]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/staging/vt6656/rxtx.c
Merge tag 'gpio-v3.12-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[karo-tx-linux.git] / drivers / staging / vt6656 / rxtx.c
1 /*
2  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * File: rxtx.c
20  *
21  * Purpose: handle WMAC/802.3/802.11 rx & tx functions
22  *
23  * Author: Lyndon Chen
24  *
25  * Date: May 20, 2003
26  *
27  * Functions:
28  *      s_vGenerateTxParameter - Generate tx dma required parameter.
29  *      s_vGenerateMACHeader - Translate 802.3 to 802.11 header
30  *      csBeacon_xmit - beacon tx function
31  *      csMgmt_xmit - management tx function
32  *      s_uGetDataDuration - get tx data required duration
33  *      s_uFillDataHead- fulfill tx data duration header
34  *      s_uGetRTSCTSDuration- get rtx/cts required duration
35  *      s_uGetRTSCTSRsvTime- get rts/cts reserved time
36  *      s_uGetTxRsvTime- get frame reserved time
37  *      s_vFillCTSHead- fulfill CTS ctl header
38  *      s_vFillFragParameter- Set fragment ctl parameter.
39  *      s_vFillRTSHead- fulfill RTS ctl header
40  *      s_vFillTxKey- fulfill tx encrypt key
41  *      s_vSWencryption- Software encrypt header
42  *      vDMA0_tx_80211- tx 802.11 frame via dma0
43  *      vGenerateFIFOHeader- Generate tx FIFO ctl header
44  *
45  * Revision History:
46  *
47  */
48
49 #include "device.h"
50 #include "rxtx.h"
51 #include "tether.h"
52 #include "card.h"
53 #include "bssdb.h"
54 #include "mac.h"
55 #include "michael.h"
56 #include "tkip.h"
57 #include "tcrc.h"
58 #include "wctl.h"
59 #include "hostap.h"
60 #include "rf.h"
61 #include "datarate.h"
62 #include "usbpipe.h"
63 #include "iocmd.h"
64
65 static int          msglevel                = MSG_LEVEL_INFO;
66
67 const u16 wTimeStampOff[2][MAX_RATE] = {
68         {384, 288, 226, 209, 54, 43, 37, 31, 28, 25, 24, 23}, // Long Preamble
69         {384, 192, 130, 113, 54, 43, 37, 31, 28, 25, 24, 23}, // Short Preamble
70     };
71
72 const u16 wFB_Opt0[2][5] = {
73         {RATE_12M, RATE_18M, RATE_24M, RATE_36M, RATE_48M}, // fallback_rate0
74         {RATE_12M, RATE_12M, RATE_18M, RATE_24M, RATE_36M}, // fallback_rate1
75     };
76 const u16 wFB_Opt1[2][5] = {
77         {RATE_12M, RATE_18M, RATE_24M, RATE_24M, RATE_36M}, // fallback_rate0
78         {RATE_6M , RATE_6M,  RATE_12M, RATE_12M, RATE_18M}, // fallback_rate1
79     };
80
81 #define RTSDUR_BB       0
82 #define RTSDUR_BA       1
83 #define RTSDUR_AA       2
84 #define CTSDUR_BA       3
85 #define RTSDUR_BA_F0    4
86 #define RTSDUR_AA_F0    5
87 #define RTSDUR_BA_F1    6
88 #define RTSDUR_AA_F1    7
89 #define CTSDUR_BA_F0    8
90 #define CTSDUR_BA_F1    9
91 #define DATADUR_B       10
92 #define DATADUR_A       11
93 #define DATADUR_A_F0    12
94 #define DATADUR_A_F1    13
95
96 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
97         u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl);
98
99 static void *s_vGetFreeContext(struct vnt_private *pDevice);
100
101 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
102         u8 byPktType, u16 wCurrentRate, void *pTxBufHead, void *pvRrvTime,
103         void *rts_cts, u32 cbFrameSize, int bNeedACK, u32 uDMAIdx,
104         struct ethhdr *psEthHeader, bool need_rts);
105
106 static u32 s_uFillDataHead(struct vnt_private *pDevice,
107         u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
108         u32 uDMAIdx, int bNeedAck, u8 byFBOption);
109
110 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
111         u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
112         int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx);
113
114 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
115         u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf, u16 wPayloadLen,
116         struct vnt_mic_hdr *mic_hdr);
117
118 static void s_vSWencryption(struct vnt_private *pDevice,
119         PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize);
120
121 static unsigned int s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
122         u32 cbFrameLength, u16 wRate, int bNeedAck);
123
124 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice, u8 byRTSRsvType,
125         u8 byPktType, u32 cbFrameLength, u16 wCurrentRate);
126
127 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
128         u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
129         int bNeedAck, u16 wCurrentRate, u8 byFBOption);
130
131 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
132         union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
133         struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption);
134
135 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
136         u8 byPktType, int bNeedAck);
137
138 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice,
139         u8 byDurType, u32 cbFrameLength, u8 byPktType, u16 wRate,
140         int bNeedAck, u8 byFBOption);
141
142 static void *s_vGetFreeContext(struct vnt_private *pDevice)
143 {
144         struct vnt_usb_send_context *pContext = NULL;
145         struct vnt_usb_send_context *pReturnContext = NULL;
146         int ii;
147
148     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"GetFreeContext()\n");
149
150     for (ii = 0; ii < pDevice->cbTD; ii++) {
151         if (!pDevice->apTD[ii])
152                 return NULL;
153         pContext = pDevice->apTD[ii];
154         if (pContext->bBoolInUse == false) {
155             pContext->bBoolInUse = true;
156                 memset(pContext->Data, 0, MAX_TOTAL_SIZE_WITH_ALL_HEADERS);
157             pReturnContext = pContext;
158             break;
159         }
160     }
161     if ( ii == pDevice->cbTD ) {
162         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Free Tx Context\n");
163     }
164     return (void *) pReturnContext;
165 }
166
167 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
168         u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl)
169 {
170         PSStatCounter pStatistic = &pDevice->scStatistic;
171
172     if (is_broadcast_ether_addr(pbyDestAddr))
173         pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_BROAD;
174     else if (is_multicast_ether_addr(pbyDestAddr))
175         pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_MULTI;
176     else
177         pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_UNI;
178
179     pStatistic->abyTxPktInfo[byPktNum].wLength = wPktLength;
180     pStatistic->abyTxPktInfo[byPktNum].wFIFOCtl = wFIFOCtl;
181     memcpy(pStatistic->abyTxPktInfo[byPktNum].abyDestAddr,
182            pbyDestAddr,
183            ETH_ALEN);
184 }
185
186 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
187         u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf,
188         u16 wPayloadLen, struct vnt_mic_hdr *mic_hdr)
189 {
190         u32 *pdwIV = (u32 *)pbyIVHead;
191         u32 *pdwExtIV = (u32 *)((u8 *)pbyIVHead + 4);
192         struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyHdrBuf;
193         u32 dwRevIVCounter;
194
195         /* Fill TXKEY */
196         if (pTransmitKey == NULL)
197                 return;
198
199         dwRevIVCounter = cpu_to_le32(pDevice->dwIVCounter);
200         *pdwIV = pDevice->dwIVCounter;
201         pDevice->byKeyIndex = pTransmitKey->dwKeyIndex & 0xf;
202
203         switch (pTransmitKey->byCipherSuite) {
204         case KEY_CTL_WEP:
205                 if (pTransmitKey->uKeyLength == WLAN_WEP232_KEYLEN) {
206                         memcpy(pDevice->abyPRNG, (u8 *)&dwRevIVCounter, 3);
207                         memcpy(pDevice->abyPRNG + 3, pTransmitKey->abyKey,
208                                                 pTransmitKey->uKeyLength);
209                 } else {
210                         memcpy(pbyBuf, (u8 *)&dwRevIVCounter, 3);
211                         memcpy(pbyBuf + 3, pTransmitKey->abyKey,
212                                                 pTransmitKey->uKeyLength);
213                         if (pTransmitKey->uKeyLength == WLAN_WEP40_KEYLEN) {
214                                 memcpy(pbyBuf+8, (u8 *)&dwRevIVCounter, 3);
215                         memcpy(pbyBuf+11, pTransmitKey->abyKey,
216                                                 pTransmitKey->uKeyLength);
217                         }
218
219                         memcpy(pDevice->abyPRNG, pbyBuf, 16);
220                 }
221                 /* Append IV after Mac Header */
222                 *pdwIV &= WEP_IV_MASK;
223                 *pdwIV |= (u32)pDevice->byKeyIndex << 30;
224                 *pdwIV = cpu_to_le32(*pdwIV);
225
226                 pDevice->dwIVCounter++;
227                 if (pDevice->dwIVCounter > WEP_IV_MASK)
228                         pDevice->dwIVCounter = 0;
229
230                 break;
231         case KEY_CTL_TKIP:
232                 pTransmitKey->wTSC15_0++;
233                 if (pTransmitKey->wTSC15_0 == 0)
234                         pTransmitKey->dwTSC47_16++;
235
236                 TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
237                         pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16,
238                                                         pDevice->abyPRNG);
239                 memcpy(pbyBuf, pDevice->abyPRNG, 16);
240
241                 /* Make IV */
242                 memcpy(pdwIV, pDevice->abyPRNG, 3);
243
244                 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
245                                                         0xc0) | 0x20);
246                 /*  Append IV&ExtIV after Mac Header */
247                 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
248
249                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
250                         "vFillTxKey()---- pdwExtIV: %x\n", *pdwExtIV);
251
252                 break;
253         case KEY_CTL_CCMP:
254                 pTransmitKey->wTSC15_0++;
255                 if (pTransmitKey->wTSC15_0 == 0)
256                         pTransmitKey->dwTSC47_16++;
257
258                 memcpy(pbyBuf, pTransmitKey->abyKey, 16);
259
260                 /* Make IV */
261                 *pdwIV = 0;
262                 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
263                                                         0xc0) | 0x20);
264
265                 *pdwIV |= cpu_to_le16((u16)(pTransmitKey->wTSC15_0));
266
267                 /* Append IV&ExtIV after Mac Header */
268                 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
269
270                 if (!mic_hdr)
271                         return;
272
273                 /* MICHDR0 */
274                 mic_hdr->id = 0x59;
275                 mic_hdr->payload_len = cpu_to_be16(wPayloadLen);
276                 memcpy(mic_hdr->mic_addr2, pMACHeader->addr2, ETH_ALEN);
277
278                 mic_hdr->tsc_47_16 = cpu_to_be32(pTransmitKey->dwTSC47_16);
279                 mic_hdr->tsc_15_0 = cpu_to_be16(pTransmitKey->wTSC15_0);
280
281                 /* MICHDR1 */
282                 if (pDevice->bLongHeader)
283                         mic_hdr->hlen = cpu_to_be16(28);
284                 else
285                         mic_hdr->hlen = cpu_to_be16(22);
286
287                 memcpy(mic_hdr->addr1, pMACHeader->addr1, ETH_ALEN);
288                 memcpy(mic_hdr->addr2, pMACHeader->addr2, ETH_ALEN);
289
290                 /* MICHDR2 */
291                 memcpy(mic_hdr->addr3, pMACHeader->addr3, ETH_ALEN);
292                 mic_hdr->frame_control = cpu_to_le16(pMACHeader->frame_control
293                                                                 & 0xc78f);
294                 mic_hdr->seq_ctrl = cpu_to_le16(pMACHeader->seq_ctrl & 0xf);
295
296                 if (pDevice->bLongHeader)
297                         memcpy(mic_hdr->addr4, pMACHeader->addr4, ETH_ALEN);
298         }
299 }
300
301 static void s_vSWencryption(struct vnt_private *pDevice,
302         PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize)
303 {
304         u32 cbICVlen = 4;
305         u32 dwICV = 0xffffffff;
306         u32 *pdwICV;
307
308     if (pTransmitKey == NULL)
309         return;
310
311     if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
312         //=======================================================================
313         // Append ICV after payload
314         dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
315         pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
316         // finally, we must invert dwCRC to get the correct answer
317         *pdwICV = cpu_to_le32(~dwICV);
318         // RC4 encryption
319         rc4_init(&pDevice->SBox, pDevice->abyPRNG, pTransmitKey->uKeyLength + 3);
320         rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
321         //=======================================================================
322     } else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
323         //=======================================================================
324         //Append ICV after payload
325         dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
326         pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
327         // finally, we must invert dwCRC to get the correct answer
328         *pdwICV = cpu_to_le32(~dwICV);
329         // RC4 encryption
330         rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
331         rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
332         //=======================================================================
333     }
334 }
335
336 static u16 vnt_time_stamp_off(struct vnt_private *priv, u16 rate)
337 {
338         return cpu_to_le16(wTimeStampOff[priv->byPreambleType % 2]
339                                                         [rate % MAX_RATE]);
340 }
341
342 /*byPktType : PK_TYPE_11A     0
343              PK_TYPE_11B     1
344              PK_TYPE_11GB    2
345              PK_TYPE_11GA    3
346 */
347 static u32 s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
348         u32 cbFrameLength, u16 wRate, int bNeedAck)
349 {
350         u32 uDataTime, uAckTime;
351
352     uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wRate);
353     if (byPktType == PK_TYPE_11B) {//llb,CCK mode
354         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopCCKBasicRate);
355     } else {//11g 2.4G OFDM mode & 11a 5G OFDM mode
356         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopOFDMBasicRate);
357     }
358
359     if (bNeedAck) {
360         return (uDataTime + pDevice->uSIFS + uAckTime);
361     }
362     else {
363         return uDataTime;
364     }
365 }
366
367 static u16 vnt_rxtx_rsvtime_le16(struct vnt_private *priv, u8 pkt_type,
368         u32 frame_length, u16 rate, int need_ack)
369 {
370         return cpu_to_le16((u16)s_uGetTxRsvTime(priv, pkt_type,
371                 frame_length, rate, need_ack));
372 }
373
374 //byFreqType: 0=>5GHZ 1=>2.4GHZ
375 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice,
376         u8 byRTSRsvType, u8 byPktType, u32 cbFrameLength, u16 wCurrentRate)
377 {
378         u32 uRrvTime, uRTSTime, uCTSTime, uAckTime, uDataTime;
379
380     uRrvTime = uRTSTime = uCTSTime = uAckTime = uDataTime = 0;
381
382     uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wCurrentRate);
383     if (byRTSRsvType == 0) { //RTSTxRrvTime_bb
384         uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
385         uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
386     }
387     else if (byRTSRsvType == 1){ //RTSTxRrvTime_ba, only in 2.4GHZ
388         uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
389         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
390         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
391     }
392     else if (byRTSRsvType == 2) { //RTSTxRrvTime_aa
393         uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopOFDMBasicRate);
