]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/target/target_core_transport.c
6dab8198ace838a2edb7d431b1246188fd93eb3f
[mv-sheeva.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_ua.h"
58
59 static int sub_api_initialized;
60
61 static struct kmem_cache *se_cmd_cache;
62 static struct kmem_cache *se_sess_cache;
63 struct kmem_cache *se_tmr_req_cache;
64 struct kmem_cache *se_ua_cache;
65 struct kmem_cache *t10_pr_reg_cache;
66 struct kmem_cache *t10_alua_lu_gp_cache;
67 struct kmem_cache *t10_alua_lu_gp_mem_cache;
68 struct kmem_cache *t10_alua_tg_pt_gp_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
70
71 static int transport_generic_write_pending(struct se_cmd *);
72 static int transport_processing_thread(void *param);
73 static int __transport_execute_tasks(struct se_device *dev);
74 static void transport_complete_task_attr(struct se_cmd *cmd);
75 static void transport_handle_queue_full(struct se_cmd *cmd,
76                 struct se_device *dev);
77 static void transport_direct_request_timeout(struct se_cmd *cmd);
78 static void transport_free_dev_tasks(struct se_cmd *cmd);
79 static u32 transport_allocate_tasks(struct se_cmd *cmd,
80                 unsigned long long starting_lba,
81                 enum dma_data_direction data_direction,
82                 struct scatterlist *sgl, unsigned int nents);
83 static int transport_generic_get_mem(struct se_cmd *cmd);
84 static void transport_put_cmd(struct se_cmd *cmd);
85 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
86 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
87 static void transport_stop_all_task_timers(struct se_cmd *cmd);
88
89 int init_se_kmem_caches(void)
90 {
91         se_cmd_cache = kmem_cache_create("se_cmd_cache",
92                         sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
93         if (!se_cmd_cache) {
94                 pr_err("kmem_cache_create for struct se_cmd failed\n");
95                 goto out;
96         }
97         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
98                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
99                         0, NULL);
100         if (!se_tmr_req_cache) {
101                 pr_err("kmem_cache_create() for struct se_tmr_req"
102                                 " failed\n");
103                 goto out;
104         }
105         se_sess_cache = kmem_cache_create("se_sess_cache",
106                         sizeof(struct se_session), __alignof__(struct se_session),
107                         0, NULL);
108         if (!se_sess_cache) {
109                 pr_err("kmem_cache_create() for struct se_session"
110                                 " failed\n");
111                 goto out;
112         }
113         se_ua_cache = kmem_cache_create("se_ua_cache",
114                         sizeof(struct se_ua), __alignof__(struct se_ua),
115                         0, NULL);
116         if (!se_ua_cache) {
117                 pr_err("kmem_cache_create() for struct se_ua failed\n");
118                 goto out;
119         }
120         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
121                         sizeof(struct t10_pr_registration),
122                         __alignof__(struct t10_pr_registration), 0, NULL);
123         if (!t10_pr_reg_cache) {
124                 pr_err("kmem_cache_create() for struct t10_pr_registration"
125                                 " failed\n");
126                 goto out;
127         }
128         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
129                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
130                         0, NULL);
131         if (!t10_alua_lu_gp_cache) {
132                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
133                                 " failed\n");
134                 goto out;
135         }
136         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
137                         sizeof(struct t10_alua_lu_gp_member),
138                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
139         if (!t10_alua_lu_gp_mem_cache) {
140                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
141                                 "cache failed\n");
142                 goto out;
143         }
144         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
145                         sizeof(struct t10_alua_tg_pt_gp),
146                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
147         if (!t10_alua_tg_pt_gp_cache) {
148                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
149                                 "cache failed\n");
150                 goto out;
151         }
152         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
153                         "t10_alua_tg_pt_gp_mem_cache",
154                         sizeof(struct t10_alua_tg_pt_gp_member),
155                         __alignof__(struct t10_alua_tg_pt_gp_member),
156                         0, NULL);
157         if (!t10_alua_tg_pt_gp_mem_cache) {
158                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
159                                 "mem_t failed\n");
160                 goto out;
161         }
162
163         return 0;
164 out:
165         if (se_cmd_cache)
166                 kmem_cache_destroy(se_cmd_cache);
167         if (se_tmr_req_cache)
168                 kmem_cache_destroy(se_tmr_req_cache);
169         if (se_sess_cache)
170                 kmem_cache_destroy(se_sess_cache);
171         if (se_ua_cache)
172                 kmem_cache_destroy(se_ua_cache);
173         if (t10_pr_reg_cache)
174                 kmem_cache_destroy(t10_pr_reg_cache);
175         if (t10_alua_lu_gp_cache)
176                 kmem_cache_destroy(t10_alua_lu_gp_cache);
177         if (t10_alua_lu_gp_mem_cache)
178                 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
179         if (t10_alua_tg_pt_gp_cache)
180                 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
181         if (t10_alua_tg_pt_gp_mem_cache)
182                 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
183         return -ENOMEM;
184 }
185
186 void release_se_kmem_caches(void)
187 {
188         kmem_cache_destroy(se_cmd_cache);
189         kmem_cache_destroy(se_tmr_req_cache);
190         kmem_cache_destroy(se_sess_cache);
191         kmem_cache_destroy(se_ua_cache);
192         kmem_cache_destroy(t10_pr_reg_cache);
193         kmem_cache_destroy(t10_alua_lu_gp_cache);
194         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
195         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
196         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
197 }
198
199 /* This code ensures unique mib indexes are handed out. */
200 static DEFINE_SPINLOCK(scsi_mib_index_lock);
201 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
202
203 /*
204  * Allocate a new row index for the entry type specified
205  */
206 u32 scsi_get_new_index(scsi_index_t type)
207 {
208         u32 new_index;
209
210         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
211
212         spin_lock(&scsi_mib_index_lock);
213         new_index = ++scsi_mib_index[type];
214         spin_unlock(&scsi_mib_index_lock);
215
216         return new_index;
217 }
218
219 void transport_init_queue_obj(struct se_queue_obj *qobj)
220 {
221         atomic_set(&qobj->queue_cnt, 0);
222         INIT_LIST_HEAD(&qobj->qobj_list);
223         init_waitqueue_head(&qobj->thread_wq);
224         spin_lock_init(&qobj->cmd_queue_lock);
225 }
226 EXPORT_SYMBOL(transport_init_queue_obj);
227
228 static int transport_subsystem_reqmods(void)
229 {
230         int ret;
231
232         ret = request_module("target_core_iblock");
233         if (ret != 0)
234                 pr_err("Unable to load target_core_iblock\n");
235
236         ret = request_module("target_core_file");
237         if (ret != 0)
238                 pr_err("Unable to load target_core_file\n");
239
240         ret = request_module("target_core_pscsi");
241         if (ret != 0)
242                 pr_err("Unable to load target_core_pscsi\n");
243
244         ret = request_module("target_core_stgt");
245         if (ret != 0)
246                 pr_err("Unable to load target_core_stgt\n");
247
248         return 0;
249 }
250
251 int transport_subsystem_check_init(void)
252 {
253         int ret;
254
255         if (sub_api_initialized)
256                 return 0;
257         /*
258          * Request the loading of known TCM subsystem plugins..
259          */
260         ret = transport_subsystem_reqmods();
261         if (ret < 0)
262                 return ret;
263
264         sub_api_initialized = 1;
265         return 0;
266 }
267
268 struct se_session *transport_init_session(void)
269 {
270         struct se_session *se_sess;
271
272         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
273         if (!se_sess) {
274                 pr_err("Unable to allocate struct se_session from"
275                                 " se_sess_cache\n");
276                 return ERR_PTR(-ENOMEM);
277         }
278         INIT_LIST_HEAD(&se_sess->sess_list);
279         INIT_LIST_HEAD(&se_sess->sess_acl_list);
280
281         return se_sess;
282 }
283 EXPORT_SYMBOL(transport_init_session);
284
285 /*
286  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
287  */
288 void __transport_register_session(
289         struct se_portal_group *se_tpg,
290         struct se_node_acl *se_nacl,
291         struct se_session *se_sess,
292         void *fabric_sess_ptr)
293 {
294         unsigned char buf[PR_REG_ISID_LEN];
295
296         se_sess->se_tpg = se_tpg;
297         se_sess->fabric_sess_ptr = fabric_sess_ptr;
298         /*
299          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
300          *
301          * Only set for struct se_session's that will actually be moving I/O.
302          * eg: *NOT* discovery sessions.
303          */
304         if (se_nacl) {
305                 /*
306                  * If the fabric module supports an ISID based TransportID,
307                  * save this value in binary from the fabric I_T Nexus now.
308                  */
309                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
310                         memset(&buf[0], 0, PR_REG_ISID_LEN);
311                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
312                                         &buf[0], PR_REG_ISID_LEN);
313                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
314                 }
315                 spin_lock_irq(&se_nacl->nacl_sess_lock);
316                 /*
317                  * The se_nacl->nacl_sess pointer will be set to the
318                  * last active I_T Nexus for each struct se_node_acl.
319                  */
320                 se_nacl->nacl_sess = se_sess;
321
322                 list_add_tail(&se_sess->sess_acl_list,
323                               &se_nacl->acl_sess_list);
324                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
325         }
326         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
327
328         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
329                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
330 }
331 EXPORT_SYMBOL(__transport_register_session);
332
333 void transport_register_session(
334         struct se_portal_group *se_tpg,
335         struct se_node_acl *se_nacl,
336         struct se_session *se_sess,
337         void *fabric_sess_ptr)
338 {
339         spin_lock_bh(&se_tpg->session_lock);
340         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
341         spin_unlock_bh(&se_tpg->session_lock);
342 }
343 EXPORT_SYMBOL(transport_register_session);
344
345 void transport_deregister_session_configfs(struct se_session *se_sess)
346 {
347         struct se_node_acl *se_nacl;
348         unsigned long flags;
349         /*
350          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
351          */
352         se_nacl = se_sess->se_node_acl;
353         if (se_nacl) {
354                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
355                 list_del(&se_sess->sess_acl_list);
356                 /*
357                  * If the session list is empty, then clear the pointer.
358                  * Otherwise, set the struct se_session pointer from the tail
359                  * element of the per struct se_node_acl active session list.
360                  */
361                 if (list_empty(&se_nacl->acl_sess_list))
362                         se_nacl->nacl_sess = NULL;
363                 else {
364                         se_nacl->nacl_sess = container_of(
365                                         se_nacl->acl_sess_list.prev,
366                                         struct se_session, sess_acl_list);
367                 }
368                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
369         }
370 }
371 EXPORT_SYMBOL(transport_deregister_session_configfs);
372
373 void transport_free_session(struct se_session *se_sess)
374 {
375         kmem_cache_free(se_sess_cache, se_sess);
376 }
377 EXPORT_SYMBOL(transport_free_session);
378
379 void transport_deregister_session(struct se_session *se_sess)
380 {
381         struct se_portal_group *se_tpg = se_sess->se_tpg;
382         struct se_node_acl *se_nacl;
383         unsigned long flags;
384
385         if (!se_tpg) {
386                 transport_free_session(se_sess);
387                 return;
388         }
389
390         spin_lock_irqsave(&se_tpg->session_lock, flags);
391         list_del(&se_sess->sess_list);
392         se_sess->se_tpg = NULL;
393         se_sess->fabric_sess_ptr = NULL;
394         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
395
396         /*
397          * Determine if we need to do extra work for this initiator node's
398          * struct se_node_acl if it had been previously dynamically generated.
399          */
400         se_nacl = se_sess->se_node_acl;
401         if (se_nacl) {
402                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
403                 if (se_nacl->dynamic_node_acl) {
404                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
405                                         se_tpg)) {
406                                 list_del(&se_nacl->acl_list);
407                                 se_tpg->num_node_acls--;
408                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
409
410                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
411                                 core_free_device_list_for_node(se_nacl, se_tpg);
412                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
413                                                 se_nacl);
414                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
415                         }
416                 }
417                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
418         }
419
420         transport_free_session(se_sess);
421
422         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
423                 se_tpg->se_tpg_tfo->get_fabric_name());
424 }
425 EXPORT_SYMBOL(transport_deregister_session);
426
427 /*
428  * Called with cmd->t_state_lock held.
429  */
430 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
431 {
432         struct se_device *dev = cmd->se_dev;
433         struct se_task *task;
434         unsigned long flags;
435
436         if (!dev)
437                 return;
438
439         list_for_each_entry(task, &cmd->t_task_list, t_list) {
440                 if (task->task_flags & TF_ACTIVE)
441                         continue;
442
443                 if (!atomic_read(&task->task_state_active))
444                         continue;
445
446                 spin_lock_irqsave(&dev->execute_task_lock, flags);
447                 list_del(&task->t_state_list);
448                 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
449                         cmd->se_tfo->get_task_tag(cmd), dev, task);
450                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
451
452                 atomic_set(&task->task_state_active, 0);
453                 atomic_dec(&cmd->t_task_cdbs_ex_left);
454         }
455 }
456
457 /*      transport_cmd_check_stop():
458  *
459  *      'transport_off = 1' determines if t_transport_active should be cleared.
460  *      'transport_off = 2' determines if task_dev_state should be removed.
461  *
462  *      A non-zero u8 t_state sets cmd->t_state.
463  *      Returns 1 when command is stopped, else 0.
464  */
465 static int transport_cmd_check_stop(
466         struct se_cmd *cmd,
467         int transport_off,
468         u8 t_state)
469 {
470         unsigned long flags;
471
472         spin_lock_irqsave(&cmd->t_state_lock, flags);
473         /*
474          * Determine if IOCTL context caller in requesting the stopping of this
475          * command for LUN shutdown purposes.
476          */
477         if (atomic_read(&cmd->transport_lun_stop)) {
478                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
479                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
480                         cmd->se_tfo->get_task_tag(cmd));
481
482                 cmd->deferred_t_state = cmd->t_state;
483                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
484                 atomic_set(&cmd->t_transport_active, 0);
485                 if (transport_off == 2)
486                         transport_all_task_dev_remove_state(cmd);
487                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
488
489                 complete(&cmd->transport_lun_stop_comp);
490                 return 1;
491         }
492         /*
493          * Determine if frontend context caller is requesting the stopping of
494          * this command for frontend exceptions.
495          */
496         if (atomic_read(&cmd->t_transport_stop)) {
497                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
498                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
499                         cmd->se_tfo->get_task_tag(cmd));
500
501                 cmd->deferred_t_state = cmd->t_state;
502                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
503                 if (transport_off == 2)
504                         transport_all_task_dev_remove_state(cmd);
505
506                 /*
507                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
508                  * to FE.
509                  */
510                 if (transport_off == 2)
511                         cmd->se_lun = NULL;
512                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
513
514                 complete(&cmd->t_transport_stop_comp);
515                 return 1;
516         }
517         if (transport_off) {
518                 atomic_set(&cmd->t_transport_active, 0);
519                 if (transport_off == 2) {
520                         transport_all_task_dev_remove_state(cmd);
521                         /*
522                          * Clear struct se_cmd->se_lun before the transport_off == 2
523                          * handoff to fabric module.
524                          */
525                         cmd->se_lun = NULL;
526                         /*
527                          * Some fabric modules like tcm_loop can release
528                          * their internally allocated I/O reference now and
529                          * struct se_cmd now.
530                          */
531                         if (cmd->se_tfo->check_stop_free != NULL) {
532                                 spin_unlock_irqrestore(
533                                         &cmd->t_state_lock, flags);
534
535                                 cmd->se_tfo->check_stop_free(cmd);
536                                 return 1;
537                         }
538                 }
539                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
540
541                 return 0;
542         } else if (t_state)
543                 cmd->t_state = t_state;
544         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545
546         return 0;
547 }
548
549 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
550 {
551         return transport_cmd_check_stop(cmd, 2, 0);
552 }
553
554 static void transport_lun_remove_cmd(struct se_cmd *cmd)
555 {
556         struct se_lun *lun = cmd->se_lun;
557         unsigned long flags;
558
559         if (!lun)
560                 return;
561
562         spin_lock_irqsave(&cmd->t_state_lock, flags);
563         if (!atomic_read(&cmd->transport_dev_active)) {
564                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
565                 goto check_lun;
566         }
567         atomic_set(&cmd->transport_dev_active, 0);
568         transport_all_task_dev_remove_state(cmd);
569         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
570
571
572 check_lun:
573         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
574         if (atomic_read(&cmd->transport_lun_active)) {
575                 list_del(&cmd->se_lun_node);
576                 atomic_set(&cmd->transport_lun_active, 0);
577 #if 0
578                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
579                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
580 #endif
581         }
582         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
583 }
584
585 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
586 {
587         if (!cmd->se_tmr_req)
588                 transport_lun_remove_cmd(cmd);
589
590         if (transport_cmd_check_stop_to_fabric(cmd))
591                 return;
592         if (remove) {
593                 transport_remove_cmd_from_queue(cmd);
594                 transport_put_cmd(cmd);
595         }
596 }
597
598 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
599                 bool at_head)
600 {
601         struct se_device *dev = cmd->se_dev;
602         struct se_queue_obj *qobj = &dev->dev_queue_obj;
603         unsigned long flags;
604
605         if (t_state) {
606                 spin_lock_irqsave(&cmd->t_state_lock, flags);
607                 cmd->t_state = t_state;
608                 atomic_set(&cmd->t_transport_active, 1);
609                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
610         }
611
612         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
613
614         /* If the cmd is already on the list, remove it before we add it */
615         if (!list_empty(&cmd->se_queue_node))
616                 list_del(&cmd->se_queue_node);
617         else
618                 atomic_inc(&qobj->queue_cnt);
619
620         if (at_head)
621                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
622         else
623                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
624         atomic_set(&cmd->t_transport_queue_active, 1);
625         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
626
627         wake_up_interruptible(&qobj->thread_wq);
628 }
629
630 static struct se_cmd *
631 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
632 {
633         struct se_cmd *cmd;
634         unsigned long flags;
635
636         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
637         if (list_empty(&qobj->qobj_list)) {
638                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
639                 return NULL;
640         }
641         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
642
643         atomic_set(&cmd->t_transport_queue_active, 0);
644
645         list_del_init(&cmd->se_queue_node);
646         atomic_dec(&qobj->queue_cnt);
647         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
648
649         return cmd;
650 }
651
652 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
653 {
654         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
655         unsigned long flags;
656
657         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
658         if (!atomic_read(&cmd->t_transport_queue_active)) {
659                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
660                 return;
661         }
662         atomic_set(&cmd->t_transport_queue_active, 0);
663         atomic_dec(&qobj->queue_cnt);
664         list_del_init(&cmd->se_queue_node);
665         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
666
667         if (atomic_read(&cmd->t_transport_queue_active)) {
668                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
669                         cmd->se_tfo->get_task_tag(cmd),
670                         atomic_read(&cmd->t_transport_queue_active));
671         }
672 }
673
674 /*
675  * Completion function used by TCM subsystem plugins (such as FILEIO)
676  * for queueing up response from struct se_subsystem_api->do_task()
677  */
678 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
679 {
680         struct se_task *task = list_entry(cmd->t_task_list.next,
681                                 struct se_task, t_list);
682
683         if (good) {
684                 cmd->scsi_status = SAM_STAT_GOOD;
685                 task->task_scsi_status = GOOD;
686         } else {
687                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
688                 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
689                 task->task_se_cmd->transport_error_status =
690                                         PYX_TRANSPORT_ILLEGAL_REQUEST;
691         }
692
693         transport_complete_task(task, good);
694 }
695 EXPORT_SYMBOL(transport_complete_sync_cache);
696
697 /*      transport_complete_task():
698  *
699  *      Called from interrupt and non interrupt context depending
700  *      on the transport plugin.
