]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/staging/rdma/hfi1/sdma.c
iio: adc: ina2xx: Fix incorrect report of data endianness to userspace.
[linux-beck.git] / drivers / staging / rdma / hfi1 / sdma.c
1 /*
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2015 Intel Corporation.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * BSD LICENSE
20  *
21  * Copyright(c) 2015 Intel Corporation.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  *
27  *  - Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  *  - Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in
31  *    the documentation and/or other materials provided with the
32  *    distribution.
33  *  - Neither the name of Intel Corporation nor the names of its
34  *    contributors may be used to endorse or promote products derived
35  *    from this software without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48  *
49  */
50
51 #include <linux/spinlock.h>
52 #include <linux/seqlock.h>
53 #include <linux/netdevice.h>
54 #include <linux/moduleparam.h>
55 #include <linux/bitops.h>
56 #include <linux/timer.h>
57 #include <linux/vmalloc.h>
58 #include <linux/highmem.h>
59
60 #include "hfi.h"
61 #include "common.h"
62 #include "qp.h"
63 #include "sdma.h"
64 #include "iowait.h"
65 #include "trace.h"
66
67 /* must be a power of 2 >= 64 <= 32768 */
68 #define SDMA_DESCQ_CNT 2048
69 #define SDMA_DESC_INTR 64
70 #define INVALID_TAIL 0xffff
71
72 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
73 module_param(sdma_descq_cnt, uint, S_IRUGO);
74 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
75
76 static uint sdma_idle_cnt = 250;
77 module_param(sdma_idle_cnt, uint, S_IRUGO);
78 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
79
80 uint mod_num_sdma;
81 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
82 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
83
84 static uint sdma_desct_intr = SDMA_DESC_INTR;
85 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
86 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
87
88 #define SDMA_WAIT_BATCH_SIZE 20
89 /* max wait time for a SDMA engine to indicate it has halted */
90 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
91 /* all SDMA engine errors that cause a halt */
92
93 #define SD(name) SEND_DMA_##name
94 #define ALL_SDMA_ENG_HALT_ERRS \
95         (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
96         | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
97         | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
98         | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
99         | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
100         | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
101         | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
102         | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
103         | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
104         | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
105         | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
106         | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
107         | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
108         | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
109         | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
110         | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
111         | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
112         | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
113
114 /* sdma_sendctrl operations */
115 #define SDMA_SENDCTRL_OP_ENABLE    (1U << 0)
116 #define SDMA_SENDCTRL_OP_INTENABLE (1U << 1)
117 #define SDMA_SENDCTRL_OP_HALT      (1U << 2)
118 #define SDMA_SENDCTRL_OP_CLEANUP   (1U << 3)
119
120 /* handle long defines */
121 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
122 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
123 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
124 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
125
126 static const char * const sdma_state_names[] = {
127         [sdma_state_s00_hw_down]                = "s00_HwDown",
128         [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
129         [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
130         [sdma_state_s20_idle]                   = "s20_Idle",
131         [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
132         [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
133         [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
134         [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
135         [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
136         [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
137         [sdma_state_s99_running]                = "s99_Running",
138 };
139
140 static const char * const sdma_event_names[] = {
141         [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
142         [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
143         [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
144         [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
145         [sdma_event_e30_go_running]   = "e30_GoRunning",
146         [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
147         [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
148         [sdma_event_e60_hw_halted]    = "e60_HwHalted",
149         [sdma_event_e70_go_idle]      = "e70_GoIdle",
150         [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
151         [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
152         [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
153         [sdma_event_e85_link_down]    = "e85_LinkDown",
154         [sdma_event_e90_sw_halted]    = "e90_SwHalted",
155 };
156
157 static const struct sdma_set_state_action sdma_action_table[] = {
158         [sdma_state_s00_hw_down] = {
159                 .go_s99_running_tofalse = 1,
160                 .op_enable = 0,
161                 .op_intenable = 0,
162                 .op_halt = 0,
163                 .op_cleanup = 0,
164         },
165         [sdma_state_s10_hw_start_up_halt_wait] = {
166                 .op_enable = 0,
167                 .op_intenable = 0,
168                 .op_halt = 1,
169                 .op_cleanup = 0,
170         },
171         [sdma_state_s15_hw_start_up_clean_wait] = {
172                 .op_enable = 0,
173                 .op_intenable = 1,
174                 .op_halt = 0,
175                 .op_cleanup = 1,
176         },
177         [sdma_state_s20_idle] = {
178                 .op_enable = 0,
179                 .op_intenable = 1,
180                 .op_halt = 0,
181                 .op_cleanup = 0,
182         },
183         [sdma_state_s30_sw_clean_up_wait] = {
184                 .op_enable = 0,
185                 .op_intenable = 0,
186                 .op_halt = 0,
187                 .op_cleanup = 0,
188         },
189         [sdma_state_s40_hw_clean_up_wait] = {
190                 .op_enable = 0,
191                 .op_intenable = 0,
192                 .op_halt = 0,
193                 .op_cleanup = 1,
194         },
195         [sdma_state_s50_hw_halt_wait] = {
196                 .op_enable = 0,
197                 .op_intenable = 0,
198                 .op_halt = 0,
199                 .op_cleanup = 0,
200         },
201         [sdma_state_s60_idle_halt_wait] = {
202                 .go_s99_running_tofalse = 1,
203                 .op_enable = 0,
204                 .op_intenable = 0,
205                 .op_halt = 1,
206                 .op_cleanup = 0,
207         },
208         [sdma_state_s80_hw_freeze] = {
209                 .op_enable = 0,
210                 .op_intenable = 0,
211                 .op_halt = 0,
212                 .op_cleanup = 0,
213         },
214         [sdma_state_s82_freeze_sw_clean] = {
215                 .op_enable = 0,
216                 .op_intenable = 0,
217                 .op_halt = 0,
218                 .op_cleanup = 0,
219         },
220         [sdma_state_s99_running] = {
221                 .op_enable = 1,
222                 .op_intenable = 1,
223                 .op_halt = 0,
224                 .op_cleanup = 0,
225                 .go_s99_running_totrue = 1,
226         },
227 };
228
229 #define SDMA_TAIL_UPDATE_THRESH 0x1F
230
231 /* declare all statics here rather than keep sorting */
232 static void sdma_complete(struct kref *);
233 static void sdma_finalput(struct sdma_state *);
234 static void sdma_get(struct sdma_state *);
235 static void sdma_hw_clean_up_task(unsigned long);
236 static void sdma_put(struct sdma_state *);
237 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
238 static void sdma_start_hw_clean_up(struct sdma_engine *);
239 static void sdma_sw_clean_up_task(unsigned long);
240 static void sdma_sendctrl(struct sdma_engine *, unsigned);
241 static void init_sdma_regs(struct sdma_engine *, u32, uint);
242 static void sdma_process_event(
243         struct sdma_engine *sde,
244         enum sdma_events event);
245 static void __sdma_process_event(
246         struct sdma_engine *sde,
247         enum sdma_events event);
248 static void dump_sdma_state(struct sdma_engine *sde);
249 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
250 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail);
251 static void sdma_flush_descq(struct sdma_engine *sde);
252
253 /**
254  * sdma_state_name() - return state string from enum
255  * @state: state
256  */
257 static const char *sdma_state_name(enum sdma_states state)
258 {
259         return sdma_state_names[state];
260 }
261
262 static void sdma_get(struct sdma_state *ss)
263 {
264         kref_get(&ss->kref);
265 }
266
267 static void sdma_complete(struct kref *kref)
268 {
269         struct sdma_state *ss =
270                 container_of(kref, struct sdma_state, kref);
271
272         complete(&ss->comp);
273 }
274
275 static void sdma_put(struct sdma_state *ss)
276 {
277         kref_put(&ss->kref, sdma_complete);
278 }
279
280 static void sdma_finalput(struct sdma_state *ss)
281 {
282         sdma_put(ss);
283         wait_for_completion(&ss->comp);
284 }
285
286 static inline void write_sde_csr(
287         struct sdma_engine *sde,
288         u32 offset0,
289         u64 value)
290 {
291         write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
292 }
293
294 static inline u64 read_sde_csr(
295         struct sdma_engine *sde,
296         u32 offset0)
297 {
298         return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
299 }
300
301 /*
302  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
303  * sdma engine 'sde' to drop to 0.
304  */
305 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
306                                         int pause)
307 {
308         u64 off = 8 * sde->this_idx;
309         struct hfi1_devdata *dd = sde->dd;
310         int lcnt = 0;
311         u64 reg_prev;
312         u64 reg = 0;
313
314         while (1) {
315                 reg_prev = reg;
316                 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
317
318                 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
319                 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
320                 if (reg == 0)
321                         break;
322                 /* counter is reest if accupancy count changes */
323                 if (reg != reg_prev)
324                         lcnt = 0;
325                 if (lcnt++ > 500) {
326                         /* timed out - bounce the link */
327                         dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
328                                   __func__, sde->this_idx, (u32)reg);
329                         queue_work(dd->pport->hfi1_wq,
330                                 &dd->pport->link_bounce_work);
331                         break;
332                 }
333                 udelay(1);
334         }
335 }
336
337 /*
338  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
339  * and pause for credit return.
340  */
341 void sdma_wait(struct hfi1_devdata *dd)
342 {
343         int i;
344
345         for (i = 0; i < dd->num_sdma; i++) {
346                 struct sdma_engine *sde = &dd->per_sdma[i];
347
348                 sdma_wait_for_packet_egress(sde, 0);
349         }
350 }
351
352 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
353 {
354         u64 reg;
355
356         if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
357                 return;
358         reg = cnt;
359         reg &= SD(DESC_CNT_CNT_MASK);
360         reg <<= SD(DESC_CNT_CNT_SHIFT);
361         write_sde_csr(sde, SD(DESC_CNT), reg);
362 }
363
364 /*
365  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
366  *
367  * Depending on timing there can be txreqs in two places:
368  * - in the descq ring
369  * - in the flush list
370  *
371  * To avoid ordering issues the descq ring needs to be flushed
372  * first followed by the flush list.
373  *
374  * This routine is called from two places
375  * - From a work queue item
376  * - Directly from the state machine just before setting the
377  *   state to running
378  *
379  * Must be called with head_lock held
380  *
381  */
382 static void sdma_flush(struct sdma_engine *sde)
383 {
384         struct sdma_txreq *txp, *txp_next;
385         LIST_HEAD(flushlist);
386         unsigned long flags;
387
388         /* flush from head to tail */
389         sdma_flush_descq(sde);
390         spin_lock_irqsave(&sde->flushlist_lock, flags);
391         /* copy flush list */
392         list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
393                 list_del_init(&txp->list);
394                 list_add_tail(&txp->list, &flushlist);
395         }
396         spin_unlock_irqrestore(&sde->flushlist_lock, flags);
397         /* flush from flush list */
398         list_for_each_entry_safe(txp, txp_next, &flushlist, list) {
399                 int drained = 0;
400                 /* protect against complete modifying */
401                 struct iowait *wait = txp->wait;
402
403                 list_del_init(&txp->list);
404 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
405                 trace_hfi1_sdma_out_sn(sde, txp->sn);
406                 if (WARN_ON_ONCE(sde->head_sn != txp->sn))
407                         dd_dev_err(sde->dd, "expected %llu got %llu\n",
408                                 sde->head_sn, txp->sn);
409                 sde->head_sn++;
410 #endif
411                 sdma_txclean(sde->dd, txp);
412                 if (wait)
413                         drained = atomic_dec_and_test(&wait->sdma_busy);
414                 if (txp->complete)
415                         (*txp->complete)(txp, SDMA_TXREQ_S_ABORTED, drained);
416                 if (wait && drained)
417                         iowait_drain_wakeup(wait);
418         }
419 }
420
421 /*
422  * Fields a work request for flushing the descq ring
423  * and the flush list
424  *
425  * If the engine has been brought to running during
426  * the scheduling delay, the flush is ignored, assuming
427  * that the process of bringing the engine to running
428  * would have done this flush prior to going to running.
429  *
430  */
431 static void sdma_field_flush(struct work_struct *work)
432 {
433         unsigned long flags;
434         struct sdma_engine *sde =
435                 container_of(work, struct sdma_engine, flush_worker);
436
437         write_seqlock_irqsave(&sde->head_lock, flags);
438         if (!__sdma_running(sde))
439                 sdma_flush(sde);
440         write_sequnlock_irqrestore(&sde->head_lock, flags);
441 }
442
443 static void sdma_err_halt_wait(struct work_struct *work)
444 {
445         struct sdma_engine *sde = container_of(work, struct sdma_engine,
446                                                 err_halt_worker);
447         u64 statuscsr;
448         unsigned long timeout;
449
450         timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
451         while (1) {
452                 statuscsr = read_sde_csr(sde, SD(STATUS));
453                 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
454                 if (statuscsr)
455                         break;
456                 if (time_after(jiffies, timeout)) {
457                         dd_dev_err(sde->dd,
458                                 "SDMA engine %d - timeout waiting for engine to halt\n",
459                                 sde->this_idx);
460                         /*
461                          * Continue anyway.  This could happen if there was
462                          * an uncorrectable error in the wrong spot.