394         uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
395     }
396     else if (byRTSRsvType == 3) { //CTSTxRrvTime_ba, only in 2.4GHZ
397         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
398         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
399         uRrvTime = uCTSTime + uAckTime + uDataTime + 2*pDevice->uSIFS;
400         return uRrvTime;
401     }
402
403     //RTSRrvTime
404     uRrvTime = uRTSTime + uCTSTime + uAckTime + uDataTime + 3*pDevice->uSIFS;
405         return cpu_to_le16((u16)uRrvTime);
406 }
407
408 //byFreqType 0: 5GHz, 1:2.4Ghz
409 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
410                                         u8 byPktType, int bNeedAck)
411 {
412         u32 uAckTime = 0;
413
414         if (bNeedAck) {
415                 if (byPktType == PK_TYPE_11B)
416                         uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
417                                 byPktType, 14, pDevice->byTopCCKBasicRate);
418                 else
419                         uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
420                                 byPktType, 14, pDevice->byTopOFDMBasicRate);
421                 return cpu_to_le16((u16)(pDevice->uSIFS + uAckTime));
422         }
423
424         return 0;
425 }
426
427 //byFreqType: 0=>5GHZ 1=>2.4GHZ
428 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice, u8 byDurType,
429         u32 cbFrameLength, u8 byPktType, u16 wRate, int bNeedAck,
430         u8 byFBOption)
431 {
432         u32 uCTSTime = 0, uDurTime = 0;
433
434     switch (byDurType) {
435
436     case RTSDUR_BB:    //RTSDuration_bb
437         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
438         uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
439         break;
440
441     case RTSDUR_BA:    //RTSDuration_ba
442         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
443         uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
444         break;
445
446     case RTSDUR_AA:    //RTSDuration_aa
447         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
448         uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
449         break;
450
451     case CTSDUR_BA:    //CTSDuration_ba
452         uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
453         break;
454
455     case RTSDUR_BA_F0: //RTSDuration_ba_f0
456         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
457         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
458             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
459         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
460             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
461         }
462         break;
463
464     case RTSDUR_AA_F0: //RTSDuration_aa_f0
465         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
466         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
467             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
468         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
469             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
470         }
471         break;
472
473     case RTSDUR_BA_F1: //RTSDuration_ba_f1
474         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
475         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
476             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
477         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
478             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
479         }
480         break;
481
482     case RTSDUR_AA_F1: //RTSDuration_aa_f1
483         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
484         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
485             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
486         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
487             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
488         }
489         break;
490
491     case CTSDUR_BA_F0: //CTSDuration_ba_f0
492         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
493             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
494         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
495             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
496         }
497         break;
498
499     case CTSDUR_BA_F1: //CTSDuration_ba_f1
500         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
501             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
502         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
503             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
504         }
505         break;
506
507     default:
508         break;
509     }
510
511         return cpu_to_le16((u16)uDurTime);
512 }
513
514 static u32 s_uFillDataHead(struct vnt_private *pDevice,
515         u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
516         u32 uDMAIdx, int bNeedAck, u8 byFBOption)
517 {
518
519     if (pTxDataHead == NULL) {
520         return 0;
521     }
522
523     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
524             if (byFBOption == AUTO_FB_NONE) {
525                 struct vnt_tx_datahead_g *pBuf =
526                                 (struct vnt_tx_datahead_g *)pTxDataHead;
527                 //Get SignalField,ServiceField,Length
528                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
529                         byPktType, &pBuf->a);
530                 BBvCalculateParameter(pDevice, cbFrameLength,
531                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
532                 //Get Duration and TimeStamp
533                 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
534                                                         byPktType, bNeedAck);
535                 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
536                                                         PK_TYPE_11B, bNeedAck);
537
538                 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
539                                                                 wCurrentRate);
540                 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
541                                                 pDevice->byTopCCKBasicRate);
542                 return (pBuf->wDuration_a);
543              } else {
544                 // Auto Fallback
545                 struct vnt_tx_datahead_g_fb *pBuf =
546                         (struct vnt_tx_datahead_g_fb *)pTxDataHead;
547                 //Get SignalField,ServiceField,Length
548                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
549                         byPktType, &pBuf->a);
550                 BBvCalculateParameter(pDevice, cbFrameLength,
551                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
552                 //Get Duration and TimeStamp
553                 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
554                                                         byPktType, bNeedAck);
555                 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
556                                                         PK_TYPE_11B, bNeedAck);
557                 pBuf->wDuration_a_f0 = s_uGetDataDuration(pDevice,
558                                                         byPktType, bNeedAck);
559                 pBuf->wDuration_a_f1 = s_uGetDataDuration(pDevice,
560                                                         byPktType, bNeedAck);
561                 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
562                                                                 wCurrentRate);
563                 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
564                                                 pDevice->byTopCCKBasicRate);
565                 return (pBuf->wDuration_a);
566             } //if (byFBOption == AUTO_FB_NONE)
567     }
568     else if (byPktType == PK_TYPE_11A) {
569         if (byFBOption != AUTO_FB_NONE) {
570                 struct vnt_tx_datahead_a_fb *pBuf =
571                         (struct vnt_tx_datahead_a_fb *)pTxDataHead;
572             //Get SignalField,ServiceField,Length
573                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
574                         byPktType, &pBuf->a);
575             //Get Duration and TimeStampOff
576                 pBuf->wDuration = s_uGetDataDuration(pDevice,
577                                         byPktType, bNeedAck);
578                 pBuf->wDuration_f0 = s_uGetDataDuration(pDevice,
579                                         byPktType, bNeedAck);
580                 pBuf->wDuration_f1 = s_uGetDataDuration(pDevice,
581                                                         byPktType, bNeedAck);
582                 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
583                                                                 wCurrentRate);
584             return (pBuf->wDuration);
585         } else {
586                 struct vnt_tx_datahead_ab *pBuf =
587                         (struct vnt_tx_datahead_ab *)pTxDataHead;
588             //Get SignalField,ServiceField,Length
589                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
590                         byPktType, &pBuf->ab);
591             //Get Duration and TimeStampOff
592                 pBuf->wDuration = s_uGetDataDuration(pDevice,
593                                 byPktType, bNeedAck);
594                 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
595                                                                 wCurrentRate);
596             return (pBuf->wDuration);
597         }
598     }
599     else if (byPktType == PK_TYPE_11B) {
600                 struct vnt_tx_datahead_ab *pBuf =
601                         (struct vnt_tx_datahead_ab *)pTxDataHead;
602             //Get SignalField,ServiceField,Length
603                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
604                         byPktType, &pBuf->ab);
605             //Get Duration and TimeStampOff
606                 pBuf->wDuration = s_uGetDataDuration(pDevice,
607                                 byPktType, bNeedAck);
608                 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
609                                                                 wCurrentRate);
610             return (pBuf->wDuration);
611     }
612     return 0;
613 }
614
615 static int vnt_fill_ieee80211_rts(struct vnt_private *priv,
616         struct ieee80211_rts *rts, struct ethhdr *eth_hdr,
617                 u16 duration)
618 {
619         rts->duration = duration;
620         rts->frame_control = TYPE_CTL_RTS;
621
622         if (priv->eOPMode == OP_MODE_ADHOC || priv->eOPMode == OP_MODE_AP)
623                 memcpy(rts->ra, eth_hdr->h_dest, ETH_ALEN);
624         else
625                 memcpy(rts->ra, priv->abyBSSID, ETH_ALEN);
626
627         if (priv->eOPMode == OP_MODE_AP)
628                 memcpy(rts->ta, priv->abyBSSID, ETH_ALEN);
629         else
630                 memcpy(rts->ta, eth_hdr->h_source, ETH_ALEN);
631
632         return 0;
633 }
634
635 static int vnt_rxtx_rts_g_head(struct vnt_private *priv,
636         struct vnt_rts_g *buf, struct ethhdr *eth_hdr,
637         u8 pkt_type, u32 frame_len, int need_ack,
638         u16 current_rate, u8 fb_option)
639 {
640         u16 rts_frame_len = 20;
641
642         BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
643                 PK_TYPE_11B, &buf->b);
644         BBvCalculateParameter(priv, rts_frame_len,
645                 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
646
647         buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
648                 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
649         buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
650                 pkt_type, current_rate, need_ack, fb_option);
651         buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
652                 pkt_type, current_rate, need_ack, fb_option);
653
654         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
655
656         return 0;
657 }
658
659 static int vnt_rxtx_rts_g_fb_head(struct vnt_private *priv,
660         struct vnt_rts_g_fb *buf, struct ethhdr *eth_hdr,
661         u8 pkt_type, u32 frame_len, int need_ack,
662         u16 current_rate, u8 fb_option)
663 {
664         u16 rts_frame_len = 20;
665
666         BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
667                 PK_TYPE_11B, &buf->b);
668         BBvCalculateParameter(priv, rts_frame_len,
669                 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
670
671
672         buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
673                 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
674         buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
675                 pkt_type, current_rate, need_ack, fb_option);
676         buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
677                 pkt_type, current_rate, need_ack, fb_option);
678
679
680         buf->wRTSDuration_ba_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F0,
681                 frame_len, pkt_type, current_rate, need_ack, fb_option);
682         buf->wRTSDuration_aa_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
683                 frame_len, pkt_type, current_rate, need_ack, fb_option);
684         buf->wRTSDuration_ba_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F1,
685                 frame_len, pkt_type, current_rate, need_ack, fb_option);
686         buf->wRTSDuration_aa_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
687                 frame_len, pkt_type, current_rate, need_ack, fb_option);
688
689         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
690
691         return 0;
692 }
693
694 static int vnt_rxtx_rts_ab_head(struct vnt_private *priv,
695         struct vnt_rts_ab *buf, struct ethhdr *eth_hdr,
696         u8 pkt_type, u32 frame_len, int need_ack,
697         u16 current_rate, u8 fb_option)
698 {
699         u16 rts_frame_len = 20;
700
701         BBvCalculateParameter(priv, rts_frame_len,
702                 priv->byTopOFDMBasicRate, pkt_type, &buf->ab);
703
704         buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
705                 pkt_type, current_rate, need_ack, fb_option);
706
707         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
708
709         return 0;
710 }
711
712 static int vnt_rxtx_rts_a_fb_head(struct vnt_private *priv,
713         struct vnt_rts_a_fb *buf, struct ethhdr *eth_hdr,
714         u8 pkt_type, u32 frame_len, int need_ack,
715         u16 current_rate, u8 fb_option)
716 {
717         u16 rts_frame_len = 20;
718
719         BBvCalculateParameter(priv, rts_frame_len,
720                 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
721
722         buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
723                 pkt_type, current_rate, need_ack, fb_option);
724
725         buf->wRTSDuration_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
726                 frame_len, pkt_type, current_rate, need_ack, fb_option);
727
728         buf->wRTSDuration_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
729                 frame_len, pkt_type, current_rate, need_ack, fb_option);
730
731         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
732
733         return 0;
734 }
735
736 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
737         union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
738         struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption)
739 {
740
741         if (!head)
742                 return;
743
744         /* Note: So far RTSHead doesn't appear in ATIM
745         *       & Beacom DMA, so we don't need to take them
746         *       into account.
