]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/staging/skein/skein_block.c
staging: skein: cleanup: add operator white space
[karo-tx-linux.git] / drivers / staging / skein / skein_block.c
1 /***********************************************************************
2 **
3 ** Implementation of the Skein block functions.
4 **
5 ** Source code author: Doug Whiting, 2008.
6 **
7 ** This algorithm and source code is released to the public domain.
8 **
9 ** Compile-time switches:
10 **
11 **  SKEIN_USE_ASM  -- set bits (256/512/1024) to select which
12 **                    versions use ASM code for block processing
13 **                    [default: use C for all block sizes]
14 **
15 ************************************************************************/
16
17 #include <linux/string.h>
18 #include <linux/bitops.h>
19 #include "skein_base.h"
20 #include "skein_block.h"
21
22 #ifndef SKEIN_USE_ASM
23 #define SKEIN_USE_ASM   (0) /* default is all C code (no ASM) */
24 #endif
25
26 #ifndef SKEIN_LOOP
27 #define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
28 #endif
29
30 #define BLK_BITS        (WCNT * 64) /* some useful definitions for code here */
31 #define KW_TWK_BASE     (0)
32 #define KW_KEY_BASE     (3)
33 #define ks              (kw + KW_KEY_BASE)
34 #define ts              (kw + KW_TWK_BASE)
35
36 #ifdef SKEIN_DEBUG
37 #define debug_save_tweak(ctx)       \
38 {                                   \
39         ctx->h.tweak[0] = ts[0];    \
40         ctx->h.tweak[1] = ts[1];    \
41 }
42 #else
43 #define debug_save_tweak(ctx)
44 #endif
45
46 #if !(SKEIN_USE_ASM & 256)
47 #undef  RCNT
48 #define RCNT (SKEIN_256_ROUNDS_TOTAL / 8)
49 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
50 #define SKEIN_UNROLL_256 (((SKEIN_LOOP) / 100) % 10)
51 #else
52 #define SKEIN_UNROLL_256 (0)
53 #endif
54
55 #if SKEIN_UNROLL_256
56 #if (RCNT % SKEIN_UNROLL_256)
57 #error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
58 #endif
59 #endif
60 #define ROUND256(p0, p1, p2, p3, ROT, r_num)         \
61         do {                                         \
62                 X##p0 += X##p1;                      \
63                 X##p1 = rol64(X##p1, ROT##_0);       \
64                 X##p1 ^= X##p0;                      \
65                 X##p2 += X##p3;                      \
66                 X##p3 = rol64(X##p3, ROT##_1);       \
67                 X##p3 ^= X##p2;                      \
68         } while (0)
69
70 #if SKEIN_UNROLL_256 == 0
71 #define R256(p0, p1, p2, p3, ROT, r_num) /* fully unrolled */ \
72         ROUND256(p0, p1, p2, p3, ROT, r_num)
73
74 #define I256(R)                                                         \
75         do {                                                            \
76                 /* inject the key schedule value */                     \
77                 X0   += ks[((R) + 1) % 5];                              \
78                 X1   += ks[((R) + 2) % 5] + ts[((R) + 1) % 3];          \
79                 X2   += ks[((R) + 3) % 5] + ts[((R) + 2) % 3];          \
80                 X3   += ks[((R) + 4) % 5] + (R) + 1;                    \
81         } while (0)
82 #else
83 /* looping version */
84 #define R256(p0, p1, p2, p3, ROT, r_num) ROUND256(p0, p1, p2, p3, ROT, r_num)
85
86 #define I256(R)                                         \
87         do {                                            \
88                 /* inject the key schedule value */     \
89                 X0 += ks[r + (R) + 0];                  \
90                 X1 += ks[r + (R) + 1] + ts[r + (R) + 0];\
91                 X2 += ks[r + (R) + 2] + ts[r + (R) + 1];\
92                 X3 += ks[r + (R) + 3] + r + (R);        \
93                 /* rotate key schedule */               \
94                 ks[r + (R) + 4] = ks[r + (R) - 1];      \
95                 ts[r + (R) + 2] = ts[r + (R) - 1];      \
96         } while (0)
97 #endif
98 #define R256_8_ROUNDS(R)                                \
99         do {                                            \
100                 R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1); \
101                 R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2); \
102                 R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3); \
103                 R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4); \
