]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/target/target_core_transport.c
target: use transport_cmd_check_stop_to_fabric consistently
[mv-sheeva.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_ua.h"
58
59 static int sub_api_initialized;
60
61 static struct kmem_cache *se_cmd_cache;
62 static struct kmem_cache *se_sess_cache;
63 struct kmem_cache *se_tmr_req_cache;
64 struct kmem_cache *se_ua_cache;
65 struct kmem_cache *t10_pr_reg_cache;
66 struct kmem_cache *t10_alua_lu_gp_cache;
67 struct kmem_cache *t10_alua_lu_gp_mem_cache;
68 struct kmem_cache *t10_alua_tg_pt_gp_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
70
71 static int transport_generic_write_pending(struct se_cmd *);
72 static int transport_processing_thread(void *param);
73 static int __transport_execute_tasks(struct se_device *dev);
74 static void transport_complete_task_attr(struct se_cmd *cmd);
75 static void transport_handle_queue_full(struct se_cmd *cmd,
76                 struct se_device *dev);
77 static void transport_direct_request_timeout(struct se_cmd *cmd);
78 static void transport_free_dev_tasks(struct se_cmd *cmd);
79 static u32 transport_allocate_tasks(struct se_cmd *cmd,
80                 unsigned long long starting_lba,
81                 enum dma_data_direction data_direction,
82                 struct scatterlist *sgl, unsigned int nents);
83 static int transport_generic_get_mem(struct se_cmd *cmd);
84 static void transport_put_cmd(struct se_cmd *cmd);
85 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
86 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
87 static void transport_stop_all_task_timers(struct se_cmd *cmd);
88
89 int init_se_kmem_caches(void)
90 {
91         se_cmd_cache = kmem_cache_create("se_cmd_cache",
92                         sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
93         if (!se_cmd_cache) {
94                 pr_err("kmem_cache_create for struct se_cmd failed\n");
95                 goto out;
96         }
97         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
98                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
99                         0, NULL);
100         if (!se_tmr_req_cache) {
101                 pr_err("kmem_cache_create() for struct se_tmr_req"
102                                 " failed\n");
103                 goto out;
104         }
105         se_sess_cache = kmem_cache_create("se_sess_cache",
106                         sizeof(struct se_session), __alignof__(struct se_session),
107                         0, NULL);
108         if (!se_sess_cache) {
109                 pr_err("kmem_cache_create() for struct se_session"
110                                 " failed\n");
111                 goto out;
112         }
113         se_ua_cache = kmem_cache_create("se_ua_cache",
114                         sizeof(struct se_ua), __alignof__(struct se_ua),
115                         0, NULL);
116         if (!se_ua_cache) {
117                 pr_err("kmem_cache_create() for struct se_ua failed\n");
118                 goto out;
119         }
120         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
121                         sizeof(struct t10_pr_registration),
122                         __alignof__(struct t10_pr_registration), 0, NULL);
123         if (!t10_pr_reg_cache) {
124                 pr_err("kmem_cache_create() for struct t10_pr_registration"
125                                 " failed\n");
126                 goto out;
127         }
128         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
129                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
130                         0, NULL);
131         if (!t10_alua_lu_gp_cache) {
132                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
133                                 " failed\n");
134                 goto out;
135         }
136         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
137                         sizeof(struct t10_alua_lu_gp_member),
138                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
139         if (!t10_alua_lu_gp_mem_cache) {
140                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
141                                 "cache failed\n");
142                 goto out;
143         }
144         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
145                         sizeof(struct t10_alua_tg_pt_gp),
146                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
147         if (!t10_alua_tg_pt_gp_cache) {
148                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
149                                 "cache failed\n");
150                 goto out;
151         }
152         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
153                         "t10_alua_tg_pt_gp_mem_cache",
154                         sizeof(struct t10_alua_tg_pt_gp_member),
155                         __alignof__(struct t10_alua_tg_pt_gp_member),
156                         0, NULL);
157         if (!t10_alua_tg_pt_gp_mem_cache) {
158                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
159                                 "mem_t failed\n");
160                 goto out;
161         }
162
163         return 0;
164 out:
165         if (se_cmd_cache)
166                 kmem_cache_destroy(se_cmd_cache);
167         if (se_tmr_req_cache)
168                 kmem_cache_destroy(se_tmr_req_cache);
169         if (se_sess_cache)
170                 kmem_cache_destroy(se_sess_cache);
171         if (se_ua_cache)
172                 kmem_cache_destroy(se_ua_cache);
173         if (t10_pr_reg_cache)
174                 kmem_cache_destroy(t10_pr_reg_cache);
175         if (t10_alua_lu_gp_cache)
176                 kmem_cache_destroy(t10_alua_lu_gp_cache);
177         if (t10_alua_lu_gp_mem_cache)
178                 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
179         if (t10_alua_tg_pt_gp_cache)
180                 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
181         if (t10_alua_tg_pt_gp_mem_cache)
182                 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
183         return -ENOMEM;
184 }
185
186 void release_se_kmem_caches(void)
187 {
188         kmem_cache_destroy(se_cmd_cache);
189         kmem_cache_destroy(se_tmr_req_cache);
190         kmem_cache_destroy(se_sess_cache);
191         kmem_cache_destroy(se_ua_cache);
192         kmem_cache_destroy(t10_pr_reg_cache);
193         kmem_cache_destroy(t10_alua_lu_gp_cache);
194         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
195         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
196         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
197 }
198
199 /* This code ensures unique mib indexes are handed out. */
200 static DEFINE_SPINLOCK(scsi_mib_index_lock);
201 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
202
203 /*
204  * Allocate a new row index for the entry type specified
205  */
206 u32 scsi_get_new_index(scsi_index_t type)
207 {
208         u32 new_index;
209
210         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
211
212         spin_lock(&scsi_mib_index_lock);
213         new_index = ++scsi_mib_index[type];
214         spin_unlock(&scsi_mib_index_lock);
215
216         return new_index;
217 }
218
219 void transport_init_queue_obj(struct se_queue_obj *qobj)
220 {
221         atomic_set(&qobj->queue_cnt, 0);
222         INIT_LIST_HEAD(&qobj->qobj_list);
223         init_waitqueue_head(&qobj->thread_wq);
224         spin_lock_init(&qobj->cmd_queue_lock);
225 }
226 EXPORT_SYMBOL(transport_init_queue_obj);
227
228 static int transport_subsystem_reqmods(void)
229 {
230         int ret;
231
232         ret = request_module("target_core_iblock");
233         if (ret != 0)
234                 pr_err("Unable to load target_core_iblock\n");
235
236         ret = request_module("target_core_file");
237         if (ret != 0)
238                 pr_err("Unable to load target_core_file\n");
239
240         ret = request_module("target_core_pscsi");
241         if (ret != 0)
242                 pr_err("Unable to load target_core_pscsi\n");
243
244         ret = request_module("target_core_stgt");
245         if (ret != 0)
246                 pr_err("Unable to load target_core_stgt\n");
247
248         return 0;
249 }
250
251 int transport_subsystem_check_init(void)
252 {
253         int ret;
254
255         if (sub_api_initialized)
256                 return 0;
257         /*
258          * Request the loading of known TCM subsystem plugins..
259          */
260         ret = transport_subsystem_reqmods();
261         if (ret < 0)
262                 return ret;
263
264         sub_api_initialized = 1;
265         return 0;
266 }
267
268 struct se_session *transport_init_session(void)
269 {
270         struct se_session *se_sess;
271
272         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
273         if (!se_sess) {
274                 pr_err("Unable to allocate struct se_session from"
275                                 " se_sess_cache\n");
276                 return ERR_PTR(-ENOMEM);
277         }
278         INIT_LIST_HEAD(&se_sess->sess_list);
279         INIT_LIST_HEAD(&se_sess->sess_acl_list);
280
281         return se_sess;
282 }
283 EXPORT_SYMBOL(transport_init_session);
284
285 /*
286  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
287  */
288 void __transport_register_session(
289         struct se_portal_group *se_tpg,
290         struct se_node_acl *se_nacl,
291         struct se_session *se_sess,
292         void *fabric_sess_ptr)
293 {
294         unsigned char buf[PR_REG_ISID_LEN];
295
296         se_sess->se_tpg = se_tpg;
297         se_sess->fabric_sess_ptr = fabric_sess_ptr;
298         /*
299          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
300          *
301          * Only set for struct se_session's that will actually be moving I/O.
302          * eg: *NOT* discovery sessions.
303          */
304         if (se_nacl) {
305                 /*
306                  * If the fabric module supports an ISID based TransportID,
307                  * save this value in binary from the fabric I_T Nexus now.
308                  */
309                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
310                         memset(&buf[0], 0, PR_REG_ISID_LEN);
311                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
312                                         &buf[0], PR_REG_ISID_LEN);
313                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
314                 }
315                 spin_lock_irq(&se_nacl->nacl_sess_lock);
316                 /*
317                  * The se_nacl->nacl_sess pointer will be set to the
318                  * last active I_T Nexus for each struct se_node_acl.
319                  */
320                 se_nacl->nacl_sess = se_sess;
321
322                 list_add_tail(&se_sess->sess_acl_list,
323                               &se_nacl->acl_sess_list);
324                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
325         }
326         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
327
328         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
329                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
330 }
331 EXPORT_SYMBOL(__transport_register_session);
332
333 void transport_register_session(
334         struct se_portal_group *se_tpg,
335         struct se_node_acl *se_nacl,
336         struct se_session *se_sess,
337         void *fabric_sess_ptr)
338 {
339         spin_lock_bh(&se_tpg->session_lock);
340         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
341         spin_unlock_bh(&se_tpg->session_lock);
342 }
343 EXPORT_SYMBOL(transport_register_session);
344
345 void transport_deregister_session_configfs(struct se_session *se_sess)
346 {
347         struct se_node_acl *se_nacl;
348         unsigned long flags;
349         /*
350          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
351          */
352         se_nacl = se_sess->se_node_acl;
353         if (se_nacl) {
354                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
355                 list_del(&se_sess->sess_acl_list);
356                 /*
357                  * If the session list is empty, then clear the pointer.
358                  * Otherwise, set the struct se_session pointer from the tail
359                  * element of the per struct se_node_acl active session list.
360                  */
361                 if (list_empty(&se_nacl->acl_sess_list))
362                         se_nacl->nacl_sess = NULL;
363                 else {
364                         se_nacl->nacl_sess = container_of(
365                                         se_nacl->acl_sess_list.prev,
366                                         struct se_session, sess_acl_list);
367                 }
368                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
369         }
370 }
371 EXPORT_SYMBOL(transport_deregister_session_configfs);
372
373 void transport_free_session(struct se_session *se_sess)
374 {
375         kmem_cache_free(se_sess_cache, se_sess);
376 }
377 EXPORT_SYMBOL(transport_free_session);
378
379 void transport_deregister_session(struct se_session *se_sess)
380 {
381         struct se_portal_group *se_tpg = se_sess->se_tpg;
382         struct se_node_acl *se_nacl;
383         unsigned long flags;
384
385         if (!se_tpg) {
386                 transport_free_session(se_sess);
387                 return;
388         }
389
390         spin_lock_irqsave(&se_tpg->session_lock, flags);
391         list_del(&se_sess->sess_list);
392         se_sess->se_tpg = NULL;
393         se_sess->fabric_sess_ptr = NULL;
394         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
395
396         /*
397          * Determine if we need to do extra work for this initiator node's
398          * struct se_node_acl if it had been previously dynamically generated.
399          */
400         se_nacl = se_sess->se_node_acl;
401         if (se_nacl) {
402                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
403                 if (se_nacl->dynamic_node_acl) {
404                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
405                                         se_tpg)) {
406                                 list_del(&se_nacl->acl_list);
407                                 se_tpg->num_node_acls--;
408                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
409
410                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
411                                 core_free_device_list_for_node(se_nacl, se_tpg);
412                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
413                                                 se_nacl);
414                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
415                         }
416                 }
417                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
418         }
419
420         transport_free_session(se_sess);
421
422         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
423                 se_tpg->se_tpg_tfo->get_fabric_name());
424 }
425 EXPORT_SYMBOL(transport_deregister_session);
426
427 /*
428  * Called with cmd->t_state_lock held.
429  */
430 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
431 {
432         struct se_device *dev = cmd->se_dev;
433         struct se_task *task;
434         unsigned long flags;
435
436         if (!dev)
437                 return;
438
439         list_for_each_entry(task, &cmd->t_task_list, t_list) {
440                 if (task->task_flags & TF_ACTIVE)
441                         continue;
442
443                 if (!atomic_read(&task->task_state_active))
444                         continue;
445
446                 spin_lock_irqsave(&dev->execute_task_lock, flags);
447                 list_del(&task->t_state_list);
448                 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
449                         cmd->se_tfo->get_task_tag(cmd), dev, task);
450                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
451
452                 atomic_set(&task->task_state_active, 0);
453                 atomic_dec(&cmd->t_task_cdbs_ex_left);
454         }
455 }
456
457 /*      transport_cmd_check_stop():
458  *
459  *      'transport_off = 1' determines if t_transport_active should be cleared.
460  *      'transport_off = 2' determines if task_dev_state should be removed.
461  *
462  *      A non-zero u8 t_state sets cmd->t_state.
463  *      Returns 1 when command is stopped, else 0.
464  */
465 static int transport_cmd_check_stop(
466         struct se_cmd *cmd,
467         int transport_off,
468         u8 t_state)
469 {
470         unsigned long flags;
471
472         spin_lock_irqsave(&cmd->t_state_lock, flags);
473         /*
474          * Determine if IOCTL context caller in requesting the stopping of this
475          * command for LUN shutdown purposes.
476          */
477         if (atomic_read(&cmd->transport_lun_stop)) {
478                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
479                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
480                         cmd->se_tfo->get_task_tag(cmd));
481
482                 cmd->deferred_t_state = cmd->t_state;
483                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
484                 atomic_set(&cmd->t_transport_active, 0);
485                 if (transport_off == 2)
486                         transport_all_task_dev_remove_state(cmd);
487                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
488
489                 complete(&cmd->transport_lun_stop_comp);
490                 return 1;
491         }
492         /*
493          * Determine if frontend context caller is requesting the stopping of
494          * this command for frontend exceptions.
495          */
496         if (atomic_read(&cmd->t_transport_stop)) {
497                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
498                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
499                         cmd->se_tfo->get_task_tag(cmd));
500
501                 cmd->deferred_t_state = cmd->t_state;
502                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
503                 if (transport_off == 2)
504                         transport_all_task_dev_remove_state(cmd);
505
506                 /*
507                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
508                  * to FE.
509                  */
510                 if (transport_off == 2)
511                         cmd->se_lun = NULL;
512                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
513
514                 complete(&cmd->t_transport_stop_comp);
515                 return 1;
516         }
517         if (transport_off) {
518                 atomic_set(&cmd->t_transport_active, 0);
519                 if (transport_off == 2) {
520                         transport_all_task_dev_remove_state(cmd);
521                         /*
522                          * Clear struct se_cmd->se_lun before the transport_off == 2
523                          * handoff to fabric module.
524                          */
525                         cmd->se_lun = NULL;
526                         /*
527                          * Some fabric modules like tcm_loop can release
528                          * their internally allocated I/O reference now and
529                          * struct se_cmd now.
530                          */
531                         if (cmd->se_tfo->check_stop_free != NULL) {
532                                 spin_unlock_irqrestore(
533                                         &cmd->t_state_lock, flags);
534
535                                 cmd->se_tfo->check_stop_free(cmd);
536                                 return 1;
537                         }
538                 }
539                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
540
541                 return 0;
542         } else if (t_state)
543                 cmd->t_state = t_state;
544         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545
546         return 0;
547 }
548
549 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
550 {
551         return transport_cmd_check_stop(cmd, 2, 0);
552 }
553
554 static void transport_lun_remove_cmd(struct se_cmd *cmd)
555 {
556         struct se_lun *lun = cmd->se_lun;
557         unsigned long flags;
558
559         if (!lun)
560                 return;
561
562         spin_lock_irqsave(&cmd->t_state_lock, flags);
563         if (!atomic_read(&cmd->transport_dev_active)) {
564                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
565                 goto check_lun;
566         }
567         atomic_set(&cmd->transport_dev_active, 0);
568         transport_all_task_dev_remove_state(cmd);
569         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
570
571
572 check_lun:
573         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
574         if (atomic_read(&cmd->transport_lun_active)) {
575                 list_del(&cmd->se_lun_node);
576                 atomic_set(&cmd->transport_lun_active, 0);
577 #if 0
578                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
579                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
580 #endif
581         }
582         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
583 }
584
585 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
586 {
587         if (!cmd->se_tmr_req)
588                 transport_lun_remove_cmd(cmd);
589
590         if (transport_cmd_check_stop_to_fabric(cmd))
591                 return;
592         if (remove) {
593                 transport_remove_cmd_from_queue(cmd);
594                 transport_put_cmd(cmd);
595         }
596 }
597
598 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
599                 bool at_head)
600 {
601         struct se_device *dev = cmd->se_dev;
602         struct se_queue_obj *qobj = &dev->dev_queue_obj;
603         unsigned long flags;
604
605         if (t_state) {
606                 spin_lock_irqsave(&cmd->t_state_lock, flags);
607                 cmd->t_state = t_state;
608                 atomic_set(&cmd->t_transport_active, 1);
609                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
610         }
611
612         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
613
614         /* If the cmd is already on the list, remove it before we add it */
615         if (!list_empty(&cmd->se_queue_node))
616                 list_del(&cmd->se_queue_node);
617         else
618                 atomic_inc(&qobj->queue_cnt);
619
620         if (at_head)
621                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
622         else
623                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
624         atomic_set(&cmd->t_transport_queue_active, 1);
625         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
626
627         wake_up_interruptible(&qobj->thread_wq);
628 }
629
630 static struct se_cmd *
631 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
632 {
633         struct se_cmd *cmd;
634         unsigned long flags;
635
636         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
637         if (list_empty(&qobj->qobj_list)) {
638                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
639                 return NULL;
640         }
641         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
642
643         atomic_set(&cmd->t_transport_queue_active, 0);
644
645         list_del_init(&cmd->se_queue_node);
646         atomic_dec(&qobj->queue_cnt);
647         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
648
649         return cmd;
650 }
651
652 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
653 {
654         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
655         unsigned long flags;
656
657         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
658         if (!atomic_read(&cmd->t_transport_queue_active)) {
659                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
660                 return;
661         }
662         atomic_set(&cmd->t_transport_queue_active, 0);
663         atomic_dec(&qobj->queue_cnt);
664         list_del_init(&cmd->se_queue_node);
665         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
666
667         if (atomic_read(&cmd->t_transport_queue_active)) {
668                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
669                         cmd->se_tfo->get_task_tag(cmd),
670                         atomic_read(&cmd->t_transport_queue_active));
671         }
672 }
673
674 /*
675  * Completion function used by TCM subsystem plugins (such as FILEIO)
676  * for queueing up response from struct se_subsystem_api->do_task()
677  */
678 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
679 {
680         struct se_task *task = list_entry(cmd->t_task_list.next,
681                                 struct se_task, t_list);
682
683         if (good) {
684                 cmd->scsi_status = SAM_STAT_GOOD;
685                 task->task_scsi_status = GOOD;
686         } else {
687                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
688                 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
689                 task->task_se_cmd->transport_error_status =
690                                         PYX_TRANSPORT_ILLEGAL_REQUEST;
691         }
692
693         transport_complete_task(task, good);
694 }
695 EXPORT_SYMBOL(transport_complete_sync_cache);
696
697 /*      transport_complete_task():
698  *
699  *      Called from interrupt and non interrupt context depending
700  *      on the transport plugin.
