]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/staging/rdma/hfi1/init.c
4a79744421547a0786165870d31e6478d553799b
[karo-tx-linux.git] / drivers / staging / rdma / hfi1 / init.c
1 /*
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2015 Intel Corporation.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * BSD LICENSE
20  *
21  * Copyright(c) 2015 Intel Corporation.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  *
27  *  - Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  *  - Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in
31  *    the documentation and/or other materials provided with the
32  *    distribution.
33  *  - Neither the name of Intel Corporation nor the names of its
34  *    contributors may be used to endorse or promote products derived
35  *    from this software without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48  *
49  */
50
51 #include <linux/pci.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/delay.h>
55 #include <linux/idr.h>
56 #include <linux/module.h>
57 #include <linux/printk.h>
58 #include <linux/hrtimer.h>
59
60 #include "hfi.h"
61 #include "device.h"
62 #include "common.h"
63 #include "trace.h"
64 #include "mad.h"
65 #include "sdma.h"
66 #include "debugfs.h"
67 #include "verbs.h"
68
69 #undef pr_fmt
70 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
71
72 /*
73  * min buffers we want to have per context, after driver
74  */
75 #define HFI1_MIN_USER_CTXT_BUFCNT 7
76
77 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
78 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
79 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
80
81 /*
82  * Number of user receive contexts we are configured to use (to allow for more
83  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
84  */
85 uint num_rcv_contexts;
86 module_param_named(num_rcv_contexts, num_rcv_contexts, uint, S_IRUGO);
87 MODULE_PARM_DESC(
88         num_rcv_contexts, "Set max number of user receive contexts to use");
89
90 u8 krcvqs[RXE_NUM_DATA_VL];
91 int krcvqsset;
92 module_param_array(krcvqs, byte, &krcvqsset, S_IRUGO);
93 MODULE_PARM_DESC(krcvqs, "Array of the number of kernel receive queues by VL");
94
95 /* computed based on above array */
96 unsigned n_krcvqs;
97
98 static unsigned hfi1_rcvarr_split = 25;
99 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
100 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
101
102 static uint eager_buffer_size = (2 << 20); /* 2MB */
103 module_param(eager_buffer_size, uint, S_IRUGO);
104 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 2MB");
105
106 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
107 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
108 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
109
110 static uint hfi1_hdrq_entsize = 32;
111 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
112 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
113
114 unsigned int user_credit_return_threshold = 33; /* default is 33% */
115 module_param(user_credit_return_threshold, uint, S_IRUGO);
116 MODULE_PARM_DESC(user_credit_return_theshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
117
118 static inline u64 encode_rcv_header_entry_size(u16);
119
120 static struct idr hfi1_unit_table;
121 u32 hfi1_cpulist_count;
122 unsigned long *hfi1_cpulist;
123
124 /*
125  * Common code for creating the receive context array.
126  */
127 int hfi1_create_ctxts(struct hfi1_devdata *dd)
128 {
129         unsigned i;
130         int ret;
131         int local_node_id = pcibus_to_node(dd->pcidev->bus);
132
133         if (local_node_id < 0)
134                 local_node_id = numa_node_id();
135         dd->assigned_node_id = local_node_id;
136
137         dd->rcd = kcalloc(dd->num_rcv_contexts, sizeof(*dd->rcd), GFP_KERNEL);
138         if (!dd->rcd)
139                 goto nomem;
140
141         /* create one or more kernel contexts */
142         for (i = 0; i < dd->first_user_ctxt; ++i) {
143                 struct hfi1_pportdata *ppd;
144                 struct hfi1_ctxtdata *rcd;
145
146                 ppd = dd->pport + (i % dd->num_pports);
147                 rcd = hfi1_create_ctxtdata(ppd, i);
148                 if (!rcd) {
149                         dd_dev_err(dd,
150                                 "Unable to allocate kernel receive context, failing\n");
151                         goto nomem;
152                 }
153                 /*
154                  * Set up the kernel context flags here and now because they
155                  * use default values for all receive side memories.  User
156                  * contexts will be handled as they are created.
157                  */
158                 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
159                         HFI1_CAP_KGET(NODROP_RHQ_FULL) |
160                         HFI1_CAP_KGET(NODROP_EGR_FULL) |
161                         HFI1_CAP_KGET(DMA_RTAIL);
162                 rcd->seq_cnt = 1;
163
164                 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
165                 if (!rcd->sc) {
166                         dd_dev_err(dd,
167                                 "Unable to allocate kernel send context, failing\n");
168                         dd->rcd[rcd->ctxt] = NULL;
169                         hfi1_free_ctxtdata(dd, rcd);
170                         goto nomem;
171                 }
172
173                 ret = hfi1_init_ctxt(rcd->sc);
174                 if (ret < 0) {
175                         dd_dev_err(dd,
176                                    "Failed to setup kernel receive context, failing\n");
177                         sc_free(rcd->sc);
178                         dd->rcd[rcd->ctxt] = NULL;
179                         hfi1_free_ctxtdata(dd, rcd);
180                         ret = -EFAULT;
181                         goto bail;
182                 }
183         }
184
185         return 0;
186 nomem:
187         ret = -ENOMEM;
188 bail:
189         kfree(dd->rcd);
190         dd->rcd = NULL;
191         return ret;
192 }
193
194 /*
195  * Common code for user and kernel context setup.
196  */
197 struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt)
198 {
199         struct hfi1_devdata *dd = ppd->dd;
200         struct hfi1_ctxtdata *rcd;
201         unsigned kctxt_ngroups = 0;
202         u32 base;
203
204         if (dd->rcv_entries.nctxt_extra >
205             dd->num_rcv_contexts - dd->first_user_ctxt)
206                 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
207                                  (dd->num_rcv_contexts - dd->first_user_ctxt));
208         rcd = kzalloc(sizeof(*rcd), GFP_KERNEL);
209         if (rcd) {
210                 u32 rcvtids, max_entries;
211
212                 hfi1_cdbg(PROC, "setting up context %u\n", ctxt);
213
214                 INIT_LIST_HEAD(&rcd->qp_wait_list);
215                 rcd->ppd = ppd;
216                 rcd->dd = dd;
217                 rcd->cnt = 1;
218                 rcd->ctxt = ctxt;
219                 dd->rcd[ctxt] = rcd;
220                 rcd->numa_id = numa_node_id();
221                 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
222
223                 spin_lock_init(&rcd->exp_lock);
224
225                 /*
226                  * Calculate the context's RcvArray entry starting point.
227                  * We do this here because we have to take into account all
228                  * the RcvArray entries that previous context would have
229                  * taken and we have to account for any extra groups
230                  * assigned to the kernel or user contexts.
