]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/staging/vt6656/rxtx.c
ARM: sa11x0/assabet: ensure CS2 is configured appropriately
[karo-tx-linux.git] / drivers / staging / vt6656 / rxtx.c
1 /*
2  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * File: rxtx.c
20  *
21  * Purpose: handle WMAC/802.3/802.11 rx & tx functions
22  *
23  * Author: Lyndon Chen
24  *
25  * Date: May 20, 2003
26  *
27  * Functions:
28  *      s_vGenerateTxParameter - Generate tx dma required parameter.
29  *      s_vGenerateMACHeader - Translate 802.3 to 802.11 header
30  *      csBeacon_xmit - beacon tx function
31  *      csMgmt_xmit - management tx function
32  *      s_uGetDataDuration - get tx data required duration
33  *      s_uFillDataHead- fulfill tx data duration header
34  *      s_uGetRTSCTSDuration- get rtx/cts required duration
35  *      s_uGetRTSCTSRsvTime- get rts/cts reserved time
36  *      s_uGetTxRsvTime- get frame reserved time
37  *      s_vFillCTSHead- fulfill CTS ctl header
38  *      s_vFillFragParameter- Set fragment ctl parameter.
39  *      s_vFillRTSHead- fulfill RTS ctl header
40  *      s_vFillTxKey- fulfill tx encrypt key
41  *      s_vSWencryption- Software encrypt header
42  *      vDMA0_tx_80211- tx 802.11 frame via dma0
43  *      vGenerateFIFOHeader- Generate tx FIFO ctl header
44  *
45  * Revision History:
46  *
47  */
48
49 #include "device.h"
50 #include "rxtx.h"
51 #include "tether.h"
52 #include "card.h"
53 #include "bssdb.h"
54 #include "mac.h"
55 #include "michael.h"
56 #include "tkip.h"
57 #include "tcrc.h"
58 #include "wctl.h"
59 #include "hostap.h"
60 #include "rf.h"
61 #include "datarate.h"
62 #include "usbpipe.h"
63 #include "iocmd.h"
64
65 static int          msglevel                = MSG_LEVEL_INFO;
66
67 const u16 wTimeStampOff[2][MAX_RATE] = {
68         {384, 288, 226, 209, 54, 43, 37, 31, 28, 25, 24, 23}, // Long Preamble
69         {384, 192, 130, 113, 54, 43, 37, 31, 28, 25, 24, 23}, // Short Preamble
70     };
71
72 const u16 wFB_Opt0[2][5] = {
73         {RATE_12M, RATE_18M, RATE_24M, RATE_36M, RATE_48M}, // fallback_rate0
74         {RATE_12M, RATE_12M, RATE_18M, RATE_24M, RATE_36M}, // fallback_rate1
75     };
76 const u16 wFB_Opt1[2][5] = {
77         {RATE_12M, RATE_18M, RATE_24M, RATE_24M, RATE_36M}, // fallback_rate0
78         {RATE_6M , RATE_6M,  RATE_12M, RATE_12M, RATE_18M}, // fallback_rate1
79     };
80
81 #define RTSDUR_BB       0
82 #define RTSDUR_BA       1
83 #define RTSDUR_AA       2
84 #define CTSDUR_BA       3
85 #define RTSDUR_BA_F0    4
86 #define RTSDUR_AA_F0    5
87 #define RTSDUR_BA_F1    6
88 #define RTSDUR_AA_F1    7
89 #define CTSDUR_BA_F0    8
90 #define CTSDUR_BA_F1    9
91 #define DATADUR_B       10
92 #define DATADUR_A       11
93 #define DATADUR_A_F0    12
94 #define DATADUR_A_F1    13
95
96 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
97         u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl);
98
99 static void *s_vGetFreeContext(struct vnt_private *pDevice);
100
101 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
102         u8 byPktType, u16 wCurrentRate, void *pTxBufHead, void *pvRrvTime,
103         void *rts_cts, u32 cbFrameSize, int bNeedACK, u32 uDMAIdx,
104         struct ethhdr *psEthHeader, bool need_rts);
105
106 static u32 s_uFillDataHead(struct vnt_private *pDevice,
107         u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
108         u32 uDMAIdx, int bNeedAck, u8 byFBOption);
109
110 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
111         u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
112         int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx);
113
114 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
115         u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf, u16 wPayloadLen,
116         struct vnt_mic_hdr *mic_hdr);
117
118 static void s_vSWencryption(struct vnt_private *pDevice,
119         PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize);
120
121 static unsigned int s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
122         u32 cbFrameLength, u16 wRate, int bNeedAck);
123
124 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice, u8 byRTSRsvType,
125         u8 byPktType, u32 cbFrameLength, u16 wCurrentRate);
126
127 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
128         u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
129         int bNeedAck, u16 wCurrentRate, u8 byFBOption);
130
131 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
132         union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
133         struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption);
134
135 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
136         u8 byPktType, int bNeedAck);
137
138 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice,
139         u8 byDurType, u32 cbFrameLength, u8 byPktType, u16 wRate,
140         int bNeedAck, u8 byFBOption);
141
142 static void *s_vGetFreeContext(struct vnt_private *pDevice)
143 {
144         struct vnt_usb_send_context *pContext = NULL;
145         struct vnt_usb_send_context *pReturnContext = NULL;
146         int ii;
147
148     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"GetFreeContext()\n");
149
150     for (ii = 0; ii < pDevice->cbTD; ii++) {
151         pContext = pDevice->apTD[ii];
152         if (pContext->bBoolInUse == false) {
153             pContext->bBoolInUse = true;
154                 memset(pContext->Data, 0, MAX_TOTAL_SIZE_WITH_ALL_HEADERS);
155             pReturnContext = pContext;
156             break;
157         }
158     }
159     if ( ii == pDevice->cbTD ) {
160         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Free Tx Context\n");
161     }
162     return (void *) pReturnContext;
163 }
164
165 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
166         u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl)
167 {
168         PSStatCounter pStatistic = &pDevice->scStatistic;
169
170     if (is_broadcast_ether_addr(pbyDestAddr))
171         pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_BROAD;
172     else if (is_multicast_ether_addr(pbyDestAddr))
173         pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_MULTI;
174     else
175         pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_UNI;
176
177     pStatistic->abyTxPktInfo[byPktNum].wLength = wPktLength;
178     pStatistic->abyTxPktInfo[byPktNum].wFIFOCtl = wFIFOCtl;
179     memcpy(pStatistic->abyTxPktInfo[byPktNum].abyDestAddr,
180            pbyDestAddr,
181            ETH_ALEN);
182 }
183
184 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
185         u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf,
186         u16 wPayloadLen, struct vnt_mic_hdr *mic_hdr)
187 {
188         u32 *pdwIV = (u32 *)pbyIVHead;
189         u32 *pdwExtIV = (u32 *)((u8 *)pbyIVHead + 4);
190         struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyHdrBuf;
191         u32 dwRevIVCounter;
192
193         /* Fill TXKEY */
194         if (pTransmitKey == NULL)
195                 return;
196
197         dwRevIVCounter = cpu_to_le32(pDevice->dwIVCounter);
198         *pdwIV = pDevice->dwIVCounter;
199         pDevice->byKeyIndex = pTransmitKey->dwKeyIndex & 0xf;
200
201         switch (pTransmitKey->byCipherSuite) {
202         case KEY_CTL_WEP:
203                 if (pTransmitKey->uKeyLength == WLAN_WEP232_KEYLEN) {
204                         memcpy(pDevice->abyPRNG, (u8 *)&dwRevIVCounter, 3);
205                         memcpy(pDevice->abyPRNG + 3, pTransmitKey->abyKey,
206                                                 pTransmitKey->uKeyLength);
207                 } else {
208                         memcpy(pbyBuf, (u8 *)&dwRevIVCounter, 3);
209                         memcpy(pbyBuf + 3, pTransmitKey->abyKey,
210                                                 pTransmitKey->uKeyLength);
211                         if (pTransmitKey->uKeyLength == WLAN_WEP40_KEYLEN) {
212                                 memcpy(pbyBuf+8, (u8 *)&dwRevIVCounter, 3);
213                         memcpy(pbyBuf+11, pTransmitKey->abyKey,
214                                                 pTransmitKey->uKeyLength);
215                         }
216
217                         memcpy(pDevice->abyPRNG, pbyBuf, 16);
218                 }
219                 /* Append IV after Mac Header */
220                 *pdwIV &= WEP_IV_MASK;
221                 *pdwIV |= (u32)pDevice->byKeyIndex << 30;
222                 *pdwIV = cpu_to_le32(*pdwIV);
223
224                 pDevice->dwIVCounter++;
225                 if (pDevice->dwIVCounter > WEP_IV_MASK)
226                         pDevice->dwIVCounter = 0;
227
228                 break;
229         case KEY_CTL_TKIP:
230                 pTransmitKey->wTSC15_0++;
231                 if (pTransmitKey->wTSC15_0 == 0)
232                         pTransmitKey->dwTSC47_16++;
233
234                 TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
235                         pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16,
236                                                         pDevice->abyPRNG);
237                 memcpy(pbyBuf, pDevice->abyPRNG, 16);
238
239                 /* Make IV */
240                 memcpy(pdwIV, pDevice->abyPRNG, 3);
241
242                 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
243                                                         0xc0) | 0x20);
244                 /*  Append IV&ExtIV after Mac Header */
245                 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
246
247                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
248                         "vFillTxKey()---- pdwExtIV: %x\n", *pdwExtIV);
249
250                 break;
251         case KEY_CTL_CCMP:
252                 pTransmitKey->wTSC15_0++;
253                 if (pTransmitKey->wTSC15_0 == 0)
254                         pTransmitKey->dwTSC47_16++;
255
256                 memcpy(pbyBuf, pTransmitKey->abyKey, 16);
257
258                 /* Make IV */
259                 *pdwIV = 0;
260                 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
261                                                         0xc0) | 0x20);
262
263                 *pdwIV |= cpu_to_le16((u16)(pTransmitKey->wTSC15_0));
264
265                 /* Append IV&ExtIV after Mac Header */
266                 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
267
268                 if (!mic_hdr)
269                         return;
270
271                 /* MICHDR0 */
272                 mic_hdr->id = 0x59;
273                 mic_hdr->payload_len = cpu_to_be16(wPayloadLen);
274                 memcpy(mic_hdr->mic_addr2, pMACHeader->addr2, ETH_ALEN);
275
276                 mic_hdr->tsc_47_16 = cpu_to_be32(pTransmitKey->dwTSC47_16);
277                 mic_hdr->tsc_15_0 = cpu_to_be16(pTransmitKey->wTSC15_0);
278
279                 /* MICHDR1 */
280                 if (pDevice->bLongHeader)
281                         mic_hdr->hlen = cpu_to_be16(28);
282                 else
283                         mic_hdr->hlen = cpu_to_be16(22);
284
285                 memcpy(mic_hdr->addr1, pMACHeader->addr1, ETH_ALEN);
286                 memcpy(mic_hdr->addr2, pMACHeader->addr2, ETH_ALEN);
287
288                 /* MICHDR2 */
289                 memcpy(mic_hdr->addr3, pMACHeader->addr3, ETH_ALEN);
290                 mic_hdr->frame_control = cpu_to_le16(pMACHeader->frame_control
291                                                                 & 0xc78f);
292                 mic_hdr->seq_ctrl = cpu_to_le16(pMACHeader->seq_ctrl & 0xf);
293
294                 if (pDevice->bLongHeader)
295                         memcpy(mic_hdr->addr4, pMACHeader->addr4, ETH_ALEN);
296         }
297 }
298
299 static void s_vSWencryption(struct vnt_private *pDevice,
300         PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize)
301 {
302         u32 cbICVlen = 4;
303         u32 dwICV = 0xffffffff;
304         u32 *pdwICV;
305
306     if (pTransmitKey == NULL)
307         return;
308
309     if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
310         //=======================================================================
311         // Append ICV after payload
312         dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
313         pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
314         // finally, we must invert dwCRC to get the correct answer
315         *pdwICV = cpu_to_le32(~dwICV);
316         // RC4 encryption
317         rc4_init(&pDevice->SBox, pDevice->abyPRNG, pTransmitKey->uKeyLength + 3);
318         rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
319         //=======================================================================
320     } else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
321         //=======================================================================
322         //Append ICV after payload
323         dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
324         pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
325         // finally, we must invert dwCRC to get the correct answer
326         *pdwICV = cpu_to_le32(~dwICV);
327         // RC4 encryption
328         rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
329         rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
330         //=======================================================================
331     }
332 }
333
334 static u16 vnt_time_stamp_off(struct vnt_private *priv, u16 rate)
335 {
336         return cpu_to_le16(wTimeStampOff[priv->byPreambleType % 2]
337                                                         [rate % MAX_RATE]);
338 }
339
340 /*byPktType : PK_TYPE_11A     0
341              PK_TYPE_11B     1
342              PK_TYPE_11GB    2
343              PK_TYPE_11GA    3
344 */
345 static u32 s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
346         u32 cbFrameLength, u16 wRate, int bNeedAck)
347 {
348         u32 uDataTime, uAckTime;
349
350     uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wRate);
351     if (byPktType == PK_TYPE_11B) {//llb,CCK mode
352         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopCCKBasicRate);
353     } else {//11g 2.4G OFDM mode & 11a 5G OFDM mode
354         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopOFDMBasicRate);
355     }
356
357     if (bNeedAck) {
358         return (uDataTime + pDevice->uSIFS + uAckTime);
359     }
360     else {
361         return uDataTime;
362     }
363 }
364
365 static u16 vnt_rxtx_rsvtime_le16(struct vnt_private *priv, u8 pkt_type,
366         u32 frame_length, u16 rate, int need_ack)
367 {
368         return cpu_to_le16((u16)s_uGetTxRsvTime(priv, pkt_type,
369                 frame_length, rate, need_ack));
370 }
371
372 //byFreqType: 0=>5GHZ 1=>2.4GHZ
373 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice,
374         u8 byRTSRsvType, u8 byPktType, u32 cbFrameLength, u16 wCurrentRate)
375 {
376         u32 uRrvTime, uRTSTime, uCTSTime, uAckTime, uDataTime;
377
378     uRrvTime = uRTSTime = uCTSTime = uAckTime = uDataTime = 0;
379
380     uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wCurrentRate);
381     if (byRTSRsvType == 0) { //RTSTxRrvTime_bb
382         uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
383         uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
384     }
385     else if (byRTSRsvType == 1){ //RTSTxRrvTime_ba, only in 2.4GHZ
386         uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
387         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
388         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
389     }
390     else if (byRTSRsvType == 2) { //RTSTxRrvTime_aa
391         uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopOFDMBasicRate);
392         uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