701  */
702 void transport_complete_task(struct se_task *task, int success)
703 {
704         struct se_cmd *cmd = task->task_se_cmd;
705         struct se_device *dev = cmd->se_dev;
706         int t_state;
707         unsigned long flags;
708 #if 0
709         pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
710                         cmd->t_task_cdb[0], dev);
711 #endif
712         if (dev)
713                 atomic_inc(&dev->depth_left);
714
715         spin_lock_irqsave(&cmd->t_state_lock, flags);
716         task->task_flags &= ~TF_ACTIVE;
717
718         /*
719          * See if any sense data exists, if so set the TASK_SENSE flag.
720          * Also check for any other post completion work that needs to be
721          * done by the plugins.
722          */
723         if (dev && dev->transport->transport_complete) {
724                 if (dev->transport->transport_complete(task) != 0) {
725                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
726                         task->task_sense = 1;
727                         success = 1;
728                 }
729         }
730
731         /*
732          * See if we are waiting for outstanding struct se_task
733          * to complete for an exception condition
734          */
735         if (task->task_flags & TF_REQUEST_STOP) {
736                 /*
737                  * Decrement cmd->t_se_count if this task had
738                  * previously thrown its timeout exception handler.
739                  */
740                 if (task->task_flags & TF_TIMEOUT) {
741                         atomic_dec(&cmd->t_se_count);
742                         task->task_flags &= ~TF_TIMEOUT;
743                 }
744                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
745
746                 complete(&task->task_stop_comp);
747                 return;
748         }
749         /*
750          * If the task's timeout handler has fired, use the t_task_cdbs_timeout
751          * left counter to determine when the struct se_cmd is ready to be queued to
752          * the processing thread.
753          */
754         if (task->task_flags & TF_TIMEOUT) {
755                 if (!atomic_dec_and_test(
756                                 &cmd->t_task_cdbs_timeout_left)) {
757                         spin_unlock_irqrestore(&cmd->t_state_lock,
758                                 flags);
759                         return;
760                 }
761                 t_state = TRANSPORT_COMPLETE_TIMEOUT;
762                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
763
764                 transport_add_cmd_to_queue(cmd, t_state, false);
765                 return;
766         }
767         atomic_dec(&cmd->t_task_cdbs_timeout_left);
768
769         /*
770          * Decrement the outstanding t_task_cdbs_left count.  The last
771          * struct se_task from struct se_cmd will complete itself into the
772          * device queue depending upon int success.
773          */
774         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
775                 if (!success)
776                         cmd->t_tasks_failed = 1;
777
778                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
779                 return;
780         }
781
782         if (!success || cmd->t_tasks_failed) {
783                 t_state = TRANSPORT_COMPLETE_FAILURE;
784                 if (!task->task_error_status) {
785                         task->task_error_status =
786                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
787                         cmd->transport_error_status =
788                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
789                 }
790         } else {
791                 atomic_set(&cmd->t_transport_complete, 1);
792                 t_state = TRANSPORT_COMPLETE_OK;
793         }
794         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
795
796         transport_add_cmd_to_queue(cmd, t_state, false);
797 }
798 EXPORT_SYMBOL(transport_complete_task);
799
800 /*
801  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
802  * struct se_task list are ready to be added to the active execution list
803  * struct se_device
804
805  * Called with se_dev_t->execute_task_lock called.
806  */
807 static inline int transport_add_task_check_sam_attr(
808         struct se_task *task,
809         struct se_task *task_prev,
810         struct se_device *dev)
811 {
812         /*
813          * No SAM Task attribute emulation enabled, add to tail of
814          * execution queue
815          */
816         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
817                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
818                 return 0;
819         }
820         /*
821          * HEAD_OF_QUEUE attribute for received CDB, which means
822          * the first task that is associated with a struct se_cmd goes to
823          * head of the struct se_device->execute_task_list, and task_prev
824          * after that for each subsequent task
825          */
826         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
827                 list_add(&task->t_execute_list,
828                                 (task_prev != NULL) ?
829                                 &task_prev->t_execute_list :
830                                 &dev->execute_task_list);
831
832                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
833                                 " in execution queue\n",
834                                 task->task_se_cmd->t_task_cdb[0]);
835                 return 1;
836         }
837         /*
838          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
839          * transitioned from Dermant -> Active state, and are added to the end
840          * of the struct se_device->execute_task_list
841          */
842         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
843         return 0;
844 }
845
846 /*      __transport_add_task_to_execute_queue():
847  *
848  *      Called with se_dev_t->execute_task_lock called.
849  */
850 static void __transport_add_task_to_execute_queue(
851         struct se_task *task,
852         struct se_task *task_prev,
853         struct se_device *dev)
854 {
855         int head_of_queue;
856
857         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
858         atomic_inc(&dev->execute_tasks);
859
860         if (atomic_read(&task->task_state_active))
861                 return;
862         /*
863          * Determine if this task needs to go to HEAD_OF_QUEUE for the
864          * state list as well.  Running with SAM Task Attribute emulation
865          * will always return head_of_queue == 0 here
866          */
867         if (head_of_queue)
868                 list_add(&task->t_state_list, (task_prev) ?
869                                 &task_prev->t_state_list :
870                                 &dev->state_task_list);
871         else
872                 list_add_tail(&task->t_state_list, &dev->state_task_list);
873
874         atomic_set(&task->task_state_active, 1);
875
876         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
877                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
878                 task, dev);
879 }
880
881 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
882 {
883         struct se_device *dev = cmd->se_dev;
884         struct se_task *task;
885         unsigned long flags;
886
887         spin_lock_irqsave(&cmd->t_state_lock, flags);
888         list_for_each_entry(task, &cmd->t_task_list, t_list) {
889                 if (atomic_read(&task->task_state_active))
890                         continue;
891
892                 spin_lock(&dev->execute_task_lock);
893                 list_add_tail(&task->t_state_list, &dev->state_task_list);
894                 atomic_set(&task->task_state_active, 1);
895
896                 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
897                         task->task_se_cmd->se_tfo->get_task_tag(
898                         task->task_se_cmd), task, dev);
899
900                 spin_unlock(&dev->execute_task_lock);
901         }
902         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
903 }
904
905 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
906 {
907         struct se_device *dev = cmd->se_dev;
908         struct se_task *task, *task_prev = NULL;
909         unsigned long flags;
910
911         spin_lock_irqsave(&dev->execute_task_lock, flags);
912         list_for_each_entry(task, &cmd->t_task_list, t_list) {
913                 if (!list_empty(&task->t_execute_list))
914                         continue;
915                 /*
916                  * __transport_add_task_to_execute_queue() handles the
917                  * SAM Task Attribute emulation if enabled
918                  */
919                 __transport_add_task_to_execute_queue(task, task_prev, dev);
920                 task_prev = task;
921         }
922         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
923 }
924
925 void __transport_remove_task_from_execute_queue(struct se_task *task,
926                 struct se_device *dev)
927 {
928         list_del_init(&task->t_execute_list);
929         atomic_dec(&dev->execute_tasks);
930 }
931
932 void transport_remove_task_from_execute_queue(
933         struct se_task *task,
934         struct se_device *dev)
935 {
936         unsigned long flags;
937
938         if (WARN_ON(list_empty(&task->t_execute_list)))
939                 return;
940
941         spin_lock_irqsave(&dev->execute_task_lock, flags);
942         __transport_remove_task_from_execute_queue(task, dev);
943         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
944 }
945
946 /*
947  * Handle QUEUE_FULL / -EAGAIN status
948  */
949
950 static void target_qf_do_work(struct work_struct *work)
951 {
952         struct se_device *dev = container_of(work, struct se_device,
953                                         qf_work_queue);
954         LIST_HEAD(qf_cmd_list);
955         struct se_cmd *cmd, *cmd_tmp;
956
957         spin_lock_irq(&dev->qf_cmd_lock);
958         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
959         spin_unlock_irq(&dev->qf_cmd_lock);
960
961         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
962                 list_del(&cmd->se_qf_node);
963                 atomic_dec(&dev->dev_qf_count);
964                 smp_mb__after_atomic_dec();
965
966                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
967                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
968                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
969                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
970                         : "UNKNOWN");
971
972                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
973         }
974 }
975
976 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
977 {
978         switch (cmd->data_direction) {
979         case DMA_NONE:
980                 return "NONE";
981         case DMA_FROM_DEVICE:
982                 return "READ";
983         case DMA_TO_DEVICE:
984                 return "WRITE";
985         case DMA_BIDIRECTIONAL:
986                 return "BIDI";
987         default:
988                 break;
989         }
990
991         return "UNKNOWN";
992 }
993
994 void transport_dump_dev_state(
995         struct se_device *dev,
996         char *b,
997         int *bl)
998 {
999         *bl += sprintf(b + *bl, "Status: ");
1000         switch (dev->dev_status) {
1001         case TRANSPORT_DEVICE_ACTIVATED:
1002                 *bl += sprintf(b + *bl, "ACTIVATED");
1003                 break;
1004         case TRANSPORT_DEVICE_DEACTIVATED:
1005                 *bl += sprintf(b + *bl, "DEACTIVATED");
1006                 break;
1007         case TRANSPORT_DEVICE_SHUTDOWN:
1008                 *bl += sprintf(b + *bl, "SHUTDOWN");
1009                 break;
1010         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1011         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1012                 *bl += sprintf(b + *bl, "OFFLINE");
1013                 break;
1014         default:
1015                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1016                 break;
1017         }
1018
1019         *bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
1020                 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1021                 dev->queue_depth);
1022         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
1023                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1024         *bl += sprintf(b + *bl, "        ");
1025 }
1026
1027 void transport_dump_vpd_proto_id(
1028         struct t10_vpd *vpd,
1029         unsigned char *p_buf,
1030         int p_buf_len)
1031 {
1032         unsigned char buf[VPD_TMP_BUF_SIZE];
1033         int len;
1034
1035         memset(buf, 0, VPD_TMP_BUF_SIZE);
1036         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1037
1038         switch (vpd->protocol_identifier) {
1039         case 0x00:
1040                 sprintf(buf+len, "Fibre Channel\n");
1041                 break;
1042         case 0x10:
1043                 sprintf(buf+len, "Parallel SCSI\n");
1044                 break;
1045         case 0x20:
1046                 sprintf(buf+len, "SSA\n");
1047                 break;
1048         case 0x30:
1049                 sprintf(buf+len, "IEEE 1394\n");
1050                 break;
1051         case 0x40:
1052                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1053                                 " Protocol\n");
1054                 break;
1055         case 0x50:
1056                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1057                 break;
1058         case 0x60:
1059                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1060                 break;
1061         case 0x70:
1062                 sprintf(buf+len, "Automation/Drive Interface Transport"
1063                                 " Protocol\n");
1064                 break;
1065         case 0x80:
1066                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1067                 break;
1068         default:
1069                 sprintf(buf+len, "Unknown 0x%02x\n",
1070                                 vpd->protocol_identifier);
1071                 break;
1072         }
1073
1074         if (p_buf)
1075                 strncpy(p_buf, buf, p_buf_len);
1076         else
1077                 pr_debug("%s", buf);
1078 }
1079
1080 void
1081 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1082 {
1083         /*
1084          * Check if the Protocol Identifier Valid (PIV) bit is set..
1085          *
1086          * from spc3r23.pdf section 7.5.1
1087          */
1088          if (page_83[1] & 0x80) {
1089                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1090                 vpd->protocol_identifier_set = 1;
1091                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1092         }
1093 }
1094 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1095
1096 int transport_dump_vpd_assoc(
1097         struct t10_vpd *vpd,
1098         unsigned char *p_buf,
1099         int p_buf_len)
1100 {
1101         unsigned char buf[VPD_TMP_BUF_SIZE];
1102         int ret = 0;
1103         int len;
1104
1105         memset(buf, 0, VPD_TMP_BUF_SIZE);
1106         len = sprintf(buf, "T10 VPD Identifier Association: ");
1107
1108         switch (vpd->association) {
1109         case 0x00:
1110                 sprintf(buf+len, "addressed logical unit\n");
1111                 break;
1112         case 0x10:
1113                 sprintf(buf+len, "target port\n");
1114                 break;
1115         case 0x20:
1116                 sprintf(buf+len, "SCSI target device\n");
1117                 break;
1118         default:
1119                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1120                 ret = -EINVAL;
1121                 break;
1122         }
1123
1124         if (p_buf)
1125                 strncpy(p_buf, buf, p_buf_len);
1126         else
1127                 pr_debug("%s", buf);
1128
1129         return ret;
1130 }
1131
1132 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1133 {
1134         /*
1135          * The VPD identification association..
1136          *
1137          * from spc3r23.pdf Section 7.6.3.1 Table 297
1138          */
1139         vpd->association = (page_83[1] & 0x30);
1140         return transport_dump_vpd_assoc(vpd, NULL, 0);
1141 }
1142 EXPORT_SYMBOL(transport_set_vpd_assoc);
1143
1144 int transport_dump_vpd_ident_type(
1145         struct t10_vpd *vpd,
1146         unsigned char *p_buf,
1147         int p_buf_len)
1148 {
1149         unsigned char buf[VPD_TMP_BUF_SIZE];
1150         int ret = 0;
1151         int len;
1152
1153         memset(buf, 0, VPD_TMP_BUF_SIZE);
1154         len = sprintf(buf, "T10 VPD Identifier Type: ");
1155
1156         switch (vpd->device_identifier_type) {
1157         case 0x00:
1158                 sprintf(buf+len, "Vendor specific\n");
1159                 break;
1160         case 0x01:
1161                 sprintf(buf+len, "T10 Vendor ID based\n");
1162                 break;
1163         case 0x02:
1164                 sprintf(buf+len, "EUI-64 based\n");
1165                 break;
1166         case 0x03:
1167                 sprintf(buf+len, "NAA\n");
1168                 break;
1169         case 0x04:
1170                 sprintf(buf+len, "Relative target port identifier\n");
1171                 break;
1172         case 0x08:
1173                 sprintf(buf+len, "SCSI name string\n");
1174                 break;
1175         default:
1176                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1177                                 vpd->device_identifier_type);
1178                 ret = -EINVAL;
1179                 break;
1180         }
1181
1182         if (p_buf) {
1183                 if (p_buf_len < strlen(buf)+1)
1184                         return -EINVAL;
1185                 strncpy(p_buf, buf, p_buf_len);
1186         } else {
1187                 pr_debug("%s", buf);
1188         }
1189
1190         return ret;
1191 }
1192
1193 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1194 {
1195         /*
1196          * The VPD identifier type..
1197          *
1198          * from spc3r23.pdf Section 7.6.3.1 Table 298
1199          */
1200         vpd->device_identifier_type = (page_83[1] & 0x0f);
1201         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1202 }
1203 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1204
1205 int transport_dump_vpd_ident(
1206         struct t10_vpd *vpd,
1207         unsigned char *p_buf,
1208         int p_buf_len)
1209 {
1210         unsigned char buf[VPD_TMP_BUF_SIZE];
1211         int ret = 0;
1212
1213         memset(buf, 0, VPD_TMP_BUF_SIZE);
1214
1215         switch (vpd->device_identifier_code_set) {
1216         case 0x01: /* Binary */
1217                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1218                         &vpd->device_identifier[0]);
1219                 break;
1220         case 0x02: /* ASCII */
1221                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1222                         &vpd->device_identifier[0]);
1223                 break;
1224         case 0x03: /* UTF-8 */
1225                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1226                         &vpd->device_identifier[0]);
1227                 break;
1228         default:
1229                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1230                         " 0x%02x", vpd->device_identifier_code_set);
1231                 ret = -EINVAL;
1232                 break;
1233         }
1234
1235         if (p_buf)
1236                 strncpy(p_buf, buf, p_buf_len);
1237         else
1238                 pr_debug("%s", buf);
1239
1240         return ret;
1241 }
1242
1243 int
1244 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1245 {
1246         static const char hex_str[] = "0123456789abcdef";
1247         int j = 0, i = 4; /* offset to start of the identifer */
1248
1249         /*
1250          * The VPD Code Set (encoding)
1251          *
1252          * from spc3r23.pdf Section 7.6.3.1 Table 296
1253          */
1254         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1255         switch (vpd->device_identifier_code_set) {
1256         case 0x01: /* Binary */
1257                 vpd->device_identifier[j++] =
1258                                 hex_str[vpd->device_identifier_type];
1259                 while (i < (4 + page_83[3])) {
1260                         vpd->device_identifier[j++] =
1261                                 hex_str[(page_83[i] & 0xf0) >> 4];
1262                         vpd->device_identifier[j++] =
1263                                 hex_str[page_83[i] & 0x0f];
1264                         i++;
1265                 }
1266                 break;
1267         case 0x02: /* ASCII */
1268         case 0x03: /* UTF-8 */
1269                 while (i < (4 + page_83[3]))
1270                         vpd->device_identifier[j++] = page_83[i++];
1271                 break;
1272         default:
1273                 break;
1274         }
1275
1276         return transport_dump_vpd_ident(vpd, NULL, 0);
1277 }
1278 EXPORT_SYMBOL(transport_set_vpd_ident);
1279
1280 static void core_setup_task_attr_emulation(struct se_device *dev)
1281 {
1282         /*
1283          * If this device is from Target_Core_Mod/pSCSI, disable the
1284          * SAM Task Attribute emulation.