104                 I256(2 * (R));                          \
105                 R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5); \
106                 R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6); \
107                 R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7); \
108                 R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8); \
109                 I256(2 * (R) + 1);                      \
110         } while (0)
111
112 #define R256_UNROLL_R(NN)                     \
113         ((SKEIN_UNROLL_256 == 0 &&            \
114         SKEIN_256_ROUNDS_TOTAL / 8 > (NN)) || \
115         (SKEIN_UNROLL_256 > (NN)))
116
117 #if  (SKEIN_UNROLL_256 > 14)
118 #error  "need more unrolling in skein_256_process_block"
119 #endif
120 #endif
121
122 #if !(SKEIN_USE_ASM & 512)
123 #undef  RCNT
124 #define RCNT  (SKEIN_512_ROUNDS_TOTAL / 8)
125
126 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
127 #define SKEIN_UNROLL_512 (((SKEIN_LOOP) / 10) % 10)
128 #else
129 #define SKEIN_UNROLL_512 (0)
130 #endif
131
132 #if SKEIN_UNROLL_512
133 #if (RCNT % SKEIN_UNROLL_512)
134 #error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
135 #endif
136 #endif
137 #define ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num)    \
138         do {                                                    \
139                 X##p0 += X##p1;                                 \
140                 X##p1 = rol64(X##p1, ROT##_0);                  \
141                 X##p1 ^= X##p0;                                 \
142                 X##p2 += X##p3;                                 \
143                 X##p3 = rol64(X##p3, ROT##_1);                  \
144                 X##p3 ^= X##p2;                                 \
145                 X##p4 += X##p5;                                 \
146                 X##p5 = rol64(X##p5, ROT##_2);                  \
147                 X##p5 ^= X##p4;                                 \
148                 X##p6 += X##p7;                                 \
149                 X##p7 = rol64(X##p7, ROT##_3);                  \
150                 X##p7 ^= X##p6;                                 \
151         } while (0)
152
153 #if SKEIN_UNROLL_512 == 0
154 #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) /* unrolled */ \
155         ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num)
156
157 #define I512(R)                                                         \
158         do {                                                            \
159                 /* inject the key schedule value */                     \
160                 X0   += ks[((R) + 1) % 9];                              \
161                 X1   += ks[((R) + 2) % 9];                              \
162                 X2   += ks[((R) + 3) % 9];                              \
163                 X3   += ks[((R) + 4) % 9];                              \
164                 X4   += ks[((R) + 5) % 9];                              \
165                 X5   += ks[((R) + 6) % 9] + ts[((R) + 1) % 3];          \
166                 X6   += ks[((R) + 7) % 9] + ts[((R) + 2) % 3];          \
167                 X7   += ks[((R) + 8) % 9] + (R) + 1;                    \
168         } while (0)
169
170 #else /* looping version */
171 #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num)                 \
172         ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num)             \
173
174 #define I512(R)                                                         \
175         do {                                                            \
176                 /* inject the key schedule value */                     \
177                 X0   += ks[r + (R) + 0];                                \
178                 X1   += ks[r + (R) + 1];                                \
179                 X2   += ks[r + (R) + 2];                                \
180                 X3   += ks[r + (R) + 3];                                \
181                 X4   += ks[r + (R) + 4];                                \
182                 X5   += ks[r + (R) + 5] + ts[r + (R) + 0];              \
183                 X6   += ks[r + (R) + 6] + ts[r + (R) + 1];              \
