TX & ET_LED2_LED_1000T);
1787                 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1788
1789                 if ((adapter->eeprom_data[1] & 0x8) == 0)
1790                         lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1791                 else
1792                         lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1793
1794                 et131x_mii_write(adapter, PHY_LED_2, lcr2);
1795         }
1796 }
1797
1798 /**
1799  * et131x_configure_global_regs -       configure JAGCore global regs
1800  * @adapter: pointer to our adapter structure
1801  *
1802  * Used to configure the global registers on the JAGCore
1803  */
1804 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1805 {
1806         struct global_regs __iomem *regs = &adapter->regs->global;
1807
1808         writel(0, &regs->rxq_start_addr);
1809         writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1810
1811         if (adapter->registry_jumbo_packet < 2048) {
1812                 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1813                  * block of RAM that the driver can split between Tx
1814                  * and Rx as it desires.  Our default is to split it
1815                  * 50/50:
1816                  */
1817                 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1818                 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1819         } else if (adapter->registry_jumbo_packet < 8192) {
1820                 /* For jumbo packets > 2k but < 8k, split 50-50. */
1821                 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1822                 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1823         } else {
1824                 /* 9216 is the only packet size greater than 8k that
1825                  * is available. The Tx buffer has to be big enough
1826                  * for one whole packet on the Tx side. We'll make
1827                  * the Tx 9408, and give the rest to Rx
1828                  */
1829                 writel(0x01b3, &regs->rxq_end_addr);
1830                 writel(0x01b4, &regs->txq_start_addr);
1831         }
1832
1833         /* Initialize the loopback register. Disable all loopbacks. */
1834         writel(0, &regs->loopback);
1835
1836         /* MSI Register */
1837         writel(0, &regs->msi_config);
1838
1839         /* By default, disable the watchdog timer.  It will be enabled when
1840          * a packet is queued.
1841          */
1842         writel(0, &regs->watchdog_timer);
1843 }
1844
1845 /**
1846  * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
1847  * @adapter: pointer to our adapter structure
1848  */
1849 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1850 {
1851         struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1852         struct rx_ring *rx_local = &adapter->rx_ring;
1853         struct fbr_desc *fbr_entry;
1854         u32 entry;
1855         u32 psr_num_des;
1856         unsigned long flags;
1857
1858         /* Halt RXDMA to perform the reconfigure.  */
1859         et131x_rx_dma_disable(adapter);
1860
1861         /* Load the completion writeback physical address
1862          *
1863          * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
1864          * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
1865          * are ever returned, make sure the high part is retrieved here
1866          * before storing the adjusted address.
1867          */
1868         writel((u32) ((u64)rx_local->rx_status_bus >> 32),
1869                &rx_dma->dma_wb_base_hi);
1870         writel((u32) rx_local->rx_status_bus, &rx_dma->dma_wb_base_lo);
1871
1872         memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1873
1874         /* Set the address and parameters of the packet status ring into the
1875          * 1310's registers
1876          */
1877         writel((u32) ((u64)rx_local->ps_ring_physaddr >> 32),
1878                &rx_dma->psr_base_hi);
1879         writel((u32) rx_local->ps_ring_physaddr, &rx_dma->psr_base_lo);
1880         writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1881         writel(0, &rx_dma->psr_full_offset);
1882
1883         psr_num_des = readl(&rx_dma->psr_num_des) & 0xFFF;
1884         writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1885                &rx_dma->psr_min_des);
1886
1887         spin_lock_irqsave(&adapter->rcv_lock, flags);
1888
1889         /* These local variables track the PSR in the adapter structure */
1890         rx_local->local_psr_full = 0;
1891
1892         /* Now's the best time to initialize FBR1 contents */
1893         fbr_entry = (struct fbr_desc *) rx_local->fbr[0]->ring_virtaddr;
1894         for (entry = 0; entry < rx_local->fbr[0]->num_entries; entry++) {
1895                 fbr_entry->addr_hi = rx_local->fbr[0]->bus_high[entry];
1896                 fbr_entry->addr_lo = rx_local->fbr[0]->bus_low[entry];
1897                 fbr_entry->word2 = entry;
1898                 fbr_entry++;
1899         }
1900
1901         /* Set the address and parameters of Free buffer ring 1 (and 0 if
1902          * required) into the 1310's registers
1903          */
1904         writel((u32) (rx_local->fbr[0]->real_physaddr >> 32),
1905                &rx_dma->fbr1_base_hi);
1906         writel((u32) rx_local->fbr[0]->real_physaddr, &rx_dma->fbr1_base_lo);
1907         writel(rx_local->fbr[0]->num_entries - 1, &rx_dma->fbr1_num_des);
1908         writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
1909
1910         /* This variable tracks the free buffer ring 1 full position, so it
1911          * has to match the above.
1912          */
1913         rx_local->fbr[0]->local_full = ET_DMA10_WRAP;
1914         writel(
1915            ((rx_local->fbr[0]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1916            &rx_dma->fbr1_min_des);
1917
1918 #ifdef USE_FBR0
1919         /* Now's the best time to initialize FBR0 contents */
1920         fbr_entry = (struct fbr_desc *) rx_local->fbr[1]->ring_virtaddr;
1921         for (entry = 0; entry < rx_local->fbr[1]->num_entries; entry++) {
1922                 fbr_entry->addr_hi = rx_local->fbr[1]->bus_high[entry];
1923                 fbr_entry->addr_lo = rx_local->fbr[1]->bus_low[entry];
1924                 fbr_entry->word2 = entry;
1925                 fbr_entry++;
1926         }
1927
1928         writel((u32) (rx_local->fbr[1]->real_physaddr >> 32),
1929                &rx_dma->fbr0_base_hi);
1930         writel((u32) rx_local->fbr[1]->real_physaddr, &rx_dma->fbr0_base_lo);
1931         writel(rx_local->fbr[1]->num_entries - 1, &rx_dma->fbr0_num_des);
1932         writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
1933
1934         /* This variable tracks the free buffer ring 0 full position, so it
1935          * has to match the above.
1936          */
1937         rx_local->fbr[1]->local_full = ET_DMA10_WRAP;
1938         writel(
1939            ((rx_local->fbr[1]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1940            &rx_dma->fbr0_min_des);
1941 #endif
1942
1943         /* Program the number of packets we will receive before generating an
1944          * interrupt.
1945          * For version B silicon, this value gets updated once autoneg is
1946          *complete.
1947          */
1948         writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1949
1950         /* The "time_done" is not working correctly to coalesce interrupts
1951          * after a given time period, but rather is giving us an interrupt
1952          * regardless of whether we have received packets.
1953          * This value gets updated once autoneg is complete.
1954          */
1955         writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1956
1957         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1958 }
1959
1960 /**
1961  * et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1962  * @adapter: pointer to our private adapter structure
1963  *
1964  * Configure the transmit engine with the ring buffers we have created
1965  * and prepare it for use.
1966  */
1967 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1968 {
1969         struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1970
1971         /* Load the hardware with the start of the transmit descriptor ring. */
1972         writel((u32) ((u64)adapter->tx_ring.tx_desc_ring_pa >> 32),
1973                &txdma->pr_base_hi);
1974         writel((u32) adapter->tx_ring.tx_desc_ring_pa,
1975                &txdma->pr_base_lo);
1976
1977         /* Initialise the transmit DMA engine */
1978         writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1979
1980         /* Load the completion writeback physical address */
1981         writel((u32)((u64)adapter->tx_ring.tx_status_pa >> 32),
1982                                                 &txdma->dma_wb_base_hi);
1983         writel((u32)adapter->tx_ring.tx_status_pa, &txdma->dma_wb_base_lo);
1984
1985         *adapter->tx_ring.tx_status = 0;
1986
1987         writel(0, &txdma->service_request);
1988         adapter->tx_ring.send_idx = 0;
1989 }
1990
1991 /**
1992  * et131x_adapter_setup - Set the adapter up as per cassini+ documentation
1993  * @adapter: pointer to our private adapter structure
1994  *
1995  * Returns 0 on success, errno on failure (as defined in errno.h)
1996  */
1997 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1998 {
1999         /* Configure the JAGCore */
2000         et131x_configure_global_regs(adapter);
2001
2002         et1310_config_mac_regs1(adapter);
2003
2004         /* Configure the MMC registers */
2005         /* All we need to do is initialize the Memory Control Register */
2006         writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
2007
2008         et1310_config_rxmac_regs(adapter);
2009         et1310_config_txmac_regs(adapter);
2010
2011         et131x_config_rx_dma_regs(adapter);
2012         et131x_config_tx_dma_regs(adapter);
2013
2014         et1310_config_macstat_regs(adapter);
2015
2016         et1310_phy_power_down(adapter, 0);
2017         et131x_xcvr_init(adapter);
2018 }
2019
2020 /**
2021  * et131x_soft_reset - Issue a soft reset to the hardware, complete for ET1310
2022  * @adapter: pointer to our private adapter structure
2023  */
2024 static void et131x_soft_reset(struct et131x_adapter *adapter)
2025 {
2026         /* Disable MAC Core */
2027         writel(0xc00f0000, &adapter->regs->mac.cfg1);
2028
2029         /* Set everything to a reset value */
2030         writel(0x7F, &adapter->regs->global.sw_reset);
2031         writel(0x000f0000, &adapter->regs->mac.cfg1);
2032         writel(0x00000000, &adapter->regs->mac.cfg1);
2033 }
2034
2035 /**
2036  *      et131x_enable_interrupts        -       enable interrupt
2037  *      @adapter: et131x device
2038  *
2039  *      Enable the appropriate interrupts on the ET131x according to our
2040  *      configuration
2041  */
2042 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
2043 {
2044         u32 mask;
2045
2046         /* Enable all global interrupts */
2047         if (adapter->flowcontrol == FLOW_TXONLY ||
2048                             adapter->flowcontrol == FLOW_BOTH)
2049                 mask = INT_MASK_ENABLE;
2050         else
2051                 mask = INT_MASK_ENABLE_NO_FLOW;
2052
2053         writel(mask, &adapter->regs->global.int_mask);
2054 }
2055
2056 /**
2057  *      et131x_disable_interrupts       -       interrupt disable
2058  *      @adapter: et131x device
2059  *
2060  *      Block all interrupts from the et131x device at the device itself
2061  */
2062 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
2063 {
2064         /* Disable all global interrupts */
2065         writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
2066 }
2067
2068 /**
2069  * et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
2070  * @adapter: pointer to our adapter structure
2071  */
2072 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
2073 {
2074         /* Setup the tramsmit dma configuration register */
2075         writel(ET_TXDMA_CSR_HALT|ET_TXDMA_SNGL_EPKT,
2076                                         &adapter->regs->txdma.csr);
2077 }
2078
2079 /**
2080  * et131x_enable_txrx - Enable tx/rx queues
2081  * @netdev: device to be enabled
2082  */
2083 static void et131x_enable_txrx(struct net_device *netdev)
2084 {
2085         struct et131x_adapter *adapter = netdev_priv(netdev);
2086
2087         /* Enable the Tx and Rx DMA engines (if not already enabled) */
2088         et131x_rx_dma_enable(adapter);
2089         et131x_tx_dma_enable(adapter);
2090
2091         /* Enable device interrupts */
2092         if (adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE)
2093                 et131x_enable_interrupts(adapter);
2094
2095         /* We're ready to move some data, so start the queue */
2096         netif_start_queue(netdev);
2097 }
2098
2099 /**
2100  * et131x_disable_txrx - Disable tx/rx queues
2101  * @netdev: device to be disabled
2102  */
2103 static void et131x_disable_txrx(struct net_device *netdev)
2104 {
2105         struct et131x_adapter *adapter = netdev_priv(netdev);
2106
2107         /* First thing is to stop the queue */
2108         netif_stop_queue(netdev);
2109
2110         /* Stop the Tx and Rx DMA engines */
2111         et131x_rx_dma_disable(adapter);
2112         et131x_tx_dma_disable(adapter);
2113
2114         /* Disable device interrupts */
2115         et131x_disable_interrupts(adapter);
2116 }
2117
2118 /**
2119  * et131x_init_send - Initialize send data structures
2120  * @adapter: pointer to our private adapter structure
2121  */
2122 static void et131x_init_send(struct et131x_adapter *adapter)
2123 {
2124         struct tcb *tcb;
2125         u32 ct;
2126         struct tx_ring *tx_ring;
2127
2128         /* Setup some convenience pointers */
2129         tx_ring = &adapter->tx_ring;
2130         tcb = adapter->tx_ring.tcb_ring;
2131
2132         tx_ring->tcb_qhead = tcb;
2133
2134         memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
2135
2136         /* Go through and set up each TCB */
2137         for (ct = 0; ct++ < NUM_TCB; tcb++)
2138                 /* Set the link pointer in HW TCB to the next TCB in the
2139                  * chain
2140                  */
2141                 tcb->next = tcb + 1;
2142
2143         /* Set the  tail pointer */
2144         tcb--;
2145         tx_ring->tcb_qtail = tcb;
2146         tcb->next = NULL;
2147         /* Curr send queue should now be empty */
2148         tx_ring->send_head = NULL;
2149         tx_ring->send_tail = NULL;
2150 }
2151
2152 /**
2153  * et1310_enable_phy_coma - called when network cable is unplugged
2154  * @adapter: pointer to our adapter structure
2155  *
2156  * driver receive an phy status change interrupt while in D0 and check that
2157  * phy_status is down.
2158  *
2159  *          -- gate off JAGCore;
2160  *          -- set gigE PHY in Coma mode
2161  *          -- wake on phy_interrupt; Perform software reset JAGCore,
2162  *             re-initialize jagcore and gigE PHY
2163  *
2164  *      Add D0-ASPM-PhyLinkDown Support:
2165  *          -- while in D0, when there is a phy_interrupt indicating phy link
2166  *             down status, call the MPSetPhyComa routine to enter this active
2167  *             state power saving mode
2168  *          -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2169  *       indicating linkup status, call the MPDisablePhyComa routine to
2170  *             restore JAGCore and gigE PHY
2171  */
2172 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
2173 {
2174         unsigned long flags;
2175         u32 pmcsr;
2176
2177         pmcsr = readl(&adapter->regs->global.pm_csr);
2178
2179         /* Save the GbE PHY speed and duplex modes. Need to restore this
2180          * when cable is plugged back in
2181          */
2182         /*
2183          * TODO - when PM is re-enabled, check if we need to
2184          * perform a similar task as this -
2185          * adapter->pdown_speed = adapter->ai_force_speed;
2186          * adapter->pdown_duplex = adapter->ai_force_duplex;
2187          */
2188
2189         /* Stop sending packets. */
2190         spin_lock_irqsave(&adapter->send_hw_lock, flags);
2191         adapter->flags |= fMP_ADAPTER_LOWER_POWER;
2192         spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2193
2194         /* Wait for outstanding Receive packets */
2195
2196         et131x_disable_txrx(adapter->netdev);
2197
2198         /* Gate off JAGCore 3 clock domains */
2199         pmcsr &= ~ET_PMCSR_INIT;
2200         writel(pmcsr, &adapter->regs->global.pm_csr);
2201
2202         /* Program gigE PHY in to Coma mode */
2203         pmcsr |= ET_PM_PHY_SW_COMA;
2204         writel(pmcsr, &adapter->regs->global.pm_csr);
2205 }
2206
2207 /**
2208  * et1310_disable_phy_coma - Disable the Phy Coma Mode
2209  * @adapter: pointer to our adapter structure
2210  */
2211 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
2212 {
2213         u32 pmcsr;
2214
2215         pmcsr = readl(&adapter->regs->global.pm_csr);
2216
2217         /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2218         pmcsr |= ET_PMCSR_INIT;
2219         pmcsr &= ~ET_PM_PHY_SW_COMA;
2220         writel(pmcsr, &adapter->regs->global.pm_csr);
2221
2222         /* Restore the GbE PHY speed and duplex modes;
2223          * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2224          */
2225         /* TODO - when PM is re-enabled, check if we need to
2226          * perform a similar task as this -
2227          * adapter->ai_force_speed = adapter->pdown_speed;
2228          * adapter->ai_force_duplex = adapter->pdown_duplex;
2229          */
2230
2231         /* Re-initialize the send structures */
2232         et131x_init_send(adapter);
2233
2234         /* Bring the device back to the state it was during init prior to
2235          * autonegotiation being complete.  This way, when we get the auto-neg
2236          * complete interrupt, we can complete init by calling ConfigMacREGS2.
