]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/target/target_core_transport.c
jfs: fix error path in ialloc
[karo-tx-linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2012 RisingTide Systems LLC.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/blkdev.h>
32 #include <linux/spinlock.h>
33 #include <linux/kthread.h>
34 #include <linux/in.h>
35 #include <linux/cdrom.h>
36 #include <linux/module.h>
37 #include <linux/ratelimit.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_tcq.h>
44
45 #include <target/target_core_base.h>
46 #include <target/target_core_backend.h>
47 #include <target/target_core_fabric.h>
48 #include <target/target_core_configfs.h>
49
50 #include "target_core_internal.h"
51 #include "target_core_alua.h"
52 #include "target_core_pr.h"
53 #include "target_core_ua.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/target.h>
57
58 static struct workqueue_struct *target_completion_wq;
59 static struct kmem_cache *se_sess_cache;
60 struct kmem_cache *se_ua_cache;
61 struct kmem_cache *t10_pr_reg_cache;
62 struct kmem_cache *t10_alua_lu_gp_cache;
63 struct kmem_cache *t10_alua_lu_gp_mem_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_cache;
65 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
66
67 static void transport_complete_task_attr(struct se_cmd *cmd);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69                 struct se_device *dev);
70 static int transport_generic_get_mem(struct se_cmd *cmd);
71 static int transport_put_cmd(struct se_cmd *cmd);
72 static void target_complete_ok_work(struct work_struct *work);
73
74 int init_se_kmem_caches(void)
75 {
76         se_sess_cache = kmem_cache_create("se_sess_cache",
77                         sizeof(struct se_session), __alignof__(struct se_session),
78                         0, NULL);
79         if (!se_sess_cache) {
80                 pr_err("kmem_cache_create() for struct se_session"
81                                 " failed\n");
82                 goto out;
83         }
84         se_ua_cache = kmem_cache_create("se_ua_cache",
85                         sizeof(struct se_ua), __alignof__(struct se_ua),
86                         0, NULL);
87         if (!se_ua_cache) {
88                 pr_err("kmem_cache_create() for struct se_ua failed\n");
89                 goto out_free_sess_cache;
90         }
91         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
92                         sizeof(struct t10_pr_registration),
93                         __alignof__(struct t10_pr_registration), 0, NULL);
94         if (!t10_pr_reg_cache) {
95                 pr_err("kmem_cache_create() for struct t10_pr_registration"
96                                 " failed\n");
97                 goto out_free_ua_cache;
98         }
99         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
100                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
101                         0, NULL);
102         if (!t10_alua_lu_gp_cache) {
103                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104                                 " failed\n");
105                 goto out_free_pr_reg_cache;
106         }
107         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
108                         sizeof(struct t10_alua_lu_gp_member),
109                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
110         if (!t10_alua_lu_gp_mem_cache) {
111                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112                                 "cache failed\n");
113                 goto out_free_lu_gp_cache;
114         }
115         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
116                         sizeof(struct t10_alua_tg_pt_gp),
117                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
118         if (!t10_alua_tg_pt_gp_cache) {
119                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120                                 "cache failed\n");
121                 goto out_free_lu_gp_mem_cache;
122         }
123         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
124                         "t10_alua_tg_pt_gp_mem_cache",
125                         sizeof(struct t10_alua_tg_pt_gp_member),
126                         __alignof__(struct t10_alua_tg_pt_gp_member),
127                         0, NULL);
128         if (!t10_alua_tg_pt_gp_mem_cache) {
129                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
130                                 "mem_t failed\n");
131                 goto out_free_tg_pt_gp_cache;
132         }
133
134         target_completion_wq = alloc_workqueue("target_completion",
135                                                WQ_MEM_RECLAIM, 0);
136         if (!target_completion_wq)
137                 goto out_free_tg_pt_gp_mem_cache;
138
139         return 0;
140
141 out_free_tg_pt_gp_mem_cache:
142         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
143 out_free_tg_pt_gp_cache:
144         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
145 out_free_lu_gp_mem_cache:
146         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
147 out_free_lu_gp_cache:
148         kmem_cache_destroy(t10_alua_lu_gp_cache);
149 out_free_pr_reg_cache:
150         kmem_cache_destroy(t10_pr_reg_cache);
151 out_free_ua_cache:
152         kmem_cache_destroy(se_ua_cache);
153 out_free_sess_cache:
154         kmem_cache_destroy(se_sess_cache);
155 out:
156         return -ENOMEM;
157 }
158
159 void release_se_kmem_caches(void)
160 {
161         destroy_workqueue(target_completion_wq);
162         kmem_cache_destroy(se_sess_cache);
163         kmem_cache_destroy(se_ua_cache);
164         kmem_cache_destroy(t10_pr_reg_cache);
165         kmem_cache_destroy(t10_alua_lu_gp_cache);
166         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
167         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
168         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
169 }
170
171 /* This code ensures unique mib indexes are handed out. */
172 static DEFINE_SPINLOCK(scsi_mib_index_lock);
173 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
174
175 /*
176  * Allocate a new row index for the entry type specified
177  */
178 u32 scsi_get_new_index(scsi_index_t type)
179 {
180         u32 new_index;
181
182         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
183
184         spin_lock(&scsi_mib_index_lock);
185         new_index = ++scsi_mib_index[type];
186         spin_unlock(&scsi_mib_index_lock);