184                 X7   += ks[r + (R) + 7] + r + (R);                      \
185                 /* rotate key schedule */                               \
186                 ks[r + (R) + 8] = ks[r + (R) - 1];                      \
187                 ts[r + (R) + 2] = ts[r + (R) - 1];                      \
188         } while (0)
189 #endif /* end of looped code definitions */
190 #define R512_8_ROUNDS(R)  /* do 8 full rounds */                        \
191         do {                                                            \
192                 R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1);     \
193                 R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2);     \
194                 R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3);     \
195                 R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4);     \
196                 I512(2 * (R));                                          \
197                 R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5);     \
198                 R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6);     \
199                 R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7);     \
200                 R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8);     \
201                 I512(2 * (R) + 1); /* and key injection */              \
202         } while (0)
203 #define R512_UNROLL_R(NN)                             \
204                 ((SKEIN_UNROLL_512 == 0 &&            \
205                 SKEIN_512_ROUNDS_TOTAL / 8 > (NN)) || \
206                 (SKEIN_UNROLL_512 > (NN)))
207
208 #if  (SKEIN_UNROLL_512 > 14)
209 #error  "need more unrolling in skein_512_process_block"
210 #endif
211 #endif
212
213 #if !(SKEIN_USE_ASM & 1024)
214 #undef  RCNT
215 #define RCNT  (SKEIN_1024_ROUNDS_TOTAL / 8)
216 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
217 #define SKEIN_UNROLL_1024 ((SKEIN_LOOP) % 10)
218 #else
219 #define SKEIN_UNROLL_1024 (0)
220 #endif
221
222 #if (SKEIN_UNROLL_1024 != 0)
223 #if (RCNT % SKEIN_UNROLL_1024)
224 #error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */
225 #endif
226 #endif
227 #define ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
228                   pF, ROT, r_num)                                             \
229         do {                                                                  \
230                 X##p0 += X##p1;                                               \
231                 X##p1 = rol64(X##p1, ROT##_0);                                \
232                 X##p1 ^= X##p0;                                               \
233                 X##p2 += X##p3;                                               \
234                 X##p3 = rol64(X##p3, ROT##_1);                                \
235                 X##p3 ^= X##p2;                                               \
236                 X##p4 += X##p5;                                               \
237                 X##p5 = rol64(X##p5, ROT##_2);                                \
238                 X##p5 ^= X##p4;                                               \
239                 X##p6 += X##p7;                                               \
240                 X##p7 = rol64(X##p7, ROT##_3);                                \
241                 X##p7 ^= X##p6;                                               \
242                 X##p8 += X##p9;                                               \
243                 X##p9 = rol64(X##p9, ROT##_4);                                \
244                 X##p9 ^= X##p8;                                               \
245                 X##pA += X##pB;                                               \
246                 X##pB = rol64(X##pB, ROT##_5);                                \
247                 X##pB ^= X##pA;                                               \
248                 X##pC += X##pD;                                               \
249                 X##pD = rol64(X##pD, ROT##_6);                                \
250                 X##pD ^= X##pC;                                               \
251                 X##pE += X##pF;                                               \
252                 X##pF = rol64(X##pF, ROT##_7);                                \
