]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/staging/rdma/hfi1/driver.c
Merge remote-tracking branch 'asoc/fix/intel' into asoc-linus
[karo-tx-linux.git] / drivers / staging / rdma / hfi1 / driver.c
1 /*
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2015 Intel Corporation.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * BSD LICENSE
20  *
21  * Copyright(c) 2015 Intel Corporation.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  *
27  *  - Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  *  - Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in
31  *    the documentation and/or other materials provided with the
32  *    distribution.
33  *  - Neither the name of Intel Corporation nor the names of its
34  *    contributors may be used to endorse or promote products derived
35  *    from this software without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48  *
49  */
50
51 #include <linux/spinlock.h>
52 #include <linux/pci.h>
53 #include <linux/io.h>
54 #include <linux/delay.h>
55 #include <linux/netdevice.h>
56 #include <linux/vmalloc.h>
57 #include <linux/module.h>
58 #include <linux/prefetch.h>
59
60 #include "hfi.h"
61 #include "trace.h"
62 #include "qp.h"
63 #include "sdma.h"
64
65 #undef pr_fmt
66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
67
68 /*
69  * The size has to be longer than this string, so we can append
70  * board/chip information to it in the initialization code.
71  */
72 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
73
74 DEFINE_SPINLOCK(hfi1_devs_lock);
75 LIST_HEAD(hfi1_dev_list);
76 DEFINE_MUTEX(hfi1_mutex);       /* general driver use */
77
78 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
79 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
80 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is 8192");
81
82 unsigned int hfi1_cu = 1;
83 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
84 MODULE_PARM_DESC(cu, "Credit return units");
85
86 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
87 static int hfi1_caps_set(const char *, const struct kernel_param *);
88 static int hfi1_caps_get(char *, const struct kernel_param *);
89 static const struct kernel_param_ops cap_ops = {
90         .set = hfi1_caps_set,
91         .get = hfi1_caps_get
92 };
93 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
94 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
95
96 MODULE_LICENSE("Dual BSD/GPL");
97 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
98 MODULE_VERSION(HFI1_DRIVER_VERSION);
99
100 /*
101  * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
102  */
103 #define MAX_PKT_RECV 64
104 #define EGR_HEAD_UPDATE_THRESHOLD 16
105
106 struct hfi1_ib_stats hfi1_stats;
107
108 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
109 {
110         int ret = 0;
111         unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
112                 cap_mask = *cap_mask_ptr, value, diff,
113                 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
114                               HFI1_CAP_WRITABLE_MASK);
115
116         ret = kstrtoul(val, 0, &value);
117         if (ret) {
118                 pr_warn("Invalid module parameter value for 'cap_mask'\n");
119                 goto done;
120         }
121         /* Get the changed bits (except the locked bit) */
122         diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
123
124         /* Remove any bits that are not allowed to change after driver load */
125         if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
126                 pr_warn("Ignoring non-writable capability bits %#lx\n",
127                         diff & ~write_mask);
128                 diff &= write_mask;
129         }
130
131         /* Mask off any reserved bits */
132         diff &= ~HFI1_CAP_RESERVED_MASK;
133         /* Clear any previously set and changing bits */
134         cap_mask &= ~diff;
135         /* Update the bits with the new capability */
136         cap_mask |= (value & diff);
137         /* Check for any kernel/user restrictions */
138         diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
139                 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
140         cap_mask &= ~diff;
141         /* Set the bitmask to the final set */
142         *cap_mask_ptr = cap_mask;
143 done:
144         return ret;
145 }
146
147 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
148 {
149         unsigned long cap_mask = *(unsigned long *)kp->arg;
150
151         cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
152         cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
153
154         return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
155 }
156
157 const char *get_unit_name(int unit)
158 {
159         static char iname[16];
160
161         snprintf(iname, sizeof(iname), DRIVER_NAME "_%u", unit);
162         return iname;
163 }
164
165 /*
166  * Return count of units with at least one port ACTIVE.
167  */
168 int hfi1_count_active_units(void)
169 {
170         struct hfi1_devdata *dd;
171         struct hfi1_pportdata *ppd;
172         unsigned long flags;
173         int pidx, nunits_active = 0;
174
175         spin_lock_irqsave(&hfi1_devs_lock, flags);
176         list_for_each_entry(dd, &hfi1_dev_list, list) {
177                 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase)
178                         continue;
179                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
180                         ppd = dd->pport + pidx;
181                         if (ppd->lid && ppd->linkup) {
182                                 nunits_active++;
183                                 break;
184                         }
185                 }
186         }
187         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
188         return nunits_active;
189 }
190
191 /*
192  * Return count of all units, optionally return in arguments
193  * the number of usable (present) units, and the number of
194  * ports that are up.
195  */
196 int hfi1_count_units(int *npresentp, int *nupp)
197 {
198         int nunits = 0, npresent = 0, nup = 0;
199         struct hfi1_devdata *dd;
200         unsigned long flags;
201         int pidx;
202         struct hfi1_pportdata *ppd;
203
204         spin_lock_irqsave(&hfi1_devs_lock, flags);
205
206         list_for_each_entry(dd, &hfi1_dev_list, list) {
207                 nunits++;
208                 if ((dd->flags & HFI1_PRESENT) && dd->kregbase)
209                         npresent++;
210                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
211                         ppd = dd->pport + pidx;
212                         if (ppd->lid && ppd->linkup)
213                                 nup++;
214                 }
215         }
216
217         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
218
219         if (npresentp)
220                 *npresentp = npresent;
221         if (nupp)
222                 *nupp = nup;
223
224         return nunits;
225 }
226
227 /*
228  * Get address of eager buffer from it's index (allocated in chunks, not
229  * contiguous).