463                          */
464                         break;
465                 }
466                 usleep_range(80, 120);
467         }
468
469         sdma_process_event(sde, sdma_event_e15_hw_halt_done);
470 }
471
472 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
473 {
474         if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
475
476                 unsigned index;
477                 struct hfi1_devdata *dd = sde->dd;
478
479                 for (index = 0; index < dd->num_sdma; index++) {
480                         struct sdma_engine *curr_sdma = &dd->per_sdma[index];
481
482                         if (curr_sdma != sde)
483                                 curr_sdma->progress_check_head =
484                                                         curr_sdma->descq_head;
485                 }
486                 dd_dev_err(sde->dd,
487                            "SDMA engine %d - check scheduled\n",
488                                 sde->this_idx);
489                 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
490         }
491 }
492
493 static void sdma_err_progress_check(unsigned long data)
494 {
495         unsigned index;
496         struct sdma_engine *sde = (struct sdma_engine *)data;
497
498         dd_dev_err(sde->dd, "SDE progress check event\n");
499         for (index = 0; index < sde->dd->num_sdma; index++) {
500                 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
501                 unsigned long flags;
502
503                 /* check progress on each engine except the current one */
504                 if (curr_sde == sde)
505                         continue;
506                 /*
507                  * We must lock interrupts when acquiring sde->lock,
508                  * to avoid a deadlock if interrupt triggers and spins on
509                  * the same lock on same CPU
510                  */
511                 spin_lock_irqsave(&curr_sde->tail_lock, flags);
512                 write_seqlock(&curr_sde->head_lock);
513
514                 /* skip non-running queues */
515                 if (curr_sde->state.current_state != sdma_state_s99_running) {
516                         write_sequnlock(&curr_sde->head_lock);
517                         spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
518                         continue;
519                 }
520
521                 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
522                     (curr_sde->descq_head ==
523                                 curr_sde->progress_check_head))
524                         __sdma_process_event(curr_sde,
525                                              sdma_event_e90_sw_halted);
526                 write_sequnlock(&curr_sde->head_lock);
527                 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
528         }
529         schedule_work(&sde->err_halt_worker);
530 }
531
532 static void sdma_hw_clean_up_task(unsigned long opaque)
533 {
534         struct sdma_engine *sde = (struct sdma_engine *) opaque;
535         u64 statuscsr;
536
537         while (1) {
538 #ifdef CONFIG_SDMA_VERBOSITY
539                 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
540                            sde->this_idx, slashstrip(__FILE__), __LINE__,
541                         __func__);
542 #endif
543                 statuscsr = read_sde_csr(sde, SD(STATUS));
544                 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
545                 if (statuscsr)
546                         break;
547                 udelay(10);
548         }
549
550         sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
551 }
552
553 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
554 {
555         smp_read_barrier_depends(); /* see sdma_update_tail() */
556         return sde->tx_ring[sde->tx_head & sde->sdma_mask];
557 }
558
559 /*
560  * flush ring for recovery
561  */
562 static void sdma_flush_descq(struct sdma_engine *sde)
563 {
564         u16 head, tail;
565         int progress = 0;
566         struct sdma_txreq *txp = get_txhead(sde);
567
568         /* The reason for some of the complexity of this code is that
569          * not all descriptors have corresponding txps.  So, we have to
570          * be able to skip over descs until we wander into the range of
571          * the next txp on the list.
572          */
573         head = sde->descq_head & sde->sdma_mask;
574         tail = sde->descq_tail & sde->sdma_mask;
575         while (head != tail) {
576                 /* advance head, wrap if needed */
577                 head = ++sde->descq_head & sde->sdma_mask;
578                 /* if now past this txp's descs, do the callback */
579                 if (txp && txp->next_descq_idx == head) {
580                         int drained = 0;
581                         /* protect against complete modifying */
582                         struct iowait *wait = txp->wait;
583
584                         /* remove from list */
585                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
586                         if (wait)
587                                 drained = atomic_dec_and_test(&wait->sdma_busy);
588 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
589                         trace_hfi1_sdma_out_sn(sde, txp->sn);
590                         if (WARN_ON_ONCE(sde->head_sn != txp->sn))
591                                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
592                                         sde->head_sn, txp->sn);
593                         sde->head_sn++;
594 #endif
595                         sdma_txclean(sde->dd, txp);
596                         trace_hfi1_sdma_progress(sde, head, tail, txp);
597                         if (txp->complete)
598                                 (*txp->complete)(
599                                         txp,
600                                         SDMA_TXREQ_S_ABORTED,
601                                         drained);
602                         if (wait && drained)
603                                 iowait_drain_wakeup(wait);
604                         /* see if there is another txp */
605                         txp = get_txhead(sde);
606                 }
607                 progress++;
608         }
609         if (progress)
610                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
611 }
612
613 static void sdma_sw_clean_up_task(unsigned long opaque)
614 {
615         struct sdma_engine *sde = (struct sdma_engine *) opaque;
616         unsigned long flags;
617
618         spin_lock_irqsave(&sde->tail_lock, flags);
619         write_seqlock(&sde->head_lock);
620
621         /*
622          * At this point, the following should always be true:
623          * - We are halted, so no more descriptors are getting retired.
624          * - We are not running, so no one is submitting new work.
625          * - Only we can send the e40_sw_cleaned, so we can't start
626          *   running again until we say so.  So, the active list and
627          *   descq are ours to play with.
628          */
629
630
631         /*
632          * In the error clean up sequence, software clean must be called
633          * before the hardware clean so we can use the hardware head in
634          * the progress routine.  A hardware clean or SPC unfreeze will
635          * reset the hardware head.
636          *
637          * Process all retired requests. The progress routine will use the
638          * latest physical hardware head - we are not running so speed does
639          * not matter.
640          */
641         sdma_make_progress(sde, 0);
642
643         sdma_flush(sde);
644
645         /*
646          * Reset our notion of head and tail.
647          * Note that the HW registers have been reset via an earlier
648          * clean up.
649          */
650         sde->descq_tail = 0;
651         sde->descq_head = 0;
652         sde->desc_avail = sdma_descq_freecnt(sde);
653         *sde->head_dma = 0;
654
655         __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
656
657         write_sequnlock(&sde->head_lock);
658         spin_unlock_irqrestore(&sde->tail_lock, flags);
659 }
660
661 static void sdma_sw_tear_down(struct sdma_engine *sde)
662 {
663         struct sdma_state *ss = &sde->state;
664
665         /* Releasing this reference means the state machine has stopped. */
666         sdma_put(ss);
667
668         /* stop waiting for all unfreeze events to complete */
669         atomic_set(&sde->dd->sdma_unfreeze_count, -1);
670         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
671 }
672
673 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
674 {
675         tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
676 }
677
678 static void sdma_set_state(struct sdma_engine *sde,
679         enum sdma_states next_state)
680 {
681         struct sdma_state *ss = &sde->state;
682         const struct sdma_set_state_action *action = sdma_action_table;
683         unsigned op = 0;
684
685         trace_hfi1_sdma_state(
686                 sde,
687                 sdma_state_names[ss->current_state],
688                 sdma_state_names[next_state]);
689
690         /* debugging bookkeeping */
691         ss->previous_state = ss->current_state;
692         ss->previous_op = ss->current_op;
693         ss->current_state = next_state;
694
695         if (ss->previous_state != sdma_state_s99_running
696                 && next_state == sdma_state_s99_running)
697                 sdma_flush(sde);
698
699         if (action[next_state].op_enable)
700                 op |= SDMA_SENDCTRL_OP_ENABLE;
701
702         if (action[next_state].op_intenable)
703                 op |= SDMA_SENDCTRL_OP_INTENABLE;
704
705         if (action[next_state].op_halt)
706                 op |= SDMA_SENDCTRL_OP_HALT;
707
708         if (action[next_state].op_cleanup)
709                 op |= SDMA_SENDCTRL_OP_CLEANUP;
710
711         if (action[next_state].go_s99_running_tofalse)
712                 ss->go_s99_running = 0;
713
714         if (action[next_state].go_s99_running_totrue)
715                 ss->go_s99_running = 1;
716
717         ss->current_op = op;
718         sdma_sendctrl(sde, ss->current_op);
719 }
720
721 /**
722  * sdma_get_descq_cnt() - called when device probed
723  *
724  * Return a validated descq count.
725  *
726  * This is currently only used in the verbs initialization to build the tx
727  * list.
728  *
729  * This will probably be deleted in favor of a more scalable approach to
730  * alloc tx's.
731  *
732  */
733 u16 sdma_get_descq_cnt(void)
734 {
735         u16 count = sdma_descq_cnt;
736
737         if (!count)
738                 return SDMA_DESCQ_CNT;
739         /* count must be a power of 2 greater than 64 and less than
740          * 32768.   Otherwise return default.
741          */
742         if (!is_power_of_2(count))
743                 return SDMA_DESCQ_CNT;
744         if (count < 64 || count > 32768)
745                 return SDMA_DESCQ_CNT;
746         return count;
747 }
748
749 /**
750  * sdma_select_engine_vl() - select sdma engine
751  * @dd: devdata
752  * @selector: a spreading factor
753  * @vl: this vl
754  *
755  *
756  * This function returns an engine based on the selector and a vl.  The
757  * mapping fields are protected by RCU.
758  */
759 struct sdma_engine *sdma_select_engine_vl(
760         struct hfi1_devdata *dd,
761         u32 selector,
762         u8 vl)
763 {
764         struct sdma_vl_map *m;
765         struct sdma_map_elem *e;
766         struct sdma_engine *rval;
767
768         if (WARN_ON(vl > 8))
769                 return &dd->per_sdma[0];
770
771         rcu_read_lock();
772         m = rcu_dereference(dd->sdma_map);
773         if (unlikely(!m)) {
774                 rcu_read_unlock();
775                 return &dd->per_sdma[0];
776         }
777         e = m->map[vl & m->mask];
778         rval = e->sde[selector & e->mask];
779         rcu_read_unlock();
780
781         rval =  !rval ? &dd->per_sdma[0] : rval;
782         trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
783         return rval;
784 }
785
786 /**
787  * sdma_select_engine_sc() - select sdma engine
788  * @dd: devdata
789  * @selector: a spreading factor
790  * @sc5: the 5 bit sc
791  *
792  *
793  * This function returns an engine based on the selector and an sc.
794  */
795 struct sdma_engine *sdma_select_engine_sc(
796         struct hfi1_devdata *dd,
797         u32 selector,
798         u8 sc5)
799 {
800         u8 vl = sc_to_vlt(dd, sc5);
801
802         return sdma_select_engine_vl(dd, selector, vl);
803 }
804
805 /*
806  * Free the indicated map struct
807  */
808 static void sdma_map_free(struct sdma_vl_map *m)
809 {
810         int i;
811
812         for (i = 0; m && i < m->actual_vls; i++)
813                 kfree(m->map[i]);
814         kfree(m);
815 }
816
817 /*
818  * Handle RCU callback
819  */
820 static void sdma_map_rcu_callback(struct rcu_head *list)
821 {
822         struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
823
824         sdma_map_free(m);
825 }
826
827 /**
828  * sdma_map_init - called when # vls change
829  * @dd: hfi1_devdata
830  * @port: port number
831  * @num_vls: number of vls
832  * @vl_engines: per vl engine mapping (optional)
833  *
834  * This routine changes the mapping based on the number of vls.
835  *
836  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
837  * implies auto computing the loading and giving each VLs a uniform
838  * distribution of engines per VL.
839  *
840  * The auto algorithm computes the sde_per_vl and the number of extra
841  * engines.  Any extra engines are added from the last VL on down.
842  *
843  * rcu locking is used here to control access to the mapping fields.
844  *
845  * If either the num_vls or num_sdma are non-power of 2, the array sizes
846  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
847  * up to the next highest power of 2 and the first entry is reused
848  * in a round robin fashion.
849  *
850  * If an error occurs the map change is not done and the mapping is
851  * not changed.
