]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/staging/lustre/lustre/ptlrpc/ptlrpcd.c
Merge remote-tracking branch 'wireless-next/master'
[karo-tx-linux.git] / drivers / staging / lustre / lustre / ptlrpc / ptlrpcd.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/ptlrpc/ptlrpcd.c
37  */
38
39 /** \defgroup ptlrpcd PortalRPC daemon
40  *
41  * ptlrpcd is a special thread with its own set where other user might add
42  * requests when they don't want to wait for their completion.
43  * PtlRPCD will take care of sending such requests and then processing their
44  * replies and calling completion callbacks as necessary.
45  * The callbacks are called directly from ptlrpcd context.
46  * It is important to never significantly block (esp. on RPCs!) within such
47  * completion handler or a deadlock might occur where ptlrpcd enters some
48  * callback that attempts to send another RPC and wait for it to return,
49  * during which time ptlrpcd is completely blocked, so e.g. if import
50  * fails, recovery cannot progress because connection requests are also
51  * sent by ptlrpcd.
52  *
53  * @{
54  */
55
56 #define DEBUG_SUBSYSTEM S_RPC
57
58 # include <linux/libcfs/libcfs.h>
59
60 #include <lustre_net.h>
61 # include <lustre_lib.h>
62
63 #include <lustre_ha.h>
64 #include <obd_class.h>   /* for obd_zombie */
65 #include <obd_support.h> /* for OBD_FAIL_CHECK */
66 #include <cl_object.h> /* cl_env_{get,put}() */
67 #include <lprocfs_status.h>
68
69 #include "ptlrpc_internal.h"
70
71 struct ptlrpcd {
72         int             pd_size;
73         int             pd_index;
74         int             pd_nthreads;
75         struct ptlrpcd_ctl pd_thread_rcv;
76         struct ptlrpcd_ctl pd_threads[0];
77 };
78
79 static int max_ptlrpcds;
80 CFS_MODULE_PARM(max_ptlrpcds, "i", int, 0644,
81                 "Max ptlrpcd thread count to be started.");
82
83 static int ptlrpcd_bind_policy = PDB_POLICY_PAIR;
84 CFS_MODULE_PARM(ptlrpcd_bind_policy, "i", int, 0644,
85                 "Ptlrpcd threads binding mode.");
86 static struct ptlrpcd *ptlrpcds;
87
88 struct mutex ptlrpcd_mutex;
89 static int ptlrpcd_users = 0;
90
91 void ptlrpcd_wake(struct ptlrpc_request *req)
92 {
93         struct ptlrpc_request_set *rq_set = req->rq_set;
94
95         LASSERT(rq_set != NULL);
96
97         wake_up(&rq_set->set_waitq);
98 }
99 EXPORT_SYMBOL(ptlrpcd_wake);
100
101 static struct ptlrpcd_ctl *
102 ptlrpcd_select_pc(struct ptlrpc_request *req, pdl_policy_t policy, int index)
103 {
104         int idx = 0;
105
106         if (req != NULL && req->rq_send_state != LUSTRE_IMP_FULL)
107                 return &ptlrpcds->pd_thread_rcv;
108
109         switch (policy) {
110         case PDL_POLICY_SAME:
111                 idx = smp_processor_id() % ptlrpcds->pd_nthreads;
112                 break;
113         case PDL_POLICY_LOCAL:
114                 /* Before CPU partition patches available, process it the same
115                  * as "PDL_POLICY_ROUND". */
116 # ifdef CFS_CPU_MODE_NUMA
117 # warning "fix this code to use new CPU partition APIs"
118 # endif
119                 /* Fall through to PDL_POLICY_ROUND until the CPU
120                  * CPU partition patches are available. */
121                 index = -1;
122         case PDL_POLICY_PREFERRED:
123                 if (index >= 0 && index < num_online_cpus()) {
124                         idx = index % ptlrpcds->pd_nthreads;
125                         break;
126                 }
127                 /* Fall through to PDL_POLICY_ROUND for bad index. */
128         default:
129                 /* Fall through to PDL_POLICY_ROUND for unknown policy. */
130         case PDL_POLICY_ROUND:
131                 /* We do not care whether it is strict load balance. */
132                 idx = ptlrpcds->pd_index + 1;
133                 if (idx == smp_processor_id())
134                         idx++;
135                 idx %= ptlrpcds->pd_nthreads;
136                 ptlrpcds->pd_index = idx;
137                 break;
138         }
139
140         return &ptlrpcds->pd_threads[idx];
141 }
142
143 /**
144  * Move all request from an existing request set to the ptlrpcd queue.