701  */
702 void transport_complete_task(struct se_task *task, int success)
703 {
704         struct se_cmd *cmd = task->task_se_cmd;
705         struct se_device *dev = cmd->se_dev;
706         int t_state;
707         unsigned long flags;
708 #if 0
709         pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
710                         cmd->t_task_cdb[0], dev);
711 #endif
712         if (dev)
713                 atomic_inc(&dev->depth_left);
714
715         spin_lock_irqsave(&cmd->t_state_lock, flags);
716         task->task_flags &= ~TF_ACTIVE;
717
718         /*
719          * See if any sense data exists, if so set the TASK_SENSE flag.
720          * Also check for any other post completion work that needs to be
721          * done by the plugins.
722          */
723         if (dev && dev->transport->transport_complete) {
724                 if (dev->transport->transport_complete(task) != 0) {
725                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
726                         task->task_sense = 1;
727                         success = 1;
728                 }
729         }
730
731         /*
732          * See if we are waiting for outstanding struct se_task
733          * to complete for an exception condition
734          */
735         if (task->task_flags & TF_REQUEST_STOP) {
736                 /*
737                  * Decrement cmd->t_se_count if this task had
738                  * previously thrown its timeout exception handler.
739                  */
740                 if (task->task_flags & TF_TIMEOUT) {
741                         atomic_dec(&cmd->t_se_count);
742                         task->task_flags &= ~TF_TIMEOUT;
743                 }
744                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
745
746                 complete(&task->task_stop_comp);
747                 return;
748         }
749         /*
750          * If the task's timeout handler has fired, use the t_task_cdbs_timeout
751          * left counter to determine when the struct se_cmd is ready to be queued to
752          * the processing thread.
753          */
754         if (task->task_flags & TF_TIMEOUT) {
755                 if (!atomic_dec_and_test(
756                                 &cmd->t_task_cdbs_timeout_left)) {
757                         spin_unlock_irqrestore(&cmd->t_state_lock,
758                                 flags);
759                         return;
760                 }
761                 t_state = TRANSPORT_COMPLETE_TIMEOUT;
762                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
763
764                 transport_add_cmd_to_queue(cmd, t_state, false);
765                 return;
766         }
767         atomic_dec(&cmd->t_task_cdbs_timeout_left);
768
769         /*
770          * Decrement the outstanding t_task_cdbs_left count.  The last
771          * struct se_task from struct se_cmd will complete itself into the
772          * device queue depending upon int success.
773          */
774         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
775                 if (!success)
776                         cmd->t_tasks_failed = 1;
777
778                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
779                 return;
780         }
781
782         if (!success || cmd->t_tasks_failed) {
783                 t_state = TRANSPORT_COMPLETE_FAILURE;
784                 if (!task->task_error_status) {
785                         task->task_error_status =
786                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
787                         cmd->transport_error_status =
788                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
789                 }
790         } else {
791                 atomic_set(&cmd->t_transport_complete, 1);
792                 t_state = TRANSPORT_COMPLETE_OK;
793         }
794         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
795
796         transport_add_cmd_to_queue(cmd, t_state, false);
797 }
798 EXPORT_SYMBOL(transport_complete_task);
799
800 /*
801  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
802  * struct se_task list are ready to be added to the active execution list
803  * struct se_device
804
805  * Called with se_dev_t->execute_task_lock called.
806  */
807 static inline int transport_add_task_check_sam_attr(
808         struct se_task *task,
809         struct se_task *task_prev,
810         struct se_device *dev)
811 {
812         /*
813          * No SAM Task attribute emulation enabled, add to tail of
814          * execution queue
815          */
816         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
817                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
818                 return 0;
819         }
820         /*
821          * HEAD_OF_QUEUE attribute for received CDB, which means
822          * the first task that is associated with a struct se_cmd goes to
823          * head of the struct se_device->execute_task_list, and task_prev
824          * after that for each subsequent task
825          */
826         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
827                 list_add(&task->t_execute_list,
828                                 (task_prev != NULL) ?
829                                 &task_prev->t_execute_list :
830                                 &dev->execute_task_list);
831
832                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
833                                 " in execution queue\n",
834                                 task->task_se_cmd->t_task_cdb[0]);
835                 return 1;
836         }
837         /*
838          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
839          * transitioned from Dermant -> Active state, and are added to the end
840          * of the struct se_device->execute_task_list
841          */
842         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
843         return 0;
844 }
845
846 /*      __transport_add_task_to_execute_queue():
847  *
848  *      Called with se_dev_t->execute_task_lock called.
849  */
850 static void __transport_add_task_to_execute_queue(
851         struct se_task *task,
852         struct se_task *task_prev,
853         struct se_device *dev)
854 {
855         int head_of_queue;
856
857         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
858         atomic_inc(&dev->execute_tasks);
859
860         if (atomic_read(&task->task_state_active))
861                 return;
862         /*
863          * Determine if this task needs to go to HEAD_OF_QUEUE for the
864          * state list as well.  Running with SAM Task Attribute emulation
865          * will always return head_of_queue == 0 here
866          */
867         if (head_of_queue)
868                 list_add(&task->t_state_list, (task_prev) ?
869                                 &task_prev->t_state_list :
870                                 &dev->state_task_list);
871         else
872                 list_add_tail(&task->t_state_list, &dev->state_task_list);
873
874         atomic_set(&task->task_state_active, 1);
875
876         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
877                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
878                 task, dev);
879 }
880
881 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
882 {
883         struct se_device *dev = cmd->se_dev;
884         struct se_task *task;
885         unsigned long flags;
886
887         spin_lock_irqsave(&cmd->t_state_lock, flags);
888         list_for_each_entry(task, &cmd->t_task_list, t_list) {
889                 if (atomic_read(&task->task_state_active))
890                         continue;
891
892                 spin_lock(&dev->execute_task_lock);
893                 list_add_tail(&task->t_state_list, &dev->state_task_list);
894                 atomic_set(&task->task_state_active, 1);
895
896                 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
897                         task->task_se_cmd->se_tfo->get_task_tag(
898                         task->task_se_cmd), task, dev);
899
900                 spin_unlock(&dev->execute_task_lock);
901         }
902         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
903 }
904
905 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
906 {
907         struct se_device *dev = cmd->se_dev;
908         struct se_task *task, *task_prev = NULL;
909         unsigned long flags;
910
911         spin_lock_irqsave(&dev->execute_task_lock, flags);
912         list_for_each_entry(task, &cmd->t_task_list, t_list) {
913                 if (!list_empty(&task->t_execute_list))
914                         continue;
915                 /*
916                  * __transport_add_task_to_execute_queue() handles the
917                  * SAM Task Attribute emulation if enabled
918                  */
919                 __transport_add_task_to_execute_queue(task, task_prev, dev);
920                 task_prev = task;
921         }
922         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
923 }
924
925 void __transport_remove_task_from_execute_queue(struct se_task *task,
926                 struct se_device *dev)
927 {
928         list_del_init(&task->t_execute_list);
929         atomic_dec(&dev->execute_tasks);
930 }
931
932 void transport_remove_task_from_execute_queue(
933         struct se_task *task,
934         struct se_device *dev)
935 {
936         unsigned long flags;
937
938         if (WARN_ON(list_empty(&task->t_execute_list)))
939                 return;
940
941         spin_lock_irqsave(&dev->execute_task_lock, flags);
942         __transport_remove_task_from_execute_queue(task, dev);
943         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
944 }
945
946 /*
947  * Handle QUEUE_FULL / -EAGAIN status
948  */
949
950 static void target_qf_do_work(struct work_struct *work)
951 {
952         struct se_device *dev = container_of(work, struct se_device,
953                                         qf_work_queue);
954         LIST_HEAD(qf_cmd_list);
955         struct se_cmd *cmd, *cmd_tmp;
956
957         spin_lock_irq(&dev->qf_cmd_lock);
958         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
959         spin_unlock_irq(&dev->qf_cmd_lock);
960
961         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
962                 list_del(&cmd->se_qf_node);
963                 atomic_dec(&dev->dev_qf_count);
964                 smp_mb__after_atomic_dec();
965
966                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
967                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
968                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
969                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
970                         : "UNKNOWN");
971
972                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
973         }
974 }
975
976 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
977 {
978         switch (cmd->data_direction) {
979         case DMA_NONE:
980                 return "NONE";
981         case DMA_FROM_DEVICE:
982                 return "READ";
983         case DMA_TO_DEVICE:
984                 return "WRITE";
985         case DMA_BIDIRECTIONAL:
986                 return "BIDI";
987         default:
988                 break;
989         }
990
991         return "UNKNOWN";
992 }
993
994 void transport_dump_dev_state(
995         struct se_device *dev,
996         char *b,
997         int *bl)
998 {
999         *bl += sprintf(b + *bl, "Status: ");
1000         switch (dev->dev_status) {
1001         case TRANSPORT_DEVICE_ACTIVATED:
1002                 *bl += sprintf(b + *bl, "ACTIVATED");
1003                 break;
1004         case TRANSPORT_DEVICE_DEACTIVATED:
1005                 *bl += sprintf(b + *bl, "DEACTIVATED");
1006                 break;
1007         case TRANSPORT_DEVICE_SHUTDOWN:
1008                 *bl += sprintf(b + *bl, "SHUTDOWN");
1009                 break;
1010         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1011         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1012                 *bl += sprintf(b + *bl, "OFFLINE");
1013                 break;
1014         default:
1015                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1016                 break;
1017         }
1018
1019         *bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
1020                 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1021                 dev->queue_depth);
1022         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
1023                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1024         *bl += sprintf(b + *bl, "        ");
1025 }
1026
1027 void transport_dump_vpd_proto_id(
1028         struct t10_vpd *vpd,
1029         unsigned char *p_buf,
1030         int p_buf_len)
1031 {
1032         unsigned char buf[VPD_TMP_BUF_SIZE];
1033         int len;
1034
1035         memset(buf, 0, VPD_TMP_BUF_SIZE);
1036         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1037
1038         switch (vpd->protocol_identifier) {
1039         case 0x00:
1040                 sprintf(buf+len, "Fibre Channel\n");
1041                 break;
1042         case 0x10:
1043                 sprintf(buf+len, "Parallel SCSI\n");
1044                 break;
1045         case 0x20:
1046                 sprintf(buf+len, "SSA\n");
1047                 break;
1048         case 0x30:
1049                 sprintf(buf+len, "IEEE 1394\n");
1050                 break;
1051         case 0x40:
1052                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1053                                 " Protocol\n");
1054                 break;
1055         case 0x50:
1056                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1057                 break;
1058         case 0x60:
1059                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1060                 break;
1061         case 0x70:
1062                 sprintf(buf+len, "Automation/Drive Interface Transport"
1063                                 " Protocol\n");
1064                 break;
1065         case 0x80:
1066                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1067                 break;
1068         default:
1069                 sprintf(buf+len, "Unknown 0x%02x\n",
1070                                 vpd->protocol_identifier);
1071                 break;
1072         }
1073
1074         if (p_buf)
1075                 strncpy(p_buf, buf, p_buf_len);
1076         else
1077                 pr_debug("%s", buf);
1078 }
1079
1080 void
1081 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1082 {
1083         /*
1084          * Check if the Protocol Identifier Valid (PIV) bit is set..
1085          *
1086          * from spc3r23.pdf section 7.5.1
1087          */
1088          if (page_83[1] & 0x80) {
1089                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1090                 vpd->protocol_identifier_set = 1;
1091                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1092         }
1093 }
1094 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1095
1096 int transport_dump_vpd_assoc(
1097         struct t10_vpd *vpd,
1098         unsigned char *p_buf,
1099         int p_buf_len)
1100 {
1101         unsigned char buf[VPD_TMP_BUF_SIZE];
1102         int ret = 0;
1103         int len;
1104
1105         memset(buf, 0, VPD_TMP_BUF_SIZE);
1106         len = sprintf(buf, "T10 VPD Identifier Association: ");
1107
1108         switch (vpd->association) {
1109         case 0x00:
1110                 sprintf(buf+len, "addressed logical unit\n");
1111                 break;
1112         case 0x10:
1113                 sprintf(buf+len, "target port\n");
1114                 break;
1115         case 0x20:
1116                 sprintf(buf+len, "SCSI target device\n");
1117                 break;
1118         default:
1119                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1120                 ret = -EINVAL;
1121                 break;
1122         }
1123
1124         if (p_buf)
1125                 strncpy(p_buf, buf, p_buf_len);
1126         else
1127                 pr_debug("%s", buf);
1128
1129         return ret;
1130 }
1131
1132 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1133 {
1134         /*
1135          * The VPD identification association..
1136          *
1137          * from spc3r23.pdf Section 7.6.3.1 Table 297
1138          */
1139         vpd->association = (page_83[1] & 0x30);
1140         return transport_dump_vpd_assoc(vpd, NULL, 0);
1141 }
1142 EXPORT_SYMBOL(transport_set_vpd_assoc);
1143
1144 int transport_dump_vpd_ident_type(
1145         struct t10_vpd *vpd,
1146         unsigned char *p_buf,
1147         int p_buf_len)
1148 {
1149         unsigned char buf[VPD_TMP_BUF_SIZE];
1150         int ret = 0;
1151         int len;
1152
1153         memset(buf, 0, VPD_TMP_BUF_SIZE);
1154         len = sprintf(buf, "T10 VPD Identifier Type: ");
1155
1156         switch (vpd->device_identifier_type) {
1157         case 0x00:
1158                 sprintf(buf+len, "Vendor specific\n");
1159                 break;
1160         case 0x01:
1161                 sprintf(buf+len, "T10 Vendor ID based\n");
1162                 break;
1163         case 0x02:
1164                 sprintf(buf+len, "EUI-64 based\n");
1165                 break;
1166         case 0x03:
1167                 sprintf(buf+len, "NAA\n");
1168                 break;
1169         case 0x04:
1170                 sprintf(buf+len, "Relative target port identifier\n");
1171                 break;
1172         case 0x08:
1173                 sprintf(buf+len, "SCSI name string\n");
1174                 break;
1175         default:
1176                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1177                                 vpd->device_identifier_type);
1178                 ret = -EINVAL;
1179                 break;
1180         }
1181
1182         if (p_buf) {
1183                 if (p_buf_len < strlen(buf)+1)
1184                         return -EINVAL;
1185                 strncpy(p_buf, buf, p_buf_len);
1186         } else {
1187                 pr_debug("%s", buf);
1188         }
1189
1190         return ret;
1191 }
1192
1193 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1194 {
1195         /*
1196          * The VPD identifier type..
1197          *
1198          * from spc3r23.pdf Section 7.6.3.1 Table 298
1199          */
1200         vpd->device_identifier_type = (page_83[1] & 0x0f);
1201         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1202 }
1203 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1204
1205 int transport_dump_vpd_ident(
1206         struct t10_vpd *vpd,
1207         unsigned char *p_buf,
1208         int p_buf_len)
1209 {
1210         unsigned char buf[VPD_TMP_BUF_SIZE];
1211         int ret = 0;
1212
1213         memset(buf, 0, VPD_TMP_BUF_SIZE);
1214
1215         switch (vpd->device_identifier_code_set) {
1216         case 0x01: /* Binary */
1217                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1218                         &vpd->device_identifier[0]);
1219                 break;
1220         case 0x02: /* ASCII */
1221                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1222                         &vpd->device_identifier[0]);
1223                 break;
1224         case 0x03: /* UTF-8 */
1225                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1226                         &vpd->device_identifier[0]);
1227                 break;
1228         default:
1229                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1230                         " 0x%02x", vpd->device_identifier_code_set);
1231                 ret = -EINVAL;
1232                 break;
1233         }
1234
1235         if (p_buf)
1236                 strncpy(p_buf, buf, p_buf_len);
1237         else
1238                 pr_debug("%s", buf);
1239
1240         return ret;
1241 }
1242
1243 int
1244 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1245 {
1246         static const char hex_str[] = "0123456789abcdef";
1247         int j = 0, i = 4; /* offset to start of the identifer */
1248
1249         /*
1250          * The VPD Code Set (encoding)
1251          *
1252          * from spc3r23.pdf Section 7.6.3.1 Table 296
1253          */
1254         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1255         switch (vpd->device_identifier_code_set) {
1256         case 0x01: /* Binary */
1257                 vpd->device_identifier[j++] =
1258                                 hex_str[vpd->device_identifier_type];
1259                 while (i < (4 + page_83[3])) {
1260                         vpd->device_identifier[j++] =
1261                                 hex_str[(page_83[i] & 0xf0) >> 4];
1262                         vpd->device_identifier[j++] =
1263                                 hex_str[page_83[i] & 0x0f];
1264                         i++;
1265                 }
1266                 break;
1267         case 0x02: /* ASCII */
1268         case 0x03: /* UTF-8 */
1269                 while (i < (4 + page_83[3]))
1270                         vpd->device_identifier[j++] = page_83[i++];
1271                 break;
1272         default:
1273                 break;
1274         }
1275
1276         return transport_dump_vpd_ident(vpd, NULL, 0);
1277 }
1278 EXPORT_SYMBOL(transport_set_vpd_ident);
1279
1280 static void core_setup_task_attr_emulation(struct se_device *dev)
1281 {
1282         /*
1283          * If this device is from Target_Core_Mod/pSCSI, disable the
1284          * SAM Task Attribute emulation.
