]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/staging/winbond/wb35reg.c
Merge branch 'wireless-next-2.6' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / staging / winbond / wb35reg.c
1 #include "sysdef.h"
2 #include "wb35reg_f.h"
3
4 #include <linux/usb.h>
5 #include <linux/slab.h>
6
7 extern void phy_calibration_winbond(struct hw_data *phw_data, u32 frequency);
8
9 // true  : read command process successfully
10 // false : register not support
11 // RegisterNo : start base
12 // pRegisterData : data point
13 // NumberOfData : number of register data
14 // Flag : AUTO_INCREMENT - RegisterNo will auto increment 4
15 //                NO_INCREMENT - Function will write data into the same register
16 unsigned char
17 Wb35Reg_BurstWrite(struct hw_data * pHwData, u16 RegisterNo, u32 * pRegisterData, u8 NumberOfData, u8 Flag)
18 {
19         struct wb35_reg *reg = &pHwData->reg;
20         struct urb      *urb = NULL;
21         struct wb35_reg_queue *reg_queue = NULL;
22         u16             UrbSize;
23         struct      usb_ctrlrequest *dr;
24         u16             i, DataSize = NumberOfData*4;
25
26         // Module shutdown
27         if (pHwData->SurpriseRemove)
28                 return false;
29
30         // Trying to use burst write function if use new hardware
31         UrbSize = sizeof(struct wb35_reg_queue) + DataSize + sizeof(struct usb_ctrlrequest);
32         reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
33         urb = usb_alloc_urb(0, GFP_ATOMIC);
34         if( urb && reg_queue ) {
35                 reg_queue->DIRECT = 2;// burst write register
36                 reg_queue->INDEX = RegisterNo;
37                 reg_queue->pBuffer = (u32 *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
38                 memcpy( reg_queue->pBuffer, pRegisterData, DataSize );
39                 //the function for reversing register data from little endian to big endian
40                 for( i=0; i<NumberOfData ; i++ )
41                         reg_queue->pBuffer[i] = cpu_to_le32( reg_queue->pBuffer[i] );
42
43                 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue) + DataSize);
44                 dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE;
45                 dr->bRequest = 0x04; // USB or vendor-defined request code, burst mode
46                 dr->wValue = cpu_to_le16( Flag ); // 0: Register number auto-increment, 1: No auto increment
47                 dr->wIndex = cpu_to_le16( RegisterNo );
48                 dr->wLength = cpu_to_le16( DataSize );
49                 reg_queue->Next = NULL;
50                 reg_queue->pUsbReq = dr;
51                 reg_queue->urb = urb;
52
53                 spin_lock_irq( &reg->EP0VM_spin_lock );
54                 if (reg->reg_first == NULL)
55                         reg->reg_first = reg_queue;
56                 else
57                         reg->reg_last->Next = reg_queue;
58                 reg->reg_last = reg_queue;
59
60                 spin_unlock_irq( &reg->EP0VM_spin_lock );
61
62                 // Start EP0VM
63                 Wb35Reg_EP0VM_start(pHwData);
64
65                 return true;
66         } else {
67                 if (urb)
68                         usb_free_urb(urb);
69                 if (reg_queue)
70                         kfree(reg_queue);
71                 return false;
72         }
73    return false;
74 }
75
76 void
77 Wb35Reg_Update(struct hw_data * pHwData,  u16 RegisterNo,  u32 RegisterValue)
78 {
79         struct wb35_reg *reg = &pHwData->reg;
80         switch (RegisterNo) {
81         case 0x3b0: reg->U1B0 = RegisterValue; break;
82         case 0x3bc: reg->U1BC_LEDConfigure = RegisterValue; break;
83         case 0x400: reg->D00_DmaControl = RegisterValue; break;
84         case 0x800: reg->M00_MacControl = RegisterValue; break;
85         case 0x804: reg->M04_MulticastAddress1 = RegisterValue; break;
86         case 0x808: reg->M08_MulticastAddress2 = RegisterValue; break;
87         case 0x824: reg->M24_MacControl = RegisterValue; break;
88         case 0x828: reg->M28_MacControl = RegisterValue; break;
89         case 0x82c: reg->M2C_MacControl = RegisterValue; break;
90         case 0x838: reg->M38_MacControl = RegisterValue; break;
91         case 0x840: reg->M40_MacControl = RegisterValue; break;
92         case 0x844: reg->M44_MacControl = RegisterValue; break;
93         case 0x848: reg->M48_MacControl = RegisterValue; break;
94         case 0x84c: reg->M4C_MacStatus = RegisterValue; break;
95         case 0x860: reg->M60_MacControl = RegisterValue; break;
96         case 0x868: reg->M68_MacControl = RegisterValue; break;
97         case 0x870: reg->M70_MacControl = RegisterValue; break;
98         case 0x874: reg->M74_MacControl = RegisterValue; break;
99         case 0x878: reg->M78_ERPInformation = RegisterValue; break;
100         case 0x87C: reg->M7C_MacControl = RegisterValue; break;