852  *
853  */
854 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
855 {
856         int i, j;
857         int extra, sde_per_vl;
858         int engine = 0;
859         u8 lvl_engines[OPA_MAX_VLS];
860         struct sdma_vl_map *oldmap, *newmap;
861
862         if (!(dd->flags & HFI1_HAS_SEND_DMA))
863                 return 0;
864
865         if (!vl_engines) {
866                 /* truncate divide */
867                 sde_per_vl = dd->num_sdma / num_vls;
868                 /* extras */
869                 extra = dd->num_sdma % num_vls;
870                 vl_engines = lvl_engines;
871                 /* add extras from last vl down */
872                 for (i = num_vls - 1; i >= 0; i--, extra--)
873                         vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
874         }
875         /* build new map */
876         newmap = kzalloc(
877                 sizeof(struct sdma_vl_map) +
878                         roundup_pow_of_two(num_vls) *
879                         sizeof(struct sdma_map_elem *),
880                 GFP_KERNEL);
881         if (!newmap)
882                 goto bail;
883         newmap->actual_vls = num_vls;
884         newmap->vls = roundup_pow_of_two(num_vls);
885         newmap->mask = (1 << ilog2(newmap->vls)) - 1;
886         for (i = 0; i < newmap->vls; i++) {
887                 /* save for wrap around */
888                 int first_engine = engine;
889
890                 if (i < newmap->actual_vls) {
891                         int sz = roundup_pow_of_two(vl_engines[i]);
892
893                         /* only allocate once */
894                         newmap->map[i] = kzalloc(
895                                 sizeof(struct sdma_map_elem) +
896                                         sz * sizeof(struct sdma_engine *),
897                                 GFP_KERNEL);
898                         if (!newmap->map[i])
899                                 goto bail;
900                         newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
901                         /* assign engines */
902                         for (j = 0; j < sz; j++) {
903                                 newmap->map[i]->sde[j] =
904                                         &dd->per_sdma[engine];
905                                 if (++engine >= first_engine + vl_engines[i])
906                                         /* wrap back to first engine */
907                                         engine = first_engine;
908                         }
909                 } else {
910                         /* just re-use entry without allocating */
911                         newmap->map[i] = newmap->map[i % num_vls];
912                 }
913                 engine = first_engine + vl_engines[i];
914         }
915         /* newmap in hand, save old map */
916         spin_lock_irq(&dd->sde_map_lock);
917         oldmap = rcu_dereference_protected(dd->sdma_map,
918                         lockdep_is_held(&dd->sde_map_lock));
919
920         /* publish newmap */
921         rcu_assign_pointer(dd->sdma_map, newmap);
922
923         spin_unlock_irq(&dd->sde_map_lock);
924         /* success, free any old map after grace period */
925         if (oldmap)
926                 call_rcu(&oldmap->list, sdma_map_rcu_callback);
927         return 0;
928 bail:
929         /* free any partial allocation */
930         sdma_map_free(newmap);
931         return -ENOMEM;
932 }
933
934 /*
935  * Clean up allocated memory.
936  *
937  * This routine is can be called regardless of the success of sdma_init()
938  *
939  */
940 static void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
941 {
942         size_t i;
943         struct sdma_engine *sde;
944
945         if (dd->sdma_pad_dma) {
946                 dma_free_coherent(&dd->pcidev->dev, 4,
947                                   (void *)dd->sdma_pad_dma,
948                                   dd->sdma_pad_phys);
949                 dd->sdma_pad_dma = NULL;
950                 dd->sdma_pad_phys = 0;
951         }
952         if (dd->sdma_heads_dma) {
953                 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
954                                   (void *)dd->sdma_heads_dma,
955                                   dd->sdma_heads_phys);
956                 dd->sdma_heads_dma = NULL;
957                 dd->sdma_heads_phys = 0;
958         }
959         for (i = 0; dd->per_sdma && i < num_engines; ++i) {
960                 sde = &dd->per_sdma[i];
961
962                 sde->head_dma = NULL;
963                 sde->head_phys = 0;
964
965                 if (sde->descq) {
966                         dma_free_coherent(
967                                 &dd->pcidev->dev,
968                                 sde->descq_cnt * sizeof(u64[2]),
969                                 sde->descq,
970                                 sde->descq_phys
971                         );
972                         sde->descq = NULL;
973                         sde->descq_phys = 0;
974                 }
975                 kvfree(sde->tx_ring);
976                 sde->tx_ring = NULL;
977         }
978         spin_lock_irq(&dd->sde_map_lock);
979         kfree(rcu_access_pointer(dd->sdma_map));
980         RCU_INIT_POINTER(dd->sdma_map, NULL);
981         spin_unlock_irq(&dd->sde_map_lock);
982         synchronize_rcu();
983         kfree(dd->per_sdma);
984         dd->per_sdma = NULL;
985 }
986
987 /**
988  * sdma_init() - called when device probed
989  * @dd: hfi1_devdata
990  * @port: port number (currently only zero)
991  *
992  * sdma_init initializes the specified number of engines.
993  *
994  * The code initializes each sde, its csrs.  Interrupts
995  * are not required to be enabled.
996  *
997  * Returns:
998  * 0 - success, -errno on failure
999  */
1000 int sdma_init(struct hfi1_devdata *dd, u8 port)
1001 {
1002         unsigned this_idx;
1003         struct sdma_engine *sde;
1004         u16 descq_cnt;
1005         void *curr_head;
1006         struct hfi1_pportdata *ppd = dd->pport + port;
1007         u32 per_sdma_credits;
1008         uint idle_cnt = sdma_idle_cnt;
1009         size_t num_engines = dd->chip_sdma_engines;
1010
1011         if (!HFI1_CAP_IS_KSET(SDMA)) {
1012                 HFI1_CAP_CLEAR(SDMA_AHG);
1013                 return 0;
1014         }
1015         if (mod_num_sdma &&
1016                 /* can't exceed chip support */
1017                 mod_num_sdma <= dd->chip_sdma_engines &&
1018                 /* count must be >= vls */
1019                 mod_num_sdma >= num_vls)
1020                 num_engines = mod_num_sdma;
1021
1022         dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1023         dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines);
1024         dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1025                 dd->chip_sdma_mem_size);
1026
1027         per_sdma_credits =
1028                 dd->chip_sdma_mem_size/(num_engines * SDMA_BLOCK_SIZE);
1029
1030         /* set up freeze waitqueue */
1031         init_waitqueue_head(&dd->sdma_unfreeze_wq);
1032         atomic_set(&dd->sdma_unfreeze_count, 0);
1033
1034         descq_cnt = sdma_get_descq_cnt();
1035         dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1036                 num_engines, descq_cnt);
1037
1038         /* alloc memory for array of send engines */
1039         dd->per_sdma = kcalloc(num_engines, sizeof(*dd->per_sdma), GFP_KERNEL);
1040         if (!dd->per_sdma)
1041                 return -ENOMEM;
1042
1043         idle_cnt = ns_to_cclock(dd, idle_cnt);
1044         if (!sdma_desct_intr)
1045                 sdma_desct_intr = SDMA_DESC_INTR;
1046
1047         /* Allocate memory for SendDMA descriptor FIFOs */
1048         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1049                 sde = &dd->per_sdma[this_idx];
1050                 sde->dd = dd;
1051                 sde->ppd = ppd;
1052                 sde->this_idx = this_idx;
1053                 sde->descq_cnt = descq_cnt;
1054                 sde->desc_avail = sdma_descq_freecnt(sde);
1055                 sde->sdma_shift = ilog2(descq_cnt);
1056                 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1057                 sde->descq_full_count = 0;
1058
1059                 /* Create a mask for all 3 chip interrupt sources */
1060                 sde->imask = (u64)1 << (0*TXE_NUM_SDMA_ENGINES + this_idx)
1061                         | (u64)1 << (1*TXE_NUM_SDMA_ENGINES + this_idx)
1062                         | (u64)1 << (2*TXE_NUM_SDMA_ENGINES + this_idx);
1063                 /* Create a mask specifically for sdma_idle */
1064                 sde->idle_mask =
1065                         (u64)1 << (2*TXE_NUM_SDMA_ENGINES + this_idx);
1066                 /* Create a mask specifically for sdma_progress */
1067                 sde->progress_mask =
1068                         (u64)1 << (TXE_NUM_SDMA_ENGINES + this_idx);
1069                 spin_lock_init(&sde->tail_lock);
1070                 seqlock_init(&sde->head_lock);
1071                 spin_lock_init(&sde->senddmactrl_lock);
1072                 spin_lock_init(&sde->flushlist_lock);
1073                 /* insure there is always a zero bit */
1074                 sde->ahg_bits = 0xfffffffe00000000ULL;
1075
1076                 sdma_set_state(sde, sdma_state_s00_hw_down);
1077
1078                 /* set up reference counting */
1079                 kref_init(&sde->state.kref);
1080                 init_completion(&sde->state.comp);
1081
1082                 INIT_LIST_HEAD(&sde->flushlist);
1083                 INIT_LIST_HEAD(&sde->dmawait);
1084
1085                 sde->tail_csr =
1086                         get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1087
1088                 if (idle_cnt)
1089                         dd->default_desc1 =
1090                                 SDMA_DESC1_HEAD_TO_HOST_FLAG;
1091                 else
1092                         dd->default_desc1 =
1093                                 SDMA_DESC1_INT_REQ_FLAG;
1094
1095                 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1096                         (unsigned long)sde);
1097
1098                 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1099                         (unsigned long)sde);
1100                 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1101                 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1102
1103                 sde->progress_check_head = 0;
1104
1105                 setup_timer(&sde->err_progress_check_timer,
1106                             sdma_err_progress_check, (unsigned long)sde);
1107
1108                 sde->descq = dma_zalloc_coherent(
1109                         &dd->pcidev->dev,
1110                         descq_cnt * sizeof(u64[2]),
1111                         &sde->descq_phys,
1112                         GFP_KERNEL
1113                 );
1114                 if (!sde->descq)
1115                         goto bail;
1116                 sde->tx_ring =
1117                         kcalloc(descq_cnt, sizeof(struct sdma_txreq *),
1118                                 GFP_KERNEL);
1119                 if (!sde->tx_ring)
1120                         sde->tx_ring =
1121                                 vzalloc(
1122                                         sizeof(struct sdma_txreq *) *
1123                                         descq_cnt);
1124                 if (!sde->tx_ring)
1125                         goto bail;
1126         }
1127
1128         dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1129         /* Allocate memory for DMA of head registers to memory */
1130         dd->sdma_heads_dma = dma_zalloc_coherent(
1131                 &dd->pcidev->dev,
1132                 dd->sdma_heads_size,
1133                 &dd->sdma_heads_phys,
1134                 GFP_KERNEL
1135         );
1136         if (!dd->sdma_heads_dma) {
1137                 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1138                 goto bail;
1139         }
1140
1141         /* Allocate memory for pad */
1142         dd->sdma_pad_dma = dma_zalloc_coherent(
1143                 &dd->pcidev->dev,
1144                 sizeof(u32),
1145                 &dd->sdma_pad_phys,
1146                 GFP_KERNEL
1147         );
1148         if (!dd->sdma_pad_dma) {
1149                 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1150                 goto bail;
1151         }
1152
1153         /* assign each engine to different cacheline and init registers */
1154         curr_head = (void *)dd->sdma_heads_dma;
1155         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1156                 unsigned long phys_offset;
1157
1158                 sde = &dd->per_sdma[this_idx];
1159
1160                 sde->head_dma = curr_head;
1161                 curr_head += L1_CACHE_BYTES;
1162                 phys_offset = (unsigned long)sde->head_dma -
1163                               (unsigned long)dd->sdma_heads_dma;
1164                 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1165                 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1166         }
1167         dd->flags |= HFI1_HAS_SEND_DMA;
1168         dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1169         dd->num_sdma = num_engines;
1170         if (sdma_map_init(dd, port, ppd->vls_operational, NULL))
1171                 goto bail;
1172         dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1173         return 0;
1174
1175 bail:
1176         sdma_clean(dd, num_engines);
1177         return -ENOMEM;
1178 }
1179
1180 /**
1181  * sdma_all_running() - called when the link goes up
1182  * @dd: hfi1_devdata
1183  *
1184  * This routine moves all engines to the running state.
1185  */
1186 void sdma_all_running(struct hfi1_devdata *dd)
1187 {
1188         struct sdma_engine *sde;
1189         unsigned int i;
1190
1191         /* move all engines to running */
1192         for (i = 0; i < dd->num_sdma; ++i) {
1193                 sde = &dd->per_sdma[i];
1194                 sdma_process_event(sde, sdma_event_e30_go_running);
1195         }
1196 }
1197
1198 /**
1199  * sdma_all_idle() - called when the link goes down
1200  * @dd: hfi1_devdata
1201  *
1202  * This routine moves all engines to the idle state.