231                  */
232                 if (ctxt < dd->first_user_ctxt) {
233                         if (ctxt < kctxt_ngroups) {
234                                 base = ctxt * (dd->rcv_entries.ngroups + 1);
235                                 rcd->rcv_array_groups++;
236                         } else
237                                 base = kctxt_ngroups +
238                                         (ctxt * dd->rcv_entries.ngroups);
239                 } else {
240                         u16 ct = ctxt - dd->first_user_ctxt;
241
242                         base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
243                                 kctxt_ngroups);
244                         if (ct < dd->rcv_entries.nctxt_extra) {
245                                 base += ct * (dd->rcv_entries.ngroups + 1);
246                                 rcd->rcv_array_groups++;
247                         } else
248                                 base += dd->rcv_entries.nctxt_extra +
249                                         (ct * dd->rcv_entries.ngroups);
250                 }
251                 rcd->eager_base = base * dd->rcv_entries.group_size;
252
253                 /* Validate and initialize Rcv Hdr Q variables */
254                 if (rcvhdrcnt % HDRQ_INCREMENT) {
255                         dd_dev_err(dd,
256                                    "ctxt%u: header queue count %d must be divisible by %d\n",
257                                    rcd->ctxt, rcvhdrcnt, HDRQ_INCREMENT);
258                         goto bail;
259                 }
260                 rcd->rcvhdrq_cnt = rcvhdrcnt;
261                 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
262                 /*
263                  * Simple Eager buffer allocation: we have already pre-allocated
264                  * the number of RcvArray entry groups. Each ctxtdata structure
265                  * holds the number of groups for that context.
266                  *
267                  * To follow CSR requirements and maintain cacheline alignment,
268                  * make sure all sizes and bases are multiples of group_size.
269                  *
270                  * The expected entry count is what is left after assigning
271                  * eager.
272                  */
273                 max_entries = rcd->rcv_array_groups *
274                         dd->rcv_entries.group_size;
275                 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
276                 rcd->egrbufs.count = round_down(rcvtids,
277                                                 dd->rcv_entries.group_size);
278                 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
279                         dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
280                                    rcd->ctxt);
281                         rcd->egrbufs.count = MAX_EAGER_ENTRIES;
282                 }
283                 hfi1_cdbg(PROC,
284                           "ctxt%u: max Eager buffer RcvArray entries: %u\n",
285                           rcd->ctxt, rcd->egrbufs.count);
286
287                 /*
288                  * Allocate array that will hold the eager buffer accounting
289                  * data.
290                  * This will allocate the maximum possible buffer count based
291                  * on the value of the RcvArray split parameter.
292                  * The resulting value will be rounded down to the closest
293                  * multiple of dd->rcv_entries.group_size.
294                  */
295                 rcd->egrbufs.buffers = kcalloc(rcd->egrbufs.count,
296                                                sizeof(*rcd->egrbufs.buffers),
297                                                GFP_KERNEL);
298                 if (!rcd->egrbufs.buffers)
299                         goto bail;
300                 rcd->egrbufs.rcvtids = kcalloc(rcd->egrbufs.count,
301                                                sizeof(*rcd->egrbufs.rcvtids),
302                                                GFP_KERNEL);
303                 if (!rcd->egrbufs.rcvtids)
304                         goto bail;
305                 rcd->egrbufs.size = eager_buffer_size;
306                 /*
307                  * The size of the buffers programmed into the RcvArray
308                  * entries needs to be big enough to handle the highest
309                  * MTU supported.
310                  */
311                 if (rcd->egrbufs.size < hfi1_max_mtu) {
312                         rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
313                         hfi1_cdbg(PROC,
314                                   "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
315                                     rcd->ctxt, rcd->egrbufs.size);
316                 }
317                 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
318
319                 if (ctxt < dd->first_user_ctxt) { /* N/A for PSM contexts */
320                         rcd->opstats = kzalloc(sizeof(*rcd->opstats),
321                                 GFP_KERNEL);
322                         if (!rcd->opstats)
323                                 goto bail;
324                 }
325         }
326         return rcd;
327 bail:
328         kfree(rcd->opstats);
329         kfree(rcd->egrbufs.rcvtids);
330         kfree(rcd->egrbufs.buffers);
331         kfree(rcd);
332         return NULL;
333 }
334
335 /*
336  * Convert a receive header entry size that to the encoding used in the CSR.
337  *
338  * Return a zero if the given size is invalid.
339  */
340 static inline u64 encode_rcv_header_entry_size(u16 size)
341 {
342         /* there are only 3 valid receive header entry sizes */
343         if (size == 2)
344                 return 1;
345         if (size == 16)
346                 return 2;
347         else if (size == 32)
348                 return 4;
349         return 0; /* invalid */
350 }
351
352 /*
353  * Select the largest ccti value over all SLs to determine the intra-
354  * packet gap for the link.
355  *
356  * called with cca_timer_lock held (to protect access to cca_timer
357  * array), and rcu_read_lock() (to protect access to cc_state).
358  */
359 void set_link_ipg(struct hfi1_pportdata *ppd)
360 {
361         struct hfi1_devdata *dd = ppd->dd;
362         struct cc_state *cc_state;
363         int i;
364         u16 cce, ccti_limit, max_ccti = 0;
365         u16 shift, mult;
366         u64 src;
367         u32 current_egress_rate; /* Mbits /sec */
368         u32 max_pkt_time;
369         /*
370          * max_pkt_time is the maximum packet egress time in units
371          * of the fabric clock period 1/(805 MHz).
372          */
373
374         cc_state = get_cc_state(ppd);
375
376         if (cc_state == NULL)
377                 /*
378                  * This should _never_ happen - rcu_read_lock() is held,
379                  * and set_link_ipg() should not be called if cc_state
380                  * is NULL.
381                  */
382                 return;
383
384         for (i = 0; i < OPA_MAX_SLS; i++) {
385                 u16 ccti = ppd->cca_timer[i].ccti;
386
387                 if (ccti > max_ccti)
388                         max_ccti = ccti;
389         }
390
391         ccti_limit = cc_state->cct.ccti_limit;
392         if (max_ccti > ccti_limit)
393                 max_ccti = ccti_limit;
394
395         cce = cc_state->cct.entries[max_ccti].entry;
396         shift = (cce & 0xc000) >> 14;
397         mult = (cce & 0x3fff);
398
399         current_egress_rate = active_egress_rate(ppd);
400
401         max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
402
403         src = (max_pkt_time >> shift) * mult;
404
405         src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
406         src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
407
408         write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
409 }
410
411 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
412 {
413         struct cca_timer *cca_timer;
414         struct hfi1_pportdata *ppd;
415         int sl;
416         u16 ccti, ccti_timer, ccti_min;
417         struct cc_state *cc_state;
418         unsigned long flags;
419
420         cca_timer = container_of(t, struct cca_timer, hrtimer);
421         ppd = cca_timer->ppd;
422         sl = cca_timer->sl;
423
424         rcu_read_lock();
425
426         cc_state = get_cc_state(ppd);
427
428         if (cc_state == NULL) {
429                 rcu_read_unlock();
430                 return HRTIMER_NORESTART;
431         }
432
433         /*
434          * 1) decrement ccti for SL
435          * 2) calculate IPG for link (set_link_ipg())
436          * 3) restart timer, unless ccti is at min value
437          */
438
439         ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
440         ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
441
442         spin_lock_irqsave(&ppd->cca_timer_lock, flags);
443
444         ccti = cca_timer->ccti;
445
446         if (ccti > ccti_min) {
447                 cca_timer->ccti--;
448                 set_link_ipg(ppd);
449         }
450
451         spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
452
453         rcu_read_unlock();
454
455         if (ccti > ccti_min) {
456                 unsigned long nsec = 1024 * ccti_timer;
457                 /* ccti_timer is in units of 1.024 usec */
458                 hrtimer_forward_now(t, ns_to_ktime(nsec));
459                 return HRTIMER_RESTART;
460         }
461         return HRTIMER_NORESTART;
462 }
463
464 /*
465  * Common code for initializing the physical port structure.
