]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/staging/iio/ring_sw.c
Merge branch 'for-2.6.39' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[mv-sheeva.git] / drivers / staging / iio / ring_sw.c
1 /* The industrial I/O simple minimally locked ring buffer.
2  *
3  * Copyright (c) 2008 Jonathan Cameron
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published by
7  * the Free Software Foundation.
8  */
9
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/workqueue.h>
15 #include <linux/poll.h>
16 #include "ring_sw.h"
17 #include "trigger.h"
18
19 static inline int __iio_allocate_sw_ring_buffer(struct iio_sw_ring_buffer *ring,
20                                                 int bytes_per_datum, int length)
21 {
22         if ((length == 0) || (bytes_per_datum == 0))
23                 return -EINVAL;
24         __iio_update_ring_buffer(&ring->buf, bytes_per_datum, length);
25         ring->data = kmalloc(length*ring->buf.bytes_per_datum, GFP_ATOMIC);
26         ring->read_p = NULL;
27         ring->write_p = NULL;
28         ring->last_written_p = NULL;
29         ring->half_p = NULL;
30         return ring->data ? 0 : -ENOMEM;
31 }
32
33 static inline void __iio_init_sw_ring_buffer(struct iio_sw_ring_buffer *ring)
34 {
35         spin_lock_init(&ring->use_lock);
36 }
37
38 static inline void __iio_free_sw_ring_buffer(struct iio_sw_ring_buffer *ring)
39 {
40         kfree(ring->data);
41 }
42
43 void iio_mark_sw_rb_in_use(struct iio_ring_buffer *r)
44 {
45         struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
46         spin_lock(&ring->use_lock);
47         ring->use_count++;
48         spin_unlock(&ring->use_lock);
49 }
50 EXPORT_SYMBOL(iio_mark_sw_rb_in_use);
51
52 void iio_unmark_sw_rb_in_use(struct iio_ring_buffer *r)
53 {
54         struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
55         spin_lock(&ring->use_lock);
56         ring->use_count--;
57         spin_unlock(&ring->use_lock);
58 }
59 EXPORT_SYMBOL(iio_unmark_sw_rb_in_use);
60
61
62 /* Ring buffer related functionality */
63 /* Store to ring is typically called in the bh of a data ready interrupt handler
64  * in the device driver */
65 /* Lock always held if their is a chance this may be called */
66 /* Only one of these per ring may run concurrently - enforced by drivers */
67 static int iio_store_to_sw_ring(struct iio_sw_ring_buffer *ring,
68                                 unsigned char *data, s64 timestamp)
69 {
70         int ret = 0;
71         int code;
72         unsigned char *temp_ptr, *change_test_ptr;
73
74         /* initial store */
75         if (unlikely(ring->write_p == NULL)) {
76                 ring->write_p = ring->data;
77                 /* Doesn't actually matter if this is out of the set
78                  * as long as the read pointer is valid before this
79                  * passes it - guaranteed as set later in this function.
80                  */
81                 ring->half_p = ring->data - ring->buf.length*ring->buf.bytes_per_datum/2;
82         }
83         /* Copy data to where ever the current write pointer says */
84         memcpy(ring->write_p, data, ring->buf.bytes_per_datum);
85         barrier();
86         /* Update the pointer used to get most recent value.
87          * Always valid as either points to latest or second latest value.
88          * Before this runs it is null and read attempts fail with -EAGAIN.
89          */
90         ring->last_written_p = ring->write_p;
91         barrier();
92         /* temp_ptr used to ensure we never have an invalid pointer
93          * it may be slightly lagging, but never invalid
94          */
95         temp_ptr = ring->write_p + ring->buf.bytes_per_datum;
96         /* End of ring, back to the beginning */
97         if (temp_ptr == ring->data + ring->buf.length*ring->buf.bytes_per_datum)
98                 temp_ptr = ring->data;
99         /* Update the write pointer
100          * always valid as long as this is the only function able to write.
