]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/staging/rdma/hfi1/driver.c
staging/rdma/hfi1: add common routine for queuing acks
[karo-tx-linux.git] / drivers / staging / rdma / hfi1 / driver.c
1 /*
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2015 Intel Corporation.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * BSD LICENSE
20  *
21  * Copyright(c) 2015 Intel Corporation.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  *
27  *  - Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  *  - Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in
31  *    the documentation and/or other materials provided with the
32  *    distribution.
33  *  - Neither the name of Intel Corporation nor the names of its
34  *    contributors may be used to endorse or promote products derived
35  *    from this software without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48  *
49  */
50
51 #include <linux/spinlock.h>
52 #include <linux/pci.h>
53 #include <linux/io.h>
54 #include <linux/delay.h>
55 #include <linux/netdevice.h>
56 #include <linux/vmalloc.h>
57 #include <linux/module.h>
58 #include <linux/prefetch.h>
59
60 #include "hfi.h"
61 #include "trace.h"
62 #include "qp.h"
63 #include "sdma.h"
64
65 #undef pr_fmt
66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
67
68 /*
69  * The size has to be longer than this string, so we can append
70  * board/chip information to it in the initialization code.
71  */
72 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
73
74 DEFINE_SPINLOCK(hfi1_devs_lock);
75 LIST_HEAD(hfi1_dev_list);
76 DEFINE_MUTEX(hfi1_mutex);       /* general driver use */
77
78 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
79 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
80 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is 8192");
81
82 unsigned int hfi1_cu = 1;
83 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
84 MODULE_PARM_DESC(cu, "Credit return units");
85
86 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
87 static int hfi1_caps_set(const char *, const struct kernel_param *);
88 static int hfi1_caps_get(char *, const struct kernel_param *);
89 static const struct kernel_param_ops cap_ops = {
90         .set = hfi1_caps_set,
91         .get = hfi1_caps_get
92 };
93 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
94 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
95
96 MODULE_LICENSE("Dual BSD/GPL");
97 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
98 MODULE_VERSION(HFI1_DRIVER_VERSION);
99
100 /*
101  * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
102  */
103 #define MAX_PKT_RECV 64
104 #define EGR_HEAD_UPDATE_THRESHOLD 16
105
106 struct hfi1_ib_stats hfi1_stats;
107
108 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
109 {
110         int ret = 0;
111         unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
112                 cap_mask = *cap_mask_ptr, value, diff,
113                 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
114                               HFI1_CAP_WRITABLE_MASK);
115
116         ret = kstrtoul(val, 0, &value);
117         if (ret) {
118                 pr_warn("Invalid module parameter value for 'cap_mask'\n");
119                 goto done;
120         }
121         /* Get the changed bits (except the locked bit) */
122         diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
123
124         /* Remove any bits that are not allowed to change after driver load */
125         if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
126                 pr_warn("Ignoring non-writable capability bits %#lx\n",
127                         diff & ~write_mask);
128                 diff &= write_mask;
129         }
130
131         /* Mask off any reserved bits */
132         diff &= ~HFI1_CAP_RESERVED_MASK;
133         /* Clear any previously set and changing bits */
134         cap_mask &= ~diff;
135         /* Update the bits with the new capability */
136         cap_mask |= (value & diff);
137         /* Check for any kernel/user restrictions */
138         diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
139                 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
140         cap_mask &= ~diff;
141         /* Set the bitmask to the final set */
142         *cap_mask_ptr = cap_mask;
143 done:
144         return ret;
145 }
146
147 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
148 {
149         unsigned long cap_mask = *(unsigned long *)kp->arg;
150
151         cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
152         cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
153
154         return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
155 }
156
157 const char *get_unit_name(int unit)
158 {
159         static char iname[16];
160
161         snprintf(iname, sizeof(iname), DRIVER_NAME"_%u", unit);
162         return iname;
163 }
164
165 /*
166  * Return count of units with at least one port ACTIVE.
167  */
168 int hfi1_count_active_units(void)
169 {
170         struct hfi1_devdata *dd;
171         struct hfi1_pportdata *ppd;
172         unsigned long flags;
173         int pidx, nunits_active = 0;
174
175         spin_lock_irqsave(&hfi1_devs_lock, flags);
176         list_for_each_entry(dd, &hfi1_dev_list, list) {
177                 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase)
178                         continue;
179                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
180                         ppd = dd->pport + pidx;
181                         if (ppd->lid && ppd->linkup) {
182                                 nunits_active++;
183                                 break;
184                         }
185                 }
186         }
187         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
188         return nunits_active;
189 }
190
191 /*
192  * Return count of all units, optionally return in arguments
193  * the number of usable (present) units, and the number of
194  * ports that are up.
195  */
196 int hfi1_count_units(int *npresentp, int *nupp)
197 {
198         int nunits = 0, npresent = 0, nup = 0;
199         struct hfi1_devdata *dd;
200         unsigned long flags;
201         int pidx;
202         struct hfi1_pportdata *ppd;
203
204         spin_lock_irqsave(&hfi1_devs_lock, flags);
205
206         list_for_each_entry(dd, &hfi1_dev_list, list) {
207                 nunits++;
208                 if ((dd->flags & HFI1_PRESENT) && dd->kregbase)
209                         npresent++;
210                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
211                         ppd = dd->pport + pidx;
212                         if (ppd->lid && ppd->linkup)
213                                 nup++;
214                 }
215         }
216
217         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
218
219         if (npresentp)
220                 *npresentp = npresent;
221         if (nupp)
222                 *nupp = nup;
223
224         return nunits;
225 }
226
227 /*
228  * Get address of eager buffer from it's index (allocated in chunks, not
229  * contiguous).