393     }
394     else if (byRTSRsvType == 3) { //CTSTxRrvTime_ba, only in 2.4GHZ
395         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
396         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
397         uRrvTime = uCTSTime + uAckTime + uDataTime + 2*pDevice->uSIFS;
398         return uRrvTime;
399     }
400
401     //RTSRrvTime
402     uRrvTime = uRTSTime + uCTSTime + uAckTime + uDataTime + 3*pDevice->uSIFS;
403         return cpu_to_le16((u16)uRrvTime);
404 }
405
406 //byFreqType 0: 5GHz, 1:2.4Ghz
407 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
408                                         u8 byPktType, int bNeedAck)
409 {
410         u32 uAckTime = 0;
411
412         if (bNeedAck) {
413                 if (byPktType == PK_TYPE_11B)
414                         uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
415                                 byPktType, 14, pDevice->byTopCCKBasicRate);
416                 else
417                         uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
418                                 byPktType, 14, pDevice->byTopOFDMBasicRate);
419                 return cpu_to_le16((u16)(pDevice->uSIFS + uAckTime));
420         }
421
422         return 0;
423 }
424
425 //byFreqType: 0=>5GHZ 1=>2.4GHZ
426 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice, u8 byDurType,
427         u32 cbFrameLength, u8 byPktType, u16 wRate, int bNeedAck,
428         u8 byFBOption)
429 {
430         u32 uCTSTime = 0, uDurTime = 0;
431
432     switch (byDurType) {
433
434     case RTSDUR_BB:    //RTSDuration_bb
435         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
436         uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
437         break;
438
439     case RTSDUR_BA:    //RTSDuration_ba
440         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
441         uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
442         break;
443
444     case RTSDUR_AA:    //RTSDuration_aa
445         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
446         uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
447         break;
448
449     case CTSDUR_BA:    //CTSDuration_ba
450         uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
451         break;
452
453     case RTSDUR_BA_F0: //RTSDuration_ba_f0
454         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
455         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
456             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
457         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
458             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
459         }
460         break;
461
462     case RTSDUR_AA_F0: //RTSDuration_aa_f0
463         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
464         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
465             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
466         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
467             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
468         }
469         break;
470
471     case RTSDUR_BA_F1: //RTSDuration_ba_f1
472         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
473         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
474             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
475         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
476             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
477         }
478         break;
479
480     case RTSDUR_AA_F1: //RTSDuration_aa_f1
481         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
482         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
483             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
484         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
485             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
486         }
487         break;
488
489     case CTSDUR_BA_F0: //CTSDuration_ba_f0
490         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
491             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
492         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
493             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
494         }
495         break;
496
497     case CTSDUR_BA_F1: //CTSDuration_ba_f1
498         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
499             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
500         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
501             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
502         }
503         break;
504
505     default:
506         break;
507     }
508
509         return cpu_to_le16((u16)uDurTime);
510 }
511
512 static u32 s_uFillDataHead(struct vnt_private *pDevice,
513         u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
514         u32 uDMAIdx, int bNeedAck, u8 byFBOption)
515 {
516
517     if (pTxDataHead == NULL) {
518         return 0;
519     }
520
521     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
522             if (byFBOption == AUTO_FB_NONE) {
523                 struct vnt_tx_datahead_g *pBuf =
524                                 (struct vnt_tx_datahead_g *)pTxDataHead;
525                 //Get SignalField,ServiceField,Length
526                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
527                         byPktType, &pBuf->a);
528                 BBvCalculateParameter(pDevice, cbFrameLength,
529                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
530                 //Get Duration and TimeStamp
531                 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
532                                                         byPktType, bNeedAck);
533                 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
534                                                         PK_TYPE_11B, bNeedAck);
535
536                 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
537                                                                 wCurrentRate);
538                 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
539                                                 pDevice->byTopCCKBasicRate);
540                 return (pBuf->wDuration_a);
541              } else {
542                 // Auto Fallback
543                 struct vnt_tx_datahead_g_fb *pBuf =
544                         (struct vnt_tx_datahead_g_fb *)pTxDataHead;
545                 //Get SignalField,ServiceField,Length
546                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
547                         byPktType, &pBuf->a);
548                 BBvCalculateParameter(pDevice, cbFrameLength,
549                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
550                 //Get Duration and TimeStamp
551                 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
552                                                         byPktType, bNeedAck);
553                 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
554                                                         PK_TYPE_11B, bNeedAck);
555                 pBuf->wDuration_a_f0 = s_uGetDataDuration(pDevice,
556                                                         byPktType, bNeedAck);
557                 pBuf->wDuration_a_f1 = s_uGetDataDuration(pDevice,
558                                                         byPktType, bNeedAck);
559                 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
560                                                                 wCurrentRate);
561                 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
562                                                 pDevice->byTopCCKBasicRate);
563                 return (pBuf->wDuration_a);
564             } //if (byFBOption == AUTO_FB_NONE)
565     }
566     else if (byPktType == PK_TYPE_11A) {
567         if (byFBOption != AUTO_FB_NONE) {
568                 struct vnt_tx_datahead_a_fb *pBuf =
569                         (struct vnt_tx_datahead_a_fb *)pTxDataHead;
570             //Get SignalField,ServiceField,Length
571                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
572                         byPktType, &pBuf->a);
573             //Get Duration and TimeStampOff
574                 pBuf->wDuration = s_uGetDataDuration(pDevice,
575                                         byPktType, bNeedAck);
576                 pBuf->wDuration_f0 = s_uGetDataDuration(pDevice,
577                                         byPktType, bNeedAck);
578                 pBuf->wDuration_f1 = s_uGetDataDuration(pDevice,
579                                                         byPktType, bNeedAck);
580                 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
581                                                                 wCurrentRate);
582             return (pBuf->wDuration);
583         } else {
584                 struct vnt_tx_datahead_ab *pBuf =
585                         (struct vnt_tx_datahead_ab *)pTxDataHead;
586             //Get SignalField,ServiceField,Length
587                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
588                         byPktType, &pBuf->ab);
589             //Get Duration and TimeStampOff
590                 pBuf->wDuration = s_uGetDataDuration(pDevice,
591                                 byPktType, bNeedAck);
592                 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
593                                                                 wCurrentRate);
594             return (pBuf->wDuration);
595         }
596     }
597     else if (byPktType == PK_TYPE_11B) {
598                 struct vnt_tx_datahead_ab *pBuf =
599                         (struct vnt_tx_datahead_ab *)pTxDataHead;
600             //Get SignalField,ServiceField,Length
601                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
602                         byPktType, &pBuf->ab);
603             //Get Duration and TimeStampOff
604                 pBuf->wDuration = s_uGetDataDuration(pDevice,
605                                 byPktType, bNeedAck);
606                 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
607                                                                 wCurrentRate);
608             return (pBuf->wDuration);
609     }
610     return 0;
611 }
612
613 static int vnt_fill_ieee80211_rts(struct vnt_private *priv,
614         struct ieee80211_rts *rts, struct ethhdr *eth_hdr,
615                 u16 duration)
616 {
617         rts->duration = duration;
618         rts->frame_control = TYPE_CTL_RTS;
619
620         if (priv->eOPMode == OP_MODE_ADHOC || priv->eOPMode == OP_MODE_AP)
621                 memcpy(rts->ra, eth_hdr->h_dest, ETH_ALEN);
622         else
623                 memcpy(rts->ra, priv->abyBSSID, ETH_ALEN);
624
625         if (priv->eOPMode == OP_MODE_AP)
626                 memcpy(rts->ta, priv->abyBSSID, ETH_ALEN);
627         else
628                 memcpy(rts->ta, eth_hdr->h_source, ETH_ALEN);
629
630         return 0;
631 }
632
633 static int vnt_rxtx_rts_g_head(struct vnt_private *priv,
634         struct vnt_rts_g *buf, struct ethhdr *eth_hdr,
635         u8 pkt_type, u32 frame_len, int need_ack,
636         u16 current_rate, u8 fb_option)
637 {
638         u16 rts_frame_len = 20;
639
640         BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
641                 PK_TYPE_11B, &buf->b);
642         BBvCalculateParameter(priv, rts_frame_len,
643                 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
644
645         buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
646                 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
647         buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
648                 pkt_type, current_rate, need_ack, fb_option);
649         buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
650                 pkt_type, current_rate, need_ack, fb_option);
651
652         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
653
654         return 0;
655 }
656
657 static int vnt_rxtx_rts_g_fb_head(struct vnt_private *priv,
658         struct vnt_rts_g_fb *buf, struct ethhdr *eth_hdr,
659         u8 pkt_type, u32 frame_len, int need_ack,
660         u16 current_rate, u8 fb_option)
661 {
662         u16 rts_frame_len = 20;
663
664         BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
665                 PK_TYPE_11B, &buf->b);
666         BBvCalculateParameter(priv, rts_frame_len,
667                 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
668
669
670         buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
671                 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
672         buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
673                 pkt_type, current_rate, need_ack, fb_option);
674         buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
675                 pkt_type, current_rate, need_ack, fb_option);
676
677
678         buf->wRTSDuration_ba_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F0,
679                 frame_len, pkt_type, current_rate, need_ack, fb_option);
680         buf->wRTSDuration_aa_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
681                 frame_len, pkt_type, current_rate, need_ack, fb_option);
682         buf->wRTSDuration_ba_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F1,
683                 frame_len, pkt_type, current_rate, need_ack, fb_option);
684         buf->wRTSDuration_aa_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
685                 frame_len, pkt_type, current_rate, need_ack, fb_option);
686
687         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
688
689         return 0;
690 }
691
692 static int vnt_rxtx_rts_ab_head(struct vnt_private *priv,
693         struct vnt_rts_ab *buf, struct ethhdr *eth_hdr,
694         u8 pkt_type, u32 frame_len, int need_ack,
695         u16 current_rate, u8 fb_option)
696 {
697         u16 rts_frame_len = 20;
698
699         BBvCalculateParameter(priv, rts_frame_len,
700                 priv->byTopOFDMBasicRate, pkt_type, &buf->ab);
701
702         buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
703                 pkt_type, current_rate, need_ack, fb_option);
704
705         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
706
707         return 0;
708 }
709
710 static int vnt_rxtx_rts_a_fb_head(struct vnt_private *priv,
711         struct vnt_rts_a_fb *buf, struct ethhdr *eth_hdr,
712         u8 pkt_type, u32 frame_len, int need_ack,
713         u16 current_rate, u8 fb_option)
714 {
715         u16 rts_frame_len = 20;
716
717         BBvCalculateParameter(priv, rts_frame_len,
718                 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
719
720         buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
721                 pkt_type, current_rate, need_ack, fb_option);
722
723         buf->wRTSDuration_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
724                 frame_len, pkt_type, current_rate, need_ack, fb_option);
725
726         buf->wRTSDuration_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
727                 frame_len, pkt_type, current_rate, need_ack, fb_option);
728
729         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
730
731         return 0;
732 }
733
734 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
735         union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
736         struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption)
737 {
738
739         if (!head)
740                 return;
741
742         /* Note: So far RTSHead doesn't appear in ATIM
743         *       & Beacom DMA, so we don't need to take them
744         *       into account.
