]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/staging/wlan-ng/hfa384x_usb.c
Merge remote-tracking branch 'staging/staging-next'
[karo-tx-linux.git] / drivers / staging / wlan-ng / hfa384x_usb.c
1 /* src/prism2/driver/hfa384x_usb.c
2 *
3 * Functions that talk to the USB variantof the Intersil hfa384x MAC
4 *
5 * Copyright (C) 1999 AbsoluteValue Systems, Inc.  All Rights Reserved.
6 * --------------------------------------------------------------------
7 *
8 * linux-wlan
9 *
10 *   The contents of this file are subject to the Mozilla Public
11 *   License Version 1.1 (the "License"); you may not use this file
12 *   except in compliance with the License. You may obtain a copy of
13 *   the License at http://www.mozilla.org/MPL/
14 *
15 *   Software distributed under the License is distributed on an "AS
16 *   IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
17 *   implied. See the License for the specific language governing
18 *   rights and limitations under the License.
19 *
20 *   Alternatively, the contents of this file may be used under the
21 *   terms of the GNU Public License version 2 (the "GPL"), in which
22 *   case the provisions of the GPL are applicable instead of the
23 *   above.  If you wish to allow the use of your version of this file
24 *   only under the terms of the GPL and not to allow others to use
25 *   your version of this file under the MPL, indicate your decision
26 *   by deleting the provisions above and replace them with the notice
27 *   and other provisions required by the GPL.  If you do not delete
28 *   the provisions above, a recipient may use your version of this
29 *   file under either the MPL or the GPL.
30 *
31 * --------------------------------------------------------------------
32 *
33 * Inquiries regarding the linux-wlan Open Source project can be
34 * made directly to:
35 *
36 * AbsoluteValue Systems Inc.
37 * info@linux-wlan.com
38 * http://www.linux-wlan.com
39 *
40 * --------------------------------------------------------------------
41 *
42 * Portions of the development of this software were funded by
43 * Intersil Corporation as part of PRISM(R) chipset product development.
44 *
45 * --------------------------------------------------------------------
46 *
47 * This file implements functions that correspond to the prism2/hfa384x
48 * 802.11 MAC hardware and firmware host interface.
49 *
50 * The functions can be considered to represent several levels of
51 * abstraction.  The lowest level functions are simply C-callable wrappers
52 * around the register accesses.  The next higher level represents C-callable
53 * prism2 API functions that match the Intersil documentation as closely
54 * as is reasonable.  The next higher layer implements common sequences
55 * of invocations of the API layer (e.g. write to bap, followed by cmd).
56 *
57 * Common sequences:
58 * hfa384x_drvr_xxx      Highest level abstractions provided by the
59 *                       hfa384x code.  They are driver defined wrappers
60 *                       for common sequences.  These functions generally
61 *                       use the services of the lower levels.
62 *
63 * hfa384x_drvr_xxxconfig  An example of the drvr level abstraction. These
64 *                       functions are wrappers for the RID get/set
65 *                       sequence. They call copy_[to|from]_bap() and
66 *                       cmd_access(). These functions operate on the
67 *                       RIDs and buffers without validation. The caller
68 *                       is responsible for that.
69 *
70 * API wrapper functions:
71 * hfa384x_cmd_xxx       functions that provide access to the f/w commands.
72 *                       The function arguments correspond to each command
73 *                       argument, even command arguments that get packed
74 *                       into single registers.  These functions _just_
75 *                       issue the command by setting the cmd/parm regs
76 *                       & reading the status/resp regs.  Additional
77 *                       activities required to fully use a command
78 *                       (read/write from/to bap, get/set int status etc.)
79 *                       are implemented separately.  Think of these as
80 *                       C-callable prism2 commands.
81 *
82 * Lowest Layer Functions:
83 * hfa384x_docmd_xxx     These functions implement the sequence required
84 *                       to issue any prism2 command.  Primarily used by the
85 *                       hfa384x_cmd_xxx functions.
86 *
87 * hfa384x_bap_xxx       BAP read/write access functions.
88 *                       Note: we usually use BAP0 for non-interrupt context
89 *                        and BAP1 for interrupt context.
90 *
91 * hfa384x_dl_xxx        download related functions.
92 *
93 * Driver State Issues:
94 * Note that there are two pairs of functions that manage the
95 * 'initialized' and 'running' states of the hw/MAC combo.  The four
96 * functions are create(), destroy(), start(), and stop().  create()
97 * sets up the data structures required to support the hfa384x_*
98 * functions and destroy() cleans them up.  The start() function gets
99 * the actual hardware running and enables the interrupts.  The stop()
100 * function shuts the hardware down.  The sequence should be:
101 * create()
102 * start()
103 *  .
104 *  .  Do interesting things w/ the hardware
105 *  .
106 * stop()
107 * destroy()
108 *
109 * Note that destroy() can be called without calling stop() first.
110 * --------------------------------------------------------------------
111 */
112
113 #include <linux/module.h>
114 #include <linux/kernel.h>
115 #include <linux/sched.h>
116 #include <linux/types.h>
117 #include <linux/slab.h>
118 #include <linux/wireless.h>
119 #include <linux/netdevice.h>
120 #include <linux/timer.h>
121 #include <linux/io.h>
122 #include <linux/delay.h>
123 #include <asm/byteorder.h>
124 #include <linux/bitops.h>
125 #include <linux/list.h>
126 #include <linux/usb.h>
127 #include <linux/byteorder/generic.h>
128
129 #define SUBMIT_URB(u, f)  usb_submit_urb(u, f)
130
131 #include "p80211types.h"
132 #include "p80211hdr.h"
133 #include "p80211mgmt.h"
134 #include "p80211conv.h"
135 #include "p80211msg.h"
136 #include "p80211netdev.h"
137 #include "p80211req.h"
138 #include "p80211metadef.h"
139 #include "p80211metastruct.h"
140 #include "hfa384x.h"
141 #include "prism2mgmt.h"
142
143 enum cmd_mode {
144         DOWAIT = 0,
145         DOASYNC
146 };
147
148 #define THROTTLE_JIFFIES        (HZ / 8)
149 #define URB_ASYNC_UNLINK 0
150 #define USB_QUEUE_BULK 0
151
152 #define ROUNDUP64(a) (((a) + 63) & ~63)
153
154 #ifdef DEBUG_USB
155 static void dbprint_urb(struct urb *urb);
156 #endif
157
158 static void
159 hfa384x_int_rxmonitor(wlandevice_t *wlandev, hfa384x_usb_rxfrm_t *rxfrm);
160
161 static void hfa384x_usb_defer(struct work_struct *data);
162
163 static int submit_rx_urb(hfa384x_t *hw, gfp_t flags);
164
165 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t flags);
166
167 /*---------------------------------------------------*/
168 /* Callbacks */
169 static void hfa384x_usbout_callback(struct urb *urb);
170 static void hfa384x_ctlxout_callback(struct urb *urb);
171 static void hfa384x_usbin_callback(struct urb *urb);
172
173 static void
174 hfa384x_usbin_txcompl(wlandevice_t *wlandev, hfa384x_usbin_t *usbin);
175
176 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb);
177
178 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin);
179
180 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
181                                int urb_status);
182
183 /*---------------------------------------------------*/
184 /* Functions to support the prism2 usb command queue */
185
186 static void hfa384x_usbctlxq_run(hfa384x_t *hw);
187
188 static void hfa384x_usbctlx_reqtimerfn(unsigned long data);
189
190 static void hfa384x_usbctlx_resptimerfn(unsigned long data);
191
192 static void hfa384x_usb_throttlefn(unsigned long data);
193
194 static void hfa384x_usbctlx_completion_task(unsigned long data);
195
196 static void hfa384x_usbctlx_reaper_task(unsigned long data);
197
198 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
199
200 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
201
202 struct usbctlx_completor {
203         int (*complete)(struct usbctlx_completor *);
204 };
205
206 static int
207 hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
208                               hfa384x_usbctlx_t *ctlx,
209                               struct usbctlx_completor *completor);
210
211 static int
212 unlocked_usbctlx_cancel_async(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
213
214 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
215
216 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
217
218 static int
219 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
220                    hfa384x_cmdresult_t *result);
221
222 static void
223 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
224                        hfa384x_rridresult_t *result);
225
226 /*---------------------------------------------------*/
227 /* Low level req/resp CTLX formatters and submitters */
228 static int
229 hfa384x_docmd(hfa384x_t *hw,
230               enum cmd_mode mode,
231               hfa384x_metacmd_t *cmd,
232               ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
233
234 static int
235 hfa384x_dorrid(hfa384x_t *hw,
236                enum cmd_mode mode,
237                u16 rid,
238                void *riddata,
239                unsigned int riddatalen,
240                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
241
242 static int
243 hfa384x_dowrid(hfa384x_t *hw,
244                enum cmd_mode mode,
245                u16 rid,
246                void *riddata,
247                unsigned int riddatalen,
248                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
249
250 static int
251 hfa384x_dormem(hfa384x_t *hw,
252                enum cmd_mode mode,
253                u16 page,
254                u16 offset,
255                void *data,
256                unsigned int len,
257                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
258
259 static int
260 hfa384x_dowmem(hfa384x_t *hw,
261                enum cmd_mode mode,
262                u16 page,
263                u16 offset,
264                void *data,
265                unsigned int len,
266                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
267
268 static int hfa384x_isgood_pdrcode(u16 pdrcode);
269
270 static inline const char *ctlxstr(CTLX_STATE s)
271 {
272         static const char * const ctlx_str[] = {
273                 "Initial state",
274                 "Complete",
275                 "Request failed",
276                 "Request pending",
277                 "Request packet submitted",
278                 "Request packet completed",
279                 "Response packet completed"
280         };
281
282         return ctlx_str[s];
283 };
284
285 static inline hfa384x_usbctlx_t *get_active_ctlx(hfa384x_t *hw)
286 {
287         return list_entry(hw->ctlxq.active.next, hfa384x_usbctlx_t, list);
288 }
289
290 #ifdef DEBUG_USB
291 void dbprint_urb(struct urb *urb)
292 {
293         pr_debug("urb->pipe=0x%08x\n", urb->pipe);
294         pr_debug("urb->status=0x%08x\n", urb->status);
295         pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
296         pr_debug("urb->transfer_buffer=0x%08x\n",
297                  (unsigned int)urb->transfer_buffer);
298         pr_debug("urb->transfer_buffer_length=0x%08x\n",
299                  urb->transfer_buffer_length);
300         pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
301         pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth);
302         pr_debug("urb->setup_packet(ctl)=0x%08x\n",
303                  (unsigned int)urb->setup_packet);
304         pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
305         pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
306         pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
307         pr_debug("urb->timeout=0x%08x\n", urb->timeout);
308         pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
309         pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
310 }
311 #endif
312
313 /*----------------------------------------------------------------
314 * submit_rx_urb
315 *
316 * Listen for input data on the BULK-IN pipe. If the pipe has
317 * stalled then schedule it to be reset.
318 *
319 * Arguments:
320 *       hw              device struct
321 *       memflags        memory allocation flags
322 *
323 * Returns:
324 *       error code from submission
325 *
326 * Call context:
327 *       Any
328 ----------------------------------------------------------------*/
329 static int submit_rx_urb(hfa384x_t *hw, gfp_t memflags)
330 {
331         struct sk_buff *skb;
332         int result;
333
334         skb = dev_alloc_skb(sizeof(hfa384x_usbin_t));
335         if (skb == NULL) {
336                 result = -ENOMEM;
337                 goto done;
338         }
339
340         /* Post the IN urb */
341         usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
342                           hw->endp_in,
343                           skb->data, sizeof(hfa384x_usbin_t),
344                           hfa384x_usbin_callback, hw->wlandev);
345
346         hw->rx_urb_skb = skb;
347
348         result = -ENOLINK;
349         if (!hw->wlandev->hwremoved &&
350             !test_bit(WORK_RX_HALT, &hw->usb_flags)) {
351                 result = SUBMIT_URB(&hw->rx_urb, memflags);
352
353                 /* Check whether we need to reset the RX pipe */
354                 if (result == -EPIPE) {
355                         netdev_warn(hw->wlandev->netdev,
356                                     "%s rx pipe stalled: requesting reset\n",
357                                     hw->wlandev->netdev->name);
358                         if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
359                                 schedule_work(&hw->usb_work);
360                 }
361         }
362
363         /* Don't leak memory if anything should go wrong */
364         if (result != 0) {
365                 dev_kfree_skb(skb);
366                 hw->rx_urb_skb = NULL;
367         }
368
369 done:
370         return result;
371 }
372
373 /*----------------------------------------------------------------
374 * submit_tx_urb
375 *
376 * Prepares and submits the URB of transmitted data. If the
377 * submission fails then it will schedule the output pipe to
378 * be reset.
379 *
380 * Arguments:
381 *       hw              device struct
382 *       tx_urb          URB of data for transmission
383 *       memflags        memory allocation flags
384 *
385 * Returns:
386 *       error code from submission
387 *
388 * Call context:
389 *       Any
390 ----------------------------------------------------------------*/
391 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t memflags)
392 {
393         struct net_device *netdev = hw->wlandev->netdev;
394         int result;
395
396         result = -ENOLINK;
397         if (netif_running(netdev)) {
398                 if (!hw->wlandev->hwremoved &&
399                     !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
400                         result = SUBMIT_URB(tx_urb, memflags);
401
402                         /* Test whether we need to reset the TX pipe */
403                         if (result == -EPIPE) {
404                                 netdev_warn(hw->wlandev->netdev,
405                                             "%s tx pipe stalled: requesting reset\n",
406                                             netdev->name);
407                                 set_bit(WORK_TX_HALT, &hw->usb_flags);
408                                 schedule_work(&hw->usb_work);
409                         } else if (result == 0) {
410                                 netif_stop_queue(netdev);
411                         }
412                 }
413         }
414
415         return result;
416 }
417
418 /*----------------------------------------------------------------
419 * hfa394x_usb_defer
420 *
421 * There are some things that the USB stack cannot do while
422 * in interrupt context, so we arrange this function to run
423 * in process context.
424 *
425 * Arguments:
426 *       hw      device structure
427 *
428 * Returns:
429 *       nothing
430 *
431 * Call context:
432 *       process (by design)
433 ----------------------------------------------------------------*/
434 static void hfa384x_usb_defer(struct work_struct *data)
435 {
436         hfa384x_t *hw = container_of(data, struct hfa384x, usb_work);
437         struct net_device *netdev = hw->wlandev->netdev;
438
439         /* Don't bother trying to reset anything if the plug
440          * has been pulled ...
441          */
442         if (hw->wlandev->hwremoved)
443                 return;
444
445         /* Reception has stopped: try to reset the input pipe */
446         if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
447                 int ret;
448
449                 usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
450
451                 ret = usb_clear_halt(hw->usb, hw->endp_in);
452                 if (ret != 0) {
453                         netdev_err(hw->wlandev->netdev,
454                                    "Failed to clear rx pipe for %s: err=%d\n",
455                                    netdev->name, ret);
456                 } else {
457                         netdev_info(hw->wlandev->netdev, "%s rx pipe reset complete.\n",
458                                     netdev->name);
459                         clear_bit(WORK_RX_HALT, &hw->usb_flags);
460                         set_bit(WORK_RX_RESUME, &hw->usb_flags);
461                 }
462         }
463
464         /* Resume receiving data back from the device. */
465         if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
466                 int ret;
467
468                 ret = submit_rx_urb(hw, GFP_KERNEL);
469                 if (ret != 0) {
470                         netdev_err(hw->wlandev->netdev,
471                                    "Failed to resume %s rx pipe.\n",
472                                    netdev->name);
473                 } else {
474                         clear_bit(WORK_RX_RESUME, &hw->usb_flags);
475                 }
476         }
477
478         /* Transmission has stopped: try to reset the output pipe */
479         if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
480                 int ret;
481
482                 usb_kill_urb(&hw->tx_urb);
483                 ret = usb_clear_halt(hw->usb, hw->endp_out);
484                 if (ret != 0) {
485                         netdev_err(hw->wlandev->netdev,
486                                    "Failed to clear tx pipe for %s: err=%d\n",
487                                    netdev->name, ret);
488                 } else {
489                         netdev_info(hw->wlandev->netdev, "%s tx pipe reset complete.\n",
490                                     netdev->name);
491                         clear_bit(WORK_TX_HALT, &hw->usb_flags);
492                         set_bit(WORK_TX_RESUME, &hw->usb_flags);
493
494                         /* Stopping the BULK-OUT pipe also blocked
495                          * us from sending any more CTLX URBs, so
496                          * we need to re-run our queue ...
497                          */
498                         hfa384x_usbctlxq_run(hw);
499                 }
500         }
501
502         /* Resume transmitting. */
503         if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
504                 netif_wake_queue(hw->wlandev->netdev);
505 }
506
507 /*----------------------------------------------------------------
508 * hfa384x_create
509 *
510 * Sets up the hfa384x_t data structure for use.  Note this
511 * does _not_ initialize the actual hardware, just the data structures
512 * we use to keep track of its state.