1203  */
1204 void sdma_all_idle(struct hfi1_devdata *dd)
1205 {
1206         struct sdma_engine *sde;
1207         unsigned int i;
1208
1209         /* idle all engines */
1210         for (i = 0; i < dd->num_sdma; ++i) {
1211                 sde = &dd->per_sdma[i];
1212                 sdma_process_event(sde, sdma_event_e70_go_idle);
1213         }
1214 }
1215
1216 /**
1217  * sdma_start() - called to kick off state processing for all engines
1218  * @dd: hfi1_devdata
1219  *
1220  * This routine is for kicking off the state processing for all required
1221  * sdma engines.  Interrupts need to be working at this point.
1222  *
1223  */
1224 void sdma_start(struct hfi1_devdata *dd)
1225 {
1226         unsigned i;
1227         struct sdma_engine *sde;
1228
1229         /* kick off the engines state processing */
1230         for (i = 0; i < dd->num_sdma; ++i) {
1231                 sde = &dd->per_sdma[i];
1232                 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1233         }
1234 }
1235
1236 /**
1237  * sdma_exit() - used when module is removed
1238  * @dd: hfi1_devdata
1239  */
1240 void sdma_exit(struct hfi1_devdata *dd)
1241 {
1242         unsigned this_idx;
1243         struct sdma_engine *sde;
1244
1245         for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1246                         ++this_idx) {
1247
1248                 sde = &dd->per_sdma[this_idx];
1249                 if (!list_empty(&sde->dmawait))
1250                         dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1251                                 sde->this_idx);
1252                 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1253
1254                 del_timer_sync(&sde->err_progress_check_timer);
1255
1256                 /*
1257                  * This waits for the state machine to exit so it is not
1258                  * necessary to kill the sdma_sw_clean_up_task to make sure
1259                  * it is not running.
1260                  */
1261                 sdma_finalput(&sde->state);
1262         }
1263         sdma_clean(dd, dd->num_sdma);
1264 }
1265
1266 /*
1267  * unmap the indicated descriptor
1268  */
1269 static inline void sdma_unmap_desc(
1270         struct hfi1_devdata *dd,
1271         struct sdma_desc *descp)
1272 {
1273         switch (sdma_mapping_type(descp)) {
1274         case SDMA_MAP_SINGLE:
1275                 dma_unmap_single(
1276                         &dd->pcidev->dev,
1277                         sdma_mapping_addr(descp),
1278                         sdma_mapping_len(descp),
1279                         DMA_TO_DEVICE);
1280                 break;
1281         case SDMA_MAP_PAGE:
1282                 dma_unmap_page(
1283                         &dd->pcidev->dev,
1284                         sdma_mapping_addr(descp),
1285                         sdma_mapping_len(descp),
1286                         DMA_TO_DEVICE);
1287                 break;
1288         }
1289 }
1290
1291 /*
1292  * return the mode as indicated by the first
1293  * descriptor in the tx.
1294  */
1295 static inline u8 ahg_mode(struct sdma_txreq *tx)
1296 {
1297         return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1298                 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1299 }
1300
1301 /**
1302  * sdma_txclean() - clean tx of mappings, descp *kmalloc's
1303  * @dd: hfi1_devdata for unmapping
1304  * @tx: tx request to clean
1305  *
1306  * This is used in the progress routine to clean the tx or
1307  * by the ULP to toss an in-process tx build.
1308  *
1309  * The code can be called multiple times without issue.
1310  *
1311  */
1312 void sdma_txclean(
1313         struct hfi1_devdata *dd,
1314         struct sdma_txreq *tx)
1315 {
1316         u16 i;
1317
1318         if (tx->num_desc) {
1319                 u8 skip = 0, mode = ahg_mode(tx);
1320
1321                 /* unmap first */
1322                 sdma_unmap_desc(dd, &tx->descp[0]);
1323                 /* determine number of AHG descriptors to skip */
1324                 if (mode > SDMA_AHG_APPLY_UPDATE1)
1325                         skip = mode >> 1;
1326                 for (i = 1 + skip; i < tx->num_desc; i++)
1327                         sdma_unmap_desc(dd, &tx->descp[i]);
1328                 tx->num_desc = 0;
1329         }
1330         kfree(tx->coalesce_buf);
1331         tx->coalesce_buf = NULL;
1332         /* kmalloc'ed descp */
1333         if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1334                 tx->desc_limit = ARRAY_SIZE(tx->descs);
1335                 kfree(tx->descp);
1336         }
1337 }
1338
1339 static inline u16 sdma_gethead(struct sdma_engine *sde)
1340 {
1341         struct hfi1_devdata *dd = sde->dd;
1342         int use_dmahead;
1343         u16 hwhead;
1344
1345 #ifdef CONFIG_SDMA_VERBOSITY
1346         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1347                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1348 #endif
1349
1350 retry:
1351         use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1352                                         (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1353         hwhead = use_dmahead ?
1354                 (u16) le64_to_cpu(*sde->head_dma) :
1355                 (u16) read_sde_csr(sde, SD(HEAD));
1356
1357         if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1358                 u16 cnt;
1359                 u16 swtail;
1360                 u16 swhead;
1361                 int sane;
1362
1363                 swhead = sde->descq_head & sde->sdma_mask;
1364                 /* this code is really bad for cache line trading */
1365                 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1366                 cnt = sde->descq_cnt;
1367
1368                 if (swhead < swtail)
1369                         /* not wrapped */
1370                         sane = (hwhead >= swhead) & (hwhead <= swtail);
1371                 else if (swhead > swtail)
1372                         /* wrapped around */
1373                         sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1374                                 (hwhead <= swtail);
1375                 else
1376                         /* empty */
1377                         sane = (hwhead == swhead);
1378
1379                 if (unlikely(!sane)) {
1380                         dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1381                                 sde->this_idx,
1382                                 use_dmahead ? "dma" : "kreg",
1383                                 hwhead, swhead, swtail, cnt);
1384                         if (use_dmahead) {
1385                                 /* try one more time, using csr */
1386                                 use_dmahead = 0;
1387                                 goto retry;
1388                         }
1389                         /* proceed as if no progress */
1390                         hwhead = swhead;
1391                 }
1392         }
1393         return hwhead;
1394 }
1395
1396 /*
1397  * This is called when there are send DMA descriptors that might be
1398  * available.
1399  *
1400  * This is called with head_lock held.
1401  */
1402 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail)
1403 {
1404         struct iowait *wait, *nw;
1405         struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1406         unsigned i, n = 0, seq;
1407         struct sdma_txreq *stx;
1408         struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
1409
1410 #ifdef CONFIG_SDMA_VERBOSITY
1411         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1412                    slashstrip(__FILE__), __LINE__, __func__);
1413         dd_dev_err(sde->dd, "avail: %u\n", avail);
1414 #endif
1415
1416         do {
1417                 seq = read_seqbegin(&dev->iowait_lock);
1418                 if (!list_empty(&sde->dmawait)) {
1419                         /* at least one item */
1420                         write_seqlock(&dev->iowait_lock);
1421                         /* Harvest waiters wanting DMA descriptors */
1422                         list_for_each_entry_safe(
1423                                         wait,
1424                                         nw,
1425                                         &sde->dmawait,
1426                                         list) {
1427                                 u16 num_desc = 0;
1428
1429                                 if (!wait->wakeup)
1430                                         continue;
1431                                 if (n == ARRAY_SIZE(waits))
1432                                         break;
1433                                 if (!list_empty(&wait->tx_head)) {
1434                                         stx = list_first_entry(
1435                                                 &wait->tx_head,
1436                                                 struct sdma_txreq,
1437                                                 list);
1438                                         num_desc = stx->num_desc;
1439                                 }
1440                                 if (num_desc > avail)
1441                                         break;
1442                                 avail -= num_desc;
1443                                 list_del_init(&wait->list);
1444                                 waits[n++] = wait;
1445                         }
1446                         write_sequnlock(&dev->iowait_lock);
1447                         break;
1448                 }
1449         } while (read_seqretry(&dev->iowait_lock, seq));
1450
1451         for (i = 0; i < n; i++)
1452                 waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1453 }
1454
1455 /* head_lock must be held */
1456 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1457 {
1458         struct sdma_txreq *txp = NULL;
1459         int progress = 0;
1460         u16 hwhead, swhead, swtail;
1461         int idle_check_done = 0;
1462
1463         hwhead = sdma_gethead(sde);
1464
1465         /* The reason for some of the complexity of this code is that
1466          * not all descriptors have corresponding txps.  So, we have to
1467          * be able to skip over descs until we wander into the range of
1468          * the next txp on the list.
1469          */
1470
1471 retry:
1472         txp = get_txhead(sde);
1473         swhead = sde->descq_head & sde->sdma_mask;
1474         trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1475         while (swhead != hwhead) {
1476                 /* advance head, wrap if needed */
1477                 swhead = ++sde->descq_head & sde->sdma_mask;
1478
1479                 /* if now past this txp's descs, do the callback */
1480                 if (txp && txp->next_descq_idx == swhead) {
1481                         int drained = 0;
1482                         /* protect against complete modifying */
1483                         struct iowait *wait = txp->wait;
1484
1485                         /* remove from list */
1486                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1487                         if (wait)
1488                                 drained = atomic_dec_and_test(&wait->sdma_busy);
1489 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
1490                         trace_hfi1_sdma_out_sn(sde, txp->sn);
1491                         if (WARN_ON_ONCE(sde->head_sn != txp->sn))
1492                                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
1493                                         sde->head_sn, txp->sn);
1494                         sde->head_sn++;
1495 #endif
1496                         sdma_txclean(sde->dd, txp);
1497                         if (txp->complete)
1498                                 (*txp->complete)(
1499                                         txp,
1500                                         SDMA_TXREQ_S_OK,
1501                                         drained);
1502                         if (wait && drained)
1503                                 iowait_drain_wakeup(wait);
1504                         /* see if there is another txp */
1505                         txp = get_txhead(sde);
1506                 }
1507                 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1508                 progress++;
1509         }
1510
1511         /*
1512          * The SDMA idle interrupt is not guaranteed to be ordered with respect
1513          * to updates to the the dma_head location in host memory. The head
1514          * value read might not be fully up to date. If there are pending
1515          * descriptors and the SDMA idle interrupt fired then read from the
1516          * CSR SDMA head instead to get the latest value from the hardware.
1517          * The hardware SDMA head should be read at most once in this invocation
1518          * of sdma_make_progress(..) which is ensured by idle_check_done flag
1519          */
1520         if ((status & sde->idle_mask) && !idle_check_done) {
1521                 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1522                 if (swtail != hwhead) {
1523                         hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1524                         idle_check_done = 1;
1525                         goto retry;
1526                 }
1527         }
1528
1529         sde->last_status = status;
1530         if (progress)
1531                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1532 }
1533
1534 /*
1535  * sdma_engine_interrupt() - interrupt handler for engine
1536  * @sde: sdma engine
1537  * @status: sdma interrupt reason
1538  *
1539  * Status is a mask of the 3 possible interrupts for this engine.  It will
1540  * contain bits _only_ for this SDMA engine.  It will contain at least one
1541  * bit, it may contain more.
1542  */
1543 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1544 {
1545         trace_hfi1_sdma_engine_interrupt(sde, status);
1546         write_seqlock(&sde->head_lock);
1547         sdma_set_desc_cnt(sde, sdma_desct_intr);
1548         sdma_make_progress(sde, status);
1549         write_sequnlock(&sde->head_lock);
1550 }
1551
1552 /**
1553  * sdma_engine_error() - error handler for engine
1554  * @sde: sdma engine
1555  * @status: sdma interrupt reason
1556  */
1557 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1558 {
1559         unsigned long flags;
1560
1561 #ifdef CONFIG_SDMA_VERBOSITY
1562         dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1563                    sde->this_idx,
1564                    (unsigned long long)status,
1565                    sdma_state_names[sde->state.current_state]);
1566 #endif
1567         spin_lock_irqsave(&sde->tail_lock, flags);
1568         write_seqlock(&sde->head_lock);
1569         if (status & ALL_SDMA_ENG_HALT_ERRS)
1570                 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1571         if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1572                 dd_dev_err(sde->dd,
1573                         "SDMA (%u) engine error: 0x%llx state %s\n",
1574                         sde->this_idx,
1575                         (unsigned long long)status,
1576                         sdma_state_names[sde->state.current_state]);
1577                 dump_sdma_state(sde);
1578         }
1579         write_sequnlock(&sde->head_lock);
1580         spin_unlock_irqrestore(&sde->tail_lock, flags);
1581 }
1582
1583 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1584 {
1585         u64 set_senddmactrl = 0;
1586         u64 clr_senddmactrl = 0;
1587         unsigned long flags;
1588
1589 #ifdef CONFIG_SDMA_VERBOSITY
1590         dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1591                    sde->this_idx,
1592                    (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1593                    (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1594                    (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1595                    (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1596 #endif
1597
1598         if (op & SDMA_SENDCTRL_OP_ENABLE)
1599                 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1600         else
1601                 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1602
1603         if (op & SDMA_SENDCTRL_OP_INTENABLE)
1604                 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1605         else
1606                 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1607
1608         if (op & SDMA_SENDCTRL_OP_HALT)
1609                 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1610         else
1611                 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1612
1613         spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1614
1615         sde->p_senddmactrl |= set_senddmactrl;
1616         sde->p_senddmactrl &= ~clr_senddmactrl;
1617
1618         if (op & SDMA_SENDCTRL_OP_CLEANUP)
1619                 write_sde_csr(sde, SD(CTRL),
1620                         sde->p_senddmactrl |
1621                         SD(CTRL_SDMA_CLEANUP_SMASK));
1622         else
1623                 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1624
1625         spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1626
1627 #ifdef CONFIG_SDMA_VERBOSITY
1628         sdma_dumpstate(sde);
1629 #endif
1630 }
1631
1632 static void sdma_setlengen(struct sdma_engine *sde)
1633 {
1634 #ifdef CONFIG_SDMA_VERBOSITY
1635         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1636                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1637 #endif
1638
1639         /*
1640          * Set SendDmaLenGen and clear-then-set the MSB of the generation
1641          * count to enable generation checking and load the internal
1642          * generation counter.