745         *       Otherwise, we need to modified codes for them.
746         */
747         switch (byPktType) {
748         case PK_TYPE_11GB:
749         case PK_TYPE_11GA:
750                 if (byFBOption == AUTO_FB_NONE)
751                         vnt_rxtx_rts_g_head(pDevice, &head->rts_g,
752                                 psEthHeader, byPktType, cbFrameLength,
753                                 bNeedAck, wCurrentRate, byFBOption);
754                 else
755                         vnt_rxtx_rts_g_fb_head(pDevice, &head->rts_g_fb,
756                                 psEthHeader, byPktType, cbFrameLength,
757                                 bNeedAck, wCurrentRate, byFBOption);
758                 break;
759         case PK_TYPE_11A:
760                 if (byFBOption) {
761                         vnt_rxtx_rts_a_fb_head(pDevice, &head->rts_a_fb,
762                                 psEthHeader, byPktType, cbFrameLength,
763                                 bNeedAck, wCurrentRate, byFBOption);
764                         break;
765                 }
766         case PK_TYPE_11B:
767                 vnt_rxtx_rts_ab_head(pDevice, &head->rts_ab,
768                         psEthHeader, byPktType, cbFrameLength,
769                         bNeedAck, wCurrentRate, byFBOption);
770         }
771 }
772
773 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
774         u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
775         int bNeedAck, u16 wCurrentRate, u8 byFBOption)
776 {
777         u32 uCTSFrameLen = 14;
778
779         if (!head)
780                 return;
781
782         if (byFBOption != AUTO_FB_NONE) {
783                 /* Auto Fall back */
784                 struct vnt_cts_fb *pBuf = &head->cts_g_fb;
785                 /* Get SignalField,ServiceField,Length */
786                 BBvCalculateParameter(pDevice, uCTSFrameLen,
787                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
788                 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice, CTSDUR_BA,
789                         cbFrameLength, byPktType,
790                         wCurrentRate, bNeedAck, byFBOption);
791                 /* Get CTSDuration_ba_f0 */
792                 pBuf->wCTSDuration_ba_f0 = s_uGetRTSCTSDuration(pDevice,
793                         CTSDUR_BA_F0, cbFrameLength, byPktType, wCurrentRate,
794                         bNeedAck, byFBOption);
795                 /* Get CTSDuration_ba_f1 */
796                 pBuf->wCTSDuration_ba_f1 = s_uGetRTSCTSDuration(pDevice,
797                         CTSDUR_BA_F1, cbFrameLength, byPktType, wCurrentRate,
798                         bNeedAck, byFBOption);
799                 /* Get CTS Frame body */
800                 pBuf->data.duration = pBuf->wDuration_ba;
801                 pBuf->data.frame_control = TYPE_CTL_CTS;
802                 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
803         } else {
804                 struct vnt_cts *pBuf = &head->cts_g;
805                 /* Get SignalField,ServiceField,Length */
806                 BBvCalculateParameter(pDevice, uCTSFrameLen,
807                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
808                 /* Get CTSDuration_ba */
809                 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice,
810                         CTSDUR_BA, cbFrameLength, byPktType,
811                         wCurrentRate, bNeedAck, byFBOption);
812                 /*Get CTS Frame body*/
813                 pBuf->data.duration = pBuf->wDuration_ba;
814                 pBuf->data.frame_control = TYPE_CTL_CTS;
815                 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
816         }
817 }
818
819 /*+
820  *
821  * Description:
822  *      Generate FIFO control for MAC & Baseband controller
823  *
824  * Parameters:
825  *  In:
826  *      pDevice         - Pointer to adpater
827  *      pTxDataHead     - Transmit Data Buffer
828  *      pTxBufHead      - pTxBufHead
829  *      pvRrvTime        - pvRrvTime
830  *      pvRTS            - RTS Buffer
831  *      pCTS            - CTS Buffer
832  *      cbFrameSize     - Transmit Data Length (Hdr+Payload+FCS)
833  *      bNeedACK        - If need ACK
834  *      uDMAIdx         - DMA Index
835  *  Out:
836  *      none
837  *
838  * Return Value: none
839  *
840 -*/
841
842 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
843         u8 byPktType, u16 wCurrentRate, void *pTxBufHead, void *pvRrvTime,
844         void *rts_cts, u32 cbFrameSize, int bNeedACK, u32 uDMAIdx,
845         struct ethhdr *psEthHeader, bool need_rts)
846 {
847         union vnt_tx_data_head *head = rts_cts;
848         u32 cbMACHdLen = WLAN_HDR_ADDR3_LEN; /* 24 */
849         u16 wFifoCtl;
850         u8 byFBOption = AUTO_FB_NONE;
851
852     //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter...\n");
853     PSTxBufHead pFifoHead = (PSTxBufHead)pTxBufHead;
854     pFifoHead->wReserved = wCurrentRate;
855     wFifoCtl = pFifoHead->wFIFOCtl;
856
857     if (wFifoCtl & FIFOCTL_AUTO_FB_0) {
858         byFBOption = AUTO_FB_0;
859     }
860     else if (wFifoCtl & FIFOCTL_AUTO_FB_1) {
861         byFBOption = AUTO_FB_1;
862     }
863
864         if (!pvRrvTime)
865                 return;
866
867     if (pDevice->bLongHeader)
868         cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
869
870     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
871         if (need_rts) {
872             //Fill RsvTime
873                 struct vnt_rrv_time_rts *pBuf =
874                         (struct vnt_rrv_time_rts *)pvRrvTime;
875                 pBuf->wRTSTxRrvTime_aa = s_uGetRTSCTSRsvTime(pDevice, 2,
876                                 byPktType, cbFrameSize, wCurrentRate);
877                 pBuf->wRTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 1,
878                                 byPktType, cbFrameSize, wCurrentRate);
879                 pBuf->wRTSTxRrvTime_bb = s_uGetRTSCTSRsvTime(pDevice, 0,
880                                 byPktType, cbFrameSize, wCurrentRate);
881                 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice,
882                         byPktType, cbFrameSize, wCurrentRate, bNeedACK);
883                 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
884                         PK_TYPE_11B, cbFrameSize, pDevice->byTopCCKBasicRate,
885                                 bNeedACK);
886                 /* Fill RTS */
887                 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
888                         bNeedACK, psEthHeader, wCurrentRate, byFBOption);
889         }
890         else {//RTS_needless, PCF mode
891             //Fill RsvTime
892                 struct vnt_rrv_time_cts *pBuf =
893                                 (struct vnt_rrv_time_cts *)pvRrvTime;
894                 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
895                         cbFrameSize, wCurrentRate, bNeedACK);
896                 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
897                         PK_TYPE_11B, cbFrameSize,
898                         pDevice->byTopCCKBasicRate, bNeedACK);
899                 pBuf->wCTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 3,
900                                 byPktType, cbFrameSize, wCurrentRate);
901                 /* Fill CTS */
902                 s_vFillCTSHead(pDevice, uDMAIdx, byPktType, head,
903                         cbFrameSize, bNeedACK, wCurrentRate, byFBOption);
904         }
905     }
906     else if (byPktType == PK_TYPE_11A) {
907         if (need_rts) {
908             //Fill RsvTime
909                 struct vnt_rrv_time_ab *pBuf =
910                                 (struct vnt_rrv_time_ab *)pvRrvTime;
911                 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 2,
912                                 byPktType, cbFrameSize, wCurrentRate);
913                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
914                                 cbFrameSize, wCurrentRate, bNeedACK);
915                 /* Fill RTS */
916                 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
917                         bNeedACK, psEthHeader, wCurrentRate, byFBOption);
918         } else {
919             //Fill RsvTime
920                 struct vnt_rrv_time_ab *pBuf =
921                                 (struct vnt_rrv_time_ab *)pvRrvTime;
922                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11A,
923                         cbFrameSize, wCurrentRate, bNeedACK);
924         }
925     }
926     else if (byPktType == PK_TYPE_11B) {
927         if (need_rts) {
928             //Fill RsvTime
929                 struct vnt_rrv_time_ab *pBuf =
930                                 (struct vnt_rrv_time_ab *)pvRrvTime;
931                 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 0,
932                                 byPktType, cbFrameSize, wCurrentRate);
933                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
934                                 cbFrameSize, wCurrentRate, bNeedACK);
935                 /* Fill RTS */
936                 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
937                         bNeedACK, psEthHeader, wCurrentRate, byFBOption);
938         }
939         else { //RTS_needless, non PCF mode
940             //Fill RsvTime
941                 struct vnt_rrv_time_ab *pBuf =
942                                 (struct vnt_rrv_time_ab *)pvRrvTime;
943                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
944                         cbFrameSize, wCurrentRate, bNeedACK);
945         }
946     }
947     //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter END.\n");
948 }
949 /*
950     u8 * pbyBuffer,//point to pTxBufHead
951     u16  wFragType,//00:Non-Frag, 01:Start, 02:Mid, 03:Last
952     unsigned int  cbFragmentSize,//Hdr+payoad+FCS
953 */
954
955 static int s_bPacketToWirelessUsb(struct vnt_private *pDevice, u8 byPktType,
956         struct vnt_tx_buffer *pTxBufHead, int bNeedEncryption,
957         u32 uSkbPacketLen, u32 uDMAIdx, struct ethhdr *psEthHeader,
958         u8 *pPacket, PSKeyItem pTransmitKey, u32 uNodeIndex, u16 wCurrentRate,
959         u32 *pcbHeaderLen, u32 *pcbTotalLen)
960 {
961         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
962         u32 cbFrameSize, cbFrameBodySize;
963         u32 cb802_1_H_len;
964         u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbMACHdLen = 0;
965         u32 cbFCSlen = 4, cbMICHDR = 0;
966         int bNeedACK;
967         bool bRTS = false;
968         u8 *pbyType, *pbyMacHdr, *pbyIVHead, *pbyPayloadHead, *pbyTxBufferAddr;
969         u8 abySNAP_RFC1042[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00};
970         u8 abySNAP_Bridgetunnel[ETH_ALEN]
971                 = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0xF8};
972         u32 uDuration;
973         u32 cbHeaderLength = 0, uPadding = 0;
974         void *pvRrvTime;
975         struct vnt_mic_hdr *pMICHDR;
976         void *rts_cts = NULL;
977         void *pvTxDataHd;
978         u8 byFBOption = AUTO_FB_NONE, byFragType;
979         u16 wTxBufSize;
980         u32 dwMICKey0, dwMICKey1, dwMIC_Priority;
981         u32 *pdwMIC_L, *pdwMIC_R;
982         int bSoftWEP = false;
983
984         pvRrvTime = pMICHDR = pvTxDataHd = NULL;
985
986         if (bNeedEncryption && pTransmitKey->pvKeyTable) {
987                 if (((PSKeyTable)pTransmitKey->pvKeyTable)->bSoftWEP == true)
988                         bSoftWEP = true; /* WEP 256 */
989         }
990
991     // Get pkt type
992     if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
993         if (pDevice->dwDiagRefCount == 0) {
994             cb802_1_H_len = 8;
995         } else {
996             cb802_1_H_len = 2;
997         }
998     } else {
999         cb802_1_H_len = 0;
1000     }
1001
1002     cbFrameBodySize = uSkbPacketLen - ETH_HLEN + cb802_1_H_len;
1003
1004     //Set packet type
1005     pTxBufHead->wFIFOCtl |= (u16)(byPktType<<8);
1006
1007     if (pDevice->dwDiagRefCount != 0) {
1008         bNeedACK = false;
1009         pTxBufHead->wFIFOCtl = pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1010     } else { //if (pDevice->dwDiagRefCount != 0) {
1011         if ((pDevice->eOPMode == OP_MODE_ADHOC) ||
1012             (pDevice->eOPMode == OP_MODE_AP)) {
1013                 if (is_multicast_ether_addr(psEthHeader->h_dest)) {
1014                         bNeedACK = false;
1015                         pTxBufHead->wFIFOCtl =
1016                                 pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1017                 } else {
1018                         bNeedACK = true;
1019                         pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1020                 }
1021         }
1022         else {
1023             // MSDUs in Infra mode always need ACK
1024             bNeedACK = true;
1025             pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1026         }
1027     } //if (pDevice->dwDiagRefCount != 0) {
1028
1029     pTxBufHead->wTimeStamp = DEFAULT_MSDU_LIFETIME_RES_64us;
1030
1031     //Set FIFOCTL_LHEAD
1032     if (pDevice->bLongHeader)
1033         pTxBufHead->wFIFOCtl |= FIFOCTL_LHEAD;
1034
1035     //Set FRAGCTL_MACHDCNT
1036     if (pDevice->bLongHeader) {
1037         cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
1038     } else {
1039         cbMACHdLen = WLAN_HDR_ADDR3_LEN;
1040     }
1041     pTxBufHead->wFragCtl |= (u16)(cbMACHdLen << 10);
1042
1043     //Set FIFOCTL_GrpAckPolicy
1044     if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1045         pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1046     }
1047
1048     //Set Auto Fallback Ctl
1049     if (wCurrentRate >= RATE_18M) {
1050         if (pDevice->byAutoFBCtrl == AUTO_FB_0) {
1051             pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_0;
1052             byFBOption = AUTO_FB_0;
1053         } else if (pDevice->byAutoFBCtrl == AUTO_FB_1) {
1054             pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_1;
1055             byFBOption = AUTO_FB_1;
1056         }
1057     }
1058
1059     if (bSoftWEP != true) {
1060         if ((bNeedEncryption) && (pTransmitKey != NULL))  { //WEP enabled
1061             if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) { //WEP40 or WEP104
1062                 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1063             }
1064             if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1065                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Tx Set wFragCtl == FRAGCTL_TKIP\n");
1066                 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1067             }
1068             else if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) { //CCMP
1069                 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1070             }
1071         }
1072     }
1073
1074     if ((bNeedEncryption) && (pTransmitKey != NULL))  {
1075         if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
1076             cbIVlen = 4;
1077             cbICVlen = 4;
1078         }
1079         else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1080             cbIVlen = 8;//IV+ExtIV
1081             cbMIClen = 8;
1082             cbICVlen = 4;
1083         }
1084         if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) {
1085             cbIVlen = 8;//RSN Header
1086             cbICVlen = 8;//MIC
1087             cbMICHDR = sizeof(struct vnt_mic_hdr);
1088         }
1089         if (bSoftWEP == false) {
1090             //MAC Header should be padding 0 to DW alignment.