101          * Care needed with smp systems to ensure more than one ring fill
102          * is never scheduled.
103          */
104         ring->write_p = temp_ptr;
105
106         if (ring->read_p == NULL)
107                 ring->read_p = ring->data;
108         /* Buffer full - move the read pointer and create / escalate
109          * ring event */
110         /* Tricky case - if the read pointer moves before we adjust it.
111          * Handle by not pushing if it has moved - may result in occasional
112          * unnecessary buffer full events when it wasn't quite true.
113          */
114         else if (ring->write_p == ring->read_p) {
115                 change_test_ptr = ring->read_p;
116                 temp_ptr = change_test_ptr + ring->buf.bytes_per_datum;
117                 if (temp_ptr
118                     == ring->data + ring->buf.length*ring->buf.bytes_per_datum) {
119                         temp_ptr = ring->data;
120                 }
121                 /* We are moving pointer on one because the ring is full.  Any
122                  * change to the read pointer will be this or greater.
123                  */
124                 if (change_test_ptr == ring->read_p)
125                         ring->read_p = temp_ptr;
126
127                 spin_lock(&ring->buf.shared_ev_pointer.lock);
128
129                 ret = iio_push_or_escallate_ring_event(&ring->buf,
130                                IIO_EVENT_CODE_RING_100_FULL, timestamp);
131                 spin_unlock(&ring->buf.shared_ev_pointer.lock);
132                 if (ret)
133                         goto error_ret;
134         }
135         /* investigate if our event barrier has been passed */
136         /* There are definite 'issues' with this and chances of
137          * simultaneous read */
138         /* Also need to use loop count to ensure this only happens once */
139         ring->half_p += ring->buf.bytes_per_datum;
140         if (ring->half_p == ring->data + ring->buf.length*ring->buf.bytes_per_datum)
141                 ring->half_p = ring->data;
142         if (ring->half_p == ring->read_p) {
143                 spin_lock(&ring->buf.shared_ev_pointer.lock);
144                 code = IIO_EVENT_CODE_RING_50_FULL;
145                 ret = __iio_push_event(&ring->buf.ev_int,
146                                        code,
147                                        timestamp,
148                                        &ring->buf.shared_ev_pointer);
149                 spin_unlock(&ring->buf.shared_ev_pointer.lock);
150         }
151 error_ret:
152         return ret;
153 }
154
155 int iio_rip_sw_rb(struct iio_ring_buffer *r,
156                   size_t count, char __user *buf, int *dead_offset)
157 {
158         struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
159
160         u8 *initial_read_p, *initial_write_p, *current_read_p, *end_read_p;
161         u8 *data;
162         int ret, max_copied;
163         int bytes_to_rip;
164
165         /* A userspace program has probably made an error if it tries to
166          *  read something that is not a whole number of bpds.
167          * Return an error.
168          */
169         if (count % ring->buf.bytes_per_datum) {
170                 ret = -EINVAL;
171                 printk(KERN_INFO "Ring buffer read request not whole number of"
172                        "samples: Request bytes %zd, Current bytes per datum %d\n",
173                        count, ring->buf.bytes_per_datum);
174                 goto error_ret;
175         }
176         /* Limit size to whole of ring buffer */
177         bytes_to_rip = min((size_t)(ring->buf.bytes_per_datum*ring->buf.length), count);
178
179         data = kmalloc(bytes_to_rip, GFP_KERNEL);
180         if (data == NULL) {
181                 ret = -ENOMEM;
182                 goto error_ret;
183         }
184
185         /* build local copy */
186         initial_read_p = ring->read_p;
187         if (unlikely(initial_read_p == NULL)) { /* No data here as yet */
188                 ret = 0;