230  */
231 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
232                                u8 *update)
233 {
234         u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
235
236         *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
237         return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
238                         (offset * RCV_BUF_BLOCK_SIZE));
239 }
240
241 /*
242  * Validate and encode the a given RcvArray Buffer size.
243  * The function will check whether the given size falls within
244  * allowed size ranges for the respective type and, optionally,
245  * return the proper encoding.
246  */
247 inline int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
248 {
249         if (unlikely(!IS_ALIGNED(size, PAGE_SIZE)))
250                 return 0;
251         if (unlikely(size < MIN_EAGER_BUFFER))
252                 return 0;
253         if (size >
254             (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
255                 return 0;
256         if (encoded)
257                 *encoded = ilog2(size / PAGE_SIZE) + 1;
258         return 1;
259 }
260
261 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
262                        struct hfi1_packet *packet)
263 {
264         struct hfi1_message_header *rhdr = packet->hdr;
265         u32 rte = rhf_rcv_type_err(packet->rhf);
266         int lnh = be16_to_cpu(rhdr->lrh[0]) & 3;
267         struct hfi1_ibport *ibp = &ppd->ibport_data;
268
269         if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
270                 return;
271
272         if (packet->rhf & RHF_TID_ERR) {
273                 /* For TIDERR and RC QPs preemptively schedule a NAK */
274                 struct hfi1_ib_header *hdr = (struct hfi1_ib_header *)rhdr;
275                 struct hfi1_other_headers *ohdr = NULL;
276                 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
277                 u16 lid  = be16_to_cpu(hdr->lrh[1]);
278                 u32 qp_num;
279                 u32 rcv_flags = 0;
280
281                 /* Sanity check packet */
282                 if (tlen < 24)
283                         goto drop;
284
285                 /* Check for GRH */
286                 if (lnh == HFI1_LRH_BTH)
287                         ohdr = &hdr->u.oth;
288                 else if (lnh == HFI1_LRH_GRH) {
289                         u32 vtf;
290
291                         ohdr = &hdr->u.l.oth;
292                         if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
293                                 goto drop;
294                         vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
295                         if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
296                                 goto drop;
297                         rcv_flags |= HFI1_HAS_GRH;
298                 } else
299                         goto drop;
300
301                 /* Get the destination QP number. */
302                 qp_num = be32_to_cpu(ohdr->bth[1]) & HFI1_QPN_MASK;
303                 if (lid < HFI1_MULTICAST_LID_BASE) {
304                         struct hfi1_qp *qp;
305                         unsigned long flags;
306
307                         rcu_read_lock();
308                         qp = hfi1_lookup_qpn(ibp, qp_num);
309                         if (!qp) {
310                                 rcu_read_unlock();
311                                 goto drop;
312                         }
313
314                         /*
315                          * Handle only RC QPs - for other QP types drop error
316                          * packet.
317                          */
318                         spin_lock_irqsave(&qp->r_lock, flags);
319
320                         /* Check for valid receive state. */
321                         if (!(ib_hfi1_state_ops[qp->state] &
322                               HFI1_PROCESS_RECV_OK)) {
323                                 ibp->n_pkt_drops++;
324                         }
325
326                         switch (qp->ibqp.qp_type) {
327                         case IB_QPT_RC:
328                                 hfi1_rc_hdrerr(
329                                         rcd,
330                                         hdr,
331                                         rcv_flags,
332                                         qp);
333                                 break;
334                         default:
335                                 /* For now don't handle any other QP types */
336                                 break;
337                         }
338
339                         spin_unlock_irqrestore(&qp->r_lock, flags);
340                         rcu_read_unlock();
341                 } /* Unicast QP */
342         } /* Valid packet with TIDErr */
343
344         /* handle "RcvTypeErr" flags */
345         switch (rte) {
346         case RHF_RTE_ERROR_OP_CODE_ERR:
347         {
348                 u32 opcode;
349                 void *ebuf = NULL;
350                 __be32 *bth = NULL;
351
352                 if (rhf_use_egr_bfr(packet->rhf))
353                         ebuf = packet->ebuf;
354
355                 if (ebuf == NULL)
356                         goto drop; /* this should never happen */
357
358                 if (lnh == HFI1_LRH_BTH)
359                         bth = (__be32 *)ebuf;
360                 else if (lnh == HFI1_LRH_GRH)
361                         bth = (__be32 *)((char *)ebuf + sizeof(struct ib_grh));
362                 else
363                         goto drop;
364
365                 opcode = be32_to_cpu(bth[0]) >> 24;
366                 opcode &= 0xff;
367
368                 if (opcode == IB_OPCODE_CNP) {
369                         /*
370                          * Only in pre-B0 h/w is the CNP_OPCODE handled
371                          * via this code path (errata 291394).