1285          *
1286          * This is currently not available in upsream Linux/SCSI Target
1287          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1288          */
1289         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1290                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1291                 return;
1292         }
1293
1294         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1295         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1296                 " device\n", dev->transport->name,
1297                 dev->transport->get_device_rev(dev));
1298 }
1299
1300 static void scsi_dump_inquiry(struct se_device *dev)
1301 {
1302         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1303         int i, device_type;
1304         /*
1305          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1306          */
1307         pr_debug("  Vendor: ");
1308         for (i = 0; i < 8; i++)
1309                 if (wwn->vendor[i] >= 0x20)
1310                         pr_debug("%c", wwn->vendor[i]);
1311                 else
1312                         pr_debug(" ");
1313
1314         pr_debug("  Model: ");
1315         for (i = 0; i < 16; i++)
1316                 if (wwn->model[i] >= 0x20)
1317                         pr_debug("%c", wwn->model[i]);
1318                 else
1319                         pr_debug(" ");
1320
1321         pr_debug("  Revision: ");
1322         for (i = 0; i < 4; i++)
1323                 if (wwn->revision[i] >= 0x20)
1324                         pr_debug("%c", wwn->revision[i]);
1325                 else
1326                         pr_debug(" ");
1327
1328         pr_debug("\n");
1329
1330         device_type = dev->transport->get_device_type(dev);
1331         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1332         pr_debug("                 ANSI SCSI revision: %02x\n",
1333                                 dev->transport->get_device_rev(dev));
1334 }
1335
1336 struct se_device *transport_add_device_to_core_hba(
1337         struct se_hba *hba,
1338         struct se_subsystem_api *transport,
1339         struct se_subsystem_dev *se_dev,
1340         u32 device_flags,
1341         void *transport_dev,
1342         struct se_dev_limits *dev_limits,
1343         const char *inquiry_prod,
1344         const char *inquiry_rev)
1345 {
1346         int force_pt;
1347         struct se_device  *dev;
1348
1349         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1350         if (!dev) {
1351                 pr_err("Unable to allocate memory for se_dev_t\n");
1352                 return NULL;
1353         }
1354
1355         transport_init_queue_obj(&dev->dev_queue_obj);
1356         dev->dev_flags          = device_flags;
1357         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1358         dev->dev_ptr            = transport_dev;
1359         dev->se_hba             = hba;
1360         dev->se_sub_dev         = se_dev;
1361         dev->transport          = transport;
1362         atomic_set(&dev->active_cmds, 0);
1363         INIT_LIST_HEAD(&dev->dev_list);
1364         INIT_LIST_HEAD(&dev->dev_sep_list);
1365         INIT_LIST_HEAD(&dev->dev_tmr_list);
1366         INIT_LIST_HEAD(&dev->execute_task_list);
1367         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1368         INIT_LIST_HEAD(&dev->ordered_cmd_list);
1369         INIT_LIST_HEAD(&dev->state_task_list);
1370         INIT_LIST_HEAD(&dev->qf_cmd_list);
1371         spin_lock_init(&dev->execute_task_lock);
1372         spin_lock_init(&dev->delayed_cmd_lock);
1373         spin_lock_init(&dev->ordered_cmd_lock);
1374         spin_lock_init(&dev->state_task_lock);
1375         spin_lock_init(&dev->dev_alua_lock);
1376         spin_lock_init(&dev->dev_reservation_lock);
1377         spin_lock_init(&dev->dev_status_lock);
1378         spin_lock_init(&dev->dev_status_thr_lock);
1379         spin_lock_init(&dev->se_port_lock);
1380         spin_lock_init(&dev->se_tmr_lock);
1381         spin_lock_init(&dev->qf_cmd_lock);
1382
1383         dev->queue_depth        = dev_limits->queue_depth;
1384         atomic_set(&dev->depth_left, dev->queue_depth);
1385         atomic_set(&dev->dev_ordered_id, 0);
1386
1387         se_dev_set_default_attribs(dev, dev_limits);
1388
1389         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1390         dev->creation_time = get_jiffies_64();
1391         spin_lock_init(&dev->stats_lock);
1392
1393         spin_lock(&hba->device_lock);
1394         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1395         hba->dev_count++;
1396         spin_unlock(&hba->device_lock);
1397         /*
1398          * Setup the SAM Task Attribute emulation for struct se_device
1399          */
1400         core_setup_task_attr_emulation(dev);
1401         /*
1402          * Force PR and ALUA passthrough emulation with internal object use.
1403          */
1404         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1405         /*
1406          * Setup the Reservations infrastructure for struct se_device
1407          */
1408         core_setup_reservations(dev, force_pt);
1409         /*
1410          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1411          */
1412         if (core_setup_alua(dev, force_pt) < 0)
1413                 goto out;
1414
1415         /*
1416          * Startup the struct se_device processing thread
1417          */
1418         dev->process_thread = kthread_run(transport_processing_thread, dev,
1419                                           "LIO_%s", dev->transport->name);
1420         if (IS_ERR(dev->process_thread)) {
1421                 pr_err("Unable to create kthread: LIO_%s\n",
1422                         dev->transport->name);
1423                 goto out;
1424         }
1425         /*
1426          * Setup work_queue for QUEUE_FULL
1427          */
1428         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1429         /*
1430          * Preload the initial INQUIRY const values if we are doing
1431          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1432          * passthrough because this is being provided by the backend LLD.
1433          * This is required so that transport_get_inquiry() copies these
1434          * originals once back into DEV_T10_WWN(dev) for the virtual device
1435          * setup.
1436          */
1437         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1438                 if (!inquiry_prod || !inquiry_rev) {
1439                         pr_err("All non TCM/pSCSI plugins require"
1440                                 " INQUIRY consts\n");
1441                         goto out;
1442                 }
1443
1444                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1445                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1446                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1447         }
1448         scsi_dump_inquiry(dev);
1449
1450         return dev;
1451 out:
1452         kthread_stop(dev->process_thread);
1453
1454         spin_lock(&hba->device_lock);
1455         list_del(&dev->dev_list);
1456         hba->dev_count--;
1457         spin_unlock(&hba->device_lock);
1458
1459         se_release_vpd_for_dev(dev);
1460
1461         kfree(dev);
1462
1463         return NULL;
1464 }
1465 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1466
1467 /*      transport_generic_prepare_cdb():
1468  *
1469  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1470  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1471  *      The point of this is since we are mapping iSCSI LUNs to
1472  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1473  *      devices and HBAs for a loop.
1474  */
1475 static inline void transport_generic_prepare_cdb(
1476         unsigned char *cdb)
1477 {
1478         switch (cdb[0]) {
1479         case READ_10: /* SBC - RDProtect */
1480         case READ_12: /* SBC - RDProtect */
1481         case READ_16: /* SBC - RDProtect */
1482         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1483         case VERIFY: /* SBC - VRProtect */
1484         case VERIFY_16: /* SBC - VRProtect */
1485         case WRITE_VERIFY: /* SBC - VRProtect */
1486         case WRITE_VERIFY_12: /* SBC - VRProtect */
1487                 break;
1488         default:
1489                 cdb[1] &= 0x1f; /* clear logical unit number */
1490                 break;
1491         }
1492 }
1493
1494 static struct se_task *
1495 transport_generic_get_task(struct se_cmd *cmd,
1496                 enum dma_data_direction data_direction)
1497 {
1498         struct se_task *task;
1499         struct se_device *dev = cmd->se_dev;
1500
1501         task = dev->transport->alloc_task(cmd->t_task_cdb);
1502         if (!task) {
1503                 pr_err("Unable to allocate struct se_task\n");
1504                 return NULL;
1505         }
1506
1507         INIT_LIST_HEAD(&task->t_list);
1508         INIT_LIST_HEAD(&task->t_execute_list);
1509         INIT_LIST_HEAD(&task->t_state_list);
1510         init_completion(&task->task_stop_comp);
1511         task->task_se_cmd = cmd;
1512         task->task_data_direction = data_direction;
1513
1514         return task;
1515 }
1516
1517 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1518
1519 /*
1520  * Used by fabric modules containing a local struct se_cmd within their
1521  * fabric dependent per I/O descriptor.
1522  */
1523 void transport_init_se_cmd(
1524         struct se_cmd *cmd,
1525         struct target_core_fabric_ops *tfo,
1526         struct se_session *se_sess,
1527         u32 data_length,
1528         int data_direction,
1529         int task_attr,
1530         unsigned char *sense_buffer)
1531 {
1532         INIT_LIST_HEAD(&cmd->se_lun_node);
1533         INIT_LIST_HEAD(&cmd->se_delayed_node);
1534         INIT_LIST_HEAD(&cmd->se_ordered_node);
1535         INIT_LIST_HEAD(&cmd->se_qf_node);
1536         INIT_LIST_HEAD(&cmd->se_queue_node);
1537
1538         INIT_LIST_HEAD(&cmd->t_task_list);
1539         init_completion(&cmd->transport_lun_fe_stop_comp);
1540         init_completion(&cmd->transport_lun_stop_comp);
1541         init_completion(&cmd->t_transport_stop_comp);
1542         spin_lock_init(&cmd->t_state_lock);
1543         atomic_set(&cmd->transport_dev_active, 1);
1544
1545         cmd->se_tfo = tfo;
1546         cmd->se_sess = se_sess;
1547         cmd->data_length = data_length;
1548         cmd->data_direction = data_direction;
1549         cmd->sam_task_attr = task_attr;
1550         cmd->sense_buffer = sense_buffer;
1551 }
1552 EXPORT_SYMBOL(transport_init_se_cmd);
1553
1554 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1555 {
1556         /*
1557          * Check if SAM Task Attribute emulation is enabled for this
1558          * struct se_device storage object
1559          */
1560         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1561                 return 0;
1562
1563         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1564                 pr_debug("SAM Task Attribute ACA"
1565                         " emulation is not supported\n");
1566                 return -EINVAL;
1567         }
1568         /*
1569          * Used to determine when ORDERED commands should go from
1570          * Dormant to Active status.
1571          */
1572         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1573         smp_mb__after_atomic_inc();
1574         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1575                         cmd->se_ordered_id, cmd->sam_task_attr,
1576                         cmd->se_dev->transport->name);
1577         return 0;
1578 }
1579
1580 /*      transport_generic_allocate_tasks():
1581  *
1582  *      Called from fabric RX Thread.
1583  */
1584 int transport_generic_allocate_tasks(
1585         struct se_cmd *cmd,
1586         unsigned char *cdb)
1587 {
1588         int ret;
1589
1590         transport_generic_prepare_cdb(cdb);
1591         /*
1592          * Ensure that the received CDB is less than the max (252 + 8) bytes
1593          * for VARIABLE_LENGTH_CMD
1594          */
1595         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1596                 pr_err("Received SCSI CDB with command_size: %d that"
1597                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1598                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1599                 return -EINVAL;
1600         }
1601         /*
1602          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1603          * allocate the additional extended CDB buffer now..  Otherwise
1604          * setup the pointer from __t_task_cdb to t_task_cdb.
1605          */
1606         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1607                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1608                                                 GFP_KERNEL);
1609                 if (!cmd->t_task_cdb) {
1610                         pr_err("Unable to allocate cmd->t_task_cdb"
1611                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1612                                 scsi_command_size(cdb),
1613                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1614                         return -ENOMEM;
1615                 }
1616         } else
1617                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1618         /*
1619          * Copy the original CDB into cmd->
1620          */
1621         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1622         /*
1623          * Setup the received CDB based on SCSI defined opcodes and
1624          * perform unit attention, persistent reservations and ALUA
1625          * checks for virtual device backends.  The cmd->t_task_cdb
1626          * pointer is expected to be setup before we reach this point.
1627          */
1628         ret = transport_generic_cmd_sequencer(cmd, cdb);
1629         if (ret < 0)
1630                 return ret;
1631         /*
1632          * Check for SAM Task Attribute Emulation
1633          */
1634         if (transport_check_alloc_task_attr(cmd) < 0) {
1635                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1636                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1637                 return -EINVAL;
1638         }
1639         spin_lock(&cmd->se_lun->lun_sep_lock);
1640         if (cmd->se_lun->lun_sep)
1641                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1642         spin_unlock(&cmd->se_lun->lun_sep_lock);
1643         return 0;
1644 }
1645 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1646
1647 static void transport_generic_request_failure(struct se_cmd *,
1648                         struct se_device *, int, int);
1649 /*
1650  * Used by fabric module frontends to queue tasks directly.
1651  * Many only be used from process context only
1652  */
1653 int transport_handle_cdb_direct(
1654         struct se_cmd *cmd)
1655 {
1656         int ret;
1657
1658         if (!cmd->se_lun) {
1659                 dump_stack();
1660                 pr_err("cmd->se_lun is NULL\n");
1661                 return -EINVAL;
1662         }
1663         if (in_interrupt()) {
1664                 dump_stack();
1665                 pr_err("transport_generic_handle_cdb cannot be called"
1666                                 " from interrupt context\n");
1667                 return -EINVAL;
1668         }
1669         /*
1670          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1671          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1672          * in existing usage to ensure that outstanding descriptors are handled
1673          * correctly during shutdown via transport_wait_for_tasks()
1674          *
1675          * Also, we don't take cmd->t_state_lock here as we only expect
1676          * this to be called for initial descriptor submission.
1677          */
1678         cmd->t_state = TRANSPORT_NEW_CMD;
1679         atomic_set(&cmd->t_transport_active, 1);
1680         /*
1681          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1682          * so follow TRANSPORT_NEW_CMD processing thread context usage
1683          * and call transport_generic_request_failure() if necessary..
1684          */
1685         ret = transport_generic_new_cmd(cmd);
1686         if (ret == -EAGAIN)
1687                 return 0;
1688         else if (ret < 0) {
1689                 cmd->transport_error_status = ret;
1690                 transport_generic_request_failure(cmd, NULL, 0,
1691                                 (cmd->data_direction != DMA_TO_DEVICE));
1692         }
1693         return 0;
1694 }
1695 EXPORT_SYMBOL(transport_handle_cdb_direct);
1696
1697 /*
1698  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1699  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1700  * complete setup in TCM process context w/ TFO->new_cmd_map().
1701  */
1702 int transport_generic_handle_cdb_map(
1703         struct se_cmd *cmd)
1704 {
1705         if (!cmd->se_lun) {
1706                 dump_stack();
1707                 pr_err("cmd->se_lun is NULL\n");
1708                 return -EINVAL;
1709         }
1710
1711         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1712         return 0;
1713 }
1714 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1715
1716 /*      transport_generic_handle_data():
1717  *
1718  *
1719  */
1720 int transport_generic_handle_data(
1721         struct se_cmd *cmd)
1722 {
1723         /*
1724          * For the software fabric case, then we assume the nexus is being
1725          * failed/shutdown when signals are pending from the kthread context
1726          * caller, so we return a failure.  For the HW target mode case running
1727          * in interrupt code, the signal_pending() check is skipped.
1728          */
1729         if (!in_interrupt() && signal_pending(current))
1730                 return -EPERM;
1731         /*
1732          * If the received CDB has aleady been ABORTED by the generic
1733          * target engine, we now call transport_check_aborted_status()
1734          * to queue any delated TASK_ABORTED status for the received CDB to the
1735          * fabric module as we are expecting no further incoming DATA OUT
1736          * sequences at this point.
1737          */
1738         if (transport_check_aborted_status(cmd, 1) != 0)
1739                 return 0;
1740
1741         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1742         return 0;
1743 }
1744 EXPORT_SYMBOL(transport_generic_handle_data);
1745
1746 /*      transport_generic_handle_tmr():
1747  *
1748  *
1749  */
1750 int transport_generic_handle_tmr(
1751         struct se_cmd *cmd)
1752 {
1753         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1754         return 0;
1755 }
1756 EXPORT_SYMBOL(transport_generic_handle_tmr);
1757
1758 void transport_generic_free_cmd_intr(
1759         struct se_cmd *cmd)
1760 {
1761         transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR, false);
1762 }
1763 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1764
1765 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1766 {
1767         struct se_task *task, *task_tmp;
1768         unsigned long flags;
1769         int ret = 0;
1770
1771         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1772                 cmd->se_tfo->get_task_tag(cmd));
1773
1774         /*
1775          * No tasks remain in the execution queue
1776          */
1777         spin_lock_irqsave(&cmd->t_state_lock, flags);
1778         list_for_each_entry_safe(task, task_tmp,
1779                                 &cmd->t_task_list, t_list) {
1780                 pr_debug("Processing task %p\n", task);
1781                 /*
1782                  * If the struct se_task has not been sent and is not active,
1783                  * remove the struct se_task from the execution queue.
1784                  */
1785                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1786                         spin_unlock_irqrestore(&cmd->t_state_lock,
1787                                         flags);
1788                         transport_remove_task_from_execute_queue(task,
1789                                         cmd->se_dev);
1790
1791                         pr_debug("Task %p removed from execute queue\n", task);
1792                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1793                         continue;
1794                 }
1795
1796                 /*
1797                  * If the struct se_task is active, sleep until it is returned
1798                  * from the plugin.
1799                  */
1800                 if (task->task_flags & TF_ACTIVE) {
1801                         task->task_flags |= TF_REQUEST_STOP;
1802                         spin_unlock_irqrestore(&cmd->t_state_lock,
1803                                         flags);
1804
1805                         pr_debug("Task %p waiting to complete\n", task);
1806                         wait_for_completion(&task->task_stop_comp);
1807                         pr_debug("Task %p stopped successfully\n", task);
1808
1809                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1810                         atomic_dec(&cmd->t_task_cdbs_left);
1811                         task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1812                 } else {
1813                         pr_debug("Task %p - did nothing\n", task);
1814                         ret++;
1815                 }
1816
1817                 __transport_stop_task_timer(task, &flags);
1818         }
1819         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1820
1821         return ret;
1822 }
1823
1824 /*
1825  * Handle SAM-esque emulation for generic transport request failures.