2237          */
2238         et131x_soft_reset(adapter);
2239
2240         /* setup et1310 as per the documentation ?? */
2241         et131x_adapter_setup(adapter);
2242
2243         /* Allow Tx to restart */
2244         adapter->flags &= ~fMP_ADAPTER_LOWER_POWER;
2245
2246         et131x_enable_txrx(adapter->netdev);
2247 }
2248
2249 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2250 {
2251         u32 tmp_free_buff_ring = *free_buff_ring;
2252         tmp_free_buff_ring++;
2253         /* This works for all cases where limit < 1024. The 1023 case
2254            works because 1023++ is 1024 which means the if condition is not
2255            taken but the carry of the bit into the wrap bit toggles the wrap
2256            value correctly */
2257         if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2258                 tmp_free_buff_ring &= ~ET_DMA10_MASK;
2259                 tmp_free_buff_ring ^= ET_DMA10_WRAP;
2260         }
2261         /* For the 1023 case */
2262         tmp_free_buff_ring &= (ET_DMA10_MASK|ET_DMA10_WRAP);
2263         *free_buff_ring = tmp_free_buff_ring;
2264         return tmp_free_buff_ring;
2265 }
2266
2267 /**
2268  * et131x_align_allocated_memory - Align allocated memory on a given boundary
2269  * @adapter: pointer to our adapter structure
2270  * @phys_addr: pointer to Physical address
2271  * @offset: pointer to the offset variable
2272  * @mask: correct mask
2273  */
2274 static void et131x_align_allocated_memory(struct et131x_adapter *adapter,
2275                                           u64 *phys_addr, u64 *offset,
2276                                           u64 mask)
2277 {
2278         u64 new_addr = *phys_addr & ~mask;
2279
2280         *offset = 0;
2281
2282         if (new_addr != *phys_addr) {
2283                 /* Move to next aligned block */
2284                 new_addr += mask + 1;
2285                 /* Return offset for adjusting virt addr */
2286                 *offset = new_addr - *phys_addr;
2287                 /* Return new physical address */
2288                 *phys_addr = new_addr;
2289         }
2290 }
2291
2292 /**
2293  * et131x_rx_dma_memory_alloc
2294  * @adapter: pointer to our private adapter structure
2295  *
2296  * Returns 0 on success and errno on failure (as defined in errno.h)
2297  *
2298  * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2299  * and the Packet Status Ring.
2300  */
2301 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
2302 {
2303         u32 i, j;
2304         u32 bufsize;
2305         u32 pktstat_ringsize, fbr_chunksize;
2306         struct rx_ring *rx_ring;
2307
2308         /* Setup some convenience pointers */
2309         rx_ring = &adapter->rx_ring;
2310
2311         /* Alloc memory for the lookup table */
2312 #ifdef USE_FBR0
2313         rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2314 #endif
2315         rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2316
2317         /* The first thing we will do is configure the sizes of the buffer
2318          * rings. These will change based on jumbo packet support.  Larger
2319          * jumbo packets increases the size of each entry in FBR0, and the
2320          * number of entries in FBR0, while at the same time decreasing the
2321          * number of entries in FBR1.
2322          *
2323          * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
2324          * entries are huge in order to accommodate a "jumbo" frame, then it
2325          * will have less entries.  Conversely, FBR1 will now be relied upon
2326          * to carry more "normal" frames, thus it's entry size also increases
2327          * and the number of entries goes up too (since it now carries
2328          * "small" + "regular" packets.
2329          *
2330          * In this scheme, we try to maintain 512 entries between the two
2331          * rings. Also, FBR1 remains a constant size - when it's size doubles
2332          * the number of entries halves.  FBR0 increases in size, however.
2333          */
2334
2335         if (adapter->registry_jumbo_packet < 2048) {
2336 #ifdef USE_FBR0
2337                 rx_ring->fbr[1]->buffsize = 256;
2338                 rx_ring->fbr[1]->num_entries = 512;
2339 #endif
2340                 rx_ring->fbr[0]->buffsize = 2048;
2341                 rx_ring->fbr[0]->num_entries = 512;
2342         } else if (adapter->registry_jumbo_packet < 4096) {
2343 #ifdef USE_FBR0
2344                 rx_ring->fbr[1]->buffsize = 512;
2345                 rx_ring->fbr[1]->num_entries = 1024;
2346 #endif
2347                 rx_ring->fbr[0]->buffsize = 4096;
2348                 rx_ring->fbr[0]->num_entries = 512;
2349         } else {
2350 #ifdef USE_FBR0
2351                 rx_ring->fbr[1]->buffsize = 1024;
2352                 rx_ring->fbr[1]->num_entries = 768;
2353 #endif
2354                 rx_ring->fbr[0]->buffsize = 16384;
2355                 rx_ring->fbr[0]->num_entries = 128;
2356         }
2357
2358 #ifdef USE_FBR0
2359         adapter->rx_ring.psr_num_entries =
2360                                 adapter->rx_ring.fbr[1]->num_entries +
2361                                 adapter->rx_ring.fbr[0]->num_entries;
2362 #else
2363         adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr[0]->num_entries;
2364 #endif
2365
2366         /* Allocate an area of memory for Free Buffer Ring 1 */
2367         bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2368                                                                         0xfff;
2369         rx_ring->fbr[0]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2370                                         bufsize,
2371                                         &rx_ring->fbr[0]->ring_physaddr,
2372                                         GFP_KERNEL);
2373         if (!rx_ring->fbr[0]->ring_virtaddr) {
2374                 dev_err(&adapter->pdev->dev,
2375                           "Cannot alloc memory for Free Buffer Ring 1\n");
2376                 return -ENOMEM;
2377         }
2378
2379         /* Save physical address
2380          *
2381          * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2382          * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2383          * are ever returned, make sure the high part is retrieved here
2384          * before storing the adjusted address.
2385          */
2386         rx_ring->fbr[0]->real_physaddr = rx_ring->fbr[0]->ring_physaddr;
2387
2388         /* Align Free Buffer Ring 1 on a 4K boundary */
2389         et131x_align_allocated_memory(adapter,
2390                                       &rx_ring->fbr[0]->real_physaddr,
2391                                       &rx_ring->fbr[0]->offset, 0x0FFF);
2392
2393         rx_ring->fbr[0]->ring_virtaddr =
2394                         (void *)((u8 *) rx_ring->fbr[0]->ring_virtaddr +
2395                         rx_ring->fbr[0]->offset);
2396
2397 #ifdef USE_FBR0
2398         /* Allocate an area of memory for Free Buffer Ring 0 */
2399         bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2400                                                                         0xfff;
2401         rx_ring->fbr[1]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2402                                                 bufsize,
2403                                                 &rx_ring->fbr[1]->ring_physaddr,
2404                                                 GFP_KERNEL);
2405         if (!rx_ring->fbr[1]->ring_virtaddr) {
2406                 dev_err(&adapter->pdev->dev,
2407                           "Cannot alloc memory for Free Buffer Ring 0\n");
2408                 return -ENOMEM;
2409         }
2410
2411         /* Save physical address
2412          *
2413          * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2414          * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2415          * are ever returned, make sure the high part is retrieved here before
2416          * storing the adjusted address.
2417          */
2418         rx_ring->fbr[1]->real_physaddr = rx_ring->fbr[1]->ring_physaddr;
2419
2420         /* Align Free Buffer Ring 0 on a 4K boundary */
2421         et131x_align_allocated_memory(adapter,
2422                                       &rx_ring->fbr[1]->real_physaddr,
2423                                       &rx_ring->fbr[1]->offset, 0x0FFF);
2424
2425         rx_ring->fbr[1]->ring_virtaddr =
2426                         (void *)((u8 *) rx_ring->fbr[1]->ring_virtaddr +
2427                         rx_ring->fbr[1]->offset);
2428 #endif
2429         for (i = 0; i < (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); i++) {
2430                 u64 fbr1_tmp_physaddr;
2431                 u64 fbr1_offset;
2432                 u32 fbr1_align;
2433
2434                 /* This code allocates an area of memory big enough for N
2435                  * free buffers + (buffer_size - 1) so that the buffers can
2436                  * be aligned on 4k boundaries.  If each buffer were aligned
2437                  * to a buffer_size boundary, the effect would be to double
2438                  * the size of FBR0.  By allocating N buffers at once, we
2439                  * reduce this overhead.
2440                  */
2441                 if (rx_ring->fbr[0]->buffsize > 4096)
2442                         fbr1_align = 4096;
2443                 else
2444                         fbr1_align = rx_ring->fbr[0]->buffsize;
2445
2446                 fbr_chunksize =
2447                     (FBR_CHUNKS * rx_ring->fbr[0]->buffsize) + fbr1_align - 1;
2448                 rx_ring->fbr[0]->mem_virtaddrs[i] =
2449                     dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2450                                        &rx_ring->fbr[0]->mem_physaddrs[i],
2451                                        GFP_KERNEL);
2452
2453                 if (!rx_ring->fbr[0]->mem_virtaddrs[i]) {
2454                         dev_err(&adapter->pdev->dev,
2455                                 "Could not alloc memory\n");
2456                         return -ENOMEM;
2457                 }
2458
2459                 /* See NOTE in "Save Physical Address" comment above */
2460                 fbr1_tmp_physaddr = rx_ring->fbr[0]->mem_physaddrs[i];
2461
2462                 et131x_align_allocated_memory(adapter,
2463                                               &fbr1_tmp_physaddr,
2464                                               &fbr1_offset, (fbr1_align - 1));
2465
2466                 for (j = 0; j < FBR_CHUNKS; j++) {
2467                         u32 index = (i * FBR_CHUNKS) + j;
2468
2469                         /* Save the Virtual address of this index for quick
2470                          * access later
2471                          */
2472                         rx_ring->fbr[0]->virt[index] =
2473                             (u8 *) rx_ring->fbr[0]->mem_virtaddrs[i] +
2474                             (j * rx_ring->fbr[0]->buffsize) + fbr1_offset;
2475
2476                         /* now store the physical address in the descriptor
2477                          * so the device can access it
2478                          */
2479                         rx_ring->fbr[0]->bus_high[index] =
2480                             (u32) (fbr1_tmp_physaddr >> 32);
2481                         rx_ring->fbr[0]->bus_low[index] =
2482                             (u32) fbr1_tmp_physaddr;
2483
2484                         fbr1_tmp_physaddr += rx_ring->fbr[0]->buffsize;
2485
2486                         rx_ring->fbr[0]->buffer1[index] =
2487                             rx_ring->fbr[0]->virt[index];
2488                         rx_ring->fbr[0]->buffer2[index] =
2489                             rx_ring->fbr[0]->virt[index] - 4;
2490                 }
2491         }
2492
2493 #ifdef USE_FBR0
2494         /* Same for FBR0 (if in use) */
2495         for (i = 0; i < (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); i++) {
2496                 u64 fbr0_tmp_physaddr;
2497                 u64 fbr0_offset;
2498
2499                 fbr_chunksize =
2500                     ((FBR_CHUNKS + 1) * rx_ring->fbr[1]->buffsize) - 1;
2501                 rx_ring->fbr[1]->mem_virtaddrs[i] =
2502                     dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2503                                        &rx_ring->fbr[1]->mem_physaddrs[i],
2504                                        GFP_KERNEL);
2505
2506                 if (!rx_ring->fbr[1]->mem_virtaddrs[i]) {
2507                         dev_err(&adapter->pdev->dev,
2508                                 "Could not alloc memory\n");
2509                         return -ENOMEM;
2510                 }
2511
2512                 /* See NOTE in "Save Physical Address" comment above */
2513                 fbr0_tmp_physaddr = rx_ring->fbr[1]->mem_physaddrs[i];
2514
2515                 et131x_align_allocated_memory(adapter,
2516                                               &fbr0_tmp_physaddr,
2517                                               &fbr0_offset,
2518                                               rx_ring->fbr[1]->buffsize - 1);
2519
2520                 for (j = 0; j < FBR_CHUNKS; j++) {
2521                         u32 index = (i * FBR_CHUNKS) + j;
2522
2523                         rx_ring->fbr[1]->virt[index] =
2524                             (u8 *) rx_ring->fbr[1]->mem_virtaddrs[i] +
2525                             (j * rx_ring->fbr[1]->buffsize) + fbr0_offset;
2526
2527                         rx_ring->fbr[1]->bus_high[index] =
2528                             (u32) (fbr0_tmp_physaddr >> 32);
2529                         rx_ring->fbr[1]->bus_low[index] =
2530                             (u32) fbr0_tmp_physaddr;
2531
2532                         fbr0_tmp_physaddr += rx_ring->fbr[1]->buffsize;
2533
2534                         rx_ring->fbr[1]->buffer1[index] =
2535                             rx_ring->fbr[1]->virt[index];
2536                         rx_ring->fbr[1]->buffer2[index] =
2537                             rx_ring->fbr[1]->virt[index] - 4;
2538                 }
2539         }
2540 #endif
2541
2542         /* Allocate an area of memory for FIFO of Packet Status ring entries */
2543         pktstat_ringsize =
2544             sizeof(struct pkt_stat_desc) * adapter->rx_ring.psr_num_entries;
2545
2546         rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2547                                                   pktstat_ringsize,
2548                                                   &rx_ring->ps_ring_physaddr,
2549                                                   GFP_KERNEL);
2550
2551         if (!rx_ring->ps_ring_virtaddr) {
2552                 dev_err(&adapter->pdev->dev,
2553                           "Cannot alloc memory for Packet Status Ring\n");
2554                 return -ENOMEM;
2555         }
2556         printk(KERN_INFO "Packet Status Ring %lx\n",
2557             (unsigned long) rx_ring->ps_ring_physaddr);
2558
2559         /*
2560          * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2561          * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2562          * are ever returned, make sure the high part is retrieved here before
2563          * storing the adjusted address.
2564          */
2565
2566         /* Allocate an area of memory for writeback of status information */
2567         rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
2568                                             sizeof(struct rx_status_block),
2569                                             &rx_ring->rx_status_bus,
2570                                             GFP_KERNEL);
2571         if (!rx_ring->rx_status_block) {
2572                 dev_err(&adapter->pdev->dev,
2573                           "Cannot alloc memory for Status Block\n");
2574                 return -ENOMEM;
2575         }
2576         rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2577         printk(KERN_INFO "PRS %lx\n", (unsigned long)rx_ring->rx_status_bus);
2578
2579         /* Recv
2580          * kmem_cache_create initializes a lookaside list. After successful
2581          * creation, nonpaged fixed-size blocks can be allocated from and
2582          * freed to the lookaside list.
2583          * RFDs will be allocated from this pool.
2584          */
2585         rx_ring->recv_lookaside = kmem_cache_create(adapter->netdev->name,
2586                                                    sizeof(struct rfd),
2587                                                    0,
2588                                                    SLAB_CACHE_DMA |
2589                                                    SLAB_HWCACHE_ALIGN,
2590                                                    NULL);
2591
2592         adapter->flags |= fMP_ADAPTER_RECV_LOOKASIDE;
2593
2594         /* The RFDs are going to be put on lists later on, so initialize the
2595          * lists now.
2596          */
2597         INIT_LIST_HEAD(&rx_ring->recv_list);
2598         return 0;
2599 }
2600
2601 /**
2602  * et131x_rx_dma_memory_free - Free all memory allocated within this module.