145  * All requests from the set must be in phase RQ_PHASE_NEW.
146  */
147 void ptlrpcd_add_rqset(struct ptlrpc_request_set *set)
148 {
149         struct list_head *tmp, *pos;
150         struct ptlrpcd_ctl *pc;
151         struct ptlrpc_request_set *new;
152         int count, i;
153
154         pc = ptlrpcd_select_pc(NULL, PDL_POLICY_LOCAL, -1);
155         new = pc->pc_set;
156
157         list_for_each_safe(pos, tmp, &set->set_requests) {
158                 struct ptlrpc_request *req =
159                         list_entry(pos, struct ptlrpc_request,
160                                        rq_set_chain);
161
162                 LASSERT(req->rq_phase == RQ_PHASE_NEW);
163                 req->rq_set = new;
164                 req->rq_queued_time = cfs_time_current();
165         }
166
167         spin_lock(&new->set_new_req_lock);
168         list_splice_init(&set->set_requests, &new->set_new_requests);
169         i = atomic_read(&set->set_remaining);
170         count = atomic_add_return(i, &new->set_new_count);
171         atomic_set(&set->set_remaining, 0);
172         spin_unlock(&new->set_new_req_lock);
173         if (count == i) {
174                 wake_up(&new->set_waitq);
175
176                 /* XXX: It maybe unnecessary to wakeup all the partners. But to
177                  *      guarantee the async RPC can be processed ASAP, we have
178                  *      no other better choice. It maybe fixed in future. */
179                 for (i = 0; i < pc->pc_npartners; i++)
180                         wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
181         }
182 }
183 EXPORT_SYMBOL(ptlrpcd_add_rqset);
184
185 /**
186  * Return transferred RPCs count.
187  */
188 static int ptlrpcd_steal_rqset(struct ptlrpc_request_set *des,
189                                struct ptlrpc_request_set *src)
190 {
191         struct list_head *tmp, *pos;
192         struct ptlrpc_request *req;
193         int rc = 0;
194
195         spin_lock(&src->set_new_req_lock);
196         if (likely(!list_empty(&src->set_new_requests))) {
197                 list_for_each_safe(pos, tmp, &src->set_new_requests) {
198                         req = list_entry(pos, struct ptlrpc_request,
199                                              rq_set_chain);
200                         req->rq_set = des;
201                 }
202                 list_splice_init(&src->set_new_requests,
203                                      &des->set_requests);
204                 rc = atomic_read(&src->set_new_count);
205                 atomic_add(rc, &des->set_remaining);
206                 atomic_set(&src->set_new_count, 0);
207         }
208         spin_unlock(&src->set_new_req_lock);
209         return rc;
210 }
211
212 /**
213  * Requests that are added to the ptlrpcd queue are sent via
214  * ptlrpcd_check->ptlrpc_check_set().