230  */
231 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
232                                u8 *update)
233 {
234         u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
235
236         *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
237         return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
238                         (offset * RCV_BUF_BLOCK_SIZE));
239 }
240
241 /*
242  * Validate and encode the a given RcvArray Buffer size.
243  * The function will check whether the given size falls within
244  * allowed size ranges for the respective type and, optionally,
245  * return the proper encoding.
246  */
247 inline int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
248 {
249         if (unlikely(!IS_ALIGNED(size, PAGE_SIZE)))
250                 return 0;
251         if (unlikely(size < MIN_EAGER_BUFFER))
252                 return 0;
253         if (size >
254             (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
255                 return 0;
256         if (encoded)
257                 *encoded = ilog2(size / PAGE_SIZE) + 1;
258         return 1;
259 }
260
261 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
262                        struct hfi1_packet *packet)
263 {
264         struct hfi1_message_header *rhdr = packet->hdr;
265         u32 rte = rhf_rcv_type_err(packet->rhf);
266         int lnh = be16_to_cpu(rhdr->lrh[0]) & 3;
267         struct hfi1_ibport *ibp = &ppd->ibport_data;
268
269         if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
270                 return;
271
272         if (packet->rhf & RHF_TID_ERR) {
273                 /* For TIDERR and RC QPs preemptively schedule a NAK */
274                 struct hfi1_ib_header *hdr = (struct hfi1_ib_header *)rhdr;
275                 struct hfi1_other_headers *ohdr = NULL;
276                 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
277                 u16 lid  = be16_to_cpu(hdr->lrh[1]);
278                 u32 qp_num;
279                 u32 rcv_flags = 0;
280
281                 /* Sanity check packet */
282                 if (tlen < 24)
283                         goto drop;
284
285                 /* Check for GRH */
286                 if (lnh == HFI1_LRH_BTH)
287                         ohdr = &hdr->u.oth;
288                 else if (lnh == HFI1_LRH_GRH) {
289                         u32 vtf;
290
291                         ohdr = &hdr->u.l.oth;
292                         if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
293                                 goto drop;
294                         vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
295                         if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
296                                 goto drop;
297                         rcv_flags |= HFI1_HAS_GRH;
298                 } else
299                         goto drop;
300
301                 /* Get the destination QP number. */
302                 qp_num = be32_to_cpu(ohdr->bth[1]) & HFI1_QPN_MASK;
303                 if (lid < HFI1_MULTICAST_LID_BASE) {
304                         struct hfi1_qp *qp;
305                         unsigned long flags;
306
307                         rcu_read_lock();
308                         qp = hfi1_lookup_qpn(ibp, qp_num);
309                         if (!qp) {
310                                 rcu_read_unlock();
311                                 goto drop;
312                         }
313
314                         /*
315                          * Handle only RC QPs - for other QP types drop error
316                          * packet.
317                          */
318                         spin_lock_irqsave(&qp->r_lock, flags);
319
320                         /* Check for valid receive state. */
321                         if (!(ib_hfi1_state_ops[qp->state] &
322                               HFI1_PROCESS_RECV_OK)) {
323                                 ibp->n_pkt_drops++;
324                         }
325
326                         switch (qp->ibqp.qp_type) {
327                         case IB_QPT_RC:
328                                 hfi1_rc_hdrerr(
329                                         rcd,
330                                         hdr,
331                                         rcv_flags,
332                                         qp);
333                                 break;
334                         default:
335                                 /* For now don't handle any other QP types */
336                                 break;
337                         }
338
339                         spin_unlock_irqrestore(&qp->r_lock, flags);
340                         rcu_read_unlock();
341                 } /* Unicast QP */
342         } /* Valid packet with TIDErr */
343
344         /* handle "RcvTypeErr" flags */
345         switch (rte) {
346         case RHF_RTE_ERROR_OP_CODE_ERR:
347         {
348                 u32 opcode;
349                 void *ebuf = NULL;
350                 __be32 *bth = NULL;
351
352                 if (rhf_use_egr_bfr(packet->rhf))
353                         ebuf = packet->ebuf;
354
355                 if (ebuf == NULL)
356                         goto drop; /* this should never happen */
357
358                 if (lnh == HFI1_LRH_BTH)
359                         bth = (__be32 *)ebuf;
360                 else if (lnh == HFI1_LRH_GRH)
361                         bth = (__be32 *)((char *)ebuf + sizeof(struct ib_grh));
362                 else
363                         goto drop;
364
365                 opcode = be32_to_cpu(bth[0]) >> 24;
366                 opcode &= 0xff;
367
368                 if (opcode == IB_OPCODE_CNP) {
369                         /*
370                          * Only in pre-B0 h/w is the CNP_OPCODE handled
371                          * via this code path (errata 291394).