513 *
514 * Arguments:
515 *       hw              device structure
516 *       irq             device irq number
517 *       iobase          i/o base address for register access
518 *       membase         memory base address for register access
519 *
520 * Returns:
521 *       nothing
522 *
523 * Side effects:
524 *
525 * Call context:
526 *       process
527 ----------------------------------------------------------------*/
528 void hfa384x_create(hfa384x_t *hw, struct usb_device *usb)
529 {
530         memset(hw, 0, sizeof(hfa384x_t));
531         hw->usb = usb;
532
533         /* set up the endpoints */
534         hw->endp_in = usb_rcvbulkpipe(usb, 1);
535         hw->endp_out = usb_sndbulkpipe(usb, 2);
536
537         /* Set up the waitq */
538         init_waitqueue_head(&hw->cmdq);
539
540         /* Initialize the command queue */
541         spin_lock_init(&hw->ctlxq.lock);
542         INIT_LIST_HEAD(&hw->ctlxq.pending);
543         INIT_LIST_HEAD(&hw->ctlxq.active);
544         INIT_LIST_HEAD(&hw->ctlxq.completing);
545         INIT_LIST_HEAD(&hw->ctlxq.reapable);
546
547         /* Initialize the authentication queue */
548         skb_queue_head_init(&hw->authq);
549
550         tasklet_init(&hw->reaper_bh,
551                      hfa384x_usbctlx_reaper_task, (unsigned long)hw);
552         tasklet_init(&hw->completion_bh,
553                      hfa384x_usbctlx_completion_task, (unsigned long)hw);
554         INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
555         INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
556
557         setup_timer(&hw->throttle, hfa384x_usb_throttlefn, (unsigned long)hw);
558
559         setup_timer(&hw->resptimer, hfa384x_usbctlx_resptimerfn,
560                     (unsigned long)hw);
561
562         setup_timer(&hw->reqtimer, hfa384x_usbctlx_reqtimerfn,
563                     (unsigned long)hw);
564
565         usb_init_urb(&hw->rx_urb);
566         usb_init_urb(&hw->tx_urb);
567         usb_init_urb(&hw->ctlx_urb);
568
569         hw->link_status = HFA384x_LINK_NOTCONNECTED;
570         hw->state = HFA384x_STATE_INIT;
571
572         INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
573         setup_timer(&hw->commsqual_timer, prism2sta_commsqual_timer,
574                     (unsigned long)hw);
575 }
576
577 /*----------------------------------------------------------------
578 * hfa384x_destroy
579 *
580 * Partner to hfa384x_create().  This function cleans up the hw
581 * structure so that it can be freed by the caller using a simple
582 * kfree.  Currently, this function is just a placeholder.  If, at some
583 * point in the future, an hw in the 'shutdown' state requires a 'deep'
584 * kfree, this is where it should be done.  Note that if this function
585 * is called on a _running_ hw structure, the drvr_stop() function is
586 * called.
587 *
588 * Arguments:
589 *       hw              device structure
590 *
591 * Returns:
592 *       nothing, this function is not allowed to fail.
593 *
594 * Side effects:
595 *
596 * Call context:
597 *       process
598 ----------------------------------------------------------------*/
599 void hfa384x_destroy(hfa384x_t *hw)
600 {
601         struct sk_buff *skb;
602
603         if (hw->state == HFA384x_STATE_RUNNING)
604                 hfa384x_drvr_stop(hw);
605         hw->state = HFA384x_STATE_PREINIT;
606
607         kfree(hw->scanresults);
608         hw->scanresults = NULL;
609
610         /* Now to clean out the auth queue */
611         while ((skb = skb_dequeue(&hw->authq)))
612                 dev_kfree_skb(skb);
613 }
614
615 static hfa384x_usbctlx_t *usbctlx_alloc(void)
616 {
617         hfa384x_usbctlx_t *ctlx;
618
619         ctlx = kzalloc(sizeof(*ctlx),
620                        in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
621         if (ctlx != NULL)
622                 init_completion(&ctlx->done);
623
624         return ctlx;
625 }
626
627 static int
628 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
629                    hfa384x_cmdresult_t *result)
630 {
631         result->status = le16_to_cpu(cmdresp->status);
632         result->resp0 = le16_to_cpu(cmdresp->resp0);
633         result->resp1 = le16_to_cpu(cmdresp->resp1);
634         result->resp2 = le16_to_cpu(cmdresp->resp2);
635
636         pr_debug("cmdresult:status=0x%04x resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
637                  result->status, result->resp0, result->resp1, result->resp2);
638
639         return result->status & HFA384x_STATUS_RESULT;
640 }
641
642 static void
643 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
644                        hfa384x_rridresult_t *result)
645 {
646         result->rid = le16_to_cpu(rridresp->rid);
647         result->riddata = rridresp->data;
648         result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
649 }
650
651 /*----------------------------------------------------------------
652 * Completor object:
653 * This completor must be passed to hfa384x_usbctlx_complete_sync()
654 * when processing a CTLX that returns a hfa384x_cmdresult_t structure.
655 ----------------------------------------------------------------*/
656 struct usbctlx_cmd_completor {
657         struct usbctlx_completor head;
658
659         const hfa384x_usb_cmdresp_t *cmdresp;
660         hfa384x_cmdresult_t *result;
661 };
662
663 static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
664 {
665         struct usbctlx_cmd_completor *complete;
666
667         complete = (struct usbctlx_cmd_completor *)head;
668         return usbctlx_get_status(complete->cmdresp, complete->result);
669 }
670
671 static inline struct usbctlx_completor *init_cmd_completor(
672                                                 struct usbctlx_cmd_completor
673                                                         *completor,
674                                                 const hfa384x_usb_cmdresp_t
675                                                         *cmdresp,
676                                                 hfa384x_cmdresult_t *result)
677 {
678         completor->head.complete = usbctlx_cmd_completor_fn;
679         completor->cmdresp = cmdresp;
680         completor->result = result;
681         return &(completor->head);
682 }
683
684 /*----------------------------------------------------------------
685 * Completor object:
686 * This completor must be passed to hfa384x_usbctlx_complete_sync()
687 * when processing a CTLX that reads a RID.
688 ----------------------------------------------------------------*/
689 struct usbctlx_rrid_completor {
690         struct usbctlx_completor head;
691
692         const hfa384x_usb_rridresp_t *rridresp;
693         void *riddata;
694         unsigned int riddatalen;
695 };
696
697 static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
698 {
699         struct usbctlx_rrid_completor *complete;
700         hfa384x_rridresult_t rridresult;
701
702         complete = (struct usbctlx_rrid_completor *)head;
703         usbctlx_get_rridresult(complete->rridresp, &rridresult);
704
705         /* Validate the length, note body len calculation in bytes */
706         if (rridresult.riddata_len != complete->riddatalen) {
707                 pr_warn("RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
708                         rridresult.rid,
709                         complete->riddatalen, rridresult.riddata_len);
710                 return -ENODATA;
711         }
712
713         memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
714         return 0;
715 }
716
717 static inline struct usbctlx_completor *init_rrid_completor(
718                                                 struct usbctlx_rrid_completor
719                                                         *completor,
720                                                 const hfa384x_usb_rridresp_t
721                                                         *rridresp,
722                                                 void *riddata,
723                                                 unsigned int riddatalen)
724 {
725         completor->head.complete = usbctlx_rrid_completor_fn;
726         completor->rridresp = rridresp;
727         completor->riddata = riddata;
728         completor->riddatalen = riddatalen;
729         return &(completor->head);
730 }
731
732 /*----------------------------------------------------------------
733 * Completor object:
734 * Interprets the results of a synchronous RID-write
735 ----------------------------------------------------------------*/
736 #define init_wrid_completor  init_cmd_completor
737
738 /*----------------------------------------------------------------
739 * Completor object:
740 * Interprets the results of a synchronous memory-write
741 ----------------------------------------------------------------*/
742 #define init_wmem_completor  init_cmd_completor
743
744 /*----------------------------------------------------------------
745 * Completor object:
746 * Interprets the results of a synchronous memory-read
747 ----------------------------------------------------------------*/
748 struct usbctlx_rmem_completor {
749         struct usbctlx_completor head;
750
751         const hfa384x_usb_rmemresp_t *rmemresp;
752         void *data;
753         unsigned int len;
754 };
755
756 static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
757 {
758         struct usbctlx_rmem_completor *complete =
759                 (struct usbctlx_rmem_completor *)head;
760
761         pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
762         memcpy(complete->data, complete->rmemresp->data, complete->len);
763         return 0;
764 }
765
766 static inline struct usbctlx_completor *init_rmem_completor(
767                                                 struct usbctlx_rmem_completor
768                                                         *completor,
769                                                 hfa384x_usb_rmemresp_t
770                                                         *rmemresp,
771                                                 void *data,
772                                                 unsigned int len)
773 {
774         completor->head.complete = usbctlx_rmem_completor_fn;
775         completor->rmemresp = rmemresp;
776         completor->data = data;
777         completor->len = len;
778         return &(completor->head);
779 }
780
781 /*----------------------------------------------------------------
782 * hfa384x_cb_status
783 *
784 * Ctlx_complete handler for async CMD type control exchanges.
785 * mark the hw struct as such.
786 *
787 * Note: If the handling is changed here, it should probably be
788 *       changed in docmd as well.
789 *
790 * Arguments:
791 *       hw              hw struct
792 *       ctlx            completed CTLX
793 *
794 * Returns:
795 *       nothing
796 *
797 * Side effects:
798 *
799 * Call context:
800 *       interrupt
801 ----------------------------------------------------------------*/
802 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
803 {
804         if (ctlx->usercb != NULL) {
805                 hfa384x_cmdresult_t cmdresult;
806
807                 if (ctlx->state != CTLX_COMPLETE) {
808                         memset(&cmdresult, 0, sizeof(cmdresult));
809                         cmdresult.status =
810                             HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
811                 } else {
812                         usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
813                 }
814
815                 ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
816         }
817 }
818
819 /*----------------------------------------------------------------
820 * hfa384x_cb_rrid
821 *
822 * CTLX completion handler for async RRID type control exchanges.
823 *
824 * Note: If the handling is changed here, it should probably be
825 *       changed in dorrid as well.
826 *
827 * Arguments:
828 *       hw              hw struct
829 *       ctlx            completed CTLX
830 *
831 * Returns:
832 *       nothing
833 *
834 * Side effects:
835 *
836 * Call context:
837 *       interrupt
838 ----------------------------------------------------------------*/
839 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
840 {
841         if (ctlx->usercb != NULL) {
842                 hfa384x_rridresult_t rridresult;
843
844                 if (ctlx->state != CTLX_COMPLETE) {
845                         memset(&rridresult, 0, sizeof(rridresult));
846                         rridresult.rid = le16_to_cpu(ctlx->outbuf.rridreq.rid);
847                 } else {
848                         usbctlx_get_rridresult(&ctlx->inbuf.rridresp,
849                                                &rridresult);
850                 }
851
852                 ctlx->usercb(hw, &rridresult, ctlx->usercb_data);
853         }
854 }
855
856 static inline int hfa384x_docmd_wait(hfa384x_t *hw, hfa384x_metacmd_t *cmd)
857 {
858         return hfa384x_docmd(hw, DOWAIT, cmd, NULL, NULL, NULL);
859 }
860
861 static inline int
862 hfa384x_docmd_async(hfa384x_t *hw,
863                     hfa384x_metacmd_t *cmd,
864                     ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
865 {
866         return hfa384x_docmd(hw, DOASYNC, cmd, cmdcb, usercb, usercb_data);
867 }
868
869 static inline int
870 hfa384x_dorrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
871                     unsigned int riddatalen)
872 {
873         return hfa384x_dorrid(hw, DOWAIT,
874                               rid, riddata, riddatalen, NULL, NULL, NULL);
875 }
876
877 static inline int
878 hfa384x_dorrid_async(hfa384x_t *hw,
879                      u16 rid, void *riddata, unsigned int riddatalen,
880                      ctlx_cmdcb_t cmdcb,
881                      ctlx_usercb_t usercb, void *usercb_data)
882 {
883         return hfa384x_dorrid(hw, DOASYNC,
884                               rid, riddata, riddatalen,
885                               cmdcb, usercb, usercb_data);
886 }
887
888 static inline int
889 hfa384x_dowrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
890                     unsigned int riddatalen)
891 {
892         return hfa384x_dowrid(hw, DOWAIT,
893                               rid, riddata, riddatalen, NULL, NULL, NULL);
894 }
895
896 static inline int
897 hfa384x_dowrid_async(hfa384x_t *hw,
898                      u16 rid, void *riddata, unsigned int riddatalen,
899                      ctlx_cmdcb_t cmdcb,
900                      ctlx_usercb_t usercb, void *usercb_data)
901 {
902         return hfa384x_dowrid(hw, DOASYNC,
903                               rid, riddata, riddatalen,
904                               cmdcb, usercb, usercb_data);
905 }
906
907 static inline int
908 hfa384x_dormem_wait(hfa384x_t *hw,
909                     u16 page, u16 offset, void *data, unsigned int len)
910 {
911         return hfa384x_dormem(hw, DOWAIT,
912                               page, offset, data, len, NULL, NULL, NULL);
913 }
914
915 static inline int
916 hfa384x_dormem_async(hfa384x_t *hw,
917                      u16 page, u16 offset, void *data, unsigned int len,
918                      ctlx_cmdcb_t cmdcb,
919                      ctlx_usercb_t usercb, void *usercb_data)
920 {
921         return hfa384x_dormem(hw, DOASYNC,
922                               page, offset, data, len,
923                               cmdcb, usercb, usercb_data);
924 }
925
926 static inline int
927 hfa384x_dowmem_wait(hfa384x_t *hw,
928                     u16 page, u16 offset, void *data, unsigned int len)
929 {
930         return hfa384x_dowmem(hw, DOWAIT,
931                               page, offset, data, len, NULL, NULL, NULL);
932 }
933
934 static inline int
935 hfa384x_dowmem_async(hfa384x_t *hw,
936                      u16 page,
937                      u16 offset,
938                      void *data,
939                      unsigned int len,
940                      ctlx_cmdcb_t cmdcb,
941                      ctlx_usercb_t usercb, void *usercb_data)
942 {
943         return hfa384x_dowmem(hw, DOASYNC,
944                               page, offset, data, len,
945                               cmdcb, usercb, usercb_data);
946 }
947
948 /*----------------------------------------------------------------
949 * hfa384x_cmd_initialize
950 *
951 * Issues the initialize command and sets the hw->state based
952 * on the result.
953 *
954 * Arguments:
955 *       hw              device structure
956 *
957 * Returns:
958 *       0               success
959 *       >0              f/w reported error - f/w status code
960 *       <0              driver reported error
961 *
962 * Side effects:
963 *
964 * Call context:
965 *       process
966 ----------------------------------------------------------------*/
967 int hfa384x_cmd_initialize(hfa384x_t *hw)
968 {
969         int result = 0;
970         int i;
971         hfa384x_metacmd_t cmd;
972
973         cmd.cmd = HFA384x_CMDCODE_INIT;
974         cmd.parm0 = 0;
975         cmd.parm1 = 0;
976         cmd.parm2 = 0;
977
978         result = hfa384x_docmd_wait(hw, &cmd);
979
980         pr_debug("cmdresp.init: status=0x%04x, resp0=0x%04x, resp1=0x%04x, resp2=0x%04x\n",
981                  cmd.result.status,
982                  cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
983         if (result == 0) {
984                 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
985                         hw->port_enabled[i] = 0;
986         }
987
988         hw->link_status = HFA384x_LINK_NOTCONNECTED;
989
990         return result;
991 }
992
993 /*----------------------------------------------------------------
994 * hfa384x_cmd_disable
995 *
996 * Issues the disable command to stop communications on one of
997 * the MACs 'ports'.
998 *
999 * Arguments:
1000 *       hw              device structure
1001 *       macport         MAC port number (host order)
1002 *
1003 * Returns:
1004 *       0               success
1005 *       >0              f/w reported failure - f/w status code
1006 *       <0              driver reported error (timeout|bad arg)
1007 *
1008 * Side effects:
1009 *
1010 * Call context:
1011 *       process
1012 ----------------------------------------------------------------*/
1013 int hfa384x_cmd_disable(hfa384x_t *hw, u16 macport)
1014 {
1015         hfa384x_metacmd_t cmd;
1016
1017         cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
1018             HFA384x_CMD_MACPORT_SET(macport);
1019         cmd.parm0 = 0;
1020         cmd.parm1 = 0;
1021         cmd.parm2 = 0;
1022
1023         return hfa384x_docmd_wait(hw, &cmd);
1024 }
1025
1026 /*----------------------------------------------------------------
1027 * hfa384x_cmd_enable
1028 *
1029 * Issues the enable command to enable communications on one of
1030 * the MACs 'ports'.