101         case 0x880: reg->M80_MacControl = RegisterValue; break;
102         case 0x884: reg->M84_MacControl = RegisterValue; break;
103         case 0x888: reg->M88_MacControl = RegisterValue; break;
104         case 0x898: reg->M98_MacControl = RegisterValue; break;
105         case 0x100c: reg->BB0C = RegisterValue; break;
106         case 0x102c: reg->BB2C = RegisterValue; break;
107         case 0x1030: reg->BB30 = RegisterValue; break;
108         case 0x103c: reg->BB3C = RegisterValue; break;
109         case 0x1048: reg->BB48 = RegisterValue; break;
110         case 0x104c: reg->BB4C = RegisterValue; break;
111         case 0x1050: reg->BB50 = RegisterValue; break;
112         case 0x1054: reg->BB54 = RegisterValue; break;
113         case 0x1058: reg->BB58 = RegisterValue; break;
114         case 0x105c: reg->BB5C = RegisterValue; break;
115         case 0x1060: reg->BB60 = RegisterValue; break;
116         }
117 }
118
119 // true  : read command process successfully
120 // false : register not support
121 unsigned char
122 Wb35Reg_WriteSync(  struct hw_data * pHwData,  u16 RegisterNo,  u32 RegisterValue )
123 {
124         struct wb35_reg *reg = &pHwData->reg;
125         int ret = -1;
126
127         // Module shutdown
128         if (pHwData->SurpriseRemove)
129                 return false;
130
131         RegisterValue = cpu_to_le32(RegisterValue);
132
133         // update the register by send usb message------------------------------------
134         reg->SyncIoPause = 1;
135
136         // 20060717.5 Wait until EP0VM stop
137         while (reg->EP0vm_state != VM_STOP)
138                 msleep(10);
139
140         // Sync IoCallDriver
141         reg->EP0vm_state = VM_RUNNING;
142         ret = usb_control_msg( pHwData->WbUsb.udev,
143                                usb_sndctrlpipe( pHwData->WbUsb.udev, 0 ),
144                                0x03, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
145                                0x0,RegisterNo, &RegisterValue, 4, HZ*100 );
146         reg->EP0vm_state = VM_STOP;
147         reg->SyncIoPause = 0;
148
149         Wb35Reg_EP0VM_start(pHwData);
150
151         if (ret < 0) {
152                 #ifdef _PE_REG_DUMP_
153                 printk("EP0 Write register usb message sending error\n");
154                 #endif
155
156                 pHwData->SurpriseRemove = 1; // 20060704.2
157                 return false;
158         }
159
160         return true;
161 }
162
163 // true  : read command process successfully
164 // false : register not support
165 unsigned char
166 Wb35Reg_Write(  struct hw_data * pHwData,  u16 RegisterNo,  u32 RegisterValue )
167 {
168         struct wb35_reg *reg = &pHwData->reg;
169         struct usb_ctrlrequest *dr;
170         struct urb      *urb = NULL;
171         struct wb35_reg_queue *reg_queue = NULL;
172         u16             UrbSize;
173
174
175         // Module shutdown
176         if (pHwData->SurpriseRemove)
177                 return false;
178
179         // update the register by send urb request------------------------------------
180         UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
181         reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
182         urb = usb_alloc_urb(0, GFP_ATOMIC);
183         if (urb && reg_queue) {
184                 reg_queue->DIRECT = 1;// burst write register
185                 reg_queue->INDEX = RegisterNo;
186                 reg_queue->VALUE = cpu_to_le32(RegisterValue);
187                 reg_queue->RESERVED_VALID = false;
188                 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
189                 dr->bRequestType = USB_TYPE_VENDOR|USB_DIR_OUT |USB_RECIP_DEVICE;
190                 dr->bRequest = 0x03; // USB or vendor-defined request code, burst mode
191                 dr->wValue = cpu_to_le16(0x0);
192                 dr->wIndex = cpu_to_le16(RegisterNo);
193                 dr->wLength = cpu_to_le16(4);
194
195                 // Enter the sending queue
196                 reg_queue->Next = NULL;
197                 reg_queue->pUsbReq = dr;
198                 reg_queue->urb = urb;
199
200                 spin_lock_irq(&reg->EP0VM_spin_lock );
201                 if (reg->reg_first == NULL)
202                         reg->reg_first = reg_queue;
203                 else
204                         reg->reg_last->Next = reg_queue;
205                 reg->reg_last = reg_queue;
206
207                 spin_unlock_irq( &reg->EP0VM_spin_lock );
208
209                 // Start EP0VM
210                 Wb35Reg_EP0VM_start(pHwData);
211
212                 return true;
213         } else {
214                 if (urb)
215                         usb_free_urb(urb);
216                 kfree(reg_queue);
217                 return false;
218         }
219 }
220
221 //This command will be executed with a user defined value. When it completes,
222 //this value is useful. For example, hal_set_current_channel will use it.