1091             uPadding = 4 - (cbMACHdLen%4);
1092             uPadding %= 4;
1093         }
1094     }
1095
1096     cbFrameSize = cbMACHdLen + cbIVlen + (cbFrameBodySize + cbMIClen) + cbICVlen + cbFCSlen;
1097
1098     if ( (bNeedACK == false) ||(cbFrameSize < pDevice->wRTSThreshold) ) {
1099         bRTS = false;
1100     } else {
1101         bRTS = true;
1102         pTxBufHead->wFIFOCtl |= (FIFOCTL_RTS | FIFOCTL_LRETRY);
1103     }
1104
1105     pbyTxBufferAddr = (u8 *) &(pTxBufHead->adwTxKey[0]);
1106     wTxBufSize = sizeof(STxBufHead);
1107     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1108         if (byFBOption == AUTO_FB_NONE) {
1109             if (bRTS == true) {//RTS_need
1110                 pvRrvTime = (struct vnt_rrv_time_rts *)
1111                                         (pbyTxBufferAddr + wTxBufSize);
1112                 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1113                                         sizeof(struct vnt_rrv_time_rts));
1114                 rts_cts = (struct vnt_rts_g *) (pbyTxBufferAddr + wTxBufSize +
1115                                 sizeof(struct vnt_rrv_time_rts) + cbMICHDR);
1116                 pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
1117                         wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1118                                 cbMICHDR + sizeof(struct vnt_rts_g));
1119                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1120                         cbMICHDR + sizeof(struct vnt_rts_g) +
1121                                 sizeof(struct vnt_tx_datahead_g);
1122             }
1123             else { //RTS_needless
1124                 pvRrvTime = (struct vnt_rrv_time_cts *)
1125                                 (pbyTxBufferAddr + wTxBufSize);
1126                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1127                         sizeof(struct vnt_rrv_time_cts));
1128                 rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
1129                                 sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
1130                 pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr +
1131                         wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1132                                 cbMICHDR + sizeof(struct vnt_cts));
1133                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1134                         cbMICHDR + sizeof(struct vnt_cts) +
1135                                 sizeof(struct vnt_tx_datahead_g);
1136             }
1137         } else {
1138             // Auto Fall Back
1139             if (bRTS == true) {//RTS_need
1140                 pvRrvTime = (struct vnt_rrv_time_rts *)(pbyTxBufferAddr +
1141                                                                 wTxBufSize);
1142                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1143                                         sizeof(struct vnt_rrv_time_rts));
1144                 rts_cts = (struct vnt_rts_g_fb *)(pbyTxBufferAddr + wTxBufSize +
1145                                 sizeof(struct vnt_rrv_time_rts) + cbMICHDR);
1146                 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1147                         wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1148                                 cbMICHDR + sizeof(struct vnt_rts_g_fb));
1149                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1150                         cbMICHDR + sizeof(struct vnt_rts_g_fb) +
1151                                 sizeof(struct vnt_tx_datahead_g_fb);
1152             }
1153             else if (bRTS == false) { //RTS_needless
1154                 pvRrvTime = (struct vnt_rrv_time_cts *)
1155                                 (pbyTxBufferAddr + wTxBufSize);
1156                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1157                                 sizeof(struct vnt_rrv_time_cts));
1158                 rts_cts = (struct vnt_cts_fb *) (pbyTxBufferAddr + wTxBufSize +
1159                         sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
1160                 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1161                         wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1162                                 cbMICHDR + sizeof(struct vnt_cts_fb));
1163                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1164                                 cbMICHDR + sizeof(struct vnt_cts_fb) +
1165                                         sizeof(struct vnt_tx_datahead_g_fb);
1166             }
1167         } // Auto Fall Back
1168     }
1169     else {//802.11a/b packet
1170         if (byFBOption == AUTO_FB_NONE) {
1171             if (bRTS == true) {//RTS_need
1172                 pvRrvTime = (struct vnt_rrv_time_ab *) (pbyTxBufferAddr +
1173                                                                 wTxBufSize);
1174                 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1175                                                 sizeof(struct vnt_rrv_time_ab));
1176                 rts_cts = (struct vnt_rts_ab *) (pbyTxBufferAddr + wTxBufSize +
1177                                 sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1178                 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1179                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1180                                                 sizeof(struct vnt_rts_ab));
1181                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1182                         cbMICHDR + sizeof(struct vnt_rts_ab) +
1183                                 sizeof(struct vnt_tx_datahead_ab);
1184             }
1185             else if (bRTS == false) { //RTS_needless, no MICHDR
1186                 pvRrvTime = (struct vnt_rrv_time_ab *)(pbyTxBufferAddr +
1187                                                                 wTxBufSize);
1188                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1189                                                 sizeof(struct vnt_rrv_time_ab));
1190                 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1191                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1192                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1193                                 cbMICHDR + sizeof(struct vnt_tx_datahead_ab);
1194             }
1195         } else {
1196             // Auto Fall Back
1197             if (bRTS == true) {//RTS_need
1198                 pvRrvTime = (struct vnt_rrv_time_ab *)(pbyTxBufferAddr +
1199                                                 wTxBufSize);
1200                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1201                         sizeof(struct vnt_rrv_time_ab));
1202                 rts_cts = (struct vnt_rts_a_fb *)(pbyTxBufferAddr + wTxBufSize +
1203                                 sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1204                 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1205                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1206                                         sizeof(struct vnt_rts_a_fb));
1207                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1208                         cbMICHDR + sizeof(struct vnt_rts_a_fb) +
1209                                         sizeof(struct vnt_tx_datahead_a_fb);
1210             }
1211             else if (bRTS == false) { //RTS_needless
1212                 pvRrvTime = (struct vnt_rrv_time_ab *)(pbyTxBufferAddr +
1213                                                                 wTxBufSize);
1214                 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1215                                                 sizeof(struct vnt_rrv_time_ab));
1216                 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1217                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1218                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1219                         cbMICHDR + sizeof(struct vnt_tx_datahead_a_fb);
1220             }
1221         } // Auto Fall Back
1222     }
1223
1224     pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderLength);
1225     pbyIVHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding);
1226     pbyPayloadHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding + cbIVlen);
1227
1228     //=========================
1229     //    No Fragmentation
1230     //=========================
1231     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Fragmentation...\n");
1232     byFragType = FRAGCTL_NONFRAG;
1233     //uDMAIdx = TYPE_AC0DMA;
1234     //pTxBufHead = (PSTxBufHead) &(pTxBufHead->adwTxKey[0]);
1235
1236     //Fill FIFO,RrvTime,RTS,and CTS
1237     s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1238                 (void *)pbyTxBufferAddr, pvRrvTime, rts_cts,
1239                 cbFrameSize, bNeedACK, uDMAIdx, psEthHeader, bRTS);
1240     //Fill DataHead
1241     uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, uDMAIdx, bNeedACK,
1242                                 byFBOption);
1243     // Generate TX MAC Header
1244     s_vGenerateMACHeader(pDevice, pbyMacHdr, (u16)uDuration, psEthHeader, bNeedEncryption,
1245                            byFragType, uDMAIdx, 0);
1246
1247     if (bNeedEncryption == true) {
1248         //Fill TXKEY
1249         s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1250                 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
1251
1252         if (pDevice->bEnableHostWEP) {
1253             pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
1254             pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
1255         }
1256     }
1257
1258     // 802.1H
1259     if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
1260         if (pDevice->dwDiagRefCount == 0) {
1261                 if ((psEthHeader->h_proto == cpu_to_be16(ETH_P_IPX)) ||
1262                     (psEthHeader->h_proto == cpu_to_le16(0xF380))) {
1263                         memcpy((u8 *) (pbyPayloadHead),
1264                                abySNAP_Bridgetunnel, 6);
1265             } else {
1266                 memcpy((u8 *) (pbyPayloadHead), &abySNAP_RFC1042[0], 6);
1267             }
1268             pbyType = (u8 *) (pbyPayloadHead + 6);
1269             memcpy(pbyType, &(psEthHeader->h_proto), sizeof(u16));
1270         } else {
1271             memcpy((u8 *) (pbyPayloadHead), &(psEthHeader->h_proto), sizeof(u16));
1272
1273         }
1274
1275     }
1276
1277     if (pPacket != NULL) {
1278         // Copy the Packet into a tx Buffer
1279         memcpy((pbyPayloadHead + cb802_1_H_len),
1280                  (pPacket + ETH_HLEN),
1281                  uSkbPacketLen - ETH_HLEN
1282                  );
1283
1284     } else {
1285         // while bRelayPacketSend psEthHeader is point to header+payload
1286         memcpy((pbyPayloadHead + cb802_1_H_len), ((u8 *)psEthHeader) + ETH_HLEN, uSkbPacketLen - ETH_HLEN);
1287     }
1288
1289     if ((bNeedEncryption == true) && (pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
1290
1291         ///////////////////////////////////////////////////////////////////
1292
1293         if (pDevice->vnt_mgmt.eAuthenMode == WMAC_AUTH_WPANONE) {
1294                 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1295                 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1296         }
1297         else if ((pTransmitKey->dwKeyIndex & AUTHENTICATOR_KEY) != 0) {
1298             dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1299             dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1300         }
1301         else {