215  */
216 void ptlrpcd_add_req(struct ptlrpc_request *req, pdl_policy_t policy, int idx)
217 {
218         struct ptlrpcd_ctl *pc;
219
220         if (req->rq_reqmsg)
221                 lustre_msg_set_jobid(req->rq_reqmsg, NULL);
222
223         spin_lock(&req->rq_lock);
224         if (req->rq_invalid_rqset) {
225                 struct l_wait_info lwi = LWI_TIMEOUT(cfs_time_seconds(5),
226                                                      back_to_sleep, NULL);
227
228                 req->rq_invalid_rqset = 0;
229                 spin_unlock(&req->rq_lock);
230                 l_wait_event(req->rq_set_waitq, (req->rq_set == NULL), &lwi);
231         } else if (req->rq_set) {
232                 /* If we have a vaid "rq_set", just reuse it to avoid double
233                  * linked. */
234                 LASSERT(req->rq_phase == RQ_PHASE_NEW);
235                 LASSERT(req->rq_send_state == LUSTRE_IMP_REPLAY);
236
237                 /* ptlrpc_check_set will decrease the count */
238                 atomic_inc(&req->rq_set->set_remaining);
239                 spin_unlock(&req->rq_lock);
240                 wake_up(&req->rq_set->set_waitq);
241                 return;
242         } else {
243                 spin_unlock(&req->rq_lock);
244         }
245
246         pc = ptlrpcd_select_pc(req, policy, idx);
247
248         DEBUG_REQ(D_INFO, req, "add req [%p] to pc [%s:%d]",
249                   req, pc->pc_name, pc->pc_index);
250
251         ptlrpc_set_add_new_req(pc, req);
252 }
253 EXPORT_SYMBOL(ptlrpcd_add_req);
254
255 static inline void ptlrpc_reqset_get(struct ptlrpc_request_set *set)
256 {
257         atomic_inc(&set->set_refcount);
258 }
259
260 /**
261  * Check if there is more work to do on ptlrpcd set.
262  * Returns 1 if yes.
263  */
264 static int ptlrpcd_check(struct lu_env *env, struct ptlrpcd_ctl *pc)
265 {
266         struct list_head *tmp, *pos;
267         struct ptlrpc_request *req;
268         struct ptlrpc_request_set *set = pc->pc_set;
269         int rc = 0;
270         int rc2;
271
272         if (atomic_read(&set->set_new_count)) {
273                 spin_lock(&set->set_new_req_lock);
274                 if (likely(!list_empty(&set->set_new_requests))) {
275                         list_splice_init(&set->set_new_requests,
276                                              &set->set_requests);
277                         atomic_add(atomic_read(&set->set_new_count),
278                                        &set->set_remaining);
279                         atomic_set(&set->set_new_count, 0);
280                         /*
281                          * Need to calculate its timeout.
282                          */
283                         rc = 1;
284                 }
285                 spin_unlock(&set->set_new_req_lock);
286         }
287
288         /* We should call lu_env_refill() before handling new requests to make
289          * sure that env key the requests depending on really exists.
290          */
291         rc2 = lu_env_refill(env);
292         if (rc2 != 0) {
293                 /*
294                  * XXX This is very awkward situation, because
295                  * execution can neither continue (request
296                  * interpreters assume that env is set up), nor repeat
297                  * the loop (as this potentially results in a tight
298                  * loop of -ENOMEM's).
299                  *
300                  * Fortunately, refill only ever does something when
301                  * new modules are loaded, i.e., early during boot up.
302                  */
303                 CERROR("Failure to refill session: %d\n", rc2);
304                 return rc;
305         }
306
307         if (atomic_read(&set->set_remaining))
308                 rc |= ptlrpc_check_set(env, set);
309
310         if (!list_empty(&set->set_requests)) {
311                 /*
312                  * XXX: our set never completes, so we prune the completed
313                  * reqs after each iteration. boy could this be smarter.
314                  */
315                 list_for_each_safe(pos, tmp, &set->set_requests) {
316                         req = list_entry(pos, struct ptlrpc_request,
317                                              rq_set_chain);
318                         if (req->rq_phase != RQ_PHASE_COMPLETE)
319                                 continue;
320
321                         list_del_init(&req->rq_set_chain);
322                         req->rq_set = NULL;
323                         ptlrpc_req_finished(req);
324                 }
325         }
326
327         if (rc == 0) {
328                 /*
329                  * If new requests have been added, make sure to wake up.