372                          */
373                         struct hfi1_qp *qp = NULL;
374                         u32 lqpn, rqpn;
375                         u16 rlid;
376                         u8 svc_type, sl, sc5;
377
378                         sc5  = (be16_to_cpu(rhdr->lrh[0]) >> 12) & 0xf;
379                         if (rhf_dc_info(packet->rhf))
380                                 sc5 |= 0x10;
381                         sl = ibp->sc_to_sl[sc5];
382
383                         lqpn = be32_to_cpu(bth[1]) & HFI1_QPN_MASK;
384                         rcu_read_lock();
385                         qp = hfi1_lookup_qpn(ibp, lqpn);
386                         if (qp == NULL) {
387                                 rcu_read_unlock();
388                                 goto drop;
389                         }
390
391                         switch (qp->ibqp.qp_type) {
392                         case IB_QPT_UD:
393                                 rlid = 0;
394                                 rqpn = 0;
395                                 svc_type = IB_CC_SVCTYPE_UD;
396                                 break;
397                         case IB_QPT_UC:
398                                 rlid = be16_to_cpu(rhdr->lrh[3]);
399                                 rqpn = qp->remote_qpn;
400                                 svc_type = IB_CC_SVCTYPE_UC;
401                                 break;
402                         default:
403                                 goto drop;
404                         }
405
406                         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
407                         rcu_read_unlock();
408                 }
409
410                 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
411                 break;
412         }
413         default:
414                 break;
415         }
416
417 drop:
418         return;
419 }
420
421 static inline void init_packet(struct hfi1_ctxtdata *rcd,
422                               struct hfi1_packet *packet)
423 {
424
425         packet->rsize = rcd->rcvhdrqentsize; /* words */
426         packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
427         packet->rcd = rcd;
428         packet->updegr = 0;
429         packet->etail = -1;
430         packet->rhf_addr = get_rhf_addr(rcd);
431         packet->rhf = rhf_to_cpu(packet->rhf_addr);
432         packet->rhqoff = rcd->head;
433         packet->numpkt = 0;
434         packet->rcv_flags = 0;
435 }
436
437 #ifndef CONFIG_PRESCAN_RXQ
438 static void prescan_rxq(struct hfi1_packet *packet) {}
439 #else /* !CONFIG_PRESCAN_RXQ */
440 static int prescan_receive_queue;
441
442 static void process_ecn(struct hfi1_qp *qp, struct hfi1_ib_header *hdr,
443                         struct hfi1_other_headers *ohdr,
444                         u64 rhf, u32 bth1, struct ib_grh *grh)
445 {
446         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
447         u32 rqpn = 0;
448         u16 rlid;
449         u8 sc5, svc_type;
450
451         switch (qp->ibqp.qp_type) {
452         case IB_QPT_SMI:
453         case IB_QPT_GSI:
454         case IB_QPT_UD:
455                 rlid = be16_to_cpu(hdr->lrh[3]);
456                 rqpn = be32_to_cpu(ohdr->u.ud.deth[1]) & HFI1_QPN_MASK;
457                 svc_type = IB_CC_SVCTYPE_UD;
458                 break;
459         case IB_QPT_UC:
460                 rlid = qp->remote_ah_attr.dlid;
461                 rqpn = qp->remote_qpn;
462                 svc_type = IB_CC_SVCTYPE_UC;
463                 break;
464         case IB_QPT_RC:
465                 rlid = qp->remote_ah_attr.dlid;
466                 rqpn = qp->remote_qpn;
467                 svc_type = IB_CC_SVCTYPE_RC;
468                 break;
469         default:
470                 return;
471         }
472
473         sc5 = (be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf;
474         if (rhf_dc_info(rhf))
475                 sc5 |= 0x10;
476
477         if (bth1 & HFI1_FECN_SMASK) {
478                 u16 pkey = (u16)be32_to_cpu(ohdr->bth[0]);
479                 u16 dlid = be16_to_cpu(hdr->lrh[1]);
480
481                 return_cnp(ibp, qp, rqpn, pkey, dlid, rlid, sc5, grh);
482         }
483
484         if (bth1 & HFI1_BECN_SMASK) {
485                 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
486                 u32 lqpn = bth1 & HFI1_QPN_MASK;
487                 u8 sl = ibp->sc_to_sl[sc5];
488
489                 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
490         }
491 }
492
493 struct ps_mdata {
494         struct hfi1_ctxtdata *rcd;
495         u32 rsize;
496         u32 maxcnt;
497         u32 ps_head;
498         u32 ps_tail;
499         u32 ps_seq;
500 };
501
502 static inline void init_ps_mdata(struct ps_mdata *mdata,
503                                  struct hfi1_packet *packet)
504 {
505         struct hfi1_ctxtdata *rcd = packet->rcd;
506
507         mdata->rcd = rcd;
508         mdata->rsize = packet->rsize;
509         mdata->maxcnt = packet->maxcnt;
510         mdata->ps_head = packet->rhqoff;
511
512         if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
513                 mdata->ps_tail = get_rcvhdrtail(rcd);
514                 if (rcd->ctxt == HFI1_CTRL_CTXT)
515                         mdata->ps_seq = rcd->seq_cnt;
516                 else
517                         mdata->ps_seq = 0; /* not used with DMA_RTAIL */
518         } else {
519                 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
520                 mdata->ps_seq = rcd->seq_cnt;
521         }
522 }
523
524 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
525                           struct hfi1_ctxtdata *rcd)
526 {
527         if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
528                 return mdata->ps_head == mdata->ps_tail;
529         return mdata->ps_seq != rhf_rcv_seq(rhf);
530 }
531
532 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
533                           struct hfi1_ctxtdata *rcd)
534 {
535         /*
536          * Control context can potentially receive an invalid rhf.
537          * Drop such packets.