1302             dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[24]);
1303             dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[28]);
1304         }
1305         // DO Software Michael
1306         MIC_vInit(dwMICKey0, dwMICKey1);
1307         MIC_vAppend((u8 *)&(psEthHeader->h_dest[0]), 12);
1308         dwMIC_Priority = 0;
1309         MIC_vAppend((u8 *)&dwMIC_Priority, 4);
1310         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC KEY: %X, %X\n",
1311                 dwMICKey0, dwMICKey1);
1312
1313         ///////////////////////////////////////////////////////////////////
1314
1315         //DBG_PRN_GRP12(("Length:%d, %d\n", cbFrameBodySize, uFromHDtoPLDLength));
1316         //for (ii = 0; ii < cbFrameBodySize; ii++) {
1317         //    DBG_PRN_GRP12(("%02x ", *((u8 *)((pbyPayloadHead + cb802_1_H_len) + ii))));
1318         //}
1319         //DBG_PRN_GRP12(("\n\n\n"));
1320
1321         MIC_vAppend(pbyPayloadHead, cbFrameBodySize);
1322
1323         pdwMIC_L = (u32 *)(pbyPayloadHead + cbFrameBodySize);
1324         pdwMIC_R = (u32 *)(pbyPayloadHead + cbFrameBodySize + 4);
1325
1326         MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
1327         MIC_vUnInit();
1328
1329         if (pDevice->bTxMICFail == true) {
1330             *pdwMIC_L = 0;
1331             *pdwMIC_R = 0;
1332             pDevice->bTxMICFail = false;
1333         }
1334         //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
1335         //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderLength, uPadding, cbIVlen);
1336         //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%lX, %lX\n", *pdwMIC_L, *pdwMIC_R);
1337     }
1338
1339     if (bSoftWEP == true) {
1340
1341         s_vSWencryption(pDevice, pTransmitKey, (pbyPayloadHead), (u16)(cbFrameBodySize + cbMIClen));
1342
1343     } else if (  ((pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) && (bNeedEncryption == true))  ||
1344           ((pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) && (bNeedEncryption == true))   ||
1345           ((pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) && (bNeedEncryption == true))      ) {
1346         cbFrameSize -= cbICVlen;
1347     }
1348
1349         cbFrameSize -= cbFCSlen;
1350
1351     *pcbHeaderLen = cbHeaderLength;
1352     *pcbTotalLen = cbHeaderLength + cbFrameSize ;
1353
1354     //Set FragCtl in TxBufferHead
1355     pTxBufHead->wFragCtl |= (u16)byFragType;
1356
1357     return true;
1358
1359 }
1360
1361 /*+
1362  *
1363  * Description:
1364  *      Translate 802.3 to 802.11 header
1365  *
1366  * Parameters:
1367  *  In:
1368  *      pDevice         - Pointer to adapter
1369  *      dwTxBufferAddr  - Transmit Buffer
1370  *      pPacket         - Packet from upper layer
1371  *      cbPacketSize    - Transmit Data Length
1372  *  Out:
1373  *      pcbHeadSize         - Header size of MAC&Baseband control and 802.11 Header
1374  *      pcbAppendPayload    - size of append payload for 802.1H translation
1375  *
1376  * Return Value: none
1377  *
1378 -*/
1379
1380 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
1381         u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
1382         int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx)
1383 {
1384         struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyBufferAddr;
1385
1386         pMACHeader->frame_control = TYPE_802_11_DATA;
1387
1388     if (pDevice->eOPMode == OP_MODE_AP) {
1389         memcpy(&(pMACHeader->addr1[0]),
1390                &(psEthHeader->h_dest[0]),
1391                ETH_ALEN);
1392         memcpy(&(pMACHeader->addr2[0]), &(pDevice->abyBSSID[0]), ETH_ALEN);
1393         memcpy(&(pMACHeader->addr3[0]),
1394                &(psEthHeader->h_source[0]),
1395                ETH_ALEN);
1396         pMACHeader->frame_control |= FC_FROMDS;
1397     } else {
1398         if (pDevice->eOPMode == OP_MODE_ADHOC) {
1399                 memcpy(&(pMACHeader->addr1[0]),
1400                        &(psEthHeader->h_dest[0]),
1401                        ETH_ALEN);
1402                 memcpy(&(pMACHeader->addr2[0]),
1403                        &(psEthHeader->h_source[0]),
1404                        ETH_ALEN);
1405                 memcpy(&(pMACHeader->addr3[0]),
1406                        &(pDevice->abyBSSID[0]),
1407                        ETH_ALEN);
1408         } else {
1409                 memcpy(&(pMACHeader->addr3[0]),
1410                        &(psEthHeader->h_dest[0]),
1411                        ETH_ALEN);
1412                 memcpy(&(pMACHeader->addr2[0]),
1413                        &(psEthHeader->h_source[0]),
1414                        ETH_ALEN);
1415                 memcpy(&(pMACHeader->addr1[0]),
1416                        &(pDevice->abyBSSID[0]),
1417                        ETH_ALEN);
1418             pMACHeader->frame_control |= FC_TODS;
1419         }
1420     }
1421
1422     if (bNeedEncrypt)
1423         pMACHeader->frame_control |= cpu_to_le16((u16)WLAN_SET_FC_ISWEP(1));
1424
1425     pMACHeader->duration_id = cpu_to_le16(wDuration);
1426
1427     if (pDevice->bLongHeader) {
1428         PWLAN_80211HDR_A4 pMACA4Header  = (PWLAN_80211HDR_A4) pbyBufferAddr;
1429         pMACHeader->frame_control |= (FC_TODS | FC_FROMDS);
1430         memcpy(pMACA4Header->abyAddr4, pDevice->abyBSSID, WLAN_ADDR_LEN);
1431     }
1432     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1433
1434     //Set FragNumber in Sequence Control
1435     pMACHeader->seq_ctrl |= cpu_to_le16((u16)uFragIdx);
1436
1437     if ((wFragType == FRAGCTL_ENDFRAG) || (wFragType == FRAGCTL_NONFRAG)) {
1438         pDevice->wSeqCounter++;
1439         if (pDevice->wSeqCounter > 0x0fff)
1440             pDevice->wSeqCounter = 0;
1441     }
1442
1443     if ((wFragType == FRAGCTL_STAFRAG) || (wFragType == FRAGCTL_MIDFRAG)) { //StartFrag or MidFrag
1444         pMACHeader->frame_control |= FC_MOREFRAG;
1445     }
1446 }
1447
1448 /*+
1449  *
1450  * Description:
1451  *      Request instructs a MAC to transmit a 802.11 management packet through
1452  *      the adapter onto the medium.
1453  *
1454  * Parameters:
1455  *  In:
1456  *      hDeviceContext  - Pointer to the adapter
1457  *      pPacket         - A pointer to a descriptor for the packet to transmit
1458  *  Out:
1459  *      none
1460  *
1461  * Return Value: CMD_STATUS_PENDING if MAC Tx resource available; otherwise false
1462  *
1463 -*/
1464
1465 CMD_STATUS csMgmt_xmit(struct vnt_private *pDevice,
1466         struct vnt_tx_mgmt *pPacket)
1467 {
1468         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1469         struct vnt_tx_buffer *pTX_Buffer;
1470         PSTxBufHead pTxBufHead;
1471         struct vnt_usb_send_context *pContext;
1472         struct ieee80211_hdr *pMACHeader;
1473         struct ethhdr sEthHeader;
1474         u8 byPktType, *pbyTxBufferAddr;
1475         void *rts_cts = NULL;
1476         void *pvTxDataHd, *pvRrvTime, *pMICHDR;
1477         u32 uDuration, cbReqCount, cbHeaderSize, cbFrameBodySize, cbFrameSize;
1478         int bNeedACK, bIsPSPOLL = false;
1479         u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1480         u32 uPadding = 0;
1481         u16 wTxBufSize;
1482         u32 cbMacHdLen;
1483         u16 wCurrentRate = RATE_1M;
1484
1485         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1486
1487     if (NULL == pContext) {
1488         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1489         return CMD_STATUS_RESOURCES;
1490     }
1491
1492         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1493     pbyTxBufferAddr = (u8 *)&(pTX_Buffer->adwTxKey[0]);
1494     cbFrameBodySize = pPacket->cbPayloadLen;
1495     pTxBufHead = (PSTxBufHead) pbyTxBufferAddr;
1496     wTxBufSize = sizeof(STxBufHead);
1497
1498     if (pDevice->byBBType == BB_TYPE_11A) {
1499         wCurrentRate = RATE_6M;
1500         byPktType = PK_TYPE_11A;
1501     } else {
1502         wCurrentRate = RATE_1M;
1503         byPktType = PK_TYPE_11B;
1504     }
1505
1506     // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1507     // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1508     //                    And cmd timer will wait data pkt TX finish before scanning so it's OK
1509     //                    to set power here.
1510     if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1511         RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1512     } else {
1513         RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1514     }
1515     pDevice->wCurrentRate = wCurrentRate;
1516
1517     //Set packet type
1518     if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1519         pTxBufHead->wFIFOCtl = 0;
1520     }
1521     else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1522         pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1523     }
1524     else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1525         pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1526     }
1527     else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1528         pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1529     }
1530
1531     pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1532     pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1533
1534     if (is_multicast_ether_addr(pPacket->p80211Header->sA3.abyAddr1)) {
1535         bNeedACK = false;
1536     }
1537     else {
1538         bNeedACK = true;
1539         pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1540     };
1541
1542     if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1543         (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1544
1545         pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1546         //Set Preamble type always long
1547         //pDevice->byPreambleType = PREAMBLE_LONG;
1548         // probe-response don't retry
1549         //if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1550         //     bNeedACK = false;
1551         //     pTxBufHead->wFIFOCtl  &= (~FIFOCTL_NEEDACK);
1552         //}
1553     }
1554
1555     pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1556
1557     if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1558         bIsPSPOLL = true;
1559         cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1560     } else {
1561         cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1562     }
1563
1564     //Set FRAGCTL_MACHDCNT
1565     pTxBufHead->wFragCtl |= cpu_to_le16((u16)(cbMacHdLen << 10));
1566
1567     // Notes:
1568     // Although spec says MMPDU can be fragmented; In most case,
1569     // no one will send a MMPDU under fragmentation. With RTS may occur.
1570     pDevice->bAES = false;  //Set FRAGCTL_WEPTYP
1571
1572     if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1573         if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1574             cbIVlen = 4;
1575             cbICVlen = 4;
1576             pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1577         }
1578         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1579             cbIVlen = 8;//IV+ExtIV
1580             cbMIClen = 8;
1581             cbICVlen = 4;
1582             pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1583             //We need to get seed here for filling TxKey entry.
1584             //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1585             //            pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1586         }
1587         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1588             cbIVlen = 8;//RSN Header
1589             cbICVlen = 8;//MIC
1590             pTxBufHead->wFragCtl |= FRAGCTL_AES;
1591             pDevice->bAES = true;
1592         }
1593         //MAC Header should be padding 0 to DW alignment.