1285          *
1286          * This is currently not available in upsream Linux/SCSI Target
1287          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1288          */
1289         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1290                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1291                 return;
1292         }
1293
1294         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1295         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1296                 " device\n", dev->transport->name,
1297                 dev->transport->get_device_rev(dev));
1298 }
1299
1300 static void scsi_dump_inquiry(struct se_device *dev)
1301 {
1302         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1303         int i, device_type;
1304         /*
1305          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1306          */
1307         pr_debug("  Vendor: ");
1308         for (i = 0; i < 8; i++)
1309                 if (wwn->vendor[i] >= 0x20)
1310                         pr_debug("%c", wwn->vendor[i]);
1311                 else
1312                         pr_debug(" ");
1313
1314         pr_debug("  Model: ");
1315         for (i = 0; i < 16; i++)
1316                 if (wwn->model[i] >= 0x20)
1317                         pr_debug("%c", wwn->model[i]);
1318                 else
1319                         pr_debug(" ");
1320
1321         pr_debug("  Revision: ");
1322         for (i = 0; i < 4; i++)
1323                 if (wwn->revision[i] >= 0x20)
1324                         pr_debug("%c", wwn->revision[i]);
1325                 else
1326                         pr_debug(" ");
1327
1328         pr_debug("\n");
1329
1330         device_type = dev->transport->get_device_type(dev);
1331         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1332         pr_debug("                 ANSI SCSI revision: %02x\n",
1333                                 dev->transport->get_device_rev(dev));
1334 }
1335
1336 struct se_device *transport_add_device_to_core_hba(
1337         struct se_hba *hba,
1338         struct se_subsystem_api *transport,
1339         struct se_subsystem_dev *se_dev,
1340         u32 device_flags,
1341         void *transport_dev,
1342         struct se_dev_limits *dev_limits,
1343         const char *inquiry_prod,
1344         const char *inquiry_rev)
1345 {
1346         int force_pt;
1347         struct se_device  *dev;
1348
1349         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1350         if (!dev) {
1351                 pr_err("Unable to allocate memory for se_dev_t\n");
1352                 return NULL;
1353         }
1354
1355         transport_init_queue_obj(&dev->dev_queue_obj);
1356         dev->dev_flags          = device_flags;
1357         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1358         dev->dev_ptr            = transport_dev;
1359         dev->se_hba             = hba;
1360         dev->se_sub_dev         = se_dev;
1361         dev->transport          = transport;
1362         atomic_set(&dev->active_cmds, 0);
1363         INIT_LIST_HEAD(&dev->dev_list);
1364         INIT_LIST_HEAD(&dev->dev_sep_list);
1365         INIT_LIST_HEAD(&dev->dev_tmr_list);
1366         INIT_LIST_HEAD(&dev->execute_task_list);
1367         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1368         INIT_LIST_HEAD(&dev->ordered_cmd_list);
1369         INIT_LIST_HEAD(&dev->state_task_list);
1370         INIT_LIST_HEAD(&dev->qf_cmd_list);
1371         spin_lock_init(&dev->execute_task_lock);
1372         spin_lock_init(&dev->delayed_cmd_lock);
1373         spin_lock_init(&dev->ordered_cmd_lock);
1374         spin_lock_init(&dev->state_task_lock);
1375         spin_lock_init(&dev->dev_alua_lock);
1376         spin_lock_init(&dev->dev_reservation_lock);
1377         spin_lock_init(&dev->dev_status_lock);
1378         spin_lock_init(&dev->dev_status_thr_lock);
1379         spin_lock_init(&dev->se_port_lock);
1380         spin_lock_init(&dev->se_tmr_lock);
1381         spin_lock_init(&dev->qf_cmd_lock);
1382
1383         dev->queue_depth        = dev_limits->queue_depth;
1384         atomic_set(&dev->depth_left, dev->queue_depth);
1385         atomic_set(&dev->dev_ordered_id, 0);
1386
1387         se_dev_set_default_attribs(dev, dev_limits);
1388
1389         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1390         dev->creation_time = get_jiffies_64();
1391         spin_lock_init(&dev->stats_lock);
1392
1393         spin_lock(&hba->device_lock);
1394         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1395         hba->dev_count++;
1396         spin_unlock(&hba->device_lock);
1397         /*
1398          * Setup the SAM Task Attribute emulation for struct se_device
1399          */
1400         core_setup_task_attr_emulation(dev);
1401         /*
1402          * Force PR and ALUA passthrough emulation with internal object use.
1403          */
1404         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1405         /*
1406          * Setup the Reservations infrastructure for struct se_device
1407          */
1408         core_setup_reservations(dev, force_pt);
1409         /*
1410          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1411          */
1412         if (core_setup_alua(dev, force_pt) < 0)
1413                 goto out;
1414
1415         /*
1416          * Startup the struct se_device processing thread
1417          */
1418         dev->process_thread = kthread_run(transport_processing_thread, dev,
1419                                           "LIO_%s", dev->transport->name);
1420         if (IS_ERR(dev->process_thread)) {
1421                 pr_err("Unable to create kthread: LIO_%s\n",
1422                         dev->transport->name);
1423                 goto out;
1424         }
1425         /*
1426          * Setup work_queue for QUEUE_FULL
1427          */
1428         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1429         /*
1430          * Preload the initial INQUIRY const values if we are doing
1431          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1432          * passthrough because this is being provided by the backend LLD.
1433          * This is required so that transport_get_inquiry() copies these
1434          * originals once back into DEV_T10_WWN(dev) for the virtual device
1435          * setup.
1436          */
1437         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1438                 if (!inquiry_prod || !inquiry_rev) {
1439                         pr_err("All non TCM/pSCSI plugins require"
1440                                 " INQUIRY consts\n");
1441                         goto out;
1442                 }
1443
1444                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1445                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1446                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1447         }
1448         scsi_dump_inquiry(dev);
1449
1450         return dev;
1451 out:
1452         kthread_stop(dev->process_thread);
1453
1454         spin_lock(&hba->device_lock);
1455         list_del(&dev->dev_list);
1456         hba->dev_count--;
1457         spin_unlock(&hba->device_lock);
1458
1459         se_release_vpd_for_dev(dev);
1460
1461         kfree(dev);
1462
1463         return NULL;
1464 }
1465 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1466
1467 /*      transport_generic_prepare_cdb():
1468  *
1469  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1470  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1471  *      The point of this is since we are mapping iSCSI LUNs to
1472  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1473  *      devices and HBAs for a loop.
1474  */
1475 static inline void transport_generic_prepare_cdb(
1476         unsigned char *cdb)
1477 {
1478         switch (cdb[0]) {
1479         case READ_10: /* SBC - RDProtect */
1480         case READ_12: /* SBC - RDProtect */
1481         case READ_16: /* SBC - RDProtect */
1482         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1483         case VERIFY: /* SBC - VRProtect */
1484         case VERIFY_16: /* SBC - VRProtect */
1485         case WRITE_VERIFY: /* SBC - VRProtect */
1486         case WRITE_VERIFY_12: /* SBC - VRProtect */
1487                 break;
1488         default:
1489                 cdb[1] &= 0x1f; /* clear logical unit number */
1490                 break;
1491         }
1492 }
1493
1494 static struct se_task *
1495 transport_generic_get_task(struct se_cmd *cmd,
1496                 enum dma_data_direction data_direction)
1497 {
1498         struct se_task *task;
1499         struct se_device *dev = cmd->se_dev;
1500
1501         task = dev->transport->alloc_task(cmd->t_task_cdb);
1502         if (!task) {
1503                 pr_err("Unable to allocate struct se_task\n");
1504                 return NULL;
1505         }
1506
1507         INIT_LIST_HEAD(&task->t_list);
1508         INIT_LIST_HEAD(&task->t_execute_list);
1509         INIT_LIST_HEAD(&task->t_state_list);
1510         init_completion(&task->task_stop_comp);
1511         task->task_se_cmd = cmd;
1512         task->task_data_direction = data_direction;
1513
1514         return task;
1515 }
1516
1517 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1518
1519 /*
1520  * Used by fabric modules containing a local struct se_cmd within their
1521  * fabric dependent per I/O descriptor.
1522  */
1523 void transport_init_se_cmd(
1524         struct se_cmd *cmd,
1525         struct target_core_fabric_ops *tfo,
1526         struct se_session *se_sess,
1527         u32 data_length,
1528         int data_direction,
1529         int task_attr,
1530         unsigned char *sense_buffer)
1531 {
1532         INIT_LIST_HEAD(&cmd->se_lun_node);
1533         INIT_LIST_HEAD(&cmd->se_delayed_node);
1534         INIT_LIST_HEAD(&cmd->se_ordered_node);
1535         INIT_LIST_HEAD(&cmd->se_qf_node);
1536         INIT_LIST_HEAD(&cmd->se_queue_node);
1537
1538         INIT_LIST_HEAD(&cmd->t_task_list);
1539         init_completion(&cmd->transport_lun_fe_stop_comp);
1540         init_completion(&cmd->transport_lun_stop_comp);
1541         init_completion(&cmd->t_transport_stop_comp);
1542         spin_lock_init(&cmd->t_state_lock);
1543         atomic_set(&cmd->transport_dev_active, 1);
1544
1545         cmd->se_tfo = tfo;
1546         cmd->se_sess = se_sess;
1547         cmd->data_length = data_length;
1548         cmd->data_direction = data_direction;
1549         cmd->sam_task_attr = task_attr;
1550         cmd->sense_buffer = sense_buffer;
1551 }
1552 EXPORT_SYMBOL(transport_init_se_cmd);
1553
1554 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1555 {
1556         /*
1557          * Check if SAM Task Attribute emulation is enabled for this
1558          * struct se_device storage object
1559          */
1560         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1561                 return 0;
1562
1563         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1564                 pr_debug("SAM Task Attribute ACA"
1565                         " emulation is not supported\n");
1566                 return -EINVAL;
1567         }
1568         /*
1569          * Used to determine when ORDERED commands should go from
1570          * Dormant to Active status.
1571          */
1572         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1573         smp_mb__after_atomic_inc();
1574         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1575                         cmd->se_ordered_id, cmd->sam_task_attr,
1576                         cmd->se_dev->transport->name);
1577         return 0;
1578 }
1579
1580 /*      transport_generic_allocate_tasks():
1581  *
1582  *      Called from fabric RX Thread.
1583  */
1584 int transport_generic_allocate_tasks(
1585         struct se_cmd *cmd,
1586         unsigned char *cdb)
1587 {
1588         int ret;
1589
1590         transport_generic_prepare_cdb(cdb);
1591         /*
1592          * Ensure that the received CDB is less than the max (252 + 8) bytes
1593          * for VARIABLE_LENGTH_CMD
1594          */
1595         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1596                 pr_err("Received SCSI CDB with command_size: %d that"
1597                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1598                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1599                 return -EINVAL;
1600         }
1601         /*
1602          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1603          * allocate the additional extended CDB buffer now..  Otherwise
1604          * setup the pointer from __t_task_cdb to t_task_cdb.
1605          */
1606         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1607                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1608                                                 GFP_KERNEL);
1609                 if (!cmd->t_task_cdb) {
1610                         pr_err("Unable to allocate cmd->t_task_cdb"
1611                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1612                                 scsi_command_size(cdb),
1613                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1614                         return -ENOMEM;
1615                 }
1616         } else
1617                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1618         /*
1619          * Copy the original CDB into cmd->
1620          */
1621         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1622         /*
1623          * Setup the received CDB based on SCSI defined opcodes and
1624          * perform unit attention, persistent reservations and ALUA
1625          * checks for virtual device backends.  The cmd->t_task_cdb
1626          * pointer is expected to be setup before we reach this point.
1627          */
1628         ret = transport_generic_cmd_sequencer(cmd, cdb);
1629         if (ret < 0)
1630                 return ret;
1631         /*
1632          * Check for SAM Task Attribute Emulation
1633          */
1634         if (transport_check_alloc_task_attr(cmd) < 0) {
1635                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1636                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1637                 return -EINVAL;
1638         }
1639         spin_lock(&cmd->se_lun->lun_sep_lock);
1640         if (cmd->se_lun->lun_sep)
1641                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1642         spin_unlock(&cmd->se_lun->lun_sep_lock);
1643         return 0;
1644 }
1645 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1646
1647 static void transport_generic_request_failure(struct se_cmd *,
1648                         struct se_device *, int, int);
1649 /*
1650  * Used by fabric module frontends to queue tasks directly.
1651  * Many only be used from process context only
1652  */
1653 int transport_handle_cdb_direct(
1654         struct se_cmd *cmd)
1655 {
1656         int ret;
1657
1658         if (!cmd->se_lun) {
1659                 dump_stack();
1660                 pr_err("cmd->se_lun is NULL\n");
1661                 return -EINVAL;
1662         }
1663         if (in_interrupt()) {
1664                 dump_stack();
1665                 pr_err("transport_generic_handle_cdb cannot be called"
1666                                 " from interrupt context\n");
1667                 return -EINVAL;
1668         }
1669         /*
1670          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1671          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1672          * in existing usage to ensure that outstanding descriptors are handled
1673          * correctly during shutdown via transport_wait_for_tasks()
1674          *
1675          * Also, we don't take cmd->t_state_lock here as we only expect
1676          * this to be called for initial descriptor submission.
1677          */
1678         cmd->t_state = TRANSPORT_NEW_CMD;
1679         atomic_set(&cmd->t_transport_active, 1);
1680         /*
1681          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1682          * so follow TRANSPORT_NEW_CMD processing thread context usage
1683          * and call transport_generic_request_failure() if necessary..
1684          */
1685         ret = transport_generic_new_cmd(cmd);
1686         if (ret == -EAGAIN)
1687                 return 0;
1688         else if (ret < 0) {
1689                 cmd->transport_error_status = ret;
1690                 transport_generic_request_failure(cmd, NULL, 0,
1691                                 (cmd->data_direction != DMA_TO_DEVICE));
1692         }
1693         return 0;
1694 }
1695 EXPORT_SYMBOL(transport_handle_cdb_direct);
1696
1697 /*
1698  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1699  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1700  * complete setup in TCM process context w/ TFO->new_cmd_map().
1701  */
1702 int transport_generic_handle_cdb_map(
1703         struct se_cmd *cmd)
1704 {
1705         if (!cmd->se_lun) {
1706                 dump_stack();
1707                 pr_err("cmd->se_lun is NULL\n");
1708                 return -EINVAL;
1709         }
1710
1711         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1712         return 0;
1713 }
1714 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1715
1716 /*      transport_generic_handle_data():
1717  *
1718  *
1719  */
1720 int transport_generic_handle_data(
1721         struct se_cmd *cmd)
1722 {
1723         /*
1724          * For the software fabric case, then we assume the nexus is being
1725          * failed/shutdown when signals are pending from the kthread context
1726          * caller, so we return a failure.  For the HW target mode case running
1727          * in interrupt code, the signal_pending() check is skipped.
1728          */
1729         if (!in_interrupt() && signal_pending(current))
1730                 return -EPERM;
1731         /*
1732          * If the received CDB has aleady been ABORTED by the generic
1733          * target engine, we now call transport_check_aborted_status()
1734          * to queue any delated TASK_ABORTED status for the received CDB to the
1735          * fabric module as we are expecting no further incoming DATA OUT
1736          * sequences at this point.
1737          */
1738         if (transport_check_aborted_status(cmd, 1) != 0)
1739                 return 0;
1740
1741         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1742         return 0;
1743 }
1744 EXPORT_SYMBOL(transport_generic_handle_data);
1745
1746 /*      transport_generic_handle_tmr():
1747  *
1748  *
1749  */
1750 int transport_generic_handle_tmr(
1751         struct se_cmd *cmd)
1752 {
1753         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1754         return 0;
1755 }
1756 EXPORT_SYMBOL(transport_generic_handle_tmr);
1757
1758 void transport_generic_free_cmd_intr(
1759         struct se_cmd *cmd)
1760 {
1761         transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR, false);
1762 }
1763 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1764
1765 /*
1766  * If the task is active, request it to be stopped and sleep until it
1767  * has completed.
1768  */
1769 bool target_stop_task(struct se_task *task, unsigned long *flags)
1770 {
1771         struct se_cmd *cmd = task->task_se_cmd;
1772         bool was_active = false;
1773
1774         if (task->task_flags & TF_ACTIVE) {
1775                 task->task_flags |= TF_REQUEST_STOP;
1776                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1777
1778                 pr_debug("Task %p waiting to complete\n", task);
1779                 wait_for_completion(&task->task_stop_comp);
1780                 pr_debug("Task %p stopped successfully\n", task);
1781
1782                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1783                 atomic_dec(&cmd->t_task_cdbs_left);
1784                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1785                 was_active = true;
1786         }
1787
1788         __transport_stop_task_timer(task, flags);
1789         return was_active;
1790 }
1791
1792 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1793 {
1794         struct se_task *task, *task_tmp;
1795         unsigned long flags;
1796         int ret = 0;
1797
1798         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1799                 cmd->se_tfo->get_task_tag(cmd));
1800
1801         /*
1802          * No tasks remain in the execution queue
1803          */
1804         spin_lock_irqsave(&cmd->t_state_lock, flags);
1805         list_for_each_entry_safe(task, task_tmp,
1806                                 &cmd->t_task_list, t_list) {
1807                 pr_debug("Processing task %p\n", task);
1808                 /*
1809                  * If the struct se_task has not been sent and is not active,
1810                  * remove the struct se_task from the execution queue.
1811                  */
1812                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1813                         spin_unlock_irqrestore(&cmd->t_state_lock,
1814                                         flags);
1815                         transport_remove_task_from_execute_queue(task,
1816                                         cmd->se_dev);
1817
1818                         pr_debug("Task %p removed from execute queue\n", task);
1819                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1820                         continue;
1821                 }
1822
1823                 if (!target_stop_task(task, &flags)) {
1824                         pr_debug("Task %p - did nothing\n", task);
1825                         ret++;
1826                 }
1827         }
1828         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1829
1830         return ret;
1831 }
1832
1833 /*
1834  * Handle SAM-esque emulation for generic transport request failures.