253                 X##pF ^= X##pE;                                               \
254         } while (0)
255
256 #if SKEIN_UNROLL_1024 == 0
257 #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \
258               ROT, rn)                                                        \
259         ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
260                   pF, ROT, rn)                                                \
261
262 #define I1024(R)                                                \
263         do {                                                    \
264                 /* inject the key schedule value */             \
265                 X00 += ks[((R) + 1) % 17];                      \
266                 X01 += ks[((R) + 2) % 17];                      \
267                 X02 += ks[((R) + 3) % 17];                      \
268                 X03 += ks[((R) + 4) % 17];                      \
269                 X04 += ks[((R) + 5) % 17];                      \
270                 X05 += ks[((R) + 6) % 17];                      \
271                 X06 += ks[((R) + 7) % 17];                      \
272                 X07 += ks[((R) + 8) % 17];                      \
273                 X08 += ks[((R) + 9) % 17];                      \
274                 X09 += ks[((R) + 10) % 17];                     \
275                 X10 += ks[((R) + 11) % 17];                     \
276                 X11 += ks[((R) + 12) % 17];                     \
277                 X12 += ks[((R) + 13) % 17];                     \
278                 X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3]; \
279                 X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3]; \
280                 X15 += ks[((R) + 16) % 17] + (R) + 1;           \
281         } while (0)
282 #else /* looping version */
283 #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \
284               ROT, rn)                                                        \
285         ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
286                   pF, ROT, rn)                                                \
287
288 #define I1024(R)                                                        \
289         do {                                                            \
290                 /* inject the key schedule value */                     \
291                 X00 += ks[r + (R) + 0];                                 \
292                 X01 += ks[r + (R) + 1];                                 \
293                 X02 += ks[r + (R) + 2];                                 \
294                 X03 += ks[r + (R) + 3];                                 \
295                 X04 += ks[r + (R) + 4];                                 \
296                 X05 += ks[r + (R) + 5];                                 \
297                 X06 += ks[r + (R) + 6];                                 \
298                 X07 += ks[r + (R) + 7];                                 \
299                 X08 += ks[r + (R) + 8];                                 \
300                 X09 += ks[r + (R) + 9];                                 \
301                 X10 += ks[r + (R) + 10];                                \
302                 X11 += ks[r + (R) + 11];                                \
303                 X12 += ks[r + (R) + 12];                                \
304                 X13 += ks[r + (R) + 13] + ts[r + (R) + 0];              \
305                 X14 += ks[r + (R) + 14] + ts[r + (R) + 1];              \
306                 X15 += ks[r + (R) + 15] + r + (R);                      \
307                 /* rotate key schedule */                               \
308                 ks[r + (R) + 16] = ks[r + (R) - 1];                     \
309                 ts[r + (R) + 2] = ts[r + (R) - 1];                      \
310         } while (0)
311
312 #endif
313 #define R1024_8_ROUNDS(R)                                                 \
314         do {                                                              \
315                 R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, \
316                       13, 14, 15, R1024_0, 8 * (R) + 1);                  \
317                 R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, \
318                       05, 08, 01, R1024_1, 8 * (R) + 2);                  \