747         *       Otherwise, we need to modified codes for them.
748         */
749         switch (byPktType) {
750         case PK_TYPE_11GB:
751         case PK_TYPE_11GA:
752                 if (byFBOption == AUTO_FB_NONE)
753                         vnt_rxtx_rts_g_head(pDevice, &head->rts_g,
754                                 psEthHeader, byPktType, cbFrameLength,
755                                 bNeedAck, wCurrentRate, byFBOption);
756                 else
757                         vnt_rxtx_rts_g_fb_head(pDevice, &head->rts_g_fb,
758                                 psEthHeader, byPktType, cbFrameLength,
759                                 bNeedAck, wCurrentRate, byFBOption);
760                 break;
761         case PK_TYPE_11A:
762                 if (byFBOption) {
763                         vnt_rxtx_rts_a_fb_head(pDevice, &head->rts_a_fb,
764                                 psEthHeader, byPktType, cbFrameLength,
765                                 bNeedAck, wCurrentRate, byFBOption);
766                         break;
767                 }
768         case PK_TYPE_11B:
769                 vnt_rxtx_rts_ab_head(pDevice, &head->rts_ab,
770                         psEthHeader, byPktType, cbFrameLength,
771                         bNeedAck, wCurrentRate, byFBOption);
772         }
773 }
774
775 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
776         u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
777         int bNeedAck, u16 wCurrentRate, u8 byFBOption)
778 {
779         u32 uCTSFrameLen = 14;
780
781         if (!head)
782                 return;
783
784         if (byFBOption != AUTO_FB_NONE) {
785                 /* Auto Fall back */
786                 struct vnt_cts_fb *pBuf = &head->cts_g_fb;
787                 /* Get SignalField,ServiceField,Length */
788                 BBvCalculateParameter(pDevice, uCTSFrameLen,
789                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
790                 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice, CTSDUR_BA,
791                         cbFrameLength, byPktType,
792                         wCurrentRate, bNeedAck, byFBOption);
793                 /* Get CTSDuration_ba_f0 */
794                 pBuf->wCTSDuration_ba_f0 = s_uGetRTSCTSDuration(pDevice,
795                         CTSDUR_BA_F0, cbFrameLength, byPktType, wCurrentRate,
796                         bNeedAck, byFBOption);
797                 /* Get CTSDuration_ba_f1 */
798                 pBuf->wCTSDuration_ba_f1 = s_uGetRTSCTSDuration(pDevice,
799                         CTSDUR_BA_F1, cbFrameLength, byPktType, wCurrentRate,
800                         bNeedAck, byFBOption);
801                 /* Get CTS Frame body */
802                 pBuf->data.duration = pBuf->wDuration_ba;
803                 pBuf->data.frame_control = TYPE_CTL_CTS;
804                 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
805         } else {
806                 struct vnt_cts *pBuf = &head->cts_g;
807                 /* Get SignalField,ServiceField,Length */
808                 BBvCalculateParameter(pDevice, uCTSFrameLen,
809                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
810                 /* Get CTSDuration_ba */
811                 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice,
812                         CTSDUR_BA, cbFrameLength, byPktType,
813                         wCurrentRate, bNeedAck, byFBOption);
814                 /*Get CTS Frame body*/
815                 pBuf->data.duration = pBuf->wDuration_ba;
816                 pBuf->data.frame_control = TYPE_CTL_CTS;
817                 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
818         }
819 }
820
821 /*+
822  *
823  * Description:
824  *      Generate FIFO control for MAC & Baseband controller
825  *
826  * Parameters:
827  *  In:
828  *      pDevice         - Pointer to adpater
829  *      pTxDataHead     - Transmit Data Buffer
830  *      pTxBufHead      - pTxBufHead
831  *      pvRrvTime        - pvRrvTime
832  *      pvRTS            - RTS Buffer
833  *      pCTS            - CTS Buffer
834  *      cbFrameSize     - Transmit Data Length (Hdr+Payload+FCS)
835  *      bNeedACK        - If need ACK
836  *      uDMAIdx         - DMA Index
837  *  Out:
838  *      none
839  *
840  * Return Value: none
841  *
842 -*/
843
844 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
845         u8 byPktType, u16 wCurrentRate, void *pTxBufHead, void *pvRrvTime,
846         void *rts_cts, u32 cbFrameSize, int bNeedACK, u32 uDMAIdx,
847         struct ethhdr *psEthHeader, bool need_rts)
848 {
849         union vnt_tx_data_head *head = rts_cts;
850         u32 cbMACHdLen = WLAN_HDR_ADDR3_LEN; /* 24 */
851         u16 wFifoCtl;
852         u8 byFBOption = AUTO_FB_NONE;
853
854     //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter...\n");
855     PSTxBufHead pFifoHead = (PSTxBufHead)pTxBufHead;
856     pFifoHead->wReserved = wCurrentRate;
857     wFifoCtl = pFifoHead->wFIFOCtl;
858
859     if (wFifoCtl & FIFOCTL_AUTO_FB_0) {
860         byFBOption = AUTO_FB_0;
861     }
862     else if (wFifoCtl & FIFOCTL_AUTO_FB_1) {
863         byFBOption = AUTO_FB_1;
864     }
865
866         if (!pvRrvTime)
867                 return;
868
869     if (pDevice->bLongHeader)
870         cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
871
872     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
873         if (need_rts) {
874             //Fill RsvTime
875                 struct vnt_rrv_time_rts *pBuf =
876                         (struct vnt_rrv_time_rts *)pvRrvTime;
877                 pBuf->wRTSTxRrvTime_aa = s_uGetRTSCTSRsvTime(pDevice, 2,
878                                 byPktType, cbFrameSize, wCurrentRate);
879                 pBuf->wRTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 1,
880                                 byPktType, cbFrameSize, wCurrentRate);
881                 pBuf->wRTSTxRrvTime_bb = s_uGetRTSCTSRsvTime(pDevice, 0,
882                                 byPktType, cbFrameSize, wCurrentRate);
883                 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice,
884                         byPktType, cbFrameSize, wCurrentRate, bNeedACK);
885                 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
886                         PK_TYPE_11B, cbFrameSize, pDevice->byTopCCKBasicRate,
887                                 bNeedACK);
888                 /* Fill RTS */
889                 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
890                         bNeedACK, psEthHeader, wCurrentRate, byFBOption);
891         }
892         else {//RTS_needless, PCF mode
893             //Fill RsvTime
894                 struct vnt_rrv_time_cts *pBuf =
895                                 (struct vnt_rrv_time_cts *)pvRrvTime;
896                 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
897                         cbFrameSize, wCurrentRate, bNeedACK);
898                 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
899                         PK_TYPE_11B, cbFrameSize,
900                         pDevice->byTopCCKBasicRate, bNeedACK);
901                 pBuf->wCTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 3,
902                                 byPktType, cbFrameSize, wCurrentRate);
903                 /* Fill CTS */
904                 s_vFillCTSHead(pDevice, uDMAIdx, byPktType, head,
905                         cbFrameSize, bNeedACK, wCurrentRate, byFBOption);
906         }
907     }
908     else if (byPktType == PK_TYPE_11A) {
909         if (need_rts) {
910             //Fill RsvTime
911                 struct vnt_rrv_time_ab *pBuf =
912                                 (struct vnt_rrv_time_ab *)pvRrvTime;
913                 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 2,
914                                 byPktType, cbFrameSize, wCurrentRate);
915                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
916                                 cbFrameSize, wCurrentRate, bNeedACK);
917                 /* Fill RTS */
918                 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
919                         bNeedACK, psEthHeader, wCurrentRate, byFBOption);
920         } else {
921             //Fill RsvTime
922                 struct vnt_rrv_time_ab *pBuf =
923                                 (struct vnt_rrv_time_ab *)pvRrvTime;
924                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11A,
925                         cbFrameSize, wCurrentRate, bNeedACK);
926         }
927     }
928     else if (byPktType == PK_TYPE_11B) {
929         if (need_rts) {
930             //Fill RsvTime
931                 struct vnt_rrv_time_ab *pBuf =
932                                 (struct vnt_rrv_time_ab *)pvRrvTime;
933                 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 0,
934                                 byPktType, cbFrameSize, wCurrentRate);
935                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
936                                 cbFrameSize, wCurrentRate, bNeedACK);
937                 /* Fill RTS */
938                 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
939                         bNeedACK, psEthHeader, wCurrentRate, byFBOption);
940         }
941         else { //RTS_needless, non PCF mode
942             //Fill RsvTime
943                 struct vnt_rrv_time_ab *pBuf =
944                                 (struct vnt_rrv_time_ab *)pvRrvTime;
945                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
946                         cbFrameSize, wCurrentRate, bNeedACK);
947         }
948     }
949     //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter END.\n");
950 }
951 /*
952     u8 * pbyBuffer,//point to pTxBufHead
953     u16  wFragType,//00:Non-Frag, 01:Start, 02:Mid, 03:Last
954     unsigned int  cbFragmentSize,//Hdr+payoad+FCS
955 */
956
957 static int s_bPacketToWirelessUsb(struct vnt_private *pDevice, u8 byPktType,
958         struct vnt_tx_buffer *pTxBufHead, int bNeedEncryption,
959         u32 uSkbPacketLen, u32 uDMAIdx, struct ethhdr *psEthHeader,
960         u8 *pPacket, PSKeyItem pTransmitKey, u32 uNodeIndex, u16 wCurrentRate,
961         u32 *pcbHeaderLen, u32 *pcbTotalLen)
962 {
963         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
964         u32 cbFrameSize, cbFrameBodySize;
965         u32 cb802_1_H_len;
966         u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbMACHdLen = 0;
967         u32 cbFCSlen = 4, cbMICHDR = 0;
968         int bNeedACK;
969         bool bRTS = false;
970         u8 *pbyType, *pbyMacHdr, *pbyIVHead, *pbyPayloadHead, *pbyTxBufferAddr;
971         u8 abySNAP_RFC1042[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00};
972         u8 abySNAP_Bridgetunnel[ETH_ALEN]
973                 = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0xF8};
974         u32 uDuration;
975         u32 cbHeaderLength = 0, uPadding = 0;
976         void *pvRrvTime;
977         struct vnt_mic_hdr *pMICHDR;
978         void *rts_cts = NULL;
979         void *pvTxDataHd;
980         u8 byFBOption = AUTO_FB_NONE, byFragType;
981         u16 wTxBufSize;
982         u32 dwMICKey0, dwMICKey1, dwMIC_Priority;
983         u32 *pdwMIC_L, *pdwMIC_R;
984         int bSoftWEP = false;
985
986         pvRrvTime = pMICHDR = pvTxDataHd = NULL;
987
988         if (bNeedEncryption && pTransmitKey->pvKeyTable) {
989                 if (((PSKeyTable)pTransmitKey->pvKeyTable)->bSoftWEP == true)
990                         bSoftWEP = true; /* WEP 256 */
991         }
992
993     // Get pkt type
994     if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
995         if (pDevice->dwDiagRefCount == 0) {
996             cb802_1_H_len = 8;
997         } else {
998             cb802_1_H_len = 2;
999         }
1000     } else {
1001         cb802_1_H_len = 0;
1002     }
1003
1004     cbFrameBodySize = uSkbPacketLen - ETH_HLEN + cb802_1_H_len;
1005
1006     //Set packet type
1007     pTxBufHead->wFIFOCtl |= (u16)(byPktType<<8);
1008
1009     if (pDevice->dwDiagRefCount != 0) {
1010         bNeedACK = false;
1011         pTxBufHead->wFIFOCtl = pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1012     } else { //if (pDevice->dwDiagRefCount != 0) {
1013         if ((pDevice->eOPMode == OP_MODE_ADHOC) ||
1014             (pDevice->eOPMode == OP_MODE_AP)) {
1015                 if (is_multicast_ether_addr(psEthHeader->h_dest)) {
1016                         bNeedACK = false;
1017                         pTxBufHead->wFIFOCtl =
1018                                 pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1019                 } else {
1020                         bNeedACK = true;
1021                         pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1022                 }
1023         }
1024         else {
1025             // MSDUs in Infra mode always need ACK
1026             bNeedACK = true;
1027             pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1028         }
1029     } //if (pDevice->dwDiagRefCount != 0) {
1030
1031     pTxBufHead->wTimeStamp = DEFAULT_MSDU_LIFETIME_RES_64us;
1032
1033     //Set FIFOCTL_LHEAD
1034     if (pDevice->bLongHeader)
1035         pTxBufHead->wFIFOCtl |= FIFOCTL_LHEAD;
1036
1037     //Set FRAGCTL_MACHDCNT
1038     if (pDevice->bLongHeader) {
1039         cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
1040     } else {
1041         cbMACHdLen = WLAN_HDR_ADDR3_LEN;
1042     }
1043     pTxBufHead->wFragCtl |= (u16)(cbMACHdLen << 10);
1044
1045     //Set FIFOCTL_GrpAckPolicy
1046     if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1047         pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1048     }
1049
1050     //Set Auto Fallback Ctl
1051     if (wCurrentRate >= RATE_18M) {
1052         if (pDevice->byAutoFBCtrl == AUTO_FB_0) {
1053             pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_0;
1054             byFBOption = AUTO_FB_0;
1055         } else if (pDevice->byAutoFBCtrl == AUTO_FB_1) {
1056             pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_1;
1057             byFBOption = AUTO_FB_1;
1058         }
1059     }
1060
1061     if (bSoftWEP != true) {
1062         if ((bNeedEncryption) && (pTransmitKey != NULL))  { //WEP enabled
1063             if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) { //WEP40 or WEP104
1064                 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1065             }
1066             if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1067                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Tx Set wFragCtl == FRAGCTL_TKIP\n");
1068                 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1069             }
1070             else if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) { //CCMP
1071                 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1072             }
1073         }
1074     }
1075
1076     if ((bNeedEncryption) && (pTransmitKey != NULL))  {
1077         if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
1078             cbIVlen = 4;
1079             cbICVlen = 4;
1080         }
1081         else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1082             cbIVlen = 8;//IV+ExtIV
1083             cbMIClen = 8;
1084             cbICVlen = 4;
1085         }
1086         if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) {
1087             cbIVlen = 8;//RSN Header
1088             cbICVlen = 8;//MIC
1089             cbMICHDR = sizeof(struct vnt_mic_hdr);
1090         }
1091         if (bSoftWEP == false) {
1092             //MAC Header should be padding 0 to DW alignment.