1835  */
1836 static void transport_generic_request_failure(
1837         struct se_cmd *cmd,
1838         struct se_device *dev,
1839         int complete,
1840         int sc)
1841 {
1842         int ret = 0;
1843
1844         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1845                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1846                 cmd->t_task_cdb[0]);
1847         pr_debug("-----[ i_state: %d t_state/def_t_state:"
1848                 " %d/%d transport_error_status: %d\n",
1849                 cmd->se_tfo->get_cmd_state(cmd),
1850                 cmd->t_state, cmd->deferred_t_state,
1851                 cmd->transport_error_status);
1852         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1853                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1854                 " t_transport_active: %d t_transport_stop: %d"
1855                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1856                 atomic_read(&cmd->t_task_cdbs_left),
1857                 atomic_read(&cmd->t_task_cdbs_sent),
1858                 atomic_read(&cmd->t_task_cdbs_ex_left),
1859                 atomic_read(&cmd->t_transport_active),
1860                 atomic_read(&cmd->t_transport_stop),
1861                 atomic_read(&cmd->t_transport_sent));
1862
1863         transport_stop_all_task_timers(cmd);
1864
1865         if (dev)
1866                 atomic_inc(&dev->depth_left);
1867         /*
1868          * For SAM Task Attribute emulation for failed struct se_cmd
1869          */
1870         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1871                 transport_complete_task_attr(cmd);
1872
1873         if (complete) {
1874                 transport_direct_request_timeout(cmd);
1875                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1876         }
1877
1878         switch (cmd->transport_error_status) {
1879         case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1880                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1881                 break;
1882         case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1883                 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1884                 break;
1885         case PYX_TRANSPORT_INVALID_CDB_FIELD:
1886                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1887                 break;
1888         case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1889                 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1890                 break;
1891         case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1892                 if (!sc)
1893                         transport_new_cmd_failure(cmd);
1894                 /*
1895                  * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1896                  * we force this session to fall back to session
1897                  * recovery.
1898                  */
1899                 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1900                 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1901
1902                 goto check_stop;
1903         case PYX_TRANSPORT_LU_COMM_FAILURE:
1904         case PYX_TRANSPORT_ILLEGAL_REQUEST:
1905                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1906                 break;
1907         case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1908                 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1909                 break;
1910         case PYX_TRANSPORT_WRITE_PROTECTED:
1911                 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1912                 break;
1913         case PYX_TRANSPORT_RESERVATION_CONFLICT:
1914                 /*
1915                  * No SENSE Data payload for this case, set SCSI Status
1916                  * and queue the response to $FABRIC_MOD.
1917                  *
1918                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1919                  */
1920                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1921                 /*
1922                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1923                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1924                  * CONFLICT STATUS.
1925                  *
1926                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1927                  */
1928                 if (cmd->se_sess &&
1929                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1930                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1931                                 cmd->orig_fe_lun, 0x2C,
1932                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1933
1934                 ret = cmd->se_tfo->queue_status(cmd);
1935                 if (ret == -EAGAIN)
1936                         goto queue_full;
1937                 goto check_stop;
1938         case PYX_TRANSPORT_USE_SENSE_REASON:
1939                 /*
1940                  * struct se_cmd->scsi_sense_reason already set
1941                  */
1942                 break;
1943         default:
1944                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1945                         cmd->t_task_cdb[0],
1946                         cmd->transport_error_status);
1947                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1948                 break;
1949         }
1950         /*
1951          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1952          * make the call to transport_send_check_condition_and_sense()
1953          * directly.  Otherwise expect the fabric to make the call to
1954          * transport_send_check_condition_and_sense() after handling
1955          * possible unsoliticied write data payloads.
1956          */
1957         if (!sc && !cmd->se_tfo->new_cmd_map)
1958                 transport_new_cmd_failure(cmd);
1959         else {
1960                 ret = transport_send_check_condition_and_sense(cmd,
1961                                 cmd->scsi_sense_reason, 0);
1962                 if (ret == -EAGAIN)
1963                         goto queue_full;
1964         }
1965
1966 check_stop:
1967         transport_lun_remove_cmd(cmd);
1968         if (!transport_cmd_check_stop_to_fabric(cmd))
1969                 ;
1970         return;
1971
1972 queue_full:
1973         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1974         transport_handle_queue_full(cmd, cmd->se_dev);
1975 }
1976
1977 static void transport_direct_request_timeout(struct se_cmd *cmd)
1978 {
1979         unsigned long flags;
1980
1981         spin_lock_irqsave(&cmd->t_state_lock, flags);
1982         if (!atomic_read(&cmd->t_transport_timeout)) {
1983                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1984                 return;
1985         }
1986         if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
1987                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1988                 return;
1989         }
1990
1991         atomic_sub(atomic_read(&cmd->t_transport_timeout),
1992                    &cmd->t_se_count);
1993         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1994 }
1995
1996 static void transport_generic_request_timeout(struct se_cmd *cmd)
1997 {
1998         unsigned long flags;
1999
2000         /*
2001          * Reset cmd->t_se_count to allow transport_put_cmd()
2002          * to allow last call to free memory resources.
2003          */
2004         spin_lock_irqsave(&cmd->t_state_lock, flags);
2005         if (atomic_read(&cmd->t_transport_timeout) > 1) {
2006                 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2007
2008                 atomic_sub(tmp, &cmd->t_se_count);
2009         }
2010         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2011
2012         transport_put_cmd(cmd);
2013 }
2014
2015 static inline u32 transport_lba_21(unsigned char *cdb)
2016 {
2017         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2018 }
2019
2020 static inline u32 transport_lba_32(unsigned char *cdb)
2021 {
2022         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2023 }
2024
2025 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2026 {
2027         unsigned int __v1, __v2;
2028
2029         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2030         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2031
2032         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2033 }
2034
2035 /*
2036  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2037  */
2038 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2039 {
2040         unsigned int __v1, __v2;
2041
2042         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2043         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2044
2045         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2046 }
2047
2048 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2049 {
2050         unsigned long flags;
2051
2052         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2053         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2054         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2055 }
2056
2057 /*
2058  * Called from interrupt context.
2059  */
2060 static void transport_task_timeout_handler(unsigned long data)
2061 {
2062         struct se_task *task = (struct se_task *)data;
2063         struct se_cmd *cmd = task->task_se_cmd;
2064         unsigned long flags;
2065
2066         pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2067
2068         spin_lock_irqsave(&cmd->t_state_lock, flags);
2069         if (task->task_flags & TF_TIMER_STOP) {
2070                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2071                 return;
2072         }
2073         task->task_flags &= ~TF_TIMER_RUNNING;
2074
2075         /*
2076          * Determine if transport_complete_task() has already been called.
2077          */
2078         if (!(task->task_flags & TF_ACTIVE)) {
2079                 pr_debug("transport task: %p cmd: %p timeout !TF_ACTIVE\n",
2080                          task, cmd);
2081                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2082                 return;
2083         }
2084
2085         atomic_inc(&cmd->t_se_count);
2086         atomic_inc(&cmd->t_transport_timeout);
2087         cmd->t_tasks_failed = 1;
2088
2089         task->task_flags |= TF_TIMEOUT;
2090         task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2091         task->task_scsi_status = 1;
2092
2093         if (task->task_flags & TF_REQUEST_STOP) {
2094                 pr_debug("transport task: %p cmd: %p timeout TF_REQUEST_STOP"
2095                                 " == 1\n", task, cmd);
2096                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2097                 complete(&task->task_stop_comp);
2098                 return;
2099         }
2100
2101         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2102                 pr_debug("transport task: %p cmd: %p timeout non zero"
2103                                 " t_task_cdbs_left\n", task, cmd);
2104                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2105                 return;
2106         }
2107         pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2108                         task, cmd);
2109
2110         cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2111         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2112
2113         transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE, false);
2114 }
2115
2116 /*
2117  * Called with cmd->t_state_lock held.
2118  */
2119 static void transport_start_task_timer(struct se_task *task)
2120 {
2121         struct se_device *dev = task->task_se_cmd->se_dev;
2122         int timeout;
2123
2124         if (task->task_flags & TF_TIMER_RUNNING)
2125                 return;
2126         /*
2127          * If the task_timeout is disabled, exit now.
2128          */
2129         timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2130         if (!timeout)
2131                 return;
2132
2133         init_timer(&task->task_timer);
2134         task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2135         task->task_timer.data = (unsigned long) task;
2136         task->task_timer.function = transport_task_timeout_handler;
2137
2138         task->task_flags |= TF_TIMER_RUNNING;
2139         add_timer(&task->task_timer);
2140 #if 0
2141         pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2142                 " %d\n", task->task_se_cmd, task, timeout);
2143 #endif
2144 }
2145
2146 /*
2147  * Called with spin_lock_irq(&cmd->t_state_lock) held.
2148  */
2149 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2150 {
2151         struct se_cmd *cmd = task->task_se_cmd;
2152
2153         if (!(task->task_flags & TF_TIMER_RUNNING))
2154                 return;
2155
2156         task->task_flags |= TF_TIMER_STOP;
2157         spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2158
2159         del_timer_sync(&task->task_timer);
2160
2161         spin_lock_irqsave(&cmd->t_state_lock, *flags);
2162         task->task_flags &= ~TF_TIMER_RUNNING;
2163         task->task_flags &= ~TF_TIMER_STOP;
2164 }
2165
2166 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2167 {
2168         struct se_task *task = NULL, *task_tmp;
2169         unsigned long flags;
2170
2171         spin_lock_irqsave(&cmd->t_state_lock, flags);
2172         list_for_each_entry_safe(task, task_tmp,
2173                                 &cmd->t_task_list, t_list)
2174                 __transport_stop_task_timer(task, &flags);
2175         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2176 }
2177
2178 static inline int transport_tcq_window_closed(struct se_device *dev)
2179 {
2180         if (dev->dev_tcq_window_closed++ <
2181                         PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2182                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2183         } else
2184                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2185
2186         wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2187         return 0;
2188 }
2189
2190 /*
2191  * Called from Fabric Module context from transport_execute_tasks()
2192  *
2193  * The return of this function determins if the tasks from struct se_cmd
2194  * get added to the execution queue in transport_execute_tasks(),
2195  * or are added to the delayed or ordered lists here.
2196  */
2197 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2198 {
2199         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2200                 return 1;
2201         /*
2202          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2203          * to allow the passed struct se_cmd list of tasks to the front of the list.
2204          */
2205          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2206                 atomic_inc(&cmd->se_dev->dev_hoq_count);
2207                 smp_mb__after_atomic_inc();
2208                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2209                         " 0x%02x, se_ordered_id: %u\n",
2210                         cmd->t_task_cdb[0],
2211                         cmd->se_ordered_id);
2212                 return 1;
2213         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2214                 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2215                 list_add_tail(&cmd->se_ordered_node,
2216                                 &cmd->se_dev->ordered_cmd_list);
2217                 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2218
2219                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2220                 smp_mb__after_atomic_inc();
2221
2222                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2223                                 " list, se_ordered_id: %u\n",
2224                                 cmd->t_task_cdb[0],
2225                                 cmd->se_ordered_id);
2226                 /*
2227                  * Add ORDERED command to tail of execution queue if
2228                  * no other older commands exist that need to be
2229                  * completed first.
2230                  */
2231                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2232                         return 1;
2233         } else {
2234                 /*
2235                  * For SIMPLE and UNTAGGED Task Attribute commands
2236                  */
2237                 atomic_inc(&cmd->se_dev->simple_cmds);
2238                 smp_mb__after_atomic_inc();
2239         }
2240         /*
2241          * Otherwise if one or more outstanding ORDERED task attribute exist,
2242          * add the dormant task(s) built for the passed struct se_cmd to the
2243          * execution queue and become in Active state for this struct se_device.
2244          */
2245         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2246                 /*
2247                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2248                  * will be drained upon completion of HEAD_OF_QUEUE task.
2249                  */
2250                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2251                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2252                 list_add_tail(&cmd->se_delayed_node,
2253                                 &cmd->se_dev->delayed_cmd_list);
2254                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2255
2256                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2257                         " delayed CMD list, se_ordered_id: %u\n",
2258                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2259                         cmd->se_ordered_id);
2260                 /*
2261                  * Return zero to let transport_execute_tasks() know
2262                  * not to add the delayed tasks to the execution list.
2263                  */
2264                 return 0;
2265         }
2266         /*
2267          * Otherwise, no ORDERED task attributes exist..
2268          */
2269         return 1;
2270 }
2271
2272 /*
2273  * Called from fabric module context in transport_generic_new_cmd() and
2274  * transport_generic_process_write()
2275  */
2276 static int transport_execute_tasks(struct se_cmd *cmd)
2277 {
2278         int add_tasks;
2279
2280         if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2281                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2282                 transport_generic_request_failure(cmd, NULL, 0, 1);
2283                 return 0;
2284         }
2285
2286         /*
2287          * Call transport_cmd_check_stop() to see if a fabric exception
2288          * has occurred that prevents execution.
2289          */
2290         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2291                 /*
2292                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2293                  * attribute for the tasks of the received struct se_cmd CDB
2294                  */
2295                 add_tasks = transport_execute_task_attr(cmd);
2296                 if (!add_tasks)
2297                         goto execute_tasks;
2298                 /*
2299                  * This calls transport_add_tasks_from_cmd() to handle
2300                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2301                  * (if enabled) in __transport_add_task_to_execute_queue() and
2302                  * transport_add_task_check_sam_attr().
2303                  */
2304                 transport_add_tasks_from_cmd(cmd);
2305         }
2306         /*
2307          * Kick the execution queue for the cmd associated struct se_device
2308          * storage object.
2309          */
2310 execute_tasks:
2311         __transport_execute_tasks(cmd->se_dev);
2312         return 0;
2313 }
2314
2315 /*
2316  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2317  * from struct se_device->execute_task_list and
2318  *
2319  * Called from transport_processing_thread()
2320  */
2321 static int __transport_execute_tasks(struct se_device *dev)
2322 {
2323         int error;
2324         struct se_cmd *cmd = NULL;
2325         struct se_task *task = NULL;
2326         unsigned long flags;
2327
2328         /*
2329          * Check if there is enough room in the device and HBA queue to send
2330          * struct se_tasks to the selected transport.
2331          */
2332 check_depth:
2333         if (!atomic_read(&dev->depth_left))
2334                 return transport_tcq_window_closed(dev);
2335
2336         dev->dev_tcq_window_closed = 0;
2337
2338         spin_lock_irq(&dev->execute_task_lock);
2339         if (list_empty(&dev->execute_task_list)) {
2340                 spin_unlock_irq(&dev->execute_task_lock);
2341                 return 0;
2342         }
2343         task = list_first_entry(&dev->execute_task_list,
2344                                 struct se_task, t_execute_list);
2345         __transport_remove_task_from_execute_queue(task, dev);
2346         spin_unlock_irq(&dev->execute_task_lock);
2347
2348         atomic_dec(&dev->depth_left);
2349
2350         cmd = task->task_se_cmd;
2351
2352         spin_lock_irqsave(&cmd->t_state_lock, flags);
2353         task->task_flags |= (TF_ACTIVE | TF_SENT);
2354         atomic_inc(&cmd->t_task_cdbs_sent);
2355
2356         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2357             cmd->t_task_list_num)
2358                 atomic_set(&cmd->transport_sent, 1);
2359
2360         transport_start_task_timer(task);
2361         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2362         /*
2363          * The struct se_cmd->transport_emulate_cdb() function pointer is used
2364          * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2365          * struct se_subsystem_api->do_task() caller below.
2366          */
2367         if (cmd->transport_emulate_cdb) {
2368                 error = cmd->transport_emulate_cdb(cmd);
2369                 if (error != 0) {
2370                         cmd->transport_error_status = error;
2371                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2372                         task->task_flags &= ~TF_ACTIVE;
2373                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2374                         atomic_set(&cmd->transport_sent, 0);
2375                         transport_stop_tasks_for_cmd(cmd);
2376                         transport_generic_request_failure(cmd, dev, 0, 1);
2377                         goto check_depth;
2378                 }
2379                 /*
2380                  * Handle the successful completion for transport_emulate_cdb()
2381                  * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2382                  * Otherwise the caller is expected to complete the task with
2383                  * proper status.
2384                  */
2385                 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2386                         cmd->scsi_status = SAM_STAT_GOOD;
2387                         task->task_scsi_status = GOOD;
2388                         transport_complete_task(task, 1);
2389                 }
2390         } else {
2391                 /*
2392                  * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2393                  * RAMDISK we use the internal transport_emulate_control_cdb() logic
2394                  * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2395                  * LUN emulation code.
2396                  *
2397                  * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2398                  * call ->do_task() directly and let the underlying TCM subsystem plugin
2399                  * code handle the CDB emulation.
2400                  */
2401                 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2402                     (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2403                         error = transport_emulate_control_cdb(task);
2404                 else
2405                         error = dev->transport->do_task(task);
2406
2407                 if (error != 0) {
2408                         cmd->transport_error_status = error;
2409                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2410                         task->task_flags &= ~TF_ACTIVE;
2411                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2412                         atomic_set(&cmd->transport_sent, 0);
2413                         transport_stop_tasks_for_cmd(cmd);
2414                         transport_generic_request_failure(cmd, dev, 0, 1);
2415                 }
2416         }
2417
2418         goto check_depth;
2419
2420         return 0;
2421 }
2422
2423 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2424 {
2425         unsigned long flags;
2426         /*
2427          * Any unsolicited data will get dumped for failed command inside of
2428          * the fabric plugin
2429          */
2430         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2431         se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2432         se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2433         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2434 }
2435
2436 static inline u32 transport_get_sectors_6(
2437         unsigned char *cdb,
2438         struct se_cmd *cmd,
2439         int *ret)
2440 {
2441         struct se_device *dev = cmd->se_dev;
2442
2443         /*
2444          * Assume TYPE_DISK for non struct se_device objects.
2445          * Use 8-bit sector value.
2446          */
2447         if (!dev)
2448                 goto type_disk;
2449
2450         /*
2451          * Use 24-bit allocation length for TYPE_TAPE.
2452          */
2453         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2454                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2455
2456         /*
2457          * Everything else assume TYPE_DISK Sector CDB location.
2458          * Use 8-bit sector value.
2459          */
2460 type_disk:
2461         return (u32)cdb[4];
2462 }
2463
2464 static inline u32 transport_get_sectors_10(
2465         unsigned char *cdb,
2466         struct se_cmd *cmd,
2467         int *ret)
2468 {
2469         struct se_device *dev = cmd->se_dev;
2470
2471         /*
2472          * Assume TYPE_DISK for non struct se_device objects.
2473          * Use 16-bit sector value.