223 // true  : read command process successfully
224 // false : register not support
225 unsigned char
226 Wb35Reg_WriteWithCallbackValue( struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue,
227                                 s8 *pValue, s8 Len)
228 {
229         struct wb35_reg *reg = &pHwData->reg;
230         struct usb_ctrlrequest *dr;
231         struct urb      *urb = NULL;
232         struct wb35_reg_queue *reg_queue = NULL;
233         u16             UrbSize;
234
235         // Module shutdown
236         if (pHwData->SurpriseRemove)
237                 return false;
238
239         // update the register by send urb request------------------------------------
240         UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
241         reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
242         urb = usb_alloc_urb(0, GFP_ATOMIC);
243         if (urb && reg_queue) {
244                 reg_queue->DIRECT = 1;// burst write register
245                 reg_queue->INDEX = RegisterNo;
246                 reg_queue->VALUE = cpu_to_le32(RegisterValue);
247                 //NOTE : Users must guarantee the size of value will not exceed the buffer size.
248                 memcpy(reg_queue->RESERVED, pValue, Len);
249                 reg_queue->RESERVED_VALID = true;
250                 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
251                 dr->bRequestType = USB_TYPE_VENDOR|USB_DIR_OUT |USB_RECIP_DEVICE;
252                 dr->bRequest = 0x03; // USB or vendor-defined request code, burst mode
253                 dr->wValue = cpu_to_le16(0x0);
254                 dr->wIndex = cpu_to_le16(RegisterNo);
255                 dr->wLength = cpu_to_le16(4);
256
257                 // Enter the sending queue
258                 reg_queue->Next = NULL;
259                 reg_queue->pUsbReq = dr;
260                 reg_queue->urb = urb;
261                 spin_lock_irq (&reg->EP0VM_spin_lock );
262                 if( reg->reg_first == NULL )
263                         reg->reg_first = reg_queue;
264                 else
265                         reg->reg_last->Next = reg_queue;
266                 reg->reg_last = reg_queue;
267
268                 spin_unlock_irq ( &reg->EP0VM_spin_lock );
269
270                 // Start EP0VM
271                 Wb35Reg_EP0VM_start(pHwData);
272                 return true;
273         } else {
274                 if (urb)
275                         usb_free_urb(urb);
276                 kfree(reg_queue);
277                 return false;
278         }
279 }
280
281 // true  : read command process successfully
282 // false : register not support
283 // pRegisterValue : It must be a resident buffer due to asynchronous read register.