372                          */
373                         struct hfi1_qp *qp = NULL;
374                         u32 lqpn, rqpn;
375                         u16 rlid;
376                         u8 svc_type, sl, sc5;
377
378                         sc5  = (be16_to_cpu(rhdr->lrh[0]) >> 12) & 0xf;
379                         if (rhf_dc_info(packet->rhf))
380                                 sc5 |= 0x10;
381                         sl = ibp->sc_to_sl[sc5];
382
383                         lqpn = be32_to_cpu(bth[1]) & HFI1_QPN_MASK;
384                         rcu_read_lock();
385                         qp = hfi1_lookup_qpn(ibp, lqpn);
386                         if (qp == NULL) {
387                                 rcu_read_unlock();
388                                 goto drop;
389                         }
390
391                         switch (qp->ibqp.qp_type) {
392                         case IB_QPT_UD:
393                                 rlid = 0;
394                                 rqpn = 0;
395                                 svc_type = IB_CC_SVCTYPE_UD;
396                                 break;
397                         case IB_QPT_UC:
398                                 rlid = be16_to_cpu(rhdr->lrh[3]);
399                                 rqpn = qp->remote_qpn;
400                                 svc_type = IB_CC_SVCTYPE_UC;
401                                 break;
402                         default:
403                                 goto drop;
404                         }
405
406                         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
407                         rcu_read_unlock();
408                 }
409
410                 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
411                 break;
412         }
413         default:
414                 break;
415         }
416
417 drop:
418         return;
419 }
420
421 static inline void init_packet(struct hfi1_ctxtdata *rcd,
422                               struct hfi1_packet *packet)
423 {
424
425         packet->rsize = rcd->rcvhdrqentsize; /* words */
426         packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
427         packet->rcd = rcd;
428         packet->updegr = 0;
429         packet->etail = -1;
430         packet->rhf_addr = get_rhf_addr(rcd);
431         packet->rhf = rhf_to_cpu(packet->rhf_addr);
432         packet->rhqoff = rcd->head;
433         packet->numpkt = 0;
434         packet->rcv_flags = 0;
435 }
436
437 #ifndef CONFIG_PRESCAN_RXQ
438 static void prescan_rxq(struct hfi1_packet *packet) {}
439 #else /* !CONFIG_PRESCAN_RXQ */
440 static int prescan_receive_queue;
441
442 static void process_ecn(struct hfi1_qp *qp, struct hfi1_ib_header *hdr,
443                         struct hfi1_other_headers *ohdr,
444                         u64 rhf, u32 bth1, struct ib_grh *grh)
445 {
446         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
447         u32 rqpn = 0;
448         u16 rlid;
449         u8 sc5, svc_type;
450
451         switch (qp->ibqp.qp_type) {
452         case IB_QPT_SMI:
453         case IB_QPT_GSI:
454         case IB_QPT_UD:
455                 rlid = be16_to_cpu(hdr->lrh[3]);
456                 rqpn = be32_to_cpu(ohdr->u.ud.deth[1]) & HFI1_QPN_MASK;
457                 svc_type = IB_CC_SVCTYPE_UD;
458                 break;
459         case IB_QPT_UC:
460                 rlid = qp->remote_ah_attr.dlid;
461                 rqpn = qp->remote_qpn;
462                 svc_type = IB_CC_SVCTYPE_UC;
463                 break;
464         case IB_QPT_RC:
465                 rlid = qp->remote_ah_attr.dlid;
466                 rqpn = qp->remote_qpn;
467                 svc_type = IB_CC_SVCTYPE_RC;
468                 break;
469         default:
470                 return;
471         }
472
473         sc5 = (be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf;
474         if (rhf_dc_info(rhf))
475                 sc5 |= 0x10;
476
477         if (bth1 & HFI1_FECN_SMASK) {
478                 u16 pkey = (u16)be32_to_cpu(ohdr->bth[0]);
479                 u16 dlid = be16_to_cpu(hdr->lrh[1]);
480
481                 return_cnp(ibp, qp, rqpn, pkey, dlid, rlid, sc5, grh);
482         }
483
484         if (bth1 & HFI1_BECN_SMASK) {
485                 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
486                 u32 lqpn = bth1 & HFI1_QPN_MASK;
487                 u8 sl = ibp->sc_to_sl[sc5];
488
489                 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
490         }
491 }
492
493 struct ps_mdata {
494         struct hfi1_ctxtdata *rcd;
495         u32 rsize;
496         u32 maxcnt;
497         u32 ps_head;
498         u32 ps_tail;
499         u32 ps_seq;
500 };
501
502 static inline void init_ps_mdata(struct ps_mdata *mdata,
503                                  struct hfi1_packet *packet)
504 {
505         struct hfi1_ctxtdata *rcd = packet->rcd;
506
507         mdata->rcd = rcd;
508         mdata->rsize = packet->rsize;
509         mdata->maxcnt = packet->maxcnt;
510         mdata->ps_head = packet->rhqoff;
511
512         if (HFI1_CAP_IS_KSET(DMA_RTAIL)) {
513                 mdata->ps_tail = get_rcvhdrtail(rcd);
514                 mdata->ps_seq = 0; /* not used with DMA_RTAIL */
515         } else {
516                 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
517                 mdata->ps_seq = rcd->seq_cnt;
518         }
519 }
520
521 static inline int ps_done(struct ps_mdata *mdata, u64 rhf)
522 {
523         if (HFI1_CAP_IS_KSET(DMA_RTAIL))
524                 return mdata->ps_head == mdata->ps_tail;
525         return mdata->ps_seq != rhf_rcv_seq(rhf);
526 }
527
528 static inline void update_ps_mdata(struct ps_mdata *mdata)
529 {
530         mdata->ps_head += mdata->rsize;
531         if (mdata->ps_head >= mdata->maxcnt)
532                 mdata->ps_head = 0;
533         if (!HFI1_CAP_IS_KSET(DMA_RTAIL)) {
534                 if (++mdata->ps_seq > 13)
535                         mdata->ps_seq = 1;
536         }
537 }
538
539 /*
540  * prescan_rxq - search through the receive queue looking for packets
541  * containing Excplicit Congestion Notifications (FECNs, or BECNs).