1031 *
1032 * Arguments:
1033 *       hw              device structure
1034 *       macport         MAC port number
1035 *
1036 * Returns:
1037 *       0               success
1038 *       >0              f/w reported failure - f/w status code
1039 *       <0              driver reported error (timeout|bad arg)
1040 *
1041 * Side effects:
1042 *
1043 * Call context:
1044 *       process
1045 ----------------------------------------------------------------*/
1046 int hfa384x_cmd_enable(hfa384x_t *hw, u16 macport)
1047 {
1048         hfa384x_metacmd_t cmd;
1049
1050         cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
1051             HFA384x_CMD_MACPORT_SET(macport);
1052         cmd.parm0 = 0;
1053         cmd.parm1 = 0;
1054         cmd.parm2 = 0;
1055
1056         return hfa384x_docmd_wait(hw, &cmd);
1057 }
1058
1059 /*----------------------------------------------------------------
1060 * hfa384x_cmd_monitor
1061 *
1062 * Enables the 'monitor mode' of the MAC.  Here's the description of
1063 * monitor mode that I've received thus far:
1064 *
1065 *  "The "monitor mode" of operation is that the MAC passes all
1066 *  frames for which the PLCP checks are correct. All received
1067 *  MPDUs are passed to the host with MAC Port = 7, with a
1068 *  receive status of good, FCS error, or undecryptable. Passing
1069 *  certain MPDUs is a violation of the 802.11 standard, but useful
1070 *  for a debugging tool."  Normal communication is not possible
1071 *  while monitor mode is enabled.
1072 *
1073 * Arguments:
1074 *       hw              device structure
1075 *       enable          a code (0x0b|0x0f) that enables/disables
1076 *                       monitor mode. (host order)
1077 *
1078 * Returns:
1079 *       0               success
1080 *       >0              f/w reported failure - f/w status code
1081 *       <0              driver reported error (timeout|bad arg)
1082 *
1083 * Side effects:
1084 *
1085 * Call context:
1086 *       process
1087 ----------------------------------------------------------------*/
1088 int hfa384x_cmd_monitor(hfa384x_t *hw, u16 enable)
1089 {
1090         hfa384x_metacmd_t cmd;
1091
1092         cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
1093             HFA384x_CMD_AINFO_SET(enable);
1094         cmd.parm0 = 0;
1095         cmd.parm1 = 0;
1096         cmd.parm2 = 0;
1097
1098         return hfa384x_docmd_wait(hw, &cmd);
1099 }
1100
1101 /*----------------------------------------------------------------
1102 * hfa384x_cmd_download
1103 *
1104 * Sets the controls for the MAC controller code/data download
1105 * process.  The arguments set the mode and address associated
1106 * with a download.  Note that the aux registers should be enabled
1107 * prior to setting one of the download enable modes.
1108 *
1109 * Arguments:
1110 *       hw              device structure
1111 *       mode            0 - Disable programming and begin code exec
1112 *                       1 - Enable volatile mem programming
1113 *                       2 - Enable non-volatile mem programming
1114 *                       3 - Program non-volatile section from NV download
1115 *                           buffer.
1116 *                       (host order)
1117 *       lowaddr
1118 *       highaddr        For mode 1, sets the high & low order bits of
1119 *                       the "destination address".  This address will be
1120 *                       the execution start address when download is
1121 *                       subsequently disabled.
1122 *                       For mode 2, sets the high & low order bits of
1123 *                       the destination in NV ram.
1124 *                       For modes 0 & 3, should be zero. (host order)
1125 *                       NOTE: these are CMD format.
1126 *       codelen         Length of the data to write in mode 2,
1127 *                       zero otherwise. (host order)
1128 *
1129 * Returns:
1130 *       0               success
1131 *       >0              f/w reported failure - f/w status code
1132 *       <0              driver reported error (timeout|bad arg)
1133 *
1134 * Side effects:
1135 *
1136 * Call context:
1137 *       process
1138 ----------------------------------------------------------------*/
1139 int hfa384x_cmd_download(hfa384x_t *hw, u16 mode, u16 lowaddr,
1140                          u16 highaddr, u16 codelen)
1141 {
1142         hfa384x_metacmd_t cmd;
1143
1144         pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1145                  mode, lowaddr, highaddr, codelen);
1146
1147         cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
1148                    HFA384x_CMD_PROGMODE_SET(mode));
1149
1150         cmd.parm0 = lowaddr;
1151         cmd.parm1 = highaddr;
1152         cmd.parm2 = codelen;
1153
1154         return hfa384x_docmd_wait(hw, &cmd);
1155 }
1156
1157 /*----------------------------------------------------------------
1158 * hfa384x_corereset
1159 *
1160 * Perform a reset of the hfa38xx MAC core.  We assume that the hw
1161 * structure is in its "created" state.  That is, it is initialized
1162 * with proper values.  Note that if a reset is done after the
1163 * device has been active for awhile, the caller might have to clean
1164 * up some leftover cruft in the hw structure.
1165 *
1166 * Arguments:
1167 *       hw              device structure
1168 *       holdtime        how long (in ms) to hold the reset
1169 *       settletime      how long (in ms) to wait after releasing
1170 *                       the reset
1171 *
1172 * Returns:
1173 *       nothing
1174 *
1175 * Side effects:
1176 *
1177 * Call context:
1178 *       process
1179 ----------------------------------------------------------------*/
1180 int hfa384x_corereset(hfa384x_t *hw, int holdtime, int settletime, int genesis)
1181 {
1182         int result;
1183
1184         result = usb_reset_device(hw->usb);
1185         if (result < 0) {
1186                 netdev_err(hw->wlandev->netdev, "usb_reset_device() failed, result=%d.\n",
1187                            result);
1188         }
1189
1190         return result;
1191 }
1192
1193 /*----------------------------------------------------------------
1194 * hfa384x_usbctlx_complete_sync
1195 *
1196 * Waits for a synchronous CTLX object to complete,
1197 * and then handles the response.
1198 *
1199 * Arguments:
1200 *       hw              device structure
1201 *       ctlx            CTLX ptr
1202 *       completor       functor object to decide what to
1203 *                       do with the CTLX's result.
1204 *
1205 * Returns:
1206 *       0               Success
1207 *       -ERESTARTSYS    Interrupted by a signal
1208 *       -EIO            CTLX failed
1209 *       -ENODEV         Adapter was unplugged
1210 *       ???             Result from completor
1211 *
1212 * Side effects:
1213 *
1214 * Call context:
1215 *       process
1216 ----------------------------------------------------------------*/
1217 static int hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
1218                                          hfa384x_usbctlx_t *ctlx,
1219                                          struct usbctlx_completor *completor)
1220 {
1221         unsigned long flags;
1222         int result;
1223
1224         result = wait_for_completion_interruptible(&ctlx->done);
1225
1226         spin_lock_irqsave(&hw->ctlxq.lock, flags);
1227
1228         /*
1229          * We can only handle the CTLX if the USB disconnect
1230          * function has not run yet ...
1231          */
1232 cleanup:
1233         if (hw->wlandev->hwremoved) {
1234                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1235                 result = -ENODEV;
1236         } else if (result != 0) {
1237                 int runqueue = 0;
1238
1239                 /*
1240                  * We were probably interrupted, so delete
1241                  * this CTLX asynchronously, kill the timers
1242                  * and the URB, and then start the next
1243                  * pending CTLX.
1244                  *
1245                  * NOTE: We can only delete the timers and
1246                  *       the URB if this CTLX is active.
1247                  */
1248                 if (ctlx == get_active_ctlx(hw)) {
1249                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1250
1251                         del_singleshot_timer_sync(&hw->reqtimer);
1252                         del_singleshot_timer_sync(&hw->resptimer);
1253                         hw->req_timer_done = 1;
1254                         hw->resp_timer_done = 1;
1255                         usb_kill_urb(&hw->ctlx_urb);
1256
1257                         spin_lock_irqsave(&hw->ctlxq.lock, flags);
1258
1259                         runqueue = 1;
1260
1261                         /*
1262                          * This scenario is so unlikely that I'm
1263                          * happy with a grubby "goto" solution ...
1264                          */
1265                         if (hw->wlandev->hwremoved)
1266                                 goto cleanup;
1267                 }
1268
1269                 /*
1270                  * The completion task will send this CTLX
1271                  * to the reaper the next time it runs. We
1272                  * are no longer in a hurry.
1273                  */
1274                 ctlx->reapable = 1;
1275                 ctlx->state = CTLX_REQ_FAILED;
1276                 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1277
1278                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1279
1280                 if (runqueue)
1281                         hfa384x_usbctlxq_run(hw);
1282         } else {
1283                 if (ctlx->state == CTLX_COMPLETE) {
1284                         result = completor->complete(completor);
1285                 } else {
1286                         netdev_warn(hw->wlandev->netdev, "CTLX[%d] error: state(%s)\n",
1287                                     le16_to_cpu(ctlx->outbuf.type),
1288                                     ctlxstr(ctlx->state));
1289                         result = -EIO;
1290                 }
1291
1292                 list_del(&ctlx->list);
1293                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1294                 kfree(ctlx);
1295         }
1296
1297         return result;
1298 }
1299
1300 /*----------------------------------------------------------------
1301 * hfa384x_docmd
1302 *
1303 * Constructs a command CTLX and submits it.
1304 *
1305 * NOTE: Any changes to the 'post-submit' code in this function
1306 *       need to be carried over to hfa384x_cbcmd() since the handling
1307 *       is virtually identical.
1308 *
1309 * Arguments:
1310 *       hw              device structure
1311 *       mode            DOWAIT or DOASYNC
1312 *       cmd             cmd structure.  Includes all arguments and result
1313 *                       data points.  All in host order. in host order
1314 *       cmdcb           command-specific callback
1315 *       usercb          user callback for async calls, NULL for DOWAIT calls
1316 *       usercb_data     user supplied data pointer for async calls, NULL
1317 *                       for DOASYNC calls
1318 *
1319 * Returns:
1320 *       0               success
1321 *       -EIO            CTLX failure
1322 *       -ERESTARTSYS    Awakened on signal
1323 *       >0              command indicated error, Status and Resp0-2 are
1324 *                       in hw structure.
1325 *
1326 * Side effects:
1327 *
1328 *
1329 * Call context:
1330 *       process
1331 ----------------------------------------------------------------*/
1332 static int
1333 hfa384x_docmd(hfa384x_t *hw,
1334               enum cmd_mode mode,
1335               hfa384x_metacmd_t *cmd,
1336               ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1337 {
1338         int result;
1339         hfa384x_usbctlx_t *ctlx;
1340
1341         ctlx = usbctlx_alloc();
1342         if (ctlx == NULL) {
1343                 result = -ENOMEM;
1344                 goto done;
1345         }
1346
1347         /* Initialize the command */
1348         ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1349         ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1350         ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1351         ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1352         ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1353
1354         ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1355
1356         pr_debug("cmdreq: cmd=0x%04x parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1357                  cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1358
1359         ctlx->reapable = mode;
1360         ctlx->cmdcb = cmdcb;
1361         ctlx->usercb = usercb;
1362         ctlx->usercb_data = usercb_data;
1363
1364         result = hfa384x_usbctlx_submit(hw, ctlx);
1365         if (result != 0) {
1366                 kfree(ctlx);
1367         } else if (mode == DOWAIT) {
1368                 struct usbctlx_cmd_completor completor;
1369
1370                 result =
1371                     hfa384x_usbctlx_complete_sync(hw, ctlx,
1372                                                   init_cmd_completor(&completor,
1373                                                                      &ctlx->
1374                                                                      inbuf.
1375                                                                      cmdresp,
1376                                                                      &cmd->
1377                                                                      result));
1378         }
1379
1380 done:
1381         return result;
1382 }
1383
1384 /*----------------------------------------------------------------
1385 * hfa384x_dorrid
1386 *
1387 * Constructs a read rid CTLX and issues it.
1388 *
1389 * NOTE: Any changes to the 'post-submit' code in this function
1390 *       need to be carried over to hfa384x_cbrrid() since the handling
1391 *       is virtually identical.
1392 *
1393 * Arguments:
1394 *       hw              device structure
1395 *       mode            DOWAIT or DOASYNC
1396 *       rid             Read RID number (host order)
1397 *       riddata         Caller supplied buffer that MAC formatted RID.data
1398 *                       record will be written to for DOWAIT calls. Should
1399 *                       be NULL for DOASYNC calls.
1400 *       riddatalen      Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1401 *       cmdcb           command callback for async calls, NULL for DOWAIT calls
1402 *       usercb          user callback for async calls, NULL for DOWAIT calls
1403 *       usercb_data     user supplied data pointer for async calls, NULL
1404 *                       for DOWAIT calls
1405 *
1406 * Returns:
1407 *       0               success
1408 *       -EIO            CTLX failure
1409 *       -ERESTARTSYS    Awakened on signal
1410 *       -ENODATA        riddatalen != macdatalen
1411 *       >0              command indicated error, Status and Resp0-2 are
1412 *                       in hw structure.
1413 *
1414 * Side effects:
1415 *
1416 * Call context:
1417 *       interrupt (DOASYNC)
1418 *       process (DOWAIT or DOASYNC)
1419 ----------------------------------------------------------------*/
1420 static int
1421 hfa384x_dorrid(hfa384x_t *hw,
1422                enum cmd_mode mode,
1423                u16 rid,
1424                void *riddata,
1425                unsigned int riddatalen,
1426                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1427 {
1428         int result;
1429         hfa384x_usbctlx_t *ctlx;
1430
1431         ctlx = usbctlx_alloc();
1432         if (ctlx == NULL) {
1433                 result = -ENOMEM;
1434                 goto done;
1435         }
1436
1437         /* Initialize the command */
1438         ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1439         ctlx->outbuf.rridreq.frmlen =
1440             cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1441         ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1442
1443         ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1444
1445         ctlx->reapable = mode;
1446         ctlx->cmdcb = cmdcb;
1447         ctlx->usercb = usercb;
1448         ctlx->usercb_data = usercb_data;
1449
1450         /* Submit the CTLX */
1451         result = hfa384x_usbctlx_submit(hw, ctlx);
1452         if (result != 0) {
1453                 kfree(ctlx);
1454         } else if (mode == DOWAIT) {
1455                 struct usbctlx_rrid_completor completor;
1456
1457                 result =
1458                     hfa384x_usbctlx_complete_sync(hw, ctlx,
1459                                                   init_rrid_completor
1460                                                   (&completor,
1461                                                    &ctlx->inbuf.rridresp,
1462                                                    riddata, riddatalen));
1463         }
1464
1465 done:
1466         return result;
1467 }
1468
1469 /*----------------------------------------------------------------
1470 * hfa384x_dowrid
1471 *
1472 * Constructs a write rid CTLX and issues it.
1473 *
1474 * NOTE: Any changes to the 'post-submit' code in this function
1475 *       need to be carried over to hfa384x_cbwrid() since the handling
1476 *       is virtually identical.
1477 *
1478 * Arguments:
1479 *       hw              device structure
1480 *       enum cmd_mode   DOWAIT or DOASYNC
1481 *       rid             RID code
1482 *       riddata         Data portion of RID formatted for MAC
1483 *       riddatalen      Length of the data portion in bytes
1484 *       cmdcb           command callback for async calls, NULL for DOWAIT calls
1485 *       usercb          user callback for async calls, NULL for DOWAIT calls
1486 *       usercb_data     user supplied data pointer for async calls
1487 *
1488 * Returns:
1489 *       0               success
1490 *       -ETIMEDOUT      timed out waiting for register ready or
1491 *                       command completion
1492 *       >0              command indicated error, Status and Resp0-2 are
1493 *                       in hw structure.
1494 *
1495 * Side effects:
1496 *
1497 * Call context:
1498 *       interrupt (DOASYNC)
1499 *       process (DOWAIT or DOASYNC)
1500 ----------------------------------------------------------------*/
1501 static int
1502 hfa384x_dowrid(hfa384x_t *hw,
1503                enum cmd_mode mode,
1504                u16 rid,
1505                void *riddata,
1506                unsigned int riddatalen,
1507                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1508 {
1509         int result;
1510         hfa384x_usbctlx_t *ctlx;
1511
1512         ctlx = usbctlx_alloc();
1513         if (ctlx == NULL) {
1514                 result = -ENOMEM;
1515                 goto done;
1516         }
1517
1518         /* Initialize the command */
1519         ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1520         ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1521                                                    (ctlx->outbuf.wridreq.rid) +
1522                                                    riddatalen + 1) / 2);
1523         ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1524         memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1525
1526         ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1527             sizeof(ctlx->outbuf.wridreq.frmlen) +
1528             sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1529
1530         ctlx->reapable = mode;
1531         ctlx->cmdcb = cmdcb;
1532         ctlx->usercb = usercb;
1533         ctlx->usercb_data = usercb_data;
1534
1535         /* Submit the CTLX */
1536         result = hfa384x_usbctlx_submit(hw, ctlx);
1537         if (result != 0) {
1538                 kfree(ctlx);
1539         } else if (mode == DOWAIT) {
1540                 struct usbctlx_cmd_completor completor;
1541                 hfa384x_cmdresult_t wridresult;
1542
1543                 result = hfa384x_usbctlx_complete_sync(hw,
1544                                                        ctlx,
1545                                                        init_wrid_completor
1546                                                        (&completor,
1547                                                         &ctlx->inbuf.wridresp,
1548                                                         &wridresult));
1549         }
1550
1551 done:
1552         return result;
1553 }
1554
1555 /*----------------------------------------------------------------
1556 * hfa384x_dormem
1557 *
1558 * Constructs a readmem CTLX and issues it.