2603  * @adapter: pointer to our private adapter structure
2604  */
2605 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2606 {
2607         u32 index;
2608         u32 bufsize;
2609         u32 pktstat_ringsize;
2610         struct rfd *rfd;
2611         struct rx_ring *rx_ring;
2612
2613         /* Setup some convenience pointers */
2614         rx_ring = &adapter->rx_ring;
2615
2616         /* Free RFDs and associated packet descriptors */
2617         WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2618
2619         while (!list_empty(&rx_ring->recv_list)) {
2620                 rfd = (struct rfd *) list_entry(rx_ring->recv_list.next,
2621                                 struct rfd, list_node);
2622
2623                 list_del(&rfd->list_node);
2624                 rfd->skb = NULL;
2625                 kmem_cache_free(adapter->rx_ring.recv_lookaside, rfd);
2626         }
2627
2628         /* Free Free Buffer Ring 1 */
2629         if (rx_ring->fbr[0]->ring_virtaddr) {
2630                 /* First the packet memory */
2631                 for (index = 0; index <
2632                      (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); index++) {
2633                         if (rx_ring->fbr[0]->mem_virtaddrs[index]) {
2634                                 u32 fbr1_align;
2635
2636                                 if (rx_ring->fbr[0]->buffsize > 4096)
2637                                         fbr1_align = 4096;
2638                                 else
2639                                         fbr1_align = rx_ring->fbr[0]->buffsize;
2640
2641                                 bufsize =
2642                                     (rx_ring->fbr[0]->buffsize * FBR_CHUNKS) +
2643                                     fbr1_align - 1;
2644
2645                                 dma_free_coherent(&adapter->pdev->dev,
2646                                         bufsize,
2647                                         rx_ring->fbr[0]->mem_virtaddrs[index],
2648                                         rx_ring->fbr[0]->mem_physaddrs[index]);
2649
2650                                 rx_ring->fbr[0]->mem_virtaddrs[index] = NULL;
2651                         }
2652                 }
2653
2654                 /* Now the FIFO itself */
2655                 rx_ring->fbr[0]->ring_virtaddr = (void *)((u8 *)
2656                     rx_ring->fbr[0]->ring_virtaddr - rx_ring->fbr[0]->offset);
2657
2658                 bufsize =
2659                     (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2660                                                                         0xfff;
2661
2662                 dma_free_coherent(&adapter->pdev->dev, bufsize,
2663                                     rx_ring->fbr[0]->ring_virtaddr,
2664                                     rx_ring->fbr[0]->ring_physaddr);
2665
2666                 rx_ring->fbr[0]->ring_virtaddr = NULL;
2667         }
2668
2669 #ifdef USE_FBR0
2670         /* Now the same for Free Buffer Ring 0 */
2671         if (rx_ring->fbr[1]->ring_virtaddr) {
2672                 /* First the packet memory */
2673                 for (index = 0; index <
2674                      (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); index++) {
2675                         if (rx_ring->fbr[1]->mem_virtaddrs[index]) {
2676                                 bufsize =
2677                                     (rx_ring->fbr[1]->buffsize *
2678                                      (FBR_CHUNKS + 1)) - 1;
2679
2680                                 dma_free_coherent(&adapter->pdev->dev,
2681                                         bufsize,
2682                                         rx_ring->fbr[1]->mem_virtaddrs[index],
2683                                         rx_ring->fbr[1]->mem_physaddrs[index]);
2684
2685                                 rx_ring->fbr[1]->mem_virtaddrs[index] = NULL;
2686                         }
2687                 }
2688
2689                 /* Now the FIFO itself */
2690                 rx_ring->fbr[1]->ring_virtaddr = (void *)((u8 *)
2691                     rx_ring->fbr[1]->ring_virtaddr - rx_ring->fbr[1]->offset);
2692
2693                 bufsize =
2694                     (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2695                                                                         0xfff;
2696
2697                 dma_free_coherent(&adapter->pdev->dev,
2698                                   bufsize,
2699                                   rx_ring->fbr[1]->ring_virtaddr,
2700                                   rx_ring->fbr[1]->ring_physaddr);
2701
2702                 rx_ring->fbr[1]->ring_virtaddr = NULL;
2703         }
2704 #endif
2705
2706         /* Free Packet Status Ring */
2707         if (rx_ring->ps_ring_virtaddr) {
2708                 pktstat_ringsize =
2709                     sizeof(struct pkt_stat_desc) *
2710                     adapter->rx_ring.psr_num_entries;
2711
2712                 dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
2713                                     rx_ring->ps_ring_virtaddr,
2714                                     rx_ring->ps_ring_physaddr);
2715
2716                 rx_ring->ps_ring_virtaddr = NULL;
2717         }
2718
2719         /* Free area of memory for the writeback of status information */
2720         if (rx_ring->rx_status_block) {
2721                 dma_free_coherent(&adapter->pdev->dev,
2722                         sizeof(struct rx_status_block),
2723                         rx_ring->rx_status_block, rx_ring->rx_status_bus);
2724                 rx_ring->rx_status_block = NULL;
2725         }
2726
2727         /* Destroy the lookaside (RFD) pool */
2728         if (adapter->flags & fMP_ADAPTER_RECV_LOOKASIDE) {
2729                 kmem_cache_destroy(rx_ring->recv_lookaside);
2730                 adapter->flags &= ~fMP_ADAPTER_RECV_LOOKASIDE;
2731         }
2732
2733         /* Free the FBR Lookup Table */
2734 #ifdef USE_FBR0
2735         kfree(rx_ring->fbr[1]);
2736 #endif
2737
2738         kfree(rx_ring->fbr[0]);
2739
2740         /* Reset Counters */
2741         rx_ring->num_ready_recv = 0;
2742 }
2743
2744 /**
2745  * et131x_init_recv - Initialize receive data structures.
2746  * @adapter: pointer to our private adapter structure
2747  *
2748  * Returns 0 on success and errno on failure (as defined in errno.h)
2749  */
2750 static int et131x_init_recv(struct et131x_adapter *adapter)
2751 {
2752         int status = -ENOMEM;
2753         struct rfd *rfd = NULL;
2754         u32 rfdct;
2755         u32 numrfd = 0;
2756         struct rx_ring *rx_ring;
2757
2758         /* Setup some convenience pointers */
2759         rx_ring = &adapter->rx_ring;
2760
2761         /* Setup each RFD */
2762         for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2763                 rfd = kmem_cache_alloc(rx_ring->recv_lookaside,
2764                                                      GFP_ATOMIC | GFP_DMA);
2765
2766                 if (!rfd) {
2767                         dev_err(&adapter->pdev->dev,
2768                                   "Couldn't alloc RFD out of kmem_cache\n");
2769                         status = -ENOMEM;
2770                         continue;
2771                 }
2772
2773                 rfd->skb = NULL;
2774
2775                 /* Add this RFD to the recv_list */
2776                 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2777
2778                 /* Increment both the available RFD's, and the total RFD's. */
2779                 rx_ring->num_ready_recv++;
2780                 numrfd++;
2781         }
2782
2783         if (numrfd > NIC_MIN_NUM_RFD)
2784                 status = 0;
2785
2786         rx_ring->num_rfd = numrfd;
2787
2788         if (status != 0) {
2789                 kmem_cache_free(rx_ring->recv_lookaside, rfd);
2790                 dev_err(&adapter->pdev->dev,
2791                           "Allocation problems in et131x_init_recv\n");
2792         }
2793         return status;
2794 }
2795
2796 /**
2797  * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
2798  * @adapter: pointer to our adapter structure
2799  */
2800 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2801 {
2802         struct phy_device *phydev = adapter->phydev;
2803
2804         if (!phydev)
2805                 return;
2806
2807         /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2808          * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2809          */
2810         if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2811                 writel(0, &adapter->regs->rxdma.max_pkt_time);
2812                 writel(1, &adapter->regs->rxdma.num_pkt_done);
2813         }
2814 }
2815
2816 /**
2817  * NICReturnRFD - Recycle a RFD and put it back onto the receive list
2818  * @adapter: pointer to our adapter
2819  * @rfd: pointer to the RFD
2820  */
2821 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2822 {
2823         struct rx_ring *rx_local = &adapter->rx_ring;
2824         struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2825         u16 buff_index = rfd->bufferindex;
2826         u8 ring_index = rfd->ringindex;
2827         unsigned long flags;
2828
2829         /* We don't use any of the OOB data besides status. Otherwise, we
2830          * need to clean up OOB data
2831          */
2832         if (
2833 #ifdef USE_FBR0
2834             (ring_index == 0 && buff_index < rx_local->fbr[1]->num_entries) ||
2835 #endif
2836             (ring_index == 1 && buff_index < rx_local->fbr[0]->num_entries)) {
2837                 spin_lock_irqsave(&adapter->fbr_lock, flags);
2838
2839                 if (ring_index == 1) {
2840                         struct fbr_desc *next = (struct fbr_desc *)
2841                                         (rx_local->fbr[0]->ring_virtaddr) +
2842                                         INDEX10(rx_local->fbr[0]->local_full);
2843
2844                         /* Handle the Free Buffer Ring advancement here. Write
2845                          * the PA / Buffer Index for the returned buffer into
2846                          * the oldest (next to be freed)FBR entry
2847                          */
2848                         next->addr_hi = rx_local->fbr[0]->bus_high[buff_index];
2849                         next->addr_lo = rx_local->fbr[0]->bus_low[buff_index];
2850                         next->word2 = buff_index;
2851
2852                         writel(bump_free_buff_ring(
2853                                         &rx_local->fbr[0]->local_full,
2854                                         rx_local->fbr[0]->num_entries - 1),
2855                                         &rx_dma->fbr1_full_offset);
2856                 }
2857 #ifdef USE_FBR0
2858                 else {
2859                         struct fbr_desc *next = (struct fbr_desc *)
2860                                 rx_local->fbr[1]->ring_virtaddr +
2861                                     INDEX10(rx_local->fbr[1]->local_full);
2862
2863                         /* Handle the Free Buffer Ring advancement here. Write
2864                          * the PA / Buffer Index for the returned buffer into
2865                          * the oldest (next to be freed) FBR entry
2866                          */
2867                         next->addr_hi = rx_local->fbr[1]->bus_high[buff_index];
2868                         next->addr_lo = rx_local->fbr[1]->bus_low[buff_index];
2869                         next->word2 = buff_index;
2870
2871                         writel(bump_free_buff_ring(
2872                                         &rx_local->fbr[1]->local_full,
2873                                         rx_local->fbr[1]->num_entries - 1),
2874                                &rx_dma->fbr0_full_offset);
2875                 }
2876 #endif
2877                 spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2878         } else {
2879                 dev_err(&adapter->pdev->dev,
2880                           "%s illegal Buffer Index returned\n", __func__);
2881         }
2882
2883         /* The processing on this RFD is done, so put it back on the tail of
2884          * our list
2885          */
2886         spin_lock_irqsave(&adapter->rcv_lock, flags);
2887         list_add_tail(&rfd->list_node, &rx_local->recv_list);
2888         rx_local->num_ready_recv++;
2889         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2890
2891         WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2892 }
2893
2894 /**
2895  * nic_rx_pkts - Checks the hardware for available packets
2896  * @adapter: pointer to our adapter
2897  *
2898  * Returns rfd, a pointer to our MPRFD.
2899  *
2900  * Checks the hardware for available packets, using completion ring
2901  * If packets are available, it gets an RFD from the recv_list, attaches
2902  * the packet to it, puts the RFD in the RecvPendList, and also returns
2903  * the pointer to the RFD.
2904  */
2905 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2906 {
2907         struct rx_ring *rx_local = &adapter->rx_ring;
2908         struct rx_status_block *status;
2909         struct pkt_stat_desc *psr;
2910         struct rfd *rfd;
2911         u32 i;
2912         u8 *buf;
2913         unsigned long flags;
2914         struct list_head *element;
2915         u8 ring_index;
2916         u16 buff_index;
2917         u32 len;
2918         u32 word0;
2919         u32 word1;
2920
2921         /* RX Status block is written by the DMA engine prior to every
2922          * interrupt. It contains the next to be used entry in the Packet
2923          * Status Ring, and also the two Free Buffer rings.
2924          */
2925         status = rx_local->rx_status_block;
2926         word1 = status->word1 >> 16;    /* Get the useful bits */
2927
2928         /* Check the PSR and wrap bits do not match */
2929         if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2930                 /* Looks like this ring is not updated yet */
2931                 return NULL;
2932
2933         /* The packet status ring indicates that data is available. */
2934         psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2935                         (rx_local->local_psr_full & 0xFFF);
2936
2937         /* Grab any information that is required once the PSR is
2938          * advanced, since we can no longer rely on the memory being
2939          * accurate
2940          */
2941         len = psr->word1 & 0xFFFF;
2942         ring_index = (psr->word1 >> 26) & 0x03;
2943         buff_index = (psr->word1 >> 16) & 0x3FF;
2944         word0 = psr->word0;
2945
2946         /* Indicate that we have used this PSR entry. */
2947         /* FIXME wrap 12 */
2948         add_12bit(&rx_local->local_psr_full, 1);
2949         if (
2950           (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2951                 /* Clear psr full and toggle the wrap bit */
2952                 rx_local->local_psr_full &=  ~0xFFF;
2953                 rx_local->local_psr_full ^= 0x1000;
2954         }
2955
2956         writel(rx_local->local_psr_full,
2957                &adapter->regs->rxdma.psr_full_offset);
2958
2959 #ifndef USE_FBR0
2960         if (ring_index != 1)
2961                 return NULL;
2962 #endif
2963
2964 #ifdef USE_FBR0
2965         if (ring_index > 1 ||
2966                 (ring_index == 0 &&
2967                 buff_index > rx_local->fbr[1]->num_entries - 1) ||
2968                 (ring_index == 1 &&
2969                 buff_index > rx_local->fbr[0]->num_entries - 1))
2970 #else
2971         if (ring_index != 1 || buff_index > rx_local->fbr[0]->num_entries - 1)
2972 #endif
2973         {
2974                 /* Illegal buffer or ring index cannot be used by S/W*/
2975                 dev_err(&adapter->pdev->dev,
2976                           "NICRxPkts PSR Entry %d indicates "
2977                           "length of %d and/or bad bi(%d)\n",
2978                           rx_local->local_psr_full & 0xFFF,
2979                           len, buff_index);
2980                 return NULL;
2981         }
2982
2983         /* Get and fill the RFD. */
2984         spin_lock_irqsave(&adapter->rcv_lock, flags);
2985
2986         rfd = NULL;
2987         element = rx_local->recv_list.next;
2988         rfd = (struct rfd *) list_entry(element, struct rfd, list_node);
2989
2990         if (rfd == NULL) {
2991                 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2992                 return NULL;
2993         }
2994
2995         list_del(&rfd->list_node);
2996         rx_local->num_ready_recv--;
2997
2998         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2999
3000         rfd->bufferindex = buff_index;
3001         rfd->ringindex = ring_index;
3002
3003         /* In V1 silicon, there is a bug which screws up filtering of
3004          * runt packets.  Therefore runt packet filtering is disabled
3005          * in the MAC and the packets are dropped here.  They are
3006          * also counted here.
3007          */
3008         if (len < (NIC_MIN_PACKET_SIZE + 4)) {
3009                 adapter->stats.rx_other_errs++;
3010                 len = 0;
3011         }
3012
3013         if (len) {
3014                 /* Determine if this is a multicast packet coming in */
3015                 if ((word0 & ALCATEL_MULTICAST_PKT) &&
3016                     !(word0 & ALCATEL_BROADCAST_PKT)) {
3017                         /* Promiscuous mode and Multicast mode are
3018                          * not mutually exclusive as was first
3019                          * thought.  I guess Promiscuous is just
3020                          * considered a super-set of the other
3021                          * filters. Generally filter is 0x2b when in
3022                          * promiscuous mode.
3023                          */
3024                         if ((adapter->packet_filter &
3025                                         ET131X_PACKET_TYPE_MULTICAST)
3026                             && !(adapter->packet_filter &
3027                                         ET131X_PACKET_TYPE_PROMISCUOUS)
3028                             && !(adapter->packet_filter &
3029                                         ET131X_PACKET_TYPE_ALL_MULTICAST)) {
3030                                 /*
3031                                  * Note - ring_index for fbr[] array is reversed
3032                                  * 1 for FBR0 etc
3033                                  */
3034                                 buf = rx_local->fbr[(ring_index == 0 ? 1 : 0)]->
3035                                                 virt[buff_index];
3036
3037                                 /* Loop through our list to see if the
3038                                  * destination address of this packet
3039                                  * matches one in our list.
3040                                  */
3041                                 for (i = 0; i < adapter->multicast_addr_count;
3042                                      i++) {
3043                                         if (buf[0] ==
3044                                                 adapter->multicast_list[i][0]
3045                                             && buf[1] ==
3046                                                 adapter->multicast_list[i][1]
3047                                             && buf[2] ==
3048                                                 adapter->multicast_list[i][2]
3049                                             && buf[3] ==
3050                                                 adapter->multicast_list[i][3]
3051                                             && buf[4] ==
3052                                                 adapter->multicast_list[i][4]
3053                                             && buf[5] ==
3054                                                 adapter->multicast_list[i][5]) {
3055                                                 break;
3056                                         }
3057                                 }
3058
3059                                 /* If our index is equal to the number
3060                                  * of Multicast address we have, then
3061                                  * this means we did not find this
3062                                  * packet's matching address in our
3063                                  * list.  Set the len to zero,
3064                                  * so we free our RFD when we return
3065                                  * from this function.
3066                                  */
3067                                 if (i == adapter->multicast_addr_count)
3068                                         len = 0;
3069                         }
3070
3071                         if (len > 0)
3072                                 adapter->stats.multicast_pkts_rcvd++;
3073                 } else if (word0 & ALCATEL_BROADCAST_PKT)
3074                         adapter->stats.broadcast_pkts_rcvd++;
3075                 else
3076                         /* Not sure what this counter measures in
3077                          * promiscuous mode. Perhaps we should check
3078                          * the MAC address to see if it is directed
3079                          * to us in promiscuous mode.
3080                          */
3081                         adapter->stats.unicast_pkts_rcvd++;
3082         }
3083
3084         if (len > 0) {
3085                 struct sk_buff *skb = NULL;
3086
3087                 /*rfd->len = len - 4; */
3088                 rfd->len = len;
3089
3090                 skb = dev_alloc_skb(rfd->len + 2);
3091                 if (!skb) {
3092                         dev_err(&adapter->pdev->dev,
3093                                   "Couldn't alloc an SKB for Rx\n");
3094                         return NULL;
3095                 }
3096
3097                 adapter->net_stats.rx_bytes += rfd->len;
3098
3099                 /*
3100                  * Note - ring_index for fbr[] array is reversed,
3101                  * 1 for FBR0 etc
3102                  */
3103                 memcpy(skb_put(skb, rfd->len),
3104                     rx_local->fbr[(ring_index == 0 ? 1 : 0)]->virt[buff_index],
3105                     rfd->len);
3106
3107                 skb->dev = adapter->netdev;
3108                 skb->protocol = eth_type_trans(skb, adapter->netdev);
3109                 skb->ip_summed = CHECKSUM_NONE;
3110
3111                 netif_rx_ni(skb);
3112         } else {
3113                 rfd->len = 0;
3114         }
3115
3116         nic_return_rfd(adapter, rfd);
3117         return rfd;
3118 }
3119
3120 /**
3121  * et131x_handle_recv_interrupt - Interrupt handler for receive processing
3122  * @adapter: pointer to our adapter
3123  *
3124  * Assumption, Rcv spinlock has been acquired.