466  */
467 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
468                          struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
469 {
470         int i, size;
471         uint default_pkey_idx;
472
473         ppd->dd = dd;
474         ppd->hw_pidx = hw_pidx;
475         ppd->port = port; /* IB port number, not index */
476
477         default_pkey_idx = 1;
478
479         ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
480         if (loopback) {
481                 hfi1_early_err(&pdev->dev,
482                                "Faking data partition 0x8001 in idx %u\n",
483                                !default_pkey_idx);
484                 ppd->pkeys[!default_pkey_idx] = 0x8001;
485         }
486
487         INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
488         INIT_WORK(&ppd->link_up_work, handle_link_up);
489         INIT_WORK(&ppd->link_down_work, handle_link_down);
490         INIT_WORK(&ppd->freeze_work, handle_freeze);
491         INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
492         INIT_WORK(&ppd->sma_message_work, handle_sma_message);
493         INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
494         mutex_init(&ppd->hls_lock);
495         spin_lock_init(&ppd->sdma_alllock);
496         spin_lock_init(&ppd->qsfp_info.qsfp_lock);
497
498         ppd->sm_trap_qp = 0x0;
499         ppd->sa_qp = 0x1;
500
501         ppd->hfi1_wq = NULL;
502
503         spin_lock_init(&ppd->cca_timer_lock);
504
505         for (i = 0; i < OPA_MAX_SLS; i++) {
506                 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
507                              HRTIMER_MODE_REL);
508                 ppd->cca_timer[i].ppd = ppd;
509                 ppd->cca_timer[i].sl = i;
510                 ppd->cca_timer[i].ccti = 0;
511                 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
512         }
513
514         ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
515
516         spin_lock_init(&ppd->cc_state_lock);
517         spin_lock_init(&ppd->cc_log_lock);
518         size = sizeof(struct cc_state);
519         RCU_INIT_POINTER(ppd->cc_state, kzalloc(size, GFP_KERNEL));
520         if (!rcu_dereference(ppd->cc_state))
521                 goto bail;
522         return;
523
524 bail:
525
526         hfi1_early_err(&pdev->dev,
527                        "Congestion Control Agent disabled for port %d\n", port);
528 }
529
530 /*
531  * Do initialization for device that is only needed on
532  * first detect, not on resets.
533  */
534 static int loadtime_init(struct hfi1_devdata *dd)
535 {
536         return 0;
537 }
538
539 /**
540  * init_after_reset - re-initialize after a reset
541  * @dd: the hfi1_ib device
542  *
543  * sanity check at least some of the values after reset, and
544  * ensure no receive or transmit (explicitly, in case reset
545  * failed
546  */
547 static int init_after_reset(struct hfi1_devdata *dd)
548 {
549         int i;
550
551         /*
552          * Ensure chip does no sends or receives, tail updates, or
553          * pioavail updates while we re-initialize.  This is mostly
554          * for the driver data structures, not chip registers.
555          */
556         for (i = 0; i < dd->num_rcv_contexts; i++)
557                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
558                                   HFI1_RCVCTRL_INTRAVAIL_DIS |
559                                   HFI1_RCVCTRL_TAILUPD_DIS, i);
560         pio_send_control(dd, PSC_GLOBAL_DISABLE);
561         for (i = 0; i < dd->num_send_contexts; i++)
562                 sc_disable(dd->send_contexts[i].sc);
563
564         return 0;
565 }
566
567 static void enable_chip(struct hfi1_devdata *dd)
568 {
569         u32 rcvmask;
570         u32 i;
571
572         /* enable PIO send */
573         pio_send_control(dd, PSC_GLOBAL_ENABLE);
574
575         /*
576          * Enable kernel ctxts' receive and receive interrupt.
577          * Other ctxts done as user opens and initializes them.
578          */
579         rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
580         for (i = 0; i < dd->first_user_ctxt; ++i) {
581                 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
582                         HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
583                 if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR))
584                         rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
585                 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL))
586                         rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
587                 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL))
588                         rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
589                 hfi1_rcvctrl(dd, rcvmask, i);
590                 sc_enable(dd->rcd[i]->sc);
591         }
592 }
593
594 /**
595  * create_workqueues - create per port workqueues
596  * @dd: the hfi1_ib device
597  */
598 static int create_workqueues(struct hfi1_devdata *dd)
599 {
600         int pidx;
601         struct hfi1_pportdata *ppd;
602
603         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
604                 ppd = dd->pport + pidx;
605                 if (!ppd->hfi1_wq) {
606                         char wq_name[8]; /* 3 + 2 + 1 + 1 + 1 */
607
608                         snprintf(wq_name, sizeof(wq_name), "hfi%d_%d",
609                                  dd->unit, pidx);
610                         ppd->hfi1_wq =
611                                 create_singlethread_workqueue(wq_name);
612                         if (!ppd->hfi1_wq)
613                                 goto wq_error;
614                 }
615         }
616         return 0;
617 wq_error:
618         pr_err("create_singlethread_workqueue failed for port %d\n",
619                 pidx + 1);
620         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
621                 ppd = dd->pport + pidx;
622                 if (ppd->hfi1_wq) {
623                         destroy_workqueue(ppd->hfi1_wq);
624                         ppd->hfi1_wq = NULL;
625                 }
626         }
627         return -ENOMEM;
628 }
629
630 /**
631  * hfi1_init - do the actual initialization sequence on the chip
632  * @dd: the hfi1_ib device
633  * @reinit: re-initializing, so don't allocate new memory
634  *
635  * Do the actual initialization sequence on the chip.  This is done
636  * both from the init routine called from the PCI infrastructure, and
637  * when we reset the chip, or detect that it was reset internally,
638  * or it's administratively re-enabled.
639  *
640  * Memory allocation here and in called routines is only done in
641  * the first case (reinit == 0).  We have to be careful, because even
642  * without memory allocation, we need to re-write all the chip registers
643  * TIDs, etc. after the reset or enable has completed.