542  * When an ECN is found, process the Congestion Notification, and toggle
543  * it off.
544  */
545 static void prescan_rxq(struct hfi1_packet *packet)
546 {
547         struct hfi1_ctxtdata *rcd = packet->rcd;
548         struct ps_mdata mdata;
549
550         if (!prescan_receive_queue)
551                 return;
552
553         init_ps_mdata(&mdata, packet);
554
555         while (1) {
556                 struct hfi1_devdata *dd = rcd->dd;
557                 struct hfi1_ibport *ibp = &rcd->ppd->ibport_data;
558                 __le32 *rhf_addr = (__le32 *) rcd->rcvhdrq + mdata.ps_head +
559                                          dd->rhf_offset;
560                 struct hfi1_qp *qp;
561                 struct hfi1_ib_header *hdr;
562                 struct hfi1_other_headers *ohdr;
563                 struct ib_grh *grh = NULL;
564                 u64 rhf = rhf_to_cpu(rhf_addr);
565                 u32 etype = rhf_rcv_type(rhf), qpn, bth1;
566                 int is_ecn = 0;
567                 u8 lnh;
568
569                 if (ps_done(&mdata, rhf))
570                         break;
571
572                 if (etype != RHF_RCV_TYPE_IB)
573                         goto next;
574
575                 hdr = (struct hfi1_ib_header *)
576                         hfi1_get_msgheader(dd, rhf_addr);
577                 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
578
579                 if (lnh == HFI1_LRH_BTH)
580                         ohdr = &hdr->u.oth;
581                 else if (lnh == HFI1_LRH_GRH) {
582                         ohdr = &hdr->u.l.oth;
583                         grh = &hdr->u.l.grh;
584                 } else
585                         goto next; /* just in case */
586
587                 bth1 = be32_to_cpu(ohdr->bth[1]);
588                 is_ecn = !!(bth1 & (HFI1_FECN_SMASK | HFI1_BECN_SMASK));
589
590                 if (!is_ecn)
591                         goto next;
592
593                 qpn = bth1 & HFI1_QPN_MASK;
594                 rcu_read_lock();
595                 qp = hfi1_lookup_qpn(ibp, qpn);
596
597                 if (qp == NULL) {
598                         rcu_read_unlock();
599                         goto next;
600                 }
601
602                 process_ecn(qp, hdr, ohdr, rhf, bth1, grh);
603                 rcu_read_unlock();
604
605                 /* turn off BECN, FECN */
606                 bth1 &= ~(HFI1_FECN_SMASK | HFI1_BECN_SMASK);
607                 ohdr->bth[1] = cpu_to_be32(bth1);
608 next:
609                 update_ps_mdata(&mdata);
610         }
611 }
612 #endif /* CONFIG_PRESCAN_RXQ */
613
614 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
615 {
616         int ret = RCV_PKT_OK;
617
618         packet->hdr = hfi1_get_msgheader(packet->rcd->dd,
619                                          packet->rhf_addr);
620         packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
621         packet->etype = rhf_rcv_type(packet->rhf);
622         /* total length */
623         packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
624         /* retrieve eager buffer details */
625         packet->ebuf = NULL;
626         if (rhf_use_egr_bfr(packet->rhf)) {
627                 packet->etail = rhf_egr_index(packet->rhf);
628                 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
629                                  &packet->updegr);
630                 /*
631                  * Prefetch the contents of the eager buffer.  It is
632                  * OK to send a negative length to prefetch_range().
633                  * The +2 is the size of the RHF.
634                  */
635                 prefetch_range(packet->ebuf,
636                         packet->tlen - ((packet->rcd->rcvhdrqentsize -
637                                   (rhf_hdrq_offset(packet->rhf)+2)) * 4));
638         }
639
640         /*
641          * Call a type specific handler for the packet. We
642          * should be able to trust that etype won't be beyond
643          * the range of valid indexes. If so something is really
644          * wrong and we can probably just let things come
645          * crashing down. There is no need to eat another
646          * comparison in this performance critical code.