1643          */
1644         write_sde_csr(sde, SD(LEN_GEN),
1645                 (sde->descq_cnt/64) << SD(LEN_GEN_LENGTH_SHIFT)
1646         );
1647         write_sde_csr(sde, SD(LEN_GEN),
1648                 ((sde->descq_cnt/64) << SD(LEN_GEN_LENGTH_SHIFT))
1649                 | (4ULL << SD(LEN_GEN_GENERATION_SHIFT))
1650         );
1651 }
1652
1653 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1654 {
1655         /* Commit writes to memory and advance the tail on the chip */
1656         smp_wmb(); /* see get_txhead() */
1657         writeq(tail, sde->tail_csr);
1658 }
1659
1660 /*
1661  * This is called when changing to state s10_hw_start_up_halt_wait as
1662  * a result of send buffer errors or send DMA descriptor errors.
1663  */
1664 static void sdma_hw_start_up(struct sdma_engine *sde)
1665 {
1666         u64 reg;
1667
1668 #ifdef CONFIG_SDMA_VERBOSITY
1669         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1670                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1671 #endif
1672
1673         sdma_setlengen(sde);
1674         sdma_update_tail(sde, 0); /* Set SendDmaTail */
1675         *sde->head_dma = 0;
1676
1677         reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
1678               SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
1679         write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
1680 }
1681
1682 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
1683 (r &= ~SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
1684
1685 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
1686 (r |= SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
1687 /*
1688  * set_sdma_integrity
1689  *
1690  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
1691  */
1692 static void set_sdma_integrity(struct sdma_engine *sde)
1693 {
1694         struct hfi1_devdata *dd = sde->dd;
1695         u64 reg;
1696
1697         if (unlikely(HFI1_CAP_IS_KSET(NO_INTEGRITY)))
1698                 return;
1699
1700         reg = hfi1_pkt_base_sdma_integrity(dd);
1701
1702         if (HFI1_CAP_IS_KSET(STATIC_RATE_CTRL))
1703                 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
1704         else
1705                 SET_STATIC_RATE_CONTROL_SMASK(reg);
1706
1707         write_sde_csr(sde, SD(CHECK_ENABLE), reg);
1708 }
1709
1710
1711 static void init_sdma_regs(
1712         struct sdma_engine *sde,
1713         u32 credits,
1714         uint idle_cnt)
1715 {
1716         u8 opval, opmask;
1717 #ifdef CONFIG_SDMA_VERBOSITY
1718         struct hfi1_devdata *dd = sde->dd;
1719
1720         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1721                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1722 #endif
1723
1724         write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
1725         sdma_setlengen(sde);
1726         sdma_update_tail(sde, 0); /* Set SendDmaTail */
1727         write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
1728         write_sde_csr(sde, SD(DESC_CNT), 0);
1729         write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
1730         write_sde_csr(sde, SD(MEMORY),
1731                 ((u64)credits <<
1732                         SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
1733                 ((u64)(credits * sde->this_idx) <<
1734                         SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
1735         write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
1736         set_sdma_integrity(sde);
1737         opmask = OPCODE_CHECK_MASK_DISABLED;
1738         opval = OPCODE_CHECK_VAL_DISABLED;
1739         write_sde_csr(sde, SD(CHECK_OPCODE),
1740                 (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
1741                 (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
1742 }
1743
1744 #ifdef CONFIG_SDMA_VERBOSITY
1745
1746 #define sdma_dumpstate_helper0(reg) do { \
1747                 csr = read_csr(sde->dd, reg); \
1748                 dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
1749         } while (0)
1750
1751 #define sdma_dumpstate_helper(reg) do { \
1752                 csr = read_sde_csr(sde, reg); \
1753                 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
1754                         #reg, sde->this_idx, csr); \
1755         } while (0)
1756
1757 #define sdma_dumpstate_helper2(reg) do { \
1758                 csr = read_csr(sde->dd, reg + (8 * i)); \
1759                 dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
1760                                 #reg, i, csr); \
1761         } while (0)
1762
1763 void sdma_dumpstate(struct sdma_engine *sde)
1764 {
1765         u64 csr;
1766         unsigned i;
1767
1768         sdma_dumpstate_helper(SD(CTRL));
1769         sdma_dumpstate_helper(SD(STATUS));
1770         sdma_dumpstate_helper0(SD(ERR_STATUS));
1771         sdma_dumpstate_helper0(SD(ERR_MASK));
1772         sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
1773         sdma_dumpstate_helper(SD(ENG_ERR_MASK));
1774
1775         for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
1776                 sdma_dumpstate_helper2(CCE_INT_STATUS);
1777                 sdma_dumpstate_helper2(CCE_INT_MASK);
1778                 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
1779         }
1780
1781         sdma_dumpstate_helper(SD(TAIL));
1782         sdma_dumpstate_helper(SD(HEAD));
1783         sdma_dumpstate_helper(SD(PRIORITY_THLD));
1784         sdma_dumpstate_helper(SD(IDLE_CNT));
1785         sdma_dumpstate_helper(SD(RELOAD_CNT));
1786         sdma_dumpstate_helper(SD(DESC_CNT));
1787         sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
1788         sdma_dumpstate_helper(SD(MEMORY));
1789         sdma_dumpstate_helper0(SD(ENGINES));
1790         sdma_dumpstate_helper0(SD(MEM_SIZE));
1791         /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
1792         sdma_dumpstate_helper(SD(BASE_ADDR));
1793         sdma_dumpstate_helper(SD(LEN_GEN));
1794         sdma_dumpstate_helper(SD(HEAD_ADDR));
1795         sdma_dumpstate_helper(SD(CHECK_ENABLE));
1796         sdma_dumpstate_helper(SD(CHECK_VL));
1797         sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
1798         sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
1799         sdma_dumpstate_helper(SD(CHECK_SLID));
1800         sdma_dumpstate_helper(SD(CHECK_OPCODE));
1801 }
1802 #endif
1803
1804 static void dump_sdma_state(struct sdma_engine *sde)
1805 {
1806         struct hw_sdma_desc *descq;
1807         struct hw_sdma_desc *descqp;
1808         u64 desc[2];
1809         u64 addr;
1810         u8 gen;
1811         u16 len;
1812         u16 head, tail, cnt;
1813
1814         head = sde->descq_head & sde->sdma_mask;
1815         tail = sde->descq_tail & sde->sdma_mask;
1816         cnt = sdma_descq_freecnt(sde);
1817         descq = sde->descq;
1818
1819         dd_dev_err(sde->dd,
1820                 "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
1821                 sde->this_idx,
1822                 head,
1823                 tail,
1824                 cnt,
1825                 !list_empty(&sde->flushlist));
1826
1827         /* print info for each entry in the descriptor queue */
1828         while (head != tail) {
1829                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
1830
1831                 descqp = &sde->descq[head];
1832                 desc[0] = le64_to_cpu(descqp->qw[0]);
1833                 desc[1] = le64_to_cpu(descqp->qw[1]);
1834                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
1835                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
1836                                 'H' : '-';
1837                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
1838                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
1839                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
1840                         & SDMA_DESC0_PHY_ADDR_MASK;
1841                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
1842                         & SDMA_DESC1_GENERATION_MASK;
1843                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
1844                         & SDMA_DESC0_BYTE_COUNT_MASK;
1845                 dd_dev_err(sde->dd,
1846                         "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
1847                          head, flags, addr, gen, len);
1848                 dd_dev_err(sde->dd,
1849                         "\tdesc0:0x%016llx desc1 0x%016llx\n",
1850                          desc[0], desc[1]);
1851                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
1852                         dd_dev_err(sde->dd,
1853                                 "\taidx: %u amode: %u alen: %u\n",
1854                                 (u8)((desc[1] & SDMA_DESC1_HEADER_INDEX_SMASK)
1855                                         >> SDMA_DESC1_HEADER_INDEX_SHIFT),
1856                                 (u8)((desc[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1857                                         >> SDMA_DESC1_HEADER_MODE_SHIFT),
1858                                 (u8)((desc[1] & SDMA_DESC1_HEADER_DWS_SMASK)
1859                                         >> SDMA_DESC1_HEADER_DWS_SHIFT));
1860                 head++;
1861                 head &= sde->sdma_mask;
1862         }
1863 }
1864
1865 #define SDE_FMT \
1866         "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
1867 /**
1868  * sdma_seqfile_dump_sde() - debugfs dump of sde
1869  * @s: seq file
1870  * @sde: send dma engine to dump
1871  *
1872  * This routine dumps the sde to the indicated seq file.
1873  */
1874 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
1875 {
1876         u16 head, tail;
1877         struct hw_sdma_desc *descqp;
1878         u64 desc[2];
1879         u64 addr;
1880         u8 gen;
1881         u16 len;
1882
1883         head = sde->descq_head & sde->sdma_mask;
1884         tail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1885         seq_printf(s, SDE_FMT, sde->this_idx,
1886                 sde->cpu,
1887                 sdma_state_name(sde->state.current_state),
1888                 (unsigned long long)read_sde_csr(sde, SD(CTRL)),
1889                 (unsigned long long)read_sde_csr(sde, SD(STATUS)),
1890                 (unsigned long long)read_sde_csr(sde,
1891                         SD(ENG_ERR_STATUS)),
1892                 (unsigned long long)read_sde_csr(sde, SD(TAIL)),
1893                 tail,
1894                 (unsigned long long)read_sde_csr(sde, SD(HEAD)),
1895                 head,
1896                 (unsigned long long)le64_to_cpu(*sde->head_dma),
1897                 (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
1898                 (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
1899                 (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
1900                 (unsigned long long)sde->last_status,
1901                 (unsigned long long)sde->ahg_bits,
1902                 sde->tx_tail,
1903                 sde->tx_head,
1904                 sde->descq_tail,
1905                 sde->descq_head,
1906                    !list_empty(&sde->flushlist),
1907                 sde->descq_full_count,
1908                 (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
1909
1910         /* print info for each entry in the descriptor queue */
1911         while (head != tail) {
1912                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
1913
1914                 descqp = &sde->descq[head];
1915                 desc[0] = le64_to_cpu(descqp->qw[0]);
1916                 desc[1] = le64_to_cpu(descqp->qw[1]);
1917                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
1918                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
1919                                 'H' : '-';
1920                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
1921                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
1922                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
1923                         & SDMA_DESC0_PHY_ADDR_MASK;
1924                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
1925                         & SDMA_DESC1_GENERATION_MASK;
1926                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
1927                         & SDMA_DESC0_BYTE_COUNT_MASK;
1928                 seq_printf(s,
1929                         "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
1930                         head, flags, addr, gen, len);
1931                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
1932                         seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
1933                                 (u8)((desc[1] & SDMA_DESC1_HEADER_INDEX_SMASK)
1934                                         >> SDMA_DESC1_HEADER_INDEX_SHIFT),
1935                                 (u8)((desc[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1936                                         >> SDMA_DESC1_HEADER_MODE_SHIFT));
1937                 head = (head + 1) & sde->sdma_mask;
1938         }
1939 }
1940
1941 /*
1942  * add the generation number into
1943  * the qw1 and return
1944  */
1945 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
1946 {
1947         u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
1948
1949         qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
1950         qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
1951                         << SDMA_DESC1_GENERATION_SHIFT;
1952         return qw1;
1953 }
1954
1955 /*
1956  * This routine submits the indicated tx
1957  *
1958  * Space has already been guaranteed and
1959  * tail side of ring is locked.