3125  */
3126 static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
3127 {
3128         struct rfd *rfd = NULL;
3129         u32 count = 0;
3130         bool done = true;
3131
3132         /* Process up to available RFD's */
3133         while (count < NUM_PACKETS_HANDLED) {
3134                 if (list_empty(&adapter->rx_ring.recv_list)) {
3135                         WARN_ON(adapter->rx_ring.num_ready_recv != 0);
3136                         done = false;
3137                         break;
3138                 }
3139
3140                 rfd = nic_rx_pkts(adapter);
3141
3142                 if (rfd == NULL)
3143                         break;
3144
3145                 /* Do not receive any packets until a filter has been set.
3146                  * Do not receive any packets until we have link.
3147                  * If length is zero, return the RFD in order to advance the
3148                  * Free buffer ring.
3149                  */
3150                 if (!adapter->packet_filter ||
3151                     !netif_carrier_ok(adapter->netdev) ||
3152                     rfd->len == 0)
3153                         continue;
3154
3155                 /* Increment the number of packets we received */
3156                 adapter->net_stats.rx_packets++;
3157
3158                 /* Set the status on the packet, either resources or success */
3159                 if (adapter->rx_ring.num_ready_recv < RFD_LOW_WATER_MARK) {
3160                         dev_warn(&adapter->pdev->dev,
3161                                     "RFD's are running out\n");
3162                 }
3163                 count++;
3164         }
3165
3166         if (count == NUM_PACKETS_HANDLED || !done) {
3167                 adapter->rx_ring.unfinished_receives = true;
3168                 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3169                        &adapter->regs->global.watchdog_timer);
3170         } else
3171                 /* Watchdog timer will disable itself if appropriate. */
3172                 adapter->rx_ring.unfinished_receives = false;
3173 }
3174
3175 /**
3176  * et131x_tx_dma_memory_alloc
3177  * @adapter: pointer to our private adapter structure
3178  *
3179  * Returns 0 on success and errno on failure (as defined in errno.h).
3180  *
3181  * Allocates memory that will be visible both to the device and to the CPU.
3182  * The OS will pass us packets, pointers to which we will insert in the Tx
3183  * Descriptor queue. The device will read this queue to find the packets in
3184  * memory. The device will update the "status" in memory each time it xmits a
3185  * packet.
3186  */
3187 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
3188 {
3189         int desc_size = 0;
3190         struct tx_ring *tx_ring = &adapter->tx_ring;
3191
3192         /* Allocate memory for the TCB's (Transmit Control Block) */
3193         adapter->tx_ring.tcb_ring =
3194                 kcalloc(NUM_TCB, sizeof(struct tcb), GFP_ATOMIC | GFP_DMA);
3195         if (!adapter->tx_ring.tcb_ring) {
3196                 dev_err(&adapter->pdev->dev, "Cannot alloc memory for TCBs\n");
3197                 return -ENOMEM;
3198         }
3199
3200         /* Allocate enough memory for the Tx descriptor ring, and allocate
3201          * some extra so that the ring can be aligned on a 4k boundary.
3202          */
3203         desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX) + 4096 - 1;
3204         tx_ring->tx_desc_ring =
3205             (struct tx_desc *) dma_alloc_coherent(&adapter->pdev->dev,
3206                                                   desc_size,
3207                                                   &tx_ring->tx_desc_ring_pa,
3208                                                   GFP_KERNEL);
3209         if (!adapter->tx_ring.tx_desc_ring) {
3210                 dev_err(&adapter->pdev->dev,
3211                         "Cannot alloc memory for Tx Ring\n");
3212                 return -ENOMEM;
3213         }
3214
3215         /* Save physical address
3216          *
3217          * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
3218          * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
3219          * are ever returned, make sure the high part is retrieved here before
3220          * storing the adjusted address.
3221          */
3222         /* Allocate memory for the Tx status block */
3223         tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
3224                                                     sizeof(u32),
3225                                                     &tx_ring->tx_status_pa,
3226                                                     GFP_KERNEL);
3227         if (!adapter->tx_ring.tx_status_pa) {
3228                 dev_err(&adapter->pdev->dev,
3229                                   "Cannot alloc memory for Tx status block\n");
3230                 return -ENOMEM;
3231         }
3232         return 0;
3233 }
3234
3235 /**
3236  * et131x_tx_dma_memory_free - Free all memory allocated within this module
3237  * @adapter: pointer to our private adapter structure
3238  *
3239  * Returns 0 on success and errno on failure (as defined in errno.h).
3240  */
3241 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
3242 {
3243         int desc_size = 0;
3244
3245         if (adapter->tx_ring.tx_desc_ring) {
3246                 /* Free memory relating to Tx rings here */
3247                 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX)
3248                                                                 + 4096 - 1;
3249                 dma_free_coherent(&adapter->pdev->dev,
3250                                     desc_size,
3251                                     adapter->tx_ring.tx_desc_ring,
3252                                     adapter->tx_ring.tx_desc_ring_pa);
3253                 adapter->tx_ring.tx_desc_ring = NULL;
3254         }
3255
3256         /* Free memory for the Tx status block */
3257         if (adapter->tx_ring.tx_status) {
3258                 dma_free_coherent(&adapter->pdev->dev,
3259                                     sizeof(u32),
3260                                     adapter->tx_ring.tx_status,
3261                                     adapter->tx_ring.tx_status_pa);
3262
3263                 adapter->tx_ring.tx_status = NULL;
3264         }
3265         /* Free the memory for the tcb structures */
3266         kfree(adapter->tx_ring.tcb_ring);
3267 }
3268
3269 /**
3270  * nic_send_packet - NIC specific send handler for version B silicon.
3271  * @adapter: pointer to our adapter
3272  * @tcb: pointer to struct tcb
3273  *
3274  * Returns 0 or errno.
3275  */
3276 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
3277 {
3278         u32 i;
3279         struct tx_desc desc[24];        /* 24 x 16 byte */
3280         u32 frag = 0;
3281         u32 thiscopy, remainder;
3282         struct sk_buff *skb = tcb->skb;
3283         u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
3284         struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
3285         unsigned long flags;
3286         struct phy_device *phydev = adapter->phydev;
3287
3288         /* Part of the optimizations of this send routine restrict us to
3289          * sending 24 fragments at a pass.  In practice we should never see
3290          * more than 5 fragments.
3291          *
3292          * NOTE: The older version of this function (below) can handle any
3293          * number of fragments. If needed, we can call this function,
3294          * although it is less efficient.
3295          */
3296         if (nr_frags > 23)
3297                 return -EIO;
3298
3299         memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
3300
3301         for (i = 0; i < nr_frags; i++) {
3302                 /* If there is something in this element, lets get a
3303                  * descriptor from the ring and get the necessary data
3304                  */
3305                 if (i == 0) {
3306                         /* If the fragments are smaller than a standard MTU,
3307                          * then map them to a single descriptor in the Tx
3308                          * Desc ring. However, if they're larger, as is
3309                          * possible with support for jumbo packets, then
3310                          * split them each across 2 descriptors.
3311                          *
3312                          * This will work until we determine why the hardware
3313                          * doesn't seem to like large fragments.
3314                          */
3315                         if ((skb->len - skb->data_len) <= 1514) {
3316                                 desc[frag].addr_hi = 0;
3317                                 /* Low 16bits are length, high is vlan and
3318                                    unused currently so zero */
3319                                 desc[frag].len_vlan =
3320                                         skb->len - skb->data_len;
3321
3322                                 /* NOTE: Here, the dma_addr_t returned from
3323                                  * dma_map_single() is implicitly cast as a
3324                                  * u32. Although dma_addr_t can be
3325                                  * 64-bit, the address returned by
3326                                  * dma_map_single() is always 32-bit
3327                                  * addressable (as defined by the pci/dma
3328                                  * subsystem)
3329                                  */
3330                                 desc[frag++].addr_lo =
3331                                     dma_map_single(&adapter->pdev->dev,
3332                                                    skb->data,
3333                                                    skb->len -
3334                                                    skb->data_len,
3335                                                    DMA_TO_DEVICE);
3336                         } else {
3337                                 desc[frag].addr_hi = 0;
3338                                 desc[frag].len_vlan =
3339                                     (skb->len - skb->data_len) / 2;
3340
3341                                 /* NOTE: Here, the dma_addr_t returned from
3342                                  * dma_map_single() is implicitly cast as a
3343                                  * u32. Although dma_addr_t can be
3344                                  * 64-bit, the address returned by
3345                                  * dma_map_single() is always 32-bit
3346                                  * addressable (as defined by the pci/dma
3347                                  * subsystem)
3348                                  */
3349                                 desc[frag++].addr_lo =
3350                                     dma_map_single(&adapter->pdev->dev,
3351                                                    skb->data,
3352                                                    ((skb->len -
3353                                                      skb->data_len) / 2),
3354                                                    DMA_TO_DEVICE);
3355                                 desc[frag].addr_hi = 0;
3356
3357                                 desc[frag].len_vlan =
3358                                     (skb->len - skb->data_len) / 2;
3359
3360                                 /* NOTE: Here, the dma_addr_t returned from
3361                                  * dma_map_single() is implicitly cast as a
3362                                  * u32. Although dma_addr_t can be
3363                                  * 64-bit, the address returned by
3364                                  * dma_map_single() is always 32-bit
3365                                  * addressable (as defined by the pci/dma
3366                                  * subsystem)
3367                                  */
3368                                 desc[frag++].addr_lo =
3369                                     dma_map_single(&adapter->pdev->dev,
3370                                                    skb->data +
3371                                                    ((skb->len -
3372                                                      skb->data_len) / 2),
3373                                                    ((skb->len -
3374                                                      skb->data_len) / 2),
3375                                                    DMA_TO_DEVICE);
3376                         }
3377                 } else {
3378                         desc[frag].addr_hi = 0;
3379                         desc[frag].len_vlan =
3380                                         frags[i - 1].size;
3381
3382                         /* NOTE: Here, the dma_addr_t returned from
3383                          * dma_map_page() is implicitly cast as a u32.
3384                          * Although dma_addr_t can be 64-bit, the address
3385                          * returned by dma_map_page() is always 32-bit
3386                          * addressable (as defined by the pci/dma subsystem)
3387                          */
3388                         desc[frag++].addr_lo = skb_frag_dma_map(
3389                                                         &adapter->pdev->dev,
3390                                                         &frags[i - 1],
3391                                                         0,
3392                                                         frags[i - 1].size,
3393                                                         DMA_TO_DEVICE);
3394                 }
3395         }
3396
3397         if (phydev && phydev->speed == SPEED_1000) {
3398                 if (++adapter->tx_ring.since_irq == PARM_TX_NUM_BUFS_DEF) {
3399                         /* Last element & Interrupt flag */
3400                         desc[frag - 1].flags = 0x5;
3401                         adapter->tx_ring.since_irq = 0;
3402                 } else { /* Last element */
3403                         desc[frag - 1].flags = 0x1;
3404                 }
3405         } else
3406                 desc[frag - 1].flags = 0x5;
3407
3408         desc[0].flags |= 2;     /* First element flag */
3409
3410         tcb->index_start = adapter->tx_ring.send_idx;
3411         tcb->stale = 0;
3412
3413         spin_lock_irqsave(&adapter->send_hw_lock, flags);
3414
3415         thiscopy = NUM_DESC_PER_RING_TX -
3416                                 INDEX10(adapter->tx_ring.send_idx);
3417
3418         if (thiscopy >= frag) {
3419                 remainder = 0;
3420                 thiscopy = frag;
3421         } else {
3422                 remainder = frag - thiscopy;
3423         }
3424
3425         memcpy(adapter->tx_ring.tx_desc_ring +
3426                INDEX10(adapter->tx_ring.send_idx), desc,
3427                sizeof(struct tx_desc) * thiscopy);
3428
3429         add_10bit(&adapter->tx_ring.send_idx, thiscopy);
3430
3431         if (INDEX10(adapter->tx_ring.send_idx) == 0 ||
3432                   INDEX10(adapter->tx_ring.send_idx) == NUM_DESC_PER_RING_TX) {
3433                 adapter->tx_ring.send_idx &= ~ET_DMA10_MASK;
3434                 adapter->tx_ring.send_idx ^= ET_DMA10_WRAP;
3435         }
3436
3437         if (remainder) {
3438                 memcpy(adapter->tx_ring.tx_desc_ring,
3439                        desc + thiscopy,
3440                        sizeof(struct tx_desc) * remainder);
3441
3442                 add_10bit(&adapter->tx_ring.send_idx, remainder);
3443         }
3444
3445         if (INDEX10(adapter->tx_ring.send_idx) == 0) {
3446                 if (adapter->tx_ring.send_idx)
3447                         tcb->index = NUM_DESC_PER_RING_TX - 1;
3448                 else
3449                         tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
3450         } else
3451                 tcb->index = adapter->tx_ring.send_idx - 1;
3452
3453         spin_lock(&adapter->tcb_send_qlock);
3454
3455         if (adapter->tx_ring.send_tail)
3456                 adapter->tx_ring.send_tail->next = tcb;
3457         else
3458                 adapter->tx_ring.send_head = tcb;
3459
3460         adapter->tx_ring.send_tail = tcb;
3461
3462         WARN_ON(tcb->next != NULL);
3463
3464         adapter->tx_ring.used++;
3465
3466         spin_unlock(&adapter->tcb_send_qlock);
3467
3468         /* Write the new write pointer back to the device. */
3469         writel(adapter->tx_ring.send_idx,
3470                &adapter->regs->txdma.service_request);
3471
3472         /* For Gig only, we use Tx Interrupt coalescing.  Enable the software
3473          * timer to wake us up if this packet isn't followed by N more.
3474          */
3475         if (phydev && phydev->speed == SPEED_1000) {
3476                 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3477                        &adapter->regs->global.watchdog_timer);
3478         }
3479         spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
3480
3481         return 0;
3482 }
3483
3484 /**
3485  * send_packet - Do the work to send a packet
3486  * @skb: the packet(s) to send
3487  * @adapter: a pointer to the device's private adapter structure
3488  *
3489  * Return 0 in almost all cases; non-zero value in extreme hard failure only.
3490  *
3491  * Assumption: Send spinlock has been acquired
3492  */
3493 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
3494 {
3495         int status;
3496         struct tcb *tcb = NULL;
3497         u16 *shbufva;
3498         unsigned long flags;
3499
3500         /* All packets must have at least a MAC address and a protocol type */
3501         if (skb->len < ETH_HLEN)
3502                 return -EIO;
3503
3504         /* Get a TCB for this packet */
3505         spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3506
3507         tcb = adapter->tx_ring.tcb_qhead;
3508
3509         if (tcb == NULL) {
3510                 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3511                 return -ENOMEM;
3512         }
3513
3514         adapter->tx_ring.tcb_qhead = tcb->next;
3515
3516         if (adapter->tx_ring.tcb_qhead == NULL)
3517                 adapter->tx_ring.tcb_qtail = NULL;
3518
3519         spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3520
3521         tcb->skb = skb;
3522
3523         if (skb->data != NULL && skb->len - skb->data_len >= 6) {
3524                 shbufva = (u16 *) skb->data;
3525
3526                 if ((shbufva[0] == 0xffff) &&
3527                     (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff)) {
3528                         tcb->flags |= fMP_DEST_BROAD;
3529                 } else if ((shbufva[0] & 0x3) == 0x0001) {
3530                         tcb->flags |=  fMP_DEST_MULTI;
3531                 }
3532         }
3533
3534         tcb->next = NULL;
3535
3536         /* Call the NIC specific send handler. */
3537         status = nic_send_packet(adapter, tcb);
3538
3539         if (status != 0) {
3540                 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3541
3542                 if (adapter->tx_ring.tcb_qtail)
3543                         adapter->tx_ring.tcb_qtail->next = tcb;
3544                 else
3545                         /* Apparently ready Q is empty. */
3546                         adapter->tx_ring.tcb_qhead = tcb;
3547
3548                 adapter->tx_ring.tcb_qtail = tcb;
3549                 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3550                 return status;
3551         }
3552         WARN_ON(adapter->tx_ring.used > NUM_TCB);
3553         return 0;
3554 }
3555
3556 /**
3557  * et131x_send_packets - This function is called by the OS to send packets
3558  * @skb: the packet(s) to send
3559  * @netdev:device on which to TX the above packet(s)
3560  *
3561  * Return 0 in almost all cases; non-zero value in extreme hard failure only
3562  */
3563 static int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
3564 {
3565         int status = 0;
3566         struct et131x_adapter *adapter = netdev_priv(netdev);
3567
3568         /* Send these packets
3569          *
3570          * NOTE: The Linux Tx entry point is only given one packet at a time
3571          * to Tx, so the PacketCount and it's array used makes no sense here
3572          */
3573
3574         /* TCB is not available */
3575         if (adapter->tx_ring.used >= NUM_TCB) {
3576                 /* NOTE: If there's an error on send, no need to queue the
3577                  * packet under Linux; if we just send an error up to the
3578                  * netif layer, it will resend the skb to us.