647          */
648         packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet);
649         packet->numpkt++;
650
651         /* Set up for the next packet */
652         packet->rhqoff += packet->rsize;
653         if (packet->rhqoff >= packet->maxcnt)
654                 packet->rhqoff = 0;
655
656         if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) {
657                 if (thread) {
658                         cond_resched();
659                 } else {
660                         ret = RCV_PKT_LIMIT;
661                         this_cpu_inc(*packet->rcd->dd->rcv_limit);
662                 }
663         }
664
665         packet->rhf_addr = (__le32 *) packet->rcd->rcvhdrq + packet->rhqoff +
666                                       packet->rcd->dd->rhf_offset;
667         packet->rhf = rhf_to_cpu(packet->rhf_addr);
668
669         return ret;
670 }
671
672 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
673 {
674         /*
675          * Update head regs etc., every 16 packets, if not last pkt,
676          * to help prevent rcvhdrq overflows, when many packets
677          * are processed and queue is nearly full.
678          * Don't request an interrupt for intermediate updates.
679          */
680         if (!last && !(packet->numpkt & 0xf)) {
681                 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
682                                packet->etail, 0, 0);
683                 packet->updegr = 0;
684         }
685         packet->rcv_flags = 0;
686 }
687
688 static inline void finish_packet(struct hfi1_packet *packet)
689 {
690
691         /*
692          * Nothing we need to free for the packet.
693          *
694          * The only thing we need to do is a final update and call for an
695          * interrupt
696          */
697         update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
698                        packet->etail, rcv_intr_dynamic, packet->numpkt);
699
700 }
701
702 static inline void process_rcv_qp_work(struct hfi1_packet *packet)
703 {
704
705         struct hfi1_ctxtdata *rcd;
706         struct hfi1_qp *qp, *nqp;
707
708         rcd = packet->rcd;
709         rcd->head = packet->rhqoff;
710
711         /*
712          * Iterate over all QPs waiting to respond.
713          * The list won't change since the IRQ is only run on one CPU.
714          */
715         list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
716                 list_del_init(&qp->rspwait);
717                 if (qp->r_flags & HFI1_R_RSP_DEFERED_ACK) {
718                         qp->r_flags &= ~HFI1_R_RSP_DEFERED_ACK;
719                         hfi1_send_rc_ack(rcd, qp, 0);
720                 }
721                 if (qp->r_flags & HFI1_R_RSP_SEND) {
722                         unsigned long flags;
723
724                         qp->r_flags &= ~HFI1_R_RSP_SEND;
725                         spin_lock_irqsave(&qp->s_lock, flags);
726                         if (ib_hfi1_state_ops[qp->state] &
727                                         HFI1_PROCESS_OR_FLUSH_SEND)
728                                 hfi1_schedule_send(qp);
729                         spin_unlock_irqrestore(&qp->s_lock, flags);
730                 }
731                 if (atomic_dec_and_test(&qp->refcount))
732                         wake_up(&qp->wait);
733         }
734 }
735
736 /*
737  * Handle receive interrupts when using the no dma rtail option.
738  */
739 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
740 {
741         u32 seq;
742         int last = RCV_PKT_OK;
743         struct hfi1_packet packet;
744
745         init_packet(rcd, &packet);
746         seq = rhf_rcv_seq(packet.rhf);
747         if (seq != rcd->seq_cnt) {
748                 last = RCV_PKT_DONE;
749                 goto bail;
750         }
751
752         prescan_rxq(&packet);
753
754         while (last == RCV_PKT_OK) {
755                 last = process_rcv_packet(&packet, thread);
756                 seq = rhf_rcv_seq(packet.rhf);
757                 if (++rcd->seq_cnt > 13)
758                         rcd->seq_cnt = 1;
759                 if (seq != rcd->seq_cnt)
760                         last = RCV_PKT_DONE;
761                 process_rcv_update(last, &packet);
762         }
763         process_rcv_qp_work(&packet);
764 bail:
765         finish_packet(&packet);
766         return last;
767 }
768
769 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
770 {
771         u32 hdrqtail;
772         int last = RCV_PKT_OK;
773         struct hfi1_packet packet;
774
775         init_packet(rcd, &packet);
776         hdrqtail = get_rcvhdrtail(rcd);
777         if (packet.rhqoff == hdrqtail) {
778                 last = RCV_PKT_DONE;
779                 goto bail;
780         }
781         smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
782
783         prescan_rxq(&packet);
784
785         while (last == RCV_PKT_OK) {
786                 last = process_rcv_packet(&packet, thread);
787                 hdrqtail = get_rcvhdrtail(rcd);
788                 if (packet.rhqoff == hdrqtail)
789                         last = RCV_PKT_DONE;
790                 process_rcv_update(last, &packet);
791         }
792         process_rcv_qp_work(&packet);
793 bail:
794         finish_packet(&packet);
795         return last;
796 }
797
798 static inline void set_all_nodma_rtail(struct hfi1_devdata *dd)
799 {
800         int i;
801
802         for (i = 0; i < dd->first_user_ctxt; i++)
803                 dd->rcd[i]->do_interrupt =
804                         &handle_receive_interrupt_nodma_rtail;
805 }
806
807 static inline void set_all_dma_rtail(struct hfi1_devdata *dd)
808 {
809         int i;
810
811         for (i = 0; i < dd->first_user_ctxt; i++)
812                 dd->rcd[i]->do_interrupt =
813                         &handle_receive_interrupt_dma_rtail;
814 }
815
816 /*
817  * handle_receive_interrupt - receive a packet
818  * @rcd: the context
819  *
820  * Called from interrupt handler for errors or receive interrupt.