1960  *
1961  * The hardware tail update is done
1962  * in the caller and that is facilitated
1963  * by returning the new tail.
1964  *
1965  * There is special case logic for ahg
1966  * to not add the generation number for
1967  * up to 2 descriptors that follow the
1968  * first descriptor.
1969  *
1970  */
1971 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
1972 {
1973         int i;
1974         u16 tail;
1975         struct sdma_desc *descp = tx->descp;
1976         u8 skip = 0, mode = ahg_mode(tx);
1977
1978         tail = sde->descq_tail & sde->sdma_mask;
1979         sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
1980         sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
1981         trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
1982                                    tail, &sde->descq[tail]);
1983         tail = ++sde->descq_tail & sde->sdma_mask;
1984         descp++;
1985         if (mode > SDMA_AHG_APPLY_UPDATE1)
1986                 skip = mode >> 1;
1987         for (i = 1; i < tx->num_desc; i++, descp++) {
1988                 u64 qw1;
1989
1990                 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
1991                 if (skip) {
1992                         /* edits don't have generation */
1993                         qw1 = descp->qw[1];
1994                         skip--;
1995                 } else {
1996                         /* replace generation with real one for non-edits */
1997                         qw1 = add_gen(sde, descp->qw[1]);
1998                 }
1999                 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2000                 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2001                                            tail, &sde->descq[tail]);
2002                 tail = ++sde->descq_tail & sde->sdma_mask;
2003         }
2004         tx->next_descq_idx = tail;
2005 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2006         tx->sn = sde->tail_sn++;
2007         trace_hfi1_sdma_in_sn(sde, tx->sn);
2008         WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2009 #endif
2010         sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2011         sde->desc_avail -= tx->num_desc;
2012         return tail;
2013 }
2014
2015 /*
2016  * Check for progress
2017  */
2018 static int sdma_check_progress(
2019         struct sdma_engine *sde,
2020         struct iowait *wait,
2021         struct sdma_txreq *tx)
2022 {
2023         int ret;
2024
2025         sde->desc_avail = sdma_descq_freecnt(sde);
2026         if (tx->num_desc <= sde->desc_avail)
2027                 return -EAGAIN;
2028         /* pulse the head_lock */
2029         if (wait && wait->sleep) {
2030                 unsigned seq;
2031
2032                 seq = raw_seqcount_begin(
2033                         (const seqcount_t *)&sde->head_lock.seqcount);
2034                 ret = wait->sleep(sde, wait, tx, seq);
2035                 if (ret == -EAGAIN)
2036                         sde->desc_avail = sdma_descq_freecnt(sde);
2037         } else
2038                 ret = -EBUSY;
2039         return ret;
2040 }
2041
2042 /**
2043  * sdma_send_txreq() - submit a tx req to ring
2044  * @sde: sdma engine to use
2045  * @wait: wait structure to use when full (may be NULL)
2046  * @tx: sdma_txreq to submit
2047  *
2048  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2049  * the packet will be queued to the list in wait.
2050  *
2051  * Return:
2052  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2053  * ring (wait == NULL)
2054  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2055  */
2056 int sdma_send_txreq(struct sdma_engine *sde,
2057                     struct iowait *wait,
2058                     struct sdma_txreq *tx)
2059 {
2060         int ret = 0;
2061         u16 tail;
2062         unsigned long flags;
2063
2064         /* user should have supplied entire packet */
2065         if (unlikely(tx->tlen))
2066                 return -EINVAL;
2067         tx->wait = wait;
2068         spin_lock_irqsave(&sde->tail_lock, flags);
2069 retry:
2070         if (unlikely(!__sdma_running(sde)))
2071                 goto unlock_noconn;
2072         if (unlikely(tx->num_desc > sde->desc_avail))
2073                 goto nodesc;
2074         tail = submit_tx(sde, tx);
2075         if (wait)
2076                 atomic_inc(&wait->sdma_busy);
2077         sdma_update_tail(sde, tail);
2078 unlock:
2079         spin_unlock_irqrestore(&sde->tail_lock, flags);
2080         return ret;
2081 unlock_noconn:
2082         if (wait)
2083                 atomic_inc(&wait->sdma_busy);
2084         tx->next_descq_idx = 0;
2085 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2086         tx->sn = sde->tail_sn++;
2087         trace_hfi1_sdma_in_sn(sde, tx->sn);
2088 #endif
2089         spin_lock(&sde->flushlist_lock);
2090         list_add_tail(&tx->list, &sde->flushlist);
2091         spin_unlock(&sde->flushlist_lock);
2092         if (wait) {
2093                 wait->tx_count++;
2094                 wait->count += tx->num_desc;
2095         }
2096         schedule_work(&sde->flush_worker);
2097         ret = -ECOMM;
2098         goto unlock;
2099 nodesc:
2100         ret = sdma_check_progress(sde, wait, tx);
2101         if (ret == -EAGAIN) {
2102                 ret = 0;
2103                 goto retry;
2104         }
2105         sde->descq_full_count++;
2106         goto unlock;
2107 }
2108
2109 /**
2110  * sdma_send_txlist() - submit a list of tx req to ring
2111  * @sde: sdma engine to use
2112  * @wait: wait structure to use when full (may be NULL)
2113  * @tx_list: list of sdma_txreqs to submit
2114  *
2115  * The call submits the list into the ring.
2116  *
2117  * If the iowait structure is non-NULL and not equal to the iowait list
2118  * the unprocessed part of the list  will be appended to the list in wait.
2119  *
2120  * In all cases, the tx_list will be updated so the head of the tx_list is
2121  * the list of descriptors that have yet to be transmitted.
2122  *
2123  * The intent of this call is to provide a more efficient
2124  * way of submitting multiple packets to SDMA while holding the tail
2125  * side locking.
2126  *
2127  * Return:
2128  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring
2129  * (wait == NULL)
2130  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2131  */
2132 int sdma_send_txlist(struct sdma_engine *sde,
2133                     struct iowait *wait,
2134                     struct list_head *tx_list)
2135 {
2136         struct sdma_txreq *tx, *tx_next;
2137         int ret = 0;
2138         unsigned long flags;
2139         u16 tail = INVALID_TAIL;
2140         int count = 0;
2141
2142         spin_lock_irqsave(&sde->tail_lock, flags);
2143 retry:
2144         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2145                 tx->wait = wait;
2146                 if (unlikely(!__sdma_running(sde)))
2147                         goto unlock_noconn;
2148                 if (unlikely(tx->num_desc > sde->desc_avail))
2149                         goto nodesc;
2150                 if (unlikely(tx->tlen)) {
2151                         ret = -EINVAL;
2152                         goto update_tail;
2153                 }
2154                 list_del_init(&tx->list);
2155                 tail = submit_tx(sde, tx);
2156                 count++;
2157                 if (tail != INVALID_TAIL &&
2158                     (count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2159                         sdma_update_tail(sde, tail);
2160                         tail = INVALID_TAIL;
2161                 }
2162         }
2163 update_tail:
2164         if (wait)
2165                 atomic_add(count, &wait->sdma_busy);
2166         if (tail != INVALID_TAIL)
2167                 sdma_update_tail(sde, tail);
2168         spin_unlock_irqrestore(&sde->tail_lock, flags);
2169         return ret;
2170 unlock_noconn:
2171         spin_lock(&sde->flushlist_lock);
2172         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2173                 tx->wait = wait;
2174                 list_del_init(&tx->list);
2175                 if (wait)
2176                         atomic_inc(&wait->sdma_busy);
2177                 tx->next_descq_idx = 0;
2178 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2179                 tx->sn = sde->tail_sn++;
2180                 trace_hfi1_sdma_in_sn(sde, tx->sn);
2181 #endif
2182                 list_add_tail(&tx->list, &sde->flushlist);
2183                 if (wait) {
2184                         wait->tx_count++;
2185                         wait->count += tx->num_desc;
2186                 }
2187         }
2188         spin_unlock(&sde->flushlist_lock);
2189         schedule_work(&sde->flush_worker);
2190         ret = -ECOMM;
2191         goto update_tail;
2192 nodesc:
2193         ret = sdma_check_progress(sde, wait, tx);
2194         if (ret == -EAGAIN) {
2195                 ret = 0;
2196                 goto retry;
2197         }
2198         sde->descq_full_count++;
2199         goto update_tail;
2200 }
2201
2202 static void sdma_process_event(struct sdma_engine *sde,
2203         enum sdma_events event)
2204 {
2205         unsigned long flags;
2206
2207         spin_lock_irqsave(&sde->tail_lock, flags);
2208         write_seqlock(&sde->head_lock);
2209
2210         __sdma_process_event(sde, event);
2211
2212         if (sde->state.current_state == sdma_state_s99_running)
2213                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2214
2215         write_sequnlock(&sde->head_lock);
2216         spin_unlock_irqrestore(&sde->tail_lock, flags);
2217 }
2218
2219 static void __sdma_process_event(struct sdma_engine *sde,
2220         enum sdma_events event)
2221 {
2222         struct sdma_state *ss = &sde->state;
2223         int need_progress = 0;
2224
2225         /* CONFIG SDMA temporary */
2226 #ifdef CONFIG_SDMA_VERBOSITY
2227         dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2228                    sdma_state_names[ss->current_state],
2229                    sdma_event_names[event]);
2230 #endif
2231
2232         switch (ss->current_state) {
2233         case sdma_state_s00_hw_down:
2234                 switch (event) {
2235                 case sdma_event_e00_go_hw_down:
2236                         break;
2237                 case sdma_event_e30_go_running:
2238                         /*
2239                          * If down, but running requested (usually result
2240                          * of link up, then we need to start up.
2241                          * This can happen when hw down is requested while
2242                          * bringing the link up with traffic active on
2243                          * 7220, e.g. */
2244                         ss->go_s99_running = 1;
2245                         /* fall through and start dma engine */
2246                 case sdma_event_e10_go_hw_start:
2247                         /* This reference means the state machine is started */
2248                         sdma_get(&sde->state);
2249                         sdma_set_state(sde,
2250                                 sdma_state_s10_hw_start_up_halt_wait);
2251                         break;
2252                 case sdma_event_e15_hw_halt_done:
2253                         break;
2254                 case sdma_event_e25_hw_clean_up_done:
2255                         break;
2256                 case sdma_event_e40_sw_cleaned:
2257                         sdma_sw_tear_down(sde);
2258                         break;
2259                 case sdma_event_e50_hw_cleaned:
2260                         break;
2261                 case sdma_event_e60_hw_halted:
2262                         break;
2263                 case sdma_event_e70_go_idle:
2264                         break;
2265                 case sdma_event_e80_hw_freeze:
2266                         break;
2267                 case sdma_event_e81_hw_frozen:
2268                         break;
2269                 case sdma_event_e82_hw_unfreeze:
2270                         break;
2271                 case sdma_event_e85_link_down:
2272                         break;
2273                 case sdma_event_e90_sw_halted:
2274                         break;
2275                 }
2276                 break;
2277
2278         case sdma_state_s10_hw_start_up_halt_wait:
2279                 switch (event) {
2280                 case sdma_event_e00_go_hw_down:
2281                         sdma_set_state(sde, sdma_state_s00_hw_down);
2282                         sdma_sw_tear_down(sde);
2283                         break;
2284                 case sdma_event_e10_go_hw_start:
2285                         break;
2286                 case sdma_event_e15_hw_halt_done:
2287                         sdma_set_state(sde,
2288                                 sdma_state_s15_hw_start_up_clean_wait);
2289                         sdma_start_hw_clean_up(sde);
2290                         break;
2291                 case sdma_event_e25_hw_clean_up_done:
2292                         break;
2293                 case sdma_event_e30_go_running:
2294                         ss->go_s99_running = 1;
2295                         break;
2296                 case sdma_event_e40_sw_cleaned:
2297                         break;
2298                 case sdma_event_e50_hw_cleaned:
2299                         break;
2300                 case sdma_event_e60_hw_halted:
2301                         schedule_work(&sde->err_halt_worker);
2302                         break;
2303                 case sdma_event_e70_go_idle:
2304                         ss->go_s99_running = 0;
2305                         break;
2306                 case sdma_event_e80_hw_freeze:
2307                         break;
2308                 case sdma_event_e81_hw_frozen:
2309                         break;
2310                 case sdma_event_e82_hw_unfreeze:
2311                         break;
2312                 case sdma_event_e85_link_down:
2313                         break;
2314                 case sdma_event_e90_sw_halted:
2315                         break;
2316                 }
2317                 break;
2318
2319         case sdma_state_s15_hw_start_up_clean_wait:
2320                 switch (event) {
2321                 case sdma_event_e00_go_hw_down:
2322                         sdma_set_state(sde, sdma_state_s00_hw_down);
2323                         sdma_sw_tear_down(sde);
2324                         break;
2325                 case sdma_event_e10_go_hw_start:
2326                         break;
2327                 case sdma_event_e15_hw_halt_done:
2328                         break;
2329                 case sdma_event_e25_hw_clean_up_done:
2330                         sdma_hw_start_up(sde);
2331                         sdma_set_state(sde, ss->go_s99_running ?