1826  */
1827 static void transport_generic_request_failure(
1828         struct se_cmd *cmd,
1829         struct se_device *dev,
1830         int complete,
1831         int sc)
1832 {
1833         int ret = 0;
1834
1835         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1836                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1837                 cmd->t_task_cdb[0]);
1838         pr_debug("-----[ i_state: %d t_state/def_t_state:"
1839                 " %d/%d transport_error_status: %d\n",
1840                 cmd->se_tfo->get_cmd_state(cmd),
1841                 cmd->t_state, cmd->deferred_t_state,
1842                 cmd->transport_error_status);
1843         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1844                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1845                 " t_transport_active: %d t_transport_stop: %d"
1846                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1847                 atomic_read(&cmd->t_task_cdbs_left),
1848                 atomic_read(&cmd->t_task_cdbs_sent),
1849                 atomic_read(&cmd->t_task_cdbs_ex_left),
1850                 atomic_read(&cmd->t_transport_active),
1851                 atomic_read(&cmd->t_transport_stop),
1852                 atomic_read(&cmd->t_transport_sent));
1853
1854         transport_stop_all_task_timers(cmd);
1855
1856         if (dev)
1857                 atomic_inc(&dev->depth_left);
1858         /*
1859          * For SAM Task Attribute emulation for failed struct se_cmd
1860          */
1861         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1862                 transport_complete_task_attr(cmd);
1863
1864         if (complete) {
1865                 transport_direct_request_timeout(cmd);
1866                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1867         }
1868
1869         switch (cmd->transport_error_status) {
1870         case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1871                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1872                 break;
1873         case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1874                 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1875                 break;
1876         case PYX_TRANSPORT_INVALID_CDB_FIELD:
1877                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1878                 break;
1879         case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1880                 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1881                 break;
1882         case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1883                 if (!sc)
1884                         transport_new_cmd_failure(cmd);
1885                 /*
1886                  * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1887                  * we force this session to fall back to session
1888                  * recovery.
1889                  */
1890                 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1891                 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1892
1893                 goto check_stop;
1894         case PYX_TRANSPORT_LU_COMM_FAILURE:
1895         case PYX_TRANSPORT_ILLEGAL_REQUEST:
1896                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1897                 break;
1898         case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1899                 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1900                 break;
1901         case PYX_TRANSPORT_WRITE_PROTECTED:
1902                 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1903                 break;
1904         case PYX_TRANSPORT_RESERVATION_CONFLICT:
1905                 /*
1906                  * No SENSE Data payload for this case, set SCSI Status
1907                  * and queue the response to $FABRIC_MOD.
1908                  *
1909                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1910                  */
1911                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1912                 /*
1913                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1914                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1915                  * CONFLICT STATUS.
1916                  *
1917                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1918                  */
1919                 if (cmd->se_sess &&
1920                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1921                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1922                                 cmd->orig_fe_lun, 0x2C,
1923                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1924
1925                 ret = cmd->se_tfo->queue_status(cmd);
1926                 if (ret == -EAGAIN)
1927                         goto queue_full;
1928                 goto check_stop;
1929         case PYX_TRANSPORT_USE_SENSE_REASON:
1930                 /*
1931                  * struct se_cmd->scsi_sense_reason already set
1932                  */
1933                 break;
1934         default:
1935                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1936                         cmd->t_task_cdb[0],
1937                         cmd->transport_error_status);
1938                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1939                 break;
1940         }
1941         /*
1942          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1943          * make the call to transport_send_check_condition_and_sense()
1944          * directly.  Otherwise expect the fabric to make the call to
1945          * transport_send_check_condition_and_sense() after handling
1946          * possible unsoliticied write data payloads.
1947          */
1948         if (!sc && !cmd->se_tfo->new_cmd_map)
1949                 transport_new_cmd_failure(cmd);
1950         else {
1951                 ret = transport_send_check_condition_and_sense(cmd,
1952                                 cmd->scsi_sense_reason, 0);
1953                 if (ret == -EAGAIN)
1954                         goto queue_full;
1955         }
1956
1957 check_stop:
1958         transport_lun_remove_cmd(cmd);
1959         if (!transport_cmd_check_stop_to_fabric(cmd))
1960                 ;
1961         return;
1962
1963 queue_full:
1964         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1965         transport_handle_queue_full(cmd, cmd->se_dev);
1966 }
1967
1968 static void transport_direct_request_timeout(struct se_cmd *cmd)
1969 {
1970         unsigned long flags;
1971
1972         spin_lock_irqsave(&cmd->t_state_lock, flags);
1973         if (!atomic_read(&cmd->t_transport_timeout)) {
1974                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1975                 return;
1976         }
1977         if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
1978                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1979                 return;
1980         }
1981
1982         atomic_sub(atomic_read(&cmd->t_transport_timeout),
1983                    &cmd->t_se_count);
1984         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1985 }
1986
1987 static void transport_generic_request_timeout(struct se_cmd *cmd)
1988 {
1989         unsigned long flags;
1990
1991         /*
1992          * Reset cmd->t_se_count to allow transport_put_cmd()
1993          * to allow last call to free memory resources.
1994          */
1995         spin_lock_irqsave(&cmd->t_state_lock, flags);
1996         if (atomic_read(&cmd->t_transport_timeout) > 1) {
1997                 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
1998
1999                 atomic_sub(tmp, &cmd->t_se_count);
2000         }
2001         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2002
2003         transport_put_cmd(cmd);
2004 }
2005
2006 static inline u32 transport_lba_21(unsigned char *cdb)
2007 {
2008         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2009 }
2010
2011 static inline u32 transport_lba_32(unsigned char *cdb)
2012 {
2013         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2014 }
2015
2016 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2017 {
2018         unsigned int __v1, __v2;
2019
2020         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2021         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2022
2023         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2024 }
2025
2026 /*
2027  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2028  */
2029 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2030 {
2031         unsigned int __v1, __v2;
2032
2033         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2034         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2035
2036         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2037 }
2038
2039 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2040 {
2041         unsigned long flags;
2042
2043         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2044         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2045         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2046 }
2047
2048 /*
2049  * Called from interrupt context.
2050  */
2051 static void transport_task_timeout_handler(unsigned long data)
2052 {
2053         struct se_task *task = (struct se_task *)data;
2054         struct se_cmd *cmd = task->task_se_cmd;
2055         unsigned long flags;
2056
2057         pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2058
2059         spin_lock_irqsave(&cmd->t_state_lock, flags);
2060         if (task->task_flags & TF_TIMER_STOP) {
2061                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2062                 return;
2063         }
2064         task->task_flags &= ~TF_TIMER_RUNNING;
2065
2066         /*
2067          * Determine if transport_complete_task() has already been called.
2068          */
2069         if (!(task->task_flags & TF_ACTIVE)) {
2070                 pr_debug("transport task: %p cmd: %p timeout !TF_ACTIVE\n",
2071                          task, cmd);
2072                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2073                 return;
2074         }
2075
2076         atomic_inc(&cmd->t_se_count);
2077         atomic_inc(&cmd->t_transport_timeout);
2078         cmd->t_tasks_failed = 1;
2079
2080         task->task_flags |= TF_TIMEOUT;
2081         task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2082         task->task_scsi_status = 1;
2083
2084         if (task->task_flags & TF_REQUEST_STOP) {
2085                 pr_debug("transport task: %p cmd: %p timeout TF_REQUEST_STOP"
2086                                 " == 1\n", task, cmd);
2087                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2088                 complete(&task->task_stop_comp);
2089                 return;
2090         }
2091
2092         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2093                 pr_debug("transport task: %p cmd: %p timeout non zero"
2094                                 " t_task_cdbs_left\n", task, cmd);
2095                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2096                 return;
2097         }
2098         pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2099                         task, cmd);
2100
2101         cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2102         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2103
2104         transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE, false);
2105 }
2106
2107 /*
2108  * Called with cmd->t_state_lock held.
2109  */
2110 static void transport_start_task_timer(struct se_task *task)
2111 {
2112         struct se_device *dev = task->task_se_cmd->se_dev;
2113         int timeout;
2114
2115         if (task->task_flags & TF_TIMER_RUNNING)
2116                 return;
2117         /*
2118          * If the task_timeout is disabled, exit now.
2119          */
2120         timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2121         if (!timeout)
2122                 return;
2123
2124         init_timer(&task->task_timer);
2125         task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2126         task->task_timer.data = (unsigned long) task;
2127         task->task_timer.function = transport_task_timeout_handler;
2128
2129         task->task_flags |= TF_TIMER_RUNNING;
2130         add_timer(&task->task_timer);
2131 #if 0
2132         pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2133                 " %d\n", task->task_se_cmd, task, timeout);
2134 #endif
2135 }
2136
2137 /*
2138  * Called with spin_lock_irq(&cmd->t_state_lock) held.
2139  */
2140 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2141 {
2142         struct se_cmd *cmd = task->task_se_cmd;
2143
2144         if (!(task->task_flags & TF_TIMER_RUNNING))
2145                 return;
2146
2147         task->task_flags |= TF_TIMER_STOP;
2148         spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2149
2150         del_timer_sync(&task->task_timer);
2151
2152         spin_lock_irqsave(&cmd->t_state_lock, *flags);
2153         task->task_flags &= ~TF_TIMER_RUNNING;
2154         task->task_flags &= ~TF_TIMER_STOP;
2155 }
2156
2157 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2158 {
2159         struct se_task *task = NULL, *task_tmp;
2160         unsigned long flags;
2161
2162         spin_lock_irqsave(&cmd->t_state_lock, flags);
2163         list_for_each_entry_safe(task, task_tmp,
2164                                 &cmd->t_task_list, t_list)
2165                 __transport_stop_task_timer(task, &flags);
2166         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2167 }
2168
2169 static inline int transport_tcq_window_closed(struct se_device *dev)
2170 {
2171         if (dev->dev_tcq_window_closed++ <
2172                         PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2173                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2174         } else
2175                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2176
2177         wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2178         return 0;
2179 }
2180
2181 /*
2182  * Called from Fabric Module context from transport_execute_tasks()
2183  *
2184  * The return of this function determins if the tasks from struct se_cmd
2185  * get added to the execution queue in transport_execute_tasks(),
2186  * or are added to the delayed or ordered lists here.
2187  */
2188 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2189 {
2190         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2191                 return 1;
2192         /*
2193          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2194          * to allow the passed struct se_cmd list of tasks to the front of the list.
2195          */
2196          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2197                 atomic_inc(&cmd->se_dev->dev_hoq_count);
2198                 smp_mb__after_atomic_inc();
2199                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2200                         " 0x%02x, se_ordered_id: %u\n",
2201                         cmd->t_task_cdb[0],
2202                         cmd->se_ordered_id);
2203                 return 1;
2204         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2205                 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2206                 list_add_tail(&cmd->se_ordered_node,
2207                                 &cmd->se_dev->ordered_cmd_list);
2208                 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2209
2210                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2211                 smp_mb__after_atomic_inc();
2212
2213                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2214                                 " list, se_ordered_id: %u\n",
2215                                 cmd->t_task_cdb[0],
2216                                 cmd->se_ordered_id);
2217                 /*
2218                  * Add ORDERED command to tail of execution queue if
2219                  * no other older commands exist that need to be
2220                  * completed first.
2221                  */
2222                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2223                         return 1;
2224         } else {
2225                 /*
2226                  * For SIMPLE and UNTAGGED Task Attribute commands
2227                  */
2228                 atomic_inc(&cmd->se_dev->simple_cmds);
2229                 smp_mb__after_atomic_inc();
2230         }
2231         /*
2232          * Otherwise if one or more outstanding ORDERED task attribute exist,
2233          * add the dormant task(s) built for the passed struct se_cmd to the
2234          * execution queue and become in Active state for this struct se_device.
2235          */
2236         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2237                 /*
2238                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2239                  * will be drained upon completion of HEAD_OF_QUEUE task.
2240                  */
2241                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2242                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2243                 list_add_tail(&cmd->se_delayed_node,
2244                                 &cmd->se_dev->delayed_cmd_list);
2245                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2246
2247                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2248                         " delayed CMD list, se_ordered_id: %u\n",
2249                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2250                         cmd->se_ordered_id);
2251                 /*
2252                  * Return zero to let transport_execute_tasks() know
2253                  * not to add the delayed tasks to the execution list.
2254                  */
2255                 return 0;
2256         }
2257         /*
2258          * Otherwise, no ORDERED task attributes exist..
2259          */
2260         return 1;
2261 }
2262
2263 /*
2264  * Called from fabric module context in transport_generic_new_cmd() and
2265  * transport_generic_process_write()
2266  */
2267 static int transport_execute_tasks(struct se_cmd *cmd)
2268 {
2269         int add_tasks;
2270
2271         if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2272                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2273                 transport_generic_request_failure(cmd, NULL, 0, 1);
2274                 return 0;
2275         }
2276
2277         /*
2278          * Call transport_cmd_check_stop() to see if a fabric exception
2279          * has occurred that prevents execution.
2280          */
2281         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2282                 /*
2283                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2284                  * attribute for the tasks of the received struct se_cmd CDB
2285                  */
2286                 add_tasks = transport_execute_task_attr(cmd);
2287                 if (!add_tasks)
2288                         goto execute_tasks;
2289                 /*
2290                  * This calls transport_add_tasks_from_cmd() to handle
2291                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2292                  * (if enabled) in __transport_add_task_to_execute_queue() and
2293                  * transport_add_task_check_sam_attr().
2294                  */
2295                 transport_add_tasks_from_cmd(cmd);
2296         }
2297         /*
2298          * Kick the execution queue for the cmd associated struct se_device
2299          * storage object.
2300          */
2301 execute_tasks:
2302         __transport_execute_tasks(cmd->se_dev);
2303         return 0;
2304 }
2305
2306 /*
2307  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2308  * from struct se_device->execute_task_list and
2309  *
2310  * Called from transport_processing_thread()
2311  */
2312 static int __transport_execute_tasks(struct se_device *dev)
2313 {
2314         int error;
2315         struct se_cmd *cmd = NULL;
2316         struct se_task *task = NULL;
2317         unsigned long flags;
2318
2319         /*
2320          * Check if there is enough room in the device and HBA queue to send
2321          * struct se_tasks to the selected transport.
2322          */
2323 check_depth:
2324         if (!atomic_read(&dev->depth_left))
2325                 return transport_tcq_window_closed(dev);
2326
2327         dev->dev_tcq_window_closed = 0;
2328
2329         spin_lock_irq(&dev->execute_task_lock);
2330         if (list_empty(&dev->execute_task_list)) {
2331                 spin_unlock_irq(&dev->execute_task_lock);
2332                 return 0;
2333         }
2334         task = list_first_entry(&dev->execute_task_list,
2335                                 struct se_task, t_execute_list);
2336         __transport_remove_task_from_execute_queue(task, dev);
2337         spin_unlock_irq(&dev->execute_task_lock);
2338
2339         atomic_dec(&dev->depth_left);
2340
2341         cmd = task->task_se_cmd;
2342
2343         spin_lock_irqsave(&cmd->t_state_lock, flags);
2344         task->task_flags |= (TF_ACTIVE | TF_SENT);
2345         atomic_inc(&cmd->t_task_cdbs_sent);
2346
2347         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2348             cmd->t_task_list_num)
2349                 atomic_set(&cmd->transport_sent, 1);
2350
2351         transport_start_task_timer(task);
2352         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2353         /*
2354          * The struct se_cmd->transport_emulate_cdb() function pointer is used
2355          * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2356          * struct se_subsystem_api->do_task() caller below.
2357          */
2358         if (cmd->transport_emulate_cdb) {
2359                 error = cmd->transport_emulate_cdb(cmd);
2360                 if (error != 0) {
2361                         cmd->transport_error_status = error;
2362                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2363                         task->task_flags &= ~TF_ACTIVE;
2364                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2365                         atomic_set(&cmd->transport_sent, 0);
2366                         transport_stop_tasks_for_cmd(cmd);
2367                         transport_generic_request_failure(cmd, dev, 0, 1);
2368                         goto check_depth;
2369                 }
2370                 /*
2371                  * Handle the successful completion for transport_emulate_cdb()
2372                  * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2373                  * Otherwise the caller is expected to complete the task with
2374                  * proper status.
2375                  */
2376                 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2377                         cmd->scsi_status = SAM_STAT_GOOD;
2378                         task->task_scsi_status = GOOD;
2379                         transport_complete_task(task, 1);
2380                 }
2381         } else {
2382                 /*
2383                  * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2384                  * RAMDISK we use the internal transport_emulate_control_cdb() logic
2385                  * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2386                  * LUN emulation code.
2387                  *
2388                  * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2389                  * call ->do_task() directly and let the underlying TCM subsystem plugin
2390                  * code handle the CDB emulation.
2391                  */
2392                 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2393                     (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2394                         error = transport_emulate_control_cdb(task);
2395                 else
2396                         error = dev->transport->do_task(task);
2397
2398                 if (error != 0) {
2399                         cmd->transport_error_status = error;
2400                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2401                         task->task_flags &= ~TF_ACTIVE;
2402                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2403                         atomic_set(&cmd->transport_sent, 0);
2404                         transport_stop_tasks_for_cmd(cmd);
2405                         transport_generic_request_failure(cmd, dev, 0, 1);
2406                 }
2407         }
2408
2409         goto check_depth;
2410
2411         return 0;
2412 }
2413
2414 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2415 {
2416         unsigned long flags;
2417         /*
2418          * Any unsolicited data will get dumped for failed command inside of
2419          * the fabric plugin
2420          */
2421         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2422         se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2423         se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2424         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2425 }
2426
2427 static inline u32 transport_get_sectors_6(
2428         unsigned char *cdb,
2429         struct se_cmd *cmd,
2430         int *ret)
2431 {
2432         struct se_device *dev = cmd->se_dev;
2433
2434         /*
2435          * Assume TYPE_DISK for non struct se_device objects.
2436          * Use 8-bit sector value.
2437          */
2438         if (!dev)
2439                 goto type_disk;
2440
2441         /*
2442          * Use 24-bit allocation length for TYPE_TAPE.
2443          */
2444         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2445                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2446
2447         /*
2448          * Everything else assume TYPE_DISK Sector CDB location.
2449          * Use 8-bit sector value.
2450          */
2451 type_disk:
2452         return (u32)cdb[4];
2453 }
2454
2455 static inline u32 transport_get_sectors_10(
2456         unsigned char *cdb,
2457         struct se_cmd *cmd,
2458         int *ret)
2459 {
2460         struct se_device *dev = cmd->se_dev;
2461
2462         /*
2463          * Assume TYPE_DISK for non struct se_device objects.
2464          * Use 16-bit sector value.