330                  */
331                 rc = atomic_read(&set->set_new_count);
332
333                 /* If we have nothing to do, check whether we can take some
334                  * work from our partner threads. */
335                 if (rc == 0 && pc->pc_npartners > 0) {
336                         struct ptlrpcd_ctl *partner;
337                         struct ptlrpc_request_set *ps;
338                         int first = pc->pc_cursor;
339
340                         do {
341                                 partner = pc->pc_partners[pc->pc_cursor++];
342                                 if (pc->pc_cursor >= pc->pc_npartners)
343                                         pc->pc_cursor = 0;
344                                 if (partner == NULL)
345                                         continue;
346
347                                 spin_lock(&partner->pc_lock);
348                                 ps = partner->pc_set;
349                                 if (ps == NULL) {
350                                         spin_unlock(&partner->pc_lock);
351                                         continue;
352                                 }
353
354                                 ptlrpc_reqset_get(ps);
355                                 spin_unlock(&partner->pc_lock);
356
357                                 if (atomic_read(&ps->set_new_count)) {
358                                         rc = ptlrpcd_steal_rqset(set, ps);
359                                         if (rc > 0)
360                                                 CDEBUG(D_RPCTRACE, "transfer %d"
361                                                        " async RPCs [%d->%d]\n",
362                                                         rc, partner->pc_index,
363                                                         pc->pc_index);
364                                 }
365                                 ptlrpc_reqset_put(ps);
366                         } while (rc == 0 && pc->pc_cursor != first);
367                 }
368         }
369
370         return rc;
371 }
372
373 /**
374  * Main ptlrpcd thread.
375  * ptlrpc's code paths like to execute in process context, so we have this
376  * thread which spins on a set which contains the rpcs and sends them.
377  *
378  */
379 static int ptlrpcd(void *arg)
380 {
381         struct ptlrpcd_ctl *pc = arg;
382         struct ptlrpc_request_set *set = pc->pc_set;
383         struct lu_env env = { .le_ses = NULL };
384         int rc, exit = 0;
385
386         unshare_fs_struct();
387 #if defined(CONFIG_SMP)
388         if (test_bit(LIOD_BIND, &pc->pc_flags)) {
389                 int index = pc->pc_index;
390
391                 if (index >= 0 && index < num_possible_cpus()) {
392                         while (!cpu_online(index)) {
393                                 if (++index >= num_possible_cpus())
394                                         index = 0;
395                         }
396                         set_cpus_allowed_ptr(current,
397                                         cpumask_of_node(cpu_to_node(index)));
398                 }
399         }
400 #endif
401         /*
402          * XXX So far only "client" ptlrpcd uses an environment. In
403          * the future, ptlrpcd thread (or a thread-set) has to given
404          * an argument, describing its "scope".
405          */
406         rc = lu_context_init(&env.le_ctx,
407                              LCT_CL_THREAD|LCT_REMEMBER|LCT_NOREF);
408         complete(&pc->pc_starting);
409
410         if (rc != 0)
411                 return rc;
412
413         /*
414          * This mainloop strongly resembles ptlrpc_set_wait() except that our
415          * set never completes.  ptlrpcd_check() calls ptlrpc_check_set() when
416          * there are requests in the set. New requests come in on the set's
417          * new_req_list and ptlrpcd_check() moves them into the set.
418          */
419         do {
420                 struct l_wait_info lwi;
421                 int timeout;
422
423                 timeout = ptlrpc_set_next_timeout(set);
424                 lwi = LWI_TIMEOUT(cfs_time_seconds(timeout ? timeout : 1),
425                                   ptlrpc_expired_set, set);
426
427                 lu_context_enter(&env.le_ctx);
428                 l_wait_event(set->set_waitq,
429                              ptlrpcd_check(&env, pc), &lwi);
430                 lu_context_exit(&env.le_ctx);
431
432                 /*
433                  * Abort inflight rpcs for forced stop case.