319                 R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, \
320                       11, 10, 09, R1024_2, 8 * (R) + 3);                  \
321                 R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, \
322                       03, 12, 07, R1024_3, 8 * (R) + 4);                  \
323                 I1024(2 * (R));                                           \
324                 R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, \
325                       13, 14, 15, R1024_4, 8 * (R) + 5);                  \
326                 R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, \
327                       05, 08, 01, R1024_5, 8 * (R) + 6);                  \
328                 R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, \
329                       11, 10, 09, R1024_6, 8  * (R) + 7);                 \
330                 R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, \
331                       03, 12, 07, R1024_7, 8 * (R) + 8);                  \
332                 I1024(2 * (R) + 1);                                        \
333         } while (0)
334
335 #define R1024_UNROLL_R(NN)                              \
336                 ((SKEIN_UNROLL_1024 == 0 &&             \
337                 SKEIN_1024_ROUNDS_TOTAL / 8 > (NN)) ||  \
338                 (SKEIN_UNROLL_1024 > (NN)))
339
340 #if  (SKEIN_UNROLL_1024 > 14)
341 #error  "need more unrolling in Skein_1024_Process_Block"
342 #endif
343 #endif
344
345 /*****************************  SKEIN_256 ******************************/
346 #if !(SKEIN_USE_ASM & 256)
347 void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr,
348                              size_t blk_cnt, size_t byte_cnt_add)
349 { /* do it in C */
350         enum {
351                 WCNT = SKEIN_256_STATE_WORDS
352         };
353         size_t r;
354 #if SKEIN_UNROLL_256
355         /* key schedule: chaining vars + tweak + "rot"*/
356         u64  kw[WCNT + 4 + RCNT * 2];
357 #else
358         /* key schedule words : chaining vars + tweak */
359         u64  kw[WCNT + 4];
360 #endif
361         u64  X0, X1, X2, X3; /* local copy of context vars, for speed */
362         u64  w[WCNT]; /* local copy of input block */
363 #ifdef SKEIN_DEBUG
364         const u64 *X_ptr[4]; /* use for debugging (help cc put Xn in regs) */
365
366         X_ptr[0] = &X0;
367         X_ptr[1] = &X1;
368         X_ptr[2] = &X2;
369         X_ptr[3] = &X3;
370 #endif
371         skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
372         ts[0] = ctx->h.tweak[0];
373         ts[1] = ctx->h.tweak[1];
374         do  {
375                 /*
376                  * this implementation only supports 2**64 input bytes
377                  * (no carry out here)
378                  */
379                 ts[0] += byte_cnt_add; /* update processed length */
380
381                 /* precompute the key schedule for this block */
382                 ks[0] = ctx->x[0];
383                 ks[1] = ctx->x[1];
384                 ks[2] = ctx->x[2];
385                 ks[3] = ctx->x[3];
386                 ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
387
388                 ts[2] = ts[0] ^ ts[1];
389
390                 /* get input block in little-endian format */
391                 skein_get64_lsb_first(w, blk_ptr, WCNT);
392                 debug_save_tweak(ctx);
393
394                 /* do the first full key injection */
395                 X0 = w[0] + ks[0];
396                 X1 = w[1] + ks[1] + ts[0];
397                 X2 = w[2] + ks[2] + ts[1];
398                 X3 = w[3] + ks[3];
399
400                 blk_ptr += SKEIN_256_BLOCK_BYTES;
401
402                 /* run the rounds */
403                 for (r = 1;
404                         r < (SKEIN_UNROLL_256 ? 2 * RCNT : 2);
405                         r += (SKEIN_UNROLL_256 ? 2 * SKEIN_UNROLL_256 : 1)) {
406                         R256_8_ROUNDS(0);
407 #if   R256_UNROLL_R(1)
408                         R256_8_ROUNDS(1);
409 #endif
410 #if   R256_UNROLL_R(2)
411                         R256_8_ROUNDS(2);
412 #endif
413 #if   R256_UNROLL_R(3)
414                         R256_8_ROUNDS(3);
415 #endif
416 #if   R256_UNROLL_R(4)
417                         R256_8_ROUNDS(4);
418 #endif
419 #if   R256_UNROLL_R(5)