538          */
539         if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
540                 return mdata->ps_seq != rhf_rcv_seq(rhf);
541
542         return 0;
543 }
544
545 static inline void update_ps_mdata(struct ps_mdata *mdata,
546                                    struct hfi1_ctxtdata *rcd)
547 {
548         mdata->ps_head += mdata->rsize;
549         if (mdata->ps_head >= mdata->maxcnt)
550                 mdata->ps_head = 0;
551
552         /* Control context must do seq counting */
553         if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
554             (rcd->ctxt == HFI1_CTRL_CTXT)) {
555                 if (++mdata->ps_seq > 13)
556                         mdata->ps_seq = 1;
557         }
558 }
559
560 /*
561  * prescan_rxq - search through the receive queue looking for packets
562  * containing Excplicit Congestion Notifications (FECNs, or BECNs).
563  * When an ECN is found, process the Congestion Notification, and toggle
564  * it off.
565  */
566 static void prescan_rxq(struct hfi1_packet *packet)
567 {
568         struct hfi1_ctxtdata *rcd = packet->rcd;
569         struct ps_mdata mdata;
570
571         if (!prescan_receive_queue)
572                 return;
573
574         init_ps_mdata(&mdata, packet);
575
576         while (1) {
577                 struct hfi1_devdata *dd = rcd->dd;
578                 struct hfi1_ibport *ibp = &rcd->ppd->ibport_data;
579                 __le32 *rhf_addr = (__le32 *) rcd->rcvhdrq + mdata.ps_head +
580                                          dd->rhf_offset;
581                 struct hfi1_qp *qp;
582                 struct hfi1_ib_header *hdr;
583                 struct hfi1_other_headers *ohdr;
584                 struct ib_grh *grh = NULL;
585                 u64 rhf = rhf_to_cpu(rhf_addr);
586                 u32 etype = rhf_rcv_type(rhf), qpn, bth1;
587                 int is_ecn = 0;
588                 u8 lnh;
589
590                 if (ps_done(&mdata, rhf, rcd))
591                         break;
592
593                 if (ps_skip(&mdata, rhf, rcd))
594                         goto next;
595
596                 if (etype != RHF_RCV_TYPE_IB)
597                         goto next;
598
599                 hdr = (struct hfi1_ib_header *)
600                         hfi1_get_msgheader(dd, rhf_addr);
601                 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
602
603                 if (lnh == HFI1_LRH_BTH)
604                         ohdr = &hdr->u.oth;
605                 else if (lnh == HFI1_LRH_GRH) {
606                         ohdr = &hdr->u.l.oth;
607                         grh = &hdr->u.l.grh;
608                 } else
609                         goto next; /* just in case */
610
611                 bth1 = be32_to_cpu(ohdr->bth[1]);
612                 is_ecn = !!(bth1 & (HFI1_FECN_SMASK | HFI1_BECN_SMASK));
613
614                 if (!is_ecn)
615                         goto next;
616
617                 qpn = bth1 & HFI1_QPN_MASK;
618                 rcu_read_lock();
619                 qp = hfi1_lookup_qpn(ibp, qpn);
620
621                 if (qp == NULL) {
622                         rcu_read_unlock();
623                         goto next;
624                 }
625
626                 process_ecn(qp, hdr, ohdr, rhf, bth1, grh);
627                 rcu_read_unlock();
628
629                 /* turn off BECN, FECN */
630                 bth1 &= ~(HFI1_FECN_SMASK | HFI1_BECN_SMASK);
631                 ohdr->bth[1] = cpu_to_be32(bth1);
632 next:
633                 update_ps_mdata(&mdata, rcd);
634         }
635 }
636 #endif /* CONFIG_PRESCAN_RXQ */
637
638 static inline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
639 {
640         int ret = RCV_PKT_OK;
641
642         /* Set up for the next packet */
643         packet->rhqoff += packet->rsize;
644         if (packet->rhqoff >= packet->maxcnt)
645                 packet->rhqoff = 0;
646
647         packet->numpkt++;
648         if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) {
649                 if (thread) {
650                         cond_resched();
651                 } else {
652                         ret = RCV_PKT_LIMIT;
653                         this_cpu_inc(*packet->rcd->dd->rcv_limit);
654                 }
655         }
656
657         packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
658                                      packet->rcd->dd->rhf_offset;
659         packet->rhf = rhf_to_cpu(packet->rhf_addr);
660
661         return ret;
662 }
663
664 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
665 {
666         int ret = RCV_PKT_OK;
667
668         packet->hdr = hfi1_get_msgheader(packet->rcd->dd,
669                                          packet->rhf_addr);
670         packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
671         packet->etype = rhf_rcv_type(packet->rhf);
672         /* total length */
673         packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
674         /* retrieve eager buffer details */
675         packet->ebuf = NULL;
676         if (rhf_use_egr_bfr(packet->rhf)) {
677                 packet->etail = rhf_egr_index(packet->rhf);
678                 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
679                                  &packet->updegr);
680                 /*
681                  * Prefetch the contents of the eager buffer.  It is
682                  * OK to send a negative length to prefetch_range().
683                  * The +2 is the size of the RHF.
684                  */
685                 prefetch_range(packet->ebuf,
686                         packet->tlen - ((packet->rcd->rcvhdrqentsize -
687                                   (rhf_hdrq_offset(packet->rhf)+2)) * 4));
688         }
689
690         /*
691          * Call a type specific handler for the packet. We
692          * should be able to trust that etype won't be beyond
693          * the range of valid indexes. If so something is really
694          * wrong and we can probably just let things come
695          * crashing down. There is no need to eat another
696          * comparison in this performance critical code.