434                  */
435                 if (test_bit(LIOD_STOP, &pc->pc_flags)) {
436                         if (test_bit(LIOD_FORCE, &pc->pc_flags))
437                                 ptlrpc_abort_set(set);
438                         exit++;
439                 }
440
441                 /*
442                  * Let's make one more loop to make sure that ptlrpcd_check()
443                  * copied all raced new rpcs into the set so we can kill them.
444                  */
445         } while (exit < 2);
446
447         /*
448          * Wait for inflight requests to drain.
449          */
450         if (!list_empty(&set->set_requests))
451                 ptlrpc_set_wait(set);
452         lu_context_fini(&env.le_ctx);
453
454         complete(&pc->pc_finishing);
455
456         return 0;
457 }
458
459 /* XXX: We want multiple CPU cores to share the async RPC load. So we start many
460  *      ptlrpcd threads. We also want to reduce the ptlrpcd overhead caused by
461  *      data transfer cross-CPU cores. So we bind ptlrpcd thread to specified
462  *      CPU core. But binding all ptlrpcd threads maybe cause response delay
463  *      because of some CPU core(s) busy with other loads.
464  *
465  *      For example: "ls -l", some async RPCs for statahead are assigned to
466  *      ptlrpcd_0, and ptlrpcd_0 is bound to CPU_0, but CPU_0 may be quite busy
467  *      with other non-ptlrpcd, like "ls -l" itself (we want to the "ls -l"
468  *      thread, statahead thread, and ptlrpcd thread can run in parallel), under
469  *      such case, the statahead async RPCs can not be processed in time, it is
470  *      unexpected. If ptlrpcd_0 can be re-scheduled on other CPU core, it may
471  *      be better. But it breaks former data transfer policy.
472  *
473  *      So we shouldn't be blind for avoiding the data transfer. We make some
474  *      compromise: divide the ptlrpcd threds pool into two parts. One part is
475  *      for bound mode, each ptlrpcd thread in this part is bound to some CPU
476  *      core. The other part is for free mode, all the ptlrpcd threads in the
477  *      part can be scheduled on any CPU core. We specify some partnership
478  *      between bound mode ptlrpcd thread(s) and free mode ptlrpcd thread(s),
479  *      and the async RPC load within the partners are shared.
480  *
481  *      It can partly avoid data transfer cross-CPU (if the bound mode ptlrpcd
482  *      thread can be scheduled in time), and try to guarantee the async RPC
483  *      processed ASAP (as long as the free mode ptlrpcd thread can be scheduled
484  *      on any CPU core).
485  *
486  *      As for how to specify the partnership between bound mode ptlrpcd
487  *      thread(s) and free mode ptlrpcd thread(s), the simplest way is to use
488  *      <free bound> pair. In future, we can specify some more complex
489  *      partnership based on the patches for CPU partition. But before such
490  *      patches are available, we prefer to use the simplest one.