2332                                        sdma_state_s99_running :
2333                                        sdma_state_s20_idle);
2334                         break;
2335                 case sdma_event_e30_go_running:
2336                         ss->go_s99_running = 1;
2337                         break;
2338                 case sdma_event_e40_sw_cleaned:
2339                         break;
2340                 case sdma_event_e50_hw_cleaned:
2341                         break;
2342                 case sdma_event_e60_hw_halted:
2343                         break;
2344                 case sdma_event_e70_go_idle:
2345                         ss->go_s99_running = 0;
2346                         break;
2347                 case sdma_event_e80_hw_freeze:
2348                         break;
2349                 case sdma_event_e81_hw_frozen:
2350                         break;
2351                 case sdma_event_e82_hw_unfreeze:
2352                         break;
2353                 case sdma_event_e85_link_down:
2354                         break;
2355                 case sdma_event_e90_sw_halted:
2356                         break;
2357                 }
2358                 break;
2359
2360         case sdma_state_s20_idle:
2361                 switch (event) {
2362                 case sdma_event_e00_go_hw_down:
2363                         sdma_set_state(sde, sdma_state_s00_hw_down);
2364                         sdma_sw_tear_down(sde);
2365                         break;
2366                 case sdma_event_e10_go_hw_start:
2367                         break;
2368                 case sdma_event_e15_hw_halt_done:
2369                         break;
2370                 case sdma_event_e25_hw_clean_up_done:
2371                         break;
2372                 case sdma_event_e30_go_running:
2373                         sdma_set_state(sde, sdma_state_s99_running);
2374                         ss->go_s99_running = 1;
2375                         break;
2376                 case sdma_event_e40_sw_cleaned:
2377                         break;
2378                 case sdma_event_e50_hw_cleaned:
2379                         break;
2380                 case sdma_event_e60_hw_halted:
2381                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2382                         schedule_work(&sde->err_halt_worker);
2383                         break;
2384                 case sdma_event_e70_go_idle:
2385                         break;
2386                 case sdma_event_e85_link_down:
2387                         /* fall through */
2388                 case sdma_event_e80_hw_freeze:
2389                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2390                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2391                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2392                         break;
2393                 case sdma_event_e81_hw_frozen:
2394                         break;
2395                 case sdma_event_e82_hw_unfreeze:
2396                         break;
2397                 case sdma_event_e90_sw_halted:
2398                         break;
2399                 }
2400                 break;
2401
2402         case sdma_state_s30_sw_clean_up_wait:
2403                 switch (event) {
2404                 case sdma_event_e00_go_hw_down:
2405                         sdma_set_state(sde, sdma_state_s00_hw_down);
2406                         break;
2407                 case sdma_event_e10_go_hw_start:
2408                         break;
2409                 case sdma_event_e15_hw_halt_done:
2410                         break;
2411                 case sdma_event_e25_hw_clean_up_done:
2412                         break;
2413                 case sdma_event_e30_go_running:
2414                         ss->go_s99_running = 1;
2415                         break;
2416                 case sdma_event_e40_sw_cleaned:
2417                         sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2418                         sdma_start_hw_clean_up(sde);
2419                         break;
2420                 case sdma_event_e50_hw_cleaned:
2421                         break;
2422                 case sdma_event_e60_hw_halted:
2423                         break;
2424                 case sdma_event_e70_go_idle:
2425                         ss->go_s99_running = 0;
2426                         break;
2427                 case sdma_event_e80_hw_freeze:
2428                         break;
2429                 case sdma_event_e81_hw_frozen:
2430                         break;
2431                 case sdma_event_e82_hw_unfreeze:
2432                         break;
2433                 case sdma_event_e85_link_down:
2434                         ss->go_s99_running = 0;
2435                         break;
2436                 case sdma_event_e90_sw_halted:
2437                         break;
2438                 }
2439                 break;
2440
2441         case sdma_state_s40_hw_clean_up_wait:
2442                 switch (event) {
2443                 case sdma_event_e00_go_hw_down:
2444                         sdma_set_state(sde, sdma_state_s00_hw_down);
2445                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2446                         break;
2447                 case sdma_event_e10_go_hw_start:
2448                         break;
2449                 case sdma_event_e15_hw_halt_done:
2450                         break;
2451                 case sdma_event_e25_hw_clean_up_done:
2452                         sdma_hw_start_up(sde);
2453                         sdma_set_state(sde, ss->go_s99_running ?
2454                                        sdma_state_s99_running :
2455                                        sdma_state_s20_idle);
2456                         break;
2457                 case sdma_event_e30_go_running:
2458                         ss->go_s99_running = 1;
2459                         break;
2460                 case sdma_event_e40_sw_cleaned:
2461                         break;
2462                 case sdma_event_e50_hw_cleaned:
2463                         break;
2464                 case sdma_event_e60_hw_halted:
2465                         break;
2466                 case sdma_event_e70_go_idle:
2467                         ss->go_s99_running = 0;
2468                         break;
2469                 case sdma_event_e80_hw_freeze:
2470                         break;
2471                 case sdma_event_e81_hw_frozen:
2472                         break;
2473                 case sdma_event_e82_hw_unfreeze:
2474                         break;
2475                 case sdma_event_e85_link_down:
2476                         ss->go_s99_running = 0;
2477                         break;
2478                 case sdma_event_e90_sw_halted:
2479                         break;
2480                 }
2481                 break;
2482
2483         case sdma_state_s50_hw_halt_wait:
2484                 switch (event) {
2485                 case sdma_event_e00_go_hw_down:
2486                         sdma_set_state(sde, sdma_state_s00_hw_down);
2487                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2488                         break;
2489                 case sdma_event_e10_go_hw_start:
2490                         break;
2491                 case sdma_event_e15_hw_halt_done:
2492                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2493                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2494                         break;
2495                 case sdma_event_e25_hw_clean_up_done:
2496                         break;
2497                 case sdma_event_e30_go_running:
2498                         ss->go_s99_running = 1;
2499                         break;
2500                 case sdma_event_e40_sw_cleaned:
2501                         break;
2502                 case sdma_event_e50_hw_cleaned:
2503                         break;
2504                 case sdma_event_e60_hw_halted:
2505                         schedule_work(&sde->err_halt_worker);
2506                         break;
2507                 case sdma_event_e70_go_idle:
2508                         ss->go_s99_running = 0;
2509                         break;
2510                 case sdma_event_e80_hw_freeze:
2511                         break;
2512                 case sdma_event_e81_hw_frozen:
2513                         break;
2514                 case sdma_event_e82_hw_unfreeze:
2515                         break;
2516                 case sdma_event_e85_link_down:
2517                         ss->go_s99_running = 0;
2518                         break;
2519                 case sdma_event_e90_sw_halted:
2520                         break;
2521                 }
2522                 break;
2523
2524         case sdma_state_s60_idle_halt_wait:
2525                 switch (event) {
2526                 case sdma_event_e00_go_hw_down:
2527                         sdma_set_state(sde, sdma_state_s00_hw_down);
2528                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2529                         break;
2530                 case sdma_event_e10_go_hw_start:
2531                         break;
2532                 case sdma_event_e15_hw_halt_done:
2533                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2534                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2535                         break;
2536                 case sdma_event_e25_hw_clean_up_done:
2537                         break;
2538                 case sdma_event_e30_go_running:
2539                         ss->go_s99_running = 1;
2540                         break;
2541                 case sdma_event_e40_sw_cleaned:
2542                         break;
2543                 case sdma_event_e50_hw_cleaned:
2544                         break;
2545                 case sdma_event_e60_hw_halted:
2546                         schedule_work(&sde->err_halt_worker);
2547                         break;
2548                 case sdma_event_e70_go_idle:
2549                         ss->go_s99_running = 0;
2550                         break;
2551                 case sdma_event_e80_hw_freeze:
2552                         break;
2553                 case sdma_event_e81_hw_frozen:
2554                         break;
2555                 case sdma_event_e82_hw_unfreeze:
2556                         break;
2557                 case sdma_event_e85_link_down:
2558                         break;
2559                 case sdma_event_e90_sw_halted:
2560                         break;
2561                 }
2562                 break;
2563
2564         case sdma_state_s80_hw_freeze:
2565                 switch (event) {
2566                 case sdma_event_e00_go_hw_down:
2567                         sdma_set_state(sde, sdma_state_s00_hw_down);
2568                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2569                         break;
2570                 case sdma_event_e10_go_hw_start:
2571                         break;
2572                 case sdma_event_e15_hw_halt_done:
2573                         break;
2574                 case sdma_event_e25_hw_clean_up_done:
2575                         break;
2576                 case sdma_event_e30_go_running:
2577                         ss->go_s99_running = 1;
2578                         break;
2579                 case sdma_event_e40_sw_cleaned:
2580                         break;
2581                 case sdma_event_e50_hw_cleaned:
2582                         break;
2583                 case sdma_event_e60_hw_halted:
2584                         break;
2585                 case sdma_event_e70_go_idle:
2586                         ss->go_s99_running = 0;
2587                         break;
2588                 case sdma_event_e80_hw_freeze:
2589                         break;
2590                 case sdma_event_e81_hw_frozen:
2591                         sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2592                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2593                         break;
2594                 case sdma_event_e82_hw_unfreeze:
2595                         break;
2596                 case sdma_event_e85_link_down:
2597                         break;
2598                 case sdma_event_e90_sw_halted:
2599                         break;
2600                 }
2601                 break;
2602
2603         case sdma_state_s82_freeze_sw_clean:
2604                 switch (event) {
2605                 case sdma_event_e00_go_hw_down:
2606                         sdma_set_state(sde, sdma_state_s00_hw_down);
2607                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2608                         break;
2609                 case sdma_event_e10_go_hw_start:
2610                         break;
2611                 case sdma_event_e15_hw_halt_done:
2612                         break;
2613                 case sdma_event_e25_hw_clean_up_done:
2614                         break;
2615                 case sdma_event_e30_go_running:
2616                         ss->go_s99_running = 1;
2617                         break;
2618                 case sdma_event_e40_sw_cleaned:
2619                         /* notify caller this engine is done cleaning */
2620                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2621                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2622                         break;
2623                 case sdma_event_e50_hw_cleaned:
2624                         break;
2625                 case sdma_event_e60_hw_halted:
2626                         break;
2627                 case sdma_event_e70_go_idle:
2628                         ss->go_s99_running = 0;
2629                         break;
2630                 case sdma_event_e80_hw_freeze:
2631                         break;
2632                 case sdma_event_e81_hw_frozen:
2633                         break;
2634                 case sdma_event_e82_hw_unfreeze:
2635                         sdma_hw_start_up(sde);
2636                         sdma_set_state(sde, ss->go_s99_running ?
2637                                        sdma_state_s99_running :
2638                                        sdma_state_s20_idle);
2639                         break;
2640                 case sdma_event_e85_link_down:
2641                         break;
2642                 case sdma_event_e90_sw_halted:
2643                         break;
2644                 }
2645                 break;
2646
2647         case sdma_state_s99_running:
2648                 switch (event) {
2649                 case sdma_event_e00_go_hw_down:
2650                         sdma_set_state(sde, sdma_state_s00_hw_down);
2651                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2652                         break;
2653                 case sdma_event_e10_go_hw_start:
2654                         break;
2655                 case sdma_event_e15_hw_halt_done:
2656                         break;
2657                 case sdma_event_e25_hw_clean_up_done:
2658                         break;
2659                 case sdma_event_e30_go_running:
2660                         break;
2661                 case sdma_event_e40_sw_cleaned:
2662                         break;
2663                 case sdma_event_e50_hw_cleaned:
2664                         break;
2665                 case sdma_event_e60_hw_halted:
2666                         need_progress = 1;
2667                         sdma_err_progress_check_schedule(sde);
2668                 case sdma_event_e90_sw_halted:
2669                         /*
2670                         * SW initiated halt does not perform engines
2671                         * progress check
2672                         */
2673                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2674                         schedule_work(&sde->err_halt_worker);
2675                         break;
2676                 case sdma_event_e70_go_idle:
2677                         sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
2678                         break;
2679                 case sdma_event_e85_link_down:
2680                         ss->go_s99_running = 0;
2681                         /* fall through */
2682                 case sdma_event_e80_hw_freeze:
2683                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2684                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2685                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2686                         break;
2687                 case sdma_event_e81_hw_frozen:
2688                         break;
2689                 case sdma_event_e82_hw_unfreeze:
2690                         break;
2691                 }
2692                 break;
2693         }
2694
2695         ss->last_event = event;
2696         if (need_progress)
2697                 sdma_make_progress(sde, 0);
2698 }
2699
2700 /*
2701  * _extend_sdma_tx_descs() - helper to extend txreq
2702  *
2703  * This is called once the initial nominal allocation
2704  * of descriptors in the sdma_txreq is exhausted.