2474          */
2475         if (!dev)
2476                 goto type_disk;
2477
2478         /*
2479          * XXX_10 is not defined in SSC, throw an exception
2480          */
2481         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2482                 *ret = -EINVAL;
2483                 return 0;
2484         }
2485
2486         /*
2487          * Everything else assume TYPE_DISK Sector CDB location.
2488          * Use 16-bit sector value.
2489          */
2490 type_disk:
2491         return (u32)(cdb[7] << 8) + cdb[8];
2492 }
2493
2494 static inline u32 transport_get_sectors_12(
2495         unsigned char *cdb,
2496         struct se_cmd *cmd,
2497         int *ret)
2498 {
2499         struct se_device *dev = cmd->se_dev;
2500
2501         /*
2502          * Assume TYPE_DISK for non struct se_device objects.
2503          * Use 32-bit sector value.
2504          */
2505         if (!dev)
2506                 goto type_disk;
2507
2508         /*
2509          * XXX_12 is not defined in SSC, throw an exception
2510          */
2511         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2512                 *ret = -EINVAL;
2513                 return 0;
2514         }
2515
2516         /*
2517          * Everything else assume TYPE_DISK Sector CDB location.
2518          * Use 32-bit sector value.
2519          */
2520 type_disk:
2521         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2522 }
2523
2524 static inline u32 transport_get_sectors_16(
2525         unsigned char *cdb,
2526         struct se_cmd *cmd,
2527         int *ret)
2528 {
2529         struct se_device *dev = cmd->se_dev;
2530
2531         /*
2532          * Assume TYPE_DISK for non struct se_device objects.
2533          * Use 32-bit sector value.
2534          */
2535         if (!dev)
2536                 goto type_disk;
2537
2538         /*
2539          * Use 24-bit allocation length for TYPE_TAPE.
2540          */
2541         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2542                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2543
2544 type_disk:
2545         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2546                     (cdb[12] << 8) + cdb[13];
2547 }
2548
2549 /*
2550  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2551  */
2552 static inline u32 transport_get_sectors_32(
2553         unsigned char *cdb,
2554         struct se_cmd *cmd,
2555         int *ret)
2556 {
2557         /*
2558          * Assume TYPE_DISK for non struct se_device objects.
2559          * Use 32-bit sector value.
2560          */
2561         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2562                     (cdb[30] << 8) + cdb[31];
2563
2564 }
2565
2566 static inline u32 transport_get_size(
2567         u32 sectors,
2568         unsigned char *cdb,
2569         struct se_cmd *cmd)
2570 {
2571         struct se_device *dev = cmd->se_dev;
2572
2573         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2574                 if (cdb[1] & 1) { /* sectors */
2575                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2576                 } else /* bytes */
2577                         return sectors;
2578         }
2579 #if 0
2580         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2581                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2582                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2583                         dev->transport->name);
2584 #endif
2585         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2586 }
2587
2588 static void transport_xor_callback(struct se_cmd *cmd)
2589 {
2590         unsigned char *buf, *addr;
2591         struct scatterlist *sg;
2592         unsigned int offset;
2593         int i;
2594         int count;
2595         /*
2596          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2597          *
2598          * 1) read the specified logical block(s);
2599          * 2) transfer logical blocks from the data-out buffer;
2600          * 3) XOR the logical blocks transferred from the data-out buffer with
2601          *    the logical blocks read, storing the resulting XOR data in a buffer;
2602          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2603          *    blocks transferred from the data-out buffer; and
2604          * 5) transfer the resulting XOR data to the data-in buffer.
2605          */
2606         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2607         if (!buf) {
2608                 pr_err("Unable to allocate xor_callback buf\n");
2609                 return;
2610         }
2611         /*
2612          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2613          * into the locally allocated *buf
2614          */
2615         sg_copy_to_buffer(cmd->t_data_sg,
2616                           cmd->t_data_nents,
2617                           buf,
2618                           cmd->data_length);
2619
2620         /*
2621          * Now perform the XOR against the BIDI read memory located at
2622          * cmd->t_mem_bidi_list
2623          */
2624
2625         offset = 0;
2626         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2627                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2628                 if (!addr)
2629                         goto out;
2630
2631                 for (i = 0; i < sg->length; i++)
2632                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2633
2634                 offset += sg->length;
2635                 kunmap_atomic(addr, KM_USER0);
2636         }
2637
2638 out:
2639         kfree(buf);
2640 }
2641
2642 /*
2643  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2644  */
2645 static int transport_get_sense_data(struct se_cmd *cmd)
2646 {
2647         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2648         struct se_device *dev = cmd->se_dev;
2649         struct se_task *task = NULL, *task_tmp;
2650         unsigned long flags;
2651         u32 offset = 0;
2652
2653         WARN_ON(!cmd->se_lun);
2654
2655         if (!dev)
2656                 return 0;
2657
2658         spin_lock_irqsave(&cmd->t_state_lock, flags);
2659         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2660                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2661                 return 0;
2662         }
2663
2664         list_for_each_entry_safe(task, task_tmp,
2665                                 &cmd->t_task_list, t_list) {
2666                 if (!task->task_sense)
2667                         continue;
2668
2669                 if (!dev->transport->get_sense_buffer) {
2670                         pr_err("dev->transport->get_sense_buffer"
2671                                         " is NULL\n");
2672                         continue;
2673                 }
2674
2675                 sense_buffer = dev->transport->get_sense_buffer(task);
2676                 if (!sense_buffer) {
2677                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2678                                 " sense buffer for task with sense\n",
2679                                 cmd->se_tfo->get_task_tag(cmd), task);
2680                         continue;
2681                 }
2682                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2683
2684                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2685                                 TRANSPORT_SENSE_BUFFER);
2686
2687                 memcpy(&buffer[offset], sense_buffer,
2688                                 TRANSPORT_SENSE_BUFFER);
2689                 cmd->scsi_status = task->task_scsi_status;
2690                 /* Automatically padded */
2691                 cmd->scsi_sense_length =
2692                                 (TRANSPORT_SENSE_BUFFER + offset);
2693
2694                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2695                                 " and sense\n",
2696                         dev->se_hba->hba_id, dev->transport->name,
2697                                 cmd->scsi_status);
2698                 return 0;
2699         }
2700         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2701
2702         return -1;
2703 }
2704
2705 static int
2706 transport_handle_reservation_conflict(struct se_cmd *cmd)
2707 {
2708         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2709         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2710         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2711         /*
2712          * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2713          * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2714          * CONFLICT STATUS.
2715          *
2716          * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2717          */
2718         if (cmd->se_sess &&
2719             cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2720                 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2721                         cmd->orig_fe_lun, 0x2C,
2722                         ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2723         return -EINVAL;
2724 }
2725
2726 static inline long long transport_dev_end_lba(struct se_device *dev)
2727 {
2728         return dev->transport->get_blocks(dev) + 1;
2729 }
2730
2731 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2732 {
2733         struct se_device *dev = cmd->se_dev;
2734         u32 sectors;
2735
2736         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2737                 return 0;
2738
2739         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2740
2741         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2742                 pr_err("LBA: %llu Sectors: %u exceeds"
2743                         " transport_dev_end_lba(): %llu\n",
2744                         cmd->t_task_lba, sectors,
2745                         transport_dev_end_lba(dev));
2746                 return -EINVAL;
2747         }
2748
2749         return 0;
2750 }
2751
2752 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2753 {
2754         /*
2755          * Determine if the received WRITE_SAME is used to for direct
2756          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2757          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2758          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2759          */
2760         int passthrough = (dev->transport->transport_type ==
2761                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2762
2763         if (!passthrough) {
2764                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2765                         pr_err("WRITE_SAME PBDATA and LBDATA"
2766                                 " bits not supported for Block Discard"
2767                                 " Emulation\n");
2768                         return -ENOSYS;
2769                 }
2770                 /*
2771                  * Currently for the emulated case we only accept
2772                  * tpws with the UNMAP=1 bit set.
2773                  */
2774                 if (!(flags[0] & 0x08)) {
2775                         pr_err("WRITE_SAME w/o UNMAP bit not"
2776                                 " supported for Block Discard Emulation\n");
2777                         return -ENOSYS;
2778                 }
2779         }
2780
2781         return 0;
2782 }
2783
2784 /*      transport_generic_cmd_sequencer():
2785  *
2786  *      Generic Command Sequencer that should work for most DAS transport
2787  *      drivers.
2788  *
2789  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2790  *      RX Thread.
2791  *
2792  *      FIXME: Need to support other SCSI OPCODES where as well.
2793  */
2794 static int transport_generic_cmd_sequencer(
2795         struct se_cmd *cmd,
2796         unsigned char *cdb)
2797 {
2798         struct se_device *dev = cmd->se_dev;
2799         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2800         int ret = 0, sector_ret = 0, passthrough;
2801         u32 sectors = 0, size = 0, pr_reg_type = 0;
2802         u16 service_action;
2803         u8 alua_ascq = 0;
2804         /*
2805          * Check for an existing UNIT ATTENTION condition
2806          */
2807         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2808                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2809                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2810                 return -EINVAL;
2811         }
2812         /*
2813          * Check status of Asymmetric Logical Unit Assignment port
2814          */
2815         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2816         if (ret != 0) {
2817                 /*
2818                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2819                  * The ALUA additional sense code qualifier (ASCQ) is determined
2820                  * by the ALUA primary or secondary access state..
2821                  */
2822                 if (ret > 0) {
2823 #if 0
2824                         pr_debug("[%s]: ALUA TG Port not available,"
2825                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2826                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2827 #endif
2828                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2829                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2830                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2831                         return -EINVAL;
2832                 }
2833                 goto out_invalid_cdb_field;
2834         }
2835         /*
2836          * Check status for SPC-3 Persistent Reservations
2837          */
2838         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2839                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2840                                         cmd, cdb, pr_reg_type) != 0)
2841                         return transport_handle_reservation_conflict(cmd);
2842                 /*
2843                  * This means the CDB is allowed for the SCSI Initiator port
2844                  * when said port is *NOT* holding the legacy SPC-2 or
2845                  * SPC-3 Persistent Reservation.
2846                  */
2847         }
2848
2849         switch (cdb[0]) {
2850         case READ_6:
2851                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2852                 if (sector_ret)
2853                         goto out_unsupported_cdb;
2854                 size = transport_get_size(sectors, cdb, cmd);
2855                 cmd->t_task_lba = transport_lba_21(cdb);
2856                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2857                 break;
2858         case READ_10:
2859                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2860                 if (sector_ret)
2861                         goto out_unsupported_cdb;
2862                 size = transport_get_size(sectors, cdb, cmd);
2863                 cmd->t_task_lba = transport_lba_32(cdb);
2864                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2865                 break;
2866         case READ_12:
2867                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2868                 if (sector_ret)
2869                         goto out_unsupported_cdb;
2870                 size = transport_get_size(sectors, cdb, cmd);
2871                 cmd->t_task_lba = transport_lba_32(cdb);
2872                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2873                 break;
2874         case READ_16:
2875                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2876                 if (sector_ret)
2877                         goto out_unsupported_cdb;
2878                 size = transport_get_size(sectors, cdb, cmd);
2879                 cmd->t_task_lba = transport_lba_64(cdb);
2880                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2881                 break;
2882         case WRITE_6:
2883                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2884                 if (sector_ret)
2885                         goto out_unsupported_cdb;
2886                 size = transport_get_size(sectors, cdb, cmd);
2887                 cmd->t_task_lba = transport_lba_21(cdb);
2888                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2889                 break;
2890         case WRITE_10:
2891                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2892                 if (sector_ret)
2893                         goto out_unsupported_cdb;
2894                 size = transport_get_size(sectors, cdb, cmd);
2895                 cmd->t_task_lba = transport_lba_32(cdb);
2896                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2897                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2898                 break;
2899         case WRITE_12:
2900                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2901                 if (sector_ret)
2902                         goto out_unsupported_cdb;
2903                 size = transport_get_size(sectors, cdb, cmd);
2904                 cmd->t_task_lba = transport_lba_32(cdb);
2905                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2906                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2907                 break;
2908         case WRITE_16:
2909                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2910                 if (sector_ret)
2911                         goto out_unsupported_cdb;
2912                 size = transport_get_size(sectors, cdb, cmd);
2913                 cmd->t_task_lba = transport_lba_64(cdb);
2914                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2915                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2916                 break;
2917         case XDWRITEREAD_10:
2918                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2919                     !(cmd->t_tasks_bidi))
2920                         goto out_invalid_cdb_field;
2921                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2922                 if (sector_ret)
2923                         goto out_unsupported_cdb;
2924                 size = transport_get_size(sectors, cdb, cmd);
2925                 cmd->t_task_lba = transport_lba_32(cdb);
2926                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2927                 passthrough = (dev->transport->transport_type ==
2928                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2929                 /*
2930                  * Skip the remaining assignments for TCM/PSCSI passthrough
2931                  */
2932                 if (passthrough)
2933                         break;
2934                 /*
2935                  * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
2936                  */
2937                 cmd->transport_complete_callback = &transport_xor_callback;
2938                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2939                 break;
2940         case VARIABLE_LENGTH_CMD:
2941                 service_action = get_unaligned_be16(&cdb[8]);
2942                 /*
2943                  * Determine if this is TCM/PSCSI device and we should disable
2944                  * internal emulation for this CDB.
2945                  */
2946                 passthrough = (dev->transport->transport_type ==
2947                                         TRANSPORT_PLUGIN_PHBA_PDEV);
2948
2949                 switch (service_action) {
2950                 case XDWRITEREAD_32:
2951                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2952                         if (sector_ret)
2953                                 goto out_unsupported_cdb;
2954                         size = transport_get_size(sectors, cdb, cmd);
2955                         /*
2956                          * Use WRITE_32 and READ_32 opcodes for the emulated
2957                          * XDWRITE_READ_32 logic.
2958                          */
2959                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2960                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2961
2962                         /*
2963                          * Skip the remaining assignments for TCM/PSCSI passthrough
2964                          */
2965                         if (passthrough)
2966                                 break;
2967
2968                         /*
2969                          * Setup BIDI XOR callback to be run during
2970                          * transport_generic_complete_ok()
2971                          */
2972                         cmd->transport_complete_callback = &transport_xor_callback;
2973                         cmd->t_tasks_fua = (cdb[10] & 0x8);
2974                         break;
2975                 case WRITE_SAME_32:
2976                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2977                         if (sector_ret)
2978                                 goto out_unsupported_cdb;
2979
2980                         if (sectors)
2981                                 size = transport_get_size(1, cdb, cmd);
2982                         else {
2983                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2984                                        " supported\n");
2985                                 goto out_invalid_cdb_field;
2986                         }
2987
2988                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2989                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2990
2991                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2992                                 goto out_invalid_cdb_field;
2993
2994                         break;
2995                 default:
2996                         pr_err("VARIABLE_LENGTH_CMD service action"
2997                                 " 0x%04x not supported\n", service_action);
2998                         goto out_unsupported_cdb;
2999                 }
3000                 break;
3001         case MAINTENANCE_IN:
3002                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3003                         /* MAINTENANCE_IN from SCC-2 */
3004                         /*
3005                          * Check for emulated MI_REPORT_TARGET_PGS.
3006                          */
3007                         if (cdb[1] == MI_REPORT_TARGET_PGS) {
3008                                 cmd->transport_emulate_cdb =
3009                                 (su_dev->t10_alua.alua_type ==
3010                                  SPC3_ALUA_EMULATED) ?
3011                                 core_emulate_report_target_port_groups :
3012                                 NULL;
3013                         }
3014                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3015                                (cdb[8] << 8) | cdb[9];
3016                 } else {
3017                         /* GPCMD_SEND_KEY from multi media commands */
3018                         size = (cdb[8] << 8) + cdb[9];
3019                 }
3020                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3021                 break;
3022         case MODE_SELECT:
3023                 size = cdb[4];
3024                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3025                 break;
3026         case MODE_SELECT_10:
3027                 size = (cdb[7] << 8) + cdb[8];
3028                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3029                 break;
3030         case MODE_SENSE:
3031                 size = cdb[4];
3032                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3033                 break;
3034         case MODE_SENSE_10:
3035         case GPCMD_READ_BUFFER_CAPACITY:
3036         case GPCMD_SEND_OPC:
3037         case LOG_SELECT:
3038         case LOG_SENSE:
3039                 size = (cdb[7] << 8) + cdb[8];
3040                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3041                 break;
3042         case READ_BLOCK_LIMITS:
3043                 size = READ_BLOCK_LEN;
3044                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3045                 break;
3046         case GPCMD_GET_CONFIGURATION:
3047         case GPCMD_READ_FORMAT_CAPACITIES:
3048         case GPCMD_READ_DISC_INFO:
3049         case GPCMD_READ_TRACK_RZONE_INFO:
3050                 size = (cdb[7] << 8) + cdb[8];
3051                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3052                 break;
3053         case PERSISTENT_RESERVE_IN:
3054         case PERSISTENT_RESERVE_OUT:
3055                 cmd->transport_emulate_cdb =
3056                         (su_dev->t10_pr.res_type ==
3057                          SPC3_PERSISTENT_RESERVATIONS) ?
3058                         core_scsi3_emulate_pr : NULL;
3059                 size = (cdb[7] << 8) + cdb[8];
3060                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3061                 break;
3062         case GPCMD_MECHANISM_STATUS:
3063         case GPCMD_READ_DVD_STRUCTURE:
3064                 size = (cdb[8] << 8) + cdb[9];
3065                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3066                 break;
3067         case READ_POSITION:
3068                 size = READ_POSITION_LEN;
3069                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3070                 break;
3071         case MAINTENANCE_OUT:
3072                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3073                         /* MAINTENANCE_OUT from SCC-2
3074                          *
3075                          * Check for emulated MO_SET_TARGET_PGS.