1559 *
1560 * NOTE: Any changes to the 'post-submit' code in this function
1561 *       need to be carried over to hfa384x_cbrmem() since the handling
1562 *       is virtually identical.
1563 *
1564 * Arguments:
1565 *       hw              device structure
1566 *       mode            DOWAIT or DOASYNC
1567 *       page            MAC address space page (CMD format)
1568 *       offset          MAC address space offset
1569 *       data            Ptr to data buffer to receive read
1570 *       len             Length of the data to read (max == 2048)
1571 *       cmdcb           command callback for async calls, NULL for DOWAIT calls
1572 *       usercb          user callback for async calls, NULL for DOWAIT calls
1573 *       usercb_data     user supplied data pointer for async calls
1574 *
1575 * Returns:
1576 *       0               success
1577 *       -ETIMEDOUT      timed out waiting for register ready or
1578 *                       command completion
1579 *       >0              command indicated error, Status and Resp0-2 are
1580 *                       in hw structure.
1581 *
1582 * Side effects:
1583 *
1584 * Call context:
1585 *       interrupt (DOASYNC)
1586 *       process (DOWAIT or DOASYNC)
1587 ----------------------------------------------------------------*/
1588 static int
1589 hfa384x_dormem(hfa384x_t *hw,
1590                enum cmd_mode mode,
1591                u16 page,
1592                u16 offset,
1593                void *data,
1594                unsigned int len,
1595                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1596 {
1597         int result;
1598         hfa384x_usbctlx_t *ctlx;
1599
1600         ctlx = usbctlx_alloc();
1601         if (ctlx == NULL) {
1602                 result = -ENOMEM;
1603                 goto done;
1604         }
1605
1606         /* Initialize the command */
1607         ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1608         ctlx->outbuf.rmemreq.frmlen =
1609             cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1610                         sizeof(ctlx->outbuf.rmemreq.page) + len);
1611         ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1612         ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1613
1614         ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1615
1616         pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1617                  ctlx->outbuf.rmemreq.type,
1618                  ctlx->outbuf.rmemreq.frmlen,
1619                  ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1620
1621         pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1622
1623         ctlx->reapable = mode;
1624         ctlx->cmdcb = cmdcb;
1625         ctlx->usercb = usercb;
1626         ctlx->usercb_data = usercb_data;
1627
1628         result = hfa384x_usbctlx_submit(hw, ctlx);
1629         if (result != 0) {
1630                 kfree(ctlx);
1631         } else if (mode == DOWAIT) {
1632                 struct usbctlx_rmem_completor completor;
1633
1634                 result =
1635                     hfa384x_usbctlx_complete_sync(hw, ctlx,
1636                                                   init_rmem_completor
1637                                                   (&completor,
1638                                                    &ctlx->inbuf.rmemresp, data,
1639                                                    len));
1640         }
1641
1642 done:
1643         return result;
1644 }
1645
1646 /*----------------------------------------------------------------
1647 * hfa384x_dowmem
1648 *
1649 * Constructs a writemem CTLX and issues it.
1650 *
1651 * NOTE: Any changes to the 'post-submit' code in this function
1652 *       need to be carried over to hfa384x_cbwmem() since the handling
1653 *       is virtually identical.
1654 *
1655 * Arguments:
1656 *       hw              device structure
1657 *       mode            DOWAIT or DOASYNC
1658 *       page            MAC address space page (CMD format)
1659 *       offset          MAC address space offset
1660 *       data            Ptr to data buffer containing write data
1661 *       len             Length of the data to read (max == 2048)
1662 *       cmdcb           command callback for async calls, NULL for DOWAIT calls
1663 *       usercb          user callback for async calls, NULL for DOWAIT calls
1664 *       usercb_data     user supplied data pointer for async calls.
1665 *
1666 * Returns:
1667 *       0               success
1668 *       -ETIMEDOUT      timed out waiting for register ready or
1669 *                       command completion
1670 *       >0              command indicated error, Status and Resp0-2 are
1671 *                       in hw structure.
1672 *
1673 * Side effects:
1674 *
1675 * Call context:
1676 *       interrupt (DOWAIT)
1677 *       process (DOWAIT or DOASYNC)
1678 ----------------------------------------------------------------*/
1679 static int
1680 hfa384x_dowmem(hfa384x_t *hw,
1681                enum cmd_mode mode,
1682                u16 page,
1683                u16 offset,
1684                void *data,
1685                unsigned int len,
1686                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1687 {
1688         int result;
1689         hfa384x_usbctlx_t *ctlx;
1690
1691         pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1692
1693         ctlx = usbctlx_alloc();
1694         if (ctlx == NULL) {
1695                 result = -ENOMEM;
1696                 goto done;
1697         }
1698
1699         /* Initialize the command */
1700         ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1701         ctlx->outbuf.wmemreq.frmlen =
1702             cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1703                         sizeof(ctlx->outbuf.wmemreq.page) + len);
1704         ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1705         ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1706         memcpy(ctlx->outbuf.wmemreq.data, data, len);
1707
1708         ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1709             sizeof(ctlx->outbuf.wmemreq.frmlen) +
1710             sizeof(ctlx->outbuf.wmemreq.offset) +
1711             sizeof(ctlx->outbuf.wmemreq.page) + len;
1712
1713         ctlx->reapable = mode;
1714         ctlx->cmdcb = cmdcb;
1715         ctlx->usercb = usercb;
1716         ctlx->usercb_data = usercb_data;
1717
1718         result = hfa384x_usbctlx_submit(hw, ctlx);
1719         if (result != 0) {
1720                 kfree(ctlx);
1721         } else if (mode == DOWAIT) {
1722                 struct usbctlx_cmd_completor completor;
1723                 hfa384x_cmdresult_t wmemresult;
1724
1725                 result = hfa384x_usbctlx_complete_sync(hw,
1726                                                        ctlx,
1727                                                        init_wmem_completor
1728                                                        (&completor,
1729                                                         &ctlx->inbuf.wmemresp,
1730                                                         &wmemresult));
1731         }
1732
1733 done:
1734         return result;
1735 }
1736
1737 /*----------------------------------------------------------------
1738 * hfa384x_drvr_commtallies
1739 *
1740 * Send a commtallies inquiry to the MAC.  Note that this is an async
1741 * call that will result in an info frame arriving sometime later.
1742 *
1743 * Arguments:
1744 *       hw              device structure
1745 *
1746 * Returns:
1747 *       zero            success.
1748 *
1749 * Side effects:
1750 *
1751 * Call context:
1752 *       process
1753 ----------------------------------------------------------------*/
1754 int hfa384x_drvr_commtallies(hfa384x_t *hw)
1755 {
1756         hfa384x_metacmd_t cmd;
1757
1758         cmd.cmd = HFA384x_CMDCODE_INQ;
1759         cmd.parm0 = HFA384x_IT_COMMTALLIES;
1760         cmd.parm1 = 0;
1761         cmd.parm2 = 0;
1762
1763         hfa384x_docmd_async(hw, &cmd, NULL, NULL, NULL);
1764
1765         return 0;
1766 }
1767
1768 /*----------------------------------------------------------------
1769 * hfa384x_drvr_disable
1770 *
1771 * Issues the disable command to stop communications on one of
1772 * the MACs 'ports'.  Only macport 0 is valid  for stations.
1773 * APs may also disable macports 1-6.  Only ports that have been
1774 * previously enabled may be disabled.
1775 *
1776 * Arguments:
1777 *       hw              device structure
1778 *       macport         MAC port number (host order)
1779 *
1780 * Returns:
1781 *       0               success
1782 *       >0              f/w reported failure - f/w status code
1783 *       <0              driver reported error (timeout|bad arg)
1784 *
1785 * Side effects:
1786 *
1787 * Call context:
1788 *       process
1789 ----------------------------------------------------------------*/
1790 int hfa384x_drvr_disable(hfa384x_t *hw, u16 macport)
1791 {
1792         int result = 0;
1793
1794         if ((!hw->isap && macport != 0) ||
1795             (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1796             !(hw->port_enabled[macport])) {
1797                 result = -EINVAL;
1798         } else {
1799                 result = hfa384x_cmd_disable(hw, macport);
1800                 if (result == 0)
1801                         hw->port_enabled[macport] = 0;
1802         }
1803         return result;
1804 }
1805
1806 /*----------------------------------------------------------------
1807 * hfa384x_drvr_enable
1808 *
1809 * Issues the enable command to enable communications on one of
1810 * the MACs 'ports'.  Only macport 0 is valid  for stations.
1811 * APs may also enable macports 1-6.  Only ports that are currently
1812 * disabled may be enabled.
1813 *
1814 * Arguments:
1815 *       hw              device structure
1816 *       macport         MAC port number
1817 *
1818 * Returns:
1819 *       0               success
1820 *       >0              f/w reported failure - f/w status code
1821 *       <0              driver reported error (timeout|bad arg)
1822 *
1823 * Side effects:
1824 *
1825 * Call context:
1826 *       process
1827 ----------------------------------------------------------------*/
1828 int hfa384x_drvr_enable(hfa384x_t *hw, u16 macport)
1829 {
1830         int result = 0;
1831
1832         if ((!hw->isap && macport != 0) ||
1833             (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1834             (hw->port_enabled[macport])) {
1835                 result = -EINVAL;
1836         } else {
1837                 result = hfa384x_cmd_enable(hw, macport);
1838                 if (result == 0)
1839                         hw->port_enabled[macport] = 1;
1840         }
1841         return result;
1842 }
1843
1844 /*----------------------------------------------------------------
1845 * hfa384x_drvr_flashdl_enable
1846 *
1847 * Begins the flash download state.  Checks to see that we're not
1848 * already in a download state and that a port isn't enabled.
1849 * Sets the download state and retrieves the flash download
1850 * buffer location, buffer size, and timeout length.
1851 *
1852 * Arguments:
1853 *       hw              device structure
1854 *
1855 * Returns:
1856 *       0               success
1857 *       >0              f/w reported error - f/w status code
1858 *       <0              driver reported error
1859 *
1860 * Side effects:
1861 *
1862 * Call context:
1863 *       process
1864 ----------------------------------------------------------------*/
1865 int hfa384x_drvr_flashdl_enable(hfa384x_t *hw)
1866 {
1867         int result = 0;
1868         int i;
1869
1870         /* Check that a port isn't active */
1871         for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1872                 if (hw->port_enabled[i]) {
1873                         pr_debug("called when port enabled.\n");
1874                         return -EINVAL;
1875                 }
1876         }
1877
1878         /* Check that we're not already in a download state */
1879         if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1880                 return -EINVAL;
1881
1882         /* Retrieve the buffer loc&size and timeout */
1883         result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
1884                                         &(hw->bufinfo), sizeof(hw->bufinfo));
1885         if (result)
1886                 return result;
1887
1888         hw->bufinfo.page = le16_to_cpu(hw->bufinfo.page);
1889         hw->bufinfo.offset = le16_to_cpu(hw->bufinfo.offset);
1890         hw->bufinfo.len = le16_to_cpu(hw->bufinfo.len);
1891         result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1892                                           &(hw->dltimeout));
1893         if (result)
1894                 return result;
1895
1896         hw->dltimeout = le16_to_cpu(hw->dltimeout);
1897
1898         pr_debug("flashdl_enable\n");
1899
1900         hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1901
1902         return result;
1903 }
1904
1905 /*----------------------------------------------------------------
1906 * hfa384x_drvr_flashdl_disable
1907 *
1908 * Ends the flash download state.  Note that this will cause the MAC
1909 * firmware to restart.
1910 *
1911 * Arguments:
1912 *       hw              device structure
1913 *
1914 * Returns:
1915 *       0               success
1916 *       >0              f/w reported error - f/w status code
1917 *       <0              driver reported error
1918 *
1919 * Side effects:
1920 *
1921 * Call context:
1922 *       process
1923 ----------------------------------------------------------------*/
1924 int hfa384x_drvr_flashdl_disable(hfa384x_t *hw)
1925 {
1926         /* Check that we're already in the download state */
1927         if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1928                 return -EINVAL;
1929
1930         pr_debug("flashdl_enable\n");
1931
1932         /* There isn't much we can do at this point, so I don't */
1933         /*  bother  w/ the return value */
1934         hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
1935         hw->dlstate = HFA384x_DLSTATE_DISABLED;
1936
1937         return 0;
1938 }
1939
1940 /*----------------------------------------------------------------
1941 * hfa384x_drvr_flashdl_write
1942 *
1943 * Performs a FLASH download of a chunk of data. First checks to see
1944 * that we're in the FLASH download state, then sets the download
1945 * mode, uses the aux functions to 1) copy the data to the flash
1946 * buffer, 2) sets the download 'write flash' mode, 3) readback and
1947 * compare.  Lather rinse, repeat as many times an necessary to get
1948 * all the given data into flash.
1949 * When all data has been written using this function (possibly
1950 * repeatedly), call drvr_flashdl_disable() to end the download state
1951 * and restart the MAC.
1952 *
1953 * Arguments:
1954 *       hw              device structure
1955 *       daddr           Card address to write to. (host order)
1956 *       buf             Ptr to data to write.
1957 *       len             Length of data (host order).
1958 *
1959 * Returns:
1960 *       0               success
1961 *       >0              f/w reported error - f/w status code
1962 *       <0              driver reported error
1963 *
1964 * Side effects:
1965 *
1966 * Call context:
1967 *       process
1968 ----------------------------------------------------------------*/
1969 int hfa384x_drvr_flashdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
1970 {
1971         int result = 0;
1972         u32 dlbufaddr;
1973         int nburns;
1974         u32 burnlen;
1975         u32 burndaddr;
1976         u16 burnlo;
1977         u16 burnhi;
1978         int nwrites;
1979         u8 *writebuf;
1980         u16 writepage;
1981         u16 writeoffset;
1982         u32 writelen;
1983         int i;
1984         int j;
1985
1986         pr_debug("daddr=0x%08x len=%d\n", daddr, len);
1987
1988         /* Check that we're in the flash download state */
1989         if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1990                 return -EINVAL;
1991
1992         netdev_info(hw->wlandev->netdev,
1993                     "Download %d bytes to flash @0x%06x\n", len, daddr);
1994
1995         /* Convert to flat address for arithmetic */
1996         /* NOTE: dlbuffer RID stores the address in AUX format */
1997         dlbufaddr =
1998             HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
1999         pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
2000                  hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
2001         /* Calculations to determine how many fills of the dlbuffer to do
2002          * and how many USB wmemreq's to do for each fill.  At this point
2003          * in time, the dlbuffer size and the wmemreq size are the same.
2004          * Therefore, nwrites should always be 1.  The extra complexity
2005          * here is a hedge against future changes.
2006          */
2007
2008         /* Figure out how many times to do the flash programming */
2009         nburns = len / hw->bufinfo.len;
2010         nburns += (len % hw->bufinfo.len) ? 1 : 0;
2011
2012         /* For each flash program cycle, how many USB wmemreq's are needed? */
2013         nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
2014         nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
2015
2016         /* For each burn */
2017         for (i = 0; i < nburns; i++) {
2018                 /* Get the dest address and len */
2019                 burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
2020                     hw->bufinfo.len : (len - (hw->bufinfo.len * i));
2021                 burndaddr = daddr + (hw->bufinfo.len * i);
2022                 burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
2023                 burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
2024
2025                 netdev_info(hw->wlandev->netdev, "Writing %d bytes to flash @0x%06x\n",
2026                             burnlen, burndaddr);
2027
2028                 /* Set the download mode */
2029                 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
2030                                               burnlo, burnhi, burnlen);
2031                 if (result) {
2032                         netdev_err(hw->wlandev->netdev,
2033                                    "download(NV,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
2034                                    burnlo, burnhi, burnlen, result);
2035                         goto exit_proc;
2036                 }
2037
2038                 /* copy the data to the flash download buffer */
2039                 for (j = 0; j < nwrites; j++) {
2040                         writebuf = buf +
2041                             (i * hw->bufinfo.len) +
2042                             (j * HFA384x_USB_RWMEM_MAXLEN);
2043
2044                         writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
2045                                                 (j * HFA384x_USB_RWMEM_MAXLEN));
2046                         writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
2047                                                 (j * HFA384x_USB_RWMEM_MAXLEN));
2048
2049                         writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
2050                         writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
2051                             HFA384x_USB_RWMEM_MAXLEN : writelen;
2052
2053                         result = hfa384x_dowmem_wait(hw,
2054                                                      writepage,
2055                                                      writeoffset,
2056                                                      writebuf, writelen);
2057                 }
2058
2059                 /* set the download 'write flash' mode */
2060                 result = hfa384x_cmd_download(hw,
2061                                               HFA384x_PROGMODE_NVWRITE,
2062                                               0, 0, 0);
2063                 if (result) {
2064                         netdev_err(hw->wlandev->netdev,
2065                                    "download(NVWRITE,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
2066                                    burnlo, burnhi, burnlen, result);
2067                         goto exit_proc;
2068                 }
2069
2070                 /* TODO: We really should do a readback and compare. */
2071         }
2072
2073 exit_proc:
2074
2075         /* Leave the firmware in the 'post-prog' mode.  flashdl_disable will */
2076         /*  actually disable programming mode.  Remember, that will cause the */
2077         /*  the firmware to effectively reset itself. */
2078
2079         return result;
2080 }
2081
2082 /*----------------------------------------------------------------
2083 * hfa384x_drvr_getconfig
2084 *
2085 * Performs the sequence necessary to read a config/info item.