420                         R256_8_ROUNDS(5);
421 #endif
422 #if   R256_UNROLL_R(6)
423                         R256_8_ROUNDS(6);
424 #endif
425 #if   R256_UNROLL_R(7)
426                         R256_8_ROUNDS(7);
427 #endif
428 #if   R256_UNROLL_R(8)
429                         R256_8_ROUNDS(8);
430 #endif
431 #if   R256_UNROLL_R(9)
432                         R256_8_ROUNDS(9);
433 #endif
434 #if   R256_UNROLL_R(10)
435                         R256_8_ROUNDS(10);
436 #endif
437 #if   R256_UNROLL_R(11)
438                         R256_8_ROUNDS(11);
439 #endif
440 #if   R256_UNROLL_R(12)
441                         R256_8_ROUNDS(12);
442 #endif
443 #if   R256_UNROLL_R(13)
444                         R256_8_ROUNDS(13);
445 #endif
446 #if   R256_UNROLL_R(14)
447                         R256_8_ROUNDS(14);
448 #endif
449                 }
450                 /* do the final "feedforward" xor, update context chaining */
451                 ctx->x[0] = X0 ^ w[0];
452                 ctx->x[1] = X1 ^ w[1];
453                 ctx->x[2] = X2 ^ w[2];
454                 ctx->x[3] = X3 ^ w[3];
455
456                 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
457         } while (--blk_cnt);
458         ctx->h.tweak[0] = ts[0];
459         ctx->h.tweak[1] = ts[1];
460 }
461
462 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
463 size_t skein_256_process_block_code_size(void)
464 {
465         return ((u8 *) skein_256_process_block_code_size) -
466                 ((u8 *) skein_256_process_block);
467 }
468 unsigned int skein_256_unroll_cnt(void)
469 {
470         return SKEIN_UNROLL_256;
471 }
472 #endif
473 #endif
474
475 /*****************************  SKEIN_512 ******************************/
476 #if !(SKEIN_USE_ASM & 512)
477 void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blk_ptr,
478                              size_t blk_cnt, size_t byte_cnt_add)
479 { /* do it in C */
480         enum {
481                 WCNT = SKEIN_512_STATE_WORDS
482         };
483         size_t  r;
484 #if SKEIN_UNROLL_512
485         /* key sched: chaining vars + tweak + "rot"*/
486         u64  kw[WCNT + 4 + RCNT * 2];
487 #else
488         /* key schedule words : chaining vars + tweak */
489         u64  kw[WCNT + 4];
490 #endif
491         u64  X0, X1, X2, X3, X4, X5, X6, X7; /* local copies, for speed */
492         u64  w[WCNT]; /* local copy of input block */
493 #ifdef SKEIN_DEBUG
494         const u64 *X_ptr[8]; /* use for debugging (help cc put Xn in regs) */
495
496         X_ptr[0] = &X0;
497         X_ptr[1] = &X1;
498         X_ptr[2] = &X2;
499         X_ptr[3] = &X3;
500         X_ptr[4] = &X4;
501         X_ptr[5] = &X5;
502         X_ptr[6] = &X6;
503         X_ptr[7] = &X7;
504 #endif
505
506         skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
507         ts[0] = ctx->h.tweak[0];
508         ts[1] = ctx->h.tweak[1];
509         do  {
510                 /*
511                  * this implementation only supports 2**64 input bytes
512                  * (no carry out here)
513                  */
514                 ts[0] += byte_cnt_add; /* update processed length */
515
516                 /* precompute the key schedule for this block */
517                 ks[0] = ctx->x[0];
518                 ks[1] = ctx->x[1];
519                 ks[2] = ctx->x[2];
520                 ks[3] = ctx->x[3];
521                 ks[4] = ctx->x[4];
522                 ks[5] = ctx->x[5];
523                 ks[6] = ctx->x[6];
524                 ks[7] = ctx->x[7];
525                 ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
526                         ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
527
528                 ts[2] = ts[0] ^ ts[1];
529
530                 /* get input block in little-endian format */
531                 skein_get64_lsb_first(w, blk_ptr, WCNT);
532                 debug_save_tweak(ctx);
533
534                 /* do the first full key injection */
535                 X0 = w[0] + ks[0];
536                 X1 = w[1] + ks[1];
537                 X2 = w[2] + ks[2];
538                 X3 = w[3] + ks[3];
539                 X4 = w[4] + ks[4];
540                 X5 = w[5] + ks[5] + ts[0];
541                 X6 = w[6] + ks[6] + ts[1];
542                 X7 = w[7] + ks[7];
543
544                 blk_ptr += SKEIN_512_BLOCK_BYTES;