491  */
492 # ifdef CFS_CPU_MODE_NUMA
493 # warning "fix ptlrpcd_bind() to use new CPU partition APIs"
494 # endif
495 static int ptlrpcd_bind(int index, int max)
496 {
497         struct ptlrpcd_ctl *pc;
498         int rc = 0;
499 #if defined(CONFIG_NUMA)
500         cpumask_t mask;
501 #endif
502
503         LASSERT(index <= max - 1);
504         pc = &ptlrpcds->pd_threads[index];
505         switch (ptlrpcd_bind_policy) {
506         case PDB_POLICY_NONE:
507                 pc->pc_npartners = -1;
508                 break;
509         case PDB_POLICY_FULL:
510                 pc->pc_npartners = 0;
511                 set_bit(LIOD_BIND, &pc->pc_flags);
512                 break;
513         case PDB_POLICY_PAIR:
514                 LASSERT(max % 2 == 0);
515                 pc->pc_npartners = 1;
516                 break;
517         case PDB_POLICY_NEIGHBOR:
518 #if defined(CONFIG_NUMA)
519         {
520                 int i;
521                 mask = *cpumask_of_node(cpu_to_node(index));
522                 for (i = max; i < num_online_cpus(); i++)
523                         cpu_clear(i, mask);
524                 pc->pc_npartners = cpus_weight(mask) - 1;
525                 set_bit(LIOD_BIND, &pc->pc_flags);
526         }
527 #else
528                 LASSERT(max >= 3);
529                 pc->pc_npartners = 2;
530 #endif
531                 break;
532         default:
533                 CERROR("unknown ptlrpcd bind policy %d\n", ptlrpcd_bind_policy);
534                 rc = -EINVAL;
535         }
536
537         if (rc == 0 && pc->pc_npartners > 0) {
538                 OBD_ALLOC(pc->pc_partners,
539                           sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners);
540                 if (pc->pc_partners == NULL) {
541                         pc->pc_npartners = 0;
542                         rc = -ENOMEM;
543                 } else {
544                         switch (ptlrpcd_bind_policy) {
545                         case PDB_POLICY_PAIR:
546                                 if (index & 0x1) {
547                                         set_bit(LIOD_BIND, &pc->pc_flags);
548                                         pc->pc_partners[0] = &ptlrpcds->
549                                                 pd_threads[index - 1];
550                                         ptlrpcds->pd_threads[index - 1].
551                                                 pc_partners[0] = pc;
552                                 }
553                                 break;
554                         case PDB_POLICY_NEIGHBOR:
555 #if defined(CONFIG_NUMA)
556                         {
557                                 struct ptlrpcd_ctl *ppc;
558                                 int i, pidx;
559                                 /* partners are cores in the same NUMA node.
560                                  * setup partnership only with ptlrpcd threads
561                                  * that are already initialized
562                                  */
563                                 for (pidx = 0, i = 0; i < index; i++) {
564                                         if (cpu_isset(i, mask)) {
565                                                 ppc = &ptlrpcds->pd_threads[i];
566                                                 pc->pc_partners[pidx++] = ppc;
567                                                 ppc->pc_partners[ppc->
568                                                           pc_npartners++] = pc;
569                                         }
570                                 }
571                                 /* adjust number of partners to the number
572                                  * of partnership really setup */
573                                 pc->pc_npartners = pidx;
574                         }
575 #else
576                                 if (index & 0x1)
577                                         set_bit(LIOD_BIND, &pc->pc_flags);
578                                 if (index > 0) {
579                                         pc->pc_partners[0] = &ptlrpcds->
580                                                 pd_threads[index - 1];
581                                         ptlrpcds->pd_threads[index - 1].
582                                                 pc_partners[1] = pc;
583                                         if (index == max - 1) {
584                                                 pc->pc_partners[1] =
585                                                 &ptlrpcds->pd_threads[0];
586                                                 ptlrpcds->pd_threads[0].
587                                                 pc_partners[0] = pc;
588                                         }
589                                 }
590 #endif
591                                 break;
592                         }
593                 }
594         }
595
596         return rc;
597 }
598
599
600 int ptlrpcd_start(int index, int max, const char *name, struct ptlrpcd_ctl *pc)
601 {
602         int rc;
603         int env = 0;
604
605         /*
606          * Do not allow start second thread for one pc.
607          */
608         if (test_and_set_bit(LIOD_START, &pc->pc_flags)) {
609                 CWARN("Starting second thread (%s) for same pc %p\n",
610                       name, pc);
611                 return 0;
612         }
613
614         pc->pc_index = index;
615         init_completion(&pc->pc_starting);
616         init_completion(&pc->pc_finishing);
617         spin_lock_init(&pc->pc_lock);
618         strlcpy(pc->pc_name, name, sizeof(pc->pc_name));
619         pc->pc_set = ptlrpc_prep_set();
620         if (pc->pc_set == NULL)
621                 GOTO(out, rc = -ENOMEM);
622         /*
623          * So far only "client" ptlrpcd uses an environment. In the future,
624          * ptlrpcd thread (or a thread-set) has to be given an argument,
625          * describing its "scope".