1093             uPadding = 4 - (cbMACHdLen%4);
1094             uPadding %= 4;
1095         }
1096     }
1097
1098     cbFrameSize = cbMACHdLen + cbIVlen + (cbFrameBodySize + cbMIClen) + cbICVlen + cbFCSlen;
1099
1100     if ( (bNeedACK == false) ||(cbFrameSize < pDevice->wRTSThreshold) ) {
1101         bRTS = false;
1102     } else {
1103         bRTS = true;
1104         pTxBufHead->wFIFOCtl |= (FIFOCTL_RTS | FIFOCTL_LRETRY);
1105     }
1106
1107     pbyTxBufferAddr = (u8 *) &(pTxBufHead->adwTxKey[0]);
1108     wTxBufSize = sizeof(STxBufHead);
1109     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1110         if (byFBOption == AUTO_FB_NONE) {
1111             if (bRTS == true) {//RTS_need
1112                 pvRrvTime = (struct vnt_rrv_time_rts *)
1113                                         (pbyTxBufferAddr + wTxBufSize);
1114                 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1115                                         sizeof(struct vnt_rrv_time_rts));
1116                 rts_cts = (struct vnt_rts_g *) (pbyTxBufferAddr + wTxBufSize +
1117                                 sizeof(struct vnt_rrv_time_rts) + cbMICHDR);
1118                 pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
1119                         wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1120                                 cbMICHDR + sizeof(struct vnt_rts_g));
1121                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1122                         cbMICHDR + sizeof(struct vnt_rts_g) +
1123                                 sizeof(struct vnt_tx_datahead_g);
1124             }
1125             else { //RTS_needless
1126                 pvRrvTime = (struct vnt_rrv_time_cts *)
1127                                 (pbyTxBufferAddr + wTxBufSize);
1128                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1129                         sizeof(struct vnt_rrv_time_cts));
1130                 rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
1131                                 sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
1132                 pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr +
1133                         wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1134                                 cbMICHDR + sizeof(struct vnt_cts));
1135                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1136                         cbMICHDR + sizeof(struct vnt_cts) +
1137                                 sizeof(struct vnt_tx_datahead_g);
1138             }
1139         } else {
1140             // Auto Fall Back
1141             if (bRTS == true) {//RTS_need
1142                 pvRrvTime = (struct vnt_rrv_time_rts *)(pbyTxBufferAddr +
1143                                                                 wTxBufSize);
1144                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1145                                         sizeof(struct vnt_rrv_time_rts));
1146                 rts_cts = (struct vnt_rts_g_fb *)(pbyTxBufferAddr + wTxBufSize +
1147                                 sizeof(struct vnt_rrv_time_rts) + cbMICHDR);
1148                 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1149                         wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1150                                 cbMICHDR + sizeof(struct vnt_rts_g_fb));
1151                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1152                         cbMICHDR + sizeof(struct vnt_rts_g_fb) +
1153                                 sizeof(struct vnt_tx_datahead_g_fb);
1154             }
1155             else if (bRTS == false) { //RTS_needless
1156                 pvRrvTime = (struct vnt_rrv_time_cts *)
1157                                 (pbyTxBufferAddr + wTxBufSize);
1158                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1159                                 sizeof(struct vnt_rrv_time_cts));
1160                 rts_cts = (struct vnt_cts_fb *) (pbyTxBufferAddr + wTxBufSize +
1161                         sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
1162                 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1163                         wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1164                                 cbMICHDR + sizeof(struct vnt_cts_fb));
1165                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1166                                 cbMICHDR + sizeof(struct vnt_cts_fb) +
1167                                         sizeof(struct vnt_tx_datahead_g_fb);
1168             }
1169         } // Auto Fall Back
1170     }
1171     else {//802.11a/b packet
1172         if (byFBOption == AUTO_FB_NONE) {
1173             if (bRTS == true) {//RTS_need
1174                 pvRrvTime = (struct vnt_rrv_time_ab *) (pbyTxBufferAddr +
1175                                                                 wTxBufSize);
1176                 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1177                                                 sizeof(struct vnt_rrv_time_ab));
1178                 rts_cts = (struct vnt_rts_ab *) (pbyTxBufferAddr + wTxBufSize +
1179                                 sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1180                 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1181                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1182                                                 sizeof(struct vnt_rts_ab));
1183                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1184                         cbMICHDR + sizeof(struct vnt_rts_ab) +
1185                                 sizeof(struct vnt_tx_datahead_ab);
1186             }
1187             else if (bRTS == false) { //RTS_needless, no MICHDR
1188                 pvRrvTime = (struct vnt_rrv_time_ab *)(pbyTxBufferAddr +
1189                                                                 wTxBufSize);
1190                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1191                                                 sizeof(struct vnt_rrv_time_ab));
1192                 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1193                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1194                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1195                                 cbMICHDR + sizeof(struct vnt_tx_datahead_ab);
1196             }
1197         } else {
1198             // Auto Fall Back
1199             if (bRTS == true) {//RTS_need
1200                 pvRrvTime = (struct vnt_rrv_time_ab *)(pbyTxBufferAddr +
1201                                                 wTxBufSize);
1202                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1203                         sizeof(struct vnt_rrv_time_ab));
1204                 rts_cts = (struct vnt_rts_a_fb *)(pbyTxBufferAddr + wTxBufSize +
1205                                 sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1206                 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1207                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1208                                         sizeof(struct vnt_rts_a_fb));
1209                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1210                         cbMICHDR + sizeof(struct vnt_rts_a_fb) +
1211                                         sizeof(struct vnt_tx_datahead_a_fb);
1212             }
1213             else if (bRTS == false) { //RTS_needless
1214                 pvRrvTime = (struct vnt_rrv_time_ab *)(pbyTxBufferAddr +
1215                                                                 wTxBufSize);
1216                 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1217                                                 sizeof(struct vnt_rrv_time_ab));
1218                 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1219                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1220                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1221                         cbMICHDR + sizeof(struct vnt_tx_datahead_a_fb);
1222             }
1223         } // Auto Fall Back
1224     }
1225
1226     pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderLength);
1227     pbyIVHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding);
1228     pbyPayloadHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding + cbIVlen);
1229
1230     //=========================
1231     //    No Fragmentation
1232     //=========================
1233     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Fragmentation...\n");
1234     byFragType = FRAGCTL_NONFRAG;
1235     //uDMAIdx = TYPE_AC0DMA;
1236     //pTxBufHead = (PSTxBufHead) &(pTxBufHead->adwTxKey[0]);
1237
1238     //Fill FIFO,RrvTime,RTS,and CTS
1239     s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1240                 (void *)pbyTxBufferAddr, pvRrvTime, rts_cts,
1241                 cbFrameSize, bNeedACK, uDMAIdx, psEthHeader, bRTS);
1242     //Fill DataHead
1243     uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, uDMAIdx, bNeedACK,
1244                                 byFBOption);
1245     // Generate TX MAC Header
1246     s_vGenerateMACHeader(pDevice, pbyMacHdr, (u16)uDuration, psEthHeader, bNeedEncryption,
1247                            byFragType, uDMAIdx, 0);
1248
1249     if (bNeedEncryption == true) {
1250         //Fill TXKEY
1251         s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1252                 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
1253
1254         if (pDevice->bEnableHostWEP) {
1255             pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
1256             pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
1257         }
1258     }
1259
1260     // 802.1H
1261     if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
1262         if (pDevice->dwDiagRefCount == 0) {
1263                 if ((psEthHeader->h_proto == cpu_to_be16(ETH_P_IPX)) ||
1264                     (psEthHeader->h_proto == cpu_to_le16(0xF380))) {
1265                         memcpy((u8 *) (pbyPayloadHead),
1266                                abySNAP_Bridgetunnel, 6);
1267             } else {
1268                 memcpy((u8 *) (pbyPayloadHead), &abySNAP_RFC1042[0], 6);
1269             }
1270             pbyType = (u8 *) (pbyPayloadHead + 6);
1271             memcpy(pbyType, &(psEthHeader->h_proto), sizeof(u16));
1272         } else {
1273             memcpy((u8 *) (pbyPayloadHead), &(psEthHeader->h_proto), sizeof(u16));
1274
1275         }
1276
1277     }
1278
1279     if (pPacket != NULL) {
1280         // Copy the Packet into a tx Buffer
1281         memcpy((pbyPayloadHead + cb802_1_H_len),
1282                  (pPacket + ETH_HLEN),
1283                  uSkbPacketLen - ETH_HLEN
1284                  );
1285
1286     } else {
1287         // while bRelayPacketSend psEthHeader is point to header+payload
1288         memcpy((pbyPayloadHead + cb802_1_H_len), ((u8 *)psEthHeader) + ETH_HLEN, uSkbPacketLen - ETH_HLEN);
1289     }
1290
1291     if ((bNeedEncryption == true) && (pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
1292
1293         ///////////////////////////////////////////////////////////////////
1294
1295         if (pDevice->vnt_mgmt.eAuthenMode == WMAC_AUTH_WPANONE) {
1296                 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1297                 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1298         }
1299         else if ((pTransmitKey->dwKeyIndex & AUTHENTICATOR_KEY) != 0) {
1300             dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1301             dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1302         }
1303         else {