545
546                 /* run the rounds */
547                 for (r = 1;
548                         r < (SKEIN_UNROLL_512 ? 2 * RCNT : 2);
549                         r += (SKEIN_UNROLL_512 ? 2 * SKEIN_UNROLL_512 : 1)) {
550
551                         R512_8_ROUNDS(0);
552
553 #if   R512_UNROLL_R(1)
554                         R512_8_ROUNDS(1);
555 #endif
556 #if   R512_UNROLL_R(2)
557                         R512_8_ROUNDS(2);
558 #endif
559 #if   R512_UNROLL_R(3)
560                         R512_8_ROUNDS(3);
561 #endif
562 #if   R512_UNROLL_R(4)
563                         R512_8_ROUNDS(4);
564 #endif
565 #if   R512_UNROLL_R(5)
566                         R512_8_ROUNDS(5);
567 #endif
568 #if   R512_UNROLL_R(6)
569                         R512_8_ROUNDS(6);
570 #endif
571 #if   R512_UNROLL_R(7)
572                         R512_8_ROUNDS(7);
573 #endif
574 #if   R512_UNROLL_R(8)
575                         R512_8_ROUNDS(8);
576 #endif
577 #if   R512_UNROLL_R(9)
578                         R512_8_ROUNDS(9);
579 #endif
580 #if   R512_UNROLL_R(10)
581                         R512_8_ROUNDS(10);
582 #endif
583 #if   R512_UNROLL_R(11)
584                         R512_8_ROUNDS(11);
585 #endif
586 #if   R512_UNROLL_R(12)
587                         R512_8_ROUNDS(12);
588 #endif
589 #if   R512_UNROLL_R(13)
590                         R512_8_ROUNDS(13);
591 #endif
592 #if   R512_UNROLL_R(14)
593                         R512_8_ROUNDS(14);
594 #endif
595                 }
596
597                 /* do the final "feedforward" xor, update context chaining */
598                 ctx->x[0] = X0 ^ w[0];
599                 ctx->x[1] = X1 ^ w[1];
600                 ctx->x[2] = X2 ^ w[2];
601                 ctx->x[3] = X3 ^ w[3];
602                 ctx->x[4] = X4 ^ w[4];
603                 ctx->x[5] = X5 ^ w[5];
604                 ctx->x[6] = X6 ^ w[6];
605                 ctx->x[7] = X7 ^ w[7];
606
607                 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
608         } while (--blk_cnt);
609         ctx->h.tweak[0] = ts[0];
610         ctx->h.tweak[1] = ts[1];
611 }
612
613 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
614 size_t skein_512_process_block_code_size(void)
615 {
616         return ((u8 *) skein_512_process_block_code_size) -
617                 ((u8 *) skein_512_process_block);
618 }
619 unsigned int skein_512_unroll_cnt(void)
620 {
621         return SKEIN_UNROLL_512;
622 }
623 #endif
624 #endif
625
626 /*****************************  SKEIN_1024 ******************************/
627 #if !(SKEIN_USE_ASM & 1024)
628 void skein_1024_process_block(struct skein_1024_ctx *ctx, const u8 *blk_ptr,
629                               size_t blk_cnt, size_t byte_cnt_add)
630 { /* do it in C, always looping (unrolled is bigger AND slower!) */
631         enum {
632                 WCNT = SKEIN_1024_STATE_WORDS
633         };
634         size_t  r;
635 #if (SKEIN_UNROLL_1024 != 0)
636         /* key sched: chaining vars + tweak + "rot" */
637         u64  kw[WCNT + 4 + RCNT * 2];
638 #else
639         /* key schedule words : chaining vars + tweak */
640         u64  kw[WCNT + 4];
641 #endif
642
643         /* local copy of vars, for speed */
644         u64  X00, X01, X02, X03, X04, X05, X06, X07,
645              X08, X09, X10, X11, X12, X13, X14, X15;
646         u64  w[WCNT]; /* local copy of input block */
647
648         skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
649         ts[0] = ctx->h.tweak[0];
650         ts[1] = ctx->h.tweak[1];
651         do  {
652                 /*
653                  * this implementation only supports 2**64 input bytes
654                  * (no carry out here)
655                  */
656                 ts[0] += byte_cnt_add; /* update processed length */
657
658                 /* precompute the key schedule for this block */
659                 ks[0]  = ctx->x[0];
660                 ks[1]  = ctx->x[1];
661                 ks[2]  = ctx->x[2];
662                 ks[3]  = ctx->x[3];
663                 ks[4]  = ctx->x[4];
664                 ks[5]  = ctx->x[5];
665                 ks[6]  = ctx->x[6];
666                 ks[7]  = ctx->x[7];
667                 ks[8]  = ctx->x[8];
668                 ks[9]  = ctx->x[9];
669                 ks[10] = ctx->x[10];
670                 ks[11] = ctx->x[11];