697          */
698         packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet);
699         packet->numpkt++;
700
701         /* Set up for the next packet */
702         packet->rhqoff += packet->rsize;
703         if (packet->rhqoff >= packet->maxcnt)
704                 packet->rhqoff = 0;
705
706         if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) {
707                 if (thread) {
708                         cond_resched();
709                 } else {
710                         ret = RCV_PKT_LIMIT;
711                         this_cpu_inc(*packet->rcd->dd->rcv_limit);
712                 }
713         }
714
715         packet->rhf_addr = (__le32 *) packet->rcd->rcvhdrq + packet->rhqoff +
716                                       packet->rcd->dd->rhf_offset;
717         packet->rhf = rhf_to_cpu(packet->rhf_addr);
718
719         return ret;
720 }
721
722 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
723 {
724         /*
725          * Update head regs etc., every 16 packets, if not last pkt,
726          * to help prevent rcvhdrq overflows, when many packets
727          * are processed and queue is nearly full.
728          * Don't request an interrupt for intermediate updates.
729          */
730         if (!last && !(packet->numpkt & 0xf)) {
731                 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
732                                packet->etail, 0, 0);
733                 packet->updegr = 0;
734         }
735         packet->rcv_flags = 0;
736 }
737
738 static inline void finish_packet(struct hfi1_packet *packet)
739 {
740
741         /*
742          * Nothing we need to free for the packet.
743          *
744          * The only thing we need to do is a final update and call for an
745          * interrupt
746          */
747         update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
748                        packet->etail, rcv_intr_dynamic, packet->numpkt);
749
750 }
751
752 static inline void process_rcv_qp_work(struct hfi1_packet *packet)
753 {
754
755         struct hfi1_ctxtdata *rcd;
756         struct hfi1_qp *qp, *nqp;
757
758         rcd = packet->rcd;
759         rcd->head = packet->rhqoff;
760
761         /*
762          * Iterate over all QPs waiting to respond.
763          * The list won't change since the IRQ is only run on one CPU.
764          */
765         list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
766                 list_del_init(&qp->rspwait);
767                 if (qp->r_flags & HFI1_R_RSP_DEFERED_ACK) {
768                         qp->r_flags &= ~HFI1_R_RSP_DEFERED_ACK;
769                         hfi1_send_rc_ack(rcd, qp, 0);
770                 }
771                 if (qp->r_flags & HFI1_R_RSP_SEND) {
772                         unsigned long flags;
773
774                         qp->r_flags &= ~HFI1_R_RSP_SEND;
775                         spin_lock_irqsave(&qp->s_lock, flags);
776                         if (ib_hfi1_state_ops[qp->state] &
777                                         HFI1_PROCESS_OR_FLUSH_SEND)
778                                 hfi1_schedule_send(qp);
779                         spin_unlock_irqrestore(&qp->s_lock, flags);
780                 }
781                 if (atomic_dec_and_test(&qp->refcount))
782                         wake_up(&qp->wait);
783         }
784 }
785
786 /*
787  * Handle receive interrupts when using the no dma rtail option.
788  */
789 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
790 {
791         u32 seq;
792         int last = RCV_PKT_OK;
793         struct hfi1_packet packet;
794
795         init_packet(rcd, &packet);
796         seq = rhf_rcv_seq(packet.rhf);
797         if (seq != rcd->seq_cnt) {
798                 last = RCV_PKT_DONE;
799                 goto bail;
800         }
801
802         prescan_rxq(&packet);
803
804         while (last == RCV_PKT_OK) {
805                 last = process_rcv_packet(&packet, thread);
806                 seq = rhf_rcv_seq(packet.rhf);
807                 if (++rcd->seq_cnt > 13)
808                         rcd->seq_cnt = 1;
809                 if (seq != rcd->seq_cnt)
810                         last = RCV_PKT_DONE;
811                 process_rcv_update(last, &packet);
812         }
813         process_rcv_qp_work(&packet);
814 bail:
815         finish_packet(&packet);
816         return last;
817 }
818
819 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
820 {
821         u32 hdrqtail;
822         int last = RCV_PKT_OK;
823         struct hfi1_packet packet;
824
825         init_packet(rcd, &packet);
826         hdrqtail = get_rcvhdrtail(rcd);
827         if (packet.rhqoff == hdrqtail) {
828                 last = RCV_PKT_DONE;
829                 goto bail;
830         }
831         smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
832
833         prescan_rxq(&packet);
834
835         while (last == RCV_PKT_OK) {
836                 last = process_rcv_packet(&packet, thread);
837                 if (packet.rhqoff == hdrqtail)
838                         last = RCV_PKT_DONE;
839                 process_rcv_update(last, &packet);
840         }
841         process_rcv_qp_work(&packet);
842 bail:
843         finish_packet(&packet);
844         return last;
845 }
846
847 static inline void set_all_nodma_rtail(struct hfi1_devdata *dd)
848 {
849         int i;
850
851         for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++)
852                 dd->rcd[i]->do_interrupt =
853                         &handle_receive_interrupt_nodma_rtail;
854 }
855
856 static inline void set_all_dma_rtail(struct hfi1_devdata *dd)
857 {
858         int i;
859
860         for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++)
861                 dd->rcd[i]->do_interrupt =
862                         &handle_receive_interrupt_dma_rtail;
863 }
864
865 /*
866  * handle_receive_interrupt - receive a packet
867  * @rcd: the context
868  *
869  * Called from interrupt handler for errors or receive interrupt.
870  * This is the slow path interrupt handler.