644  */
645 int hfi1_init(struct hfi1_devdata *dd, int reinit)
646 {
647         int ret = 0, pidx, lastfail = 0;
648         unsigned i, len;
649         struct hfi1_ctxtdata *rcd;
650         struct hfi1_pportdata *ppd;
651
652         /* Set up recv low level handlers */
653         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
654                                                 kdeth_process_expected;
655         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
656                                                 kdeth_process_eager;
657         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
658         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
659                                                 process_receive_error;
660         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
661                                                 process_receive_bypass;
662         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
663                                                 process_receive_invalid;
664         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
665                                                 process_receive_invalid;
666         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
667                                                 process_receive_invalid;
668         dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
669
670         /* Set up send low level handlers */
671         dd->process_pio_send = hfi1_verbs_send_pio;
672         dd->process_dma_send = hfi1_verbs_send_dma;
673         dd->pio_inline_send = pio_copy;
674
675         if (is_a0(dd)) {
676                 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
677                 dd->do_drop = 1;
678         } else {
679                 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
680                 dd->do_drop = 0;
681         }
682
683         /* make sure the link is not "up" */
684         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
685                 ppd = dd->pport + pidx;
686                 ppd->linkup = 0;
687         }
688
689         if (reinit)
690                 ret = init_after_reset(dd);
691         else
692                 ret = loadtime_init(dd);
693         if (ret)
694                 goto done;
695
696         /* dd->rcd can be NULL if early initialization failed */
697         for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) {
698                 /*
699                  * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
700                  * re-init, the simplest way to handle this is to free
701                  * existing, and re-allocate.
702                  * Need to re-create rest of ctxt 0 ctxtdata as well.
703                  */
704                 rcd = dd->rcd[i];
705                 if (!rcd)
706                         continue;
707
708                 rcd->do_interrupt = &handle_receive_interrupt;
709
710                 lastfail = hfi1_create_rcvhdrq(dd, rcd);
711                 if (!lastfail)
712                         lastfail = hfi1_setup_eagerbufs(rcd);
713                 if (lastfail)
714                         dd_dev_err(dd,
715                                 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
716         }
717         if (lastfail)
718                 ret = lastfail;
719
720         /* Allocate enough memory for user event notification. */
721         len = ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
722                     sizeof(*dd->events), PAGE_SIZE);
723         dd->events = vmalloc_user(len);
724         if (!dd->events)
725                 dd_dev_err(dd, "Failed to allocate user events page\n");
726         /*
727          * Allocate a page for device and port status.
728          * Page will be shared amongst all user processes.
729          */
730         dd->status = vmalloc_user(PAGE_SIZE);
731         if (!dd->status)
732                 dd_dev_err(dd, "Failed to allocate dev status page\n");
733         else
734                 dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
735                                              sizeof(dd->status->freezemsg));
736         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
737                 ppd = dd->pport + pidx;
738                 if (dd->status)
739                         /* Currently, we only have one port */
740                         ppd->statusp = &dd->status->port;
741
742                 set_mtu(ppd);
743         }
744
745         /* enable chip even if we have an error, so we can debug cause */
746         enable_chip(dd);
747
748         ret = hfi1_cq_init(dd);
749 done:
750         /*
751          * Set status even if port serdes is not initialized
752          * so that diags will work.
753          */
754         if (dd->status)
755                 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
756                         HFI1_STATUS_INITTED;
757         if (!ret) {
758                 /* enable all interrupts from the chip */
759                 set_intr_state(dd, 1);
760
761                 /* chip is OK for user apps; mark it as initialized */
762                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
763                         ppd = dd->pport + pidx;
764
765                         /* initialize the qsfp if it exists
766                          * Requires interrupts to be enabled so we are notified
767                          * when the QSFP completes reset, and has
768                          * to be done before bringing up the SERDES
769                          */
770                         init_qsfp(ppd);
771
772                         /* start the serdes - must be after interrupts are
773                            enabled so we are notified when the link goes up */
774                         lastfail = bringup_serdes(ppd);
775                         if (lastfail)
776                                 dd_dev_info(dd,
777                                         "Failed to bring up port %u\n",
778                                         ppd->port);
779
780                         /*
781                          * Set status even if port serdes is not initialized
782                          * so that diags will work.
783                          */
784                         if (ppd->statusp)
785                                 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
786                                                         HFI1_STATUS_INITTED;
787                         if (!ppd->link_speed_enabled)
788                                 continue;
789                 }
790         }
791
792         /* if ret is non-zero, we probably should do some cleanup here... */
793         return ret;
794 }
795
796 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
797 {
798         return idr_find(&hfi1_unit_table, unit);
799 }
800
801 struct hfi1_devdata *hfi1_lookup(int unit)
802 {
803         struct hfi1_devdata *dd;
804         unsigned long flags;
805
806         spin_lock_irqsave(&hfi1_devs_lock, flags);
807         dd = __hfi1_lookup(unit);
808         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
809
810         return dd;
811 }
812
813 /*
814  * Stop the timers during unit shutdown, or after an error late
815  * in initialization.
816  */
817 static void stop_timers(struct hfi1_devdata *dd)
818 {
819         struct hfi1_pportdata *ppd;
820         int pidx;
821
822         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
823                 ppd = dd->pport + pidx;
824                 if (ppd->led_override_timer.data) {
825                         del_timer_sync(&ppd->led_override_timer);
826                         atomic_set(&ppd->led_override_timer_active, 0);
827                 }
828         }
829 }
830
831 /**
832  * shutdown_device - shut down a device
833  * @dd: the hfi1_ib device
834  *
835  * This is called to make the device quiet when we are about to
836  * unload the driver, and also when the device is administratively
837  * disabled.   It does not free any data structures.
838  * Everything it does has to be setup again by hfi1_init(dd, 1)
839  */
840 static void shutdown_device(struct hfi1_devdata *dd)
841 {
842         struct hfi1_pportdata *ppd;
843         unsigned pidx;
844         int i;
845
846         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
847                 ppd = dd->pport + pidx;
848
849                 ppd->linkup = 0;
850                 if (ppd->statusp)
851                         *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
852                                            HFI1_STATUS_IB_READY);
853         }
854         dd->flags &= ~HFI1_INITTED;
855
856         /* mask interrupts, but not errors */
857         set_intr_state(dd, 0);
858
859         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
860                 ppd = dd->pport + pidx;
861                 for (i = 0; i < dd->num_rcv_contexts; i++)
862                         hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
863                                           HFI1_RCVCTRL_CTXT_DIS |
864                                           HFI1_RCVCTRL_INTRAVAIL_DIS |
865                                           HFI1_RCVCTRL_PKEY_DIS |
866                                           HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i);
867                 /*
868                  * Gracefully stop all sends allowing any in progress to
869                  * trickle out first.
870                  */
871                 for (i = 0; i < dd->num_send_contexts; i++)
872                         sc_flush(dd->send_contexts[i].sc);
873         }
874
875         /*
876          * Enough for anything that's going to trickle out to have actually
877          * done so.
878          */
879         udelay(20);
880
881         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
882                 ppd = dd->pport + pidx;
883
884                 /* disable all contexts */
885                 for (i = 0; i < dd->num_send_contexts; i++)
886                         sc_disable(dd->send_contexts[i].sc);
887                 /* disable the send device */
888                 pio_send_control(dd, PSC_GLOBAL_DISABLE);
889
890                 /*
891                  * Clear SerdesEnable.
892                  * We can't count on interrupts since we are stopping.