2086 *
2087 * Arguments:
2088 *       hw              device structure
2089 *       rid             config/info record id (host order)
2090 *       buf             host side record buffer.  Upon return it will
2091 *                       contain the body portion of the record (minus the
2092 *                       RID and len).
2093 *       len             buffer length (in bytes, should match record length)
2094 *
2095 * Returns:
2096 *       0               success
2097 *       >0              f/w reported error - f/w status code
2098 *       <0              driver reported error
2099 *       -ENODATA        length mismatch between argument and retrieved
2100 *                       record.
2101 *
2102 * Side effects:
2103 *
2104 * Call context:
2105 *       process
2106 ----------------------------------------------------------------*/
2107 int hfa384x_drvr_getconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2108 {
2109         return hfa384x_dorrid_wait(hw, rid, buf, len);
2110 }
2111
2112 /*----------------------------------------------------------------
2113  * hfa384x_drvr_getconfig_async
2114  *
2115  * Performs the sequence necessary to perform an async read of
2116  * of a config/info item.
2117  *
2118  * Arguments:
2119  *       hw              device structure
2120  *       rid             config/info record id (host order)
2121  *       buf             host side record buffer.  Upon return it will
2122  *                       contain the body portion of the record (minus the
2123  *                       RID and len).
2124  *       len             buffer length (in bytes, should match record length)
2125  *       cbfn            caller supplied callback, called when the command
2126  *                       is done (successful or not).
2127  *       cbfndata        pointer to some caller supplied data that will be
2128  *                       passed in as an argument to the cbfn.
2129  *
2130  * Returns:
2131  *       nothing         the cbfn gets a status argument identifying if
2132  *                       any errors occur.
2133  * Side effects:
2134  *       Queues an hfa384x_usbcmd_t for subsequent execution.
2135  *
2136  * Call context:
2137  *       Any
2138  ----------------------------------------------------------------*/
2139 int
2140 hfa384x_drvr_getconfig_async(hfa384x_t *hw,
2141                              u16 rid, ctlx_usercb_t usercb, void *usercb_data)
2142 {
2143         return hfa384x_dorrid_async(hw, rid, NULL, 0,
2144                                     hfa384x_cb_rrid, usercb, usercb_data);
2145 }
2146
2147 /*----------------------------------------------------------------
2148  * hfa384x_drvr_setconfig_async
2149  *
2150  * Performs the sequence necessary to write a config/info item.
2151  *
2152  * Arguments:
2153  *       hw              device structure
2154  *       rid             config/info record id (in host order)
2155  *       buf             host side record buffer
2156  *       len             buffer length (in bytes)
2157  *       usercb          completion callback
2158  *       usercb_data     completion callback argument
2159  *
2160  * Returns:
2161  *       0               success
2162  *       >0              f/w reported error - f/w status code
2163  *       <0              driver reported error
2164  *
2165  * Side effects:
2166  *
2167  * Call context:
2168  *       process
2169  ----------------------------------------------------------------*/
2170 int
2171 hfa384x_drvr_setconfig_async(hfa384x_t *hw,
2172                              u16 rid,
2173                              void *buf,
2174                              u16 len, ctlx_usercb_t usercb, void *usercb_data)
2175 {
2176         return hfa384x_dowrid_async(hw, rid, buf, len,
2177                                     hfa384x_cb_status, usercb, usercb_data);
2178 }
2179
2180 /*----------------------------------------------------------------
2181 * hfa384x_drvr_ramdl_disable
2182 *
2183 * Ends the ram download state.
2184 *
2185 * Arguments:
2186 *       hw              device structure
2187 *
2188 * Returns:
2189 *       0               success
2190 *       >0              f/w reported error - f/w status code
2191 *       <0              driver reported error
2192 *
2193 * Side effects:
2194 *
2195 * Call context:
2196 *       process
2197 ----------------------------------------------------------------*/
2198 int hfa384x_drvr_ramdl_disable(hfa384x_t *hw)
2199 {
2200         /* Check that we're already in the download state */
2201         if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2202                 return -EINVAL;
2203
2204         pr_debug("ramdl_disable()\n");
2205
2206         /* There isn't much we can do at this point, so I don't */
2207         /*  bother  w/ the return value */
2208         hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
2209         hw->dlstate = HFA384x_DLSTATE_DISABLED;
2210
2211         return 0;
2212 }
2213
2214 /*----------------------------------------------------------------
2215 * hfa384x_drvr_ramdl_enable
2216 *
2217 * Begins the ram download state.  Checks to see that we're not
2218 * already in a download state and that a port isn't enabled.
2219 * Sets the download state and calls cmd_download with the
2220 * ENABLE_VOLATILE subcommand and the exeaddr argument.
2221 *
2222 * Arguments:
2223 *       hw              device structure
2224 *       exeaddr         the card execution address that will be
2225 *                       jumped to when ramdl_disable() is called
2226 *                       (host order).
2227 *
2228 * Returns:
2229 *       0               success
2230 *       >0              f/w reported error - f/w status code
2231 *       <0              driver reported error
2232 *
2233 * Side effects:
2234 *
2235 * Call context:
2236 *       process
2237 ----------------------------------------------------------------*/
2238 int hfa384x_drvr_ramdl_enable(hfa384x_t *hw, u32 exeaddr)
2239 {
2240         int result = 0;
2241         u16 lowaddr;
2242         u16 hiaddr;
2243         int i;
2244
2245         /* Check that a port isn't active */
2246         for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2247                 if (hw->port_enabled[i]) {
2248                         netdev_err(hw->wlandev->netdev,
2249                                    "Can't download with a macport enabled.\n");
2250                         return -EINVAL;
2251                 }
2252         }
2253
2254         /* Check that we're not already in a download state */
2255         if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2256                 netdev_err(hw->wlandev->netdev, "Download state not disabled.\n");
2257                 return -EINVAL;
2258         }
2259
2260         pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2261
2262         /* Call the download(1,addr) function */
2263         lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2264         hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2265
2266         result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
2267                                       lowaddr, hiaddr, 0);
2268
2269         if (result == 0) {
2270                 /* Set the download state */
2271                 hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2272         } else {
2273                 pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2274                          lowaddr, hiaddr, result);
2275         }
2276
2277         return result;
2278 }
2279
2280 /*----------------------------------------------------------------
2281 * hfa384x_drvr_ramdl_write
2282 *
2283 * Performs a RAM download of a chunk of data. First checks to see
2284 * that we're in the RAM download state, then uses the [read|write]mem USB
2285 * commands to 1) copy the data, 2) readback and compare.  The download
2286 * state is unaffected.  When all data has been written using
2287 * this function, call drvr_ramdl_disable() to end the download state
2288 * and restart the MAC.
2289 *
2290 * Arguments:
2291 *       hw              device structure
2292 *       daddr           Card address to write to. (host order)
2293 *       buf             Ptr to data to write.
2294 *       len             Length of data (host order).
2295 *
2296 * Returns:
2297 *       0               success
2298 *       >0              f/w reported error - f/w status code
2299 *       <0              driver reported error
2300 *
2301 * Side effects:
2302 *
2303 * Call context:
2304 *       process
2305 ----------------------------------------------------------------*/
2306 int hfa384x_drvr_ramdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
2307 {
2308         int result = 0;
2309         int nwrites;
2310         u8 *data = buf;
2311         int i;
2312         u32 curraddr;
2313         u16 currpage;
2314         u16 curroffset;
2315         u16 currlen;
2316
2317         /* Check that we're in the ram download state */
2318         if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2319                 return -EINVAL;
2320
2321         netdev_info(hw->wlandev->netdev, "Writing %d bytes to ram @0x%06x\n",
2322                     len, daddr);
2323
2324         /* How many dowmem calls?  */
2325         nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2326         nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2327
2328         /* Do blocking wmem's */
2329         for (i = 0; i < nwrites; i++) {
2330                 /* make address args */
2331                 curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2332                 currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2333                 curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2334                 currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2335                 if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2336                         currlen = HFA384x_USB_RWMEM_MAXLEN;
2337
2338                 /* Do blocking ctlx */
2339                 result = hfa384x_dowmem_wait(hw,
2340                                              currpage,
2341                                              curroffset,
2342                                              data +
2343                                              (i * HFA384x_USB_RWMEM_MAXLEN),
2344                                              currlen);
2345
2346                 if (result)
2347                         break;
2348
2349                 /* TODO: We really should have a readback. */
2350         }
2351
2352         return result;
2353 }
2354
2355 /*----------------------------------------------------------------
2356 * hfa384x_drvr_readpda
2357 *
2358 * Performs the sequence to read the PDA space.  Note there is no
2359 * drvr_writepda() function.  Writing a PDA is
2360 * generally implemented by a calling component via calls to
2361 * cmd_download and writing to the flash download buffer via the
2362 * aux regs.
2363 *
2364 * Arguments:
2365 *       hw              device structure
2366 *       buf             buffer to store PDA in
2367 *       len             buffer length
2368 *
2369 * Returns:
2370 *       0               success
2371 *       >0              f/w reported error - f/w status code
2372 *       <0              driver reported error
2373 *       -ETIMEDOUT      timeout waiting for the cmd regs to become
2374 *                       available, or waiting for the control reg
2375 *                       to indicate the Aux port is enabled.
2376 *       -ENODATA        the buffer does NOT contain a valid PDA.
2377 *                       Either the card PDA is bad, or the auxdata
2378 *                       reads are giving us garbage.
2379
2380 *
2381 * Side effects:
2382 *
2383 * Call context:
2384 *       process or non-card interrupt.
2385 ----------------------------------------------------------------*/
2386 int hfa384x_drvr_readpda(hfa384x_t *hw, void *buf, unsigned int len)
2387 {
2388         int result = 0;
2389         u16 *pda = buf;
2390         int pdaok = 0;
2391         int morepdrs = 1;
2392         int currpdr = 0;        /* word offset of the current pdr */
2393         size_t i;
2394         u16 pdrlen;             /* pdr length in bytes, host order */
2395         u16 pdrcode;            /* pdr code, host order */
2396         u16 currpage;
2397         u16 curroffset;
2398         struct pdaloc {
2399                 u32 cardaddr;
2400                 u16 auxctl;
2401         } pdaloc[] = {
2402                 {
2403                 HFA3842_PDA_BASE, 0}, {
2404                 HFA3841_PDA_BASE, 0}, {
2405                 HFA3841_PDA_BOGUS_BASE, 0}
2406         };
2407
2408         /* Read the pda from each known address.  */
2409         for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2410                 /* Make address */
2411                 currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2412                 curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2413
2414                 /* units of bytes */
2415                 result = hfa384x_dormem_wait(hw, currpage, curroffset, buf,
2416                                                 len);
2417
2418                 if (result) {
2419                         netdev_warn(hw->wlandev->netdev,
2420                                     "Read from index %zd failed, continuing\n",
2421                                     i);
2422                         continue;
2423                 }
2424
2425                 /* Test for garbage */
2426                 pdaok = 1;      /* initially assume good */
2427                 morepdrs = 1;
2428                 while (pdaok && morepdrs) {
2429                         pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2430                         pdrcode = le16_to_cpu(pda[currpdr + 1]);
2431                         /* Test the record length */
2432                         if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2433                                 netdev_err(hw->wlandev->netdev,
2434                                            "pdrlen invalid=%d\n", pdrlen);
2435                                 pdaok = 0;
2436                                 break;
2437                         }
2438                         /* Test the code */
2439                         if (!hfa384x_isgood_pdrcode(pdrcode)) {
2440                                 netdev_err(hw->wlandev->netdev, "pdrcode invalid=%d\n",
2441                                            pdrcode);
2442                                 pdaok = 0;
2443                                 break;
2444                         }
2445                         /* Test for completion */
2446                         if (pdrcode == HFA384x_PDR_END_OF_PDA)
2447                                 morepdrs = 0;
2448
2449                         /* Move to the next pdr (if necessary) */
2450                         if (morepdrs) {
2451                                 /* note the access to pda[], need words here */
2452                                 currpdr += le16_to_cpu(pda[currpdr]) + 1;
2453                         }
2454                 }
2455                 if (pdaok) {
2456                         netdev_info(hw->wlandev->netdev,
2457                                     "PDA Read from 0x%08x in %s space.\n",
2458                                     pdaloc[i].cardaddr,
2459                                     pdaloc[i].auxctl == 0 ? "EXTDS" :
2460                                     pdaloc[i].auxctl == 1 ? "NV" :
2461                                     pdaloc[i].auxctl == 2 ? "PHY" :
2462                                     pdaloc[i].auxctl == 3 ? "ICSRAM" :
2463                                     "<bogus auxctl>");
2464                         break;
2465                 }
2466         }
2467         result = pdaok ? 0 : -ENODATA;
2468
2469         if (result)
2470                 pr_debug("Failure: pda is not okay\n");
2471
2472         return result;
2473 }
2474
2475 /*----------------------------------------------------------------
2476 * hfa384x_drvr_setconfig
2477 *
2478 * Performs the sequence necessary to write a config/info item.
2479 *
2480 * Arguments:
2481 *       hw              device structure
2482 *       rid             config/info record id (in host order)
2483 *       buf             host side record buffer
2484 *       len             buffer length (in bytes)
2485 *
2486 * Returns:
2487 *       0               success
2488 *       >0              f/w reported error - f/w status code
2489 *       <0              driver reported error
2490 *
2491 * Side effects:
2492 *
2493 * Call context:
2494 *       process
2495 ----------------------------------------------------------------*/
2496 int hfa384x_drvr_setconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2497 {
2498         return hfa384x_dowrid_wait(hw, rid, buf, len);
2499 }
2500
2501 /*----------------------------------------------------------------
2502 * hfa384x_drvr_start
2503 *
2504 * Issues the MAC initialize command, sets up some data structures,
2505 * and enables the interrupts.  After this function completes, the
2506 * low-level stuff should be ready for any/all commands.
2507 *
2508 * Arguments:
2509 *       hw              device structure
2510 * Returns:
2511 *       0               success
2512 *       >0              f/w reported error - f/w status code
2513 *       <0              driver reported error
2514 *
2515 * Side effects:
2516 *
2517 * Call context:
2518 *       process
2519 ----------------------------------------------------------------*/
2520
2521 int hfa384x_drvr_start(hfa384x_t *hw)
2522 {
2523         int result, result1, result2;
2524         u16 status;
2525
2526         might_sleep();
2527
2528         /* Clear endpoint stalls - but only do this if the endpoint
2529          * is showing a stall status. Some prism2 cards seem to behave
2530          * badly if a clear_halt is called when the endpoint is already
2531          * ok
2532          */
2533         result =
2534             usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in, &status);
2535         if (result < 0) {
2536                 netdev_err(hw->wlandev->netdev, "Cannot get bulk in endpoint status.\n");
2537                 goto done;
2538         }
2539         if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2540                 netdev_err(hw->wlandev->netdev, "Failed to reset bulk in endpoint.\n");
2541
2542         result =
2543             usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out, &status);
2544         if (result < 0) {
2545                 netdev_err(hw->wlandev->netdev, "Cannot get bulk out endpoint status.\n");
2546                 goto done;
2547         }
2548         if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2549                 netdev_err(hw->wlandev->netdev, "Failed to reset bulk out endpoint.\n");
2550
2551         /* Synchronous unlink, in case we're trying to restart the driver */
2552         usb_kill_urb(&hw->rx_urb);
2553
2554         /* Post the IN urb */
2555         result = submit_rx_urb(hw, GFP_KERNEL);
2556         if (result != 0) {
2557                 netdev_err(hw->wlandev->netdev,
2558                            "Fatal, failed to submit RX URB, result=%d\n",
2559                            result);
2560                 goto done;
2561         }
2562
2563         /* Call initialize twice, with a 1 second sleep in between.
2564          * This is a nasty work-around since many prism2 cards seem to
2565          * need time to settle after an init from cold. The second
2566          * call to initialize in theory is not necessary - but we call
2567          * it anyway as a double insurance policy:
2568          * 1) If the first init should fail, the second may well succeed
2569          *    and the card can still be used
2570          * 2) It helps ensures all is well with the card after the first
2571          *    init and settle time.