871  */
872 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
873 {
874         struct hfi1_devdata *dd = rcd->dd;
875         u32 hdrqtail;
876         int needset, last = RCV_PKT_OK;
877         struct hfi1_packet packet;
878         int skip_pkt = 0;
879
880         /* Control context will always use the slow path interrupt handler */
881         needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
882
883         init_packet(rcd, &packet);
884
885         if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
886                 u32 seq = rhf_rcv_seq(packet.rhf);
887
888                 if (seq != rcd->seq_cnt) {
889                         last = RCV_PKT_DONE;
890                         goto bail;
891                 }
892                 hdrqtail = 0;
893         } else {
894                 hdrqtail = get_rcvhdrtail(rcd);
895                 if (packet.rhqoff == hdrqtail) {
896                         last = RCV_PKT_DONE;
897                         goto bail;
898                 }
899                 smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
900
901                 /*
902                  * Control context can potentially receive an invalid
903                  * rhf. Drop such packets.
904                  */
905                 if (rcd->ctxt == HFI1_CTRL_CTXT) {
906                         u32 seq = rhf_rcv_seq(packet.rhf);
907
908                         if (seq != rcd->seq_cnt)
909                                 skip_pkt = 1;
910                 }
911         }
912
913         prescan_rxq(&packet);
914
915         while (last == RCV_PKT_OK) {
916
917                 if (unlikely(dd->do_drop && atomic_xchg(&dd->drop_packet,
918                         DROP_PACKET_OFF) == DROP_PACKET_ON)) {
919                         dd->do_drop = 0;
920
921                         /* On to the next packet */
922                         packet.rhqoff += packet.rsize;
923                         packet.rhf_addr = (__le32 *) rcd->rcvhdrq +
924                                           packet.rhqoff +
925                                           dd->rhf_offset;
926                         packet.rhf = rhf_to_cpu(packet.rhf_addr);
927
928                 } else if (skip_pkt) {
929                         last = skip_rcv_packet(&packet, thread);
930                         skip_pkt = 0;
931                 } else {
932                         last = process_rcv_packet(&packet, thread);
933                 }
934
935                 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
936                         u32 seq = rhf_rcv_seq(packet.rhf);
937
938                         if (++rcd->seq_cnt > 13)
939                                 rcd->seq_cnt = 1;
940                         if (seq != rcd->seq_cnt)
941                                 last = RCV_PKT_DONE;
942                         if (needset) {
943                                 dd_dev_info(dd,
944                                         "Switching to NO_DMA_RTAIL\n");
945                                 set_all_nodma_rtail(dd);
946                                 needset = 0;
947                         }
948                 } else {
949                         if (packet.rhqoff == hdrqtail)
950                                 last = RCV_PKT_DONE;
951                         /*
952                          * Control context can potentially receive an invalid
953                          * rhf. Drop such packets.
954                          */
955                         if (rcd->ctxt == HFI1_CTRL_CTXT) {
956                                 u32 seq = rhf_rcv_seq(packet.rhf);
957
958                                 if (++rcd->seq_cnt > 13)
959                                         rcd->seq_cnt = 1;
960                                 if (!last && (seq != rcd->seq_cnt))
961                                         skip_pkt = 1;
962                         }
963
964                         if (needset) {
965                                 dd_dev_info(dd,
966                                             "Switching to DMA_RTAIL\n");
967                                 set_all_dma_rtail(dd);
968                                 needset = 0;
969                         }
970                 }
971
972                 process_rcv_update(last, &packet);
973         }
974
975         process_rcv_qp_work(&packet);
976
977 bail:
978         /*
979          * Always write head at end, and setup rcv interrupt, even
980          * if no packets were processed.
981          */
982         finish_packet(&packet);
983         return last;
984 }
985
986 /*
987  * Convert a given MTU size to the on-wire MAD packet enumeration.
988  * Return -1 if the size is invalid.
989  */
990 int mtu_to_enum(u32 mtu, int default_if_bad)
991 {
992         switch (mtu) {
993         case     0: return OPA_MTU_0;
994         case   256: return OPA_MTU_256;
995         case   512: return OPA_MTU_512;
996         case  1024: return OPA_MTU_1024;
997         case  2048: return OPA_MTU_2048;
998         case  4096: return OPA_MTU_4096;
999         case  8192: return OPA_MTU_8192;
1000         case 10240: return OPA_MTU_10240;
1001         }
1002         return default_if_bad;
1003 }
1004
1005 u16 enum_to_mtu(int mtu)
1006 {
1007         switch (mtu) {
1008         case OPA_MTU_0:     return 0;
1009         case OPA_MTU_256:   return 256;
1010         case OPA_MTU_512:   return 512;
1011         case OPA_MTU_1024:  return 1024;
1012         case OPA_MTU_2048:  return 2048;
1013         case OPA_MTU_4096:  return 4096;
1014         case OPA_MTU_8192:  return 8192;
1015         case OPA_MTU_10240: return 10240;
1016         default: return 0xffff;
1017         }
1018 }
1019
1020 /*
1021  * set_mtu - set the MTU
1022  * @ppd: the per port data
1023  *
1024  * We can handle "any" incoming size, the issue here is whether we
1025  * need to restrict our outgoing size.  We do not deal with what happens
1026  * to programs that are already running when the size changes.