626          */
627         rc = lu_context_init(&pc->pc_env.le_ctx, LCT_CL_THREAD|LCT_REMEMBER);
628         if (rc != 0)
629                 GOTO(out, rc);
630
631         env = 1;
632         {
633                 struct task_struct *task;
634
635                 if (index >= 0) {
636                         rc = ptlrpcd_bind(index, max);
637                         if (rc < 0)
638                                 GOTO(out, rc);
639                 }
640
641                 task = kthread_run(ptlrpcd, pc, "%s", pc->pc_name);
642                 if (IS_ERR(task))
643                         GOTO(out, rc = PTR_ERR(task));
644
645                 rc = 0;
646                 wait_for_completion(&pc->pc_starting);
647         }
648 out:
649         if (rc) {
650                 if (pc->pc_set != NULL) {
651                         struct ptlrpc_request_set *set = pc->pc_set;
652
653                         spin_lock(&pc->pc_lock);
654                         pc->pc_set = NULL;
655                         spin_unlock(&pc->pc_lock);
656                         ptlrpc_set_destroy(set);
657                 }
658                 if (env != 0)
659                         lu_context_fini(&pc->pc_env.le_ctx);
660                 clear_bit(LIOD_BIND, &pc->pc_flags);
661                 clear_bit(LIOD_START, &pc->pc_flags);
662         }
663         return rc;
664 }
665
666 void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force)
667 {
668         if (!test_bit(LIOD_START, &pc->pc_flags)) {
669                 CWARN("Thread for pc %p was not started\n", pc);
670                 return;
671         }
672
673         set_bit(LIOD_STOP, &pc->pc_flags);
674         if (force)
675                 set_bit(LIOD_FORCE, &pc->pc_flags);
676         wake_up(&pc->pc_set->set_waitq);
677 }
678
679 void ptlrpcd_free(struct ptlrpcd_ctl *pc)
680 {
681         struct ptlrpc_request_set *set = pc->pc_set;
682
683         if (!test_bit(LIOD_START, &pc->pc_flags)) {
684                 CWARN("Thread for pc %p was not started\n", pc);
685                 goto out;
686         }
687
688         wait_for_completion(&pc->pc_finishing);
689         lu_context_fini(&pc->pc_env.le_ctx);
690
691         spin_lock(&pc->pc_lock);
692         pc->pc_set = NULL;
693         spin_unlock(&pc->pc_lock);
694         ptlrpc_set_destroy(set);
695
696         clear_bit(LIOD_START, &pc->pc_flags);
697         clear_bit(LIOD_STOP, &pc->pc_flags);
698         clear_bit(LIOD_FORCE, &pc->pc_flags);
699         clear_bit(LIOD_BIND, &pc->pc_flags);
700
701 out:
702         if (pc->pc_npartners > 0) {
703                 LASSERT(pc->pc_partners != NULL);
704
705                 OBD_FREE(pc->pc_partners,
706                          sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners);
707                 pc->pc_partners = NULL;
708         }
709         pc->pc_npartners = 0;
710 }
711
712 static void ptlrpcd_fini(void)
713 {
714         int i;
715
716         if (ptlrpcds != NULL) {
717                 for (i = 0; i < ptlrpcds->pd_nthreads; i++)
718                         ptlrpcd_stop(&ptlrpcds->pd_threads[i], 0);
719                 for (i = 0; i < ptlrpcds->pd_nthreads; i++)
720                         ptlrpcd_free(&ptlrpcds->pd_threads[i]);
721                 ptlrpcd_stop(&ptlrpcds->pd_thread_rcv, 0);
722                 ptlrpcd_free(&ptlrpcds->pd_thread_rcv);
723                 OBD_FREE(ptlrpcds, ptlrpcds->pd_size);