3579                  */
3580                 status = -ENOMEM;
3581         } else {
3582                 /* We need to see if the link is up; if it's not, make the
3583                  * netif layer think we're good and drop the packet
3584                  */
3585                 if ((adapter->flags & fMP_ADAPTER_FAIL_SEND_MASK) ||
3586                                         !netif_carrier_ok(netdev)) {
3587                         dev_kfree_skb_any(skb);
3588                         skb = NULL;
3589
3590                         adapter->net_stats.tx_dropped++;
3591                 } else {
3592                         status = send_packet(skb, adapter);
3593                         if (status != 0 && status != -ENOMEM) {
3594                                 /* On any other error, make netif think we're
3595                                  * OK and drop the packet
3596                                  */
3597                                 dev_kfree_skb_any(skb);
3598                                 skb = NULL;
3599                                 adapter->net_stats.tx_dropped++;
3600                         }
3601                 }
3602         }
3603         return status;
3604 }
3605
3606 /**
3607  * free_send_packet - Recycle a struct tcb
3608  * @adapter: pointer to our adapter
3609  * @tcb: pointer to struct tcb
3610  *
3611  * Complete the packet if necessary
3612  * Assumption - Send spinlock has been acquired
3613  */
3614 static inline void free_send_packet(struct et131x_adapter *adapter,
3615                                                 struct tcb *tcb)
3616 {
3617         unsigned long flags;
3618         struct tx_desc *desc = NULL;
3619         struct net_device_stats *stats = &adapter->net_stats;
3620
3621         if (tcb->flags & fMP_DEST_BROAD)
3622                 atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3623         else if (tcb->flags & fMP_DEST_MULTI)
3624                 atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3625         else
3626                 atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3627
3628         if (tcb->skb) {
3629                 stats->tx_bytes += tcb->skb->len;
3630
3631                 /* Iterate through the TX descriptors on the ring
3632                  * corresponding to this packet and umap the fragments
3633                  * they point to
3634                  */
3635                 do {
3636                         desc = (struct tx_desc *)
3637                                     (adapter->tx_ring.tx_desc_ring +
3638                                                 INDEX10(tcb->index_start));
3639
3640                         dma_unmap_single(&adapter->pdev->dev,
3641                                          desc->addr_lo,
3642                                          desc->len_vlan, DMA_TO_DEVICE);
3643
3644                         add_10bit(&tcb->index_start, 1);
3645                         if (INDEX10(tcb->index_start) >=
3646                                                         NUM_DESC_PER_RING_TX) {
3647                                 tcb->index_start &= ~ET_DMA10_MASK;
3648                                 tcb->index_start ^= ET_DMA10_WRAP;
3649                         }
3650                 } while (desc != (adapter->tx_ring.tx_desc_ring +
3651                                 INDEX10(tcb->index)));
3652
3653                 dev_kfree_skb_any(tcb->skb);
3654         }
3655
3656         memset(tcb, 0, sizeof(struct tcb));
3657
3658         /* Add the TCB to the Ready Q */
3659         spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3660
3661         adapter->net_stats.tx_packets++;
3662
3663         if (adapter->tx_ring.tcb_qtail)
3664                 adapter->tx_ring.tcb_qtail->next = tcb;
3665         else
3666                 /* Apparently ready Q is empty. */
3667                 adapter->tx_ring.tcb_qhead = tcb;
3668
3669         adapter->tx_ring.tcb_qtail = tcb;
3670
3671         spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3672         WARN_ON(adapter->tx_ring.used < 0);
3673 }
3674
3675 /**
3676  * et131x_free_busy_send_packets - Free and complete the stopped active sends
3677  * @adapter: pointer to our adapter
3678  *
3679  * Assumption - Send spinlock has been acquired
3680  */
3681 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
3682 {
3683         struct tcb *tcb;
3684         unsigned long flags;
3685         u32 freed = 0;
3686
3687         /* Any packets being sent? Check the first TCB on the send list */
3688         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3689
3690         tcb = adapter->tx_ring.send_head;
3691
3692         while (tcb != NULL && freed < NUM_TCB) {
3693                 struct tcb *next = tcb->next;
3694
3695                 adapter->tx_ring.send_head = next;
3696
3697                 if (next == NULL)
3698                         adapter->tx_ring.send_tail = NULL;
3699
3700                 adapter->tx_ring.used--;
3701
3702                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3703
3704                 freed++;
3705                 free_send_packet(adapter, tcb);
3706
3707                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3708
3709                 tcb = adapter->tx_ring.send_head;
3710         }
3711
3712         WARN_ON(freed == NUM_TCB);
3713
3714         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3715
3716         adapter->tx_ring.used = 0;
3717 }
3718
3719 /**
3720  * et131x_handle_send_interrupt - Interrupt handler for sending processing
3721  * @adapter: pointer to our adapter
3722  *
3723  * Re-claim the send resources, complete sends and get more to send from
3724  * the send wait queue.
3725  *
3726  * Assumption - Send spinlock has been acquired
3727  */
3728 static void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
3729 {
3730         unsigned long flags;
3731         u32 serviced;
3732         struct tcb *tcb;
3733         u32 index;
3734
3735         serviced = readl(&adapter->regs->txdma.new_service_complete);
3736         index = INDEX10(serviced);
3737
3738         /* Has the ring wrapped?  Process any descriptors that do not have
3739          * the same "wrap" indicator as the current completion indicator
3740          */
3741         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3742
3743         tcb = adapter->tx_ring.send_head;
3744
3745         while (tcb &&
3746                ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3747                index < INDEX10(tcb->index)) {
3748                 adapter->tx_ring.used--;
3749                 adapter->tx_ring.send_head = tcb->next;
3750                 if (tcb->next == NULL)
3751                         adapter->tx_ring.send_tail = NULL;
3752
3753                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3754                 free_send_packet(adapter, tcb);
3755                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3756
3757                 /* Goto the next packet */
3758                 tcb = adapter->tx_ring.send_head;
3759         }
3760         while (tcb &&
3761                !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3762                && index > (tcb->index & ET_DMA10_MASK)) {
3763                 adapter->tx_ring.used--;
3764                 adapter->tx_ring.send_head = tcb->next;
3765                 if (tcb->next == NULL)
3766                         adapter->tx_ring.send_tail = NULL;
3767
3768                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3769                 free_send_packet(adapter, tcb);
3770                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3771
3772                 /* Goto the next packet */
3773                 tcb = adapter->tx_ring.send_head;
3774         }
3775
3776         /* Wake up the queue when we hit a low-water mark */
3777         if (adapter->tx_ring.used <= NUM_TCB / 3)
3778                 netif_wake_queue(adapter->netdev);
3779
3780         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3781 }
3782
3783 static int et131x_get_settings(struct net_device *netdev,
3784                                struct ethtool_cmd *cmd)
3785 {
3786         struct et131x_adapter *adapter = netdev_priv(netdev);
3787
3788         return phy_ethtool_gset(adapter->phydev, cmd);
3789 }
3790
3791 static int et131x_set_settings(struct net_device *netdev,
3792                                struct ethtool_cmd *cmd)
3793 {
3794         struct et131x_adapter *adapter = netdev_priv(netdev);
3795
3796         return phy_ethtool_sset(adapter->phydev, cmd);
3797 }
3798
3799 static int et131x_get_regs_len(struct net_device *netdev)
3800 {
3801 #define ET131X_REGS_LEN 256
3802         return ET131X_REGS_LEN * sizeof(u32);
3803 }
3804
3805 static void et131x_get_regs(struct net_device *netdev,
3806                             struct ethtool_regs *regs, void *regs_data)
3807 {
3808         struct et131x_adapter *adapter = netdev_priv(netdev);
3809         struct address_map __iomem *aregs = adapter->regs;
3810         u32 *regs_buff = regs_data;
3811         u32 num = 0;
3812
3813         memset(regs_data, 0, et131x_get_regs_len(netdev));
3814
3815         regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3816                         adapter->pdev->device;
3817
3818         /* PHY regs */
3819         et131x_mii_read(adapter, MII_BMCR, (u16 *)&regs_buff[num++]);
3820         et131x_mii_read(adapter, MII_BMSR, (u16 *)&regs_buff[num++]);
3821         et131x_mii_read(adapter, MII_PHYSID1, (u16 *)&regs_buff[num++]);
3822         et131x_mii_read(adapter, MII_PHYSID2, (u16 *)&regs_buff[num++]);
3823         et131x_mii_read(adapter, MII_ADVERTISE, (u16 *)&regs_buff[num++]);
3824         et131x_mii_read(adapter, MII_LPA, (u16 *)&regs_buff[num++]);
3825         et131x_mii_read(adapter, MII_EXPANSION, (u16 *)&regs_buff[num++]);
3826         /* Autoneg next page transmit reg */
3827         et131x_mii_read(adapter, 0x07, (u16 *)&regs_buff[num++]);
3828         /* Link partner next page reg */
3829         et131x_mii_read(adapter, 0x08, (u16 *)&regs_buff[num++]);
3830         et131x_mii_read(adapter, MII_CTRL1000, (u16 *)&regs_buff[num++]);
3831         et131x_mii_read(adapter, MII_STAT1000, (u16 *)&regs_buff[num++]);
3832         et131x_mii_read(adapter, MII_ESTATUS, (u16 *)&regs_buff[num++]);
3833         et131x_mii_read(adapter, PHY_INDEX_REG, (u16 *)&regs_buff[num++]);
3834         et131x_mii_read(adapter, PHY_DATA_REG, (u16 *)&regs_buff[num++]);
3835         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3836                         (u16 *)&regs_buff[num++]);
3837         et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL,
3838                         (u16 *)&regs_buff[num++]);
3839         et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL+1,
3840                         (u16 *)&regs_buff[num++]);
3841         et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL,
3842                         (u16 *)&regs_buff[num++]);
3843         et131x_mii_read(adapter, PHY_CONFIG, (u16 *)&regs_buff[num++]);
3844         et131x_mii_read(adapter, PHY_PHY_CONTROL, (u16 *)&regs_buff[num++]);
3845         et131x_mii_read(adapter, PHY_INTERRUPT_MASK, (u16 *)&regs_buff[num++]);
3846         et131x_mii_read(adapter, PHY_INTERRUPT_STATUS,
3847                         (u16 *)&regs_buff[num++]);
3848         et131x_mii_read(adapter, PHY_PHY_STATUS, (u16 *)&regs_buff[num++]);
3849         et131x_mii_read(adapter, PHY_LED_1, (u16 *)&regs_buff[num++]);
3850         et131x_mii_read(adapter, PHY_LED_2, (u16 *)&regs_buff[num++]);
3851
3852         /* Global regs */
3853         regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3854         regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3855         regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3856         regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3857         regs_buff[num++] = readl(&aregs->global.pm_csr);
3858         regs_buff[num++] = adapter->stats.interrupt_status;
3859         regs_buff[num++] = readl(&aregs->global.int_mask);
3860         regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3861         regs_buff[num++] = readl(&aregs->global.int_status_alias);
3862         regs_buff[num++] = readl(&aregs->global.sw_reset);
3863         regs_buff[num++] = readl(&aregs->global.slv_timer);
3864         regs_buff[num++] = readl(&aregs->global.msi_config);
3865         regs_buff[num++] = readl(&aregs->global.loopback);
3866         regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3867
3868         /* TXDMA regs */
3869         regs_buff[num++] = readl(&aregs->txdma.csr);
3870         regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3871         regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3872         regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3873         regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3874         regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3875         regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3876         regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3877         regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3878         regs_buff[num++] = readl(&aregs->txdma.service_request);
3879         regs_buff[num++] = readl(&aregs->txdma.service_complete);
3880         regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3881         regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3882         regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3883         regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3884         regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3885         regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3886         regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3887         regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3888         regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3889         regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3890         regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3891         regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3892         regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3893         regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3894         regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3895
3896         /* RXDMA regs */
3897         regs_buff[num++] = readl(&aregs->rxdma.csr);
3898         regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3899         regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3900         regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3901         regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3902         regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3903         regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3904         regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3905         regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3906         regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3907         regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3908         regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3909         regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3910         regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3911         regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3912         regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3913         regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3914         regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3915         regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3916         regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3917         regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3918         regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3919         regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3920         regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3921         regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3922         regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3923         regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3924         regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3925         regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3926 }
3927
3928 #define ET131X_DRVINFO_LEN 32 /* value from ethtool.h */
3929 static void et131x_get_drvinfo(struct net_device *netdev,
3930                                struct ethtool_drvinfo *info)
3931 {
3932         struct et131x_adapter *adapter = netdev_priv(netdev);
3933
3934         strncpy(info->driver, DRIVER_NAME, ET131X_DRVINFO_LEN);
3935         strncpy(info->version, DRIVER_VERSION, ET131X_DRVINFO_LEN);
3936         strncpy(info->bus_info, pci_name(adapter->pdev), ET131X_DRVINFO_LEN);
3937 }
3938
3939 static struct ethtool_ops et131x_ethtool_ops = {
3940         .get_settings   = et131x_get_settings,
3941         .set_settings   = et131x_set_settings,
3942         .get_drvinfo    = et131x_get_drvinfo,
3943         .get_regs_len   = et131x_get_regs_len,
3944         .get_regs       = et131x_get_regs,
3945         .get_link = ethtool_op_get_link,
3946 };
3947
3948 static void et131x_set_ethtool_ops(struct net_device *netdev)
3949 {
3950         SET_ETHTOOL_OPS(netdev, &et131x_ethtool_ops);
3951 }
3952
3953 /**
3954  * et131x_hwaddr_init - set up the MAC Address on the ET1310
3955  * @adapter: pointer to our private adapter structure
3956  */
3957 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
3958 {
3959         /* If have our default mac from init and no mac address from
3960          * EEPROM then we need to generate the last octet and set it on the
3961          * device
3962          */
3963         if (adapter->rom_addr[0] == 0x00 &&
3964             adapter->rom_addr[1] == 0x00 &&
3965             adapter->rom_addr[2] == 0x00 &&
3966             adapter->rom_addr[3] == 0x00 &&
3967             adapter->rom_addr[4] == 0x00 &&
3968             adapter->rom_addr[5] == 0x00) {
3969                 /*
3970                  * We need to randomly generate the last octet so we
3971                  * decrease our chances of setting the mac address to
3972                  * same as another one of our cards in the system
3973                  */
3974                 get_random_bytes(&adapter->addr[5], 1);
3975                 /*
3976                  * We have the default value in the register we are
3977                  * working with so we need to copy the current
3978                  * address into the permanent address
3979                  */
3980                 memcpy(adapter->rom_addr,
3981                         adapter->addr, ETH_ALEN);
3982         } else {
3983                 /* We do not have an override address, so set the
3984                  * current address to the permanent address and add
3985                  * it to the device
3986                  */
3987                 memcpy(adapter->addr,
3988                        adapter->rom_addr, ETH_ALEN);
3989         }
3990 }
3991
3992 /**
3993  * et131x_pci_init       - initial PCI setup
3994  * @adapter: pointer to our private adapter structure
3995  * @pdev: our PCI device
3996  *
3997  * Perform the initial setup of PCI registers and if possible initialise
3998  * the MAC address. At this point the I/O registers have yet to be mapped
3999  */
4000 static int et131x_pci_init(struct et131x_adapter *adapter,
4001                                                 struct pci_dev *pdev)
4002 {
4003         int cap = pci_pcie_cap(pdev);
4004         u16 max_payload;
4005         u16 ctl;
4006         int i, rc;
4007
4008         rc = et131x_init_eeprom(adapter);
4009         if (rc < 0)
4010                 goto out;
4011
4012         if (!cap) {
4013                 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
4014                 goto err_out;
4015         }
4016                 
4017         /* Let's set up the PORT LOGIC Register.  First we need to know what
4018          * the max_payload_size is
4019          */
4020         if (pci_read_config_word(pdev, cap + PCI_EXP_DEVCAP, &max_payload)) {
4021                 dev_err(&pdev->dev,
4022                     "Could not read PCI config space for Max Payload Size\n");
4023                 goto err_out;
4024         }
4025
4026         /* Program the Ack/Nak latency and replay timers */
4027         max_payload &= 0x07;
4028
4029         if (max_payload < 2) {
4030                 static const u16 acknak[2] = { 0x76, 0xD0 };
4031                 static const u16 replay[2] = { 0x1E0, 0x2ED };
4032
4033                 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
4034                                                acknak[max_payload])) {
4035                         dev_err(&pdev->dev,
4036                           "Could not write PCI config space for ACK/NAK\n");
4037                         goto err_out;
4038                 }
4039                 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
4040                                                replay[max_payload])) {
4041                         dev_err(&pdev->dev,
4042                           "Could not write PCI config space for Replay Timer\n");
4043                         goto err_out;
4044                 }
4045         }
4046
4047         /* l0s and l1 latency timers.  We are using default values.