1594         uPadding = 4 - (cbMacHdLen%4);
1595         uPadding %= 4;
1596     }
1597
1598     cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen;
1599
1600     //Set FIFOCTL_GrpAckPolicy
1601     if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1602         pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1603     }
1604     //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
1605
1606     //Set RrvTime/RTS/CTS Buffer
1607     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1608
1609         pvRrvTime = (struct vnt_rrv_time_cts *) (pbyTxBufferAddr + wTxBufSize);
1610         pMICHDR = NULL;
1611         rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
1612                                         sizeof(struct vnt_rrv_time_cts));
1613         pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr + wTxBufSize +
1614                 sizeof(struct vnt_rrv_time_cts) + sizeof(struct vnt_cts));
1615         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1616                 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
1617     }
1618     else { // 802.11a/b packet
1619         pvRrvTime = (struct vnt_rrv_time_ab *) (pbyTxBufferAddr + wTxBufSize);
1620         pMICHDR = NULL;
1621         pvTxDataHd = (struct vnt_tx_datahead_ab *) (pbyTxBufferAddr +
1622                 wTxBufSize + sizeof(struct vnt_rrv_time_ab));
1623         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1624                 sizeof(struct vnt_tx_datahead_ab);
1625     }
1626
1627     memcpy(&(sEthHeader.h_dest[0]),
1628            &(pPacket->p80211Header->sA3.abyAddr1[0]),
1629            ETH_ALEN);
1630     memcpy(&(sEthHeader.h_source[0]),
1631            &(pPacket->p80211Header->sA3.abyAddr2[0]),
1632            ETH_ALEN);
1633     //=========================
1634     //    No Fragmentation
1635     //=========================
1636     pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
1637
1638         /* Fill FIFO,RrvTime,RTS,and CTS */
1639         s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1640                 pbyTxBufferAddr, pvRrvTime, rts_cts,
1641                 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
1642
1643     //Fill DataHead
1644     uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
1645                                 AUTO_FB_NONE);
1646
1647     pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
1648
1649     cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + cbFrameBodySize;
1650
1651     if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1652         u8 *           pbyIVHead;
1653         u8 *           pbyPayloadHead;
1654         u8 *           pbyBSSID;
1655         PSKeyItem       pTransmitKey = NULL;
1656
1657         pbyIVHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding);
1658         pbyPayloadHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding + cbIVlen);
1659         do {
1660             if ((pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) &&
1661                 (pDevice->bLinkPass == true)) {
1662                 pbyBSSID = pDevice->abyBSSID;
1663                 // get pairwise key
1664                 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
1665                     // get group key
1666                     if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
1667                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1668                         break;
1669                     }
1670                 } else {
1671                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get PTK.\n");
1672                     break;
1673                 }
1674             }
1675             // get group key
1676             pbyBSSID = pDevice->abyBroadcastAddr;
1677             if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
1678                 pTransmitKey = NULL;
1679                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"KEY is NULL. OP Mode[%d]\n", pDevice->eOPMode);
1680             } else {
1681                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1682             }
1683         } while(false);
1684         //Fill TXKEY
1685         s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1686                      (u8 *)pMACHeader, (u16)cbFrameBodySize, NULL);
1687
1688         memcpy(pMACHeader, pPacket->p80211Header, cbMacHdLen);
1689         memcpy(pbyPayloadHead, ((u8 *)(pPacket->p80211Header) + cbMacHdLen),
1690                  cbFrameBodySize);
1691     }
1692     else {
1693         // Copy the Packet into a tx Buffer
1694         memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1695     }
1696
1697     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1698     pDevice->wSeqCounter++ ;
1699     if (pDevice->wSeqCounter > 0x0fff)
1700         pDevice->wSeqCounter = 0;
1701
1702     if (bIsPSPOLL) {
1703         // The MAC will automatically replace the Duration-field of MAC header by Duration-field
1704         // of FIFO control header.
1705         // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
1706         // in the same place of other packet's Duration-field).
1707         // And it will cause Cisco-AP to issue Disassociation-packet
1708         if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
1709                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
1710                         cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1711                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
1712                         cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1713         } else {
1714                 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
1715                         cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1716         }
1717     }
1718
1719     pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
1720     pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1721     pTX_Buffer->byType = 0x00;
1722
1723     pContext->pPacket = NULL;
1724     pContext->Type = CONTEXT_MGMT_PACKET;
1725     pContext->uBufLen = (u16)cbReqCount + 4;  //USB header
1726
1727     if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
1728         s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->addr1[0]), (u16)cbFrameSize, pTX_Buffer->wFIFOCtl);
1729     }
1730     else {
1731         s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->addr3[0]), (u16)cbFrameSize, pTX_Buffer->wFIFOCtl);
1732     }
1733
1734     PIPEnsSendBulkOut(pDevice,pContext);
1735     return CMD_STATUS_PENDING;
1736 }
1737
1738 CMD_STATUS csBeacon_xmit(struct vnt_private *pDevice,
1739         struct vnt_tx_mgmt *pPacket)
1740 {
1741         struct vnt_beacon_buffer *pTX_Buffer;
1742         u32 cbFrameSize = pPacket->cbMPDULen + WLAN_FCS_LEN;
1743         u32 cbHeaderSize = 0;
1744         u16 wTxBufSize = sizeof(STxShortBufHead);
1745         PSTxShortBufHead pTxBufHead;
1746         struct ieee80211_hdr *pMACHeader;
1747         struct vnt_tx_datahead_ab *pTxDataHead;
1748         u16 wCurrentRate;
1749         u32 cbFrameBodySize;
1750         u32 cbReqCount;
1751         u8 *pbyTxBufferAddr;
1752         struct vnt_usb_send_context *pContext;
1753         CMD_STATUS status;
1754
1755         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1756     if (NULL == pContext) {
1757         status = CMD_STATUS_RESOURCES;
1758         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1759         return status ;
1760     }
1761
1762         pTX_Buffer = (struct vnt_beacon_buffer *)&pContext->Data[0];
1763     pbyTxBufferAddr = (u8 *)&(pTX_Buffer->wFIFOCtl);
1764
1765     cbFrameBodySize = pPacket->cbPayloadLen;
1766
1767     pTxBufHead = (PSTxShortBufHead) pbyTxBufferAddr;
1768     wTxBufSize = sizeof(STxShortBufHead);
1769
1770     if (pDevice->byBBType == BB_TYPE_11A) {
1771         wCurrentRate = RATE_6M;
1772         pTxDataHead = (struct vnt_tx_datahead_ab *)
1773                         (pbyTxBufferAddr + wTxBufSize);
1774         //Get SignalField,ServiceField,Length
1775         BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11A,
1776                                                         &pTxDataHead->ab);
1777         //Get Duration and TimeStampOff
1778         pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1779                                                 PK_TYPE_11A, false);
1780         pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1781         cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1782     } else {
1783         wCurrentRate = RATE_1M;
1784         pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1785         pTxDataHead = (struct vnt_tx_datahead_ab *)
1786                                 (pbyTxBufferAddr + wTxBufSize);
1787         //Get SignalField,ServiceField,Length
1788         BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11B,
1789                                                         &pTxDataHead->ab);
1790         //Get Duration and TimeStampOff
1791         pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1792                                                 PK_TYPE_11B, false);
1793         pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1794         cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1795     }
1796
1797     //Generate Beacon Header
1798     pMACHeader = (struct ieee80211_hdr *)(pbyTxBufferAddr + cbHeaderSize);
1799     memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1800
1801     pMACHeader->duration_id = 0;
1802     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1803     pDevice->wSeqCounter++ ;
1804     if (pDevice->wSeqCounter > 0x0fff)
1805         pDevice->wSeqCounter = 0;
1806
1807     cbReqCount = cbHeaderSize + WLAN_HDR_ADDR3_LEN + cbFrameBodySize;
1808
1809     pTX_Buffer->wTxByteCount = (u16)cbReqCount;
1810     pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1811     pTX_Buffer->byType = 0x01;
1812
1813     pContext->pPacket = NULL;
1814     pContext->Type = CONTEXT_MGMT_PACKET;
1815     pContext->uBufLen = (u16)cbReqCount + 4;  //USB header
1816
1817     PIPEnsSendBulkOut(pDevice,pContext);
1818     return CMD_STATUS_PENDING;
1819
1820 }
1821
1822 void vDMA0_tx_80211(struct vnt_private *pDevice, struct sk_buff *skb)
1823 {
1824         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1825         struct vnt_tx_buffer *pTX_Buffer;
1826         u8 byPktType;
1827         u8 *pbyTxBufferAddr;
1828         void *rts_cts = NULL;
1829         void *pvTxDataHd;
1830         u32 uDuration, cbReqCount;
1831         struct ieee80211_hdr *pMACHeader;
1832         u32 cbHeaderSize, cbFrameBodySize;
1833         int bNeedACK, bIsPSPOLL = false;
1834         PSTxBufHead pTxBufHead;
1835         u32 cbFrameSize;
1836         u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1837         u32 uPadding = 0;
1838         u32 cbMICHDR = 0, uLength = 0;
1839         u32 dwMICKey0, dwMICKey1;
1840         u32 dwMIC_Priority;
1841         u32 *pdwMIC_L, *pdwMIC_R;
1842         u16 wTxBufSize;
1843         u32 cbMacHdLen;
1844         struct ethhdr sEthHeader;
1845         void *pvRrvTime, *pMICHDR;
1846         u32 wCurrentRate = RATE_1M;
1847         PUWLAN_80211HDR  p80211Header;
1848         u32 uNodeIndex = 0;
1849         int bNodeExist = false;
1850         SKeyItem STempKey;
1851         PSKeyItem pTransmitKey = NULL;
1852         u8 *pbyIVHead, *pbyPayloadHead, *pbyMacHdr;
1853         u32 cbExtSuppRate = 0;
1854         struct vnt_usb_send_context *pContext;
1855
1856         pvRrvTime = pMICHDR = pvTxDataHd = NULL;
1857
1858     if(skb->len <= WLAN_HDR_ADDR3_LEN) {
1859        cbFrameBodySize = 0;
1860     }
1861     else {
1862        cbFrameBodySize = skb->len - WLAN_HDR_ADDR3_LEN;
1863     }
1864     p80211Header = (PUWLAN_80211HDR)skb->data;
1865
1866         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1867
1868     if (NULL == pContext) {
1869         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0 TX...NO CONTEXT!\n");
1870         dev_kfree_skb_irq(skb);
1871         return ;
1872     }
1873
1874         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1875     pbyTxBufferAddr = (u8 *)(&pTX_Buffer->adwTxKey[0]);
1876     pTxBufHead = (PSTxBufHead) pbyTxBufferAddr;
1877     wTxBufSize = sizeof(STxBufHead);
1878
1879     if (pDevice->byBBType == BB_TYPE_11A) {
1880         wCurrentRate = RATE_6M;
1881         byPktType = PK_TYPE_11A;
1882     } else {
1883         wCurrentRate = RATE_1M;
1884         byPktType = PK_TYPE_11B;
1885     }
1886
1887     // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1888     // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1889     //                    And cmd timer will wait data pkt TX finish before scanning so it's OK
1890     //                    to set power here.
1891     if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1892         RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1893     } else {
1894         RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1895     }
1896
1897     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"vDMA0_tx_80211: p80211Header->sA3.wFrameCtl = %x \n", p80211Header->sA3.wFrameCtl);
1898
1899     //Set packet type
1900     if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1901         pTxBufHead->wFIFOCtl = 0;
1902     }
1903     else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1904         pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1905     }
1906     else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1907         pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1908     }
1909     else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1910         pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1911     }
1912
1913     pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1914     pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1915
1916     if (is_multicast_ether_addr(p80211Header->sA3.abyAddr1)) {
1917         bNeedACK = false;
1918         if (pDevice->bEnableHostWEP) {
1919             uNodeIndex = 0;
1920             bNodeExist = true;
1921         }
1922     }
1923     else {
1924         if (pDevice->bEnableHostWEP) {
1925             if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(p80211Header->sA3.abyAddr1), &uNodeIndex))
1926                 bNodeExist = true;
1927         }
1928         bNeedACK = true;
1929         pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1930     };
1931
1932     if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1933         (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1934
1935         pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1936         //Set Preamble type always long
1937         //pDevice->byPreambleType = PREAMBLE_LONG;
1938
1939         // probe-response don't retry
1940         //if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1941         //     bNeedACK = false;
1942         //     pTxBufHead->wFIFOCtl  &= (~FIFOCTL_NEEDACK);
1943         //}
1944     }
1945
1946     pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1947
1948     if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1949         bIsPSPOLL = true;
1950         cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1951     } else {
1952         cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1953     }
1954
1955     // hostapd daemon ext support rate patch
1956     if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
1957
1958         if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0) {
1959             cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN;
1960          }
1961
1962         if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0) {
1963             cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN;
1964          }
1965
1966          if (cbExtSuppRate >0) {
1967             cbFrameBodySize = WLAN_ASSOCRESP_OFF_SUPP_RATES;
1968          }
1969     }
1970
1971     //Set FRAGCTL_MACHDCNT
1972     pTxBufHead->wFragCtl |= cpu_to_le16((u16)cbMacHdLen << 10);
1973
1974     // Notes:
1975     // Although spec says MMPDU can be fragmented; In most case,
1976     // no one will send a MMPDU under fragmentation. With RTS may occur.
1977     pDevice->bAES = false;  //Set FRAGCTL_WEPTYP
1978
1979     if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
1980         if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1981             cbIVlen = 4;
1982             cbICVlen = 4;
1983             pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1984         }
1985         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1986             cbIVlen = 8;//IV+ExtIV
1987             cbMIClen = 8;
1988             cbICVlen = 4;
1989             pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1990             //We need to get seed here for filling TxKey entry.
1991             //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1992             //            pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1993         }
1994         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1995             cbIVlen = 8;//RSN Header
1996             cbICVlen = 8;//MIC
1997             cbMICHDR = sizeof(struct vnt_mic_hdr);
1998             pTxBufHead->wFragCtl |= FRAGCTL_AES;
1999             pDevice->bAES = true;
2000         }
2001         //MAC Header should be padding 0 to DW alignment.