671                 ks[12] = ctx->x[12];
672                 ks[13] = ctx->x[13];
673                 ks[14] = ctx->x[14];
674                 ks[15] = ctx->x[15];
675                 ks[16] =  ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
676                           ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^
677                           ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^
678                           ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
679
680                 ts[2] = ts[0] ^ ts[1];
681
682                 /* get input block in little-endian format */
683                 skein_get64_lsb_first(w, blk_ptr, WCNT);
684                 debug_save_tweak(ctx);
685
686                 /* do the first full key injection */
687                 X00 = w[0] + ks[0];
688                 X01 = w[1] + ks[1];
689                 X02 = w[2] + ks[2];
690                 X03 = w[3] + ks[3];
691                 X04 = w[4] + ks[4];
692                 X05 = w[5] + ks[5];
693                 X06 = w[6] + ks[6];
694                 X07 = w[7] + ks[7];
695                 X08 = w[8] + ks[8];
696                 X09 = w[9] + ks[9];
697                 X10 = w[10] + ks[10];
698                 X11 = w[11] + ks[11];
699                 X12 = w[12] + ks[12];
700                 X13 = w[13] + ks[13] + ts[0];
701                 X14 = w[14] + ks[14] + ts[1];
702                 X15 = w[15] + ks[15];
703
704                 for (r = 1;
705                         r < (SKEIN_UNROLL_1024 ? 2 * RCNT : 2);
706                         r += (SKEIN_UNROLL_1024 ? 2 * SKEIN_UNROLL_1024 : 1)) {
707                         R1024_8_ROUNDS(0);
708 #if   R1024_UNROLL_R(1)
709                         R1024_8_ROUNDS(1);
710 #endif
711 #if   R1024_UNROLL_R(2)
712                         R1024_8_ROUNDS(2);
713 #endif
714 #if   R1024_UNROLL_R(3)
715                         R1024_8_ROUNDS(3);
716 #endif
717 #if   R1024_UNROLL_R(4)
718                         R1024_8_ROUNDS(4);
719 #endif
720 #if   R1024_UNROLL_R(5)
721                         R1024_8_ROUNDS(5);
722 #endif
723 #if   R1024_UNROLL_R(6)
724                         R1024_8_ROUNDS(6);
725 #endif
726 #if   R1024_UNROLL_R(7)
727                         R1024_8_ROUNDS(7);
728 #endif
729 #if   R1024_UNROLL_R(8)
730                         R1024_8_ROUNDS(8);
731 #endif
732 #if   R1024_UNROLL_R(9)
733                         R1024_8_ROUNDS(9);
734 #endif
735 #if   R1024_UNROLL_R(10)
736                         R1024_8_ROUNDS(10);
737 #endif
738 #if   R1024_UNROLL_R(11)
739                         R1024_8_ROUNDS(11);
740 #endif
741 #if   R1024_UNROLL_R(12)
742                         R1024_8_ROUNDS(12);
743 #endif
744 #if   R1024_UNROLL_R(13)
745                         R1024_8_ROUNDS(13);
746 #endif
747 #if   R1024_UNROLL_R(14)
748                         R1024_8_ROUNDS(14);
749 #endif
750                 }
751                 /* do the final "feedforward" xor, update context chaining */
752
753                 ctx->x[0] = X00 ^ w[0];
754                 ctx->x[1] = X01 ^ w[1];
755                 ctx->x[2] = X02 ^ w[2];
756                 ctx->x[3] = X03 ^ w[3];
757                 ctx->x[4] = X04 ^ w[4];
758                 ctx->x[5] = X05 ^ w[5];
759                 ctx->x[6] = X06 ^ w[6];
760                 ctx->x[7] = X07 ^ w[7];
761                 ctx->x[8] = X08 ^ w[8];
762                 ctx->x[9] = X09 ^ w[9];
763                 ctx->x[10] = X10 ^ w[10];
764                 ctx->x[11] = X11 ^ w[11];
765                 ctx->x[12] = X12 ^ w[12];
766                 ctx->x[13] = X13 ^ w[13];
767                 ctx->x[14] = X14 ^ w[14];
768                 ctx->x[15] = X15 ^ w[15];
769
770                 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
771                 blk_ptr += SKEIN_1024_BLOCK_BYTES;
772         } while (--blk_cnt);
773         ctx->h.tweak[0] = ts[0];
774         ctx->h.tweak[1] = ts[1];
775 }
776
777 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
778 size_t skein_1024_process_block_code_size(void)
779 {
780         return ((u8 *) skein_1024_process_block_code_size) -
781                 ((u8 *) skein_1024_process_block);
782 }
783 unsigned int skein_1024_unroll_cnt(void)
784 {
785         return SKEIN_UNROLL_1024;
786 }
787 #endif
788 #endif