2572          */
2573         result1 = hfa384x_cmd_initialize(hw);
2574         msleep(1000);
2575         result = hfa384x_cmd_initialize(hw);
2576         result2 = result;
2577         if (result1 != 0) {
2578                 if (result2 != 0) {
2579                         netdev_err(hw->wlandev->netdev,
2580                                    "cmd_initialize() failed on two attempts, results %d and %d\n",
2581                                    result1, result2);
2582                         usb_kill_urb(&hw->rx_urb);
2583                         goto done;
2584                 } else {
2585                         pr_debug("First cmd_initialize() failed (result %d),\n",
2586                                  result1);
2587                         pr_debug("but second attempt succeeded. All should be ok\n");
2588                 }
2589         } else if (result2 != 0) {
2590                 netdev_warn(hw->wlandev->netdev, "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2591                             result2);
2592                 netdev_warn(hw->wlandev->netdev,
2593                             "Most likely the card will be functional\n");
2594                 goto done;
2595         }
2596
2597         hw->state = HFA384x_STATE_RUNNING;
2598
2599 done:
2600         return result;
2601 }
2602
2603 /*----------------------------------------------------------------
2604 * hfa384x_drvr_stop
2605 *
2606 * Shuts down the MAC to the point where it is safe to unload the
2607 * driver.  Any subsystem that may be holding a data or function
2608 * ptr into the driver must be cleared/deinitialized.
2609 *
2610 * Arguments:
2611 *       hw              device structure
2612 * Returns:
2613 *       0               success
2614 *       >0              f/w reported error - f/w status code
2615 *       <0              driver reported error
2616 *
2617 * Side effects:
2618 *
2619 * Call context:
2620 *       process
2621 ----------------------------------------------------------------*/
2622 int hfa384x_drvr_stop(hfa384x_t *hw)
2623 {
2624         int i;
2625
2626         might_sleep();
2627
2628         /* There's no need for spinlocks here. The USB "disconnect"
2629          * function sets this "removed" flag and then calls us.
2630          */
2631         if (!hw->wlandev->hwremoved) {
2632                 /* Call initialize to leave the MAC in its 'reset' state */
2633                 hfa384x_cmd_initialize(hw);
2634
2635                 /* Cancel the rxurb */
2636                 usb_kill_urb(&hw->rx_urb);
2637         }
2638
2639         hw->link_status = HFA384x_LINK_NOTCONNECTED;
2640         hw->state = HFA384x_STATE_INIT;
2641
2642         del_timer_sync(&hw->commsqual_timer);
2643
2644         /* Clear all the port status */
2645         for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2646                 hw->port_enabled[i] = 0;
2647
2648         return 0;
2649 }
2650
2651 /*----------------------------------------------------------------
2652 * hfa384x_drvr_txframe
2653 *
2654 * Takes a frame from prism2sta and queues it for transmission.
2655 *
2656 * Arguments:
2657 *       hw              device structure
2658 *       skb             packet buffer struct.  Contains an 802.11
2659 *                       data frame.
2660 *       p80211_hdr      points to the 802.11 header for the packet.
2661 * Returns:
2662 *       0               Success and more buffs available
2663 *       1               Success but no more buffs
2664 *       2               Allocation failure
2665 *       4               Buffer full or queue busy
2666 *
2667 * Side effects:
2668 *
2669 * Call context:
2670 *       interrupt
2671 ----------------------------------------------------------------*/
2672 int hfa384x_drvr_txframe(hfa384x_t *hw, struct sk_buff *skb,
2673                          union p80211_hdr *p80211_hdr,
2674                          struct p80211_metawep *p80211_wep)
2675 {
2676         int usbpktlen = sizeof(hfa384x_tx_frame_t);
2677         int result;
2678         int ret;
2679         char *ptr;
2680
2681         if (hw->tx_urb.status == -EINPROGRESS) {
2682                 netdev_warn(hw->wlandev->netdev, "TX URB already in use\n");
2683                 result = 3;
2684                 goto exit;
2685         }
2686
2687         /* Build Tx frame structure */
2688         /* Set up the control field */
2689         memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2690
2691         /* Setup the usb type field */
2692         hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2693
2694         /* Set up the sw_support field to identify this frame */
2695         hw->txbuff.txfrm.desc.sw_support = 0x0123;
2696
2697 /* Tx complete and Tx exception disable per dleach.  Might be causing
2698  * buf depletion
2699  */
2700 /* #define DOEXC  SLP -- doboth breaks horribly under load, doexc less so. */
2701 #if defined(DOBOTH)
2702         hw->txbuff.txfrm.desc.tx_control =
2703             HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2704             HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
2705 #elif defined(DOEXC)
2706         hw->txbuff.txfrm.desc.tx_control =
2707             HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2708             HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
2709 #else
2710         hw->txbuff.txfrm.desc.tx_control =
2711             HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2712             HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
2713 #endif
2714         hw->txbuff.txfrm.desc.tx_control =
2715             cpu_to_le16(hw->txbuff.txfrm.desc.tx_control);
2716
2717         /* copy the header over to the txdesc */
2718         memcpy(&(hw->txbuff.txfrm.desc.frame_control), p80211_hdr,
2719                sizeof(union p80211_hdr));
2720
2721         /* if we're using host WEP, increase size by IV+ICV */
2722         if (p80211_wep->data) {
2723                 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2724                 usbpktlen += 8;
2725         } else {
2726                 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2727         }
2728
2729         usbpktlen += skb->len;
2730
2731         /* copy over the WEP IV if we are using host WEP */
2732         ptr = hw->txbuff.txfrm.data;
2733         if (p80211_wep->data) {
2734                 memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2735                 ptr += sizeof(p80211_wep->iv);
2736                 memcpy(ptr, p80211_wep->data, skb->len);
2737         } else {
2738                 memcpy(ptr, skb->data, skb->len);
2739         }
2740         /* copy over the packet data */
2741         ptr += skb->len;
2742
2743         /* copy over the WEP ICV if we are using host WEP */
2744         if (p80211_wep->data)
2745                 memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2746
2747         /* Send the USB packet */
2748         usb_fill_bulk_urb(&(hw->tx_urb), hw->usb,
2749                           hw->endp_out,
2750                           &(hw->txbuff), ROUNDUP64(usbpktlen),
2751                           hfa384x_usbout_callback, hw->wlandev);
2752         hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2753
2754         result = 1;
2755         ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2756         if (ret != 0) {
2757                 netdev_err(hw->wlandev->netdev,
2758                            "submit_tx_urb() failed, error=%d\n", ret);
2759                 result = 3;
2760         }
2761
2762 exit:
2763         return result;
2764 }
2765
2766 void hfa384x_tx_timeout(wlandevice_t *wlandev)
2767 {
2768         hfa384x_t *hw = wlandev->priv;
2769         unsigned long flags;
2770
2771         spin_lock_irqsave(&hw->ctlxq.lock, flags);
2772
2773         if (!hw->wlandev->hwremoved) {
2774                 int sched;
2775
2776                 sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags);
2777                 sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags);
2778                 if (sched)
2779                         schedule_work(&hw->usb_work);
2780         }
2781
2782         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2783 }
2784
2785 /*----------------------------------------------------------------
2786 * hfa384x_usbctlx_reaper_task
2787 *
2788 * Tasklet to delete dead CTLX objects
2789 *
2790 * Arguments:
2791 *       data    ptr to a hfa384x_t
2792 *
2793 * Returns:
2794 *
2795 * Call context:
2796 *       Interrupt
2797 ----------------------------------------------------------------*/
2798 static void hfa384x_usbctlx_reaper_task(unsigned long data)
2799 {
2800         hfa384x_t *hw = (hfa384x_t *)data;
2801         hfa384x_usbctlx_t *ctlx, *temp;
2802         unsigned long flags;
2803
2804         spin_lock_irqsave(&hw->ctlxq.lock, flags);
2805
2806         /* This list is guaranteed to be empty if someone
2807          * has unplugged the adapter.
2808          */
2809         list_for_each_entry_safe(ctlx, temp, &hw->ctlxq.reapable, list) {
2810                 list_del(&ctlx->list);
2811                 kfree(ctlx);
2812         }
2813
2814         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2815 }
2816
2817 /*----------------------------------------------------------------
2818 * hfa384x_usbctlx_completion_task
2819 *
2820 * Tasklet to call completion handlers for returned CTLXs
2821 *
2822 * Arguments:
2823 *       data    ptr to hfa384x_t
2824 *
2825 * Returns:
2826 *       Nothing
2827 *
2828 * Call context:
2829 *       Interrupt
2830 ----------------------------------------------------------------*/
2831 static void hfa384x_usbctlx_completion_task(unsigned long data)
2832 {
2833         hfa384x_t *hw = (hfa384x_t *)data;
2834         hfa384x_usbctlx_t *ctlx, *temp;
2835         unsigned long flags;
2836
2837         int reap = 0;
2838
2839         spin_lock_irqsave(&hw->ctlxq.lock, flags);
2840
2841         /* This list is guaranteed to be empty if someone
2842          * has unplugged the adapter ...
2843          */
2844         list_for_each_entry_safe(ctlx, temp, &hw->ctlxq.completing, list) {
2845                 /* Call the completion function that this
2846                  * command was assigned, assuming it has one.
2847                  */
2848                 if (ctlx->cmdcb != NULL) {
2849                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2850                         ctlx->cmdcb(hw, ctlx);
2851                         spin_lock_irqsave(&hw->ctlxq.lock, flags);
2852
2853                         /* Make sure we don't try and complete
2854                          * this CTLX more than once!
2855                          */
2856                         ctlx->cmdcb = NULL;
2857
2858                         /* Did someone yank the adapter out
2859                          * while our list was (briefly) unlocked?
2860                          */
2861                         if (hw->wlandev->hwremoved) {
2862                                 reap = 0;
2863                                 break;
2864                         }
2865                 }
2866
2867                 /*
2868                  * "Reapable" CTLXs are ones which don't have any
2869                  * threads waiting for them to die. Hence they must
2870                  * be delivered to The Reaper!
2871                  */
2872                 if (ctlx->reapable) {
2873                         /* Move the CTLX off the "completing" list (hopefully)
2874                          * on to the "reapable" list where the reaper task
2875                          * can find it. And "reapable" means that this CTLX
2876                          * isn't sitting on a wait-queue somewhere.
2877                          */
2878                         list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2879                         reap = 1;
2880                 }
2881
2882                 complete(&ctlx->done);
2883         }
2884         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2885
2886         if (reap)
2887                 tasklet_schedule(&hw->reaper_bh);
2888 }
2889
2890 /*----------------------------------------------------------------
2891 * unlocked_usbctlx_cancel_async
2892 *
2893 * Mark the CTLX dead asynchronously, and ensure that the
2894 * next command on the queue is run afterwards.
2895 *
2896 * Arguments:
2897 *       hw      ptr to the hfa384x_t structure
2898 *       ctlx    ptr to a CTLX structure
2899 *
2900 * Returns:
2901 *       0       the CTLX's URB is inactive
2902 * -EINPROGRESS  the URB is currently being unlinked
2903 *
2904 * Call context:
2905 *       Either process or interrupt, but presumably interrupt
2906 ----------------------------------------------------------------*/
2907 static int unlocked_usbctlx_cancel_async(hfa384x_t *hw,
2908                                          hfa384x_usbctlx_t *ctlx)
2909 {
2910         int ret;
2911
2912         /*
2913          * Try to delete the URB containing our request packet.
2914          * If we succeed, then its completion handler will be
2915          * called with a status of -ECONNRESET.
2916          */
2917         hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2918         ret = usb_unlink_urb(&hw->ctlx_urb);
2919
2920         if (ret != -EINPROGRESS) {
2921                 /*
2922                  * The OUT URB had either already completed
2923                  * or was still in the pending queue, so the
2924                  * URB's completion function will not be called.
2925                  * We will have to complete the CTLX ourselves.
2926                  */
2927                 ctlx->state = CTLX_REQ_FAILED;
2928                 unlocked_usbctlx_complete(hw, ctlx);
2929                 ret = 0;
2930         }
2931
2932         return ret;
2933 }
2934
2935 /*----------------------------------------------------------------
2936 * unlocked_usbctlx_complete
2937 *
2938 * A CTLX has completed.  It may have been successful, it may not
2939 * have been. At this point, the CTLX should be quiescent.  The URBs
2940 * aren't active and the timers should have been stopped.
2941 *
2942 * The CTLX is migrated to the "completing" queue, and the completing
2943 * tasklet is scheduled.
2944 *
2945 * Arguments:
2946 *       hw              ptr to a hfa384x_t structure
2947 *       ctlx            ptr to a ctlx structure
2948 *
2949 * Returns:
2950 *       nothing
2951 *
2952 * Side effects:
2953 *
2954 * Call context:
2955 *       Either, assume interrupt
2956 ----------------------------------------------------------------*/
2957 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
2958 {
2959         /* Timers have been stopped, and ctlx should be in
2960          * a terminal state. Retire it from the "active"
2961          * queue.
2962          */
2963         list_move_tail(&ctlx->list, &hw->ctlxq.completing);
2964         tasklet_schedule(&hw->completion_bh);
2965
2966         switch (ctlx->state) {
2967         case CTLX_COMPLETE:
2968         case CTLX_REQ_FAILED:
2969                 /* This are the correct terminating states. */
2970                 break;
2971
2972         default:
2973                 netdev_err(hw->wlandev->netdev, "CTLX[%d] not in a terminating state(%s)\n",
2974                            le16_to_cpu(ctlx->outbuf.type),
2975                            ctlxstr(ctlx->state));
2976                 break;
2977         }                       /* switch */
2978 }
2979
2980 /*----------------------------------------------------------------
2981 * hfa384x_usbctlxq_run
2982 *
2983 * Checks to see if the head item is running.  If not, starts it.
2984 *
2985 * Arguments:
2986 *       hw      ptr to hfa384x_t
2987 *
2988 * Returns:
2989 *       nothing
2990 *
2991 * Side effects:
2992 *
2993 * Call context:
2994 *       any
2995 ----------------------------------------------------------------*/
2996 static void hfa384x_usbctlxq_run(hfa384x_t *hw)
2997 {
2998         unsigned long flags;
2999
3000         /* acquire lock */
3001         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3002
3003         /* Only one active CTLX at any one time, because there's no
3004          * other (reliable) way to match the response URB to the
3005          * correct CTLX.
3006          *
3007          * Don't touch any of these CTLXs if the hardware
3008          * has been removed or the USB subsystem is stalled.
3009          */
3010         if (!list_empty(&hw->ctlxq.active) ||
3011             test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
3012                 goto unlock;
3013
3014         while (!list_empty(&hw->ctlxq.pending)) {
3015                 hfa384x_usbctlx_t *head;
3016                 int result;
3017
3018                 /* This is the first pending command */
3019                 head = list_entry(hw->ctlxq.pending.next,
3020                                   hfa384x_usbctlx_t, list);
3021
3022                 /* We need to split this off to avoid a race condition */
3023                 list_move_tail(&head->list, &hw->ctlxq.active);
3024
3025                 /* Fill the out packet */
3026                 usb_fill_bulk_urb(&(hw->ctlx_urb), hw->usb,
3027                                   hw->endp_out,
3028                                   &(head->outbuf), ROUNDUP64(head->outbufsize),
3029                                   hfa384x_ctlxout_callback, hw);
3030                 hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
3031
3032                 /* Now submit the URB and update the CTLX's state */
3033                 result = SUBMIT_URB(&hw->ctlx_urb, GFP_ATOMIC);
3034                 if (result == 0) {
3035                         /* This CTLX is now running on the active queue */
3036                         head->state = CTLX_REQ_SUBMITTED;
3037
3038                         /* Start the OUT wait timer */
3039                         hw->req_timer_done = 0;
3040                         hw->reqtimer.expires = jiffies + HZ;
3041                         add_timer(&hw->reqtimer);
3042
3043                         /* Start the IN wait timer */
3044                         hw->resp_timer_done = 0;
3045                         hw->resptimer.expires = jiffies + 2 * HZ;
3046                         add_timer(&hw->resptimer);
3047
3048                         break;
3049                 }
3050
3051                 if (result == -EPIPE) {
3052                         /* The OUT pipe needs resetting, so put
3053                          * this CTLX back in the "pending" queue
3054                          * and schedule a reset ...