724                 ptlrpcds = NULL;
725         }
726 }
727
728 static int ptlrpcd_init(void)
729 {
730         int nthreads = num_online_cpus();
731         char name[16];
732         int size, i = -1, j, rc = 0;
733
734         if (max_ptlrpcds > 0 && max_ptlrpcds < nthreads)
735                 nthreads = max_ptlrpcds;
736         if (nthreads < 2)
737                 nthreads = 2;
738         if (nthreads < 3 && ptlrpcd_bind_policy == PDB_POLICY_NEIGHBOR)
739                 ptlrpcd_bind_policy = PDB_POLICY_PAIR;
740         else if (nthreads % 2 != 0 && ptlrpcd_bind_policy == PDB_POLICY_PAIR)
741                 nthreads &= ~1; /* make sure it is even */
742
743         size = offsetof(struct ptlrpcd, pd_threads[nthreads]);
744         OBD_ALLOC(ptlrpcds, size);
745         if (ptlrpcds == NULL)
746                 GOTO(out, rc = -ENOMEM);
747
748         snprintf(name, sizeof(name), "ptlrpcd_rcv");
749         set_bit(LIOD_RECOVERY, &ptlrpcds->pd_thread_rcv.pc_flags);
750         rc = ptlrpcd_start(-1, nthreads, name, &ptlrpcds->pd_thread_rcv);
751         if (rc < 0)
752                 GOTO(out, rc);
753
754         /* XXX: We start nthreads ptlrpc daemons. Each of them can process any
755          *      non-recovery async RPC to improve overall async RPC efficiency.
756          *
757          *      But there are some issues with async I/O RPCs and async non-I/O
758          *      RPCs processed in the same set under some cases. The ptlrpcd may
759          *      be blocked by some async I/O RPC(s), then will cause other async
760          *      non-I/O RPC(s) can not be processed in time.
761          *
762          *      Maybe we should distinguish blocked async RPCs from non-blocked
763          *      async RPCs, and process them in different ptlrpcd sets to avoid
764          *      unnecessary dependency. But how to distribute async RPCs load
765          *      among all the ptlrpc daemons becomes another trouble. */
766         for (i = 0; i < nthreads; i++) {
767                 snprintf(name, sizeof(name), "ptlrpcd_%d", i);
768                 rc = ptlrpcd_start(i, nthreads, name, &ptlrpcds->pd_threads[i]);
769                 if (rc < 0)
770                         GOTO(out, rc);
771         }
772
773         ptlrpcds->pd_size = size;
774         ptlrpcds->pd_index = 0;
775         ptlrpcds->pd_nthreads = nthreads;
776
777 out:
778         if (rc != 0 && ptlrpcds != NULL) {
779                 for (j = 0; j <= i; j++)
780                         ptlrpcd_stop(&ptlrpcds->pd_threads[j], 0);
781                 for (j = 0; j <= i; j++)
782                         ptlrpcd_free(&ptlrpcds->pd_threads[j]);
783                 ptlrpcd_stop(&ptlrpcds->pd_thread_rcv, 0);
784                 ptlrpcd_free(&ptlrpcds->pd_thread_rcv);
785                 OBD_FREE(ptlrpcds, size);
786                 ptlrpcds = NULL;
787         }
788
789         return 0;
790 }
791
792 int ptlrpcd_addref(void)
793 {
794         int rc = 0;
795
796         mutex_lock(&ptlrpcd_mutex);
797         if (++ptlrpcd_users == 1)
798                 rc = ptlrpcd_init();
799         mutex_unlock(&ptlrpcd_mutex);
800         return rc;
801 }
802 EXPORT_SYMBOL(ptlrpcd_addref);
803
804 void ptlrpcd_decref(void)
805 {
806         mutex_lock(&ptlrpcd_mutex);
807         if (--ptlrpcd_users == 0)
808                 ptlrpcd_fini();
809         mutex_unlock(&ptlrpcd_mutex);
810 }
811 EXPORT_SYMBOL(ptlrpcd_decref);
812 /** @} ptlrpcd */