189                 goto error_free_data_cpy;
190         }
191
192         initial_write_p = ring->write_p;
193
194         /* Need a consistent pair */
195         while ((initial_read_p != ring->read_p)
196                || (initial_write_p != ring->write_p)) {
197                 initial_read_p = ring->read_p;
198                 initial_write_p = ring->write_p;
199         }
200         if (initial_write_p == initial_read_p) {
201                 /* No new data available.*/
202                 ret = 0;
203                 goto error_free_data_cpy;
204         }
205
206         if (initial_write_p >= initial_read_p + bytes_to_rip) {
207                 /* write_p is greater than necessary, all is easy */
208                 max_copied = bytes_to_rip;
209                 memcpy(data, initial_read_p, max_copied);
210                 end_read_p = initial_read_p + max_copied;
211         } else if (initial_write_p > initial_read_p) {
212                 /*not enough data to cpy */
213                 max_copied = initial_write_p - initial_read_p;
214                 memcpy(data, initial_read_p, max_copied);
215                 end_read_p = initial_write_p;
216         } else {
217                 /* going through 'end' of ring buffer */
218                 max_copied = ring->data
219                         + ring->buf.length*ring->buf.bytes_per_datum - initial_read_p;
220                 memcpy(data, initial_read_p, max_copied);
221                 /* possible we are done if we align precisely with end */
222                 if (max_copied == bytes_to_rip)
223                         end_read_p = ring->data;
224                 else if (initial_write_p
225                          > ring->data + bytes_to_rip - max_copied) {
226                         /* enough data to finish */
227                         memcpy(data + max_copied, ring->data,
228                                bytes_to_rip - max_copied);
229                         max_copied = bytes_to_rip;
230                         end_read_p = ring->data + (bytes_to_rip - max_copied);
231                 } else {  /* not enough data */
232                         memcpy(data + max_copied, ring->data,
233                                initial_write_p - ring->data);
234                         max_copied += initial_write_p - ring->data;
235                         end_read_p = initial_write_p;
236                 }
237         }
238         /* Now to verify which section was cleanly copied - i.e. how far
239          * read pointer has been pushed */
240         current_read_p = ring->read_p;
241
242         if (initial_read_p <= current_read_p)
243                 *dead_offset = current_read_p - initial_read_p;
244         else
245                 *dead_offset = ring->buf.length*ring->buf.bytes_per_datum
246                         - (initial_read_p - current_read_p);
247
248         /* possible issue if the initial write has been lapped or indeed
249          * the point we were reading to has been passed */
250         /* No valid data read.
251          * In this case the read pointer is already correct having been
252          * pushed further than we would look. */
253         if (max_copied - *dead_offset < 0) {
254                 ret = 0;
255                 goto error_free_data_cpy;
256         }
257
258         /* setup the next read position */
259         /* Beware, this may fail due to concurrency fun and games.
260          *  Possible that sufficient fill commands have run to push the read
261          * pointer past where we would be after the rip. If this occurs, leave
262          * it be.
263          */
264         /* Tricky - deal with loops */
265
266         while (ring->read_p != end_read_p)
267                 ring->read_p = end_read_p;
268
269         ret = max_copied - *dead_offset;
270
271         if (copy_to_user(buf, data + *dead_offset, ret))  {
272                 ret =  -EFAULT;
273                 goto error_free_data_cpy;
274         }
275 error_free_data_cpy:
276         kfree(data);