3076                          */
3077                         if (cdb[1] == MO_SET_TARGET_PGS) {
3078                                 cmd->transport_emulate_cdb =
3079                                 (su_dev->t10_alua.alua_type ==
3080                                         SPC3_ALUA_EMULATED) ?
3081                                 core_emulate_set_target_port_groups :
3082                                 NULL;
3083                         }
3084
3085                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3086                                (cdb[8] << 8) | cdb[9];
3087                 } else  {
3088                         /* GPCMD_REPORT_KEY from multi media commands */
3089                         size = (cdb[8] << 8) + cdb[9];
3090                 }
3091                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3092                 break;
3093         case INQUIRY:
3094                 size = (cdb[3] << 8) + cdb[4];
3095                 /*
3096                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3097                  * See spc4r17 section 5.3
3098                  */
3099                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3100                         cmd->sam_task_attr = MSG_HEAD_TAG;
3101                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3102                 break;
3103         case READ_BUFFER:
3104                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3105                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3106                 break;
3107         case READ_CAPACITY:
3108                 size = READ_CAP_LEN;
3109                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3110                 break;
3111         case READ_MEDIA_SERIAL_NUMBER:
3112         case SECURITY_PROTOCOL_IN:
3113         case SECURITY_PROTOCOL_OUT:
3114                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3115                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3116                 break;
3117         case SERVICE_ACTION_IN:
3118         case ACCESS_CONTROL_IN:
3119         case ACCESS_CONTROL_OUT:
3120         case EXTENDED_COPY:
3121         case READ_ATTRIBUTE:
3122         case RECEIVE_COPY_RESULTS:
3123         case WRITE_ATTRIBUTE:
3124                 size = (cdb[10] << 24) | (cdb[11] << 16) |
3125                        (cdb[12] << 8) | cdb[13];
3126                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3127                 break;
3128         case RECEIVE_DIAGNOSTIC:
3129         case SEND_DIAGNOSTIC:
3130                 size = (cdb[3] << 8) | cdb[4];
3131                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3132                 break;
3133 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3134 #if 0
3135         case GPCMD_READ_CD:
3136                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3137                 size = (2336 * sectors);
3138                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3139                 break;
3140 #endif
3141         case READ_TOC:
3142                 size = cdb[8];
3143                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3144                 break;
3145         case REQUEST_SENSE:
3146                 size = cdb[4];
3147                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3148                 break;
3149         case READ_ELEMENT_STATUS:
3150                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3151                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3152                 break;
3153         case WRITE_BUFFER:
3154                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3155                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3156                 break;
3157         case RESERVE:
3158         case RESERVE_10:
3159                 /*
3160                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3161                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3162                  */
3163                 if (cdb[0] == RESERVE_10)
3164                         size = (cdb[7] << 8) | cdb[8];
3165                 else
3166                         size = cmd->data_length;
3167
3168                 /*
3169                  * Setup the legacy emulated handler for SPC-2 and
3170                  * >= SPC-3 compatible reservation handling (CRH=1)
3171                  * Otherwise, we assume the underlying SCSI logic is
3172                  * is running in SPC_PASSTHROUGH, and wants reservations
3173                  * emulation disabled.
3174                  */
3175                 cmd->transport_emulate_cdb =
3176                                 (su_dev->t10_pr.res_type !=
3177                                  SPC_PASSTHROUGH) ?
3178                                 core_scsi2_emulate_crh : NULL;
3179                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3180                 break;
3181         case RELEASE:
3182         case RELEASE_10:
3183                 /*
3184                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3185                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3186                 */
3187                 if (cdb[0] == RELEASE_10)
3188                         size = (cdb[7] << 8) | cdb[8];
3189                 else
3190                         size = cmd->data_length;
3191
3192                 cmd->transport_emulate_cdb =
3193                                 (su_dev->t10_pr.res_type !=
3194                                  SPC_PASSTHROUGH) ?
3195                                 core_scsi2_emulate_crh : NULL;
3196                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3197                 break;
3198         case SYNCHRONIZE_CACHE:
3199         case 0x91: /* SYNCHRONIZE_CACHE_16: */
3200                 /*
3201                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3202                  */
3203                 if (cdb[0] == SYNCHRONIZE_CACHE) {
3204                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3205                         cmd->t_task_lba = transport_lba_32(cdb);
3206                 } else {
3207                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3208                         cmd->t_task_lba = transport_lba_64(cdb);
3209                 }
3210                 if (sector_ret)
3211                         goto out_unsupported_cdb;
3212
3213                 size = transport_get_size(sectors, cdb, cmd);
3214                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3215
3216                 /*
3217                  * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3218                  */
3219                 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3220                         break;
3221                 /*
3222                  * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3223                  * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3224                  */
3225                 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3226                 /*
3227                  * Check to ensure that LBA + Range does not exceed past end of
3228                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3229                  */
3230                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3231                         if (transport_cmd_get_valid_sectors(cmd) < 0)
3232                                 goto out_invalid_cdb_field;
3233                 }
3234                 break;
3235         case UNMAP:
3236                 size = get_unaligned_be16(&cdb[7]);
3237                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3238                 break;
3239         case WRITE_SAME_16:
3240                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3241                 if (sector_ret)
3242                         goto out_unsupported_cdb;
3243
3244                 if (sectors)
3245                         size = transport_get_size(1, cdb, cmd);
3246                 else {
3247                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3248                         goto out_invalid_cdb_field;
3249                 }
3250
3251                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3252                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3253
3254                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3255                         goto out_invalid_cdb_field;
3256                 break;
3257         case WRITE_SAME:
3258                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3259                 if (sector_ret)
3260                         goto out_unsupported_cdb;
3261
3262                 if (sectors)
3263                         size = transport_get_size(1, cdb, cmd);
3264                 else {
3265                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3266                         goto out_invalid_cdb_field;
3267                 }
3268
3269                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3270                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3271                 /*
3272                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3273                  * of byte 1 bit 3 UNMAP instead of original reserved field
3274                  */
3275                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3276                         goto out_invalid_cdb_field;
3277                 break;
3278         case ALLOW_MEDIUM_REMOVAL:
3279         case GPCMD_CLOSE_TRACK:
3280         case ERASE:
3281         case INITIALIZE_ELEMENT_STATUS:
3282         case GPCMD_LOAD_UNLOAD:
3283         case REZERO_UNIT:
3284         case SEEK_10:
3285         case GPCMD_SET_SPEED:
3286         case SPACE:
3287         case START_STOP:
3288         case TEST_UNIT_READY:
3289         case VERIFY:
3290         case WRITE_FILEMARKS:
3291         case MOVE_MEDIUM:
3292                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3293                 break;
3294         case REPORT_LUNS:
3295                 cmd->transport_emulate_cdb =
3296                                 transport_core_report_lun_response;
3297                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3298                 /*
3299                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3300                  * See spc4r17 section 5.3
3301                  */
3302                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3303                         cmd->sam_task_attr = MSG_HEAD_TAG;
3304                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3305                 break;
3306         default:
3307                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3308                         " 0x%02x, sending CHECK_CONDITION.\n",
3309                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3310                 goto out_unsupported_cdb;
3311         }
3312
3313         if (size != cmd->data_length) {
3314                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3315                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3316                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3317                                 cmd->data_length, size, cdb[0]);
3318
3319                 cmd->cmd_spdtl = size;
3320
3321                 if (cmd->data_direction == DMA_TO_DEVICE) {
3322                         pr_err("Rejecting underflow/overflow"
3323                                         " WRITE data\n");
3324                         goto out_invalid_cdb_field;
3325                 }
3326                 /*
3327                  * Reject READ_* or WRITE_* with overflow/underflow for
3328                  * type SCF_SCSI_DATA_SG_IO_CDB.
3329                  */
3330                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3331                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3332                                 " CDB on non 512-byte sector setup subsystem"
3333                                 " plugin: %s\n", dev->transport->name);
3334                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3335                         goto out_invalid_cdb_field;
3336                 }
3337
3338                 if (size > cmd->data_length) {
3339                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3340                         cmd->residual_count = (size - cmd->data_length);
3341                 } else {
3342                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3343                         cmd->residual_count = (cmd->data_length - size);
3344                 }
3345                 cmd->data_length = size;
3346         }
3347
3348         /* Let's limit control cdbs to a page, for simplicity's sake. */
3349         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3350             size > PAGE_SIZE)
3351                 goto out_invalid_cdb_field;
3352
3353         transport_set_supported_SAM_opcode(cmd);
3354         return ret;
3355
3356 out_unsupported_cdb:
3357         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3358         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3359         return -EINVAL;
3360 out_invalid_cdb_field:
3361         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3362         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3363         return -EINVAL;
3364 }
3365
3366 /*
3367  * Called from transport_generic_complete_ok() and
3368  * transport_generic_request_failure() to determine which dormant/delayed
3369  * and ordered cmds need to have their tasks added to the execution queue.
3370  */
3371 static void transport_complete_task_attr(struct se_cmd *cmd)
3372 {
3373         struct se_device *dev = cmd->se_dev;
3374         struct se_cmd *cmd_p, *cmd_tmp;
3375         int new_active_tasks = 0;
3376
3377         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3378                 atomic_dec(&dev->simple_cmds);
3379                 smp_mb__after_atomic_dec();
3380                 dev->dev_cur_ordered_id++;
3381                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3382                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3383                         cmd->se_ordered_id);
3384         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3385                 atomic_dec(&dev->dev_hoq_count);
3386                 smp_mb__after_atomic_dec();
3387                 dev->dev_cur_ordered_id++;
3388                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3389                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3390                         cmd->se_ordered_id);
3391         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3392                 spin_lock(&dev->ordered_cmd_lock);
3393                 list_del(&cmd->se_ordered_node);
3394                 atomic_dec(&dev->dev_ordered_sync);
3395                 smp_mb__after_atomic_dec();
3396                 spin_unlock(&dev->ordered_cmd_lock);
3397
3398                 dev->dev_cur_ordered_id++;
3399                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3400                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3401         }
3402         /*
3403          * Process all commands up to the last received
3404          * ORDERED task attribute which requires another blocking
3405          * boundary
3406          */
3407         spin_lock(&dev->delayed_cmd_lock);
3408         list_for_each_entry_safe(cmd_p, cmd_tmp,
3409                         &dev->delayed_cmd_list, se_delayed_node) {
3410
3411                 list_del(&cmd_p->se_delayed_node);
3412                 spin_unlock(&dev->delayed_cmd_lock);
3413
3414                 pr_debug("Calling add_tasks() for"
3415                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3416                         " Dormant -> Active, se_ordered_id: %u\n",
3417                         cmd_p->t_task_cdb[0],
3418                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3419
3420                 transport_add_tasks_from_cmd(cmd_p);
3421                 new_active_tasks++;
3422
3423                 spin_lock(&dev->delayed_cmd_lock);
3424                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3425                         break;
3426         }
3427         spin_unlock(&dev->delayed_cmd_lock);
3428         /*
3429          * If new tasks have become active, wake up the transport thread
3430          * to do the processing of the Active tasks.
3431          */
3432         if (new_active_tasks != 0)
3433                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3434 }
3435
3436 static void transport_complete_qf(struct se_cmd *cmd)
3437 {
3438         int ret = 0;
3439
3440         transport_stop_all_task_timers(cmd);
3441         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3442                 transport_complete_task_attr(cmd);
3443
3444         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3445                 ret = cmd->se_tfo->queue_status(cmd);
3446                 if (ret)
3447                         goto out;
3448         }
3449
3450         switch (cmd->data_direction) {
3451         case DMA_FROM_DEVICE:
3452                 ret = cmd->se_tfo->queue_data_in(cmd);
3453                 break;
3454         case DMA_TO_DEVICE:
3455                 if (cmd->t_bidi_data_sg) {
3456                         ret = cmd->se_tfo->queue_data_in(cmd);
3457                         if (ret < 0)
3458                                 break;
3459                 }
3460                 /* Fall through for DMA_TO_DEVICE */
3461         case DMA_NONE:
3462                 ret = cmd->se_tfo->queue_status(cmd);
3463                 break;
3464         default:
3465                 break;
3466         }
3467
3468 out:
3469         if (ret < 0) {
3470                 transport_handle_queue_full(cmd, cmd->se_dev);
3471                 return;
3472         }
3473         transport_lun_remove_cmd(cmd);
3474         transport_cmd_check_stop_to_fabric(cmd);
3475 }
3476
3477 static void transport_handle_queue_full(
3478         struct se_cmd *cmd,
3479         struct se_device *dev)
3480 {
3481         spin_lock_irq(&dev->qf_cmd_lock);
3482         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3483         atomic_inc(&dev->dev_qf_count);
3484         smp_mb__after_atomic_inc();
3485         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3486
3487         schedule_work(&cmd->se_dev->qf_work_queue);
3488 }
3489
3490 static void transport_generic_complete_ok(struct se_cmd *cmd)
3491 {
3492         int reason = 0, ret;
3493         /*
3494          * Check if we need to move delayed/dormant tasks from cmds on the
3495          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3496          * Attribute.
3497          */
3498         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3499                 transport_complete_task_attr(cmd);
3500         /*
3501          * Check to schedule QUEUE_FULL work, or execute an existing
3502          * cmd->transport_qf_callback()
3503          */
3504         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3505                 schedule_work(&cmd->se_dev->qf_work_queue);
3506
3507         /*
3508          * Check if we need to retrieve a sense buffer from
3509          * the struct se_cmd in question.
3510          */
3511         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3512                 if (transport_get_sense_data(cmd) < 0)
3513                         reason = TCM_NON_EXISTENT_LUN;
3514
3515                 /*
3516                  * Only set when an struct se_task->task_scsi_status returned
3517                  * a non GOOD status.
3518                  */
3519                 if (cmd->scsi_status) {
3520                         ret = transport_send_check_condition_and_sense(
3521                                         cmd, reason, 1);
3522                         if (ret == -EAGAIN)
3523                                 goto queue_full;
3524
3525                         transport_lun_remove_cmd(cmd);
3526                         transport_cmd_check_stop_to_fabric(cmd);
3527                         return;
3528                 }
3529         }
3530         /*
3531          * Check for a callback, used by amongst other things
3532          * XDWRITE_READ_10 emulation.
3533          */
3534         if (cmd->transport_complete_callback)
3535                 cmd->transport_complete_callback(cmd);
3536
3537         switch (cmd->data_direction) {
3538         case DMA_FROM_DEVICE:
3539                 spin_lock(&cmd->se_lun->lun_sep_lock);
3540                 if (cmd->se_lun->lun_sep) {
3541                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3542                                         cmd->data_length;
3543                 }
3544                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3545
3546                 ret = cmd->se_tfo->queue_data_in(cmd);
3547                 if (ret == -EAGAIN)
3548                         goto queue_full;
3549                 break;
3550         case DMA_TO_DEVICE:
3551                 spin_lock(&cmd->se_lun->lun_sep_lock);
3552                 if (cmd->se_lun->lun_sep) {
3553                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3554                                 cmd->data_length;
3555                 }
3556                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3557                 /*
3558                  * Check if we need to send READ payload for BIDI-COMMAND
3559                  */
3560                 if (cmd->t_bidi_data_sg) {
3561                         spin_lock(&cmd->se_lun->lun_sep_lock);
3562                         if (cmd->se_lun->lun_sep) {
3563                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3564                                         cmd->data_length;
3565                         }
3566                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3567                         ret = cmd->se_tfo->queue_data_in(cmd);
3568                         if (ret == -EAGAIN)
3569                                 goto queue_full;
3570                         break;
3571                 }
3572                 /* Fall through for DMA_TO_DEVICE */
3573         case DMA_NONE:
3574                 ret = cmd->se_tfo->queue_status(cmd);
3575                 if (ret == -EAGAIN)
3576                         goto queue_full;
3577                 break;
3578         default:
3579                 break;
3580         }
3581
3582         transport_lun_remove_cmd(cmd);
3583         transport_cmd_check_stop_to_fabric(cmd);
3584         return;
3585
3586 queue_full:
3587         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3588                 " data_direction: %d\n", cmd, cmd->data_direction);
3589         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3590         transport_handle_queue_full(cmd, cmd->se_dev);
3591 }
3592
3593 static void transport_free_dev_tasks(struct se_cmd *cmd)
3594 {
3595         struct se_task *task, *task_tmp;
3596         unsigned long flags;
3597         LIST_HEAD(dispose_list);
3598
3599         spin_lock_irqsave(&cmd->t_state_lock, flags);
3600         list_for_each_entry_safe(task, task_tmp,
3601                                 &cmd->t_task_list, t_list) {
3602                 if (!(task->task_flags & TF_ACTIVE))
3603                         list_move_tail(&task->t_list, &dispose_list);
3604         }
3605         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3606
3607         while (!list_empty(&dispose_list)) {
3608                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3609
3610                 kfree(task->task_sg_bidi);
3611                 kfree(task->task_sg);
3612
3613                 list_del(&task->t_list);
3614
3615                 cmd->se_dev->transport->free_task(task);
3616         }
3617 }
3618
3619 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3620 {
3621         struct scatterlist *sg;
3622         int count;
3623
3624         for_each_sg(sgl, sg, nents, count)
3625                 __free_page(sg_page(sg));
3626
3627         kfree(sgl);
3628 }
3629
3630 static inline void transport_free_pages(struct se_cmd *cmd)
3631 {
3632         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3633                 return;
3634
3635         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3636         cmd->t_data_sg = NULL;
3637         cmd->t_data_nents = 0;
3638
3639         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3640         cmd->t_bidi_data_sg = NULL;
3641         cmd->t_bidi_data_nents = 0;
3642 }
3643
3644 /**
3645  * transport_put_cmd - release a reference to a command
3646  * @cmd:       command to release
3647  *
3648  * This routine releases our reference to the command and frees it if possible.
3649  */
3650 static void transport_put_cmd(struct se_cmd *cmd)
3651 {
3652         unsigned long flags;
3653         int free_tasks = 0;
3654
3655         spin_lock_irqsave(&cmd->t_state_lock, flags);
3656         if (atomic_read(&cmd->t_fe_count)) {
3657                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3658                         goto out_busy;
3659         }
3660
3661         if (atomic_read(&cmd->t_se_count)) {
3662                 if (!atomic_dec_and_test(&cmd->t_se_count))
3663                         goto out_busy;
3664         }
3665
3666         if (atomic_read(&cmd->transport_dev_active)) {
3667                 atomic_set(&cmd->transport_dev_active, 0);
3668                 transport_all_task_dev_remove_state(cmd);
3669                 free_tasks = 1;
3670         }
3671         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3672
3673         if (free_tasks != 0)
3674                 transport_free_dev_tasks(cmd);
3675
3676         transport_free_pages(cmd);
3677         transport_release_cmd(cmd);
3678         return;
3679 out_busy:
3680         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3681 }
3682
3683 /*
3684  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3685  * allocating in the core.
3686  * @cmd:  Associated se_cmd descriptor
3687  * @mem:  SGL style memory for TCM WRITE / READ
3688  * @sg_mem_num: Number of SGL elements
3689  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3690  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3691  *
3692  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3693  * of parameters.