893                  */
894                 hfi1_quiet_serdes(ppd);
895
896                 if (ppd->hfi1_wq) {
897                         destroy_workqueue(ppd->hfi1_wq);
898                         ppd->hfi1_wq = NULL;
899                 }
900         }
901         sdma_exit(dd);
902 }
903
904 /**
905  * hfi1_free_ctxtdata - free a context's allocated data
906  * @dd: the hfi1_ib device
907  * @rcd: the ctxtdata structure
908  *
909  * free up any allocated data for a context
910  * This should not touch anything that would affect a simultaneous
911  * re-allocation of context data, because it is called after hfi1_mutex
912  * is released (and can be called from reinit as well).
913  * It should never change any chip state, or global driver state.
914  */
915 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
916 {
917         unsigned e;
918
919         if (!rcd)
920                 return;
921
922         if (rcd->rcvhdrq) {
923                 dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
924                                   rcd->rcvhdrq, rcd->rcvhdrq_phys);
925                 rcd->rcvhdrq = NULL;
926                 if (rcd->rcvhdrtail_kvaddr) {
927                         dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
928                                           (void *)rcd->rcvhdrtail_kvaddr,
929                                           rcd->rcvhdrqtailaddr_phys);
930                         rcd->rcvhdrtail_kvaddr = NULL;
931                 }
932         }
933
934         /* all the RcvArray entries should have been cleared by now */
935         kfree(rcd->egrbufs.rcvtids);
936
937         for (e = 0; e < rcd->egrbufs.alloced; e++) {
938                 if (rcd->egrbufs.buffers[e].phys)
939                         dma_free_coherent(&dd->pcidev->dev,
940                                           rcd->egrbufs.buffers[e].len,
941                                           rcd->egrbufs.buffers[e].addr,
942                                           rcd->egrbufs.buffers[e].phys);
943         }
944         kfree(rcd->egrbufs.buffers);
945
946         sc_free(rcd->sc);
947         vfree(rcd->physshadow);
948         vfree(rcd->tid_pg_list);
949         vfree(rcd->user_event_mask);
950         vfree(rcd->subctxt_uregbase);
951         vfree(rcd->subctxt_rcvegrbuf);
952         vfree(rcd->subctxt_rcvhdr_base);
953         kfree(rcd->tidusemap);
954         kfree(rcd->opstats);
955         kfree(rcd);
956 }
957
958 void hfi1_free_devdata(struct hfi1_devdata *dd)
959 {
960         unsigned long flags;
961
962         spin_lock_irqsave(&hfi1_devs_lock, flags);
963         idr_remove(&hfi1_unit_table, dd->unit);
964         list_del(&dd->list);
965         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
966         hfi1_dbg_ibdev_exit(&dd->verbs_dev);
967         rcu_barrier(); /* wait for rcu callbacks to complete */
968         free_percpu(dd->int_counter);
969         free_percpu(dd->rcv_limit);
970         ib_dealloc_device(&dd->verbs_dev.ibdev);
971 }
972
973 /*
974  * Allocate our primary per-unit data structure.  Must be done via verbs
975  * allocator, because the verbs cleanup process both does cleanup and
976  * free of the data structure.
977  * "extra" is for chip-specific data.
978  *
979  * Use the idr mechanism to get a unit number for this unit.
980  */
981 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
982 {
983         unsigned long flags;
984         struct hfi1_devdata *dd;
985         int ret;
986
987         dd = (struct hfi1_devdata *)ib_alloc_device(sizeof(*dd) + extra);
988         if (!dd)
989                 return ERR_PTR(-ENOMEM);
990         /* extra is * number of ports */
991         dd->num_pports = extra / sizeof(struct hfi1_pportdata);
992         dd->pport = (struct hfi1_pportdata *)(dd + 1);
993
994         INIT_LIST_HEAD(&dd->list);
995         dd->node = dev_to_node(&pdev->dev);
996         if (dd->node < 0)
997                 dd->node = 0;
998         idr_preload(GFP_KERNEL);
999         spin_lock_irqsave(&hfi1_devs_lock, flags);
1000
1001         ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1002         if (ret >= 0) {
1003                 dd->unit = ret;
1004                 list_add(&dd->list, &hfi1_dev_list);
1005         }
1006
1007         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1008         idr_preload_end();
1009
1010         if (ret < 0) {
1011                 hfi1_early_err(&pdev->dev,
1012                                "Could not allocate unit ID: error %d\n", -ret);
1013                 goto bail;
1014         }
1015         /*
1016          * Initialize all locks for the device. This needs to be as early as
1017          * possible so locks are usable.
1018          */
1019         spin_lock_init(&dd->sc_lock);
1020         spin_lock_init(&dd->sendctrl_lock);
1021         spin_lock_init(&dd->rcvctrl_lock);
1022         spin_lock_init(&dd->uctxt_lock);
1023         spin_lock_init(&dd->hfi1_diag_trans_lock);
1024         spin_lock_init(&dd->sc_init_lock);
1025         spin_lock_init(&dd->dc8051_lock);
1026         spin_lock_init(&dd->dc8051_memlock);
1027         mutex_init(&dd->qsfp_i2c_mutex);
1028         seqlock_init(&dd->sc2vl_lock);
1029         spin_lock_init(&dd->sde_map_lock);
1030         init_waitqueue_head(&dd->event_queue);
1031
1032         dd->int_counter = alloc_percpu(u64);
1033         if (!dd->int_counter) {
1034                 ret = -ENOMEM;
1035                 hfi1_early_err(&pdev->dev,
1036                                "Could not allocate per-cpu int_counter\n");
1037                 goto bail;
1038         }
1039
1040         dd->rcv_limit = alloc_percpu(u64);
1041         if (!dd->rcv_limit) {
1042                 ret = -ENOMEM;
1043                 hfi1_early_err(&pdev->dev,
1044                                "Could not allocate per-cpu rcv_limit\n");
1045                 goto bail;
1046         }
1047
1048         if (!hfi1_cpulist_count) {
1049                 u32 count = num_online_cpus();
1050
1051                 hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long),
1052                                        GFP_KERNEL);
1053                 if (hfi1_cpulist)
1054                         hfi1_cpulist_count = count;
1055                 else
1056                         hfi1_early_err(
1057                         &pdev->dev,
1058                         "Could not alloc cpulist info, cpu affinity might be wrong\n");
1059         }
1060         hfi1_dbg_ibdev_init(&dd->verbs_dev);
1061         return dd;
1062
1063 bail:
1064         if (!list_empty(&dd->list))
1065                 list_del_init(&dd->list);
1066         ib_dealloc_device(&dd->verbs_dev.ibdev);
1067         return ERR_PTR(ret);
1068 }
1069
1070 /*
1071  * Called from freeze mode handlers, and from PCI error
1072  * reporting code.  Should be paranoid about state of
1073  * system and data structures.
1074  */
1075 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1076 {
1077         if (dd->flags & HFI1_INITTED) {
1078                 u32 pidx;
1079
1080                 dd->flags &= ~HFI1_INITTED;
1081                 if (dd->pport)
1082                         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1083                                 struct hfi1_pportdata *ppd;
1084
1085                                 ppd = dd->pport + pidx;
1086                                 if (dd->flags & HFI1_PRESENT)
1087                                         set_link_state(ppd, HLS_DN_DISABLE);
1088
1089                                 if (ppd->statusp)
1090                                         *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1091                         }
1092         }
1093
1094         /*
1095          * Mark as having had an error for driver, and also
1096          * for /sys and status word mapped to user programs.