1027  */
1028 int set_mtu(struct hfi1_pportdata *ppd)
1029 {
1030         struct hfi1_devdata *dd = ppd->dd;
1031         int i, drain, ret = 0, is_up = 0;
1032
1033         ppd->ibmtu = 0;
1034         for (i = 0; i < ppd->vls_supported; i++)
1035                 if (ppd->ibmtu < dd->vld[i].mtu)
1036                         ppd->ibmtu = dd->vld[i].mtu;
1037         ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1038
1039         mutex_lock(&ppd->hls_lock);
1040         if (ppd->host_link_state == HLS_UP_INIT
1041                         || ppd->host_link_state == HLS_UP_ARMED
1042                         || ppd->host_link_state == HLS_UP_ACTIVE)
1043                 is_up = 1;
1044
1045         drain = !is_ax(dd) && is_up;
1046
1047         if (drain)
1048                 /*
1049                  * MTU is specified per-VL. To ensure that no packet gets
1050                  * stuck (due, e.g., to the MTU for the packet's VL being
1051                  * reduced), empty the per-VL FIFOs before adjusting MTU.
1052                  */
1053                 ret = stop_drain_data_vls(dd);
1054
1055         if (ret) {
1056                 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1057                            __func__);
1058                 goto err;
1059         }
1060
1061         hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1062
1063         if (drain)
1064                 open_fill_data_vls(dd); /* reopen all VLs */
1065
1066 err:
1067         mutex_unlock(&ppd->hls_lock);
1068
1069         return ret;
1070 }
1071
1072 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1073 {
1074         struct hfi1_devdata *dd = ppd->dd;
1075
1076         ppd->lid = lid;
1077         ppd->lmc = lmc;
1078         hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1079
1080         dd_dev_info(dd, "IB%u:%u got a lid: 0x%x\n", dd->unit, ppd->port, lid);
1081
1082         return 0;
1083 }
1084
1085 /*
1086  * Following deal with the "obviously simple" task of overriding the state
1087  * of the LEDs, which normally indicate link physical and logical status.
1088  * The complications arise in dealing with different hardware mappings
1089  * and the board-dependent routine being called from interrupts.
1090  * and then there's the requirement to _flash_ them.
1091  */
1092 #define LED_OVER_FREQ_SHIFT 8
1093 #define LED_OVER_FREQ_MASK (0xFF<<LED_OVER_FREQ_SHIFT)
1094 /* Below is "non-zero" to force override, but both actual LEDs are off */
1095 #define LED_OVER_BOTH_OFF (8)
1096
1097 static void run_led_override(unsigned long opaque)
1098 {
1099         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)opaque;
1100         struct hfi1_devdata *dd = ppd->dd;
1101         int timeoff;
1102         int ph_idx;
1103
1104         if (!(dd->flags & HFI1_INITTED))
1105                 return;
1106
1107         ph_idx = ppd->led_override_phase++ & 1;
1108         ppd->led_override = ppd->led_override_vals[ph_idx];
1109         timeoff = ppd->led_override_timeoff;
1110
1111         /*
1112          * don't re-fire the timer if user asked for it to be off; we let
1113          * it fire one more time after they turn it off to simplify
1114          */
1115         if (ppd->led_override_vals[0] || ppd->led_override_vals[1])
1116                 mod_timer(&ppd->led_override_timer, jiffies + timeoff);
1117 }
1118
1119 void hfi1_set_led_override(struct hfi1_pportdata *ppd, unsigned int val)
1120 {
1121         struct hfi1_devdata *dd = ppd->dd;
1122         int timeoff, freq;
1123
1124         if (!(dd->flags & HFI1_INITTED))
1125                 return;
1126
1127         /* First check if we are blinking. If not, use 1HZ polling */
1128         timeoff = HZ;
1129         freq = (val & LED_OVER_FREQ_MASK) >> LED_OVER_FREQ_SHIFT;
1130
1131         if (freq) {
1132                 /* For blink, set each phase from one nybble of val */
1133                 ppd->led_override_vals[0] = val & 0xF;
1134                 ppd->led_override_vals[1] = (val >> 4) & 0xF;
1135                 timeoff = (HZ << 4)/freq;
1136         } else {
1137                 /* Non-blink set both phases the same. */
1138                 ppd->led_override_vals[0] = val & 0xF;
1139                 ppd->led_override_vals[1] = val & 0xF;
1140         }
1141         ppd->led_override_timeoff = timeoff;
1142
1143         /*
1144          * If the timer has not already been started, do so. Use a "quick"
1145          * timeout so the function will be called soon, to look at our request.