2465          */
2466         if (!dev)
2467                 goto type_disk;
2468
2469         /*
2470          * XXX_10 is not defined in SSC, throw an exception
2471          */
2472         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2473                 *ret = -EINVAL;
2474                 return 0;
2475         }
2476
2477         /*
2478          * Everything else assume TYPE_DISK Sector CDB location.
2479          * Use 16-bit sector value.
2480          */
2481 type_disk:
2482         return (u32)(cdb[7] << 8) + cdb[8];
2483 }
2484
2485 static inline u32 transport_get_sectors_12(
2486         unsigned char *cdb,
2487         struct se_cmd *cmd,
2488         int *ret)
2489 {
2490         struct se_device *dev = cmd->se_dev;
2491
2492         /*
2493          * Assume TYPE_DISK for non struct se_device objects.
2494          * Use 32-bit sector value.
2495          */
2496         if (!dev)
2497                 goto type_disk;
2498
2499         /*
2500          * XXX_12 is not defined in SSC, throw an exception
2501          */
2502         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2503                 *ret = -EINVAL;
2504                 return 0;
2505         }
2506
2507         /*
2508          * Everything else assume TYPE_DISK Sector CDB location.
2509          * Use 32-bit sector value.
2510          */
2511 type_disk:
2512         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2513 }
2514
2515 static inline u32 transport_get_sectors_16(
2516         unsigned char *cdb,
2517         struct se_cmd *cmd,
2518         int *ret)
2519 {
2520         struct se_device *dev = cmd->se_dev;
2521
2522         /*
2523          * Assume TYPE_DISK for non struct se_device objects.
2524          * Use 32-bit sector value.
2525          */
2526         if (!dev)
2527                 goto type_disk;
2528
2529         /*
2530          * Use 24-bit allocation length for TYPE_TAPE.
2531          */
2532         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2533                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2534
2535 type_disk:
2536         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2537                     (cdb[12] << 8) + cdb[13];
2538 }
2539
2540 /*
2541  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2542  */
2543 static inline u32 transport_get_sectors_32(
2544         unsigned char *cdb,
2545         struct se_cmd *cmd,
2546         int *ret)
2547 {
2548         /*
2549          * Assume TYPE_DISK for non struct se_device objects.
2550          * Use 32-bit sector value.
2551          */
2552         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2553                     (cdb[30] << 8) + cdb[31];
2554
2555 }
2556
2557 static inline u32 transport_get_size(
2558         u32 sectors,
2559         unsigned char *cdb,
2560         struct se_cmd *cmd)
2561 {
2562         struct se_device *dev = cmd->se_dev;
2563
2564         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2565                 if (cdb[1] & 1) { /* sectors */
2566                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2567                 } else /* bytes */
2568                         return sectors;
2569         }
2570 #if 0
2571         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2572                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2573                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2574                         dev->transport->name);
2575 #endif
2576         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2577 }
2578
2579 static void transport_xor_callback(struct se_cmd *cmd)
2580 {
2581         unsigned char *buf, *addr;
2582         struct scatterlist *sg;
2583         unsigned int offset;
2584         int i;
2585         int count;
2586         /*
2587          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2588          *
2589          * 1) read the specified logical block(s);
2590          * 2) transfer logical blocks from the data-out buffer;
2591          * 3) XOR the logical blocks transferred from the data-out buffer with
2592          *    the logical blocks read, storing the resulting XOR data in a buffer;
2593          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2594          *    blocks transferred from the data-out buffer; and
2595          * 5) transfer the resulting XOR data to the data-in buffer.
2596          */
2597         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2598         if (!buf) {
2599                 pr_err("Unable to allocate xor_callback buf\n");
2600                 return;
2601         }
2602         /*
2603          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2604          * into the locally allocated *buf
2605          */
2606         sg_copy_to_buffer(cmd->t_data_sg,
2607                           cmd->t_data_nents,
2608                           buf,
2609                           cmd->data_length);
2610
2611         /*
2612          * Now perform the XOR against the BIDI read memory located at
2613          * cmd->t_mem_bidi_list
2614          */
2615
2616         offset = 0;
2617         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2618                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2619                 if (!addr)
2620                         goto out;
2621
2622                 for (i = 0; i < sg->length; i++)
2623                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2624
2625                 offset += sg->length;
2626                 kunmap_atomic(addr, KM_USER0);
2627         }
2628
2629 out:
2630         kfree(buf);
2631 }
2632
2633 /*
2634  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2635  */
2636 static int transport_get_sense_data(struct se_cmd *cmd)
2637 {
2638         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2639         struct se_device *dev = cmd->se_dev;
2640         struct se_task *task = NULL, *task_tmp;
2641         unsigned long flags;
2642         u32 offset = 0;
2643
2644         WARN_ON(!cmd->se_lun);
2645
2646         if (!dev)
2647                 return 0;
2648
2649         spin_lock_irqsave(&cmd->t_state_lock, flags);
2650         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2651                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2652                 return 0;
2653         }
2654
2655         list_for_each_entry_safe(task, task_tmp,
2656                                 &cmd->t_task_list, t_list) {
2657                 if (!task->task_sense)
2658                         continue;
2659
2660                 if (!dev->transport->get_sense_buffer) {
2661                         pr_err("dev->transport->get_sense_buffer"
2662                                         " is NULL\n");
2663                         continue;
2664                 }
2665
2666                 sense_buffer = dev->transport->get_sense_buffer(task);
2667                 if (!sense_buffer) {
2668                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2669                                 " sense buffer for task with sense\n",
2670                                 cmd->se_tfo->get_task_tag(cmd), task);
2671                         continue;
2672                 }
2673                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2674
2675                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2676                                 TRANSPORT_SENSE_BUFFER);
2677
2678                 memcpy(&buffer[offset], sense_buffer,
2679                                 TRANSPORT_SENSE_BUFFER);
2680                 cmd->scsi_status = task->task_scsi_status;
2681                 /* Automatically padded */
2682                 cmd->scsi_sense_length =
2683                                 (TRANSPORT_SENSE_BUFFER + offset);
2684
2685                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2686                                 " and sense\n",
2687                         dev->se_hba->hba_id, dev->transport->name,
2688                                 cmd->scsi_status);
2689                 return 0;
2690         }
2691         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2692
2693         return -1;
2694 }
2695
2696 static int
2697 transport_handle_reservation_conflict(struct se_cmd *cmd)
2698 {
2699         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2700         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2701         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2702         /*
2703          * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2704          * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2705          * CONFLICT STATUS.
2706          *
2707          * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2708          */
2709         if (cmd->se_sess &&
2710             cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2711                 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2712                         cmd->orig_fe_lun, 0x2C,
2713                         ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2714         return -EINVAL;
2715 }
2716
2717 static inline long long transport_dev_end_lba(struct se_device *dev)
2718 {
2719         return dev->transport->get_blocks(dev) + 1;
2720 }
2721
2722 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2723 {
2724         struct se_device *dev = cmd->se_dev;
2725         u32 sectors;
2726
2727         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2728                 return 0;
2729
2730         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2731
2732         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2733                 pr_err("LBA: %llu Sectors: %u exceeds"
2734                         " transport_dev_end_lba(): %llu\n",
2735                         cmd->t_task_lba, sectors,
2736                         transport_dev_end_lba(dev));
2737                 return -EINVAL;
2738         }
2739
2740         return 0;
2741 }
2742
2743 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2744 {
2745         /*
2746          * Determine if the received WRITE_SAME is used to for direct
2747          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2748          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2749          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2750          */
2751         int passthrough = (dev->transport->transport_type ==
2752                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2753
2754         if (!passthrough) {
2755                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2756                         pr_err("WRITE_SAME PBDATA and LBDATA"
2757                                 " bits not supported for Block Discard"
2758                                 " Emulation\n");
2759                         return -ENOSYS;
2760                 }
2761                 /*
2762                  * Currently for the emulated case we only accept
2763                  * tpws with the UNMAP=1 bit set.
2764                  */
2765                 if (!(flags[0] & 0x08)) {
2766                         pr_err("WRITE_SAME w/o UNMAP bit not"
2767                                 " supported for Block Discard Emulation\n");
2768                         return -ENOSYS;
2769                 }
2770         }
2771
2772         return 0;
2773 }
2774
2775 /*      transport_generic_cmd_sequencer():
2776  *
2777  *      Generic Command Sequencer that should work for most DAS transport
2778  *      drivers.
2779  *
2780  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2781  *      RX Thread.
2782  *
2783  *      FIXME: Need to support other SCSI OPCODES where as well.
2784  */
2785 static int transport_generic_cmd_sequencer(
2786         struct se_cmd *cmd,
2787         unsigned char *cdb)
2788 {
2789         struct se_device *dev = cmd->se_dev;
2790         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2791         int ret = 0, sector_ret = 0, passthrough;
2792         u32 sectors = 0, size = 0, pr_reg_type = 0;
2793         u16 service_action;
2794         u8 alua_ascq = 0;
2795         /*
2796          * Check for an existing UNIT ATTENTION condition
2797          */
2798         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2799                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2800                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2801                 return -EINVAL;
2802         }
2803         /*
2804          * Check status of Asymmetric Logical Unit Assignment port
2805          */
2806         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2807         if (ret != 0) {
2808                 /*
2809                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2810                  * The ALUA additional sense code qualifier (ASCQ) is determined
2811                  * by the ALUA primary or secondary access state..
2812                  */
2813                 if (ret > 0) {
2814 #if 0
2815                         pr_debug("[%s]: ALUA TG Port not available,"
2816                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2817                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2818 #endif
2819                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2820                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2821                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2822                         return -EINVAL;
2823                 }
2824                 goto out_invalid_cdb_field;
2825         }
2826         /*
2827          * Check status for SPC-3 Persistent Reservations
2828          */
2829         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2830                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2831                                         cmd, cdb, pr_reg_type) != 0)
2832                         return transport_handle_reservation_conflict(cmd);
2833                 /*
2834                  * This means the CDB is allowed for the SCSI Initiator port
2835                  * when said port is *NOT* holding the legacy SPC-2 or
2836                  * SPC-3 Persistent Reservation.
2837                  */
2838         }
2839
2840         switch (cdb[0]) {
2841         case READ_6:
2842                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2843                 if (sector_ret)
2844                         goto out_unsupported_cdb;
2845                 size = transport_get_size(sectors, cdb, cmd);
2846                 cmd->t_task_lba = transport_lba_21(cdb);
2847                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2848                 break;
2849         case READ_10:
2850                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2851                 if (sector_ret)
2852                         goto out_unsupported_cdb;
2853                 size = transport_get_size(sectors, cdb, cmd);
2854                 cmd->t_task_lba = transport_lba_32(cdb);
2855                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2856                 break;
2857         case READ_12:
2858                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2859                 if (sector_ret)
2860                         goto out_unsupported_cdb;
2861                 size = transport_get_size(sectors, cdb, cmd);
2862                 cmd->t_task_lba = transport_lba_32(cdb);
2863                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2864                 break;
2865         case READ_16:
2866                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2867                 if (sector_ret)
2868                         goto out_unsupported_cdb;
2869                 size = transport_get_size(sectors, cdb, cmd);
2870                 cmd->t_task_lba = transport_lba_64(cdb);
2871                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2872                 break;
2873         case WRITE_6:
2874                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2875                 if (sector_ret)
2876                         goto out_unsupported_cdb;
2877                 size = transport_get_size(sectors, cdb, cmd);
2878                 cmd->t_task_lba = transport_lba_21(cdb);
2879                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2880                 break;
2881         case WRITE_10:
2882                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2883                 if (sector_ret)
2884                         goto out_unsupported_cdb;
2885                 size = transport_get_size(sectors, cdb, cmd);
2886                 cmd->t_task_lba = transport_lba_32(cdb);
2887                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2888                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2889                 break;
2890         case WRITE_12:
2891                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2892                 if (sector_ret)
2893                         goto out_unsupported_cdb;
2894                 size = transport_get_size(sectors, cdb, cmd);
2895                 cmd->t_task_lba = transport_lba_32(cdb);
2896                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2897                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2898                 break;
2899         case WRITE_16:
2900                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2901                 if (sector_ret)
2902                         goto out_unsupported_cdb;
2903                 size = transport_get_size(sectors, cdb, cmd);
2904                 cmd->t_task_lba = transport_lba_64(cdb);
2905                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2906                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2907                 break;
2908         case XDWRITEREAD_10:
2909                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2910                     !(cmd->t_tasks_bidi))
2911                         goto out_invalid_cdb_field;
2912                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2913                 if (sector_ret)
2914                         goto out_unsupported_cdb;
2915                 size = transport_get_size(sectors, cdb, cmd);
2916                 cmd->t_task_lba = transport_lba_32(cdb);
2917                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2918                 passthrough = (dev->transport->transport_type ==
2919                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2920                 /*
2921                  * Skip the remaining assignments for TCM/PSCSI passthrough
2922                  */
2923                 if (passthrough)
2924                         break;
2925                 /*
2926                  * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
2927                  */
2928                 cmd->transport_complete_callback = &transport_xor_callback;
2929                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2930                 break;
2931         case VARIABLE_LENGTH_CMD:
2932                 service_action = get_unaligned_be16(&cdb[8]);
2933                 /*
2934                  * Determine if this is TCM/PSCSI device and we should disable
2935                  * internal emulation for this CDB.
2936                  */
2937                 passthrough = (dev->transport->transport_type ==
2938                                         TRANSPORT_PLUGIN_PHBA_PDEV);
2939
2940                 switch (service_action) {
2941                 case XDWRITEREAD_32:
2942                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2943                         if (sector_ret)
2944                                 goto out_unsupported_cdb;
2945                         size = transport_get_size(sectors, cdb, cmd);
2946                         /*
2947                          * Use WRITE_32 and READ_32 opcodes for the emulated
2948                          * XDWRITE_READ_32 logic.
2949                          */
2950                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2951                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2952
2953                         /*
2954                          * Skip the remaining assignments for TCM/PSCSI passthrough
2955                          */
2956                         if (passthrough)
2957                                 break;
2958
2959                         /*
2960                          * Setup BIDI XOR callback to be run during
2961                          * transport_generic_complete_ok()
2962                          */
2963                         cmd->transport_complete_callback = &transport_xor_callback;
2964                         cmd->t_tasks_fua = (cdb[10] & 0x8);
2965                         break;
2966                 case WRITE_SAME_32:
2967                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2968                         if (sector_ret)
2969                                 goto out_unsupported_cdb;
2970
2971                         if (sectors)
2972                                 size = transport_get_size(1, cdb, cmd);
2973                         else {
2974                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2975                                        " supported\n");
2976                                 goto out_invalid_cdb_field;
2977                         }
2978
2979                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2980                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2981
2982                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2983                                 goto out_invalid_cdb_field;
2984
2985                         break;
2986                 default:
2987                         pr_err("VARIABLE_LENGTH_CMD service action"
2988                                 " 0x%04x not supported\n", service_action);
2989                         goto out_unsupported_cdb;
2990                 }
2991                 break;
2992         case MAINTENANCE_IN:
2993                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2994                         /* MAINTENANCE_IN from SCC-2 */
2995                         /*
2996                          * Check for emulated MI_REPORT_TARGET_PGS.
2997                          */
2998                         if (cdb[1] == MI_REPORT_TARGET_PGS) {
2999                                 cmd->transport_emulate_cdb =
3000                                 (su_dev->t10_alua.alua_type ==
3001                                  SPC3_ALUA_EMULATED) ?
3002                                 core_emulate_report_target_port_groups :
3003                                 NULL;
3004                         }
3005                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3006                                (cdb[8] << 8) | cdb[9];
3007                 } else {
3008                         /* GPCMD_SEND_KEY from multi media commands */
3009                         size = (cdb[8] << 8) + cdb[9];
3010                 }
3011                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3012                 break;
3013         case MODE_SELECT:
3014                 size = cdb[4];
3015                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3016                 break;
3017         case MODE_SELECT_10:
3018                 size = (cdb[7] << 8) + cdb[8];
3019                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3020                 break;
3021         case MODE_SENSE:
3022                 size = cdb[4];
3023                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3024                 break;
3025         case MODE_SENSE_10:
3026         case GPCMD_READ_BUFFER_CAPACITY:
3027         case GPCMD_SEND_OPC:
3028         case LOG_SELECT:
3029         case LOG_SENSE:
3030                 size = (cdb[7] << 8) + cdb[8];
3031                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3032                 break;
3033         case READ_BLOCK_LIMITS:
3034                 size = READ_BLOCK_LEN;
3035                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3036                 break;
3037         case GPCMD_GET_CONFIGURATION:
3038         case GPCMD_READ_FORMAT_CAPACITIES:
3039         case GPCMD_READ_DISC_INFO:
3040         case GPCMD_READ_TRACK_RZONE_INFO:
3041                 size = (cdb[7] << 8) + cdb[8];
3042                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3043                 break;
3044         case PERSISTENT_RESERVE_IN:
3045         case PERSISTENT_RESERVE_OUT:
3046                 cmd->transport_emulate_cdb =
3047                         (su_dev->t10_pr.res_type ==
3048                          SPC3_PERSISTENT_RESERVATIONS) ?
3049                         core_scsi3_emulate_pr : NULL;
3050                 size = (cdb[7] << 8) + cdb[8];
3051                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3052                 break;
3053         case GPCMD_MECHANISM_STATUS:
3054         case GPCMD_READ_DVD_STRUCTURE:
3055                 size = (cdb[8] << 8) + cdb[9];
3056                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3057                 break;
3058         case READ_POSITION:
3059                 size = READ_POSITION_LEN;
3060                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3061                 break;
3062         case MAINTENANCE_OUT:
3063                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3064                         /* MAINTENANCE_OUT from SCC-2
3065                          *
3066                          * Check for emulated MO_SET_TARGET_PGS.