821  * This is the slow path interrupt handler.
822  */
823 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
824 {
825         struct hfi1_devdata *dd = rcd->dd;
826         u32 hdrqtail;
827         int last = RCV_PKT_OK, needset = 1;
828         struct hfi1_packet packet;
829
830         init_packet(rcd, &packet);
831
832         if (!HFI1_CAP_IS_KSET(DMA_RTAIL)) {
833                 u32 seq = rhf_rcv_seq(packet.rhf);
834
835                 if (seq != rcd->seq_cnt) {
836                         last = RCV_PKT_DONE;
837                         goto bail;
838                 }
839                 hdrqtail = 0;
840         } else {
841                 hdrqtail = get_rcvhdrtail(rcd);
842                 if (packet.rhqoff == hdrqtail) {
843                         last = RCV_PKT_DONE;
844                         goto bail;
845                 }
846                 smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
847         }
848
849         prescan_rxq(&packet);
850
851         while (last == RCV_PKT_OK) {
852
853                 if (unlikely(dd->do_drop && atomic_xchg(&dd->drop_packet,
854                         DROP_PACKET_OFF) == DROP_PACKET_ON)) {
855                         dd->do_drop = 0;
856
857                         /* On to the next packet */
858                         packet.rhqoff += packet.rsize;
859                         packet.rhf_addr = (__le32 *) rcd->rcvhdrq +
860                                           packet.rhqoff +
861                                           dd->rhf_offset;
862                         packet.rhf = rhf_to_cpu(packet.rhf_addr);
863
864                 } else {
865                         last = process_rcv_packet(&packet, thread);
866                 }
867
868                 if (!HFI1_CAP_IS_KSET(DMA_RTAIL)) {
869                         u32 seq = rhf_rcv_seq(packet.rhf);
870
871                         if (++rcd->seq_cnt > 13)
872                                 rcd->seq_cnt = 1;
873                         if (seq != rcd->seq_cnt)
874                                 last = RCV_PKT_DONE;
875                         if (needset) {
876                                 dd_dev_info(dd,
877                                         "Switching to NO_DMA_RTAIL\n");
878                                 set_all_nodma_rtail(dd);
879                                 needset = 0;
880                         }
881                 } else {
882                         if (packet.rhqoff == hdrqtail)
883                                 last = RCV_PKT_DONE;
884                         if (needset) {
885                                 dd_dev_info(dd,
886                                             "Switching to DMA_RTAIL\n");
887                                 set_all_dma_rtail(dd);
888                                 needset = 0;
889                         }
890                 }
891
892                 process_rcv_update(last, &packet);
893         }
894
895         process_rcv_qp_work(&packet);
896
897 bail:
898         /*
899          * Always write head at end, and setup rcv interrupt, even
900          * if no packets were processed.
901          */
902         finish_packet(&packet);
903         return last;
904 }
905
906 /*
907  * Convert a given MTU size to the on-wire MAD packet enumeration.
908  * Return -1 if the size is invalid.
909  */
910 int mtu_to_enum(u32 mtu, int default_if_bad)
911 {
912         switch (mtu) {
913         case     0: return OPA_MTU_0;
914         case   256: return OPA_MTU_256;
915         case   512: return OPA_MTU_512;
916         case  1024: return OPA_MTU_1024;
917         case  2048: return OPA_MTU_2048;
918         case  4096: return OPA_MTU_4096;
919         case  8192: return OPA_MTU_8192;
920         case 10240: return OPA_MTU_10240;
921         }
922         return default_if_bad;
923 }
924
925 u16 enum_to_mtu(int mtu)
926 {
927         switch (mtu) {
928         case OPA_MTU_0:     return 0;
929         case OPA_MTU_256:   return 256;
930         case OPA_MTU_512:   return 512;
931         case OPA_MTU_1024:  return 1024;
932         case OPA_MTU_2048:  return 2048;
933         case OPA_MTU_4096:  return 4096;
934         case OPA_MTU_8192:  return 8192;
935         case OPA_MTU_10240: return 10240;
936         default: return 0xffff;
937         }
938 }
939
940 /*
941  * set_mtu - set the MTU
942  * @ppd: the per port data
943  *
944  * We can handle "any" incoming size, the issue here is whether we
945  * need to restrict our outgoing size.  We do not deal with what happens
946  * to programs that are already running when the size changes.
947  */
948 int set_mtu(struct hfi1_pportdata *ppd)
949 {
950         struct hfi1_devdata *dd = ppd->dd;
951         int i, drain, ret = 0, is_up = 0;
952
953         ppd->ibmtu = 0;
954         for (i = 0; i < ppd->vls_supported; i++)
955                 if (ppd->ibmtu < dd->vld[i].mtu)
956                         ppd->ibmtu = dd->vld[i].mtu;
957         ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
958
959         mutex_lock(&ppd->hls_lock);
960         if (ppd->host_link_state == HLS_UP_INIT
961                         || ppd->host_link_state == HLS_UP_ARMED
962                         || ppd->host_link_state == HLS_UP_ACTIVE)
963                 is_up = 1;
964
965         drain = !is_ax(dd) && is_up;
966
967         if (drain)
968                 /*
969                  * MTU is specified per-VL. To ensure that no packet gets
970                  * stuck (due, e.g., to the MTU for the packet's VL being
971                  * reduced), empty the per-VL FIFOs before adjusting MTU.