4048          * Representing 001 for L0s and 010 for L1
4049          */
4050         if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
4051                 dev_err(&pdev->dev,
4052                   "Could not write PCI config space for Latency Timers\n");
4053                 goto err_out;
4054         }
4055
4056         /* Change the max read size to 2k */
4057         if (pci_read_config_word(pdev, cap + PCI_EXP_DEVCTL, &ctl)) {
4058                 dev_err(&pdev->dev,
4059                         "Could not read PCI config space for Max read size\n");
4060                 goto err_out;
4061         }
4062
4063         ctl = (ctl & ~PCI_EXP_DEVCTL_READRQ) | ( 0x04 << 12);
4064
4065         if (pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, ctl)) {
4066                 dev_err(&pdev->dev,
4067                       "Could not write PCI config space for Max read size\n");
4068                 goto err_out;
4069         }
4070
4071         /* Get MAC address from config space if an eeprom exists, otherwise
4072          * the MAC address there will not be valid
4073          */
4074         if (!adapter->has_eeprom) {
4075                 et131x_hwaddr_init(adapter);
4076                 return 0;
4077         }
4078
4079         for (i = 0; i < ETH_ALEN; i++) {
4080                 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
4081                                         adapter->rom_addr + i)) {
4082                         dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
4083                         goto err_out;
4084                 }
4085         }
4086         memcpy(adapter->addr, adapter->rom_addr, ETH_ALEN);
4087 out:
4088         return rc;
4089 err_out:
4090         rc = -EIO;
4091         goto out;
4092 }
4093
4094 /**
4095  * et131x_error_timer_handler
4096  * @data: timer-specific variable; here a pointer to our adapter structure
4097  *
4098  * The routine called when the error timer expires, to track the number of
4099  * recurring errors.
4100  */
4101 static void et131x_error_timer_handler(unsigned long data)
4102 {
4103         struct et131x_adapter *adapter = (struct et131x_adapter *) data;
4104         struct phy_device *phydev = adapter->phydev;
4105
4106         if (et1310_in_phy_coma(adapter)) {
4107                 /* Bring the device immediately out of coma, to
4108                  * prevent it from sleeping indefinitely, this
4109                  * mechanism could be improved! */
4110                 et1310_disable_phy_coma(adapter);
4111                 adapter->boot_coma = 20;
4112         } else {
4113                 et1310_update_macstat_host_counters(adapter);
4114         }
4115
4116         if (!phydev->link && adapter->boot_coma < 11)
4117                 adapter->boot_coma++;
4118
4119         if (adapter->boot_coma == 10) {
4120                 if (!phydev->link) {
4121                         if (!et1310_in_phy_coma(adapter)) {
4122                                 /* NOTE - This was originally a 'sync with
4123                                  *  interrupt'. How to do that under Linux?
4124                                  */
4125                                 et131x_enable_interrupts(adapter);
4126                                 et1310_enable_phy_coma(adapter);
4127                         }
4128                 }
4129         }
4130
4131         /* This is a periodic timer, so reschedule */
4132         mod_timer(&adapter->error_timer, jiffies +
4133                                           TX_ERROR_PERIOD * HZ / 1000);
4134 }
4135
4136 /**
4137  * et131x_adapter_memory_alloc
4138  * @adapter: pointer to our private adapter structure
4139  *
4140  * Returns 0 on success, errno on failure (as defined in errno.h).
4141  *
4142  * Allocate all the memory blocks for send, receive and others.
4143  */
4144 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
4145 {
4146         int status;
4147
4148         /* Allocate memory for the Tx Ring */
4149         status = et131x_tx_dma_memory_alloc(adapter);
4150         if (status != 0) {
4151                 dev_err(&adapter->pdev->dev,
4152                           "et131x_tx_dma_memory_alloc FAILED\n");
4153                 return status;
4154         }
4155         /* Receive buffer memory allocation */
4156         status = et131x_rx_dma_memory_alloc(adapter);
4157         if (status != 0) {
4158                 dev_err(&adapter->pdev->dev,
4159                           "et131x_rx_dma_memory_alloc FAILED\n");
4160                 et131x_tx_dma_memory_free(adapter);
4161                 return status;
4162         }
4163
4164         /* Init receive data structures */
4165         status = et131x_init_recv(adapter);
4166         if (status != 0) {
4167                 dev_err(&adapter->pdev->dev,
4168                         "et131x_init_recv FAILED\n");
4169                 et131x_tx_dma_memory_free(adapter);
4170                 et131x_rx_dma_memory_free(adapter);
4171         }
4172         return status;
4173 }
4174
4175 /**
4176  * et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx
4177  * @adapter: pointer to our private adapter structure
4178  */
4179 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
4180 {
4181         /* Free DMA memory */
4182         et131x_tx_dma_memory_free(adapter);
4183         et131x_rx_dma_memory_free(adapter);
4184 }
4185
4186 static void et131x_adjust_link(struct net_device *netdev)
4187 {
4188         struct et131x_adapter *adapter = netdev_priv(netdev);
4189         struct  phy_device *phydev = adapter->phydev;
4190
4191         if (netif_carrier_ok(netdev)) {
4192                 adapter->boot_coma = 20;
4193
4194                 if (phydev && phydev->speed == SPEED_10) {
4195                         /*
4196                          * NOTE - Is there a way to query this without
4197                          * TruePHY?
4198                          * && TRU_QueryCoreType(adapter->hTruePhy, 0)==
4199                          * EMI_TRUEPHY_A13O) {
4200                          */
4201                         u16 register18;
4202
4203                         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4204                                          &register18);
4205                         et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4206                                          register18 | 0x4);
4207                         et131x_mii_write(adapter, PHY_INDEX_REG,
4208                                          register18 | 0x8402);
4209                         et131x_mii_write(adapter, PHY_DATA_REG,
4210                                          register18 | 511);
4211                         et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4212                                          register18);
4213                 }
4214
4215                 et1310_config_flow_control(adapter);
4216
4217                 if (phydev && phydev->speed == SPEED_1000 &&
4218                                 adapter->registry_jumbo_packet > 2048) {
4219                         u16 reg;
4220
4221                         et131x_mii_read(adapter, PHY_CONFIG, &reg);
4222                         reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
4223                         reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
4224                         et131x_mii_write(adapter, PHY_CONFIG, reg);
4225                 }
4226
4227                 et131x_set_rx_dma_timer(adapter);
4228                 et1310_config_mac_regs2(adapter);
4229         }
4230
4231         if (phydev && phydev->link != adapter->link) {
4232                 /*
4233                  * Check to see if we are in coma mode and if
4234                  * so, disable it because we will not be able
4235                  * to read PHY values until we are out.
4236                  */
4237                 if (et1310_in_phy_coma(adapter))
4238                         et1310_disable_phy_coma(adapter);
4239
4240                 if (phydev->link) {
4241                         adapter->boot_coma = 20;
4242                 } else {
4243                         dev_warn(&adapter->pdev->dev,
4244                             "Link down - cable problem ?\n");
4245                         adapter->boot_coma = 0;
4246
4247                         if (phydev->speed == SPEED_10) {
4248                                 /* NOTE - Is there a way to query this without
4249                                  * TruePHY?
4250                                  * && TRU_QueryCoreType(adapter->hTruePhy, 0) ==
4251                                  * EMI_TRUEPHY_A13O)
4252                                  */
4253                                 u16 register18;
4254
4255                                 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4256                                                  &register18);
4257                                 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4258                                                  register18 | 0x4);
4259                                 et131x_mii_write(adapter, PHY_INDEX_REG,
4260                                                  register18 | 0x8402);
4261                                 et131x_mii_write(adapter, PHY_DATA_REG,
4262                                                  register18 | 511);
4263                                 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4264                                                  register18);
4265                         }
4266
4267                         /* Free the packets being actively sent & stopped */
4268                         et131x_free_busy_send_packets(adapter);
4269
4270                         /* Re-initialize the send structures */
4271                         et131x_init_send(adapter);
4272
4273                         /*
4274                          * Bring the device back to the state it was during
4275                          * init prior to autonegotiation being complete. This
4276                          * way, when we get the auto-neg complete interrupt,
4277                          * we can complete init by calling config_mac_regs2.
4278                          */
4279                         et131x_soft_reset(adapter);
4280
4281                         /* Setup ET1310 as per the documentation */
4282                         et131x_adapter_setup(adapter);
4283
4284                         /* perform reset of tx/rx */
4285                         et131x_disable_txrx(netdev);
4286                         et131x_enable_txrx(netdev);
4287                 }
4288
4289                 adapter->link = phydev->link;
4290
4291                 phy_print_status(phydev);
4292         }
4293 }
4294
4295 static int et131x_mii_probe(struct net_device *netdev)
4296 {
4297         struct et131x_adapter *adapter = netdev_priv(netdev);
4298         struct  phy_device *phydev = NULL;
4299
4300         phydev = phy_find_first(adapter->mii_bus);
4301         if (!phydev) {
4302                 dev_err(&adapter->pdev->dev, "no PHY found\n");
4303                 return -ENODEV;
4304         }
4305
4306         phydev = phy_connect(netdev, dev_name(&phydev->dev),
4307                         &et131x_adjust_link, 0, PHY_INTERFACE_MODE_MII);
4308
4309         if (IS_ERR(phydev)) {
4310                 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
4311                 return PTR_ERR(phydev);
4312         }
4313
4314         phydev->supported &= (SUPPORTED_10baseT_Half
4315                                 | SUPPORTED_10baseT_Full
4316                                 | SUPPORTED_100baseT_Half
4317                                 | SUPPORTED_100baseT_Full
4318                                 | SUPPORTED_Autoneg
4319                                 | SUPPORTED_MII
4320                                 | SUPPORTED_TP);
4321
4322         if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
4323                 phydev->supported |= SUPPORTED_1000baseT_Full;
4324
4325         phydev->advertising = phydev->supported;
4326         adapter->phydev = phydev;
4327
4328         dev_info(&adapter->pdev->dev, "attached PHY driver [%s] "
4329                  "(mii_bus:phy_addr=%s)\n",
4330                  phydev->drv->name, dev_name(&phydev->dev));
4331
4332         return 0;
4333 }
4334
4335 /**
4336  * et131x_adapter_init
4337  * @adapter: pointer to the private adapter struct
4338  * @pdev: pointer to the PCI device
4339  *
4340  * Initialize the data structures for the et131x_adapter object and link
4341  * them together with the platform provided device structures.
4342  */
4343 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
4344                 struct pci_dev *pdev)
4345 {
4346         static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
4347
4348         struct et131x_adapter *adapter;
4349
4350         /* Allocate private adapter struct and copy in relevant information */
4351         adapter = netdev_priv(netdev);
4352         adapter->pdev = pci_dev_get(pdev);
4353         adapter->netdev = netdev;
4354
4355         /* Initialize spinlocks here */
4356         spin_lock_init(&adapter->lock);
4357         spin_lock_init(&adapter->tcb_send_qlock);
4358         spin_lock_init(&adapter->tcb_ready_qlock);
4359         spin_lock_init(&adapter->send_hw_lock);
4360         spin_lock_init(&adapter->rcv_lock);
4361         spin_lock_init(&adapter->rcv_pend_lock);
4362         spin_lock_init(&adapter->fbr_lock);
4363         spin_lock_init(&adapter->phy_lock);
4364
4365         adapter->registry_jumbo_packet = 1514;  /* 1514-9216 */
4366
4367         /* Set the MAC address to a default */
4368         memcpy(adapter->addr, default_mac, ETH_ALEN);
4369
4370         return adapter;
4371 }
4372
4373 /**
4374  * et131x_pci_remove
4375  * @pdev: a pointer to the device's pci_dev structure
4376  *
4377  * Registered in the pci_driver structure, this function is called when the
4378  * PCI subsystem detects that a PCI device which matches the information
4379  * contained in the pci_device_id table has been removed.
4380  */
4381 static void __devexit et131x_pci_remove(struct pci_dev *pdev)
4382 {
4383         struct net_device *netdev = pci_get_drvdata(pdev);
4384         struct et131x_adapter *adapter = netdev_priv(netdev);
4385
4386         unregister_netdev(netdev);
4387         phy_disconnect(adapter->phydev);
4388         mdiobus_unregister(adapter->mii_bus);
4389         kfree(adapter->mii_bus->irq);
4390         mdiobus_free(adapter->mii_bus);
4391
4392         et131x_adapter_memory_free(adapter);
4393         iounmap(adapter->regs);
4394         pci_dev_put(pdev);
4395
4396         free_netdev(netdev);
4397         pci_release_regions(pdev);
4398         pci_disable_device(pdev);
4399 }
4400
4401 /**
4402  * et131x_up - Bring up a device for use.
4403  * @netdev: device to be opened
4404  */
4405 static void et131x_up(struct net_device *netdev)
4406 {
4407         struct et131x_adapter *adapter = netdev_priv(netdev);
4408
4409         et131x_enable_txrx(netdev);
4410         phy_start(adapter->phydev);
4411 }
4412
4413 /**
4414  * et131x_down - Bring down the device
4415  * @netdev: device to be brought down
4416  */
4417 static void et131x_down(struct net_device *netdev)
4418 {
4419         struct et131x_adapter *adapter = netdev_priv(netdev);
4420
4421         /* Save the timestamp for the TX watchdog, prevent a timeout */
4422         netdev->trans_start = jiffies;
4423
4424         phy_stop(adapter->phydev);
4425         et131x_disable_txrx(netdev);
4426 }
4427
4428 #ifdef CONFIG_PM_SLEEP
4429 static int et131x_suspend(struct device *dev)
4430 {
4431         struct pci_dev *pdev = to_pci_dev(dev);
4432         struct net_device *netdev = pci_get_drvdata(pdev);
4433
4434         if (netif_running(netdev)) {
4435                 netif_device_detach(netdev);
4436                 et131x_down(netdev);
4437                 pci_save_state(pdev);
4438         }
4439
4440         return 0;
4441 }
4442
4443 static int et131x_resume(struct device *dev)
4444 {
4445         struct pci_dev *pdev = to_pci_dev(dev);
4446         struct net_device *netdev = pci_get_drvdata(pdev);
4447
4448         if (netif_running(netdev)) {
4449                 pci_restore_state(pdev);
4450                 et131x_up(netdev);
4451                 netif_device_attach(netdev);
4452         }
4453
4454         return 0;
4455 }
4456
4457 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
4458 #define ET131X_PM_OPS (&et131x_pm_ops)
4459 #else
4460 #define ET131X_PM_OPS NULL
4461 #endif
4462
4463 /**
4464  * et131x_isr - The Interrupt Service Routine for the driver.
4465  * @irq: the IRQ on which the interrupt was received.
4466  * @dev_id: device-specific info (here a pointer to a net_device struct)
4467  *
4468  * Returns a value indicating if the interrupt was handled.
4469  */
4470 irqreturn_t et131x_isr(int irq, void *dev_id)
4471 {
4472         bool handled = true;
4473         struct net_device *netdev = (struct net_device *)dev_id;
4474         struct et131x_adapter *adapter = NULL;
4475         u32 status;
4476
4477         if (!netif_device_present(netdev)) {
4478                 handled = false;
4479                 goto out;
4480         }
4481
4482         adapter = netdev_priv(netdev);
4483
4484         /* If the adapter is in low power state, then it should not
4485          * recognize any interrupt
4486          */
4487
4488         /* Disable Device Interrupts */
4489         et131x_disable_interrupts(adapter);
4490
4491         /* Get a copy of the value in the interrupt status register
4492          * so we can process the interrupting section
4493          */
4494         status = readl(&adapter->regs->global.int_status);
4495
4496         if (adapter->flowcontrol == FLOW_TXONLY ||
4497             adapter->flowcontrol == FLOW_BOTH) {
4498                 status &= ~INT_MASK_ENABLE;
4499         } else {
4500                 status &= ~INT_MASK_ENABLE_NO_FLOW;
4501         }
4502
4503         /* Make sure this is our interrupt */
4504         if (!status) {
4505                 handled = false;
4506                 et131x_enable_interrupts(adapter);
4507                 goto out;
4508         }
4509
4510         /* This is our interrupt, so process accordingly */
4511
4512         if (status & ET_INTR_WATCHDOG) {
4513                 struct tcb *tcb = adapter->tx_ring.send_head;
4514
4515                 if (tcb)
4516                         if (++tcb->stale > 1)
4517                                 status |= ET_INTR_TXDMA_ISR;
4518
4519                 if (adapter->rx_ring.unfinished_receives)
4520                         status |= ET_INTR_RXDMA_XFR_DONE;
4521                 else if (tcb == NULL)
4522                         writel(0, &adapter->regs->global.watchdog_timer);
4523
4524                 status &= ~ET_INTR_WATCHDOG;
4525         }
4526
4527         if (status == 0) {
4528                 /* This interrupt has in some way been "handled" by
4529                  * the ISR. Either it was a spurious Rx interrupt, or
4530                  * it was a Tx interrupt that has been filtered by
4531                  * the ISR.