284 unsigned char
285 Wb35Reg_ReadSync(  struct hw_data * pHwData,  u16 RegisterNo,   u32 * pRegisterValue )
286 {
287         struct wb35_reg *reg = &pHwData->reg;
288         u32 *   pltmp = pRegisterValue;
289         int ret = -1;
290
291         // Module shutdown
292         if (pHwData->SurpriseRemove)
293                 return false;
294
295         // Read the register by send usb message------------------------------------
296
297         reg->SyncIoPause = 1;
298
299         // 20060717.5 Wait until EP0VM stop
300         while (reg->EP0vm_state != VM_STOP)
301                 msleep(10);
302
303         reg->EP0vm_state = VM_RUNNING;
304         ret = usb_control_msg( pHwData->WbUsb.udev,
305                                usb_rcvctrlpipe(pHwData->WbUsb.udev, 0),
306                                0x01, USB_TYPE_VENDOR|USB_RECIP_DEVICE|USB_DIR_IN,
307                                0x0, RegisterNo, pltmp, 4, HZ*100 );
308
309         *pRegisterValue = cpu_to_le32(*pltmp);
310
311         reg->EP0vm_state = VM_STOP;
312
313         Wb35Reg_Update( pHwData, RegisterNo, *pRegisterValue );
314         reg->SyncIoPause = 0;
315
316         Wb35Reg_EP0VM_start( pHwData );
317
318         if (ret < 0) {
319                 #ifdef _PE_REG_DUMP_
320                 printk("EP0 Read register usb message sending error\n");
321                 #endif
322
323                 pHwData->SurpriseRemove = 1; // 20060704.2
324                 return false;
325         }
326
327         return true;
328 }
329
330 // true  : read command process successfully
331 // false : register not support
332 // pRegisterValue : It must be a resident buffer due to asynchronous read register.
333 unsigned char
334 Wb35Reg_Read(struct hw_data * pHwData, u16 RegisterNo,  u32 * pRegisterValue )
335 {
336         struct wb35_reg *reg = &pHwData->reg;
337         struct usb_ctrlrequest * dr;
338         struct urb      *urb;
339         struct wb35_reg_queue *reg_queue;
340         u16             UrbSize;
341
342         // Module shutdown
343         if (pHwData->SurpriseRemove)
344                 return false;
345
346         // update the variable by send Urb to read register ------------------------------------
347         UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
348         reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
349         urb = usb_alloc_urb(0, GFP_ATOMIC);
350         if( urb && reg_queue )
351         {
352                 reg_queue->DIRECT = 0;// read register
353                 reg_queue->INDEX = RegisterNo;
354                 reg_queue->pBuffer = pRegisterValue;
355                 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
356                 dr->bRequestType = USB_TYPE_VENDOR|USB_RECIP_DEVICE|USB_DIR_IN;
357                 dr->bRequest = 0x01; // USB or vendor-defined request code, burst mode
358                 dr->wValue = cpu_to_le16(0x0);
359                 dr->wIndex = cpu_to_le16 (RegisterNo);
360                 dr->wLength = cpu_to_le16 (4);
361
362                 // Enter the sending queue
363                 reg_queue->Next = NULL;
364                 reg_queue->pUsbReq = dr;
365                 reg_queue->urb = urb;
366                 spin_lock_irq ( &reg->EP0VM_spin_lock );
367                 if( reg->reg_first == NULL )
368                         reg->reg_first = reg_queue;
369                 else
370                         reg->reg_last->Next = reg_queue;
371                 reg->reg_last = reg_queue;
372
373                 spin_unlock_irq( &reg->EP0VM_spin_lock );
374
375                 // Start EP0VM
376                 Wb35Reg_EP0VM_start( pHwData );
377
378                 return true;
379         } else {
380                 if (urb)
381                         usb_free_urb( urb );
382                 kfree(reg_queue);
383                 return false;
384         }
385 }
386
387
388 void
389 Wb35Reg_EP0VM_start(  struct hw_data * pHwData )
390 {
391         struct wb35_reg *reg = &pHwData->reg;
392
393         if (atomic_inc_return(&reg->RegFireCount) == 1) {
394                 reg->EP0vm_state = VM_RUNNING;
395                 Wb35Reg_EP0VM(pHwData);
396         } else
397                 atomic_dec(&reg->RegFireCount);
398 }
399
400 void
401 Wb35Reg_EP0VM(struct hw_data * pHwData )
402 {
403         struct wb35_reg *reg = &pHwData->reg;
404         struct urb      *urb;
405         struct usb_ctrlrequest *dr;
406         u32 *           pBuffer;
407         int                     ret = -1;
408         struct wb35_reg_queue *reg_queue;
409
410