3067                          */
3068                         if (cdb[1] == MO_SET_TARGET_PGS) {
3069                                 cmd->transport_emulate_cdb =
3070                                 (su_dev->t10_alua.alua_type ==
3071                                         SPC3_ALUA_EMULATED) ?
3072                                 core_emulate_set_target_port_groups :
3073                                 NULL;
3074                         }
3075
3076                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3077                                (cdb[8] << 8) | cdb[9];
3078                 } else  {
3079                         /* GPCMD_REPORT_KEY from multi media commands */
3080                         size = (cdb[8] << 8) + cdb[9];
3081                 }
3082                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3083                 break;
3084         case INQUIRY:
3085                 size = (cdb[3] << 8) + cdb[4];
3086                 /*
3087                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3088                  * See spc4r17 section 5.3
3089                  */
3090                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3091                         cmd->sam_task_attr = MSG_HEAD_TAG;
3092                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3093                 break;
3094         case READ_BUFFER:
3095                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3096                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3097                 break;
3098         case READ_CAPACITY:
3099                 size = READ_CAP_LEN;
3100                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3101                 break;
3102         case READ_MEDIA_SERIAL_NUMBER:
3103         case SECURITY_PROTOCOL_IN:
3104         case SECURITY_PROTOCOL_OUT:
3105                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3106                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3107                 break;
3108         case SERVICE_ACTION_IN:
3109         case ACCESS_CONTROL_IN:
3110         case ACCESS_CONTROL_OUT:
3111         case EXTENDED_COPY:
3112         case READ_ATTRIBUTE:
3113         case RECEIVE_COPY_RESULTS:
3114         case WRITE_ATTRIBUTE:
3115                 size = (cdb[10] << 24) | (cdb[11] << 16) |
3116                        (cdb[12] << 8) | cdb[13];
3117                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3118                 break;
3119         case RECEIVE_DIAGNOSTIC:
3120         case SEND_DIAGNOSTIC:
3121                 size = (cdb[3] << 8) | cdb[4];
3122                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3123                 break;
3124 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3125 #if 0
3126         case GPCMD_READ_CD:
3127                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3128                 size = (2336 * sectors);
3129                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3130                 break;
3131 #endif
3132         case READ_TOC:
3133                 size = cdb[8];
3134                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3135                 break;
3136         case REQUEST_SENSE:
3137                 size = cdb[4];
3138                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3139                 break;
3140         case READ_ELEMENT_STATUS:
3141                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3142                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3143                 break;
3144         case WRITE_BUFFER:
3145                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3146                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3147                 break;
3148         case RESERVE:
3149         case RESERVE_10:
3150                 /*
3151                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3152                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3153                  */
3154                 if (cdb[0] == RESERVE_10)
3155                         size = (cdb[7] << 8) | cdb[8];
3156                 else
3157                         size = cmd->data_length;
3158
3159                 /*
3160                  * Setup the legacy emulated handler for SPC-2 and
3161                  * >= SPC-3 compatible reservation handling (CRH=1)
3162                  * Otherwise, we assume the underlying SCSI logic is
3163                  * is running in SPC_PASSTHROUGH, and wants reservations
3164                  * emulation disabled.
3165                  */
3166                 cmd->transport_emulate_cdb =
3167                                 (su_dev->t10_pr.res_type !=
3168                                  SPC_PASSTHROUGH) ?
3169                                 core_scsi2_emulate_crh : NULL;
3170                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3171                 break;
3172         case RELEASE:
3173         case RELEASE_10:
3174                 /*
3175                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3176                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3177                 */
3178                 if (cdb[0] == RELEASE_10)
3179                         size = (cdb[7] << 8) | cdb[8];
3180                 else
3181                         size = cmd->data_length;
3182
3183                 cmd->transport_emulate_cdb =
3184                                 (su_dev->t10_pr.res_type !=
3185                                  SPC_PASSTHROUGH) ?
3186                                 core_scsi2_emulate_crh : NULL;
3187                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3188                 break;
3189         case SYNCHRONIZE_CACHE:
3190         case 0x91: /* SYNCHRONIZE_CACHE_16: */
3191                 /*
3192                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3193                  */
3194                 if (cdb[0] == SYNCHRONIZE_CACHE) {
3195                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3196                         cmd->t_task_lba = transport_lba_32(cdb);
3197                 } else {
3198                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3199                         cmd->t_task_lba = transport_lba_64(cdb);
3200                 }
3201                 if (sector_ret)
3202                         goto out_unsupported_cdb;
3203
3204                 size = transport_get_size(sectors, cdb, cmd);
3205                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3206
3207                 /*
3208                  * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3209                  */
3210                 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3211                         break;
3212                 /*
3213                  * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3214                  * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3215                  */
3216                 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3217                 /*
3218                  * Check to ensure that LBA + Range does not exceed past end of
3219                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3220                  */
3221                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3222                         if (transport_cmd_get_valid_sectors(cmd) < 0)
3223                                 goto out_invalid_cdb_field;
3224                 }
3225                 break;
3226         case UNMAP:
3227                 size = get_unaligned_be16(&cdb[7]);
3228                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3229                 break;
3230         case WRITE_SAME_16:
3231                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3232                 if (sector_ret)
3233                         goto out_unsupported_cdb;
3234
3235                 if (sectors)
3236                         size = transport_get_size(1, cdb, cmd);
3237                 else {
3238                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3239                         goto out_invalid_cdb_field;
3240                 }
3241
3242                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3243                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3244
3245                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3246                         goto out_invalid_cdb_field;
3247                 break;
3248         case WRITE_SAME:
3249                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3250                 if (sector_ret)
3251                         goto out_unsupported_cdb;
3252
3253                 if (sectors)
3254                         size = transport_get_size(1, cdb, cmd);
3255                 else {
3256                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3257                         goto out_invalid_cdb_field;
3258                 }
3259
3260                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3261                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3262                 /*
3263                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3264                  * of byte 1 bit 3 UNMAP instead of original reserved field
3265                  */
3266                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3267                         goto out_invalid_cdb_field;
3268                 break;
3269         case ALLOW_MEDIUM_REMOVAL:
3270         case GPCMD_CLOSE_TRACK:
3271         case ERASE:
3272         case INITIALIZE_ELEMENT_STATUS:
3273         case GPCMD_LOAD_UNLOAD:
3274         case REZERO_UNIT:
3275         case SEEK_10:
3276         case GPCMD_SET_SPEED:
3277         case SPACE:
3278         case START_STOP:
3279         case TEST_UNIT_READY:
3280         case VERIFY:
3281         case WRITE_FILEMARKS:
3282         case MOVE_MEDIUM:
3283                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3284                 break;
3285         case REPORT_LUNS:
3286                 cmd->transport_emulate_cdb =
3287                                 transport_core_report_lun_response;
3288                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3289                 /*
3290                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3291                  * See spc4r17 section 5.3
3292                  */
3293                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3294                         cmd->sam_task_attr = MSG_HEAD_TAG;
3295                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3296                 break;
3297         default:
3298                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3299                         " 0x%02x, sending CHECK_CONDITION.\n",
3300                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3301                 goto out_unsupported_cdb;
3302         }
3303
3304         if (size != cmd->data_length) {
3305                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3306                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3307                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3308                                 cmd->data_length, size, cdb[0]);
3309
3310                 cmd->cmd_spdtl = size;
3311
3312                 if (cmd->data_direction == DMA_TO_DEVICE) {
3313                         pr_err("Rejecting underflow/overflow"
3314                                         " WRITE data\n");
3315                         goto out_invalid_cdb_field;
3316                 }
3317                 /*
3318                  * Reject READ_* or WRITE_* with overflow/underflow for
3319                  * type SCF_SCSI_DATA_SG_IO_CDB.
3320                  */
3321                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3322                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3323                                 " CDB on non 512-byte sector setup subsystem"
3324                                 " plugin: %s\n", dev->transport->name);
3325                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3326                         goto out_invalid_cdb_field;
3327                 }
3328
3329                 if (size > cmd->data_length) {
3330                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3331                         cmd->residual_count = (size - cmd->data_length);
3332                 } else {
3333                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3334                         cmd->residual_count = (cmd->data_length - size);
3335                 }
3336                 cmd->data_length = size;
3337         }
3338
3339         /* Let's limit control cdbs to a page, for simplicity's sake. */
3340         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3341             size > PAGE_SIZE)
3342                 goto out_invalid_cdb_field;
3343
3344         transport_set_supported_SAM_opcode(cmd);
3345         return ret;
3346
3347 out_unsupported_cdb:
3348         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3349         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3350         return -EINVAL;
3351 out_invalid_cdb_field:
3352         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3353         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3354         return -EINVAL;
3355 }
3356
3357 /*
3358  * Called from transport_generic_complete_ok() and
3359  * transport_generic_request_failure() to determine which dormant/delayed
3360  * and ordered cmds need to have their tasks added to the execution queue.
3361  */
3362 static void transport_complete_task_attr(struct se_cmd *cmd)
3363 {
3364         struct se_device *dev = cmd->se_dev;
3365         struct se_cmd *cmd_p, *cmd_tmp;
3366         int new_active_tasks = 0;
3367
3368         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3369                 atomic_dec(&dev->simple_cmds);
3370                 smp_mb__after_atomic_dec();
3371                 dev->dev_cur_ordered_id++;
3372                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3373                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3374                         cmd->se_ordered_id);
3375         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3376                 atomic_dec(&dev->dev_hoq_count);
3377                 smp_mb__after_atomic_dec();
3378                 dev->dev_cur_ordered_id++;
3379                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3380                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3381                         cmd->se_ordered_id);
3382         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3383                 spin_lock(&dev->ordered_cmd_lock);
3384                 list_del(&cmd->se_ordered_node);
3385                 atomic_dec(&dev->dev_ordered_sync);
3386                 smp_mb__after_atomic_dec();
3387                 spin_unlock(&dev->ordered_cmd_lock);
3388
3389                 dev->dev_cur_ordered_id++;
3390                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3391                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3392         }
3393         /*
3394          * Process all commands up to the last received
3395          * ORDERED task attribute which requires another blocking
3396          * boundary
3397          */
3398         spin_lock(&dev->delayed_cmd_lock);
3399         list_for_each_entry_safe(cmd_p, cmd_tmp,
3400                         &dev->delayed_cmd_list, se_delayed_node) {
3401
3402                 list_del(&cmd_p->se_delayed_node);
3403                 spin_unlock(&dev->delayed_cmd_lock);
3404
3405                 pr_debug("Calling add_tasks() for"
3406                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3407                         " Dormant -> Active, se_ordered_id: %u\n",
3408                         cmd_p->t_task_cdb[0],
3409                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3410
3411                 transport_add_tasks_from_cmd(cmd_p);
3412                 new_active_tasks++;
3413
3414                 spin_lock(&dev->delayed_cmd_lock);
3415                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3416                         break;
3417         }
3418         spin_unlock(&dev->delayed_cmd_lock);
3419         /*
3420          * If new tasks have become active, wake up the transport thread
3421          * to do the processing of the Active tasks.
3422          */
3423         if (new_active_tasks != 0)
3424                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3425 }
3426
3427 static void transport_complete_qf(struct se_cmd *cmd)
3428 {
3429         int ret = 0;
3430
3431         transport_stop_all_task_timers(cmd);
3432         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3433                 transport_complete_task_attr(cmd);
3434
3435         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3436                 ret = cmd->se_tfo->queue_status(cmd);
3437                 if (ret)
3438                         goto out;
3439         }
3440
3441         switch (cmd->data_direction) {
3442         case DMA_FROM_DEVICE:
3443                 ret = cmd->se_tfo->queue_data_in(cmd);
3444                 break;
3445         case DMA_TO_DEVICE:
3446                 if (cmd->t_bidi_data_sg) {
3447                         ret = cmd->se_tfo->queue_data_in(cmd);
3448                         if (ret < 0)
3449                                 break;
3450                 }
3451                 /* Fall through for DMA_TO_DEVICE */
3452         case DMA_NONE:
3453                 ret = cmd->se_tfo->queue_status(cmd);
3454                 break;
3455         default:
3456                 break;
3457         }
3458
3459 out:
3460         if (ret < 0) {
3461                 transport_handle_queue_full(cmd, cmd->se_dev);
3462                 return;
3463         }
3464         transport_lun_remove_cmd(cmd);
3465         transport_cmd_check_stop_to_fabric(cmd);
3466 }
3467
3468 static void transport_handle_queue_full(
3469         struct se_cmd *cmd,
3470         struct se_device *dev)
3471 {
3472         spin_lock_irq(&dev->qf_cmd_lock);
3473         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3474         atomic_inc(&dev->dev_qf_count);
3475         smp_mb__after_atomic_inc();
3476         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3477
3478         schedule_work(&cmd->se_dev->qf_work_queue);
3479 }
3480
3481 static void transport_generic_complete_ok(struct se_cmd *cmd)
3482 {
3483         int reason = 0, ret;
3484         /*
3485          * Check if we need to move delayed/dormant tasks from cmds on the
3486          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3487          * Attribute.
3488          */
3489         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3490                 transport_complete_task_attr(cmd);
3491         /*
3492          * Check to schedule QUEUE_FULL work, or execute an existing
3493          * cmd->transport_qf_callback()
3494          */
3495         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3496                 schedule_work(&cmd->se_dev->qf_work_queue);
3497
3498         /*
3499          * Check if we need to retrieve a sense buffer from
3500          * the struct se_cmd in question.
3501          */
3502         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3503                 if (transport_get_sense_data(cmd) < 0)
3504                         reason = TCM_NON_EXISTENT_LUN;
3505
3506                 /*
3507                  * Only set when an struct se_task->task_scsi_status returned
3508                  * a non GOOD status.
3509                  */
3510                 if (cmd->scsi_status) {
3511                         ret = transport_send_check_condition_and_sense(
3512                                         cmd, reason, 1);
3513                         if (ret == -EAGAIN)
3514                                 goto queue_full;
3515
3516                         transport_lun_remove_cmd(cmd);
3517                         transport_cmd_check_stop_to_fabric(cmd);
3518                         return;
3519                 }
3520         }
3521         /*
3522          * Check for a callback, used by amongst other things
3523          * XDWRITE_READ_10 emulation.
3524          */
3525         if (cmd->transport_complete_callback)
3526                 cmd->transport_complete_callback(cmd);
3527
3528         switch (cmd->data_direction) {
3529         case DMA_FROM_DEVICE:
3530                 spin_lock(&cmd->se_lun->lun_sep_lock);
3531                 if (cmd->se_lun->lun_sep) {
3532                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3533                                         cmd->data_length;
3534                 }
3535                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3536
3537                 ret = cmd->se_tfo->queue_data_in(cmd);
3538                 if (ret == -EAGAIN)
3539                         goto queue_full;
3540                 break;
3541         case DMA_TO_DEVICE:
3542                 spin_lock(&cmd->se_lun->lun_sep_lock);
3543                 if (cmd->se_lun->lun_sep) {
3544                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3545                                 cmd->data_length;
3546                 }
3547                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3548                 /*
3549                  * Check if we need to send READ payload for BIDI-COMMAND
3550                  */
3551                 if (cmd->t_bidi_data_sg) {
3552                         spin_lock(&cmd->se_lun->lun_sep_lock);
3553                         if (cmd->se_lun->lun_sep) {
3554                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3555                                         cmd->data_length;
3556                         }
3557                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3558                         ret = cmd->se_tfo->queue_data_in(cmd);
3559                         if (ret == -EAGAIN)
3560                                 goto queue_full;
3561                         break;
3562                 }
3563                 /* Fall through for DMA_TO_DEVICE */
3564         case DMA_NONE:
3565                 ret = cmd->se_tfo->queue_status(cmd);
3566                 if (ret == -EAGAIN)
3567                         goto queue_full;
3568                 break;
3569         default:
3570                 break;
3571         }
3572
3573         transport_lun_remove_cmd(cmd);
3574         transport_cmd_check_stop_to_fabric(cmd);
3575         return;
3576
3577 queue_full:
3578         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3579                 " data_direction: %d\n", cmd, cmd->data_direction);
3580         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3581         transport_handle_queue_full(cmd, cmd->se_dev);
3582 }
3583
3584 static void transport_free_dev_tasks(struct se_cmd *cmd)
3585 {
3586         struct se_task *task, *task_tmp;
3587         unsigned long flags;
3588
3589         spin_lock_irqsave(&cmd->t_state_lock, flags);
3590         list_for_each_entry_safe(task, task_tmp,
3591                                 &cmd->t_task_list, t_list) {
3592                 if (task->task_flags & TF_ACTIVE)
3593                         continue;
3594
3595                 kfree(task->task_sg_bidi);
3596                 kfree(task->task_sg);
3597
3598                 list_del(&task->t_list);
3599
3600                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3601                 cmd->se_dev->transport->free_task(task);
3602                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3603         }
3604         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3605 }
3606
3607 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3608 {
3609         struct scatterlist *sg;
3610         int count;
3611
3612         for_each_sg(sgl, sg, nents, count)
3613                 __free_page(sg_page(sg));
3614
3615         kfree(sgl);
3616 }
3617
3618 static inline void transport_free_pages(struct se_cmd *cmd)
3619 {
3620         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3621                 return;
3622
3623         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3624         cmd->t_data_sg = NULL;
3625         cmd->t_data_nents = 0;
3626
3627         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3628         cmd->t_bidi_data_sg = NULL;
3629         cmd->t_bidi_data_nents = 0;
3630 }
3631
3632 /**
3633  * transport_put_cmd - release a reference to a command
3634  * @cmd:       command to release
3635  *
3636  * This routine releases our reference to the command and frees it if possible.
3637  */
3638 static void transport_put_cmd(struct se_cmd *cmd)
3639 {
3640         unsigned long flags;
3641         int free_tasks = 0;
3642
3643         spin_lock_irqsave(&cmd->t_state_lock, flags);
3644         if (atomic_read(&cmd->t_fe_count)) {
3645                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3646                         goto out_busy;
3647         }
3648
3649         if (atomic_read(&cmd->t_se_count)) {
3650                 if (!atomic_dec_and_test(&cmd->t_se_count))
3651                         goto out_busy;
3652         }
3653
3654         if (atomic_read(&cmd->transport_dev_active)) {
3655                 atomic_set(&cmd->transport_dev_active, 0);
3656                 transport_all_task_dev_remove_state(cmd);
3657                 free_tasks = 1;
3658         }
3659         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3660
3661         if (free_tasks != 0)
3662                 transport_free_dev_tasks(cmd);
3663
3664         transport_free_pages(cmd);
3665         transport_release_cmd(cmd);
3666         return;
3667 out_busy:
3668         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3669 }
3670
3671 /*
3672  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3673  * allocating in the core.
3674  * @cmd:  Associated se_cmd descriptor
3675  * @mem:  SGL style memory for TCM WRITE / READ
3676  * @sg_mem_num: Number of SGL elements
3677  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3678  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3679  *
3680  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3681  * of parameters.