2002         uPadding = 4 - (cbMacHdLen%4);
2003         uPadding %= 4;
2004     }
2005
2006     cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen + cbExtSuppRate;
2007
2008     //Set FIFOCTL_GrpAckPolicy
2009     if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
2010         pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
2011     }
2012     //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
2013
2014     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
2015         pvRrvTime = (struct vnt_rrv_time_cts *) (pbyTxBufferAddr + wTxBufSize);
2016         pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
2017                                         sizeof(struct vnt_rrv_time_cts));
2018         rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
2019                         sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
2020         pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
2021                 wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2022                                         sizeof(struct vnt_cts));
2023         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2024                 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
2025
2026     }
2027     else {//802.11a/b packet
2028
2029         pvRrvTime = (struct vnt_rrv_time_ab *) (pbyTxBufferAddr + wTxBufSize);
2030         pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
2031                 sizeof(struct vnt_rrv_time_ab));
2032         pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
2033                 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
2034         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
2035                                         sizeof(struct vnt_tx_datahead_ab);
2036     }
2037     memcpy(&(sEthHeader.h_dest[0]),
2038            &(p80211Header->sA3.abyAddr1[0]),
2039            ETH_ALEN);
2040     memcpy(&(sEthHeader.h_source[0]),
2041            &(p80211Header->sA3.abyAddr2[0]),
2042            ETH_ALEN);
2043     //=========================
2044     //    No Fragmentation
2045     //=========================
2046     pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
2047
2048         /* Fill FIFO,RrvTime,RTS,and CTS */
2049         s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
2050                 pbyTxBufferAddr, pvRrvTime, rts_cts,
2051                 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
2052
2053     //Fill DataHead
2054     uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
2055                                 AUTO_FB_NONE);
2056
2057     pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
2058
2059     cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + (cbFrameBodySize + cbMIClen) + cbExtSuppRate;
2060
2061     pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderSize);
2062     pbyPayloadHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding + cbIVlen);
2063     pbyIVHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding);
2064
2065     // Copy the Packet into a tx Buffer
2066     memcpy(pbyMacHdr, skb->data, cbMacHdLen);
2067
2068     // version set to 0, patch for hostapd deamon
2069     pMACHeader->frame_control &= cpu_to_le16(0xfffc);
2070     memcpy(pbyPayloadHead, (skb->data + cbMacHdLen), cbFrameBodySize);
2071
2072     // replace support rate, patch for hostapd daemon( only support 11M)
2073     if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
2074         if (cbExtSuppRate != 0) {
2075             if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0)
2076                 memcpy((pbyPayloadHead + cbFrameBodySize),
2077                         pMgmt->abyCurrSuppRates,
2078                         ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN
2079                        );
2080              if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0)
2081                 memcpy((pbyPayloadHead + cbFrameBodySize) + ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN,
2082                         pMgmt->abyCurrExtSuppRates,
2083                         ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN
2084                        );
2085          }
2086     }
2087
2088     // Set wep
2089     if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
2090
2091         if (pDevice->bEnableHostWEP) {
2092             pTransmitKey = &STempKey;
2093             pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2094             pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2095             pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2096             pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2097             pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2098             memcpy(pTransmitKey->abyKey,
2099                 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2100                 pTransmitKey->uKeyLength
2101                 );
2102         }
2103
2104         if ((pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
2105
2106             dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
2107             dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
2108
2109             // DO Software Michael
2110             MIC_vInit(dwMICKey0, dwMICKey1);
2111             MIC_vAppend((u8 *)&(sEthHeader.h_dest[0]), 12);
2112             dwMIC_Priority = 0;
2113             MIC_vAppend((u8 *)&dwMIC_Priority, 4);
2114                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0_tx_8021:MIC KEY:"\
2115                         " %X, %X\n", dwMICKey0, dwMICKey1);
2116
2117             uLength = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen;
2118
2119             MIC_vAppend((pbyTxBufferAddr + uLength), cbFrameBodySize);
2120
2121             pdwMIC_L = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize);
2122             pdwMIC_R = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize + 4);
2123
2124             MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
2125             MIC_vUnInit();
2126
2127             if (pDevice->bTxMICFail == true) {
2128                 *pdwMIC_L = 0;
2129                 *pdwMIC_R = 0;
2130                 pDevice->bTxMICFail = false;
2131             }
2132
2133             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
2134             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderSize, uPadding, cbIVlen);
2135                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%x, %x\n",
2136                         *pdwMIC_L, *pdwMIC_R);
2137
2138         }
2139
2140         s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
2141                 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
2142
2143         if (pDevice->bEnableHostWEP) {
2144             pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
2145             pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
2146         }
2147
2148         if ((pDevice->byLocalID <= REV_ID_VT3253_A1)) {
2149             s_vSWencryption(pDevice, pTransmitKey, pbyPayloadHead, (u16)(cbFrameBodySize + cbMIClen));
2150         }
2151     }
2152
2153     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
2154     pDevice->wSeqCounter++ ;
2155     if (pDevice->wSeqCounter > 0x0fff)
2156         pDevice->wSeqCounter = 0;
2157
2158     if (bIsPSPOLL) {
2159         // The MAC will automatically replace the Duration-field of MAC header by Duration-field
2160         // of  FIFO control header.
2161         // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
2162         // in the same place of other packet's Duration-field).
2163         // And it will cause Cisco-AP to issue Disassociation-packet
2164         if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
2165                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
2166                         cpu_to_le16(p80211Header->sA2.wDurationID);
2167                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
2168                         cpu_to_le16(p80211Header->sA2.wDurationID);
2169         } else {
2170                 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
2171                         cpu_to_le16(p80211Header->sA2.wDurationID);
2172         }
2173     }
2174
2175     pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
2176     pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2177     pTX_Buffer->byType = 0x00;
2178
2179     pContext->pPacket = skb;
2180     pContext->Type = CONTEXT_MGMT_PACKET;
2181     pContext->uBufLen = (u16)cbReqCount + 4;  //USB header
2182
2183     if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
2184         s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->addr1[0]), (u16)cbFrameSize, pTX_Buffer->wFIFOCtl);
2185     }
2186     else {
2187         s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->addr3[0]), (u16)cbFrameSize, pTX_Buffer->wFIFOCtl);
2188     }
2189     PIPEnsSendBulkOut(pDevice,pContext);
2190     return ;
2191
2192 }
2193
2194 //TYPE_AC0DMA data tx
2195 /*
2196  * Description:
2197  *      Tx packet via AC0DMA(DMA1)
2198  *
2199  * Parameters:
2200  *  In:
2201  *      pDevice         - Pointer to the adapter
2202  *      skb             - Pointer to tx skb packet
2203  *  Out:
2204  *      void
2205  *
2206  * Return Value: NULL
2207  */
2208
2209 int nsDMA_tx_packet(struct vnt_private *pDevice,
2210         u32 uDMAIdx, struct sk_buff *skb)
2211 {
2212         struct net_device_stats *pStats = &pDevice->stats;
2213         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2214         struct vnt_tx_buffer *pTX_Buffer;
2215         u32 BytesToWrite = 0, uHeaderLen = 0;
2216         u32 uNodeIndex = 0;
2217         u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
2218         u16 wAID;
2219         u8 byPktType;
2220         int bNeedEncryption = false;
2221         PSKeyItem pTransmitKey = NULL;
2222         SKeyItem STempKey;
2223         int ii;
2224         int bTKIP_UseGTK = false;
2225         int bNeedDeAuth = false;
2226         u8 *pbyBSSID;
2227         int bNodeExist = false;
2228         struct vnt_usb_send_context *pContext;
2229         bool fConvertedPacket;
2230         u32 status;
2231         u16 wKeepRate = pDevice->wCurrentRate;
2232         int bTxeapol_key = false;
2233
2234     if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
2235
2236         if (pDevice->uAssocCount == 0) {
2237             dev_kfree_skb_irq(skb);
2238             return 0;
2239         }
2240
2241         if (is_multicast_ether_addr((u8 *)(skb->data))) {
2242             uNodeIndex = 0;
2243             bNodeExist = true;
2244             if (pMgmt->sNodeDBTable[0].bPSEnable) {
2245
2246                 skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skb);
2247                 pMgmt->sNodeDBTable[0].wEnQueueCnt++;
2248                 // set tx map
2249                 pMgmt->abyPSTxMap[0] |= byMask[0];
2250                 return 0;
2251             }
2252             // multicast/broadcast data rate
2253
2254             if (pDevice->byBBType != BB_TYPE_11A)
2255                 pDevice->wCurrentRate = RATE_2M;
2256             else
2257                 pDevice->wCurrentRate = RATE_24M;
2258             // long preamble type
2259             pDevice->byPreambleType = PREAMBLE_SHORT;
2260
2261         }else {
2262
2263             if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(skb->data), &uNodeIndex)) {
2264
2265                 if (pMgmt->sNodeDBTable[uNodeIndex].bPSEnable) {
2266
2267                     skb_queue_tail(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue, skb);
2268
2269                     pMgmt->sNodeDBTable[uNodeIndex].wEnQueueCnt++;
2270                     // set tx map
2271                     wAID = pMgmt->sNodeDBTable[uNodeIndex].wAID;
2272                     pMgmt->abyPSTxMap[wAID >> 3] |=  byMask[wAID & 7];
2273                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set:pMgmt->abyPSTxMap[%d]= %d\n",
2274                              (wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]);
2275
2276                     return 0;
2277                 }
2278                 // AP rate decided from node
2279                 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2280                 // tx preamble decided from node
2281
2282                 if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2283                     pDevice->byPreambleType = pDevice->byShortPreamble;
2284
2285                 }else {
2286                     pDevice->byPreambleType = PREAMBLE_LONG;
2287                 }
2288                 bNodeExist = true;
2289             }
2290         }
2291
2292         if (bNodeExist == false) {
2293             DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Unknown STA not found in node DB \n");
2294             dev_kfree_skb_irq(skb);
2295             return 0;
2296         }
2297     }
2298
2299         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2300
2301     if (pContext == NULL) {
2302         DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG" pContext == NULL\n");
2303         dev_kfree_skb_irq(skb);
2304         return STATUS_RESOURCES;
2305     }
2306
2307     memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)(skb->data), ETH_HLEN);
2308
2309 //mike add:station mode check eapol-key challenge--->
2310 {
2311     u8  Protocol_Version;    //802.1x Authentication
2312     u8  Packet_Type;           //802.1x Authentication
2313     u8  Descriptor_type;
2314     u16 Key_info;
2315
2316     Protocol_Version = skb->data[ETH_HLEN];
2317     Packet_Type = skb->data[ETH_HLEN+1];
2318     Descriptor_type = skb->data[ETH_HLEN+1+1+2];
2319     Key_info = (skb->data[ETH_HLEN+1+1+2+1] << 8)|(skb->data[ETH_HLEN+1+1+2+2]);
2320         if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2321                 /* 802.1x OR eapol-key challenge frame transfer */
2322                 if (((Protocol_Version == 1) || (Protocol_Version == 2)) &&
2323                         (Packet_Type == 3)) {
2324                         bTxeapol_key = true;
2325                        if(!(Key_info & BIT3) &&  //WPA or RSN group-key challenge
2326                            (Key_info & BIT8) && (Key_info & BIT9)) {    //send 2/2 key
2327                           if(Descriptor_type==254) {
2328                                pDevice->fWPA_Authened = true;
2329                              PRINT_K("WPA ");
2330                           }
2331                           else {
2332                                pDevice->fWPA_Authened = true;
2333                              PRINT_K("WPA2(re-keying) ");
2334                           }
2335                           PRINT_K("Authentication completed!!\n");
2336                         }
2337                     else if((Key_info & BIT3) && (Descriptor_type==2) &&  //RSN pairwise-key challenge
2338                                (Key_info & BIT8) && (Key_info & BIT9)) {
2339                           pDevice->fWPA_Authened = true;
2340                             PRINT_K("WPA2 Authentication completed!!\n");
2341                      }
2342              }
2343    }
2344 }
2345 //mike add:station mode check eapol-key challenge<---
2346
2347     if (pDevice->bEncryptionEnable == true) {
2348         bNeedEncryption = true;
2349         // get Transmit key
2350         do {
2351             if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
2352                 (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2353                 pbyBSSID = pDevice->abyBSSID;
2354                 // get pairwise key
2355                 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
2356                     // get group key