1304             dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[24]);
1305             dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[28]);
1306         }
1307         // DO Software Michael
1308         MIC_vInit(dwMICKey0, dwMICKey1);
1309         MIC_vAppend((u8 *)&(psEthHeader->h_dest[0]), 12);
1310         dwMIC_Priority = 0;
1311         MIC_vAppend((u8 *)&dwMIC_Priority, 4);
1312         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC KEY: %X, %X\n",
1313                 dwMICKey0, dwMICKey1);
1314
1315         ///////////////////////////////////////////////////////////////////
1316
1317         //DBG_PRN_GRP12(("Length:%d, %d\n", cbFrameBodySize, uFromHDtoPLDLength));
1318         //for (ii = 0; ii < cbFrameBodySize; ii++) {
1319         //    DBG_PRN_GRP12(("%02x ", *((u8 *)((pbyPayloadHead + cb802_1_H_len) + ii))));
1320         //}
1321         //DBG_PRN_GRP12(("\n\n\n"));
1322
1323         MIC_vAppend(pbyPayloadHead, cbFrameBodySize);
1324
1325         pdwMIC_L = (u32 *)(pbyPayloadHead + cbFrameBodySize);
1326         pdwMIC_R = (u32 *)(pbyPayloadHead + cbFrameBodySize + 4);
1327
1328         MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
1329         MIC_vUnInit();
1330
1331         if (pDevice->bTxMICFail == true) {
1332             *pdwMIC_L = 0;
1333             *pdwMIC_R = 0;
1334             pDevice->bTxMICFail = false;
1335         }
1336         //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
1337         //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderLength, uPadding, cbIVlen);
1338         //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%lX, %lX\n", *pdwMIC_L, *pdwMIC_R);
1339     }
1340
1341     if (bSoftWEP == true) {
1342
1343         s_vSWencryption(pDevice, pTransmitKey, (pbyPayloadHead), (u16)(cbFrameBodySize + cbMIClen));
1344
1345     } else if (  ((pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) && (bNeedEncryption == true))  ||
1346           ((pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) && (bNeedEncryption == true))   ||
1347           ((pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) && (bNeedEncryption == true))      ) {
1348         cbFrameSize -= cbICVlen;
1349     }
1350
1351         cbFrameSize -= cbFCSlen;
1352
1353     *pcbHeaderLen = cbHeaderLength;
1354     *pcbTotalLen = cbHeaderLength + cbFrameSize ;
1355
1356     //Set FragCtl in TxBufferHead
1357     pTxBufHead->wFragCtl |= (u16)byFragType;
1358
1359     return true;
1360
1361 }
1362
1363 /*+
1364  *
1365  * Description:
1366  *      Translate 802.3 to 802.11 header
1367  *
1368  * Parameters:
1369  *  In:
1370  *      pDevice         - Pointer to adapter
1371  *      dwTxBufferAddr  - Transmit Buffer
1372  *      pPacket         - Packet from upper layer
1373  *      cbPacketSize    - Transmit Data Length
1374  *  Out:
1375  *      pcbHeadSize         - Header size of MAC&Baseband control and 802.11 Header
1376  *      pcbAppendPayload    - size of append payload for 802.1H translation
1377  *
1378  * Return Value: none
1379  *
1380 -*/
1381
1382 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
1383         u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
1384         int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx)
1385 {
1386         struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyBufferAddr;
1387
1388         pMACHeader->frame_control = TYPE_802_11_DATA;
1389
1390     if (pDevice->eOPMode == OP_MODE_AP) {
1391         memcpy(&(pMACHeader->addr1[0]),
1392                &(psEthHeader->h_dest[0]),
1393                ETH_ALEN);
1394         memcpy(&(pMACHeader->addr2[0]), &(pDevice->abyBSSID[0]), ETH_ALEN);
1395         memcpy(&(pMACHeader->addr3[0]),
1396                &(psEthHeader->h_source[0]),
1397                ETH_ALEN);
1398         pMACHeader->frame_control |= FC_FROMDS;
1399     } else {
1400         if (pDevice->eOPMode == OP_MODE_ADHOC) {
1401                 memcpy(&(pMACHeader->addr1[0]),
1402                        &(psEthHeader->h_dest[0]),
1403                        ETH_ALEN);
1404                 memcpy(&(pMACHeader->addr2[0]),
1405                        &(psEthHeader->h_source[0]),
1406                        ETH_ALEN);
1407                 memcpy(&(pMACHeader->addr3[0]),
1408                        &(pDevice->abyBSSID[0]),
1409                        ETH_ALEN);
1410         } else {
1411                 memcpy(&(pMACHeader->addr3[0]),
1412                        &(psEthHeader->h_dest[0]),
1413                        ETH_ALEN);
1414                 memcpy(&(pMACHeader->addr2[0]),
1415                        &(psEthHeader->h_source[0]),
1416                        ETH_ALEN);
1417                 memcpy(&(pMACHeader->addr1[0]),
1418                        &(pDevice->abyBSSID[0]),
1419                        ETH_ALEN);
1420             pMACHeader->frame_control |= FC_TODS;
1421         }
1422     }
1423
1424     if (bNeedEncrypt)
1425         pMACHeader->frame_control |= cpu_to_le16((u16)WLAN_SET_FC_ISWEP(1));
1426
1427     pMACHeader->duration_id = cpu_to_le16(wDuration);
1428
1429     if (pDevice->bLongHeader) {
1430         PWLAN_80211HDR_A4 pMACA4Header  = (PWLAN_80211HDR_A4) pbyBufferAddr;
1431         pMACHeader->frame_control |= (FC_TODS | FC_FROMDS);
1432         memcpy(pMACA4Header->abyAddr4, pDevice->abyBSSID, WLAN_ADDR_LEN);
1433     }
1434     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1435
1436     //Set FragNumber in Sequence Control
1437     pMACHeader->seq_ctrl |= cpu_to_le16((u16)uFragIdx);
1438
1439     if ((wFragType == FRAGCTL_ENDFRAG) || (wFragType == FRAGCTL_NONFRAG)) {
1440         pDevice->wSeqCounter++;
1441         if (pDevice->wSeqCounter > 0x0fff)
1442             pDevice->wSeqCounter = 0;
1443     }
1444
1445     if ((wFragType == FRAGCTL_STAFRAG) || (wFragType == FRAGCTL_MIDFRAG)) { //StartFrag or MidFrag
1446         pMACHeader->frame_control |= FC_MOREFRAG;
1447     }
1448 }
1449
1450 /*+
1451  *
1452  * Description:
1453  *      Request instructs a MAC to transmit a 802.11 management packet through
1454  *      the adapter onto the medium.
1455  *
1456  * Parameters:
1457  *  In:
1458  *      hDeviceContext  - Pointer to the adapter
1459  *      pPacket         - A pointer to a descriptor for the packet to transmit
1460  *  Out:
1461  *      none
1462  *
1463  * Return Value: CMD_STATUS_PENDING if MAC Tx resource available; otherwise false
1464  *
1465 -*/
1466
1467 CMD_STATUS csMgmt_xmit(struct vnt_private *pDevice,
1468         struct vnt_tx_mgmt *pPacket)
1469 {
1470         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1471         struct vnt_tx_buffer *pTX_Buffer;
1472         PSTxBufHead pTxBufHead;
1473         struct vnt_usb_send_context *pContext;
1474         struct ieee80211_hdr *pMACHeader;
1475         struct ethhdr sEthHeader;
1476         u8 byPktType, *pbyTxBufferAddr;
1477         void *rts_cts = NULL;
1478         void *pvTxDataHd, *pvRrvTime, *pMICHDR;
1479         u32 uDuration, cbReqCount, cbHeaderSize, cbFrameBodySize, cbFrameSize;
1480         int bNeedACK, bIsPSPOLL = false;
1481         u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1482         u32 uPadding = 0;
1483         u16 wTxBufSize;
1484         u32 cbMacHdLen;
1485         u16 wCurrentRate = RATE_1M;
1486
1487         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1488
1489     if (NULL == pContext) {
1490         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1491         return CMD_STATUS_RESOURCES;
1492     }
1493
1494         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1495     pbyTxBufferAddr = (u8 *)&(pTX_Buffer->adwTxKey[0]);
1496     cbFrameBodySize = pPacket->cbPayloadLen;
1497     pTxBufHead = (PSTxBufHead) pbyTxBufferAddr;
1498     wTxBufSize = sizeof(STxBufHead);
1499
1500     if (pDevice->byBBType == BB_TYPE_11A) {
1501         wCurrentRate = RATE_6M;
1502         byPktType = PK_TYPE_11A;
1503     } else {
1504         wCurrentRate = RATE_1M;
1505         byPktType = PK_TYPE_11B;
1506     }
1507
1508     // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1509     // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1510     //                    And cmd timer will wait data pkt TX finish before scanning so it's OK
1511     //                    to set power here.
1512     if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1513         RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1514     } else {
1515         RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1516     }
1517     pDevice->wCurrentRate = wCurrentRate;
1518
1519     //Set packet type
1520     if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1521         pTxBufHead->wFIFOCtl = 0;
1522     }
1523     else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1524         pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1525     }
1526     else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1527         pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1528     }
1529     else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1530         pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1531     }
1532
1533     pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1534     pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1535
1536     if (is_multicast_ether_addr(pPacket->p80211Header->sA3.abyAddr1)) {
1537         bNeedACK = false;
1538     }
1539     else {
1540         bNeedACK = true;
1541         pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1542     };
1543
1544     if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1545         (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1546
1547         pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1548         //Set Preamble type always long
1549         //pDevice->byPreambleType = PREAMBLE_LONG;
1550         // probe-response don't retry
1551         //if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1552         //     bNeedACK = false;
1553         //     pTxBufHead->wFIFOCtl  &= (~FIFOCTL_NEEDACK);
1554         //}
1555     }
1556
1557     pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1558
1559     if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1560         bIsPSPOLL = true;
1561         cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1562     } else {
1563         cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1564     }
1565
1566     //Set FRAGCTL_MACHDCNT
1567     pTxBufHead->wFragCtl |= cpu_to_le16((u16)(cbMacHdLen << 10));
1568
1569     // Notes:
1570     // Although spec says MMPDU can be fragmented; In most case,
1571     // no one will send a MMPDU under fragmentation. With RTS may occur.
1572     pDevice->bAES = false;  //Set FRAGCTL_WEPTYP
1573
1574     if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1575         if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1576             cbIVlen = 4;
1577             cbICVlen = 4;
1578             pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1579         }
1580         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1581             cbIVlen = 8;//IV+ExtIV
1582             cbMIClen = 8;
1583             cbICVlen = 4;
1584             pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1585             //We need to get seed here for filling TxKey entry.
1586             //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1587             //            pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1588         }
1589         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1590             cbIVlen = 8;//RSN Header
1591             cbICVlen = 8;//MIC
1592             pTxBufHead->wFragCtl |= FRAGCTL_AES;
1593             pDevice->bAES = true;
1594         }
1595         //MAC Header should be padding 0 to DW alignment.