3682  */
3683 int transport_generic_map_mem_to_cmd(
3684         struct se_cmd *cmd,
3685         struct scatterlist *sgl,
3686         u32 sgl_count,
3687         struct scatterlist *sgl_bidi,
3688         u32 sgl_bidi_count)
3689 {
3690         if (!sgl || !sgl_count)
3691                 return 0;
3692
3693         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3694             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3695
3696                 cmd->t_data_sg = sgl;
3697                 cmd->t_data_nents = sgl_count;
3698
3699                 if (sgl_bidi && sgl_bidi_count) {
3700                         cmd->t_bidi_data_sg = sgl_bidi;
3701                         cmd->t_bidi_data_nents = sgl_bidi_count;
3702                 }
3703                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3704         }
3705
3706         return 0;
3707 }
3708 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3709
3710 static int transport_new_cmd_obj(struct se_cmd *cmd)
3711 {
3712         struct se_device *dev = cmd->se_dev;
3713         int set_counts = 1, rc, task_cdbs;
3714
3715         /*
3716          * Setup any BIDI READ tasks and memory from
3717          * cmd->t_mem_bidi_list so the READ struct se_tasks
3718          * are queued first for the non pSCSI passthrough case.
3719          */
3720         if (cmd->t_bidi_data_sg &&
3721             (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3722                 rc = transport_allocate_tasks(cmd,
3723                                               cmd->t_task_lba,
3724                                               DMA_FROM_DEVICE,
3725                                               cmd->t_bidi_data_sg,
3726                                               cmd->t_bidi_data_nents);
3727                 if (rc <= 0) {
3728                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3729                         cmd->scsi_sense_reason =
3730                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3731                         return -EINVAL;
3732                 }
3733                 atomic_inc(&cmd->t_fe_count);
3734                 atomic_inc(&cmd->t_se_count);
3735                 set_counts = 0;
3736         }
3737         /*
3738          * Setup the tasks and memory from cmd->t_mem_list
3739          * Note for BIDI transfers this will contain the WRITE payload
3740          */
3741         task_cdbs = transport_allocate_tasks(cmd,
3742                                              cmd->t_task_lba,
3743                                              cmd->data_direction,
3744                                              cmd->t_data_sg,
3745                                              cmd->t_data_nents);
3746         if (task_cdbs <= 0) {
3747                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3748                 cmd->scsi_sense_reason =
3749                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3750                 return -EINVAL;
3751         }
3752
3753         if (set_counts) {
3754                 atomic_inc(&cmd->t_fe_count);
3755                 atomic_inc(&cmd->t_se_count);
3756         }
3757
3758         cmd->t_task_list_num = task_cdbs;
3759
3760         atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3761         atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3762         atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3763         return 0;
3764 }
3765
3766 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3767 {
3768         struct scatterlist *sg = cmd->t_data_sg;
3769
3770         BUG_ON(!sg);
3771         /*
3772          * We need to take into account a possible offset here for fabrics like
3773          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3774          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3775          */
3776         return kmap(sg_page(sg)) + sg->offset;
3777 }
3778 EXPORT_SYMBOL(transport_kmap_first_data_page);
3779
3780 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3781 {
3782         kunmap(sg_page(cmd->t_data_sg));
3783 }
3784 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3785
3786 static int
3787 transport_generic_get_mem(struct se_cmd *cmd)
3788 {
3789         u32 length = cmd->data_length;
3790         unsigned int nents;
3791         struct page *page;
3792         int i = 0;
3793
3794         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3795         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3796         if (!cmd->t_data_sg)
3797                 return -ENOMEM;
3798
3799         cmd->t_data_nents = nents;
3800         sg_init_table(cmd->t_data_sg, nents);
3801
3802         while (length) {
3803                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3804                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3805                 if (!page)
3806                         goto out;
3807
3808                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3809                 length -= page_len;
3810                 i++;
3811         }
3812         return 0;
3813
3814 out:
3815         while (i >= 0) {
3816                 __free_page(sg_page(&cmd->t_data_sg[i]));
3817                 i--;
3818         }
3819         kfree(cmd->t_data_sg);
3820         cmd->t_data_sg = NULL;
3821         return -ENOMEM;
3822 }
3823
3824 /* Reduce sectors if they are too long for the device */
3825 static inline sector_t transport_limit_task_sectors(
3826         struct se_device *dev,
3827         unsigned long long lba,
3828         sector_t sectors)
3829 {
3830         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3831
3832         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3833                 if ((lba + sectors) > transport_dev_end_lba(dev))
3834                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3835
3836         return sectors;
3837 }
3838
3839
3840 /*
3841  * This function can be used by HW target mode drivers to create a linked
3842  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3843  * This is intended to be called during the completion path by TCM Core
3844  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3845  */
3846 void transport_do_task_sg_chain(struct se_cmd *cmd)
3847 {
3848         struct scatterlist *sg_first = NULL;
3849         struct scatterlist *sg_prev = NULL;
3850         int sg_prev_nents = 0;
3851         struct scatterlist *sg;
3852         struct se_task *task;
3853         u32 chained_nents = 0;
3854         int i;
3855
3856         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3857
3858         /*
3859          * Walk the struct se_task list and setup scatterlist chains
3860          * for each contiguously allocated struct se_task->task_sg[].
3861          */
3862         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3863                 if (!task->task_sg)
3864                         continue;
3865
3866                 if (!sg_first) {
3867                         sg_first = task->task_sg;
3868                         chained_nents = task->task_sg_nents;
3869                 } else {
3870                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3871                         chained_nents += task->task_sg_nents;
3872                 }
3873                 /*
3874                  * For the padded tasks, use the extra SGL vector allocated
3875                  * in transport_allocate_data_tasks() for the sg_prev_nents
3876                  * offset into sg_chain() above.
3877                  *
3878                  * We do not need the padding for the last task (or a single
3879                  * task), but in that case we will never use the sg_prev_nents
3880                  * value below which would be incorrect.
3881                  */
3882                 sg_prev_nents = (task->task_sg_nents + 1);
3883                 sg_prev = task->task_sg;
3884         }
3885         /*
3886          * Setup the starting pointer and total t_tasks_sg_linked_no including
3887          * padding SGs for linking and to mark the end.
3888          */
3889         cmd->t_tasks_sg_chained = sg_first;
3890         cmd->t_tasks_sg_chained_no = chained_nents;
3891
3892         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3893                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3894                 cmd->t_tasks_sg_chained_no);
3895
3896         for_each_sg(cmd->t_tasks_sg_chained, sg,
3897                         cmd->t_tasks_sg_chained_no, i) {
3898
3899                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3900                         i, sg, sg_page(sg), sg->length, sg->offset);
3901                 if (sg_is_chain(sg))
3902                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3903                 if (sg_is_last(sg))
3904                         pr_debug("SG: %p sg_is_last=1\n", sg);
3905         }
3906 }
3907 EXPORT_SYMBOL(transport_do_task_sg_chain);
3908
3909 /*
3910  * Break up cmd into chunks transport can handle
3911  */
3912 static int transport_allocate_data_tasks(
3913         struct se_cmd *cmd,
3914         unsigned long long lba,
3915         enum dma_data_direction data_direction,
3916         struct scatterlist *sgl,
3917         unsigned int sgl_nents)
3918 {
3919         struct se_task *task;
3920         struct se_device *dev = cmd->se_dev;
3921         unsigned long flags;
3922         int task_count, i;
3923         sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3924         u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3925         struct scatterlist *sg;
3926         struct scatterlist *cmd_sg;
3927
3928         WARN_ON(cmd->data_length % sector_size);
3929         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3930         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3931         
3932         cmd_sg = sgl;
3933         for (i = 0; i < task_count; i++) {
3934                 unsigned int task_size, task_sg_nents_padded;
3935                 int count;
3936
3937                 task = transport_generic_get_task(cmd, data_direction);
3938                 if (!task)
3939                         return -ENOMEM;
3940
3941                 task->task_lba = lba;
3942                 task->task_sectors = min(sectors, dev_max_sectors);
3943                 task->task_size = task->task_sectors * sector_size;
3944
3945                 /*
3946                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3947                  * in order to calculate the number per task SGL entries
3948                  */
3949                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3950                 /*
3951                  * Check if the fabric module driver is requesting that all
3952                  * struct se_task->task_sg[] be chained together..  If so,
3953                  * then allocate an extra padding SG entry for linking and
3954                  * marking the end of the chained SGL for every task except
3955                  * the last one for (task_count > 1) operation, or skipping
3956                  * the extra padding for the (task_count == 1) case.
3957                  */
3958                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3959                         task_sg_nents_padded = (task->task_sg_nents + 1);
3960                 } else
3961                         task_sg_nents_padded = task->task_sg_nents;
3962
3963                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3964                                         task_sg_nents_padded, GFP_KERNEL);
3965                 if (!task->task_sg) {
3966                         cmd->se_dev->transport->free_task(task);
3967                         return -ENOMEM;
3968                 }
3969
3970                 sg_init_table(task->task_sg, task_sg_nents_padded);
3971
3972                 task_size = task->task_size;
3973
3974                 /* Build new sgl, only up to task_size */
3975                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3976                         if (cmd_sg->length > task_size)
3977                                 break;
3978
3979                         *sg = *cmd_sg;
3980                         task_size -= cmd_sg->length;
3981                         cmd_sg = sg_next(cmd_sg);
3982                 }
3983
3984                 lba += task->task_sectors;
3985                 sectors -= task->task_sectors;
3986
3987                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3988                 list_add_tail(&task->t_list, &cmd->t_task_list);
3989                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3990         }
3991
3992         return task_count;
3993 }
3994
3995 static int
3996 transport_allocate_control_task(struct se_cmd *cmd)
3997 {
3998         struct se_task *task;
3999         unsigned long flags;
4000
4001         task = transport_generic_get_task(cmd, cmd->data_direction);
4002         if (!task)
4003                 return -ENOMEM;
4004
4005         task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4006                                 GFP_KERNEL);
4007         if (!task->task_sg) {
4008                 cmd->se_dev->transport->free_task(task);
4009                 return -ENOMEM;
4010         }
4011
4012         memcpy(task->task_sg, cmd->t_data_sg,
4013                sizeof(struct scatterlist) * cmd->t_data_nents);
4014         task->task_size = cmd->data_length;
4015         task->task_sg_nents = cmd->t_data_nents;
4016
4017         spin_lock_irqsave(&cmd->t_state_lock, flags);
4018         list_add_tail(&task->t_list, &cmd->t_task_list);
4019         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4020
4021         /* Success! Return number of tasks allocated */
4022         return 1;
4023 }
4024
4025 static u32 transport_allocate_tasks(
4026         struct se_cmd *cmd,
4027         unsigned long long lba,
4028         enum dma_data_direction data_direction,
4029         struct scatterlist *sgl,
4030         unsigned int sgl_nents)
4031 {
4032         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4033                 if (transport_cmd_get_valid_sectors(cmd) < 0)
4034                         return -EINVAL;
4035
4036                 return transport_allocate_data_tasks(cmd, lba, data_direction,
4037                                                      sgl, sgl_nents);
4038         } else
4039                 return transport_allocate_control_task(cmd);
4040
4041 }
4042
4043
4044 /*       transport_generic_new_cmd(): Called from transport_processing_thread()
4045  *
4046  *       Allocate storage transport resources from a set of values predefined
4047  *       by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4048  *       Any non zero return here is treated as an "out of resource' op here.
4049  */
4050         /*
4051          * Generate struct se_task(s) and/or their payloads for this CDB.
4052          */
4053 int transport_generic_new_cmd(struct se_cmd *cmd)
4054 {
4055         int ret = 0;
4056
4057         /*
4058          * Determine is the TCM fabric module has already allocated physical
4059          * memory, and is directly calling transport_generic_map_mem_to_cmd()
4060          * beforehand.
4061          */
4062         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4063             cmd->data_length) {
4064                 ret = transport_generic_get_mem(cmd);
4065                 if (ret < 0)
4066                         return ret;
4067         }
4068         /*
4069          * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4070          * control or data CDB types, and perform the map to backend subsystem
4071          * code from SGL memory allocated here by transport_generic_get_mem(), or
4072          * via pre-existing SGL memory setup explictly by fabric module code with
4073          * transport_generic_map_mem_to_cmd().
4074          */
4075         ret = transport_new_cmd_obj(cmd);
4076         if (ret < 0)
4077                 return ret;
4078         /*
4079          * For WRITEs, let the fabric know its buffer is ready..
4080          * This WRITE struct se_cmd (and all of its associated struct se_task's)
4081          * will be added to the struct se_device execution queue after its WRITE
4082          * data has arrived. (ie: It gets handled by the transport processing
4083          * thread a second time)
4084          */
4085         if (cmd->data_direction == DMA_TO_DEVICE) {
4086                 transport_add_tasks_to_state_queue(cmd);
4087                 return transport_generic_write_pending(cmd);
4088         }
4089         /*
4090          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4091          * to the execution queue.
4092          */
4093         transport_execute_tasks(cmd);
4094         return 0;
4095 }
4096 EXPORT_SYMBOL(transport_generic_new_cmd);
4097
4098 /*      transport_generic_process_write():
4099  *
4100  *
4101  */
4102 void transport_generic_process_write(struct se_cmd *cmd)
4103 {
4104         transport_execute_tasks(cmd);
4105 }
4106 EXPORT_SYMBOL(transport_generic_process_write);
4107
4108 static void transport_write_pending_qf(struct se_cmd *cmd)
4109 {
4110         if (cmd->se_tfo->write_pending(cmd) == -EAGAIN) {
4111                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
4112                          cmd);
4113                 transport_handle_queue_full(cmd, cmd->se_dev);
4114         }
4115 }
4116
4117 static int transport_generic_write_pending(struct se_cmd *cmd)
4118 {
4119         unsigned long flags;
4120         int ret;
4121
4122         spin_lock_irqsave(&cmd->t_state_lock, flags);
4123         cmd->t_state = TRANSPORT_WRITE_PENDING;
4124         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4125
4126         /*
4127          * Clear the se_cmd for WRITE_PENDING status in order to set
4128          * cmd->t_transport_active=0 so that transport_generic_handle_data
4129          * can be called from HW target mode interrupt code.  This is safe
4130          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4131          * because the se_cmd->se_lun pointer is not being cleared.
4132          */
4133         transport_cmd_check_stop(cmd, 1, 0);
4134
4135         /*
4136          * Call the fabric write_pending function here to let the
4137          * frontend know that WRITE buffers are ready.
4138          */
4139         ret = cmd->se_tfo->write_pending(cmd);
4140         if (ret == -EAGAIN)
4141                 goto queue_full;
4142         else if (ret < 0)
4143                 return ret;
4144
4145         return PYX_TRANSPORT_WRITE_PENDING;
4146
4147 queue_full:
4148         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4149         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4150         transport_handle_queue_full(cmd, cmd->se_dev);
4151         return ret;
4152 }
4153
4154 /**
4155  * transport_release_cmd - free a command
4156  * @cmd:       command to free
4157  *
4158  * This routine unconditionally frees a command, and reference counting
4159  * or list removal must be done in the caller.
4160  */
4161 void transport_release_cmd(struct se_cmd *cmd)
4162 {
4163         BUG_ON(!cmd->se_tfo);
4164
4165         if (cmd->se_tmr_req)
4166                 core_tmr_release_req(cmd->se_tmr_req);
4167         if (cmd->t_task_cdb != cmd->__t_task_cdb)
4168                 kfree(cmd->t_task_cdb);
4169         cmd->se_tfo->release_cmd(cmd);
4170 }
4171 EXPORT_SYMBOL(transport_release_cmd);
4172
4173 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4174 {
4175         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4176                 if (wait_for_tasks && cmd->se_tmr_req)
4177                          transport_wait_for_tasks(cmd);
4178
4179                 transport_release_cmd(cmd);
4180         } else {
4181                 if (wait_for_tasks)
4182                         transport_wait_for_tasks(cmd);
4183
4184                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4185
4186                 if (cmd->se_lun)
4187                         transport_lun_remove_cmd(cmd);
4188
4189                 transport_free_dev_tasks(cmd);
4190
4191                 transport_put_cmd(cmd);
4192         }
4193 }
4194 EXPORT_SYMBOL(transport_generic_free_cmd);
4195
4196 /*      transport_lun_wait_for_tasks():
4197  *
4198  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4199  *      an struct se_lun to be successfully shutdown.
4200  */
4201 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4202 {
4203         unsigned long flags;
4204         int ret;
4205         /*
4206          * If the frontend has already requested this struct se_cmd to
4207          * be stopped, we can safely ignore this struct se_cmd.
4208          */
4209         spin_lock_irqsave(&cmd->t_state_lock, flags);
4210         if (atomic_read(&cmd->t_transport_stop)) {
4211                 atomic_set(&cmd->transport_lun_stop, 0);
4212                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4213                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4214                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4215                 transport_cmd_check_stop(cmd, 1, 0);
4216                 return -EPERM;
4217         }
4218         atomic_set(&cmd->transport_lun_fe_stop, 1);
4219         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4220
4221         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4222
4223         ret = transport_stop_tasks_for_cmd(cmd);
4224
4225         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4226                         " %d\n", cmd, cmd->t_task_list_num, ret);
4227         if (!ret) {
4228                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4229                                 cmd->se_tfo->get_task_tag(cmd));
4230                 wait_for_completion(&cmd->transport_lun_stop_comp);
4231                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4232                                 cmd->se_tfo->get_task_tag(cmd));
4233         }
4234         transport_remove_cmd_from_queue(cmd);
4235
4236         return 0;
4237 }
4238
4239 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4240 {
4241         struct se_cmd *cmd = NULL;
4242         unsigned long lun_flags, cmd_flags;
4243         /*
4244          * Do exception processing and return CHECK_CONDITION status to the
4245          * Initiator Port.
4246          */
4247         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4248         while (!list_empty(&lun->lun_cmd_list)) {
4249                 cmd = list_first_entry(&lun->lun_cmd_list,
4250                        struct se_cmd, se_lun_node);
4251                 list_del(&cmd->se_lun_node);
4252
4253                 atomic_set(&cmd->transport_lun_active, 0);
4254                 /*
4255                  * This will notify iscsi_target_transport.c:
4256                  * transport_cmd_check_stop() that a LUN shutdown is in
4257                  * progress for the iscsi_cmd_t.
4258                  */
4259                 spin_lock(&cmd->t_state_lock);
4260                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4261                         "_lun_stop for  ITT: 0x%08x\n",
4262                         cmd->se_lun->unpacked_lun,
4263                         cmd->se_tfo->get_task_tag(cmd));
4264                 atomic_set(&cmd->transport_lun_stop, 1);
4265                 spin_unlock(&cmd->t_state_lock);
4266
4267                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4268
4269                 if (!cmd->se_lun) {
4270                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4271                                 cmd->se_tfo->get_task_tag(cmd),
4272                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4273                         BUG();
4274                 }
4275                 /*
4276                  * If the Storage engine still owns the iscsi_cmd_t, determine
4277                  * and/or stop its context.