972                  */
973                 ret = stop_drain_data_vls(dd);
974
975         if (ret) {
976                 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
977                            __func__);
978                 goto err;
979         }
980
981         hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
982
983         if (drain)
984                 open_fill_data_vls(dd); /* reopen all VLs */
985
986 err:
987         mutex_unlock(&ppd->hls_lock);
988
989         return ret;
990 }
991
992 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
993 {
994         struct hfi1_devdata *dd = ppd->dd;
995
996         ppd->lid = lid;
997         ppd->lmc = lmc;
998         hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
999
1000         dd_dev_info(dd, "IB%u:%u got a lid: 0x%x\n", dd->unit, ppd->port, lid);
1001
1002         return 0;
1003 }
1004
1005 /*
1006  * Following deal with the "obviously simple" task of overriding the state
1007  * of the LEDs, which normally indicate link physical and logical status.
1008  * The complications arise in dealing with different hardware mappings
1009  * and the board-dependent routine being called from interrupts.
1010  * and then there's the requirement to _flash_ them.
1011  */
1012 #define LED_OVER_FREQ_SHIFT 8
1013 #define LED_OVER_FREQ_MASK (0xFF<<LED_OVER_FREQ_SHIFT)
1014 /* Below is "non-zero" to force override, but both actual LEDs are off */
1015 #define LED_OVER_BOTH_OFF (8)
1016
1017 static void run_led_override(unsigned long opaque)
1018 {
1019         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)opaque;
1020         struct hfi1_devdata *dd = ppd->dd;
1021         int timeoff;
1022         int ph_idx;
1023
1024         if (!(dd->flags & HFI1_INITTED))
1025                 return;
1026
1027         ph_idx = ppd->led_override_phase++ & 1;
1028         ppd->led_override = ppd->led_override_vals[ph_idx];
1029         timeoff = ppd->led_override_timeoff;
1030
1031         /*
1032          * don't re-fire the timer if user asked for it to be off; we let
1033          * it fire one more time after they turn it off to simplify
1034          */
1035         if (ppd->led_override_vals[0] || ppd->led_override_vals[1])
1036                 mod_timer(&ppd->led_override_timer, jiffies + timeoff);
1037 }
1038
1039 void hfi1_set_led_override(struct hfi1_pportdata *ppd, unsigned int val)
1040 {
1041         struct hfi1_devdata *dd = ppd->dd;
1042         int timeoff, freq;
1043
1044         if (!(dd->flags & HFI1_INITTED))
1045                 return;
1046
1047         /* First check if we are blinking. If not, use 1HZ polling */
1048         timeoff = HZ;
1049         freq = (val & LED_OVER_FREQ_MASK) >> LED_OVER_FREQ_SHIFT;
1050
1051         if (freq) {
1052                 /* For blink, set each phase from one nybble of val */
1053                 ppd->led_override_vals[0] = val & 0xF;
1054                 ppd->led_override_vals[1] = (val >> 4) & 0xF;
1055                 timeoff = (HZ << 4)/freq;
1056         } else {
1057                 /* Non-blink set both phases the same. */
1058                 ppd->led_override_vals[0] = val & 0xF;
1059                 ppd->led_override_vals[1] = val & 0xF;
1060         }
1061         ppd->led_override_timeoff = timeoff;
1062
1063         /*
1064          * If the timer has not already been started, do so. Use a "quick"
1065          * timeout so the function will be called soon, to look at our request.