2705  *
2706  * The code will bump the allocation up to the max
2707  * of MAX_DESC (64) descriptors. There doesn't seem
2708  * much point in an interim step. The last descriptor
2709  * is reserved for coalesce buffer in order to support
2710  * cases where input packet has >MAX_DESC iovecs.
2711  *
2712  */
2713 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
2714 {
2715         int i;
2716
2717         /* Handle last descriptor */
2718         if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
2719                 /* if tlen is 0, it is for padding, release last descriptor */
2720                 if (!tx->tlen) {
2721                         tx->desc_limit = MAX_DESC;
2722                 } else if (!tx->coalesce_buf) {
2723                         /* allocate coalesce buffer with space for padding */
2724                         tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
2725                                                    GFP_ATOMIC);
2726                         if (!tx->coalesce_buf)
2727                                 return -ENOMEM;
2728
2729                         tx->coalesce_idx = 0;
2730                 }
2731                 return 0;
2732         }
2733
2734         if (unlikely(tx->num_desc == MAX_DESC))
2735                 return -ENOMEM;
2736
2737         tx->descp = kmalloc_array(
2738                         MAX_DESC,
2739                         sizeof(struct sdma_desc),
2740                         GFP_ATOMIC);
2741         if (!tx->descp)
2742                 return -ENOMEM;
2743
2744         /* reserve last descriptor for coalescing */
2745         tx->desc_limit = MAX_DESC - 1;
2746         /* copy ones already built */
2747         for (i = 0; i < tx->num_desc; i++)
2748                 tx->descp[i] = tx->descs[i];
2749         return 0;
2750 }
2751
2752 /*
2753  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
2754  *
2755  * This is called once the initial nominal allocation of descriptors
2756  * in the sdma_txreq is exhausted.
2757  *
2758  * This function calls _extend_sdma_tx_descs to extend or allocate
2759  * coalesce buffer. If there is a allocated coalesce buffer, it will
2760  * copy the input packet data into the coalesce buffer. It also adds
2761  * coalesce buffer descriptor once whe whole packet is received.
2762  *
2763  * Return:
2764  * <0 - error
2765  * 0 - coalescing, don't populate descriptor
2766  * 1 - continue with populating descriptor
2767  */
2768 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
2769                            int type, void *kvaddr, struct page *page,
2770                            unsigned long offset, u16 len)
2771 {
2772         int pad_len, rval;
2773         dma_addr_t addr;
2774
2775         rval = _extend_sdma_tx_descs(dd, tx);
2776         if (rval) {
2777                 sdma_txclean(dd, tx);
2778                 return rval;
2779         }
2780
2781         /* If coalesce buffer is allocated, copy data into it */
2782         if (tx->coalesce_buf) {
2783                 if (type == SDMA_MAP_NONE) {
2784                         sdma_txclean(dd, tx);
2785                         return -EINVAL;
2786                 }
2787
2788                 if (type == SDMA_MAP_PAGE) {
2789                         kvaddr = kmap(page);
2790                         kvaddr += offset;
2791                 } else if (WARN_ON(!kvaddr)) {
2792                         sdma_txclean(dd, tx);
2793                         return -EINVAL;
2794                 }
2795
2796                 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
2797                 tx->coalesce_idx += len;
2798                 if (type == SDMA_MAP_PAGE)
2799                         kunmap(page);
2800
2801                 /* If there is more data, return */
2802                 if (tx->tlen - tx->coalesce_idx)
2803                         return 0;
2804
2805                 /* Whole packet is received; add any padding */
2806                 pad_len = tx->packet_len & (sizeof(u32) - 1);
2807                 if (pad_len) {
2808                         pad_len = sizeof(u32) - pad_len;
2809                         memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
2810                         /* padding is taken care of for coalescing case */
2811                         tx->packet_len += pad_len;
2812                         tx->tlen += pad_len;
2813                 }
2814
2815                 /* dma map the coalesce buffer */
2816                 addr = dma_map_single(&dd->pcidev->dev,
2817                                       tx->coalesce_buf,
2818                                       tx->tlen,
2819                                       DMA_TO_DEVICE);
2820
2821                 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
2822                         sdma_txclean(dd, tx);
2823                         return -ENOSPC;
2824                 }
2825
2826                 /* Add descriptor for coalesce buffer */
2827                 tx->desc_limit = MAX_DESC;
2828                 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
2829                                          addr, tx->tlen);
2830         }
2831
2832         return 1;
2833 }
2834
2835 /* Update sdes when the lmc changes */
2836 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
2837 {
2838         struct sdma_engine *sde;
2839         int i;
2840         u64 sreg;
2841
2842         sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
2843                 SD(CHECK_SLID_MASK_SHIFT)) |
2844                 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
2845                 SD(CHECK_SLID_VALUE_SHIFT));
2846
2847         for (i = 0; i < dd->num_sdma; i++) {
2848                 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
2849                           i, (u32)sreg);
2850                 sde = &dd->per_sdma[i];
2851                 write_sde_csr(sde, SD(CHECK_SLID), sreg);
2852         }
2853 }
2854
2855 /* tx not dword sized - pad */
2856 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
2857 {
2858         int rval = 0;
2859
2860         tx->num_desc++;
2861         if ((unlikely(tx->num_desc == tx->desc_limit))) {
2862                 rval = _extend_sdma_tx_descs(dd, tx);
2863                 if (rval) {
2864                         sdma_txclean(dd, tx);
2865                         return rval;
2866                 }
2867         }
2868         /* finish the one just added */
2869         make_tx_sdma_desc(
2870                 tx,
2871                 SDMA_MAP_NONE,
2872                 dd->sdma_pad_phys,
2873                 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
2874         _sdma_close_tx(dd, tx);
2875         return rval;
2876 }
2877
2878 /*
2879  * Add ahg to the sdma_txreq
2880  *
2881  * The logic will consume up to 3
2882  * descriptors at the beginning of
2883  * sdma_txreq.
2884  */
2885 void _sdma_txreq_ahgadd(
2886         struct sdma_txreq *tx,
2887         u8 num_ahg,
2888         u8 ahg_entry,
2889         u32 *ahg,
2890         u8 ahg_hlen)
2891 {
2892         u32 i, shift = 0, desc = 0;
2893         u8 mode;
2894
2895         WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
2896         /* compute mode */
2897         if (num_ahg == 1)
2898                 mode = SDMA_AHG_APPLY_UPDATE1;
2899         else if (num_ahg <= 5)
2900                 mode = SDMA_AHG_APPLY_UPDATE2;
2901         else
2902                 mode = SDMA_AHG_APPLY_UPDATE3;
2903         tx->num_desc++;
2904         /* initialize to consumed descriptors to zero */
2905         switch (mode) {
2906         case SDMA_AHG_APPLY_UPDATE3:
2907                 tx->num_desc++;
2908                 tx->descs[2].qw[0] = 0;
2909                 tx->descs[2].qw[1] = 0;
2910                 /* FALLTHROUGH */
2911         case SDMA_AHG_APPLY_UPDATE2:
2912                 tx->num_desc++;
2913                 tx->descs[1].qw[0] = 0;
2914                 tx->descs[1].qw[1] = 0;
2915                 break;
2916         }
2917         ahg_hlen >>= 2;
2918         tx->descs[0].qw[1] |=
2919                 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
2920                         << SDMA_DESC1_HEADER_INDEX_SHIFT) |
2921                 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
2922                         << SDMA_DESC1_HEADER_DWS_SHIFT) |
2923                 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
2924                         << SDMA_DESC1_HEADER_MODE_SHIFT) |
2925                 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
2926                         << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
2927         for (i = 0; i < (num_ahg - 1); i++) {
2928                 if (!shift && !(i & 2))
2929                         desc++;
2930                 tx->descs[desc].qw[!!(i & 2)] |=
2931                         (((u64)ahg[i + 1])
2932                                 << shift);
2933                 shift = (shift + 32) & 63;
2934         }
2935 }
2936
2937 /**
2938  * sdma_ahg_alloc - allocate an AHG entry
2939  * @sde: engine to allocate from
2940  *
2941  * Return:
2942  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
2943  * -ENOSPC if an entry is not available
2944  */
2945 int sdma_ahg_alloc(struct sdma_engine *sde)
2946 {
2947         int nr;
2948         int oldbit;
2949
2950         if (!sde) {
2951                 trace_hfi1_ahg_allocate(sde, -EINVAL);
2952                 return -EINVAL;
2953         }
2954         while (1) {
2955                 nr = ffz(ACCESS_ONCE(sde->ahg_bits));
2956                 if (nr > 31) {
2957                         trace_hfi1_ahg_allocate(sde, -ENOSPC);
2958                         return -ENOSPC;
2959                 }
2960                 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
2961                 if (!oldbit)
2962                         break;
2963                 cpu_relax();
2964         }
2965         trace_hfi1_ahg_allocate(sde, nr);
2966         return nr;
2967 }
2968
2969 /**
2970  * sdma_ahg_free - free an AHG entry
2971  * @sde: engine to return AHG entry
2972  * @ahg_index: index to free
2973  *
2974  * This routine frees the indicate AHG entry.
2975  */
2976 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
2977 {
2978         if (!sde)
2979                 return;
2980         trace_hfi1_ahg_deallocate(sde, ahg_index);
2981         if (ahg_index < 0 || ahg_index > 31)
2982                 return;
2983         clear_bit(ahg_index, &sde->ahg_bits);
2984 }
2985
2986 /*
2987  * SPC freeze handling for SDMA engines.  Called when the driver knows
2988  * the SPC is going into a freeze but before the freeze is fully
2989  * settled.  Generally an error interrupt.
2990  *
2991  * This event will pull the engine out of running so no more entries can be
2992  * added to the engine's queue.
2993  */
2994 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
2995 {
2996         int i;
2997         enum sdma_events event = link_down ? sdma_event_e85_link_down :
2998                                              sdma_event_e80_hw_freeze;
2999
3000         /* set up the wait but do not wait here */
3001         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3002
3003         /* tell all engines to stop running and wait */
3004         for (i = 0; i < dd->num_sdma; i++)
3005                 sdma_process_event(&dd->per_sdma[i], event);
3006
3007         /* sdma_freeze() will wait for all engines to have stopped */
3008 }
3009
3010 /*
3011  * SPC freeze handling for SDMA engines.  Called when the driver knows
3012  * the SPC is fully frozen.
3013  */
3014 void sdma_freeze(struct hfi1_devdata *dd)
3015 {
3016         int i;
3017         int ret;
3018
3019         /*
3020          * Make sure all engines have moved out of the running state before
3021          * continuing.
3022          */
3023         ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3024                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3025         /* interrupted or count is negative, then unloading - just exit */
3026         if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3027                 return;
3028
3029         /* set up the count for the next wait */
3030         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3031
3032         /* tell all engines that the SPC is frozen, they can start cleaning */
3033         for (i = 0; i < dd->num_sdma; i++)
3034                 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3035
3036         /*
3037          * Wait for everyone to finish software clean before exiting.  The
3038          * software clean will read engine CSRs, so must be completed before
3039          * the next step, which will clear the engine CSRs.
3040          */
3041         (void) wait_event_interruptible(dd->sdma_unfreeze_wq,
3042                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3043         /* no need to check results - done no matter what */
3044 }
3045
3046 /*
3047  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3048  *
3049  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3050  * that is left is a software clean.  We could do it after the SPC is fully
3051  * frozen, but then we'd have to add another state to wait for the unfreeze.
3052  * Instead, just defer the software clean until the unfreeze step.
3053  */
3054 void sdma_unfreeze(struct hfi1_devdata *dd)
3055 {
3056         int i;
3057
3058         /* tell all engines start freeze clean up */
3059         for (i = 0; i < dd->num_sdma; i++)
3060                 sdma_process_event(&dd->per_sdma[i],
3061                                         sdma_event_e82_hw_unfreeze);
3062 }
3063
3064 /**
3065  * _sdma_engine_progress_schedule() - schedule progress on engine
3066  * @sde: sdma_engine to schedule progress
3067  *
3068  */
3069 void _sdma_engine_progress_schedule(
3070         struct sdma_engine *sde)
3071 {
3072         trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3073         /* assume we have selected a good cpu */
3074         write_csr(sde->dd,
3075                   CCE_INT_FORCE + (8*(IS_SDMA_START/64)), sde->progress_mask);
3076 }