411         if (reg->SyncIoPause)
412                 goto cleanup;
413
414         if (pHwData->SurpriseRemove)
415                 goto cleanup;
416
417         // Get the register data and send to USB through Irp
418         spin_lock_irq( &reg->EP0VM_spin_lock );
419         reg_queue = reg->reg_first;
420         spin_unlock_irq( &reg->EP0VM_spin_lock );
421
422         if (!reg_queue)
423                 goto cleanup;
424
425         // Get an Urb, send it
426         urb = (struct urb *)reg_queue->urb;
427
428         dr = reg_queue->pUsbReq;
429         urb = reg_queue->urb;
430         pBuffer = reg_queue->pBuffer;
431         if (reg_queue->DIRECT == 1) // output
432                 pBuffer = &reg_queue->VALUE;
433
434         usb_fill_control_urb( urb, pHwData->WbUsb.udev,
435                               REG_DIRECTION(pHwData->WbUsb.udev,reg_queue),
436                               (u8 *)dr,pBuffer,cpu_to_le16(dr->wLength),
437                               Wb35Reg_EP0VM_complete, (void*)pHwData);
438
439         reg->EP0vm_state = VM_RUNNING;
440
441         ret = usb_submit_urb(urb, GFP_ATOMIC);
442
443         if (ret < 0) {
444 #ifdef _PE_REG_DUMP_
445                 printk("EP0 Irp sending error\n");
446 #endif
447                 goto cleanup;
448         }
449
450         return;
451
452  cleanup:
453         reg->EP0vm_state = VM_STOP;
454         atomic_dec(&reg->RegFireCount);
455 }
456
457
458 void
459 Wb35Reg_EP0VM_complete(struct urb *urb)
460 {
461         struct hw_data *  pHwData = (struct hw_data *)urb->context;
462         struct wb35_reg *reg = &pHwData->reg;
463         struct wb35_reg_queue *reg_queue;
464
465
466         // Variable setting
467         reg->EP0vm_state = VM_COMPLETED;
468         reg->EP0VM_status = urb->status;
469
470         if (pHwData->SurpriseRemove) { // Let WbWlanHalt to handle surprise remove
471                 reg->EP0vm_state = VM_STOP;
472                 atomic_dec(&reg->RegFireCount);
473         } else {
474                 // Complete to send, remove the URB from the first
475                 spin_lock_irq( &reg->EP0VM_spin_lock );
476                 reg_queue = reg->reg_first;
477                 if (reg_queue == reg->reg_last)
478                         reg->reg_last = NULL;
479                 reg->reg_first = reg->reg_first->Next;
480                 spin_unlock_irq( &reg->EP0VM_spin_lock );
481
482                 if (reg->EP0VM_status) {
483 #ifdef _PE_REG_DUMP_
484                         printk("EP0 IoCompleteRoutine return error\n");
485 #endif
486                         reg->EP0vm_state = VM_STOP;
487                         pHwData->SurpriseRemove = 1;
488                 } else {
489                         // Success. Update the result
490
491                         // Start the next send
492                         Wb35Reg_EP0VM(pHwData);
493                 }
494
495                 kfree(reg_queue);
496         }
497
498         usb_free_urb(urb);
499 }
500
501
502 void
503 Wb35Reg_destroy(struct hw_data * pHwData)
504 {
505         struct wb35_reg *reg = &pHwData->reg;
506         struct urb      *urb;
507         struct wb35_reg_queue *reg_queue;
508
509
510         Uxx_power_off_procedure(pHwData);
511
512         // Wait for Reg operation completed
513         do {
514                 msleep(10); // Delay for waiting function enter 940623.1.a
515         } while (reg->EP0vm_state != VM_STOP);
516         msleep(10);  // Delay for waiting function enter 940623.1.b
517
518         // Release all the data in RegQueue
519         spin_lock_irq( &reg->EP0VM_spin_lock );
520         reg_queue = reg->reg_first;
521         while (reg_queue) {
522                 if (reg_queue == reg->reg_last)
523                         reg->reg_last = NULL;
524                 reg->reg_first = reg->reg_first->Next;
525
526                 urb = reg_queue->urb;
527                 spin_unlock_irq( &reg->EP0VM_spin_lock );
528                 if (urb) {
529                         usb_free_urb(urb);
530                         kfree(reg_queue);
531                 } else {
532                         #ifdef _PE_REG_DUMP_
533                         printk("EP0 queue release error\n");
534                         #endif
535                 }
536                 spin_lock_irq( &reg->EP0VM_spin_lock );
537
538                 reg_queue = reg->reg_first;
539         }
540         spin_unlock_irq( &reg->EP0VM_spin_lock );
541 }
542
543 //====================================================================================
544 // The function can be run in passive-level only.