4532                  */
4533                 et131x_enable_interrupts(adapter);
4534                 goto out;
4535         }
4536
4537         /* We need to save the interrupt status value for use in our
4538          * DPC. We will clear the software copy of that in that
4539          * routine.
4540          */
4541         adapter->stats.interrupt_status = status;
4542
4543         /* Schedule the ISR handler as a bottom-half task in the
4544          * kernel's tq_immediate queue, and mark the queue for
4545          * execution
4546          */
4547         schedule_work(&adapter->task);
4548 out:
4549         return IRQ_RETVAL(handled);
4550 }
4551
4552 /**
4553  * et131x_isr_handler - The ISR handler
4554  * @p_adapter, a pointer to the device's private adapter structure
4555  *
4556  * scheduled to run in a deferred context by the ISR. This is where the ISR's
4557  * work actually gets done.
4558  */
4559 static void et131x_isr_handler(struct work_struct *work)
4560 {
4561         struct et131x_adapter *adapter =
4562                 container_of(work, struct et131x_adapter, task);
4563         u32 status = adapter->stats.interrupt_status;
4564         struct address_map __iomem *iomem = adapter->regs;
4565
4566         /*
4567          * These first two are by far the most common.  Once handled, we clear
4568          * their two bits in the status word.  If the word is now zero, we
4569          * exit.
4570          */
4571         /* Handle all the completed Transmit interrupts */
4572         if (status & ET_INTR_TXDMA_ISR)
4573                 et131x_handle_send_interrupt(adapter);
4574
4575         /* Handle all the completed Receives interrupts */
4576         if (status & ET_INTR_RXDMA_XFR_DONE)
4577                 et131x_handle_recv_interrupt(adapter);
4578
4579         status &= 0xffffffd7;
4580
4581         if (status) {
4582                 /* Handle the TXDMA Error interrupt */
4583                 if (status & ET_INTR_TXDMA_ERR) {
4584                         u32 txdma_err;
4585
4586                         /* Following read also clears the register (COR) */
4587                         txdma_err = readl(&iomem->txdma.tx_dma_error);
4588
4589                         dev_warn(&adapter->pdev->dev,
4590                                     "TXDMA_ERR interrupt, error = %d\n",
4591                                     txdma_err);
4592                 }
4593
4594                 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
4595                 if (status &
4596                     (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
4597                         /*
4598                          * This indicates the number of unused buffers in
4599                          * RXDMA free buffer ring 0 is <= the limit you
4600                          * programmed. Free buffer resources need to be
4601                          * returned.  Free buffers are consumed as packets
4602                          * are passed from the network to the host. The host
4603                          * becomes aware of the packets from the contents of
4604                          * the packet status ring. This ring is queried when
4605                          * the packet done interrupt occurs. Packets are then
4606                          * passed to the OS. When the OS is done with the
4607                          * packets the resources can be returned to the
4608                          * ET1310 for re-use. This interrupt is one method of
4609                          * returning resources.
4610                          */
4611
4612                         /* If the user has flow control on, then we will
4613                          * send a pause packet, otherwise just exit
4614                          */
4615                         if (adapter->flowcontrol == FLOW_TXONLY ||
4616                             adapter->flowcontrol == FLOW_BOTH) {
4617                                 u32 pm_csr;
4618
4619                                 /* Tell the device to send a pause packet via
4620                                  * the back pressure register (bp req  and
4621                                  * bp xon/xoff)
4622                                  */
4623                                 pm_csr = readl(&iomem->global.pm_csr);
4624                                 if (!et1310_in_phy_coma(adapter))
4625                                         writel(3, &iomem->txmac.bp_ctrl);
4626                         }
4627                 }
4628
4629                 /* Handle Packet Status Ring Low Interrupt */
4630                 if (status & ET_INTR_RXDMA_STAT_LOW) {
4631
4632                         /*
4633                          * Same idea as with the two Free Buffer Rings.
4634                          * Packets going from the network to the host each
4635                          * consume a free buffer resource and a packet status
4636                          * resource.  These resoures are passed to the OS.
4637                          * When the OS is done with the resources, they need
4638                          * to be returned to the ET1310. This is one method
4639                          * of returning the resources.
4640                          */
4641                 }
4642
4643                 /* Handle RXDMA Error Interrupt */
4644                 if (status & ET_INTR_RXDMA_ERR) {
4645                         /*
4646                          * The rxdma_error interrupt is sent when a time-out
4647                          * on a request issued by the JAGCore has occurred or
4648                          * a completion is returned with an un-successful
4649                          * status.  In both cases the request is considered
4650                          * complete. The JAGCore will automatically re-try the
4651                          * request in question. Normally information on events
4652                          * like these are sent to the host using the "Advanced
4653                          * Error Reporting" capability. This interrupt is
4654                          * another way of getting similar information. The
4655                          * only thing required is to clear the interrupt by
4656                          * reading the ISR in the global resources. The
4657                          * JAGCore will do a re-try on the request.  Normally
4658                          * you should never see this interrupt. If you start
4659                          * to see this interrupt occurring frequently then
4660                          * something bad has occurred. A reset might be the
4661                          * thing to do.
4662                          */
4663                         /* TRAP();*/
4664
4665                         dev_warn(&adapter->pdev->dev,
4666                                     "RxDMA_ERR interrupt, error %x\n",
4667                                     readl(&iomem->txmac.tx_test));
4668                 }
4669
4670                 /* Handle the Wake on LAN Event */
4671                 if (status & ET_INTR_WOL) {
4672                         /*
4673                          * This is a secondary interrupt for wake on LAN.
4674                          * The driver should never see this, if it does,
4675                          * something serious is wrong. We will TRAP the
4676                          * message when we are in DBG mode, otherwise we
4677                          * will ignore it.
4678                          */
4679                         dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4680                 }
4681
4682                 /* Let's move on to the TxMac */
4683                 if (status & ET_INTR_TXMAC) {
4684                         u32 err = readl(&iomem->txmac.err);
4685
4686                         /*
4687                          * When any of the errors occur and TXMAC generates
4688                          * an interrupt to report these errors, it usually
4689                          * means that TXMAC has detected an error in the data
4690                          * stream retrieved from the on-chip Tx Q. All of
4691                          * these errors are catastrophic and TXMAC won't be
4692                          * able to recover data when these errors occur.  In
4693                          * a nutshell, the whole Tx path will have to be reset
4694                          * and re-configured afterwards.
4695                          */
4696                         dev_warn(&adapter->pdev->dev,
4697                                     "TXMAC interrupt, error 0x%08x\n",
4698                                     err);
4699
4700                         /* If we are debugging, we want to see this error,
4701                          * otherwise we just want the device to be reset and
4702                          * continue
4703                          */
4704                 }
4705
4706                 /* Handle RXMAC Interrupt */
4707                 if (status & ET_INTR_RXMAC) {
4708                         /*
4709                          * These interrupts are catastrophic to the device,
4710                          * what we need to do is disable the interrupts and
4711                          * set the flag to cause us to reset so we can solve
4712                          * this issue.
4713                          */
4714                         /* MP_SET_FLAG( adapter,
4715                                                 fMP_ADAPTER_HARDWARE_ERROR); */
4716
4717                         dev_warn(&adapter->pdev->dev,
4718                           "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
4719                                     readl(&iomem->rxmac.err_reg));
4720
4721                         dev_warn(&adapter->pdev->dev,
4722                                     "Enable 0x%08x, Diag 0x%08x\n",
4723                                     readl(&iomem->rxmac.ctrl),
4724                                     readl(&iomem->rxmac.rxq_diag));
4725
4726                         /*
4727                          * If we are debugging, we want to see this error,
4728                          * otherwise we just want the device to be reset and
4729                          * continue
4730                          */
4731                 }
4732
4733                 /* Handle MAC_STAT Interrupt */
4734                 if (status & ET_INTR_MAC_STAT) {
4735                         /*
4736                          * This means at least one of the un-masked counters
4737                          * in the MAC_STAT block has rolled over.  Use this
4738                          * to maintain the top, software managed bits of the
4739                          * counter(s).
4740                          */
4741                         et1310_handle_macstat_interrupt(adapter);
4742                 }
4743
4744                 /* Handle SLV Timeout Interrupt */
4745                 if (status & ET_INTR_SLV_TIMEOUT) {
4746                         /*
4747                          * This means a timeout has occurred on a read or
4748                          * write request to one of the JAGCore registers. The
4749                          * Global Resources block has terminated the request
4750                          * and on a read request, returned a "fake" value.
4751                          * The most likely reasons are: Bad Address or the
4752                          * addressed module is in a power-down state and
4753                          * can't respond.
4754                          */
4755                 }
4756         }
4757         et131x_enable_interrupts(adapter);
4758 }
4759
4760 /**
4761  * et131x_stats - Return the current device statistics.
4762  * @netdev: device whose stats are being queried
4763  *
4764  * Returns 0 on success, errno on failure (as defined in errno.h)
4765  */
4766 static struct net_device_stats *et131x_stats(struct net_device *netdev)
4767 {
4768         struct et131x_adapter *adapter = netdev_priv(netdev);
4769         struct net_device_stats *stats = &adapter->net_stats;
4770         struct ce_stats *devstat = &adapter->stats;
4771
4772         stats->rx_errors = devstat->rx_length_errs +
4773                            devstat->rx_align_errs +
4774                            devstat->rx_crc_errs +
4775                            devstat->rx_code_violations +
4776                            devstat->rx_other_errs;
4777         stats->tx_errors = devstat->tx_max_pkt_errs;
4778         stats->multicast = devstat->multicast_pkts_rcvd;
4779         stats->collisions = devstat->tx_collisions;
4780
4781         stats->rx_length_errors = devstat->rx_length_errs;
4782         stats->rx_over_errors = devstat->rx_overflows;
4783         stats->rx_crc_errors = devstat->rx_crc_errs;
4784
4785         /* NOTE: These stats don't have corresponding values in CE_STATS,
4786          * so we're going to have to update these directly from within the
4787          * TX/RX code
4788          */
4789         /* stats->rx_bytes            = 20; devstat->; */
4790         /* stats->tx_bytes            = 20;  devstat->; */
4791         /* stats->rx_dropped          = devstat->; */
4792         /* stats->tx_dropped          = devstat->; */
4793
4794         /*  NOTE: Not used, can't find analogous statistics */
4795         /* stats->rx_frame_errors     = devstat->; */
4796         /* stats->rx_fifo_errors      = devstat->; */
4797         /* stats->rx_missed_errors    = devstat->; */
4798
4799         /* stats->tx_aborted_errors   = devstat->; */
4800         /* stats->tx_carrier_errors   = devstat->; */
4801         /* stats->tx_fifo_errors      = devstat->; */
4802         /* stats->tx_heartbeat_errors = devstat->; */
4803         /* stats->tx_window_errors    = devstat->; */
4804         return stats;
4805 }
4806
4807 /**
4808  * et131x_open - Open the device for use.
4809  * @netdev: device to be opened
4810  *
4811  * Returns 0 on success, errno on failure (as defined in errno.h)
4812  */
4813 static int et131x_open(struct net_device *netdev)
4814 {
4815         struct et131x_adapter *adapter = netdev_priv(netdev);
4816         struct pci_dev *pdev = adapter->pdev;
4817         unsigned int irq = pdev->irq;
4818         int result;
4819
4820         /* Start the timer to track NIC errors */
4821         init_timer(&adapter->error_timer);
4822         adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4823         adapter->error_timer.function = et131x_error_timer_handler;
4824         adapter->error_timer.data = (unsigned long)adapter;
4825         add_timer(&adapter->error_timer);
4826
4827         result = request_irq(irq, et131x_isr, IRQF_SHARED, netdev->name, netdev);
4828         if (result) {
4829                 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
4830                 return result;
4831         }
4832
4833         adapter->flags |= fMP_ADAPTER_INTERRUPT_IN_USE;
4834
4835         et131x_up(netdev);
4836
4837         return result;
4838 }
4839
4840 /**
4841  * et131x_close - Close the device
4842  * @netdev: device to be closed
4843  *
4844  * Returns 0 on success, errno on failure (as defined in errno.h)
4845  */
4846 static int et131x_close(struct net_device *netdev)
4847 {
4848         struct et131x_adapter *adapter = netdev_priv(netdev);
4849
4850         et131x_down(netdev);
4851
4852         adapter->flags &= ~fMP_ADAPTER_INTERRUPT_IN_USE;
4853         free_irq(adapter->pdev->irq, netdev);
4854
4855         /* Stop the error timer */
4856         return del_timer_sync(&adapter->error_timer);
4857 }
4858
4859 /**
4860  * et131x_ioctl - The I/O Control handler for the driver
4861  * @netdev: device on which the control request is being made
4862  * @reqbuf: a pointer to the IOCTL request buffer
4863  * @cmd: the IOCTL command code
4864  *
4865  * Returns 0 on success, errno on failure (as defined in errno.h)
4866  */
4867 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4868                         int cmd)
4869 {
4870         struct et131x_adapter *adapter = netdev_priv(netdev);
4871
4872         if (!adapter->phydev)
4873                 return -EINVAL;
4874
4875         return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4876 }
4877
4878 /**
4879  * et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4880  * @adapter: pointer to our private adapter structure
4881  *
4882  * FIXME: lot of dups with MAC code
4883  *
4884  * Returns 0 on success, errno on failure
4885  */
4886 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4887 {
4888         int filter = adapter->packet_filter;
4889         int status = 0;
4890         u32 ctrl;
4891         u32 pf_ctrl;
4892
4893         ctrl = readl(&adapter->regs->rxmac.ctrl);
4894         pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4895
4896         /* Default to disabled packet filtering.  Enable it in the individual
4897          * case statements that require the device to filter something
4898          */
4899         ctrl |= 0x04;
4900
4901         /* Set us to be in promiscuous mode so we receive everything, this
4902          * is also true when we get a packet filter of 0
4903          */
4904         if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4905                 pf_ctrl &= ~7;  /* Clear filter bits */
4906         else {
4907                 /*
4908                  * Set us up with Multicast packet filtering.  Three cases are
4909                  * possible - (1) we have a multi-cast list, (2) we receive ALL
4910                  * multicast entries or (3) we receive none.
4911                  */
4912                 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4913                         pf_ctrl &= ~2;  /* Multicast filter bit */
4914                 else {
4915                         et1310_setup_device_for_multicast(adapter);
4916                         pf_ctrl |= 2;
4917                         ctrl &= ~0x04;
4918                 }
4919
4920                 /* Set us up with Unicast packet filtering */
4921                 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4922                         et1310_setup_device_for_unicast(adapter);
4923                         pf_ctrl |= 4;
4924                         ctrl &= ~0x04;
4925                 }
4926
4927                 /* Set us up with Broadcast packet filtering */
4928                 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4929                         pf_ctrl |= 1;   /* Broadcast filter bit */
4930                         ctrl &= ~0x04;
4931                 } else
4932                         pf_ctrl &= ~1;
4933
4934                 /* Setup the receive mac configuration registers - Packet
4935                  * Filter control + the enable / disable for packet filter
4936                  * in the control reg.
4937                  */
4938                 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4939                 writel(ctrl, &adapter->regs->rxmac.ctrl);
4940         }
4941         return status;
4942 }
4943
4944 /**
4945  * et131x_multicast - The handler to configure multicasting on the interface
4946  * @netdev: a pointer to a net_device struct representing the device
4947  */
4948 static void et131x_multicast(struct net_device *netdev)
4949 {
4950         struct et131x_adapter *adapter = netdev_priv(netdev);
4951         int packet_filter;
4952         unsigned long flags;
4953         struct netdev_hw_addr *ha;
4954         int i;
4955
4956         spin_lock_irqsave(&adapter->lock, flags);
4957
4958         /* Before we modify the platform-independent filter flags, store them
4959          * locally. This allows us to determine if anything's changed and if
4960          * we even need to bother the hardware
4961          */
4962         packet_filter = adapter->packet_filter;
4963
4964         /* Clear the 'multicast' flag locally; because we only have a single
4965          * flag to check multicast, and multiple multicast addresses can be
4966          * set, this is the easiest way to determine if more than one
4967          * multicast address is being set.