1097          * This marks unit as not usable, until reset.
1098          */
1099         if (dd->status)
1100                 dd->status->dev |= HFI1_STATUS_HWERROR;
1101 }
1102
1103 static void remove_one(struct pci_dev *);
1104 static int init_one(struct pci_dev *, const struct pci_device_id *);
1105
1106 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1107 #define PFX DRIVER_NAME ": "
1108
1109 static const struct pci_device_id hfi1_pci_tbl[] = {
1110         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1111         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1112         { 0, }
1113 };
1114
1115 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1116
1117 static struct pci_driver hfi1_pci_driver = {
1118         .name = DRIVER_NAME,
1119         .probe = init_one,
1120         .remove = remove_one,
1121         .id_table = hfi1_pci_tbl,
1122         .err_handler = &hfi1_pci_err_handler,
1123 };
1124
1125 static void __init compute_krcvqs(void)
1126 {
1127         int i;
1128
1129         for (i = 0; i < krcvqsset; i++)
1130                 n_krcvqs += krcvqs[i];
1131 }
1132
1133 /*
1134  * Do all the generic driver unit- and chip-independent memory
1135  * allocation and initialization.
1136  */
1137 static int __init hfi1_mod_init(void)
1138 {
1139         int ret;
1140
1141         ret = dev_init();
1142         if (ret)
1143                 goto bail;
1144
1145         /* validate max MTU before any devices start */
1146         if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1147                 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1148                        hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1149                 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1150         }
1151         /* valid CUs run from 1-128 in powers of 2 */
1152         if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1153                 hfi1_cu = 1;
1154         /* valid credit return threshold is 0-100, variable is unsigned */
1155         if (user_credit_return_threshold > 100)
1156                 user_credit_return_threshold = 100;
1157
1158         compute_krcvqs();
1159         /* sanitize receive interrupt count, time must wait until after
1160            the hardware type is known */
1161         if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1162                 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1163         /* reject invalid combinations */
1164         if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1165                 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1166                 rcv_intr_count = 1;
1167         }
1168         if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1169                 /*
1170                  * Avoid indefinite packet delivery by requiring a timeout
1171                  * if count is > 1.
1172                  */
1173                 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1174                 rcv_intr_timeout = 1;
1175         }
1176         if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1177                 /*
1178                  * The dynamic algorithm expects a non-zero timeout
1179                  * and a count > 1.
1180                  */
1181                 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1182                 rcv_intr_dynamic = 0;
1183         }
1184
1185         /* sanitize link CRC options */
1186         link_crc_mask &= SUPPORTED_CRCS;
1187
1188         /*
1189          * These must be called before the driver is registered with
1190          * the PCI subsystem.
1191          */
1192         idr_init(&hfi1_unit_table);
1193
1194         hfi1_dbg_init();
1195         ret = pci_register_driver(&hfi1_pci_driver);
1196         if (ret < 0) {
1197                 pr_err("Unable to register driver: error %d\n", -ret);
1198                 goto bail_dev;
1199         }
1200         goto bail; /* all OK */
1201
1202 bail_dev:
1203         hfi1_dbg_exit();
1204         idr_destroy(&hfi1_unit_table);
1205         dev_cleanup();
1206 bail:
1207         return ret;
1208 }
1209
1210 module_init(hfi1_mod_init);
1211
1212 /*
1213  * Do the non-unit driver cleanup, memory free, etc. at unload.
1214  */
1215 static void __exit hfi1_mod_cleanup(void)
1216 {
1217         pci_unregister_driver(&hfi1_pci_driver);
1218         hfi1_dbg_exit();
1219         hfi1_cpulist_count = 0;
1220         kfree(hfi1_cpulist);
1221
1222         idr_destroy(&hfi1_unit_table);
1223         dispose_firmware();     /* asymmetric with obtain_firmware() */
1224         dev_cleanup();
1225 }
1226
1227 module_exit(hfi1_mod_cleanup);
1228
1229 /* this can only be called after a successful initialization */
1230 static void cleanup_device_data(struct hfi1_devdata *dd)
1231 {
1232         int ctxt;
1233         int pidx;
1234         struct hfi1_ctxtdata **tmp;
1235         unsigned long flags;
1236
1237         /* users can't do anything more with chip */
1238         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1239                 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1240                 struct cc_state *cc_state;
1241                 int i;
1242
1243                 if (ppd->statusp)
1244                         *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1245
1246                 for (i = 0; i < OPA_MAX_SLS; i++)
1247                         hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1248
1249                 spin_lock(&ppd->cc_state_lock);
1250                 cc_state = get_cc_state(ppd);
1251                 rcu_assign_pointer(ppd->cc_state, NULL);
1252                 spin_unlock(&ppd->cc_state_lock);
1253
1254                 if (cc_state)
1255                         call_rcu(&cc_state->rcu, cc_state_reclaim);
1256         }
1257
1258         free_credit_return(dd);
1259
1260         /*
1261          * Free any resources still in use (usually just kernel contexts)
1262          * at unload; we do for ctxtcnt, because that's what we allocate.
1263          * We acquire lock to be really paranoid that rcd isn't being
1264          * accessed from some interrupt-related code (that should not happen,
1265          * but best to be sure).
1266          */
1267         spin_lock_irqsave(&dd->uctxt_lock, flags);
1268         tmp = dd->rcd;
1269         dd->rcd = NULL;
1270         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1271         for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) {
1272                 struct hfi1_ctxtdata *rcd = tmp[ctxt];
1273
1274                 tmp[ctxt] = NULL; /* debugging paranoia */
1275                 if (rcd) {
1276                         hfi1_clear_tids(rcd);
1277                         hfi1_free_ctxtdata(dd, rcd);
1278                 }
1279         }
1280         kfree(tmp);
1281         /* must follow rcv context free - need to remove rcv's hooks */
1282         for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1283                 sc_free(dd->send_contexts[ctxt].sc);
1284         dd->num_send_contexts = 0;
1285         kfree(dd->send_contexts);
1286         dd->send_contexts = NULL;
1287         kfree(dd->boardname);
1288         vfree(dd->events);
1289         vfree(dd->status);
1290         hfi1_cq_exit(dd);
1291 }
1292
1293 /*
1294  * Clean up on unit shutdown, or error during unit load after
1295  * successful initialization.
1296  */
1297 static void postinit_cleanup(struct hfi1_devdata *dd)
1298 {
1299         hfi1_start_cleanup(dd);
1300
1301         hfi1_pcie_ddcleanup(dd);
1302         hfi1_pcie_cleanup(dd->pcidev);
1303
1304         cleanup_device_data(dd);
1305
1306         hfi1_free_devdata(dd);
1307 }
1308
1309 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1310 {
1311         int ret = 0, j, pidx, initfail;
1312         struct hfi1_devdata *dd = NULL;
1313
1314         /* First, lock the non-writable module parameters */
1315         HFI1_CAP_LOCK();
1316
1317         /* Validate some global module parameters */
1318         if (rcvhdrcnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1319                 hfi1_early_err(&pdev->dev, "Header queue  count too small\n");
1320                 ret = -EINVAL;
1321                 goto bail;
1322         }
1323         /* use the encoding function as a sanitization check */
1324         if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1325                 hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1326                                hfi1_hdrq_entsize);
1327                 goto bail;
1328         }
1329
1330         /* The receive eager buffer size must be set before the receive
1331          * contexts are created.