1596         uPadding = 4 - (cbMacHdLen%4);
1597         uPadding %= 4;
1598     }
1599
1600     cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen;
1601
1602     //Set FIFOCTL_GrpAckPolicy
1603     if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1604         pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1605     }
1606     //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
1607
1608     //Set RrvTime/RTS/CTS Buffer
1609     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1610
1611         pvRrvTime = (struct vnt_rrv_time_cts *) (pbyTxBufferAddr + wTxBufSize);
1612         pMICHDR = NULL;
1613         rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
1614                                         sizeof(struct vnt_rrv_time_cts));
1615         pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr + wTxBufSize +
1616                 sizeof(struct vnt_rrv_time_cts) + sizeof(struct vnt_cts));
1617         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1618                 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
1619     }
1620     else { // 802.11a/b packet
1621         pvRrvTime = (struct vnt_rrv_time_ab *) (pbyTxBufferAddr + wTxBufSize);
1622         pMICHDR = NULL;
1623         pvTxDataHd = (struct vnt_tx_datahead_ab *) (pbyTxBufferAddr +
1624                 wTxBufSize + sizeof(struct vnt_rrv_time_ab));
1625         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1626                 sizeof(struct vnt_tx_datahead_ab);
1627     }
1628
1629     memcpy(&(sEthHeader.h_dest[0]),
1630            &(pPacket->p80211Header->sA3.abyAddr1[0]),
1631            ETH_ALEN);
1632     memcpy(&(sEthHeader.h_source[0]),
1633            &(pPacket->p80211Header->sA3.abyAddr2[0]),
1634            ETH_ALEN);
1635     //=========================
1636     //    No Fragmentation
1637     //=========================
1638     pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
1639
1640         /* Fill FIFO,RrvTime,RTS,and CTS */
1641         s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1642                 pbyTxBufferAddr, pvRrvTime, rts_cts,
1643                 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
1644
1645     //Fill DataHead
1646     uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
1647                                 AUTO_FB_NONE);
1648
1649     pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
1650
1651     cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + cbFrameBodySize;
1652
1653     if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1654         u8 *           pbyIVHead;
1655         u8 *           pbyPayloadHead;
1656         u8 *           pbyBSSID;
1657         PSKeyItem       pTransmitKey = NULL;
1658
1659         pbyIVHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding);
1660         pbyPayloadHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding + cbIVlen);
1661         do {
1662             if ((pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) &&
1663                 (pDevice->bLinkPass == true)) {
1664                 pbyBSSID = pDevice->abyBSSID;
1665                 // get pairwise key
1666                 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
1667                     // get group key
1668                     if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
1669                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1670                         break;
1671                     }
1672                 } else {
1673                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get PTK.\n");
1674                     break;
1675                 }
1676             }
1677             // get group key
1678             pbyBSSID = pDevice->abyBroadcastAddr;
1679             if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
1680                 pTransmitKey = NULL;
1681                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"KEY is NULL. OP Mode[%d]\n", pDevice->eOPMode);
1682             } else {
1683                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1684             }
1685         } while(false);
1686         //Fill TXKEY
1687         s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1688                      (u8 *)pMACHeader, (u16)cbFrameBodySize, NULL);
1689
1690         memcpy(pMACHeader, pPacket->p80211Header, cbMacHdLen);
1691         memcpy(pbyPayloadHead, ((u8 *)(pPacket->p80211Header) + cbMacHdLen),
1692                  cbFrameBodySize);
1693     }
1694     else {
1695         // Copy the Packet into a tx Buffer
1696         memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1697     }
1698
1699     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1700     pDevice->wSeqCounter++ ;
1701     if (pDevice->wSeqCounter > 0x0fff)
1702         pDevice->wSeqCounter = 0;
1703
1704     if (bIsPSPOLL) {
1705         // The MAC will automatically replace the Duration-field of MAC header by Duration-field
1706         // of FIFO control header.
1707         // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
1708         // in the same place of other packet's Duration-field).
1709         // And it will cause Cisco-AP to issue Disassociation-packet
1710         if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
1711                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
1712                         cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1713                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
1714                         cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1715         } else {
1716                 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
1717                         cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1718         }
1719     }
1720
1721     pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
1722     pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1723     pTX_Buffer->byType = 0x00;
1724
1725     pContext->pPacket = NULL;
1726     pContext->Type = CONTEXT_MGMT_PACKET;
1727     pContext->uBufLen = (u16)cbReqCount + 4;  //USB header
1728
1729     if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
1730         s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->addr1[0]), (u16)cbFrameSize, pTX_Buffer->wFIFOCtl);
1731     }
1732     else {
1733         s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->addr3[0]), (u16)cbFrameSize, pTX_Buffer->wFIFOCtl);
1734     }
1735
1736     PIPEnsSendBulkOut(pDevice,pContext);
1737     return CMD_STATUS_PENDING;
1738 }
1739
1740 CMD_STATUS csBeacon_xmit(struct vnt_private *pDevice,
1741         struct vnt_tx_mgmt *pPacket)
1742 {
1743         struct vnt_beacon_buffer *pTX_Buffer;
1744         u32 cbFrameSize = pPacket->cbMPDULen + WLAN_FCS_LEN;
1745         u32 cbHeaderSize = 0;
1746         u16 wTxBufSize = sizeof(STxShortBufHead);
1747         PSTxShortBufHead pTxBufHead;
1748         struct ieee80211_hdr *pMACHeader;
1749         struct vnt_tx_datahead_ab *pTxDataHead;
1750         u16 wCurrentRate;
1751         u32 cbFrameBodySize;
1752         u32 cbReqCount;
1753         u8 *pbyTxBufferAddr;
1754         struct vnt_usb_send_context *pContext;
1755         CMD_STATUS status;
1756
1757         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1758     if (NULL == pContext) {
1759         status = CMD_STATUS_RESOURCES;
1760         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1761         return status ;
1762     }
1763
1764         pTX_Buffer = (struct vnt_beacon_buffer *)&pContext->Data[0];
1765     pbyTxBufferAddr = (u8 *)&(pTX_Buffer->wFIFOCtl);
1766
1767     cbFrameBodySize = pPacket->cbPayloadLen;
1768
1769     pTxBufHead = (PSTxShortBufHead) pbyTxBufferAddr;
1770     wTxBufSize = sizeof(STxShortBufHead);
1771
1772     if (pDevice->byBBType == BB_TYPE_11A) {
1773         wCurrentRate = RATE_6M;
1774         pTxDataHead = (struct vnt_tx_datahead_ab *)
1775                         (pbyTxBufferAddr + wTxBufSize);
1776         //Get SignalField,ServiceField,Length
1777         BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11A,
1778                                                         &pTxDataHead->ab);
1779         //Get Duration and TimeStampOff
1780         pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1781                                                 PK_TYPE_11A, false);
1782         pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1783         cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1784     } else {
1785         wCurrentRate = RATE_1M;
1786         pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1787         pTxDataHead = (struct vnt_tx_datahead_ab *)
1788                                 (pbyTxBufferAddr + wTxBufSize);
1789         //Get SignalField,ServiceField,Length
1790         BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11B,
1791                                                         &pTxDataHead->ab);
1792         //Get Duration and TimeStampOff
1793         pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1794                                                 PK_TYPE_11B, false);
1795         pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1796         cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1797     }
1798
1799     //Generate Beacon Header
1800     pMACHeader = (struct ieee80211_hdr *)(pbyTxBufferAddr + cbHeaderSize);
1801     memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1802
1803     pMACHeader->duration_id = 0;
1804     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1805     pDevice->wSeqCounter++ ;
1806     if (pDevice->wSeqCounter > 0x0fff)
1807         pDevice->wSeqCounter = 0;
1808
1809     cbReqCount = cbHeaderSize + WLAN_HDR_ADDR3_LEN + cbFrameBodySize;
1810
1811     pTX_Buffer->wTxByteCount = (u16)cbReqCount;
1812     pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1813     pTX_Buffer->byType = 0x01;
1814
1815     pContext->pPacket = NULL;
1816     pContext->Type = CONTEXT_MGMT_PACKET;
1817     pContext->uBufLen = (u16)cbReqCount + 4;  //USB header
1818
1819     PIPEnsSendBulkOut(pDevice,pContext);
1820     return CMD_STATUS_PENDING;
1821
1822 }
1823
1824 void vDMA0_tx_80211(struct vnt_private *pDevice, struct sk_buff *skb)
1825 {
1826         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1827         struct vnt_tx_buffer *pTX_Buffer;
1828         u8 byPktType;
1829         u8 *pbyTxBufferAddr;
1830         void *rts_cts = NULL;
1831         void *pvTxDataHd;
1832         u32 uDuration, cbReqCount;
1833         struct ieee80211_hdr *pMACHeader;
1834         u32 cbHeaderSize, cbFrameBodySize;
1835         int bNeedACK, bIsPSPOLL = false;
1836         PSTxBufHead pTxBufHead;
1837         u32 cbFrameSize;
1838         u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1839         u32 uPadding = 0;
1840         u32 cbMICHDR = 0, uLength = 0;
1841         u32 dwMICKey0, dwMICKey1;
1842         u32 dwMIC_Priority;
1843         u32 *pdwMIC_L, *pdwMIC_R;
1844         u16 wTxBufSize;
1845         u32 cbMacHdLen;
1846         struct ethhdr sEthHeader;
1847         void *pvRrvTime, *pMICHDR;
1848         u32 wCurrentRate = RATE_1M;
1849         PUWLAN_80211HDR  p80211Header;
1850         u32 uNodeIndex = 0;
1851         int bNodeExist = false;
1852         SKeyItem STempKey;
1853         PSKeyItem pTransmitKey = NULL;
1854         u8 *pbyIVHead, *pbyPayloadHead, *pbyMacHdr;
1855         u32 cbExtSuppRate = 0;
1856         struct vnt_usb_send_context *pContext;
1857
1858         pvRrvTime = pMICHDR = pvTxDataHd = NULL;
1859
1860     if(skb->len <= WLAN_HDR_ADDR3_LEN) {
1861        cbFrameBodySize = 0;
1862     }
1863     else {
1864        cbFrameBodySize = skb->len - WLAN_HDR_ADDR3_LEN;
1865     }
1866     p80211Header = (PUWLAN_80211HDR)skb->data;
1867
1868         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1869
1870     if (NULL == pContext) {
1871         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0 TX...NO CONTEXT!\n");
1872         dev_kfree_skb_irq(skb);
1873         return ;
1874     }
1875
1876         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1877     pbyTxBufferAddr = (u8 *)(&pTX_Buffer->adwTxKey[0]);
1878     pTxBufHead = (PSTxBufHead) pbyTxBufferAddr;
1879     wTxBufSize = sizeof(STxBufHead);
1880
1881     if (pDevice->byBBType == BB_TYPE_11A) {
1882         wCurrentRate = RATE_6M;
1883         byPktType = PK_TYPE_11A;
1884     } else {
1885         wCurrentRate = RATE_1M;
1886         byPktType = PK_TYPE_11B;
1887     }
1888
1889     // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1890     // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1891     //                    And cmd timer will wait data pkt TX finish before scanning so it's OK
1892     //                    to set power here.
1893     if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1894         RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1895     } else {
1896         RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1897     }
1898
1899     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"vDMA0_tx_80211: p80211Header->sA3.wFrameCtl = %x \n", p80211Header->sA3.wFrameCtl);
1900
1901     //Set packet type
1902     if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1903         pTxBufHead->wFIFOCtl = 0;
1904     }
1905     else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1906         pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1907     }
1908     else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1909         pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1910     }
1911     else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1912         pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1913     }
1914
1915     pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1916     pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1917
1918     if (is_multicast_ether_addr(p80211Header->sA3.abyAddr1)) {
1919         bNeedACK = false;
1920         if (pDevice->bEnableHostWEP) {
1921             uNodeIndex = 0;
1922             bNodeExist = true;
1923         }
1924     }
1925     else {
1926         if (pDevice->bEnableHostWEP) {
1927             if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(p80211Header->sA3.abyAddr1), &uNodeIndex))
1928                 bNodeExist = true;
1929         }
1930         bNeedACK = true;
1931         pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1932     };
1933
1934     if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1935         (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1936
1937         pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1938         //Set Preamble type always long
1939         //pDevice->byPreambleType = PREAMBLE_LONG;
1940
1941         // probe-response don't retry
1942         //if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1943         //     bNeedACK = false;
1944         //     pTxBufHead->wFIFOCtl  &= (~FIFOCTL_NEEDACK);
1945         //}
1946     }
1947
1948     pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1949
1950     if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1951         bIsPSPOLL = true;
1952         cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1953     } else {
1954         cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1955     }
1956
1957     // hostapd daemon ext support rate patch
1958     if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
1959
1960         if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0) {
1961             cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN;
1962          }
1963
1964         if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0) {
1965             cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN;
1966          }
1967
1968          if (cbExtSuppRate >0) {
1969             cbFrameBodySize = WLAN_ASSOCRESP_OFF_SUPP_RATES;
1970          }
1971     }
1972
1973     //Set FRAGCTL_MACHDCNT
1974     pTxBufHead->wFragCtl |= cpu_to_le16((u16)cbMacHdLen << 10);
1975
1976     // Notes:
1977     // Although spec says MMPDU can be fragmented; In most case,
1978     // no one will send a MMPDU under fragmentation. With RTS may occur.
1979     pDevice->bAES = false;  //Set FRAGCTL_WEPTYP
1980
1981     if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
1982         if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1983             cbIVlen = 4;
1984             cbICVlen = 4;
1985             pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1986         }
1987         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1988             cbIVlen = 8;//IV+ExtIV
1989             cbMIClen = 8;
1990             cbICVlen = 4;
1991             pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1992             //We need to get seed here for filling TxKey entry.
1993             //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1994             //            pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1995         }
1996         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1997             cbIVlen = 8;//RSN Header
1998             cbICVlen = 8;//MIC
1999             cbMICHDR = sizeof(struct vnt_mic_hdr);
2000             pTxBufHead->wFragCtl |= FRAGCTL_AES;
2001             pDevice->bAES = true;
2002         }
2003         //MAC Header should be padding 0 to DW alignment.