277 error_ret:
278
279         return ret;
280 }
281 EXPORT_SYMBOL(iio_rip_sw_rb);
282
283 int iio_store_to_sw_rb(struct iio_ring_buffer *r, u8 *data, s64 timestamp)
284 {
285         struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
286         return iio_store_to_sw_ring(ring, data, timestamp);
287 }
288 EXPORT_SYMBOL(iio_store_to_sw_rb);
289
290 static int iio_read_last_from_sw_ring(struct iio_sw_ring_buffer *ring,
291                                       unsigned char *data)
292 {
293         unsigned char *last_written_p_copy;
294
295         iio_mark_sw_rb_in_use(&ring->buf);
296 again:
297         barrier();
298         last_written_p_copy = ring->last_written_p;
299         barrier(); /*unnessecary? */
300         /* Check there is anything here */
301         if (last_written_p_copy == NULL)
302                 return -EAGAIN;
303         memcpy(data, last_written_p_copy, ring->buf.bytes_per_datum);
304
305         if (unlikely(ring->last_written_p != last_written_p_copy))
306                 goto again;
307
308         iio_unmark_sw_rb_in_use(&ring->buf);
309         return 0;
310 }
311
312 int iio_read_last_from_sw_rb(struct iio_ring_buffer *r,
313                              unsigned char *data)
314 {
315         return iio_read_last_from_sw_ring(iio_to_sw_ring(r), data);
316 }
317 EXPORT_SYMBOL(iio_read_last_from_sw_rb);
318
319 int iio_request_update_sw_rb(struct iio_ring_buffer *r)
320 {
321         int ret = 0;
322         struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
323
324         spin_lock(&ring->use_lock);
325         if (!ring->update_needed)
326                 goto error_ret;
327         if (ring->use_count) {
328                 ret = -EAGAIN;
329                 goto error_ret;
330         }
331         __iio_free_sw_ring_buffer(ring);
332         ret = __iio_allocate_sw_ring_buffer(ring, ring->buf.bytes_per_datum,
333                                             ring->buf.length);
334 error_ret:
335         spin_unlock(&ring->use_lock);
336         return ret;
337 }
338 EXPORT_SYMBOL(iio_request_update_sw_rb);
339
340 int iio_get_bytes_per_datum_sw_rb(struct iio_ring_buffer *r)
341 {
342         struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
343         return ring->buf.bytes_per_datum;
344 }
345 EXPORT_SYMBOL(iio_get_bytes_per_datum_sw_rb);
346
347 int iio_set_bytes_per_datum_sw_rb(struct iio_ring_buffer *r, size_t bpd)
348 {
349         if (r->bytes_per_datum != bpd) {
350                 r->bytes_per_datum = bpd;
351                 if (r->access.mark_param_change)
352                         r->access.mark_param_change(r);
353         }
354         return 0;
355 }
356 EXPORT_SYMBOL(iio_set_bytes_per_datum_sw_rb);
357
358 int iio_get_length_sw_rb(struct iio_ring_buffer *r)
359 {
360         return r->length;
361 }
362 EXPORT_SYMBOL(iio_get_length_sw_rb);
363
364 int iio_set_length_sw_rb(struct iio_ring_buffer *r, int length)
365 {
366         if (r->length != length) {
367                 r->length = length;
368                 if (r->access.mark_param_change)
369                         r->access.mark_param_change(r);
370         }
371         return 0;
372 }
373 EXPORT_SYMBOL(iio_set_length_sw_rb);
374
375 int iio_mark_update_needed_sw_rb(struct iio_ring_buffer *r)
376 {
377         struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
378         ring->update_needed = true;
379         return 0;
380 }
381 EXPORT_SYMBOL(iio_mark_update_needed_sw_rb);
382
383 static void iio_sw_rb_release(struct device *dev)
384 {
385         struct iio_ring_buffer *r = to_iio_ring_buffer(dev);
386         kfree(iio_to_sw_ring(r));
387 }
388
389 static IIO_RING_ENABLE_ATTR;
390 static IIO_RING_BYTES_PER_DATUM_ATTR;
391 static IIO_RING_LENGTH_ATTR;
392
393 /* Standard set of ring buffer attributes */
394 static struct attribute *iio_ring_attributes[] = {
395         &dev_attr_length.attr,
396         &dev_attr_bytes_per_datum.attr,
397         &dev_attr_enable.attr,
398         NULL,
399 };
400
401 static struct attribute_group iio_ring_attribute_group = {