1146          */
1147         if (atomic_inc_return(&ppd->led_override_timer_active) == 1) {
1148                 /* Need to start timer */
1149                 setup_timer(&ppd->led_override_timer, run_led_override,
1150                                 (unsigned long)ppd);
1151
1152                 ppd->led_override_timer.expires = jiffies + 1;
1153                 add_timer(&ppd->led_override_timer);
1154         } else {
1155                 if (ppd->led_override_vals[0] || ppd->led_override_vals[1])
1156                         mod_timer(&ppd->led_override_timer, jiffies + 1);
1157                 atomic_dec(&ppd->led_override_timer_active);
1158         }
1159 }
1160
1161 /**
1162  * hfi1_reset_device - reset the chip if possible
1163  * @unit: the device to reset
1164  *
1165  * Whether or not reset is successful, we attempt to re-initialize the chip
1166  * (that is, much like a driver unload/reload).  We clear the INITTED flag
1167  * so that the various entry points will fail until we reinitialize.  For
1168  * now, we only allow this if no user contexts are open that use chip resources
1169  */
1170 int hfi1_reset_device(int unit)
1171 {
1172         int ret, i;
1173         struct hfi1_devdata *dd = hfi1_lookup(unit);
1174         struct hfi1_pportdata *ppd;
1175         unsigned long flags;
1176         int pidx;
1177
1178         if (!dd) {
1179                 ret = -ENODEV;
1180                 goto bail;
1181         }
1182
1183         dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1184
1185         if (!dd->kregbase || !(dd->flags & HFI1_PRESENT)) {
1186                 dd_dev_info(dd,
1187                         "Invalid unit number %u or not initialized or not present\n",
1188                         unit);
1189                 ret = -ENXIO;
1190                 goto bail;
1191         }
1192
1193         spin_lock_irqsave(&dd->uctxt_lock, flags);
1194         if (dd->rcd)
1195                 for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) {
1196                         if (!dd->rcd[i] || !dd->rcd[i]->cnt)
1197                                 continue;
1198                         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1199                         ret = -EBUSY;
1200                         goto bail;
1201                 }
1202         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1203
1204         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1205                 ppd = dd->pport + pidx;
1206                 if (atomic_read(&ppd->led_override_timer_active)) {
1207                         /* Need to stop LED timer, _then_ shut off LEDs */
1208                         del_timer_sync(&ppd->led_override_timer);
1209                         atomic_set(&ppd->led_override_timer_active, 0);
1210                 }
1211
1212                 /* Shut off LEDs after we are sure timer is not running */
1213                 ppd->led_override = LED_OVER_BOTH_OFF;
1214         }
1215         if (dd->flags & HFI1_HAS_SEND_DMA)
1216                 sdma_exit(dd);
1217
1218         hfi1_reset_cpu_counters(dd);
1219
1220         ret = hfi1_init(dd, 1);
1221
1222         if (ret)
1223                 dd_dev_err(dd,
1224                         "Reinitialize unit %u after reset failed with %d\n",
1225                         unit, ret);
1226         else
1227                 dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1228                         unit);
1229
1230 bail:
1231         return ret;
1232 }
1233
1234 void handle_eflags(struct hfi1_packet *packet)
1235 {
1236         struct hfi1_ctxtdata *rcd = packet->rcd;
1237         u32 rte = rhf_rcv_type_err(packet->rhf);
1238
1239         rcv_hdrerr(rcd, rcd->ppd, packet);
1240         if (rhf_err_flags(packet->rhf))
1241                 dd_dev_err(rcd->dd,
1242                            "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n",
1243                            rcd->ctxt, packet->rhf,
1244                            packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1245                            packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1246                            packet->rhf & RHF_DC_ERR ? "dc " : "",
1247                            packet->rhf & RHF_TID_ERR ? "tid " : "",
1248                            packet->rhf & RHF_LEN_ERR ? "len " : "",
1249                            packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1250                            packet->rhf & RHF_VCRC_ERR ? "vcrc " : "",
1251                            packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1252                            rte);
1253 }
1254
1255 /*
1256  * The following functions are called by the interrupt handler. They are type
1257  * specific handlers for each packet type.
1258  */
1259 int process_receive_ib(struct hfi1_packet *packet)
1260 {
1261         trace_hfi1_rcvhdr(packet->rcd->ppd->dd,
1262                           packet->rcd->ctxt,
1263                           rhf_err_flags(packet->rhf),
1264                           RHF_RCV_TYPE_IB,
1265                           packet->hlen,
1266                           packet->tlen,
1267                           packet->updegr,
1268                           rhf_egr_index(packet->rhf));
1269
1270         if (unlikely(rhf_err_flags(packet->rhf))) {
1271                 handle_eflags(packet);
1272                 return RHF_RCV_CONTINUE;
1273         }
1274
1275         hfi1_ib_rcv(packet);
1276         return RHF_RCV_CONTINUE;
1277 }
1278
1279 int process_receive_bypass(struct hfi1_packet *packet)
1280 {
1281         if (unlikely(rhf_err_flags(packet->rhf)))
1282                 handle_eflags(packet);
1283
1284         dd_dev_err(packet->rcd->dd,
1285            "Bypass packets are not supported in normal operation. Dropping\n");
1286         return RHF_RCV_CONTINUE;
1287 }
1288
1289 int process_receive_error(struct hfi1_packet *packet)
1290 {
1291         handle_eflags(packet);
1292
1293         if (unlikely(rhf_err_flags(packet->rhf)))
1294                 dd_dev_err(packet->rcd->dd,
1295                            "Unhandled error packet received. Dropping.\n");
1296
1297         return RHF_RCV_CONTINUE;
1298 }
1299
1300 int kdeth_process_expected(struct hfi1_packet *packet)
1301 {
1302         if (unlikely(rhf_err_flags(packet->rhf)))
1303                 handle_eflags(packet);
1304
1305         dd_dev_err(packet->rcd->dd,
1306                    "Unhandled expected packet received. Dropping.\n");
1307         return RHF_RCV_CONTINUE;
1308 }
1309
1310 int kdeth_process_eager(struct hfi1_packet *packet)
1311 {
1312         if (unlikely(rhf_err_flags(packet->rhf)))
1313                 handle_eflags(packet);
1314
1315         dd_dev_err(packet->rcd->dd,
1316                    "Unhandled eager packet received. Dropping.\n");
1317         return RHF_RCV_CONTINUE;
1318 }
1319
1320 int process_receive_invalid(struct hfi1_packet *packet)
1321 {
1322         dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1323                 rhf_rcv_type(packet->rhf));
1324         return RHF_RCV_CONTINUE;
1325 }