2004         uPadding = 4 - (cbMacHdLen%4);
2005         uPadding %= 4;
2006     }
2007
2008     cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen + cbExtSuppRate;
2009
2010     //Set FIFOCTL_GrpAckPolicy
2011     if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
2012         pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
2013     }
2014     //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
2015
2016     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
2017         pvRrvTime = (struct vnt_rrv_time_cts *) (pbyTxBufferAddr + wTxBufSize);
2018         pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
2019                                         sizeof(struct vnt_rrv_time_cts));
2020         rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
2021                         sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
2022         pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
2023                 wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2024                                         sizeof(struct vnt_cts));
2025         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2026                 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
2027
2028     }
2029     else {//802.11a/b packet
2030
2031         pvRrvTime = (struct vnt_rrv_time_ab *) (pbyTxBufferAddr + wTxBufSize);
2032         pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
2033                 sizeof(struct vnt_rrv_time_ab));
2034         pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
2035                 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
2036         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
2037                                         sizeof(struct vnt_tx_datahead_ab);
2038     }
2039     memcpy(&(sEthHeader.h_dest[0]),
2040            &(p80211Header->sA3.abyAddr1[0]),
2041            ETH_ALEN);
2042     memcpy(&(sEthHeader.h_source[0]),
2043            &(p80211Header->sA3.abyAddr2[0]),
2044            ETH_ALEN);
2045     //=========================
2046     //    No Fragmentation
2047     //=========================
2048     pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
2049
2050         /* Fill FIFO,RrvTime,RTS,and CTS */
2051         s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
2052                 pbyTxBufferAddr, pvRrvTime, rts_cts,
2053                 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
2054
2055     //Fill DataHead
2056     uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
2057                                 AUTO_FB_NONE);
2058
2059     pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
2060
2061     cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + (cbFrameBodySize + cbMIClen) + cbExtSuppRate;
2062
2063     pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderSize);
2064     pbyPayloadHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding + cbIVlen);
2065     pbyIVHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding);
2066
2067     // Copy the Packet into a tx Buffer
2068     memcpy(pbyMacHdr, skb->data, cbMacHdLen);
2069
2070     // version set to 0, patch for hostapd deamon
2071     pMACHeader->frame_control &= cpu_to_le16(0xfffc);
2072     memcpy(pbyPayloadHead, (skb->data + cbMacHdLen), cbFrameBodySize);
2073
2074     // replace support rate, patch for hostapd daemon( only support 11M)
2075     if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
2076         if (cbExtSuppRate != 0) {
2077             if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0)
2078                 memcpy((pbyPayloadHead + cbFrameBodySize),
2079                         pMgmt->abyCurrSuppRates,
2080                         ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN
2081                        );
2082              if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0)
2083                 memcpy((pbyPayloadHead + cbFrameBodySize) + ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN,
2084                         pMgmt->abyCurrExtSuppRates,
2085                         ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN
2086                        );
2087          }
2088     }
2089
2090     // Set wep
2091     if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
2092
2093         if (pDevice->bEnableHostWEP) {
2094             pTransmitKey = &STempKey;
2095             pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2096             pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2097             pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2098             pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2099             pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2100             memcpy(pTransmitKey->abyKey,
2101                 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2102                 pTransmitKey->uKeyLength
2103                 );
2104         }
2105
2106         if ((pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
2107
2108             dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
2109             dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
2110
2111             // DO Software Michael
2112             MIC_vInit(dwMICKey0, dwMICKey1);
2113             MIC_vAppend((u8 *)&(sEthHeader.h_dest[0]), 12);
2114             dwMIC_Priority = 0;
2115             MIC_vAppend((u8 *)&dwMIC_Priority, 4);
2116                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0_tx_8021:MIC KEY:"\
2117                         " %X, %X\n", dwMICKey0, dwMICKey1);
2118
2119             uLength = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen;
2120
2121             MIC_vAppend((pbyTxBufferAddr + uLength), cbFrameBodySize);
2122
2123             pdwMIC_L = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize);
2124             pdwMIC_R = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize + 4);
2125
2126             MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
2127             MIC_vUnInit();
2128
2129             if (pDevice->bTxMICFail == true) {
2130                 *pdwMIC_L = 0;
2131                 *pdwMIC_R = 0;
2132                 pDevice->bTxMICFail = false;
2133             }
2134
2135             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
2136             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderSize, uPadding, cbIVlen);
2137                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%x, %x\n",
2138                         *pdwMIC_L, *pdwMIC_R);
2139
2140         }
2141
2142         s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
2143                 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
2144
2145         if (pDevice->bEnableHostWEP) {
2146             pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
2147             pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
2148         }
2149
2150         if ((pDevice->byLocalID <= REV_ID_VT3253_A1)) {
2151             s_vSWencryption(pDevice, pTransmitKey, pbyPayloadHead, (u16)(cbFrameBodySize + cbMIClen));
2152         }
2153     }
2154
2155     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
2156     pDevice->wSeqCounter++ ;
2157     if (pDevice->wSeqCounter > 0x0fff)
2158         pDevice->wSeqCounter = 0;
2159
2160     if (bIsPSPOLL) {
2161         // The MAC will automatically replace the Duration-field of MAC header by Duration-field
2162         // of  FIFO control header.
2163         // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
2164         // in the same place of other packet's Duration-field).
2165         // And it will cause Cisco-AP to issue Disassociation-packet
2166         if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
2167                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
2168                         cpu_to_le16(p80211Header->sA2.wDurationID);
2169                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
2170                         cpu_to_le16(p80211Header->sA2.wDurationID);
2171         } else {
2172                 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
2173                         cpu_to_le16(p80211Header->sA2.wDurationID);
2174         }
2175     }
2176
2177     pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
2178     pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2179     pTX_Buffer->byType = 0x00;
2180
2181     pContext->pPacket = skb;
2182     pContext->Type = CONTEXT_MGMT_PACKET;
2183     pContext->uBufLen = (u16)cbReqCount + 4;  //USB header
2184
2185     if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
2186         s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->addr1[0]), (u16)cbFrameSize, pTX_Buffer->wFIFOCtl);
2187     }
2188     else {
2189         s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->addr3[0]), (u16)cbFrameSize, pTX_Buffer->wFIFOCtl);
2190     }
2191     PIPEnsSendBulkOut(pDevice,pContext);
2192     return ;
2193
2194 }
2195
2196 //TYPE_AC0DMA data tx
2197 /*
2198  * Description:
2199  *      Tx packet via AC0DMA(DMA1)
2200  *
2201  * Parameters:
2202  *  In:
2203  *      pDevice         - Pointer to the adapter
2204  *      skb             - Pointer to tx skb packet
2205  *  Out:
2206  *      void
2207  *
2208  * Return Value: NULL
2209  */
2210
2211 int nsDMA_tx_packet(struct vnt_private *pDevice,
2212         u32 uDMAIdx, struct sk_buff *skb)
2213 {
2214         struct net_device_stats *pStats = &pDevice->stats;
2215         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2216         struct vnt_tx_buffer *pTX_Buffer;
2217         u32 BytesToWrite = 0, uHeaderLen = 0;
2218         u32 uNodeIndex = 0;
2219         u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
2220         u16 wAID;
2221         u8 byPktType;
2222         int bNeedEncryption = false;
2223         PSKeyItem pTransmitKey = NULL;
2224         SKeyItem STempKey;
2225         int ii;
2226         int bTKIP_UseGTK = false;
2227         int bNeedDeAuth = false;
2228         u8 *pbyBSSID;
2229         int bNodeExist = false;
2230         struct vnt_usb_send_context *pContext;
2231         bool fConvertedPacket;
2232         u32 status;
2233         u16 wKeepRate = pDevice->wCurrentRate;
2234         int bTxeapol_key = false;
2235
2236     if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
2237
2238         if (pDevice->uAssocCount == 0) {
2239             dev_kfree_skb_irq(skb);
2240             return 0;
2241         }
2242
2243         if (is_multicast_ether_addr((u8 *)(skb->data))) {
2244             uNodeIndex = 0;
2245             bNodeExist = true;
2246             if (pMgmt->sNodeDBTable[0].bPSEnable) {
2247
2248                 skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skb);
2249                 pMgmt->sNodeDBTable[0].wEnQueueCnt++;
2250                 // set tx map
2251                 pMgmt->abyPSTxMap[0] |= byMask[0];
2252                 return 0;
2253             }
2254             // multicast/broadcast data rate
2255
2256             if (pDevice->byBBType != BB_TYPE_11A)
2257                 pDevice->wCurrentRate = RATE_2M;
2258             else
2259                 pDevice->wCurrentRate = RATE_24M;
2260             // long preamble type
2261             pDevice->byPreambleType = PREAMBLE_SHORT;
2262
2263         }else {
2264
2265             if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(skb->data), &uNodeIndex)) {
2266
2267                 if (pMgmt->sNodeDBTable[uNodeIndex].bPSEnable) {
2268
2269                     skb_queue_tail(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue, skb);
2270
2271                     pMgmt->sNodeDBTable[uNodeIndex].wEnQueueCnt++;
2272                     // set tx map
2273                     wAID = pMgmt->sNodeDBTable[uNodeIndex].wAID;
2274                     pMgmt->abyPSTxMap[wAID >> 3] |=  byMask[wAID & 7];
2275                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set:pMgmt->abyPSTxMap[%d]= %d\n",
2276                              (wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]);
2277
2278                     return 0;
2279                 }
2280                 // AP rate decided from node
2281                 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2282                 // tx preamble decided from node
2283
2284                 if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2285                     pDevice->byPreambleType = pDevice->byShortPreamble;
2286
2287                 }else {
2288                     pDevice->byPreambleType = PREAMBLE_LONG;
2289                 }
2290                 bNodeExist = true;
2291             }
2292         }
2293
2294         if (bNodeExist == false) {
2295             DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Unknown STA not found in node DB \n");
2296             dev_kfree_skb_irq(skb);
2297             return 0;
2298         }
2299     }
2300
2301         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2302
2303     if (pContext == NULL) {
2304         DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG" pContext == NULL\n");
2305         dev_kfree_skb_irq(skb);
2306         return STATUS_RESOURCES;
2307     }
2308
2309     memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)(skb->data), ETH_HLEN);
2310
2311 //mike add:station mode check eapol-key challenge--->
2312 {
2313     u8  Protocol_Version;    //802.1x Authentication
2314     u8  Packet_Type;           //802.1x Authentication
2315     u8  Descriptor_type;
2316     u16 Key_info;
2317
2318     Protocol_Version = skb->data[ETH_HLEN];
2319     Packet_Type = skb->data[ETH_HLEN+1];
2320     Descriptor_type = skb->data[ETH_HLEN+1+1+2];
2321     Key_info = (skb->data[ETH_HLEN+1+1+2+1] << 8)|(skb->data[ETH_HLEN+1+1+2+2]);
2322         if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2323                 /* 802.1x OR eapol-key challenge frame transfer */
2324                 if (((Protocol_Version == 1) || (Protocol_Version == 2)) &&
2325                         (Packet_Type == 3)) {
2326                         bTxeapol_key = true;
2327                        if(!(Key_info & BIT3) &&  //WPA or RSN group-key challenge
2328                            (Key_info & BIT8) && (Key_info & BIT9)) {    //send 2/2 key
2329                           if(Descriptor_type==254) {
2330                                pDevice->fWPA_Authened = true;
2331                              PRINT_K("WPA ");
2332                           }
2333                           else {
2334                                pDevice->fWPA_Authened = true;
2335                              PRINT_K("WPA2(re-keying) ");
2336                           }
2337                           PRINT_K("Authentication completed!!\n");
2338                         }
2339                     else if((Key_info & BIT3) && (Descriptor_type==2) &&  //RSN pairwise-key challenge
2340                                (Key_info & BIT8) && (Key_info & BIT9)) {
2341                           pDevice->fWPA_Authened = true;
2342                             PRINT_K("WPA2 Authentication completed!!\n");
2343                      }
2344              }
2345    }
2346 }
2347 //mike add:station mode check eapol-key challenge<---
2348
2349     if (pDevice->bEncryptionEnable == true) {
2350         bNeedEncryption = true;
2351         // get Transmit key
2352         do {
2353             if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
2354                 (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2355                 pbyBSSID = pDevice->abyBSSID;
2356                 // get pairwise key
2357                 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
2358                     // get group key