1332          *
1333          * Set the eager buffer size.  Validate that it falls in a range
1334          * allowed by the hardware - all powers of 2 between the min and
1335          * max.  The maximum valid MTU is within the eager buffer range
1336          * so we do not need to cap the max_mtu by an eager buffer size
1337          * setting.
1338          */
1339         if (eager_buffer_size) {
1340                 if (!is_power_of_2(eager_buffer_size))
1341                         eager_buffer_size =
1342                                 roundup_pow_of_two(eager_buffer_size);
1343                 eager_buffer_size =
1344                         clamp_val(eager_buffer_size,
1345                                   MIN_EAGER_BUFFER * 8,
1346                                   MAX_EAGER_BUFFER_TOTAL);
1347                 hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1348                                 eager_buffer_size);
1349         } else {
1350                 hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1351                 ret = -EINVAL;
1352                 goto bail;
1353         }
1354
1355         /* restrict value of hfi1_rcvarr_split */
1356         hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1357
1358         ret = hfi1_pcie_init(pdev, ent);
1359         if (ret)
1360                 goto bail;
1361
1362         /*
1363          * Do device-specific initialization, function table setup, dd
1364          * allocation, etc.
1365          */
1366         switch (ent->device) {
1367         case PCI_DEVICE_ID_INTEL0:
1368         case PCI_DEVICE_ID_INTEL1:
1369                 dd = hfi1_init_dd(pdev, ent);
1370                 break;
1371         default:
1372                 hfi1_early_err(&pdev->dev,
1373                                "Failing on unknown Intel deviceid 0x%x\n",
1374                                ent->device);
1375                 ret = -ENODEV;
1376         }
1377
1378         if (IS_ERR(dd))
1379                 ret = PTR_ERR(dd);
1380         if (ret)
1381                 goto clean_bail; /* error already printed */
1382
1383         ret = create_workqueues(dd);
1384         if (ret)
1385                 goto clean_bail;
1386
1387         /* do the generic initialization */
1388         initfail = hfi1_init(dd, 0);
1389
1390         ret = hfi1_register_ib_device(dd);
1391
1392         /*
1393          * Now ready for use.  this should be cleared whenever we
1394          * detect a reset, or initiate one.  If earlier failure,
1395          * we still create devices, so diags, etc. can be used
1396          * to determine cause of problem.
1397          */
1398         if (!initfail && !ret)
1399                 dd->flags |= HFI1_INITTED;
1400
1401         j = hfi1_device_create(dd);
1402         if (j)
1403                 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1404
1405         if (initfail || ret) {
1406                 stop_timers(dd);
1407                 flush_workqueue(ib_wq);
1408                 for (pidx = 0; pidx < dd->num_pports; ++pidx)
1409                         hfi1_quiet_serdes(dd->pport + pidx);
1410                 if (!j)
1411                         hfi1_device_remove(dd);
1412                 if (!ret)
1413                         hfi1_unregister_ib_device(dd);
1414                 postinit_cleanup(dd);
1415                 if (initfail)
1416                         ret = initfail;
1417                 goto bail;      /* everything already cleaned */
1418         }
1419
1420         sdma_start(dd);
1421
1422         return 0;
1423
1424 clean_bail:
1425         hfi1_pcie_cleanup(pdev);
1426 bail:
1427         return ret;
1428 }
1429
1430 static void remove_one(struct pci_dev *pdev)
1431 {
1432         struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1433
1434         /* unregister from IB core */
1435         hfi1_unregister_ib_device(dd);
1436
1437         /*
1438          * Disable the IB link, disable interrupts on the device,
1439          * clear dma engines, etc.
1440          */
1441         shutdown_device(dd);
1442
1443         stop_timers(dd);
1444
1445         /* wait until all of our (qsfp) queue_work() calls complete */
1446         flush_workqueue(ib_wq);
1447
1448         hfi1_device_remove(dd);
1449
1450         postinit_cleanup(dd);
1451 }
1452
1453 /**
1454  * hfi1_create_rcvhdrq - create a receive header queue
1455  * @dd: the hfi1_ib device
1456  * @rcd: the context data
1457  *
1458  * This must be contiguous memory (from an i/o perspective), and must be
1459  * DMA'able (which means for some systems, it will go through an IOMMU,
1460  * or be forced into a low address range).
1461  */
1462 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1463 {
1464         unsigned amt;
1465         u64 reg;
1466
1467         if (!rcd->rcvhdrq) {
1468                 dma_addr_t phys_hdrqtail;
1469                 gfp_t gfp_flags;
1470
1471                 /*
1472                  * rcvhdrqentsize is in DWs, so we have to convert to bytes
1473                  * (* sizeof(u32)).
1474                  */
1475                 amt = ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1476                             sizeof(u32), PAGE_SIZE);
1477
1478                 gfp_flags = (rcd->ctxt >= dd->first_user_ctxt) ?
1479                         GFP_USER : GFP_KERNEL;
1480                 rcd->rcvhdrq = dma_zalloc_coherent(
1481                         &dd->pcidev->dev, amt, &rcd->rcvhdrq_phys,
1482                         gfp_flags | __GFP_COMP);
1483
1484                 if (!rcd->rcvhdrq) {
1485                         dd_dev_err(dd,
1486                                 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1487                                 amt, rcd->ctxt);
1488                         goto bail;
1489                 }
1490
1491                 /* Event mask is per device now and is in hfi1_devdata */
1492                 /*if (rcd->ctxt >= dd->first_user_ctxt) {
1493                         rcd->user_event_mask = vmalloc_user(PAGE_SIZE);
1494                         if (!rcd->user_event_mask)
1495                                 goto bail_free_hdrq;
1496                                 }*/
1497
1498                 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1499                         rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1500                                 &dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail,
1501                                 gfp_flags);
1502                         if (!rcd->rcvhdrtail_kvaddr)
1503                                 goto bail_free;
1504                         rcd->rcvhdrqtailaddr_phys = phys_hdrqtail;
1505                 }
1506
1507                 rcd->rcvhdrq_size = amt;
1508         }
1509         /*
1510          * These values are per-context:
1511          *      RcvHdrCnt
1512          *      RcvHdrEntSize
1513          *      RcvHdrSize
1514          */
1515         reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1516                         & RCV_HDR_CNT_CNT_MASK)
1517                 << RCV_HDR_CNT_CNT_SHIFT;
1518         write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1519         reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1520                         & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1521                 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1522         write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1523         reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1524                 << RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1525         write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1526         return 0;
1527
1528 bail_free:
1529         dd_dev_err(dd,
1530                 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1531                 rcd->ctxt);
1532         vfree(rcd->user_event_mask);
1533         rcd->user_event_mask = NULL;
1534         dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1535                           rcd->rcvhdrq_phys);
1536         rcd->rcvhdrq = NULL;
1537 bail:
1538         return -ENOMEM;
1539 }
1540
1541 /**
1542  * allocate eager buffers, both kernel and user contexts.