402         .attrs = iio_ring_attributes,
403 };
404
405 static const struct attribute_group *iio_ring_attribute_groups[] = {
406         &iio_ring_attribute_group,
407         NULL
408 };
409
410 static struct device_type iio_sw_ring_type = {
411         .release = iio_sw_rb_release,
412         .groups = iio_ring_attribute_groups,
413 };
414
415 struct iio_ring_buffer *iio_sw_rb_allocate(struct iio_dev *indio_dev)
416 {
417         struct iio_ring_buffer *buf;
418         struct iio_sw_ring_buffer *ring;
419
420         ring = kzalloc(sizeof *ring, GFP_KERNEL);
421         if (!ring)
422                 return NULL;
423         buf = &ring->buf;
424         iio_ring_buffer_init(buf, indio_dev);
425         __iio_init_sw_ring_buffer(ring);
426         buf->dev.type = &iio_sw_ring_type;
427         device_initialize(&buf->dev);
428         buf->dev.parent = &indio_dev->dev;
429         buf->dev.bus = &iio_bus_type;
430         dev_set_drvdata(&buf->dev, (void *)buf);
431
432         return buf;
433 }
434 EXPORT_SYMBOL(iio_sw_rb_allocate);
435
436 void iio_sw_rb_free(struct iio_ring_buffer *r)
437 {
438         if (r)
439                 iio_put_ring_buffer(r);
440 }
441 EXPORT_SYMBOL(iio_sw_rb_free);
442
443 int iio_sw_ring_preenable(struct iio_dev *indio_dev)
444 {
445         struct iio_ring_buffer *ring = indio_dev->ring;
446         size_t size;
447         dev_dbg(&indio_dev->dev, "%s\n", __func__);
448         /* Check if there are any scan elements enabled, if not fail*/
449         if (!(ring->scan_count || ring->scan_timestamp))
450                 return -EINVAL;
451         if (ring->scan_timestamp)
452                 if (ring->scan_count)
453                         /* Timestamp (aligned to s64) and data */
454                         size = (((ring->scan_count * ring->bpe)
455                                         + sizeof(s64) - 1)
456                                 & ~(sizeof(s64) - 1))
457                                 + sizeof(s64);
458                 else /* Timestamp only  */
459                         size = sizeof(s64);
460         else /* Data only */
461                 size = ring->scan_count * ring->bpe;
462         ring->access.set_bytes_per_datum(ring, size);
463
464         return 0;
465 }
466 EXPORT_SYMBOL(iio_sw_ring_preenable);
467
468 void iio_sw_trigger_bh_to_ring(struct work_struct *work_s)
469 {
470         struct iio_sw_ring_helper_state *st
471                 = container_of(work_s, struct iio_sw_ring_helper_state,
472                         work_trigger_to_ring);
473         struct iio_ring_buffer *ring = st->indio_dev->ring;
474         int len = 0;
475         size_t datasize = ring->access.get_bytes_per_datum(ring);
476         char *data = kmalloc(datasize, GFP_KERNEL);
477
478         if (data == NULL) {
479                 dev_err(st->indio_dev->dev.parent,
480                         "memory alloc failed in ring bh");
481                 return;
482         }
483
484         if (ring->scan_count)
485                 len = st->get_ring_element(st, data);
486
487           /* Guaranteed to be aligned with 8 byte boundary */
488         if (ring->scan_timestamp)
489                 *(s64 *)(((phys_addr_t)data + len
490                                 + sizeof(s64) - 1) & ~(sizeof(s64) - 1))
491                         = st->last_timestamp;
492         ring->access.store_to(ring,
493                         (u8 *)data,
494                         st->last_timestamp);
495
496         iio_trigger_notify_done(st->indio_dev->trig);
497         kfree(data);
498
499         return;
500 }
501 EXPORT_SYMBOL(iio_sw_trigger_bh_to_ring);
502
503 void iio_sw_poll_func_th(struct iio_dev *indio_dev, s64 time)
504 {       struct iio_sw_ring_helper_state *h
505                 = iio_dev_get_devdata(indio_dev);
506         h->last_timestamp = time;
507         schedule_work(&h->work_trigger_to_ring);
508 }
509 EXPORT_SYMBOL(iio_sw_poll_func_th);
510
511 MODULE_DESCRIPTION("Industrialio I/O software ring buffer");
512 MODULE_LICENSE("GPL");