2359                     if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
2360                         bTKIP_UseGTK = true;
2361                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2362                         break;
2363                     }
2364                 } else {
2365                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get PTK.\n");
2366                     break;
2367                 }
2368             }else if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2369               /* TO_DS = 0 and FROM_DS = 0 --> 802.11 MAC Address1 */
2370                 pbyBSSID = pDevice->sTxEthHeader.h_dest;
2371                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS Serach Key: \n");
2372                 for (ii = 0; ii< 6; ii++)
2373                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"%x \n", *(pbyBSSID+ii));
2374                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"\n");
2375
2376                 // get pairwise key
2377                 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == true)
2378                     break;
2379             }
2380             // get group key
2381             pbyBSSID = pDevice->abyBroadcastAddr;
2382             if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2383                 pTransmitKey = NULL;
2384                 if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2385                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2386                 }
2387                 else
2388                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"NOT IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2389             } else {
2390                 bTKIP_UseGTK = true;
2391                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2392             }
2393         } while(false);
2394     }
2395
2396     if (pDevice->bEnableHostWEP) {
2397         DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"acdma0: STA index %d\n", uNodeIndex);
2398         if (pDevice->bEncryptionEnable == true) {
2399             pTransmitKey = &STempKey;
2400             pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2401             pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2402             pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2403             pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2404             pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2405             memcpy(pTransmitKey->abyKey,
2406                 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2407                 pTransmitKey->uKeyLength
2408                 );
2409          }
2410     }
2411
2412     byPktType = (u8)pDevice->byPacketType;
2413
2414     if (pDevice->bFixRate) {
2415         if (pDevice->byBBType == BB_TYPE_11B) {
2416             if (pDevice->uConnectionRate >= RATE_11M) {
2417                 pDevice->wCurrentRate = RATE_11M;
2418             } else {
2419                 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2420             }
2421         } else {
2422             if ((pDevice->byBBType == BB_TYPE_11A) &&
2423                 (pDevice->uConnectionRate <= RATE_6M)) {
2424                 pDevice->wCurrentRate = RATE_6M;
2425             } else {
2426                 if (pDevice->uConnectionRate >= RATE_54M)
2427                     pDevice->wCurrentRate = RATE_54M;
2428                 else
2429                     pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2430             }
2431         }
2432     }
2433     else {
2434         if (pDevice->eOPMode == OP_MODE_ADHOC) {
2435             // Adhoc Tx rate decided from node DB
2436             if (is_multicast_ether_addr(pDevice->sTxEthHeader.h_dest)) {
2437                 // Multicast use highest data rate
2438                 pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2439                 // preamble type
2440                 pDevice->byPreambleType = pDevice->byShortPreamble;
2441             }
2442             else {
2443                 if (BSSbIsSTAInNodeDB(pDevice, &(pDevice->sTxEthHeader.h_dest[0]), &uNodeIndex)) {
2444                     pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2445                     if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2446                         pDevice->byPreambleType = pDevice->byShortPreamble;
2447
2448                     }
2449                     else {
2450                         pDevice->byPreambleType = PREAMBLE_LONG;
2451                     }
2452                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Found Node Index is [%d]  Tx Data Rate:[%d]\n",uNodeIndex, pDevice->wCurrentRate);
2453                 }
2454                 else {
2455                     if (pDevice->byBBType != BB_TYPE_11A)
2456                        pDevice->wCurrentRate = RATE_2M;
2457                     else
2458                        pDevice->wCurrentRate = RATE_24M; // refer to vMgrCreateOwnIBSS()'s
2459                                                          // abyCurrExtSuppRates[]
2460                     pDevice->byPreambleType = PREAMBLE_SHORT;
2461                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Not Found Node use highest basic Rate.....\n");
2462                 }
2463             }
2464         }
2465         if (pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) {
2466             // Infra STA rate decided from AP Node, index = 0
2467             pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2468         }
2469     }
2470
2471         if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2472                 if (pDevice->byBBType != BB_TYPE_11A) {
2473                         pDevice->wCurrentRate = RATE_1M;
2474                         pDevice->byACKRate = RATE_1M;
2475                         pDevice->byTopCCKBasicRate = RATE_1M;
2476                         pDevice->byTopOFDMBasicRate = RATE_6M;
2477                 } else {
2478                         pDevice->wCurrentRate = RATE_6M;
2479                         pDevice->byACKRate = RATE_6M;
2480                         pDevice->byTopCCKBasicRate = RATE_1M;
2481                         pDevice->byTopOFDMBasicRate = RATE_6M;
2482                 }
2483         }
2484
2485     DBG_PRT(MSG_LEVEL_DEBUG,
2486             KERN_INFO "dma_tx: pDevice->wCurrentRate = %d\n",
2487             pDevice->wCurrentRate);
2488
2489     if (wKeepRate != pDevice->wCurrentRate) {
2490         bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2491     }
2492
2493     if (pDevice->wCurrentRate <= RATE_11M) {
2494         byPktType = PK_TYPE_11B;
2495     }
2496
2497     if (bNeedEncryption == true) {
2498         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ntohs Pkt Type=%04x\n", ntohs(pDevice->sTxEthHeader.h_proto));
2499         if ((pDevice->sTxEthHeader.h_proto) == cpu_to_be16(ETH_P_PAE)) {
2500                 bNeedEncryption = false;
2501             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Pkt Type=%04x\n", (pDevice->sTxEthHeader.h_proto));
2502             if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2503                 if (pTransmitKey == NULL) {
2504                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Don't Find TX KEY\n");
2505                 }
2506                 else {
2507                     if (bTKIP_UseGTK == true) {
2508                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"error: KEY is GTK!!~~\n");
2509                     }
2510                     else {
2511                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2512                                 pTransmitKey->dwKeyIndex);
2513                         bNeedEncryption = true;
2514                     }
2515                 }
2516             }
2517
2518             if (pDevice->bEnableHostWEP) {
2519                 if ((uNodeIndex != 0) &&
2520                     (pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex & PAIRWISE_KEY)) {
2521                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2522                                 pTransmitKey->dwKeyIndex);
2523                     bNeedEncryption = true;
2524                  }
2525              }
2526         }
2527         else {
2528
2529             if (pTransmitKey == NULL) {
2530                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"return no tx key\n");
2531                 pContext->bBoolInUse = false;
2532                 dev_kfree_skb_irq(skb);
2533                 pStats->tx_dropped++;
2534                 return STATUS_FAILURE;
2535             }
2536         }
2537     }
2538
2539         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2540
2541     fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2542                         pTX_Buffer, bNeedEncryption,
2543                         skb->len, uDMAIdx, &pDevice->sTxEthHeader,
2544                         (u8 *)skb->data, pTransmitKey, uNodeIndex,
2545                         pDevice->wCurrentRate,
2546                         &uHeaderLen, &BytesToWrite
2547                        );
2548
2549     if (fConvertedPacket == false) {
2550         pContext->bBoolInUse = false;
2551         dev_kfree_skb_irq(skb);
2552         return STATUS_FAILURE;
2553     }
2554
2555     if ( pDevice->bEnablePSMode == true ) {
2556         if ( !pDevice->bPSModeTxBurst ) {
2557                 bScheduleCommand((void *) pDevice,
2558                                  WLAN_CMD_MAC_DISPOWERSAVING,
2559                                  NULL);
2560             pDevice->bPSModeTxBurst = true;
2561         }
2562     }
2563
2564     pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2565     pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2566
2567     pContext->pPacket = skb;
2568     pContext->Type = CONTEXT_DATA_PACKET;
2569     pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2570
2571     s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pContext->sEthHeader.h_dest[0]), (u16) (BytesToWrite-uHeaderLen), pTX_Buffer->wFIFOCtl);
2572
2573     status = PIPEnsSendBulkOut(pDevice,pContext);
2574
2575     if (bNeedDeAuth == true) {
2576         u16 wReason = WLAN_MGMT_REASON_MIC_FAILURE;
2577
2578         bScheduleCommand((void *) pDevice, WLAN_CMD_DEAUTH, (u8 *) &wReason);
2579     }
2580
2581   if(status!=STATUS_PENDING) {
2582      pContext->bBoolInUse = false;
2583     dev_kfree_skb_irq(skb);
2584     return STATUS_FAILURE;
2585   }
2586   else
2587     return 0;
2588
2589 }
2590
2591 /*
2592  * Description:
2593  *      Relay packet send (AC1DMA) from rx dpc.
2594  *
2595  * Parameters:
2596  *  In:
2597  *      pDevice         - Pointer to the adapter
2598  *      pPacket         - Pointer to rx packet
2599  *      cbPacketSize    - rx ethernet frame size
2600  *  Out:
2601  *      TURE, false
2602  *
2603  * Return Value: Return true if packet is copy to dma1; otherwise false
2604  */
2605
2606 int bRelayPacketSend(struct vnt_private *pDevice, u8 *pbySkbData, u32 uDataLen,
2607         u32 uNodeIndex)
2608 {
2609         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2610         struct vnt_tx_buffer *pTX_Buffer;
2611         u32 BytesToWrite = 0, uHeaderLen = 0;
2612         u8 byPktType = PK_TYPE_11B;
2613         int bNeedEncryption = false;
2614         SKeyItem STempKey;
2615         PSKeyItem pTransmitKey = NULL;
2616         u8 *pbyBSSID;
2617         struct vnt_usb_send_context *pContext;
2618         u8 byPktTyp;
2619         int fConvertedPacket;
2620         u32 status;
2621         u16 wKeepRate = pDevice->wCurrentRate;
2622
2623         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2624
2625     if (NULL == pContext) {
2626         return false;
2627     }
2628
2629     memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)pbySkbData, ETH_HLEN);
2630
2631     if (pDevice->bEncryptionEnable == true) {
2632         bNeedEncryption = true;
2633         // get group key
2634         pbyBSSID = pDevice->abyBroadcastAddr;
2635         if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2636             pTransmitKey = NULL;
2637             DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2638         } else {
2639             DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2640         }
2641     }
2642
2643     if (pDevice->bEnableHostWEP) {
2644         if (uNodeIndex < MAX_NODE_NUM + 1) {
2645             pTransmitKey = &STempKey;
2646             pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2647             pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2648             pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2649             pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2650             pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2651             memcpy(pTransmitKey->abyKey,
2652                     &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2653                     pTransmitKey->uKeyLength
2654                   );
2655         }
2656     }
2657
2658     if ( bNeedEncryption && (pTransmitKey == NULL) ) {
2659         pContext->bBoolInUse = false;
2660         return false;
2661     }
2662
2663     byPktTyp = (u8)pDevice->byPacketType;
2664
2665     if (pDevice->bFixRate) {
2666         if (pDevice->byBBType == BB_TYPE_11B) {
2667             if (pDevice->uConnectionRate >= RATE_11M) {
2668                 pDevice->wCurrentRate = RATE_11M;
2669             } else {
2670                 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2671             }
2672         } else {
2673             if ((pDevice->byBBType == BB_TYPE_11A) &&
2674                 (pDevice->uConnectionRate <= RATE_6M)) {
2675                 pDevice->wCurrentRate = RATE_6M;
2676             } else {
2677                 if (pDevice->uConnectionRate >= RATE_54M)
2678                     pDevice->wCurrentRate = RATE_54M;
2679                 else
2680                     pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2681             }
2682         }
2683     }
2684     else {
2685         pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2686     }
2687
2688     if (wKeepRate != pDevice->wCurrentRate) {
2689         bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2690     }
2691
2692     if (pDevice->wCurrentRate <= RATE_11M)
2693         byPktType = PK_TYPE_11B;
2694
2695     BytesToWrite = uDataLen + ETH_FCS_LEN;
2696
2697     // Convert the packet to an usb frame and copy into our buffer
2698     // and send the irp.
2699
2700         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2701
2702     fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2703                         pTX_Buffer, bNeedEncryption,
2704                          uDataLen, TYPE_AC0DMA, &pDevice->sTxEthHeader,
2705                          pbySkbData, pTransmitKey, uNodeIndex,
2706                          pDevice->wCurrentRate,
2707                          &uHeaderLen, &BytesToWrite
2708                         );
2709
2710     if (fConvertedPacket == false) {
2711         pContext->bBoolInUse = false;
2712         return false;
2713     }
2714
2715     pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2716     pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2717
2718     pContext->pPacket = NULL;
2719     pContext->Type = CONTEXT_DATA_PACKET;
2720     pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2721
2722     s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pContext->sEthHeader.h_dest[0]), (u16) (BytesToWrite-uHeaderLen), pTX_Buffer->wFIFOCtl);
2723
2724     status = PIPEnsSendBulkOut(pDevice,pContext);
2725
2726     return true;
2727 }
2728