545 //====================================================================================
546 unsigned char Wb35Reg_initial(struct hw_data * pHwData)
547 {
548         struct wb35_reg *reg=&pHwData->reg;
549         u32 ltmp;
550         u32 SoftwareSet, VCO_trim, TxVga, Region_ScanInterval;
551
552         // Spin lock is acquired for read and write IRP command
553         spin_lock_init( &reg->EP0VM_spin_lock );
554
555         // Getting RF module type from EEPROM ------------------------------------
556         Wb35Reg_WriteSync( pHwData, 0x03b4, 0x080d0000 ); // Start EEPROM access + Read + address(0x0d)
557         Wb35Reg_ReadSync( pHwData, 0x03b4, &ltmp );
558
559         //Update RF module type and determine the PHY type by inf or EEPROM
560         reg->EEPROMPhyType = (u8)( ltmp & 0xff );
561         // 0 V MAX2825, 1 V MAX2827, 2 V MAX2828, 3 V MAX2829
562         // 16V AL2230, 17 - AL7230, 18 - AL2230S
563         // 32 Reserved
564         // 33 - W89RF242(TxVGA 0~19), 34 - W89RF242(TxVGA 0~34)
565         if (reg->EEPROMPhyType != RF_DECIDE_BY_INF) {
566                 if( (reg->EEPROMPhyType == RF_MAXIM_2825)       ||
567                         (reg->EEPROMPhyType == RF_MAXIM_2827)   ||
568                         (reg->EEPROMPhyType == RF_MAXIM_2828)   ||
569                         (reg->EEPROMPhyType == RF_MAXIM_2829)   ||
570                         (reg->EEPROMPhyType == RF_MAXIM_V1)     ||
571                         (reg->EEPROMPhyType == RF_AIROHA_2230)  ||
572                         (reg->EEPROMPhyType == RF_AIROHA_2230S)    ||
573                         (reg->EEPROMPhyType == RF_AIROHA_7230)  ||
574                         (reg->EEPROMPhyType == RF_WB_242)               ||
575                         (reg->EEPROMPhyType == RF_WB_242_1))
576                         pHwData->phy_type = reg->EEPROMPhyType;
577         }
578
579         // Power On procedure running. The relative parameter will be set according to phy_type
580         Uxx_power_on_procedure( pHwData );
581
582         // Reading MAC address
583         Uxx_ReadEthernetAddress( pHwData );
584
585         // Read VCO trim for RF parameter
586         Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08200000 );
587         Wb35Reg_ReadSync( pHwData, 0x03b4, &VCO_trim );
588
589         // Read Antenna On/Off of software flag
590         Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08210000 );
591         Wb35Reg_ReadSync( pHwData, 0x03b4, &SoftwareSet );
592
593         // Read TXVGA
594         Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08100000 );
595         Wb35Reg_ReadSync( pHwData, 0x03b4, &TxVga );
596
597         // Get Scan interval setting from EEPROM offset 0x1c
598         Wb35Reg_WriteSync( pHwData, 0x03b4, 0x081d0000 );
599         Wb35Reg_ReadSync( pHwData, 0x03b4, &Region_ScanInterval );
600
601         // Update Ethernet address
602         memcpy( pHwData->CurrentMacAddress, pHwData->PermanentMacAddress, ETH_ALEN );
603
604         // Update software variable
605         pHwData->SoftwareSet = (u16)(SoftwareSet & 0xffff);
606         TxVga &= 0x000000ff;
607         pHwData->PowerIndexFromEEPROM = (u8)TxVga;
608         pHwData->VCO_trim = (u8)VCO_trim & 0xff;
609         if (pHwData->VCO_trim == 0xff)
610                 pHwData->VCO_trim = 0x28;
611
612         reg->EEPROMRegion = (u8)(Region_ScanInterval>>8); // 20060720
613         if( reg->EEPROMRegion<1 || reg->EEPROMRegion>6 )
614                 reg->EEPROMRegion = REGION_AUTO;
615
616         //For Get Tx VGA from EEPROM 20060315.5 move here
617         GetTxVgaFromEEPROM( pHwData );
618
619         // Set Scan Interval
620         pHwData->Scan_Interval = (u8)(Region_ScanInterval & 0xff) * 10;
621         if ((pHwData->Scan_Interval == 2550) || (pHwData->Scan_Interval < 10)) // Is default setting 0xff * 10
622                 pHwData->Scan_Interval = SCAN_MAX_CHNL_TIME;
623
624         // Initial register
625         RFSynthesizer_initial(pHwData);
626
627         BBProcessor_initial(pHwData); // Async write, must wait until complete
628
629         Wb35Reg_phy_calibration(pHwData);
630
631         Mxx_initial(pHwData);
632         Dxx_initial(pHwData);
633
634         if (pHwData->SurpriseRemove)
635                 return false;
636         else
637                 return true; // Initial fail
638 }
639
640 //===================================================================================
641 //  CardComputeCrc --
642 //
643 //  Description:
644 //    Runs the AUTODIN II CRC algorithm on buffer Buffer of length, Length.