2357                     if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
2358                         bTKIP_UseGTK = true;
2359                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2360                         break;
2361                     }
2362                 } else {
2363                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get PTK.\n");
2364                     break;
2365                 }
2366             }else if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2367               /* TO_DS = 0 and FROM_DS = 0 --> 802.11 MAC Address1 */
2368                 pbyBSSID = pDevice->sTxEthHeader.h_dest;
2369                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS Serach Key: \n");
2370                 for (ii = 0; ii< 6; ii++)
2371                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"%x \n", *(pbyBSSID+ii));
2372                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"\n");
2373
2374                 // get pairwise key
2375                 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == true)
2376                     break;
2377             }
2378             // get group key
2379             pbyBSSID = pDevice->abyBroadcastAddr;
2380             if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2381                 pTransmitKey = NULL;
2382                 if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2383                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2384                 }
2385                 else
2386                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"NOT IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2387             } else {
2388                 bTKIP_UseGTK = true;
2389                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2390             }
2391         } while(false);
2392     }
2393
2394     if (pDevice->bEnableHostWEP) {
2395         DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"acdma0: STA index %d\n", uNodeIndex);
2396         if (pDevice->bEncryptionEnable == true) {
2397             pTransmitKey = &STempKey;
2398             pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2399             pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2400             pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2401             pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2402             pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2403             memcpy(pTransmitKey->abyKey,
2404                 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2405                 pTransmitKey->uKeyLength
2406                 );
2407          }
2408     }
2409
2410     byPktType = (u8)pDevice->byPacketType;
2411
2412     if (pDevice->bFixRate) {
2413         if (pDevice->byBBType == BB_TYPE_11B) {
2414             if (pDevice->uConnectionRate >= RATE_11M) {
2415                 pDevice->wCurrentRate = RATE_11M;
2416             } else {
2417                 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2418             }
2419         } else {
2420             if ((pDevice->byBBType == BB_TYPE_11A) &&
2421                 (pDevice->uConnectionRate <= RATE_6M)) {
2422                 pDevice->wCurrentRate = RATE_6M;
2423             } else {
2424                 if (pDevice->uConnectionRate >= RATE_54M)
2425                     pDevice->wCurrentRate = RATE_54M;
2426                 else
2427                     pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2428             }
2429         }
2430     }
2431     else {
2432         if (pDevice->eOPMode == OP_MODE_ADHOC) {
2433             // Adhoc Tx rate decided from node DB
2434             if (is_multicast_ether_addr(pDevice->sTxEthHeader.h_dest)) {
2435                 // Multicast use highest data rate
2436                 pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2437                 // preamble type
2438                 pDevice->byPreambleType = pDevice->byShortPreamble;
2439             }
2440             else {
2441                 if (BSSbIsSTAInNodeDB(pDevice, &(pDevice->sTxEthHeader.h_dest[0]), &uNodeIndex)) {
2442                     pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2443                     if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2444                         pDevice->byPreambleType = pDevice->byShortPreamble;
2445
2446                     }
2447                     else {
2448                         pDevice->byPreambleType = PREAMBLE_LONG;
2449                     }
2450                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Found Node Index is [%d]  Tx Data Rate:[%d]\n",uNodeIndex, pDevice->wCurrentRate);
2451                 }
2452                 else {
2453                     if (pDevice->byBBType != BB_TYPE_11A)
2454                        pDevice->wCurrentRate = RATE_2M;
2455                     else
2456                        pDevice->wCurrentRate = RATE_24M; // refer to vMgrCreateOwnIBSS()'s
2457                                                          // abyCurrExtSuppRates[]
2458                     pDevice->byPreambleType = PREAMBLE_SHORT;
2459                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Not Found Node use highest basic Rate.....\n");
2460                 }
2461             }
2462         }
2463         if (pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) {
2464             // Infra STA rate decided from AP Node, index = 0
2465             pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2466         }
2467     }
2468
2469         if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2470                 if (pDevice->byBBType != BB_TYPE_11A) {
2471                         pDevice->wCurrentRate = RATE_1M;
2472                         pDevice->byACKRate = RATE_1M;
2473                         pDevice->byTopCCKBasicRate = RATE_1M;
2474                         pDevice->byTopOFDMBasicRate = RATE_6M;
2475                 } else {
2476                         pDevice->wCurrentRate = RATE_6M;
2477                         pDevice->byACKRate = RATE_6M;
2478                         pDevice->byTopCCKBasicRate = RATE_1M;
2479                         pDevice->byTopOFDMBasicRate = RATE_6M;
2480                 }
2481         }
2482
2483     DBG_PRT(MSG_LEVEL_DEBUG,
2484             KERN_INFO "dma_tx: pDevice->wCurrentRate = %d\n",
2485             pDevice->wCurrentRate);
2486
2487     if (wKeepRate != pDevice->wCurrentRate) {
2488         bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2489     }
2490
2491     if (pDevice->wCurrentRate <= RATE_11M) {
2492         byPktType = PK_TYPE_11B;
2493     }
2494
2495     if (bNeedEncryption == true) {
2496         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ntohs Pkt Type=%04x\n", ntohs(pDevice->sTxEthHeader.h_proto));
2497         if ((pDevice->sTxEthHeader.h_proto) == cpu_to_be16(ETH_P_PAE)) {
2498                 bNeedEncryption = false;
2499             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Pkt Type=%04x\n", (pDevice->sTxEthHeader.h_proto));
2500             if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2501                 if (pTransmitKey == NULL) {
2502                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Don't Find TX KEY\n");
2503                 }
2504                 else {
2505                     if (bTKIP_UseGTK == true) {
2506                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"error: KEY is GTK!!~~\n");
2507                     }
2508                     else {
2509                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2510                                 pTransmitKey->dwKeyIndex);
2511                         bNeedEncryption = true;
2512                     }
2513                 }
2514             }
2515
2516             if (pDevice->bEnableHostWEP) {
2517                 if ((uNodeIndex != 0) &&
2518                     (pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex & PAIRWISE_KEY)) {
2519                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2520                                 pTransmitKey->dwKeyIndex);
2521                     bNeedEncryption = true;
2522                  }
2523              }
2524         }
2525         else {
2526
2527             if (pTransmitKey == NULL) {
2528                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"return no tx key\n");
2529                 pContext->bBoolInUse = false;
2530                 dev_kfree_skb_irq(skb);
2531                 pStats->tx_dropped++;
2532                 return STATUS_FAILURE;
2533             }
2534         }
2535     }
2536
2537         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2538
2539     fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2540                         pTX_Buffer, bNeedEncryption,
2541                         skb->len, uDMAIdx, &pDevice->sTxEthHeader,
2542                         (u8 *)skb->data, pTransmitKey, uNodeIndex,
2543                         pDevice->wCurrentRate,
2544                         &uHeaderLen, &BytesToWrite
2545                        );
2546
2547     if (fConvertedPacket == false) {
2548         pContext->bBoolInUse = false;
2549         dev_kfree_skb_irq(skb);
2550         return STATUS_FAILURE;
2551     }
2552
2553     if ( pDevice->bEnablePSMode == true ) {
2554         if ( !pDevice->bPSModeTxBurst ) {
2555                 bScheduleCommand((void *) pDevice,
2556                                  WLAN_CMD_MAC_DISPOWERSAVING,
2557                                  NULL);
2558             pDevice->bPSModeTxBurst = true;
2559         }
2560     }
2561
2562     pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2563     pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2564
2565     pContext->pPacket = skb;
2566     pContext->Type = CONTEXT_DATA_PACKET;
2567     pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2568
2569     s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pContext->sEthHeader.h_dest[0]), (u16) (BytesToWrite-uHeaderLen), pTX_Buffer->wFIFOCtl);
2570
2571     status = PIPEnsSendBulkOut(pDevice,pContext);
2572
2573     if (bNeedDeAuth == true) {
2574         u16 wReason = WLAN_MGMT_REASON_MIC_FAILURE;
2575
2576         bScheduleCommand((void *) pDevice, WLAN_CMD_DEAUTH, (u8 *) &wReason);
2577     }
2578
2579   if(status!=STATUS_PENDING) {
2580      pContext->bBoolInUse = false;
2581     dev_kfree_skb_irq(skb);
2582     return STATUS_FAILURE;
2583   }
2584   else
2585     return 0;
2586
2587 }
2588
2589 /*
2590  * Description:
2591  *      Relay packet send (AC1DMA) from rx dpc.
2592  *
2593  * Parameters:
2594  *  In:
2595  *      pDevice         - Pointer to the adapter
2596  *      pPacket         - Pointer to rx packet
2597  *      cbPacketSize    - rx ethernet frame size
2598  *  Out:
2599  *      TURE, false
2600  *
2601  * Return Value: Return true if packet is copy to dma1; otherwise false
2602  */
2603
2604 int bRelayPacketSend(struct vnt_private *pDevice, u8 *pbySkbData, u32 uDataLen,
2605         u32 uNodeIndex)
2606 {
2607         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2608         struct vnt_tx_buffer *pTX_Buffer;
2609         u32 BytesToWrite = 0, uHeaderLen = 0;
2610         u8 byPktType = PK_TYPE_11B;
2611         int bNeedEncryption = false;
2612         SKeyItem STempKey;
2613         PSKeyItem pTransmitKey = NULL;
2614         u8 *pbyBSSID;
2615         struct vnt_usb_send_context *pContext;
2616         u8 byPktTyp;
2617         int fConvertedPacket;
2618         u32 status;
2619         u16 wKeepRate = pDevice->wCurrentRate;
2620
2621         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2622
2623     if (NULL == pContext) {
2624         return false;
2625     }
2626
2627     memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)pbySkbData, ETH_HLEN);
2628
2629     if (pDevice->bEncryptionEnable == true) {
2630         bNeedEncryption = true;
2631         // get group key
2632         pbyBSSID = pDevice->abyBroadcastAddr;
2633         if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2634             pTransmitKey = NULL;
2635             DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2636         } else {
2637             DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2638         }
2639     }
2640
2641     if (pDevice->bEnableHostWEP) {
2642         if (uNodeIndex < MAX_NODE_NUM + 1) {
2643             pTransmitKey = &STempKey;
2644             pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2645             pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2646             pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2647             pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2648             pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2649             memcpy(pTransmitKey->abyKey,
2650                     &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2651                     pTransmitKey->uKeyLength
2652                   );
2653         }
2654     }
2655
2656     if ( bNeedEncryption && (pTransmitKey == NULL) ) {
2657         pContext->bBoolInUse = false;
2658         return false;
2659     }
2660
2661     byPktTyp = (u8)pDevice->byPacketType;
2662
2663     if (pDevice->bFixRate) {
2664         if (pDevice->byBBType == BB_TYPE_11B) {
2665             if (pDevice->uConnectionRate >= RATE_11M) {
2666                 pDevice->wCurrentRate = RATE_11M;
2667             } else {
2668                 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2669             }
2670         } else {
2671             if ((pDevice->byBBType == BB_TYPE_11A) &&
2672                 (pDevice->uConnectionRate <= RATE_6M)) {
2673                 pDevice->wCurrentRate = RATE_6M;
2674             } else {
2675                 if (pDevice->uConnectionRate >= RATE_54M)
2676                     pDevice->wCurrentRate = RATE_54M;
2677                 else
2678                     pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2679             }
2680         }
2681     }
2682     else {
2683         pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2684     }
2685
2686     if (wKeepRate != pDevice->wCurrentRate) {
2687         bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2688     }
2689
2690     if (pDevice->wCurrentRate <= RATE_11M)
2691         byPktType = PK_TYPE_11B;
2692
2693     BytesToWrite = uDataLen + ETH_FCS_LEN;
2694
2695     // Convert the packet to an usb frame and copy into our buffer
2696     // and send the irp.
2697
2698         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2699
2700     fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2701                         pTX_Buffer, bNeedEncryption,
2702                          uDataLen, TYPE_AC0DMA, &pDevice->sTxEthHeader,
2703                          pbySkbData, pTransmitKey, uNodeIndex,
2704                          pDevice->wCurrentRate,
2705                          &uHeaderLen, &BytesToWrite
2706                         );
2707
2708     if (fConvertedPacket == false) {
2709         pContext->bBoolInUse = false;
2710         return false;
2711     }
2712
2713     pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2714     pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2715
2716     pContext->pPacket = NULL;
2717     pContext->Type = CONTEXT_DATA_PACKET;
2718     pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2719
2720     s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pContext->sEthHeader.h_dest[0]), (u16) (BytesToWrite-uHeaderLen), pTX_Buffer->wFIFOCtl);
2721
2722     status = PIPEnsSendBulkOut(pDevice,pContext);
2723
2724     return true;
2725 }
2726