3055                          */
3056                         netdev_warn(hw->wlandev->netdev,
3057                                     "%s tx pipe stalled: requesting reset\n",
3058                                     hw->wlandev->netdev->name);
3059                         list_move(&head->list, &hw->ctlxq.pending);
3060                         set_bit(WORK_TX_HALT, &hw->usb_flags);
3061                         schedule_work(&hw->usb_work);
3062                         break;
3063                 }
3064
3065                 if (result == -ESHUTDOWN) {
3066                         netdev_warn(hw->wlandev->netdev, "%s urb shutdown!\n",
3067                                     hw->wlandev->netdev->name);
3068                         break;
3069                 }
3070
3071                 netdev_err(hw->wlandev->netdev, "Failed to submit CTLX[%d]: error=%d\n",
3072                            le16_to_cpu(head->outbuf.type), result);
3073                 unlocked_usbctlx_complete(hw, head);
3074         }                       /* while */
3075
3076 unlock:
3077         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3078 }
3079
3080 /*----------------------------------------------------------------
3081 * hfa384x_usbin_callback
3082 *
3083 * Callback for URBs on the BULKIN endpoint.
3084 *
3085 * Arguments:
3086 *       urb             ptr to the completed urb
3087 *
3088 * Returns:
3089 *       nothing
3090 *
3091 * Side effects:
3092 *
3093 * Call context:
3094 *       interrupt
3095 ----------------------------------------------------------------*/
3096 static void hfa384x_usbin_callback(struct urb *urb)
3097 {
3098         wlandevice_t *wlandev = urb->context;
3099         hfa384x_t *hw;
3100         hfa384x_usbin_t *usbin = (hfa384x_usbin_t *)urb->transfer_buffer;
3101         struct sk_buff *skb = NULL;
3102         int result;
3103         int urb_status;
3104         u16 type;
3105
3106         enum USBIN_ACTION {
3107                 HANDLE,
3108                 RESUBMIT,
3109                 ABORT
3110         } action;
3111
3112         if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
3113                 goto exit;
3114
3115         hw = wlandev->priv;
3116         if (!hw)
3117                 goto exit;
3118
3119         skb = hw->rx_urb_skb;
3120         BUG_ON(!skb || (skb->data != urb->transfer_buffer));
3121
3122         hw->rx_urb_skb = NULL;
3123
3124         /* Check for error conditions within the URB */
3125         switch (urb->status) {
3126         case 0:
3127                 action = HANDLE;
3128
3129                 /* Check for short packet */
3130                 if (urb->actual_length == 0) {
3131                         wlandev->netdev->stats.rx_errors++;
3132                         wlandev->netdev->stats.rx_length_errors++;
3133                         action = RESUBMIT;
3134                 }
3135                 break;
3136
3137         case -EPIPE:
3138                 netdev_warn(hw->wlandev->netdev, "%s rx pipe stalled: requesting reset\n",
3139                             wlandev->netdev->name);
3140                 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
3141                         schedule_work(&hw->usb_work);
3142                 wlandev->netdev->stats.rx_errors++;
3143                 action = ABORT;
3144                 break;
3145
3146         case -EILSEQ:
3147         case -ETIMEDOUT:
3148         case -EPROTO:
3149                 if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
3150                     !timer_pending(&hw->throttle)) {
3151                         mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
3152                 }
3153                 wlandev->netdev->stats.rx_errors++;
3154                 action = ABORT;
3155                 break;
3156
3157         case -EOVERFLOW:
3158                 wlandev->netdev->stats.rx_over_errors++;
3159                 action = RESUBMIT;
3160                 break;
3161
3162         case -ENODEV:
3163         case -ESHUTDOWN:
3164                 pr_debug("status=%d, device removed.\n", urb->status);
3165                 action = ABORT;
3166                 break;
3167
3168         case -ENOENT:
3169         case -ECONNRESET:
3170                 pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
3171                 action = ABORT;
3172                 break;
3173
3174         default:
3175                 pr_debug("urb status=%d, transfer flags=0x%x\n",
3176                          urb->status, urb->transfer_flags);
3177                 wlandev->netdev->stats.rx_errors++;
3178                 action = RESUBMIT;
3179                 break;
3180         }
3181
3182         urb_status = urb->status;
3183
3184         if (action != ABORT) {
3185                 /* Repost the RX URB */
3186                 result = submit_rx_urb(hw, GFP_ATOMIC);
3187
3188                 if (result != 0) {
3189                         netdev_err(hw->wlandev->netdev,
3190                                    "Fatal, failed to resubmit rx_urb. error=%d\n",
3191                                    result);
3192                 }
3193         }
3194
3195         /* Handle any USB-IN packet */
3196         /* Note: the check of the sw_support field, the type field doesn't
3197          *       have bit 12 set like the docs suggest.
3198          */
3199         type = le16_to_cpu(usbin->type);
3200         if (HFA384x_USB_ISRXFRM(type)) {
3201                 if (action == HANDLE) {
3202                         if (usbin->txfrm.desc.sw_support == 0x0123) {
3203                                 hfa384x_usbin_txcompl(wlandev, usbin);
3204                         } else {
3205                                 skb_put(skb, sizeof(*usbin));
3206                                 hfa384x_usbin_rx(wlandev, skb);
3207                                 skb = NULL;
3208                         }
3209                 }
3210                 goto exit;
3211         }
3212         if (HFA384x_USB_ISTXFRM(type)) {
3213                 if (action == HANDLE)
3214                         hfa384x_usbin_txcompl(wlandev, usbin);
3215                 goto exit;
3216         }
3217         switch (type) {
3218         case HFA384x_USB_INFOFRM:
3219                 if (action == ABORT)
3220                         goto exit;
3221                 if (action == HANDLE)
3222                         hfa384x_usbin_info(wlandev, usbin);
3223                 break;
3224
3225         case HFA384x_USB_CMDRESP:
3226         case HFA384x_USB_WRIDRESP:
3227         case HFA384x_USB_RRIDRESP:
3228         case HFA384x_USB_WMEMRESP:
3229         case HFA384x_USB_RMEMRESP:
3230                 /* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3231                 hfa384x_usbin_ctlx(hw, usbin, urb_status);
3232                 break;
3233
3234         case HFA384x_USB_BUFAVAIL:
3235                 pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3236                          usbin->bufavail.frmlen);
3237                 break;
3238
3239         case HFA384x_USB_ERROR:
3240                 pr_debug("Received USB_ERROR packet, errortype=%d\n",
3241                          usbin->usberror.errortype);
3242                 break;
3243
3244         default:
3245                 pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3246                          usbin->type, urb_status);
3247                 break;
3248         }                       /* switch */
3249
3250 exit:
3251
3252         if (skb)
3253                 dev_kfree_skb(skb);
3254 }
3255
3256 /*----------------------------------------------------------------
3257 * hfa384x_usbin_ctlx
3258 *
3259 * We've received a URB containing a Prism2 "response" message.
3260 * This message needs to be matched up with a CTLX on the active
3261 * queue and our state updated accordingly.
3262 *
3263 * Arguments:
3264 *       hw              ptr to hfa384x_t
3265 *       usbin           ptr to USB IN packet
3266 *       urb_status      status of this Bulk-In URB
3267 *
3268 * Returns:
3269 *       nothing
3270 *
3271 * Side effects:
3272 *
3273 * Call context:
3274 *       interrupt
3275 ----------------------------------------------------------------*/
3276 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
3277                                int urb_status)
3278 {
3279         hfa384x_usbctlx_t *ctlx;
3280         int run_queue = 0;
3281         unsigned long flags;
3282
3283 retry:
3284         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3285
3286         /* There can be only one CTLX on the active queue
3287          * at any one time, and this is the CTLX that the
3288          * timers are waiting for.
3289          */
3290         if (list_empty(&hw->ctlxq.active))
3291                 goto unlock;
3292
3293         /* Remove the "response timeout". It's possible that
3294          * we are already too late, and that the timeout is
3295          * already running. And that's just too bad for us,
3296          * because we could lose our CTLX from the active
3297          * queue here ...
3298          */
3299         if (del_timer(&hw->resptimer) == 0) {
3300                 if (hw->resp_timer_done == 0) {
3301                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3302                         goto retry;
3303                 }
3304         } else {
3305                 hw->resp_timer_done = 1;
3306         }
3307
3308         ctlx = get_active_ctlx(hw);
3309
3310         if (urb_status != 0) {
3311                 /*
3312                  * Bad CTLX, so get rid of it. But we only
3313                  * remove it from the active queue if we're no
3314                  * longer expecting the OUT URB to complete.
3315                  */
3316                 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3317                         run_queue = 1;
3318         } else {
3319                 const __le16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3320
3321                 /*
3322                  * Check that our message is what we're expecting ...
3323                  */
3324                 if (ctlx->outbuf.type != intype) {
3325                         netdev_warn(hw->wlandev->netdev,
3326                                     "Expected IN[%d], received IN[%d] - ignored.\n",
3327                                     le16_to_cpu(ctlx->outbuf.type),
3328                                     le16_to_cpu(intype));
3329                         goto unlock;
3330                 }
3331
3332                 /* This URB has succeeded, so grab the data ... */
3333                 memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3334
3335                 switch (ctlx->state) {
3336                 case CTLX_REQ_SUBMITTED:
3337                         /*
3338                          * We have received our response URB before
3339                          * our request has been acknowledged. Odd,
3340                          * but our OUT URB is still alive...
3341                          */
3342                         pr_debug("Causality violation: please reboot Universe\n");
3343                         ctlx->state = CTLX_RESP_COMPLETE;
3344                         break;
3345
3346                 case CTLX_REQ_COMPLETE:
3347                         /*
3348                          * This is the usual path: our request
3349                          * has already been acknowledged, and
3350                          * now we have received the reply too.
3351                          */
3352                         ctlx->state = CTLX_COMPLETE;
3353                         unlocked_usbctlx_complete(hw, ctlx);
3354                         run_queue = 1;
3355                         break;
3356
3357                 default:
3358                         /*
3359                          * Throw this CTLX away ...
3360                          */
3361                         netdev_err(hw->wlandev->netdev,
3362                                    "Matched IN URB, CTLX[%d] in invalid state(%s). Discarded.\n",
3363                                    le16_to_cpu(ctlx->outbuf.type),
3364                                    ctlxstr(ctlx->state));
3365                         if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3366                                 run_queue = 1;
3367                         break;
3368                 }               /* switch */
3369         }
3370
3371 unlock:
3372         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3373
3374         if (run_queue)
3375                 hfa384x_usbctlxq_run(hw);
3376 }
3377
3378 /*----------------------------------------------------------------
3379 * hfa384x_usbin_txcompl
3380 *
3381 * At this point we have the results of a previous transmit.
3382 *
3383 * Arguments:
3384 *       wlandev         wlan device
3385 *       usbin           ptr to the usb transfer buffer
3386 *
3387 * Returns:
3388 *       nothing
3389 *
3390 * Side effects:
3391 *
3392 * Call context:
3393 *       interrupt
3394 ----------------------------------------------------------------*/
3395 static void hfa384x_usbin_txcompl(wlandevice_t *wlandev,
3396                                   hfa384x_usbin_t *usbin)
3397 {
3398         u16 status;
3399
3400         status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
3401
3402         /* Was there an error? */
3403         if (HFA384x_TXSTATUS_ISERROR(status))
3404                 prism2sta_ev_txexc(wlandev, status);
3405         else
3406                 prism2sta_ev_tx(wlandev, status);
3407 }
3408
3409 /*----------------------------------------------------------------
3410 * hfa384x_usbin_rx
3411 *
3412 * At this point we have a successful received a rx frame packet.
3413 *
3414 * Arguments:
3415 *       wlandev         wlan device
3416 *       usbin           ptr to the usb transfer buffer
3417 *
3418 * Returns:
3419 *       nothing
3420 *
3421 * Side effects:
3422 *
3423 * Call context:
3424 *       interrupt
3425 ----------------------------------------------------------------*/
3426 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb)
3427 {
3428         hfa384x_usbin_t *usbin = (hfa384x_usbin_t *)skb->data;
3429         hfa384x_t *hw = wlandev->priv;
3430         int hdrlen;
3431         struct p80211_rxmeta *rxmeta;
3432         u16 data_len;
3433         u16 fc;
3434
3435         /* Byte order convert once up front. */
3436         usbin->rxfrm.desc.status = le16_to_cpu(usbin->rxfrm.desc.status);
3437         usbin->rxfrm.desc.time = le32_to_cpu(usbin->rxfrm.desc.time);
3438
3439         /* Now handle frame based on port# */
3440         switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) {
3441         case 0:
3442                 fc = le16_to_cpu(usbin->rxfrm.desc.frame_control);
3443
3444                 /* If exclude and we receive an unencrypted, drop it */
3445                 if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3446                     !WLAN_GET_FC_ISWEP(fc)) {
3447                         break;
3448                 }
3449
3450                 data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
3451
3452                 /* How much header data do we have? */
3453                 hdrlen = p80211_headerlen(fc);
3454
3455                 /* Pull off the descriptor */
3456                 skb_pull(skb, sizeof(hfa384x_rx_frame_t));
3457
3458                 /* Now shunt the header block up against the data block
3459                  * with an "overlapping" copy
3460                  */
3461                 memmove(skb_push(skb, hdrlen),
3462                         &usbin->rxfrm.desc.frame_control, hdrlen);
3463
3464                 skb->dev = wlandev->netdev;
3465                 skb->dev->last_rx = jiffies;
3466
3467                 /* And set the frame length properly */
3468                 skb_trim(skb, data_len + hdrlen);
3469
3470                 /* The prism2 series does not return the CRC */
3471                 memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3472
3473                 skb_reset_mac_header(skb);
3474
3475                 /* Attach the rxmeta, set some stuff */
3476                 p80211skb_rxmeta_attach(wlandev, skb);
3477                 rxmeta = P80211SKB_RXMETA(skb);
3478                 rxmeta->mactime = usbin->rxfrm.desc.time;
3479                 rxmeta->rxrate = usbin->rxfrm.desc.rate;
3480                 rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3481                 rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3482
3483                 p80211netdev_rx(wlandev, skb);
3484
3485                 break;
3486
3487         case 7:
3488                 if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3489                         /* Copy to wlansnif skb */
3490                         hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3491                         dev_kfree_skb(skb);
3492                 } else {
3493                         pr_debug("Received monitor frame: FCSerr set\n");
3494                 }
3495                 break;
3496
3497         default:
3498                 netdev_warn(hw->wlandev->netdev, "Received frame on unsupported port=%d\n",
3499                             HFA384x_RXSTATUS_MACPORT_GET(
3500                                     usbin->rxfrm.desc.status));
3501                 break;
3502         }
3503 }
3504
3505 /*----------------------------------------------------------------
3506 * hfa384x_int_rxmonitor
3507 *
3508 * Helper function for int_rx.  Handles monitor frames.
3509 * Note that this function allocates space for the FCS and sets it
3510 * to 0xffffffff.  The hfa384x doesn't give us the FCS value but the
3511 * higher layers expect it.  0xffffffff is used as a flag to indicate
3512 * the FCS is bogus.
3513 *
3514 * Arguments:
3515 *       wlandev         wlan device structure
3516 *       rxfrm           rx descriptor read from card in int_rx
3517 *
3518 * Returns:
3519 *       nothing
3520 *
3521 * Side effects:
3522 *       Allocates an skb and passes it up via the PF_PACKET interface.
3523 * Call context:
3524 *       interrupt
3525 ----------------------------------------------------------------*/
3526 static void hfa384x_int_rxmonitor(wlandevice_t *wlandev,
3527                                   hfa384x_usb_rxfrm_t *rxfrm)
3528 {
3529         hfa384x_rx_frame_t *rxdesc = &(rxfrm->desc);
3530         unsigned int hdrlen = 0;
3531         unsigned int datalen = 0;
3532         unsigned int skblen = 0;
3533         u8 *datap;
3534         u16 fc;
3535         struct sk_buff *skb;
3536         hfa384x_t *hw = wlandev->priv;
3537
3538         /* Remember the status, time, and data_len fields are in host order */
3539         /* Figure out how big the frame is */
3540         fc = le16_to_cpu(rxdesc->frame_control);
3541         hdrlen = p80211_headerlen(fc);
3542         datalen = le16_to_cpu(rxdesc->data_len);
3543
3544         /* Allocate an ind message+framesize skb */
3545         skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN;
3546
3547         /* sanity check the length */
3548         if (skblen >
3549             (sizeof(struct p80211_caphdr) +
3550              WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
3551                 pr_debug("overlen frm: len=%zd\n",
3552                          skblen - sizeof(struct p80211_caphdr));
3553         }
3554
3555         skb = dev_alloc_skb(skblen);
3556         if (skb == NULL)
3557                 return;
3558
3559         /* only prepend the prism header if in the right mode */
3560         if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3561             (hw->sniffhdr != 0)) {
3562                 struct p80211_caphdr *caphdr;
3563                 /* The NEW header format! */
3564                 datap = skb_put(skb, sizeof(struct p80211_caphdr));
3565                 caphdr = (struct p80211_caphdr *)datap;
3566
3567                 caphdr->version = htonl(P80211CAPTURE_VERSION);
3568                 caphdr->length = htonl(sizeof(struct p80211_caphdr));
3569                 caphdr->mactime = __cpu_to_be64(rxdesc->time) * 1000;
3570                 caphdr->hosttime = __cpu_to_be64(jiffies);
3571                 caphdr->phytype = htonl(4);     /* dss_dot11_b */
3572                 caphdr->channel = htonl(hw->sniff_channel);
3573                 caphdr->datarate = htonl(rxdesc->rate);
3574                 caphdr->antenna = htonl(0);     /* unknown */
3575                 caphdr->priority = htonl(0);    /* unknown */
3576                 caphdr->ssi_type = htonl(3);    /* rssi_raw */
3577                 caphdr->ssi_signal = htonl(rxdesc->signal);
3578                 caphdr->ssi_noise = htonl(rxdesc->silence);
3579                 caphdr->preamble = htonl(0);    /* unknown */
3580                 caphdr->encoding = htonl(1);    /* cck */
3581         }
3582
3583         /* Copy the 802.11 header to the skb
3584            (ctl frames may be less than a full header) */
3585         datap = skb_put(skb, hdrlen);
3586         memcpy(datap, &(rxdesc->frame_control), hdrlen);
3587
3588         /* If any, copy the data from the card to the skb */
3589         if (datalen > 0) {
3590                 datap = skb_put(skb, datalen);
3591                 memcpy(datap, rxfrm->data, datalen);
3592
3593                 /* check for unencrypted stuff if WEP bit set. */
3594                 if (*(datap - hdrlen + 1) & 0x40)       /* wep set */
3595                         if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3596                                 /* clear wep; it's the 802.2 header! */
3597                                 *(datap - hdrlen + 1) &= 0xbf;
3598         }
3599
3600         if (hw->sniff_fcs) {
3601                 /* Set the FCS */
3602                 datap = skb_put(skb, WLAN_CRC_LEN);
3603                 memset(datap, 0xff, WLAN_CRC_LEN);
3604         }
3605
3606         /* pass it back up */
3607         p80211netdev_rx(wlandev, skb);
3608 }
3609
3610 /*----------------------------------------------------------------
3611 * hfa384x_usbin_info
3612 *
3613 * At this point we have a successful received a Prism2 info frame.