645 //
646 //  Arguments:
647 //    Buffer - the input buffer
648 //    Length - the length of Buffer
649 //
650 //  Return Value:
651 //    The 32-bit CRC value.
652 //
653 //  Note:
654 //    This is adapted from the comments in the assembly language
655 //    version in _GENREQ.ASM of the DWB NE1000/2000 driver.
656 //==================================================================================
657 u32
658 CardComputeCrc(u8 * Buffer, u32 Length)
659 {
660     u32 Crc, Carry;
661     u32  i, j;
662     u8 CurByte;
663
664     Crc = 0xffffffff;
665
666     for (i = 0; i < Length; i++) {
667
668         CurByte = Buffer[i];
669
670         for (j = 0; j < 8; j++) {
671
672             Carry     = ((Crc & 0x80000000) ? 1 : 0) ^ (CurByte & 0x01);
673             Crc     <<= 1;
674             CurByte >>= 1;
675
676             if (Carry) {
677                 Crc =(Crc ^ 0x04c11db6) | Carry;
678             }
679         }
680     }
681
682     return Crc;
683 }
684
685
686 //==================================================================
687 // BitReverse --
688 //   Reverse the bits in the input argument, dwData, which is
689 //   regarded as a string of bits with the length, DataLength.
690 //
691 // Arguments:
692 //   dwData     :
693 //   DataLength :
694 //
695 // Return:
696 //   The converted value.
697 //==================================================================
698 u32 BitReverse( u32 dwData, u32 DataLength)
699 {
700         u32   HalfLength, i, j;
701         u32   BitA, BitB;
702
703         if ( DataLength <= 0)       return 0;   // No conversion is done.
704         dwData = dwData & (0xffffffff >> (32 - DataLength));
705
706         HalfLength = DataLength / 2;
707         for ( i = 0, j = DataLength-1 ; i < HalfLength; i++, j--)
708         {
709                 BitA = GetBit( dwData, i);
710                 BitB = GetBit( dwData, j);
711                 if (BitA && !BitB) {
712                         dwData = ClearBit( dwData, i);
713                         dwData = SetBit( dwData, j);
714                 } else if (!BitA && BitB) {
715                         dwData = SetBit( dwData, i);
716                         dwData = ClearBit( dwData, j);
717                 } else
718                 {
719                         // Do nothing since these two bits are of the save values.
720                 }
721         }
722
723         return dwData;
724 }
725
726 void Wb35Reg_phy_calibration(  struct hw_data * pHwData )
727 {
728         u32 BB3c, BB54;
729
730         if ((pHwData->phy_type == RF_WB_242) ||
731                 (pHwData->phy_type == RF_WB_242_1)) {
732                 phy_calibration_winbond ( pHwData, 2412 ); // Sync operation
733                 Wb35Reg_ReadSync( pHwData, 0x103c, &BB3c );
734                 Wb35Reg_ReadSync( pHwData, 0x1054, &BB54 );
735
736                 pHwData->BB3c_cal = BB3c;
737                 pHwData->BB54_cal = BB54;
738
739                 RFSynthesizer_initial(pHwData);
740                 BBProcessor_initial(pHwData); // Async operation
741
742                 Wb35Reg_WriteSync( pHwData, 0x103c, BB3c );
743                 Wb35Reg_WriteSync( pHwData, 0x1054, BB54 );
744         }
745 }
746
747