1066          */
1067         if (atomic_inc_return(&ppd->led_override_timer_active) == 1) {
1068                 /* Need to start timer */
1069                 setup_timer(&ppd->led_override_timer, run_led_override,
1070                                 (unsigned long)ppd);
1071
1072                 ppd->led_override_timer.expires = jiffies + 1;
1073                 add_timer(&ppd->led_override_timer);
1074         } else {
1075                 if (ppd->led_override_vals[0] || ppd->led_override_vals[1])
1076                         mod_timer(&ppd->led_override_timer, jiffies + 1);
1077                 atomic_dec(&ppd->led_override_timer_active);
1078         }
1079 }
1080
1081 /**
1082  * hfi1_reset_device - reset the chip if possible
1083  * @unit: the device to reset
1084  *
1085  * Whether or not reset is successful, we attempt to re-initialize the chip
1086  * (that is, much like a driver unload/reload).  We clear the INITTED flag
1087  * so that the various entry points will fail until we reinitialize.  For
1088  * now, we only allow this if no user contexts are open that use chip resources
1089  */
1090 int hfi1_reset_device(int unit)
1091 {
1092         int ret, i;
1093         struct hfi1_devdata *dd = hfi1_lookup(unit);
1094         struct hfi1_pportdata *ppd;
1095         unsigned long flags;
1096         int pidx;
1097
1098         if (!dd) {
1099                 ret = -ENODEV;
1100                 goto bail;
1101         }
1102
1103         dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1104
1105         if (!dd->kregbase || !(dd->flags & HFI1_PRESENT)) {
1106                 dd_dev_info(dd,
1107                         "Invalid unit number %u or not initialized or not present\n",
1108                         unit);
1109                 ret = -ENXIO;
1110                 goto bail;
1111         }
1112
1113         spin_lock_irqsave(&dd->uctxt_lock, flags);
1114         if (dd->rcd)
1115                 for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) {
1116                         if (!dd->rcd[i] || !dd->rcd[i]->cnt)
1117                                 continue;
1118                         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1119                         ret = -EBUSY;
1120                         goto bail;
1121                 }
1122         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1123
1124         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1125                 ppd = dd->pport + pidx;
1126                 if (atomic_read(&ppd->led_override_timer_active)) {
1127                         /* Need to stop LED timer, _then_ shut off LEDs */
1128                         del_timer_sync(&ppd->led_override_timer);
1129                         atomic_set(&ppd->led_override_timer_active, 0);
1130                 }
1131
1132                 /* Shut off LEDs after we are sure timer is not running */
1133                 ppd->led_override = LED_OVER_BOTH_OFF;
1134         }
1135         if (dd->flags & HFI1_HAS_SEND_DMA)
1136                 sdma_exit(dd);
1137
1138         hfi1_reset_cpu_counters(dd);
1139
1140         ret = hfi1_init(dd, 1);
1141
1142         if (ret)
1143                 dd_dev_err(dd,
1144                         "Reinitialize unit %u after reset failed with %d\n",
1145                         unit, ret);
1146         else
1147                 dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1148                         unit);
1149
1150 bail:
1151         return ret;
1152 }
1153
1154 void handle_eflags(struct hfi1_packet *packet)
1155 {
1156         struct hfi1_ctxtdata *rcd = packet->rcd;
1157         u32 rte = rhf_rcv_type_err(packet->rhf);
1158
1159         rcv_hdrerr(rcd, rcd->ppd, packet);
1160         if (rhf_err_flags(packet->rhf))
1161                 dd_dev_err(rcd->dd,
1162                            "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n",
1163                            rcd->ctxt, packet->rhf,
1164                            packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1165                            packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1166                            packet->rhf & RHF_DC_ERR ? "dc " : "",
1167                            packet->rhf & RHF_TID_ERR ? "tid " : "",
1168                            packet->rhf & RHF_LEN_ERR ? "len " : "",
1169                            packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1170                            packet->rhf & RHF_VCRC_ERR ? "vcrc " : "",
1171                            packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1172                            rte);
1173 }
1174
1175 /*
1176  * The following functions are called by the interrupt handler. They are type
1177  * specific handlers for each packet type.
1178  */
1179 int process_receive_ib(struct hfi1_packet *packet)
1180 {
1181         trace_hfi1_rcvhdr(packet->rcd->ppd->dd,
1182                           packet->rcd->ctxt,
1183                           rhf_err_flags(packet->rhf),
1184                           RHF_RCV_TYPE_IB,
1185                           packet->hlen,
1186                           packet->tlen,
1187                           packet->updegr,
1188                           rhf_egr_index(packet->rhf));
1189
1190         if (unlikely(rhf_err_flags(packet->rhf))) {
1191                 handle_eflags(packet);
1192                 return RHF_RCV_CONTINUE;
1193         }
1194
1195         hfi1_ib_rcv(packet);
1196         return RHF_RCV_CONTINUE;
1197 }
1198
1199 int process_receive_bypass(struct hfi1_packet *packet)
1200 {
1201         if (unlikely(rhf_err_flags(packet->rhf)))
1202                 handle_eflags(packet);
1203
1204         dd_dev_err(packet->rcd->dd,
1205            "Bypass packets are not supported in normal operation. Dropping\n");
1206         return RHF_RCV_CONTINUE;
1207 }
1208
1209 int process_receive_error(struct hfi1_packet *packet)
1210 {
1211         handle_eflags(packet);
1212
1213         if (unlikely(rhf_err_flags(packet->rhf)))
1214                 dd_dev_err(packet->rcd->dd,
1215                            "Unhandled error packet received. Dropping.\n");
1216
1217         return RHF_RCV_CONTINUE;
1218 }
1219
1220 int kdeth_process_expected(struct hfi1_packet *packet)
1221 {
1222         if (unlikely(rhf_err_flags(packet->rhf)))
1223                 handle_eflags(packet);
1224
1225         dd_dev_err(packet->rcd->dd,
1226                    "Unhandled expected packet received. Dropping.\n");
1227         return RHF_RCV_CONTINUE;
1228 }
1229
1230 int kdeth_process_eager(struct hfi1_packet *packet)
1231 {
1232         if (unlikely(rhf_err_flags(packet->rhf)))
1233                 handle_eflags(packet);
1234
1235         dd_dev_err(packet->rcd->dd,
1236                    "Unhandled eager packet received. Dropping.\n");
1237         return RHF_RCV_CONTINUE;
1238 }
1239
1240 int process_receive_invalid(struct hfi1_packet *packet)
1241 {
1242         dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1243                 rhf_rcv_type(packet->rhf));
1244         return RHF_RCV_CONTINUE;
1245 }