4278                  */
4279                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4280                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4281                         cmd->se_tfo->get_task_tag(cmd));
4282
4283                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4284                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4285                         continue;
4286                 }
4287
4288                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4289                         "_wait_for_tasks(): SUCCESS\n",
4290                         cmd->se_lun->unpacked_lun,
4291                         cmd->se_tfo->get_task_tag(cmd));
4292
4293                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4294                 if (!atomic_read(&cmd->transport_dev_active)) {
4295                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4296                         goto check_cond;
4297                 }
4298                 atomic_set(&cmd->transport_dev_active, 0);
4299                 transport_all_task_dev_remove_state(cmd);
4300                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4301
4302                 transport_free_dev_tasks(cmd);
4303                 /*
4304                  * The Storage engine stopped this struct se_cmd before it was
4305                  * send to the fabric frontend for delivery back to the
4306                  * Initiator Node.  Return this SCSI CDB back with an
4307                  * CHECK_CONDITION status.
4308                  */
4309 check_cond:
4310                 transport_send_check_condition_and_sense(cmd,
4311                                 TCM_NON_EXISTENT_LUN, 0);
4312                 /*
4313                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4314                  * be released, notify the waiting thread now that LU has
4315                  * finished accessing it.
4316                  */
4317                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4318                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4319                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4320                                 " struct se_cmd: %p ITT: 0x%08x\n",
4321                                 lun->unpacked_lun,
4322                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4323
4324                         spin_unlock_irqrestore(&cmd->t_state_lock,
4325                                         cmd_flags);
4326                         transport_cmd_check_stop(cmd, 1, 0);
4327                         complete(&cmd->transport_lun_fe_stop_comp);
4328                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4329                         continue;
4330                 }
4331                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4332                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4333
4334                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4335                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4336         }
4337         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4338 }
4339
4340 static int transport_clear_lun_thread(void *p)
4341 {
4342         struct se_lun *lun = (struct se_lun *)p;
4343
4344         __transport_clear_lun_from_sessions(lun);
4345         complete(&lun->lun_shutdown_comp);
4346
4347         return 0;
4348 }
4349
4350 int transport_clear_lun_from_sessions(struct se_lun *lun)
4351 {
4352         struct task_struct *kt;
4353
4354         kt = kthread_run(transport_clear_lun_thread, lun,
4355                         "tcm_cl_%u", lun->unpacked_lun);
4356         if (IS_ERR(kt)) {
4357                 pr_err("Unable to start clear_lun thread\n");
4358                 return PTR_ERR(kt);
4359         }
4360         wait_for_completion(&lun->lun_shutdown_comp);
4361
4362         return 0;
4363 }
4364
4365 /**
4366  * transport_wait_for_tasks - wait for completion to occur
4367  * @cmd:        command to wait
4368  *
4369  * Called from frontend fabric context to wait for storage engine
4370  * to pause and/or release frontend generated struct se_cmd.
4371  */
4372 void transport_wait_for_tasks(struct se_cmd *cmd)
4373 {
4374         unsigned long flags;
4375
4376         spin_lock_irqsave(&cmd->t_state_lock, flags);
4377         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4378                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4379                 return;
4380         }
4381         /*
4382          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4383          * has been set in transport_set_supported_SAM_opcode().
4384          */
4385         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4386                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4387                 return;
4388         }
4389         /*
4390          * If we are already stopped due to an external event (ie: LUN shutdown)
4391          * sleep until the connection can have the passed struct se_cmd back.
4392          * The cmd->transport_lun_stopped_sem will be upped by
4393          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4394          * has completed its operation on the struct se_cmd.
4395          */
4396         if (atomic_read(&cmd->transport_lun_stop)) {
4397
4398                 pr_debug("wait_for_tasks: Stopping"
4399                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4400                         "_stop_comp); for ITT: 0x%08x\n",
4401                         cmd->se_tfo->get_task_tag(cmd));
4402                 /*
4403                  * There is a special case for WRITES where a FE exception +
4404                  * LUN shutdown means ConfigFS context is still sleeping on
4405                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4406                  * We go ahead and up transport_lun_stop_comp just to be sure
4407                  * here.
4408                  */
4409                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4410                 complete(&cmd->transport_lun_stop_comp);
4411                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4412                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4413
4414                 transport_all_task_dev_remove_state(cmd);
4415                 /*
4416                  * At this point, the frontend who was the originator of this
4417                  * struct se_cmd, now owns the structure and can be released through
4418                  * normal means below.
4419                  */
4420                 pr_debug("wait_for_tasks: Stopped"
4421                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4422                         "stop_comp); for ITT: 0x%08x\n",
4423                         cmd->se_tfo->get_task_tag(cmd));
4424
4425                 atomic_set(&cmd->transport_lun_stop, 0);
4426         }
4427         if (!atomic_read(&cmd->t_transport_active) ||
4428              atomic_read(&cmd->t_transport_aborted)) {
4429                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4430                 return;
4431         }
4432
4433         atomic_set(&cmd->t_transport_stop, 1);
4434
4435         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4436                 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4437                 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4438                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4439                 cmd->deferred_t_state);
4440
4441         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4442
4443         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4444
4445         wait_for_completion(&cmd->t_transport_stop_comp);
4446
4447         spin_lock_irqsave(&cmd->t_state_lock, flags);
4448         atomic_set(&cmd->t_transport_active, 0);
4449         atomic_set(&cmd->t_transport_stop, 0);
4450
4451         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4452                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4453                 cmd->se_tfo->get_task_tag(cmd));
4454
4455         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4456 }
4457 EXPORT_SYMBOL(transport_wait_for_tasks);
4458
4459 static int transport_get_sense_codes(
4460         struct se_cmd *cmd,
4461         u8 *asc,
4462         u8 *ascq)
4463 {
4464         *asc = cmd->scsi_asc;
4465         *ascq = cmd->scsi_ascq;
4466
4467         return 0;
4468 }
4469
4470 static int transport_set_sense_codes(
4471         struct se_cmd *cmd,
4472         u8 asc,
4473         u8 ascq)
4474 {
4475         cmd->scsi_asc = asc;
4476         cmd->scsi_ascq = ascq;
4477
4478         return 0;
4479 }
4480
4481 int transport_send_check_condition_and_sense(
4482         struct se_cmd *cmd,
4483         u8 reason,
4484         int from_transport)
4485 {
4486         unsigned char *buffer = cmd->sense_buffer;
4487         unsigned long flags;
4488         int offset;
4489         u8 asc = 0, ascq = 0;
4490
4491         spin_lock_irqsave(&cmd->t_state_lock, flags);
4492         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4493                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4494                 return 0;
4495         }
4496         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4497         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4498
4499         if (!reason && from_transport)
4500                 goto after_reason;
4501
4502         if (!from_transport)
4503                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4504         /*
4505          * Data Segment and SenseLength of the fabric response PDU.
4506          *
4507          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4508          * from include/scsi/scsi_cmnd.h
4509          */
4510         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4511                                 TRANSPORT_SENSE_BUFFER);
4512         /*
4513          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4514          * SENSE KEY values from include/scsi/scsi.h
4515          */
4516         switch (reason) {
4517         case TCM_NON_EXISTENT_LUN:
4518                 /* CURRENT ERROR */
4519                 buffer[offset] = 0x70;
4520                 /* ILLEGAL REQUEST */
4521                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4522                 /* LOGICAL UNIT NOT SUPPORTED */
4523                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4524                 break;
4525         case TCM_UNSUPPORTED_SCSI_OPCODE:
4526         case TCM_SECTOR_COUNT_TOO_MANY:
4527                 /* CURRENT ERROR */
4528                 buffer[offset] = 0x70;
4529                 /* ILLEGAL REQUEST */
4530                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4531                 /* INVALID COMMAND OPERATION CODE */
4532                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4533                 break;
4534         case TCM_UNKNOWN_MODE_PAGE:
4535                 /* CURRENT ERROR */
4536                 buffer[offset] = 0x70;
4537                 /* ILLEGAL REQUEST */
4538                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4539                 /* INVALID FIELD IN CDB */
4540                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4541                 break;
4542         case TCM_CHECK_CONDITION_ABORT_CMD:
4543                 /* CURRENT ERROR */
4544                 buffer[offset] = 0x70;
4545                 /* ABORTED COMMAND */
4546                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4547                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4548                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4549                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4550                 break;
4551         case TCM_INCORRECT_AMOUNT_OF_DATA:
4552                 /* CURRENT ERROR */
4553                 buffer[offset] = 0x70;
4554                 /* ABORTED COMMAND */
4555                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4556                 /* WRITE ERROR */
4557                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4558                 /* NOT ENOUGH UNSOLICITED DATA */
4559                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4560                 break;
4561         case TCM_INVALID_CDB_FIELD:
4562                 /* CURRENT ERROR */
4563                 buffer[offset] = 0x70;
4564                 /* ABORTED COMMAND */
4565                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4566                 /* INVALID FIELD IN CDB */
4567                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4568                 break;
4569         case TCM_INVALID_PARAMETER_LIST:
4570                 /* CURRENT ERROR */
4571                 buffer[offset] = 0x70;
4572                 /* ABORTED COMMAND */
4573                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4574                 /* INVALID FIELD IN PARAMETER LIST */
4575                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4576                 break;
4577         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4578                 /* CURRENT ERROR */
4579                 buffer[offset] = 0x70;
4580                 /* ABORTED COMMAND */
4581                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4582                 /* WRITE ERROR */
4583                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4584                 /* UNEXPECTED_UNSOLICITED_DATA */
4585                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4586                 break;
4587         case TCM_SERVICE_CRC_ERROR:
4588                 /* CURRENT ERROR */
4589                 buffer[offset] = 0x70;
4590                 /* ABORTED COMMAND */
4591                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4592                 /* PROTOCOL SERVICE CRC ERROR */
4593                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4594                 /* N/A */
4595                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4596                 break;
4597         case TCM_SNACK_REJECTED:
4598                 /* CURRENT ERROR */
4599                 buffer[offset] = 0x70;
4600                 /* ABORTED COMMAND */
4601                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4602                 /* READ ERROR */
4603                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4604                 /* FAILED RETRANSMISSION REQUEST */
4605                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4606                 break;
4607         case TCM_WRITE_PROTECTED:
4608                 /* CURRENT ERROR */
4609                 buffer[offset] = 0x70;
4610                 /* DATA PROTECT */
4611                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4612                 /* WRITE PROTECTED */
4613                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4614                 break;
4615         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4616                 /* CURRENT ERROR */
4617                 buffer[offset] = 0x70;
4618                 /* UNIT ATTENTION */
4619                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4620                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4621                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4622                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4623                 break;
4624         case TCM_CHECK_CONDITION_NOT_READY:
4625                 /* CURRENT ERROR */
4626                 buffer[offset] = 0x70;
4627                 /* Not Ready */
4628                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4629                 transport_get_sense_codes(cmd, &asc, &ascq);
4630                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4631                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4632                 break;
4633         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4634         default:
4635                 /* CURRENT ERROR */
4636                 buffer[offset] = 0x70;
4637                 /* ILLEGAL REQUEST */
4638                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4639                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4640                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4641                 break;
4642         }
4643         /*
4644          * This code uses linux/include/scsi/scsi.h SAM status codes!
4645          */
4646         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4647         /*
4648          * Automatically padded, this value is encoded in the fabric's
4649          * data_length response PDU containing the SCSI defined sense data.
4650          */
4651         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4652
4653 after_reason:
4654         return cmd->se_tfo->queue_status(cmd);
4655 }
4656 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4657
4658 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4659 {
4660         int ret = 0;
4661
4662         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4663                 if (!send_status ||
4664                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4665                         return 1;
4666 #if 0
4667                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4668                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4669                         cmd->t_task_cdb[0],
4670                         cmd->se_tfo->get_task_tag(cmd));
4671 #endif
4672                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4673                 cmd->se_tfo->queue_status(cmd);
4674                 ret = 1;
4675         }
4676         return ret;
4677 }
4678 EXPORT_SYMBOL(transport_check_aborted_status);
4679
4680 void transport_send_task_abort(struct se_cmd *cmd)
4681 {
4682         unsigned long flags;
4683
4684         spin_lock_irqsave(&cmd->t_state_lock, flags);
4685         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4686                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4687                 return;
4688         }
4689         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4690
4691         /*
4692          * If there are still expected incoming fabric WRITEs, we wait
4693          * until until they have completed before sending a TASK_ABORTED
4694          * response.  This response with TASK_ABORTED status will be
4695          * queued back to fabric module by transport_check_aborted_status().
4696          */
4697         if (cmd->data_direction == DMA_TO_DEVICE) {
4698                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4699                         atomic_inc(&cmd->t_transport_aborted);
4700                         smp_mb__after_atomic_inc();
4701                         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4702                         transport_new_cmd_failure(cmd);
4703                         return;
4704                 }
4705         }
4706         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4707 #if 0
4708         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4709                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4710                 cmd->se_tfo->get_task_tag(cmd));
4711 #endif
4712         cmd->se_tfo->queue_status(cmd);
4713 }
4714
4715 /*      transport_generic_do_tmr():
4716  *
4717  *
4718  */
4719 int transport_generic_do_tmr(struct se_cmd *cmd)
4720 {
4721         struct se_device *dev = cmd->se_dev;
4722         struct se_tmr_req *tmr = cmd->se_tmr_req;
4723         int ret;
4724
4725         switch (tmr->function) {
4726         case TMR_ABORT_TASK:
4727                 tmr->response = TMR_FUNCTION_REJECTED;
4728                 break;
4729         case TMR_ABORT_TASK_SET:
4730         case TMR_CLEAR_ACA:
4731         case TMR_CLEAR_TASK_SET:
4732                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4733                 break;
4734         case TMR_LUN_RESET:
4735                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4736                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4737                                          TMR_FUNCTION_REJECTED;
4738                 break;
4739         case TMR_TARGET_WARM_RESET:
4740                 tmr->response = TMR_FUNCTION_REJECTED;
4741                 break;
4742         case TMR_TARGET_COLD_RESET:
4743                 tmr->response = TMR_FUNCTION_REJECTED;
4744                 break;
4745         default:
4746                 pr_err("Uknown TMR function: 0x%02x.\n",
4747                                 tmr->function);
4748                 tmr->response = TMR_FUNCTION_REJECTED;
4749                 break;
4750         }
4751
4752         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4753         cmd->se_tfo->queue_tm_rsp(cmd);
4754
4755         transport_cmd_check_stop_to_fabric(cmd);
4756         return 0;
4757 }
4758
4759 /*      transport_processing_thread():
4760  *
4761  *
4762  */
4763 static int transport_processing_thread(void *param)
4764 {
4765         int ret;
4766         struct se_cmd *cmd;
4767         struct se_device *dev = (struct se_device *) param;
4768
4769         set_user_nice(current, -20);
4770
4771         while (!kthread_should_stop()) {
4772                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4773                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4774                                 kthread_should_stop());
4775                 if (ret < 0)
4776                         goto out;
4777
4778 get_cmd:
4779                 __transport_execute_tasks(dev);
4780
4781                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4782                 if (!cmd)
4783                         continue;
4784
4785                 switch (cmd->t_state) {
4786                 case TRANSPORT_NEW_CMD:
4787                         BUG();
4788                         break;
4789                 case TRANSPORT_NEW_CMD_MAP:
4790                         if (!cmd->se_tfo->new_cmd_map) {
4791                                 pr_err("cmd->se_tfo->new_cmd_map is"
4792                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4793                                 BUG();
4794                         }
4795                         ret = cmd->se_tfo->new_cmd_map(cmd);
4796                         if (ret < 0) {
4797                                 cmd->transport_error_status = ret;
4798                                 transport_generic_request_failure(cmd, NULL,
4799                                                 0, (cmd->data_direction !=
4800                                                     DMA_TO_DEVICE));
4801                                 break;
4802                         }
4803                         ret = transport_generic_new_cmd(cmd);
4804                         if (ret == -EAGAIN)
4805                                 break;
4806                         else if (ret < 0) {
4807                                 cmd->transport_error_status = ret;
4808                                 transport_generic_request_failure(cmd, NULL,
4809                                         0, (cmd->data_direction !=
4810                                          DMA_TO_DEVICE));
4811                         }
4812                         break;
4813                 case TRANSPORT_PROCESS_WRITE:
4814                         transport_generic_process_write(cmd);
4815                         break;
4816                 case TRANSPORT_COMPLETE_OK:
4817                         transport_stop_all_task_timers(cmd);
4818                         transport_generic_complete_ok(cmd);
4819                         break;
4820                 case TRANSPORT_REMOVE:
4821                         transport_put_cmd(cmd);
4822                         break;
4823                 case TRANSPORT_FREE_CMD_INTR:
4824                         transport_generic_free_cmd(cmd, 0);
4825                         break;
4826                 case TRANSPORT_PROCESS_TMR:
4827                         transport_generic_do_tmr(cmd);
4828                         break;
4829                 case TRANSPORT_COMPLETE_FAILURE:
4830                         transport_generic_request_failure(cmd, NULL, 1, 1);
4831                         break;
4832                 case TRANSPORT_COMPLETE_TIMEOUT:
4833                         transport_stop_all_task_timers(cmd);
4834                         transport_generic_request_timeout(cmd);
4835                         break;
4836                 case TRANSPORT_COMPLETE_QF_WP:
4837                         transport_write_pending_qf(cmd);
4838                         break;
4839                 case TRANSPORT_COMPLETE_QF_OK:
4840                         transport_complete_qf(cmd);
4841                         break;
4842                 default:
4843                         pr_err("Unknown t_state: %d deferred_t_state:"
4844                                 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
4845                                 " %u\n", cmd->t_state, cmd->deferred_t_state,
4846                                 cmd->se_tfo->get_task_tag(cmd),
4847                                 cmd->se_tfo->get_cmd_state(cmd),
4848                                 cmd->se_lun->unpacked_lun);
4849                         BUG();
4850                 }
4851
4852                 goto get_cmd;
4853         }
4854
4855 out:
4856         WARN_ON(!list_empty(&dev->state_task_list));
4857         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4858         dev->process_thread = NULL;
4859         return 0;
4860 }