4968          */
4969         packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4970
4971         /* Check the net_device flags and set the device independent flags
4972          * accordingly
4973          */
4974
4975         if (netdev->flags & IFF_PROMISC)
4976                 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4977         else
4978                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4979
4980         if (netdev->flags & IFF_ALLMULTI)
4981                 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4982
4983         if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4984                 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4985
4986         if (netdev_mc_count(netdev) < 1) {
4987                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4988                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4989         } else
4990                 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4991
4992         /* Set values in the private adapter struct */
4993         i = 0;
4994         netdev_for_each_mc_addr(ha, netdev) {
4995                 if (i == NIC_MAX_MCAST_LIST)
4996                         break;
4997                 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
4998         }
4999         adapter->multicast_addr_count = i;
5000
5001         /* Are the new flags different from the previous ones? If not, then no
5002          * action is required
5003          *
5004          * NOTE - This block will always update the multicast_list with the
5005          *        hardware, even if the addresses aren't the same.
5006          */
5007         if (packet_filter != adapter->packet_filter) {
5008                 /* Call the device's filter function */
5009                 et131x_set_packet_filter(adapter);
5010         }
5011         spin_unlock_irqrestore(&adapter->lock, flags);
5012 }
5013
5014 /**
5015  * et131x_tx - The handler to tx a packet on the device
5016  * @skb: data to be Tx'd
5017  * @netdev: device on which data is to be Tx'd
5018  *
5019  * Returns 0 on success, errno on failure (as defined in errno.h)
5020  */
5021 static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
5022 {
5023         int status = 0;
5024         struct et131x_adapter *adapter = netdev_priv(netdev);
5025
5026         /* stop the queue if it's getting full */
5027         if (adapter->tx_ring.used >= NUM_TCB - 1 &&
5028             !netif_queue_stopped(netdev))
5029                 netif_stop_queue(netdev);
5030
5031         /* Save the timestamp for the TX timeout watchdog */
5032         netdev->trans_start = jiffies;
5033
5034         /* Call the device-specific data Tx routine */
5035         status = et131x_send_packets(skb, netdev);
5036
5037         /* Check status and manage the netif queue if necessary */
5038         if (status != 0) {
5039                 if (status == -ENOMEM)
5040                         status = NETDEV_TX_BUSY;
5041                 else
5042                         status = NETDEV_TX_OK;
5043         }
5044         return status;
5045 }
5046
5047 /**
5048  * et131x_tx_timeout - Timeout handler
5049  * @netdev: a pointer to a net_device struct representing the device
5050  *
5051  * The handler called when a Tx request times out. The timeout period is
5052  * specified by the 'tx_timeo" element in the net_device structure (see
5053  * et131x_alloc_device() to see how this value is set).
5054  */
5055 static void et131x_tx_timeout(struct net_device *netdev)
5056 {
5057         struct et131x_adapter *adapter = netdev_priv(netdev);
5058         struct tcb *tcb;
5059         unsigned long flags;
5060
5061         /* If the device is closed, ignore the timeout */
5062         if (~(adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE))
5063                 return;
5064
5065         /* Any nonrecoverable hardware error?
5066          * Checks adapter->flags for any failure in phy reading
5067          */
5068         if (adapter->flags & fMP_ADAPTER_NON_RECOVER_ERROR)
5069                 return;
5070
5071         /* Hardware failure? */
5072         if (adapter->flags & fMP_ADAPTER_HARDWARE_ERROR) {
5073                 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
5074                 return;
5075         }
5076
5077         /* Is send stuck? */
5078         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
5079
5080         tcb = adapter->tx_ring.send_head;
5081
5082         if (tcb != NULL) {
5083                 tcb->count++;
5084
5085                 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
5086                         spin_unlock_irqrestore(&adapter->tcb_send_qlock,
5087                                                flags);
5088
5089                         dev_warn(&adapter->pdev->dev,
5090                                 "Send stuck - reset.  tcb->WrIndex %x, flags 0x%08x\n",
5091                                 tcb->index,
5092                                 tcb->flags);
5093
5094                         adapter->net_stats.tx_errors++;
5095
5096                         /* perform reset of tx/rx */
5097                         et131x_disable_txrx(netdev);
5098                         et131x_enable_txrx(netdev);
5099                         return;
5100                 }
5101         }
5102
5103         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
5104 }
5105
5106 /**
5107  * et131x_change_mtu - The handler called to change the MTU for the device
5108  * @netdev: device whose MTU is to be changed
5109  * @new_mtu: the desired MTU
5110  *
5111  * Returns 0 on success, errno on failure (as defined in errno.h)
5112  */
5113 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
5114 {
5115         int result = 0;
5116         struct et131x_adapter *adapter = netdev_priv(netdev);
5117
5118         /* Make sure the requested MTU is valid */
5119         if (new_mtu < 64 || new_mtu > 9216)
5120                 return -EINVAL;
5121
5122         et131x_disable_txrx(netdev);
5123         et131x_handle_send_interrupt(adapter);
5124         et131x_handle_recv_interrupt(adapter);
5125
5126         /* Set the new MTU */
5127         netdev->mtu = new_mtu;
5128
5129         /* Free Rx DMA memory */
5130         et131x_adapter_memory_free(adapter);
5131
5132         /* Set the config parameter for Jumbo Packet support */
5133         adapter->registry_jumbo_packet = new_mtu + 14;
5134         et131x_soft_reset(adapter);
5135
5136         /* Alloc and init Rx DMA memory */
5137         result = et131x_adapter_memory_alloc(adapter);
5138         if (result != 0) {
5139                 dev_warn(&adapter->pdev->dev,
5140                         "Change MTU failed; couldn't re-alloc DMA memory\n");
5141                 return result;
5142         }
5143
5144         et131x_init_send(adapter);
5145
5146         et131x_hwaddr_init(adapter);
5147         memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5148
5149         /* Init the device with the new settings */
5150         et131x_adapter_setup(adapter);
5151
5152         et131x_enable_txrx(netdev);
5153
5154         return result;
5155 }
5156
5157 /**
5158  * et131x_set_mac_addr - handler to change the MAC address for the device
5159  * @netdev: device whose MAC is to be changed
5160  * @new_mac: the desired MAC address
5161  *
5162  * Returns 0 on success, errno on failure (as defined in errno.h)
5163  *
5164  * IMPLEMENTED BY : blux http://berndlux.de 22.01.2007 21:14
5165  */
5166 static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
5167 {
5168         int result = 0;
5169         struct et131x_adapter *adapter = netdev_priv(netdev);
5170         struct sockaddr *address = new_mac;
5171
5172         /* begin blux */
5173
5174         if (adapter == NULL)
5175                 return -ENODEV;
5176
5177         /* Make sure the requested MAC is valid */
5178         if (!is_valid_ether_addr(address->sa_data))
5179                 return -EADDRNOTAVAIL;
5180
5181         et131x_disable_txrx(netdev);
5182         et131x_handle_send_interrupt(adapter);
5183         et131x_handle_recv_interrupt(adapter);
5184
5185         /* Set the new MAC */
5186         /* netdev->set_mac_address  = &new_mac; */
5187
5188         memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
5189
5190         printk(KERN_INFO "%s: Setting MAC address to %pM\n",
5191                         netdev->name, netdev->dev_addr);
5192
5193         /* Free Rx DMA memory */
5194         et131x_adapter_memory_free(adapter);
5195
5196         et131x_soft_reset(adapter);
5197
5198         /* Alloc and init Rx DMA memory */
5199         result = et131x_adapter_memory_alloc(adapter);
5200         if (result != 0) {
5201                 dev_err(&adapter->pdev->dev,
5202                         "Change MAC failed; couldn't re-alloc DMA memory\n");
5203                 return result;
5204         }
5205
5206         et131x_init_send(adapter);
5207
5208         et131x_hwaddr_init(adapter);
5209
5210         /* Init the device with the new settings */
5211         et131x_adapter_setup(adapter);
5212
5213         et131x_enable_txrx(netdev);
5214
5215         return result;
5216 }
5217
5218 static const struct net_device_ops et131x_netdev_ops = {
5219         .ndo_open               = et131x_open,
5220         .ndo_stop               = et131x_close,
5221         .ndo_start_xmit         = et131x_tx,
5222         .ndo_set_rx_mode        = et131x_multicast,
5223         .ndo_tx_timeout         = et131x_tx_timeout,
5224         .ndo_change_mtu         = et131x_change_mtu,
5225         .ndo_set_mac_address    = et131x_set_mac_addr,
5226         .ndo_validate_addr      = eth_validate_addr,
5227         .ndo_get_stats          = et131x_stats,
5228         .ndo_do_ioctl           = et131x_ioctl,
5229 };
5230
5231 /**
5232  * et131x_pci_setup - Perform device initialization
5233  * @pdev: a pointer to the device's pci_dev structure
5234  * @ent: this device's entry in the pci_device_id table
5235  *
5236  * Returns 0 on success, errno on failure (as defined in errno.h)
5237  *
5238  * Registered in the pci_driver structure, this function is called when the
5239  * PCI subsystem finds a new PCI device which matches the information
5240  * contained in the pci_device_id table. This routine is the equivalent to
5241  * a device insertion routine.
5242  */
5243 static int __devinit et131x_pci_setup(struct pci_dev *pdev,
5244                                const struct pci_device_id *ent)
5245 {
5246         struct net_device *netdev;
5247         struct et131x_adapter *adapter;
5248         int rc;
5249         int ii;
5250
5251         rc = pci_enable_device(pdev);
5252         if (rc < 0) {
5253                 dev_err(&pdev->dev, "pci_enable_device() failed\n");
5254                 goto out;
5255         }
5256
5257         /* Perform some basic PCI checks */
5258         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5259                 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
5260                 rc = -ENODEV;
5261                 goto err_disable;
5262         }
5263
5264         rc = pci_request_regions(pdev, DRIVER_NAME);
5265         if (rc < 0) {
5266                 dev_err(&pdev->dev, "Can't get PCI resources\n");
5267                 goto err_disable;
5268         }
5269
5270         pci_set_master(pdev);
5271
5272         /* Check the DMA addressing support of this device */
5273         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
5274                 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5275                 if (rc < 0) {
5276                         dev_err(&pdev->dev,
5277                           "Unable to obtain 64 bit DMA for consistent allocations\n");
5278                         goto err_release_res;
5279                 }
5280         } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
5281                 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
5282                 if (rc < 0) {
5283                         dev_err(&pdev->dev,
5284                           "Unable to obtain 32 bit DMA for consistent allocations\n");
5285                         goto err_release_res;
5286                 }
5287         } else {
5288                 dev_err(&pdev->dev, "No usable DMA addressing method\n");
5289                 rc = -EIO;
5290                 goto err_release_res;
5291         }
5292
5293         /* Allocate netdev and private adapter structs */
5294         netdev = alloc_etherdev(sizeof(struct et131x_adapter));
5295         if (!netdev) {
5296                 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
5297                 rc = -ENOMEM;
5298                 goto err_release_res;
5299         }
5300
5301         netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
5302         netdev->netdev_ops     = &et131x_netdev_ops;
5303
5304         SET_NETDEV_DEV(netdev, &pdev->dev);
5305         et131x_set_ethtool_ops(netdev);
5306
5307         adapter = et131x_adapter_init(netdev, pdev);
5308
5309         rc = et131x_pci_init(adapter, pdev);
5310         if (rc < 0)
5311                 goto err_free_dev;
5312
5313         /* Map the bus-relative registers to system virtual memory */
5314         adapter->regs = pci_ioremap_bar(pdev, 0);
5315         if (!adapter->regs) {
5316                 dev_err(&pdev->dev, "Cannot map device registers\n");
5317                 rc = -ENOMEM;
5318                 goto err_free_dev;
5319         }
5320
5321         /* If Phy COMA mode was enabled when we went down, disable it here. */
5322         writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
5323
5324         /* Issue a global reset to the et1310 */
5325         et131x_soft_reset(adapter);
5326
5327         /* Disable all interrupts (paranoid) */
5328         et131x_disable_interrupts(adapter);
5329
5330         /* Allocate DMA memory */
5331         rc = et131x_adapter_memory_alloc(adapter);
5332         if (rc < 0) {
5333                 dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
5334                 goto err_iounmap;
5335         }
5336
5337         /* Init send data structures */
5338         et131x_init_send(adapter);
5339
5340         /* Set up the task structure for the ISR's deferred handler */
5341         INIT_WORK(&adapter->task, et131x_isr_handler);
5342
5343         /* Copy address into the net_device struct */
5344         memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5345
5346         /* Init variable for counting how long we do not have link status */
5347         adapter->boot_coma = 0;
5348         et1310_disable_phy_coma(adapter);
5349
5350         rc = -ENOMEM;
5351
5352         /* Setup the mii_bus struct */
5353         adapter->mii_bus = mdiobus_alloc();
5354         if (!adapter->mii_bus) {
5355                 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
5356                 goto err_mem_free;
5357         }
5358
5359         adapter->mii_bus->name = "et131x_eth_mii";
5360         snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
5361                 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
5362         adapter->mii_bus->priv = netdev;
5363         adapter->mii_bus->read = et131x_mdio_read;
5364         adapter->mii_bus->write = et131x_mdio_write;
5365         adapter->mii_bus->reset = et131x_mdio_reset;
5366         adapter->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
5367         if (!adapter->mii_bus->irq) {
5368                 dev_err(&pdev->dev, "mii_bus irq allocation failed\n");
5369                 goto err_mdio_free;
5370         }
5371
5372         for (ii = 0; ii < PHY_MAX_ADDR; ii++)
5373                 adapter->mii_bus->irq[ii] = PHY_POLL;
5374
5375         rc = mdiobus_register(adapter->mii_bus);
5376         if (rc < 0) {
5377                 dev_err(&pdev->dev, "failed to register MII bus\n");
5378                 goto err_mdio_free_irq;
5379         }
5380
5381         rc = et131x_mii_probe(netdev);
5382         if (rc < 0) {
5383                 dev_err(&pdev->dev, "failed to probe MII bus\n");
5384                 goto err_mdio_unregister;
5385         }
5386
5387         /* Setup et1310 as per the documentation */
5388         et131x_adapter_setup(adapter);
5389
5390         /* We can enable interrupts now
5391          *
5392          *  NOTE - Because registration of interrupt handler is done in the
5393          *         device's open(), defer enabling device interrupts to that
5394          *         point
5395          */
5396
5397         /* Register the net_device struct with the Linux network layer */
5398         rc = register_netdev(netdev);
5399         if (rc < 0) {
5400                 dev_err(&pdev->dev, "register_netdev() failed\n");
5401                 goto err_phy_disconnect;
5402         }
5403
5404         /* Register the net_device struct with the PCI subsystem. Save a copy
5405          * of the PCI config space for this device now that the device has
5406          * been initialized, just in case it needs to be quickly restored.
5407          */
5408         pci_set_drvdata(pdev, netdev);
5409 out:
5410         return rc;
5411
5412 err_phy_disconnect:
5413         phy_disconnect(adapter->phydev);
5414 err_mdio_unregister:
5415         mdiobus_unregister(adapter->mii_bus);
5416 err_mdio_free_irq:
5417         kfree(adapter->mii_bus->irq);
5418 err_mdio_free:
5419         mdiobus_free(adapter->mii_bus);
5420 err_mem_free:
5421         et131x_adapter_memory_free(adapter);
5422 err_iounmap:
5423         iounmap(adapter->regs);
5424 err_free_dev:
5425         pci_dev_put(pdev);
5426         free_netdev(netdev);
5427 err_release_res:
5428         pci_release_regions(pdev);
5429 err_disable:
5430         pci_disable_device(pdev);
5431         goto out;
5432 }
5433
5434 static DEFINE_PCI_DEVICE_TABLE(et131x_pci_table) = {
5435         { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
5436         { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
5437         {0,}
5438 };
5439 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
5440
5441 static struct pci_driver et131x_driver = {
5442         .name           = DRIVER_NAME,
5443         .id_table       = et131x_pci_table,
5444         .probe          = et131x_pci_setup,
5445         .remove         = __devexit_p(et131x_pci_remove),
5446         .driver.pm      = ET131X_PM_OPS,
5447 };
5448
5449 /**
5450  * et131x_init_module - The "main" entry point called on driver initialization
5451  *
5452  * Returns 0 on success, errno on failure (as defined in errno.h)
5453  */
5454 static int __init et131x_init_module(void)
5455 {
5456         return pci_register_driver(&et131x_driver);
5457 }
5458
5459 /**
5460  * et131x_cleanup_module - The entry point called on driver cleanup
5461  */
5462 static void __exit et131x_cleanup_module(void)
5463 {
5464         pci_unregister_driver(&et131x_driver);
5465 }
5466
5467 module_init(et131x_init_module);
5468 module_exit(et131x_cleanup_module);
5469