3694  */
3695 int transport_generic_map_mem_to_cmd(
3696         struct se_cmd *cmd,
3697         struct scatterlist *sgl,
3698         u32 sgl_count,
3699         struct scatterlist *sgl_bidi,
3700         u32 sgl_bidi_count)
3701 {
3702         if (!sgl || !sgl_count)
3703                 return 0;
3704
3705         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3706             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3707
3708                 cmd->t_data_sg = sgl;
3709                 cmd->t_data_nents = sgl_count;
3710
3711                 if (sgl_bidi && sgl_bidi_count) {
3712                         cmd->t_bidi_data_sg = sgl_bidi;
3713                         cmd->t_bidi_data_nents = sgl_bidi_count;
3714                 }
3715                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3716         }
3717
3718         return 0;
3719 }
3720 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3721
3722 static int transport_new_cmd_obj(struct se_cmd *cmd)
3723 {
3724         struct se_device *dev = cmd->se_dev;
3725         int set_counts = 1, rc, task_cdbs;
3726
3727         /*
3728          * Setup any BIDI READ tasks and memory from
3729          * cmd->t_mem_bidi_list so the READ struct se_tasks
3730          * are queued first for the non pSCSI passthrough case.
3731          */
3732         if (cmd->t_bidi_data_sg &&
3733             (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3734                 rc = transport_allocate_tasks(cmd,
3735                                               cmd->t_task_lba,
3736                                               DMA_FROM_DEVICE,
3737                                               cmd->t_bidi_data_sg,
3738                                               cmd->t_bidi_data_nents);
3739                 if (rc <= 0) {
3740                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3741                         cmd->scsi_sense_reason =
3742                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3743                         return -EINVAL;
3744                 }
3745                 atomic_inc(&cmd->t_fe_count);
3746                 atomic_inc(&cmd->t_se_count);
3747                 set_counts = 0;
3748         }
3749         /*
3750          * Setup the tasks and memory from cmd->t_mem_list
3751          * Note for BIDI transfers this will contain the WRITE payload
3752          */
3753         task_cdbs = transport_allocate_tasks(cmd,
3754                                              cmd->t_task_lba,
3755                                              cmd->data_direction,
3756                                              cmd->t_data_sg,
3757                                              cmd->t_data_nents);
3758         if (task_cdbs <= 0) {
3759                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3760                 cmd->scsi_sense_reason =
3761                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3762                 return -EINVAL;
3763         }
3764
3765         if (set_counts) {
3766                 atomic_inc(&cmd->t_fe_count);
3767                 atomic_inc(&cmd->t_se_count);
3768         }
3769
3770         cmd->t_task_list_num = task_cdbs;
3771
3772         atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3773         atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3774         atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3775         return 0;
3776 }
3777
3778 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3779 {
3780         struct scatterlist *sg = cmd->t_data_sg;
3781
3782         BUG_ON(!sg);
3783         /*
3784          * We need to take into account a possible offset here for fabrics like
3785          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3786          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3787          */
3788         return kmap(sg_page(sg)) + sg->offset;
3789 }
3790 EXPORT_SYMBOL(transport_kmap_first_data_page);
3791
3792 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3793 {
3794         kunmap(sg_page(cmd->t_data_sg));
3795 }
3796 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3797
3798 static int
3799 transport_generic_get_mem(struct se_cmd *cmd)
3800 {
3801         u32 length = cmd->data_length;
3802         unsigned int nents;
3803         struct page *page;
3804         int i = 0;
3805
3806         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3807         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3808         if (!cmd->t_data_sg)
3809                 return -ENOMEM;
3810
3811         cmd->t_data_nents = nents;
3812         sg_init_table(cmd->t_data_sg, nents);
3813
3814         while (length) {
3815                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3816                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3817                 if (!page)
3818                         goto out;
3819
3820                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3821                 length -= page_len;
3822                 i++;
3823         }
3824         return 0;
3825
3826 out:
3827         while (i >= 0) {
3828                 __free_page(sg_page(&cmd->t_data_sg[i]));
3829                 i--;
3830         }
3831         kfree(cmd->t_data_sg);
3832         cmd->t_data_sg = NULL;
3833         return -ENOMEM;
3834 }
3835
3836 /* Reduce sectors if they are too long for the device */
3837 static inline sector_t transport_limit_task_sectors(
3838         struct se_device *dev,
3839         unsigned long long lba,
3840         sector_t sectors)
3841 {
3842         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3843
3844         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3845                 if ((lba + sectors) > transport_dev_end_lba(dev))
3846                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3847
3848         return sectors;
3849 }
3850
3851
3852 /*
3853  * This function can be used by HW target mode drivers to create a linked
3854  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3855  * This is intended to be called during the completion path by TCM Core
3856  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3857  */
3858 void transport_do_task_sg_chain(struct se_cmd *cmd)
3859 {
3860         struct scatterlist *sg_first = NULL;
3861         struct scatterlist *sg_prev = NULL;
3862         int sg_prev_nents = 0;
3863         struct scatterlist *sg;
3864         struct se_task *task;
3865         u32 chained_nents = 0;
3866         int i;
3867
3868         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3869
3870         /*
3871          * Walk the struct se_task list and setup scatterlist chains
3872          * for each contiguously allocated struct se_task->task_sg[].
3873          */
3874         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3875                 if (!task->task_sg)
3876                         continue;
3877
3878                 if (!sg_first) {
3879                         sg_first = task->task_sg;
3880                         chained_nents = task->task_sg_nents;
3881                 } else {
3882                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3883                         chained_nents += task->task_sg_nents;
3884                 }
3885                 /*
3886                  * For the padded tasks, use the extra SGL vector allocated
3887                  * in transport_allocate_data_tasks() for the sg_prev_nents
3888                  * offset into sg_chain() above.
3889                  *
3890                  * We do not need the padding for the last task (or a single
3891                  * task), but in that case we will never use the sg_prev_nents
3892                  * value below which would be incorrect.
3893                  */
3894                 sg_prev_nents = (task->task_sg_nents + 1);
3895                 sg_prev = task->task_sg;
3896         }
3897         /*
3898          * Setup the starting pointer and total t_tasks_sg_linked_no including
3899          * padding SGs for linking and to mark the end.
3900          */
3901         cmd->t_tasks_sg_chained = sg_first;
3902         cmd->t_tasks_sg_chained_no = chained_nents;
3903
3904         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3905                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3906                 cmd->t_tasks_sg_chained_no);
3907
3908         for_each_sg(cmd->t_tasks_sg_chained, sg,
3909                         cmd->t_tasks_sg_chained_no, i) {
3910
3911                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3912                         i, sg, sg_page(sg), sg->length, sg->offset);
3913                 if (sg_is_chain(sg))
3914                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3915                 if (sg_is_last(sg))
3916                         pr_debug("SG: %p sg_is_last=1\n", sg);
3917         }
3918 }
3919 EXPORT_SYMBOL(transport_do_task_sg_chain);
3920
3921 /*
3922  * Break up cmd into chunks transport can handle
3923  */
3924 static int transport_allocate_data_tasks(
3925         struct se_cmd *cmd,
3926         unsigned long long lba,
3927         enum dma_data_direction data_direction,
3928         struct scatterlist *sgl,
3929         unsigned int sgl_nents)
3930 {
3931         struct se_task *task;
3932         struct se_device *dev = cmd->se_dev;
3933         unsigned long flags;
3934         int task_count, i;
3935         sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3936         u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3937         struct scatterlist *sg;
3938         struct scatterlist *cmd_sg;
3939
3940         WARN_ON(cmd->data_length % sector_size);
3941         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3942         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3943         
3944         cmd_sg = sgl;
3945         for (i = 0; i < task_count; i++) {
3946                 unsigned int task_size, task_sg_nents_padded;
3947                 int count;
3948
3949                 task = transport_generic_get_task(cmd, data_direction);
3950                 if (!task)
3951                         return -ENOMEM;
3952
3953                 task->task_lba = lba;
3954                 task->task_sectors = min(sectors, dev_max_sectors);
3955                 task->task_size = task->task_sectors * sector_size;
3956
3957                 /*
3958                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3959                  * in order to calculate the number per task SGL entries
3960                  */
3961                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3962                 /*
3963                  * Check if the fabric module driver is requesting that all
3964                  * struct se_task->task_sg[] be chained together..  If so,
3965                  * then allocate an extra padding SG entry for linking and
3966                  * marking the end of the chained SGL for every task except
3967                  * the last one for (task_count > 1) operation, or skipping
3968                  * the extra padding for the (task_count == 1) case.
3969                  */
3970                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3971                         task_sg_nents_padded = (task->task_sg_nents + 1);
3972                 } else
3973                         task_sg_nents_padded = task->task_sg_nents;
3974
3975                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3976                                         task_sg_nents_padded, GFP_KERNEL);
3977                 if (!task->task_sg) {
3978                         cmd->se_dev->transport->free_task(task);
3979                         return -ENOMEM;
3980                 }
3981
3982                 sg_init_table(task->task_sg, task_sg_nents_padded);
3983
3984                 task_size = task->task_size;
3985
3986                 /* Build new sgl, only up to task_size */
3987                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3988                         if (cmd_sg->length > task_size)
3989                                 break;
3990
3991                         *sg = *cmd_sg;
3992                         task_size -= cmd_sg->length;
3993                         cmd_sg = sg_next(cmd_sg);
3994                 }
3995
3996                 lba += task->task_sectors;
3997                 sectors -= task->task_sectors;
3998
3999                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4000                 list_add_tail(&task->t_list, &cmd->t_task_list);
4001                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4002         }
4003
4004         return task_count;
4005 }
4006
4007 static int
4008 transport_allocate_control_task(struct se_cmd *cmd)
4009 {
4010         struct se_task *task;
4011         unsigned long flags;
4012
4013         task = transport_generic_get_task(cmd, cmd->data_direction);
4014         if (!task)
4015                 return -ENOMEM;
4016
4017         task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4018                                 GFP_KERNEL);
4019         if (!task->task_sg) {
4020                 cmd->se_dev->transport->free_task(task);
4021                 return -ENOMEM;
4022         }
4023
4024         memcpy(task->task_sg, cmd->t_data_sg,
4025                sizeof(struct scatterlist) * cmd->t_data_nents);
4026         task->task_size = cmd->data_length;
4027         task->task_sg_nents = cmd->t_data_nents;
4028
4029         spin_lock_irqsave(&cmd->t_state_lock, flags);
4030         list_add_tail(&task->t_list, &cmd->t_task_list);
4031         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4032
4033         /* Success! Return number of tasks allocated */
4034         return 1;
4035 }
4036
4037 static u32 transport_allocate_tasks(
4038         struct se_cmd *cmd,
4039         unsigned long long lba,
4040         enum dma_data_direction data_direction,
4041         struct scatterlist *sgl,
4042         unsigned int sgl_nents)
4043 {
4044         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4045                 if (transport_cmd_get_valid_sectors(cmd) < 0)
4046                         return -EINVAL;
4047
4048                 return transport_allocate_data_tasks(cmd, lba, data_direction,
4049                                                      sgl, sgl_nents);
4050         } else
4051                 return transport_allocate_control_task(cmd);
4052
4053 }
4054
4055
4056 /*       transport_generic_new_cmd(): Called from transport_processing_thread()
4057  *
4058  *       Allocate storage transport resources from a set of values predefined
4059  *       by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4060  *       Any non zero return here is treated as an "out of resource' op here.
4061  */
4062         /*
4063          * Generate struct se_task(s) and/or their payloads for this CDB.
4064          */
4065 int transport_generic_new_cmd(struct se_cmd *cmd)
4066 {
4067         int ret = 0;
4068
4069         /*
4070          * Determine is the TCM fabric module has already allocated physical
4071          * memory, and is directly calling transport_generic_map_mem_to_cmd()
4072          * beforehand.
4073          */
4074         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4075             cmd->data_length) {
4076                 ret = transport_generic_get_mem(cmd);
4077                 if (ret < 0)
4078                         return ret;
4079         }
4080         /*
4081          * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4082          * control or data CDB types, and perform the map to backend subsystem
4083          * code from SGL memory allocated here by transport_generic_get_mem(), or
4084          * via pre-existing SGL memory setup explictly by fabric module code with
4085          * transport_generic_map_mem_to_cmd().
4086          */
4087         ret = transport_new_cmd_obj(cmd);
4088         if (ret < 0)
4089                 return ret;
4090         /*
4091          * For WRITEs, let the fabric know its buffer is ready..
4092          * This WRITE struct se_cmd (and all of its associated struct se_task's)
4093          * will be added to the struct se_device execution queue after its WRITE
4094          * data has arrived. (ie: It gets handled by the transport processing
4095          * thread a second time)
4096          */
4097         if (cmd->data_direction == DMA_TO_DEVICE) {
4098                 transport_add_tasks_to_state_queue(cmd);
4099                 return transport_generic_write_pending(cmd);
4100         }
4101         /*
4102          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4103          * to the execution queue.
4104          */
4105         transport_execute_tasks(cmd);
4106         return 0;
4107 }
4108 EXPORT_SYMBOL(transport_generic_new_cmd);
4109
4110 /*      transport_generic_process_write():
4111  *
4112  *
4113  */
4114 void transport_generic_process_write(struct se_cmd *cmd)
4115 {
4116         transport_execute_tasks(cmd);
4117 }
4118 EXPORT_SYMBOL(transport_generic_process_write);
4119
4120 static void transport_write_pending_qf(struct se_cmd *cmd)
4121 {
4122         if (cmd->se_tfo->write_pending(cmd) == -EAGAIN) {
4123                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
4124                          cmd);
4125                 transport_handle_queue_full(cmd, cmd->se_dev);
4126         }
4127 }
4128
4129 static int transport_generic_write_pending(struct se_cmd *cmd)
4130 {
4131         unsigned long flags;
4132         int ret;
4133
4134         spin_lock_irqsave(&cmd->t_state_lock, flags);
4135         cmd->t_state = TRANSPORT_WRITE_PENDING;
4136         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4137
4138         /*
4139          * Clear the se_cmd for WRITE_PENDING status in order to set
4140          * cmd->t_transport_active=0 so that transport_generic_handle_data
4141          * can be called from HW target mode interrupt code.  This is safe
4142          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4143          * because the se_cmd->se_lun pointer is not being cleared.
4144          */
4145         transport_cmd_check_stop(cmd, 1, 0);
4146
4147         /*
4148          * Call the fabric write_pending function here to let the
4149          * frontend know that WRITE buffers are ready.
4150          */
4151         ret = cmd->se_tfo->write_pending(cmd);
4152         if (ret == -EAGAIN)
4153                 goto queue_full;
4154         else if (ret < 0)
4155                 return ret;
4156
4157         return PYX_TRANSPORT_WRITE_PENDING;
4158
4159 queue_full:
4160         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4161         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4162         transport_handle_queue_full(cmd, cmd->se_dev);
4163         return ret;
4164 }
4165
4166 /**
4167  * transport_release_cmd - free a command
4168  * @cmd:       command to free
4169  *
4170  * This routine unconditionally frees a command, and reference counting
4171  * or list removal must be done in the caller.
4172  */
4173 void transport_release_cmd(struct se_cmd *cmd)
4174 {
4175         BUG_ON(!cmd->se_tfo);
4176
4177         if (cmd->se_tmr_req)
4178                 core_tmr_release_req(cmd->se_tmr_req);
4179         if (cmd->t_task_cdb != cmd->__t_task_cdb)
4180                 kfree(cmd->t_task_cdb);
4181         cmd->se_tfo->release_cmd(cmd);
4182 }
4183 EXPORT_SYMBOL(transport_release_cmd);
4184
4185 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4186 {
4187         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4188                 if (wait_for_tasks && cmd->se_tmr_req)
4189                          transport_wait_for_tasks(cmd);
4190
4191                 transport_release_cmd(cmd);
4192         } else {
4193                 if (wait_for_tasks)
4194                         transport_wait_for_tasks(cmd);
4195
4196                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4197
4198                 if (cmd->se_lun)
4199                         transport_lun_remove_cmd(cmd);
4200
4201                 transport_free_dev_tasks(cmd);
4202
4203                 transport_put_cmd(cmd);
4204         }
4205 }
4206 EXPORT_SYMBOL(transport_generic_free_cmd);
4207
4208 /*      transport_lun_wait_for_tasks():
4209  *
4210  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4211  *      an struct se_lun to be successfully shutdown.
4212  */
4213 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4214 {
4215         unsigned long flags;
4216         int ret;
4217         /*
4218          * If the frontend has already requested this struct se_cmd to
4219          * be stopped, we can safely ignore this struct se_cmd.
4220          */
4221         spin_lock_irqsave(&cmd->t_state_lock, flags);
4222         if (atomic_read(&cmd->t_transport_stop)) {
4223                 atomic_set(&cmd->transport_lun_stop, 0);
4224                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4225                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4226                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4227                 transport_cmd_check_stop(cmd, 1, 0);
4228                 return -EPERM;
4229         }
4230         atomic_set(&cmd->transport_lun_fe_stop, 1);
4231         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4232
4233         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4234
4235         ret = transport_stop_tasks_for_cmd(cmd);
4236
4237         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4238                         " %d\n", cmd, cmd->t_task_list_num, ret);
4239         if (!ret) {
4240                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4241                                 cmd->se_tfo->get_task_tag(cmd));
4242                 wait_for_completion(&cmd->transport_lun_stop_comp);
4243                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4244                                 cmd->se_tfo->get_task_tag(cmd));
4245         }
4246         transport_remove_cmd_from_queue(cmd);
4247
4248         return 0;
4249 }
4250
4251 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4252 {
4253         struct se_cmd *cmd = NULL;
4254         unsigned long lun_flags, cmd_flags;
4255         /*
4256          * Do exception processing and return CHECK_CONDITION status to the
4257          * Initiator Port.
4258          */
4259         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4260         while (!list_empty(&lun->lun_cmd_list)) {
4261                 cmd = list_first_entry(&lun->lun_cmd_list,
4262                        struct se_cmd, se_lun_node);
4263                 list_del(&cmd->se_lun_node);
4264
4265                 atomic_set(&cmd->transport_lun_active, 0);
4266                 /*
4267                  * This will notify iscsi_target_transport.c:
4268                  * transport_cmd_check_stop() that a LUN shutdown is in
4269                  * progress for the iscsi_cmd_t.
4270                  */
4271                 spin_lock(&cmd->t_state_lock);
4272                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4273                         "_lun_stop for  ITT: 0x%08x\n",
4274                         cmd->se_lun->unpacked_lun,
4275                         cmd->se_tfo->get_task_tag(cmd));
4276                 atomic_set(&cmd->transport_lun_stop, 1);
4277                 spin_unlock(&cmd->t_state_lock);
4278
4279                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4280
4281                 if (!cmd->se_lun) {
4282                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4283                                 cmd->se_tfo->get_task_tag(cmd),
4284                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4285                         BUG();
4286                 }
4287                 /*
4288                  * If the Storage engine still owns the iscsi_cmd_t, determine
4289                  * and/or stop its context.