3614 *
3615 * Arguments:
3616 *       wlandev         wlan device
3617 *       usbin           ptr to the usb transfer buffer
3618 *
3619 * Returns:
3620 *       nothing
3621 *
3622 * Side effects:
3623 *
3624 * Call context:
3625 *       interrupt
3626 ----------------------------------------------------------------*/
3627 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin)
3628 {
3629         usbin->infofrm.info.framelen =
3630             le16_to_cpu(usbin->infofrm.info.framelen);
3631         prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3632 }
3633
3634 /*----------------------------------------------------------------
3635 * hfa384x_usbout_callback
3636 *
3637 * Callback for URBs on the BULKOUT endpoint.
3638 *
3639 * Arguments:
3640 *       urb             ptr to the completed urb
3641 *
3642 * Returns:
3643 *       nothing
3644 *
3645 * Side effects:
3646 *
3647 * Call context:
3648 *       interrupt
3649 ----------------------------------------------------------------*/
3650 static void hfa384x_usbout_callback(struct urb *urb)
3651 {
3652         wlandevice_t *wlandev = urb->context;
3653
3654 #ifdef DEBUG_USB
3655         dbprint_urb(urb);
3656 #endif
3657
3658         if (wlandev && wlandev->netdev) {
3659                 switch (urb->status) {
3660                 case 0:
3661                         prism2sta_ev_alloc(wlandev);
3662                         break;
3663
3664                 case -EPIPE:
3665                         {
3666                                 hfa384x_t *hw = wlandev->priv;
3667
3668                                 netdev_warn(hw->wlandev->netdev,
3669                                             "%s tx pipe stalled: requesting reset\n",
3670                                             wlandev->netdev->name);
3671                                 if (!test_and_set_bit
3672                                     (WORK_TX_HALT, &hw->usb_flags))
3673                                         schedule_work(&hw->usb_work);
3674                                 wlandev->netdev->stats.tx_errors++;
3675                                 break;
3676                         }
3677
3678                 case -EPROTO:
3679                 case -ETIMEDOUT:
3680                 case -EILSEQ:
3681                         {
3682                                 hfa384x_t *hw = wlandev->priv;
3683
3684                                 if (!test_and_set_bit
3685                                     (THROTTLE_TX, &hw->usb_flags) &&
3686                                     !timer_pending(&hw->throttle)) {
3687                                         mod_timer(&hw->throttle,
3688                                                   jiffies + THROTTLE_JIFFIES);
3689                                 }
3690                                 wlandev->netdev->stats.tx_errors++;
3691                                 netif_stop_queue(wlandev->netdev);
3692                                 break;
3693                         }
3694
3695                 case -ENOENT:
3696                 case -ESHUTDOWN:
3697                         /* Ignorable errors */
3698                         break;
3699
3700                 default:
3701                         netdev_info(wlandev->netdev, "unknown urb->status=%d\n",
3702                                     urb->status);
3703                         wlandev->netdev->stats.tx_errors++;
3704                         break;
3705                 }               /* switch */
3706         }
3707 }
3708
3709 /*----------------------------------------------------------------
3710 * hfa384x_ctlxout_callback
3711 *
3712 * Callback for control data on the BULKOUT endpoint.
3713 *
3714 * Arguments:
3715 *       urb             ptr to the completed urb
3716 *
3717 * Returns:
3718 * nothing
3719 *
3720 * Side effects:
3721 *
3722 * Call context:
3723 * interrupt
3724 ----------------------------------------------------------------*/
3725 static void hfa384x_ctlxout_callback(struct urb *urb)
3726 {
3727         hfa384x_t *hw = urb->context;
3728         int delete_resptimer = 0;
3729         int timer_ok = 1;
3730         int run_queue = 0;
3731         hfa384x_usbctlx_t *ctlx;
3732         unsigned long flags;
3733
3734         pr_debug("urb->status=%d\n", urb->status);
3735 #ifdef DEBUG_USB
3736         dbprint_urb(urb);
3737 #endif
3738         if ((urb->status == -ESHUTDOWN) ||
3739             (urb->status == -ENODEV) || (hw == NULL))
3740                 return;
3741
3742 retry:
3743         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3744
3745         /*
3746          * Only one CTLX at a time on the "active" list, and
3747          * none at all if we are unplugged. However, we can
3748          * rely on the disconnect function to clean everything
3749          * up if someone unplugged the adapter.
3750          */
3751         if (list_empty(&hw->ctlxq.active)) {
3752                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3753                 return;
3754         }
3755
3756         /*
3757          * Having something on the "active" queue means
3758          * that we have timers to worry about ...
3759          */
3760         if (del_timer(&hw->reqtimer) == 0) {
3761                 if (hw->req_timer_done == 0) {
3762                         /*
3763                          * This timer was actually running while we
3764                          * were trying to delete it. Let it terminate
3765                          * gracefully instead.
3766                          */
3767                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3768                         goto retry;
3769                 }
3770         } else {
3771                 hw->req_timer_done = 1;
3772         }
3773
3774         ctlx = get_active_ctlx(hw);
3775
3776         if (urb->status == 0) {
3777                 /* Request portion of a CTLX is successful */
3778                 switch (ctlx->state) {
3779                 case CTLX_REQ_SUBMITTED:
3780                         /* This OUT-ACK received before IN */
3781                         ctlx->state = CTLX_REQ_COMPLETE;
3782                         break;
3783
3784                 case CTLX_RESP_COMPLETE:
3785                         /* IN already received before this OUT-ACK,
3786                          * so this command must now be complete.
3787                          */
3788                         ctlx->state = CTLX_COMPLETE;
3789                         unlocked_usbctlx_complete(hw, ctlx);
3790                         run_queue = 1;
3791                         break;
3792
3793                 default:
3794                         /* This is NOT a valid CTLX "success" state! */
3795                         netdev_err(hw->wlandev->netdev,
3796                                    "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3797                                    le16_to_cpu(ctlx->outbuf.type),
3798                                    ctlxstr(ctlx->state), urb->status);
3799                         break;
3800                 }               /* switch */
3801         } else {
3802                 /* If the pipe has stalled then we need to reset it */
3803                 if ((urb->status == -EPIPE) &&
3804                     !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3805                         netdev_warn(hw->wlandev->netdev,
3806                                     "%s tx pipe stalled: requesting reset\n",
3807                                     hw->wlandev->netdev->name);
3808                         schedule_work(&hw->usb_work);
3809                 }
3810
3811                 /* If someone cancels the OUT URB then its status
3812                  * should be either -ECONNRESET or -ENOENT.
3813                  */
3814                 ctlx->state = CTLX_REQ_FAILED;
3815                 unlocked_usbctlx_complete(hw, ctlx);
3816                 delete_resptimer = 1;
3817                 run_queue = 1;
3818         }
3819
3820 delresp:
3821         if (delete_resptimer) {
3822                 timer_ok = del_timer(&hw->resptimer);
3823                 if (timer_ok != 0)
3824                         hw->resp_timer_done = 1;
3825         }
3826
3827         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3828
3829         if (!timer_ok && (hw->resp_timer_done == 0)) {
3830                 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3831                 goto delresp;
3832         }
3833
3834         if (run_queue)
3835                 hfa384x_usbctlxq_run(hw);
3836 }
3837
3838 /*----------------------------------------------------------------
3839 * hfa384x_usbctlx_reqtimerfn
3840 *
3841 * Timer response function for CTLX request timeouts.  If this
3842 * function is called, it means that the callback for the OUT
3843 * URB containing a Prism2.x XXX_Request was never called.
3844 *
3845 * Arguments:
3846 *       data            a ptr to the hfa384x_t
3847 *
3848 * Returns:
3849 *       nothing
3850 *
3851 * Side effects:
3852 *
3853 * Call context:
3854 *       interrupt
3855 ----------------------------------------------------------------*/
3856 static void hfa384x_usbctlx_reqtimerfn(unsigned long data)
3857 {
3858         hfa384x_t *hw = (hfa384x_t *)data;
3859         unsigned long flags;
3860
3861         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3862
3863         hw->req_timer_done = 1;
3864
3865         /* Removing the hardware automatically empties
3866          * the active list ...
3867          */
3868         if (!list_empty(&hw->ctlxq.active)) {
3869                 /*
3870                  * We must ensure that our URB is removed from
3871                  * the system, if it hasn't already expired.
3872                  */
3873                 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3874                 if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3875                         hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3876
3877                         ctlx->state = CTLX_REQ_FAILED;
3878
3879                         /* This URB was active, but has now been
3880                          * cancelled. It will now have a status of
3881                          * -ECONNRESET in the callback function.
3882                          *
3883                          * We are cancelling this CTLX, so we're
3884                          * not going to need to wait for a response.
3885                          * The URB's callback function will check
3886                          * that this timer is truly dead.
3887                          */
3888                         if (del_timer(&hw->resptimer) != 0)
3889                                 hw->resp_timer_done = 1;
3890                 }
3891         }
3892
3893         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3894 }
3895
3896 /*----------------------------------------------------------------
3897 * hfa384x_usbctlx_resptimerfn
3898 *
3899 * Timer response function for CTLX response timeouts.  If this
3900 * function is called, it means that the callback for the IN
3901 * URB containing a Prism2.x XXX_Response was never called.
3902 *
3903 * Arguments:
3904 *       data            a ptr to the hfa384x_t
3905 *
3906 * Returns:
3907 *       nothing
3908 *
3909 * Side effects:
3910 *
3911 * Call context:
3912 *       interrupt
3913 ----------------------------------------------------------------*/
3914 static void hfa384x_usbctlx_resptimerfn(unsigned long data)
3915 {
3916         hfa384x_t *hw = (hfa384x_t *)data;
3917         unsigned long flags;
3918
3919         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3920
3921         hw->resp_timer_done = 1;
3922
3923         /* The active list will be empty if the
3924          * adapter has been unplugged ...
3925          */
3926         if (!list_empty(&hw->ctlxq.active)) {
3927                 hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3928
3929                 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3930                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3931                         hfa384x_usbctlxq_run(hw);
3932                         return;
3933                 }
3934         }
3935         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3936 }
3937
3938 /*----------------------------------------------------------------
3939 * hfa384x_usb_throttlefn
3940 *
3941 *
3942 * Arguments:
3943 *       data    ptr to hw
3944 *
3945 * Returns:
3946 *       Nothing
3947 *
3948 * Side effects:
3949 *
3950 * Call context:
3951 *       Interrupt
3952 ----------------------------------------------------------------*/
3953 static void hfa384x_usb_throttlefn(unsigned long data)
3954 {
3955         hfa384x_t *hw = (hfa384x_t *)data;
3956         unsigned long flags;
3957
3958         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3959
3960         /*
3961          * We need to check BOTH the RX and the TX throttle controls,
3962          * so we use the bitwise OR instead of the logical OR.
3963          */
3964         pr_debug("flags=0x%lx\n", hw->usb_flags);
3965         if (!hw->wlandev->hwremoved &&
3966             ((test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
3967               !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags)) |
3968              (test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
3969               !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags))
3970             )) {
3971                 schedule_work(&hw->usb_work);
3972         }
3973
3974         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3975 }
3976
3977 /*----------------------------------------------------------------
3978 * hfa384x_usbctlx_submit
3979 *
3980 * Called from the doxxx functions to submit a CTLX to the queue
3981 *
3982 * Arguments:
3983 *       hw              ptr to the hw struct
3984 *       ctlx            ctlx structure to enqueue
3985 *
3986 * Returns:
3987 *       -ENODEV if the adapter is unplugged
3988 *       0
3989 *
3990 * Side effects:
3991 *
3992 * Call context:
3993 *       process or interrupt
3994 ----------------------------------------------------------------*/
3995 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
3996 {
3997         unsigned long flags;
3998
3999         spin_lock_irqsave(&hw->ctlxq.lock, flags);
4000
4001         if (hw->wlandev->hwremoved) {
4002                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4003                 return -ENODEV;
4004         }
4005
4006         ctlx->state = CTLX_PENDING;
4007         list_add_tail(&ctlx->list, &hw->ctlxq.pending);
4008         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4009         hfa384x_usbctlxq_run(hw);
4010
4011         return 0;
4012 }
4013
4014 /*----------------------------------------------------------------
4015 * hfa384x_isgood_pdrcore
4016 *
4017 * Quick check of PDR codes.
4018 *
4019 * Arguments:
4020 *       pdrcode         PDR code number (host order)
4021 *
4022 * Returns:
4023 *       zero            not good.
4024 *       one             is good.
4025 *
4026 * Side effects:
4027 *
4028 * Call context:
4029 ----------------------------------------------------------------*/
4030 static int hfa384x_isgood_pdrcode(u16 pdrcode)
4031 {
4032         switch (pdrcode) {
4033         case HFA384x_PDR_END_OF_PDA:
4034         case HFA384x_PDR_PCB_PARTNUM:
4035         case HFA384x_PDR_PDAVER:
4036         case HFA384x_PDR_NIC_SERIAL:
4037         case HFA384x_PDR_MKK_MEASUREMENTS:
4038         case HFA384x_PDR_NIC_RAMSIZE:
4039         case HFA384x_PDR_MFISUPRANGE:
4040         case HFA384x_PDR_CFISUPRANGE:
4041         case HFA384x_PDR_NICID:
4042         case HFA384x_PDR_MAC_ADDRESS:
4043         case HFA384x_PDR_REGDOMAIN:
4044         case HFA384x_PDR_ALLOWED_CHANNEL:
4045         case HFA384x_PDR_DEFAULT_CHANNEL:
4046         case HFA384x_PDR_TEMPTYPE:
4047         case HFA384x_PDR_IFR_SETTING:
4048         case HFA384x_PDR_RFR_SETTING:
4049         case HFA384x_PDR_HFA3861_BASELINE:
4050         case HFA384x_PDR_HFA3861_SHADOW:
4051         case HFA384x_PDR_HFA3861_IFRF:
4052         case HFA384x_PDR_HFA3861_CHCALSP:
4053         case HFA384x_PDR_HFA3861_CHCALI:
4054         case HFA384x_PDR_3842_NIC_CONFIG:
4055         case HFA384x_PDR_USB_ID:
4056         case HFA384x_PDR_PCI_ID:
4057         case HFA384x_PDR_PCI_IFCONF:
4058         case HFA384x_PDR_PCI_PMCONF:
4059         case HFA384x_PDR_RFENRGY:
4060         case HFA384x_PDR_HFA3861_MANF_TESTSP:
4061         case HFA384x_PDR_HFA3861_MANF_TESTI:
4062                 /* code is OK */
4063                 return 1;
4064         default:
4065                 if (pdrcode < 0x1000) {
4066                         /* code is OK, but we don't know exactly what it is */
4067                         pr_debug("Encountered unknown PDR#=0x%04x, assuming it's ok.\n",
4068                                  pdrcode);
4069                         return 1;
4070                 }
4071                 break;
4072         }
4073         /* bad code */
4074         pr_debug("Encountered unknown PDR#=0x%04x, (>=0x1000), assuming it's bad.\n",
4075                  pdrcode);
4076         return 0;
4077 }