1543  * @rcd: the context we are setting up.
1544  *
1545  * Allocate the eager TID buffers and program them into hip.
1546  * They are no longer completely contiguous, we do multiple allocation
1547  * calls.  Otherwise we get the OOM code involved, by asking for too
1548  * much per call, with disastrous results on some kernels.
1549  */
1550 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1551 {
1552         struct hfi1_devdata *dd = rcd->dd;
1553         u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1554         gfp_t gfp_flags;
1555         u16 order;
1556         int ret = 0;
1557         u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1558
1559         /*
1560          * GFP_USER, but without GFP_FS, so buffer cache can be
1561          * coalesced (we hope); otherwise, even at order 4,
1562          * heavy filesystem activity makes these fail, and we can
1563          * use compound pages.
1564          */
1565         gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1566
1567         /*
1568          * The minimum size of the eager buffers is a groups of MTU-sized
1569          * buffers.
1570          * The global eager_buffer_size parameter is checked against the
1571          * theoretical lower limit of the value. Here, we check against the
1572          * MTU.
1573          */
1574         if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1575                 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1576         /*
1577          * If using one-pkt-per-egr-buffer, lower the eager buffer
1578          * size to the max MTU (page-aligned).
1579          */
1580         if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1581                 rcd->egrbufs.rcvtid_size = round_mtu;
1582
1583         /*
1584          * Eager buffers sizes of 1MB or less require smaller TID sizes
1585          * to satisfy the "multiple of 8 RcvArray entries" requirement.
1586          */
1587         if (rcd->egrbufs.size <= (1 << 20))
1588                 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1589                         rounddown_pow_of_two(rcd->egrbufs.size / 8));
1590
1591         while (alloced_bytes < rcd->egrbufs.size &&
1592                rcd->egrbufs.alloced < rcd->egrbufs.count) {
1593                 rcd->egrbufs.buffers[idx].addr =
1594                         dma_zalloc_coherent(&dd->pcidev->dev,
1595                                             rcd->egrbufs.rcvtid_size,
1596                                             &rcd->egrbufs.buffers[idx].phys,
1597                                             gfp_flags);
1598                 if (rcd->egrbufs.buffers[idx].addr) {
1599                         rcd->egrbufs.buffers[idx].len =
1600                                 rcd->egrbufs.rcvtid_size;
1601                         rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1602                                 rcd->egrbufs.buffers[idx].addr;
1603                         rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].phys =
1604                                 rcd->egrbufs.buffers[idx].phys;
1605                         rcd->egrbufs.alloced++;
1606                         alloced_bytes += rcd->egrbufs.rcvtid_size;
1607                         idx++;
1608                 } else {
1609                         u32 new_size, i, j;
1610                         u64 offset = 0;
1611
1612                         /*
1613                          * Fail the eager buffer allocation if:
1614                          *   - we are already using the lowest acceptable size
1615                          *   - we are using one-pkt-per-egr-buffer (this implies
1616                          *     that we are accepting only one size)
1617                          */
1618                         if (rcd->egrbufs.rcvtid_size == round_mtu ||
1619                             !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1620                                 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1621                                         rcd->ctxt);
1622                                 goto bail_rcvegrbuf_phys;
1623                         }
1624
1625                         new_size = rcd->egrbufs.rcvtid_size / 2;
1626
1627                         /*
1628                          * If the first attempt to allocate memory failed, don't
1629                          * fail everything but continue with the next lower
1630                          * size.
1631                          */
1632                         if (idx == 0) {
1633                                 rcd->egrbufs.rcvtid_size = new_size;
1634                                 continue;
1635                         }
1636
1637                         /*
1638                          * Re-partition already allocated buffers to a smaller
1639                          * size.
1640                          */
1641                         rcd->egrbufs.alloced = 0;
1642                         for (i = 0, j = 0, offset = 0; j < idx; i++) {
1643                                 if (i >= rcd->egrbufs.count)
1644                                         break;
1645                                 rcd->egrbufs.rcvtids[i].phys =
1646                                         rcd->egrbufs.buffers[j].phys + offset;
1647                                 rcd->egrbufs.rcvtids[i].addr =
1648                                         rcd->egrbufs.buffers[j].addr + offset;
1649                                 rcd->egrbufs.alloced++;
1650                                 if ((rcd->egrbufs.buffers[j].phys + offset +
1651                                      new_size) ==
1652                                     (rcd->egrbufs.buffers[j].phys +
1653                                      rcd->egrbufs.buffers[j].len)) {
1654                                         j++;
1655                                         offset = 0;
1656                                 } else
1657                                         offset += new_size;
1658                         }
1659                         rcd->egrbufs.rcvtid_size = new_size;
1660                 }
1661         }
1662         rcd->egrbufs.numbufs = idx;
1663         rcd->egrbufs.size = alloced_bytes;
1664
1665         hfi1_cdbg(PROC,
1666                   "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
1667                   rcd->ctxt, rcd->egrbufs.alloced, rcd->egrbufs.rcvtid_size,
1668                   rcd->egrbufs.size);
1669
1670
1671         /*
1672          * Set the contexts rcv array head update threshold to the closest
1673          * power of 2 (so we can use a mask instead of modulo) below half
1674          * the allocated entries.
1675          */
1676         rcd->egrbufs.threshold =
1677                 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1678         /*
1679          * Compute the expected RcvArray entry base. This is done after
1680          * allocating the eager buffers in order to maximize the
1681          * expected RcvArray entries for the context.
1682          */
1683         max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1684         egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1685         rcd->expected_count = max_entries - egrtop;
1686         if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1687                 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1688
1689         rcd->expected_base = rcd->eager_base + egrtop;
1690         hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1691                   rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1692                   rcd->eager_base, rcd->expected_base);
1693
1694         if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1695                 hfi1_cdbg(PROC,
1696                           "ctxt%u: current Eager buffer size is invalid %u\n",
1697                           rcd->ctxt, rcd->egrbufs.rcvtid_size);
1698                 ret = -EINVAL;
1699                 goto bail;
1700         }
1701
1702         for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1703                 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1704                               rcd->egrbufs.rcvtids[idx].phys, order);
1705                 cond_resched();
1706         }
1707         goto bail;
1708
1709 bail_rcvegrbuf_phys:
1710         for (idx = 0; idx < rcd->egrbufs.alloced &&
1711                      rcd->egrbufs.buffers[idx].addr;
1712              idx++) {
1713                 dma_free_coherent(&dd->pcidev->dev,
1714                                   rcd->egrbufs.buffers[idx].len,
1715                                   rcd->egrbufs.buffers[idx].addr,
1716                                   rcd->egrbufs.buffers[idx].phys);
1717                 rcd->egrbufs.buffers[idx].addr = NULL;
1718                 rcd->egrbufs.buffers[idx].phys = 0;
1719                 rcd->egrbufs.buffers[idx].len = 0;
1720         }
1721 bail:
1722         return ret;
1723 }