4290                  */
4291                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4292                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4293                         cmd->se_tfo->get_task_tag(cmd));
4294
4295                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4296                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4297                         continue;
4298                 }
4299
4300                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4301                         "_wait_for_tasks(): SUCCESS\n",
4302                         cmd->se_lun->unpacked_lun,
4303                         cmd->se_tfo->get_task_tag(cmd));
4304
4305                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4306                 if (!atomic_read(&cmd->transport_dev_active)) {
4307                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4308                         goto check_cond;
4309                 }
4310                 atomic_set(&cmd->transport_dev_active, 0);
4311                 transport_all_task_dev_remove_state(cmd);
4312                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4313
4314                 transport_free_dev_tasks(cmd);
4315                 /*
4316                  * The Storage engine stopped this struct se_cmd before it was
4317                  * send to the fabric frontend for delivery back to the
4318                  * Initiator Node.  Return this SCSI CDB back with an
4319                  * CHECK_CONDITION status.
4320                  */
4321 check_cond:
4322                 transport_send_check_condition_and_sense(cmd,
4323                                 TCM_NON_EXISTENT_LUN, 0);
4324                 /*
4325                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4326                  * be released, notify the waiting thread now that LU has
4327                  * finished accessing it.
4328                  */
4329                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4330                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4331                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4332                                 " struct se_cmd: %p ITT: 0x%08x\n",
4333                                 lun->unpacked_lun,
4334                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4335
4336                         spin_unlock_irqrestore(&cmd->t_state_lock,
4337                                         cmd_flags);
4338                         transport_cmd_check_stop(cmd, 1, 0);
4339                         complete(&cmd->transport_lun_fe_stop_comp);
4340                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4341                         continue;
4342                 }
4343                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4344                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4345
4346                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4347                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4348         }
4349         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4350 }
4351
4352 static int transport_clear_lun_thread(void *p)
4353 {
4354         struct se_lun *lun = (struct se_lun *)p;
4355
4356         __transport_clear_lun_from_sessions(lun);
4357         complete(&lun->lun_shutdown_comp);
4358
4359         return 0;
4360 }
4361
4362 int transport_clear_lun_from_sessions(struct se_lun *lun)
4363 {
4364         struct task_struct *kt;
4365
4366         kt = kthread_run(transport_clear_lun_thread, lun,
4367                         "tcm_cl_%u", lun->unpacked_lun);
4368         if (IS_ERR(kt)) {
4369                 pr_err("Unable to start clear_lun thread\n");
4370                 return PTR_ERR(kt);
4371         }
4372         wait_for_completion(&lun->lun_shutdown_comp);
4373
4374         return 0;
4375 }
4376
4377 /**
4378  * transport_wait_for_tasks - wait for completion to occur
4379  * @cmd:        command to wait
4380  *
4381  * Called from frontend fabric context to wait for storage engine
4382  * to pause and/or release frontend generated struct se_cmd.
4383  */
4384 void transport_wait_for_tasks(struct se_cmd *cmd)
4385 {
4386         unsigned long flags;
4387
4388         spin_lock_irqsave(&cmd->t_state_lock, flags);
4389         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4390                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4391                 return;
4392         }
4393         /*
4394          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4395          * has been set in transport_set_supported_SAM_opcode().
4396          */
4397         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4398                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4399                 return;
4400         }
4401         /*
4402          * If we are already stopped due to an external event (ie: LUN shutdown)
4403          * sleep until the connection can have the passed struct se_cmd back.
4404          * The cmd->transport_lun_stopped_sem will be upped by
4405          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4406          * has completed its operation on the struct se_cmd.
4407          */
4408         if (atomic_read(&cmd->transport_lun_stop)) {
4409
4410                 pr_debug("wait_for_tasks: Stopping"
4411                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4412                         "_stop_comp); for ITT: 0x%08x\n",
4413                         cmd->se_tfo->get_task_tag(cmd));
4414                 /*
4415                  * There is a special case for WRITES where a FE exception +
4416                  * LUN shutdown means ConfigFS context is still sleeping on
4417                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4418                  * We go ahead and up transport_lun_stop_comp just to be sure
4419                  * here.
4420                  */
4421                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4422                 complete(&cmd->transport_lun_stop_comp);
4423                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4424                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4425
4426                 transport_all_task_dev_remove_state(cmd);
4427                 /*
4428                  * At this point, the frontend who was the originator of this
4429                  * struct se_cmd, now owns the structure and can be released through
4430                  * normal means below.
4431                  */
4432                 pr_debug("wait_for_tasks: Stopped"
4433                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4434                         "stop_comp); for ITT: 0x%08x\n",
4435                         cmd->se_tfo->get_task_tag(cmd));
4436
4437                 atomic_set(&cmd->transport_lun_stop, 0);
4438         }
4439         if (!atomic_read(&cmd->t_transport_active) ||
4440              atomic_read(&cmd->t_transport_aborted)) {
4441                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4442                 return;
4443         }
4444
4445         atomic_set(&cmd->t_transport_stop, 1);
4446
4447         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4448                 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4449                 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4450                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4451                 cmd->deferred_t_state);
4452
4453         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4454
4455         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4456
4457         wait_for_completion(&cmd->t_transport_stop_comp);
4458
4459         spin_lock_irqsave(&cmd->t_state_lock, flags);
4460         atomic_set(&cmd->t_transport_active, 0);
4461         atomic_set(&cmd->t_transport_stop, 0);
4462
4463         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4464                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4465                 cmd->se_tfo->get_task_tag(cmd));
4466
4467         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4468 }
4469 EXPORT_SYMBOL(transport_wait_for_tasks);
4470
4471 static int transport_get_sense_codes(
4472         struct se_cmd *cmd,
4473         u8 *asc,
4474         u8 *ascq)
4475 {
4476         *asc = cmd->scsi_asc;
4477         *ascq = cmd->scsi_ascq;
4478
4479         return 0;
4480 }
4481
4482 static int transport_set_sense_codes(
4483         struct se_cmd *cmd,
4484         u8 asc,
4485         u8 ascq)
4486 {
4487         cmd->scsi_asc = asc;
4488         cmd->scsi_ascq = ascq;
4489
4490         return 0;
4491 }
4492
4493 int transport_send_check_condition_and_sense(
4494         struct se_cmd *cmd,
4495         u8 reason,
4496         int from_transport)
4497 {
4498         unsigned char *buffer = cmd->sense_buffer;
4499         unsigned long flags;
4500         int offset;
4501         u8 asc = 0, ascq = 0;
4502
4503         spin_lock_irqsave(&cmd->t_state_lock, flags);
4504         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4505                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4506                 return 0;
4507         }
4508         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4509         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4510
4511         if (!reason && from_transport)
4512                 goto after_reason;
4513
4514         if (!from_transport)
4515                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4516         /*
4517          * Data Segment and SenseLength of the fabric response PDU.
4518          *
4519          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4520          * from include/scsi/scsi_cmnd.h
4521          */
4522         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4523                                 TRANSPORT_SENSE_BUFFER);
4524         /*
4525          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4526          * SENSE KEY values from include/scsi/scsi.h
4527          */
4528         switch (reason) {
4529         case TCM_NON_EXISTENT_LUN:
4530                 /* CURRENT ERROR */
4531                 buffer[offset] = 0x70;
4532                 /* ILLEGAL REQUEST */
4533                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4534                 /* LOGICAL UNIT NOT SUPPORTED */
4535                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4536                 break;
4537         case TCM_UNSUPPORTED_SCSI_OPCODE:
4538         case TCM_SECTOR_COUNT_TOO_MANY:
4539                 /* CURRENT ERROR */
4540                 buffer[offset] = 0x70;
4541                 /* ILLEGAL REQUEST */
4542                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4543                 /* INVALID COMMAND OPERATION CODE */
4544                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4545                 break;
4546         case TCM_UNKNOWN_MODE_PAGE:
4547                 /* CURRENT ERROR */
4548                 buffer[offset] = 0x70;
4549                 /* ILLEGAL REQUEST */
4550                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4551                 /* INVALID FIELD IN CDB */
4552                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4553                 break;
4554         case TCM_CHECK_CONDITION_ABORT_CMD:
4555                 /* CURRENT ERROR */
4556                 buffer[offset] = 0x70;
4557                 /* ABORTED COMMAND */
4558                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4559                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4560                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4561                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4562                 break;
4563         case TCM_INCORRECT_AMOUNT_OF_DATA:
4564                 /* CURRENT ERROR */
4565                 buffer[offset] = 0x70;
4566                 /* ABORTED COMMAND */
4567                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4568                 /* WRITE ERROR */
4569                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4570                 /* NOT ENOUGH UNSOLICITED DATA */
4571                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4572                 break;
4573         case TCM_INVALID_CDB_FIELD:
4574                 /* CURRENT ERROR */
4575                 buffer[offset] = 0x70;
4576                 /* ABORTED COMMAND */
4577                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4578                 /* INVALID FIELD IN CDB */
4579                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4580                 break;
4581         case TCM_INVALID_PARAMETER_LIST:
4582                 /* CURRENT ERROR */
4583                 buffer[offset] = 0x70;
4584                 /* ABORTED COMMAND */
4585                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4586                 /* INVALID FIELD IN PARAMETER LIST */
4587                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4588                 break;
4589         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4590                 /* CURRENT ERROR */
4591                 buffer[offset] = 0x70;
4592                 /* ABORTED COMMAND */
4593                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4594                 /* WRITE ERROR */
4595                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4596                 /* UNEXPECTED_UNSOLICITED_DATA */
4597                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4598                 break;
4599         case TCM_SERVICE_CRC_ERROR:
4600                 /* CURRENT ERROR */
4601                 buffer[offset] = 0x70;
4602                 /* ABORTED COMMAND */
4603                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4604                 /* PROTOCOL SERVICE CRC ERROR */
4605                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4606                 /* N/A */
4607                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4608                 break;
4609         case TCM_SNACK_REJECTED:
4610                 /* CURRENT ERROR */
4611                 buffer[offset] = 0x70;
4612                 /* ABORTED COMMAND */
4613                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4614                 /* READ ERROR */
4615                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4616                 /* FAILED RETRANSMISSION REQUEST */
4617                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4618                 break;
4619         case TCM_WRITE_PROTECTED:
4620                 /* CURRENT ERROR */
4621                 buffer[offset] = 0x70;
4622                 /* DATA PROTECT */
4623                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4624                 /* WRITE PROTECTED */
4625                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4626                 break;
4627         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4628                 /* CURRENT ERROR */
4629                 buffer[offset] = 0x70;
4630                 /* UNIT ATTENTION */
4631                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4632                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4633                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4634                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4635                 break;
4636         case TCM_CHECK_CONDITION_NOT_READY:
4637                 /* CURRENT ERROR */
4638                 buffer[offset] = 0x70;
4639                 /* Not Ready */
4640                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4641                 transport_get_sense_codes(cmd, &asc, &ascq);
4642                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4643                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4644                 break;
4645         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4646         default:
4647                 /* CURRENT ERROR */
4648                 buffer[offset] = 0x70;
4649                 /* ILLEGAL REQUEST */
4650                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4651                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4652                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4653                 break;
4654         }
4655         /*
4656          * This code uses linux/include/scsi/scsi.h SAM status codes!
4657          */
4658         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4659         /*
4660          * Automatically padded, this value is encoded in the fabric's
4661          * data_length response PDU containing the SCSI defined sense data.
4662          */
4663         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4664
4665 after_reason:
4666         return cmd->se_tfo->queue_status(cmd);
4667 }
4668 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4669
4670 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4671 {
4672         int ret = 0;
4673
4674         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4675                 if (!send_status ||
4676                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4677                         return 1;
4678 #if 0
4679                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4680                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4681                         cmd->t_task_cdb[0],
4682                         cmd->se_tfo->get_task_tag(cmd));
4683 #endif
4684                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4685                 cmd->se_tfo->queue_status(cmd);
4686                 ret = 1;
4687         }
4688         return ret;
4689 }
4690 EXPORT_SYMBOL(transport_check_aborted_status);
4691
4692 void transport_send_task_abort(struct se_cmd *cmd)
4693 {
4694         unsigned long flags;
4695
4696         spin_lock_irqsave(&cmd->t_state_lock, flags);
4697         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4698                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4699                 return;
4700         }
4701         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4702
4703         /*
4704          * If there are still expected incoming fabric WRITEs, we wait
4705          * until until they have completed before sending a TASK_ABORTED
4706          * response.  This response with TASK_ABORTED status will be
4707          * queued back to fabric module by transport_check_aborted_status().
4708          */
4709         if (cmd->data_direction == DMA_TO_DEVICE) {
4710                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4711                         atomic_inc(&cmd->t_transport_aborted);
4712                         smp_mb__after_atomic_inc();
4713                         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4714                         transport_new_cmd_failure(cmd);
4715                         return;
4716                 }
4717         }
4718         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4719 #if 0
4720         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4721                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4722                 cmd->se_tfo->get_task_tag(cmd));
4723 #endif
4724         cmd->se_tfo->queue_status(cmd);
4725 }
4726
4727 /*      transport_generic_do_tmr():
4728  *
4729  *
4730  */
4731 int transport_generic_do_tmr(struct se_cmd *cmd)
4732 {
4733         struct se_device *dev = cmd->se_dev;
4734         struct se_tmr_req *tmr = cmd->se_tmr_req;
4735         int ret;
4736
4737         switch (tmr->function) {
4738         case TMR_ABORT_TASK:
4739                 tmr->response = TMR_FUNCTION_REJECTED;
4740                 break;
4741         case TMR_ABORT_TASK_SET:
4742         case TMR_CLEAR_ACA:
4743         case TMR_CLEAR_TASK_SET:
4744                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4745                 break;
4746         case TMR_LUN_RESET:
4747                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4748                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4749                                          TMR_FUNCTION_REJECTED;
4750                 break;
4751         case TMR_TARGET_WARM_RESET:
4752                 tmr->response = TMR_FUNCTION_REJECTED;
4753                 break;
4754         case TMR_TARGET_COLD_RESET:
4755                 tmr->response = TMR_FUNCTION_REJECTED;
4756                 break;
4757         default:
4758                 pr_err("Uknown TMR function: 0x%02x.\n",
4759                                 tmr->function);
4760                 tmr->response = TMR_FUNCTION_REJECTED;
4761                 break;
4762         }
4763
4764         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4765         cmd->se_tfo->queue_tm_rsp(cmd);
4766
4767         transport_cmd_check_stop_to_fabric(cmd);
4768         return 0;
4769 }
4770
4771 /*      transport_processing_thread():
4772  *
4773  *
4774  */
4775 static int transport_processing_thread(void *param)
4776 {
4777         int ret;
4778         struct se_cmd *cmd;
4779         struct se_device *dev = (struct se_device *) param;
4780
4781         set_user_nice(current, -20);
4782
4783         while (!kthread_should_stop()) {
4784                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4785                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4786                                 kthread_should_stop());
4787                 if (ret < 0)
4788                         goto out;
4789
4790 get_cmd:
4791                 __transport_execute_tasks(dev);
4792
4793                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4794                 if (!cmd)
4795                         continue;
4796
4797                 switch (cmd->t_state) {
4798                 case TRANSPORT_NEW_CMD:
4799                         BUG();
4800                         break;
4801                 case TRANSPORT_NEW_CMD_MAP:
4802                         if (!cmd->se_tfo->new_cmd_map) {
4803                                 pr_err("cmd->se_tfo->new_cmd_map is"
4804                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4805                                 BUG();
4806                         }
4807                         ret = cmd->se_tfo->new_cmd_map(cmd);
4808                         if (ret < 0) {
4809                                 cmd->transport_error_status = ret;
4810                                 transport_generic_request_failure(cmd, NULL,
4811                                                 0, (cmd->data_direction !=
4812                                                     DMA_TO_DEVICE));
4813                                 break;
4814                         }
4815                         ret = transport_generic_new_cmd(cmd);
4816                         if (ret == -EAGAIN)
4817                                 break;
4818                         else if (ret < 0) {
4819                                 cmd->transport_error_status = ret;
4820                                 transport_generic_request_failure(cmd, NULL,
4821                                         0, (cmd->data_direction !=
4822                                          DMA_TO_DEVICE));
4823                         }
4824                         break;
4825                 case TRANSPORT_PROCESS_WRITE:
4826                         transport_generic_process_write(cmd);
4827                         break;
4828                 case TRANSPORT_COMPLETE_OK:
4829                         transport_stop_all_task_timers(cmd);
4830                         transport_generic_complete_ok(cmd);
4831                         break;
4832                 case TRANSPORT_REMOVE:
4833                         transport_put_cmd(cmd);
4834                         break;
4835                 case TRANSPORT_FREE_CMD_INTR:
4836                         transport_generic_free_cmd(cmd, 0);
4837                         break;
4838                 case TRANSPORT_PROCESS_TMR:
4839                         transport_generic_do_tmr(cmd);
4840                         break;
4841                 case TRANSPORT_COMPLETE_FAILURE:
4842                         transport_generic_request_failure(cmd, NULL, 1, 1);
4843                         break;
4844                 case TRANSPORT_COMPLETE_TIMEOUT:
4845                         transport_stop_all_task_timers(cmd);
4846                         transport_generic_request_timeout(cmd);
4847                         break;
4848                 case TRANSPORT_COMPLETE_QF_WP:
4849                         transport_write_pending_qf(cmd);
4850                         break;
4851                 case TRANSPORT_COMPLETE_QF_OK:
4852                         transport_complete_qf(cmd);
4853                         break;
4854                 default:
4855                         pr_err("Unknown t_state: %d deferred_t_state:"
4856                                 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
4857                                 " %u\n", cmd->t_state, cmd->deferred_t_state,
4858                                 cmd->se_tfo->get_task_tag(cmd),
4859                                 cmd->se_tfo->get_cmd_state(cmd),
4860                                 cmd->se_lun->unpacked_lun);
4861                         BUG();
4862                 }
4863
4864                 goto get_cmd;
4865         }
4866
4867 out:
4868         WARN_ON(!list_empty(&dev->state_task_list));
4869         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4870         dev->process_thread = NULL;
4871         return 0;
4872 }