187
188         return new_index;
189 }
190
191 void transport_subsystem_check_init(void)
192 {
193         int ret;
194         static int sub_api_initialized;
195
196         if (sub_api_initialized)
197                 return;
198
199         ret = request_module("target_core_iblock");
200         if (ret != 0)
201                 pr_err("Unable to load target_core_iblock\n");
202
203         ret = request_module("target_core_file");
204         if (ret != 0)
205                 pr_err("Unable to load target_core_file\n");
206
207         ret = request_module("target_core_pscsi");
208         if (ret != 0)
209                 pr_err("Unable to load target_core_pscsi\n");
210
211         sub_api_initialized = 1;
212 }
213
214 struct se_session *transport_init_session(void)
215 {
216         struct se_session *se_sess;
217
218         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
219         if (!se_sess) {
220                 pr_err("Unable to allocate struct se_session from"
221                                 " se_sess_cache\n");
222                 return ERR_PTR(-ENOMEM);
223         }
224         INIT_LIST_HEAD(&se_sess->sess_list);
225         INIT_LIST_HEAD(&se_sess->sess_acl_list);
226         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
227         INIT_LIST_HEAD(&se_sess->sess_wait_list);
228         spin_lock_init(&se_sess->sess_cmd_lock);
229         kref_init(&se_sess->sess_kref);
230
231         return se_sess;
232 }
233 EXPORT_SYMBOL(transport_init_session);
234
235 /*
236  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
237  */
238 void __transport_register_session(
239         struct se_portal_group *se_tpg,
240         struct se_node_acl *se_nacl,
241         struct se_session *se_sess,
242         void *fabric_sess_ptr)
243 {
244         unsigned char buf[PR_REG_ISID_LEN];
245
246         se_sess->se_tpg = se_tpg;
247         se_sess->fabric_sess_ptr = fabric_sess_ptr;
248         /*
249          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
250          *
251          * Only set for struct se_session's that will actually be moving I/O.
252          * eg: *NOT* discovery sessions.
253          */
254         if (se_nacl) {
255                 /*
256                  * If the fabric module supports an ISID based TransportID,
257                  * save this value in binary from the fabric I_T Nexus now.
258                  */
259                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
260                         memset(&buf[0], 0, PR_REG_ISID_LEN);
261                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
262                                         &buf[0], PR_REG_ISID_LEN);
263                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
264                 }
265                 kref_get(&se_nacl->acl_kref);
266
267                 spin_lock_irq(&se_nacl->nacl_sess_lock);
268                 /*
269                  * The se_nacl->nacl_sess pointer will be set to the
270                  * last active I_T Nexus for each struct se_node_acl.
271                  */
272                 se_nacl->nacl_sess = se_sess;
273
274                 list_add_tail(&se_sess->sess_acl_list,
275                               &se_nacl->acl_sess_list);
276                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
277         }
278         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
279
280         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
281                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
282 }
283 EXPORT_SYMBOL(__transport_register_session);
284
285 void transport_register_session(
286         struct se_portal_group *se_tpg,
287         struct se_node_acl *se_nacl,
288         struct se_session *se_sess,
289         void *fabric_sess_ptr)
290 {
291         unsigned long flags;
292
293         spin_lock_irqsave(&se_tpg->session_lock, flags);
294         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
295         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
296 }
297 EXPORT_SYMBOL(transport_register_session);
298
299 static void target_release_session(struct kref *kref)
300 {
301         struct se_session *se_sess = container_of(kref,
302                         struct se_session, sess_kref);
303         struct se_portal_group *se_tpg = se_sess->se_tpg;
304
305         se_tpg->se_tpg_tfo->close_session(se_sess);
306 }
307
308 void target_get_session(struct se_session *se_sess)
309 {
310         kref_get(&se_sess->sess_kref);
311 }
312 EXPORT_SYMBOL(target_get_session);
313
314 void target_put_session(struct se_session *se_sess)
315 {
316         struct se_portal_group *tpg = se_sess->se_tpg;
317
318         if (tpg->se_tpg_tfo->put_session != NULL) {
319                 tpg->se_tpg_tfo->put_session(se_sess);
320                 return;
321         }
322         kref_put(&se_sess->sess_kref, target_release_session);
323 }
324 EXPORT_SYMBOL(target_put_session);
325
326 static void target_complete_nacl(struct kref *kref)
327 {
328         struct se_node_acl *nacl = container_of(kref,
329                                 struct se_node_acl, acl_kref);
330
331         complete(&nacl->acl_free_comp);
332 }
333
334 void target_put_nacl(struct se_node_acl *nacl)
335 {
336         kref_put(&nacl->acl_kref, target_complete_nacl);
337 }
338
339 void transport_deregister_session_configfs(struct se_session *se_sess)
340 {
341         struct se_node_acl *se_nacl;
342         unsigned long flags;
343         /*
344          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
345          */
346         se_nacl = se_sess->se_node_acl;
347         if (se_nacl) {
348                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
349                 if (se_nacl->acl_stop == 0)
350                         list_del(&se_sess->sess_acl_list);
351                 /*
352                  * If the session list is empty, then clear the pointer.
353                  * Otherwise, set the struct se_session pointer from the tail
354                  * element of the per struct se_node_acl active session list.
355                  */
356                 if (list_empty(&se_nacl->acl_sess_list))
357                         se_nacl->nacl_sess = NULL;
358                 else {
359                         se_nacl->nacl_sess = container_of(
360                                         se_nacl->acl_sess_list.prev,
361                                         struct se_session, sess_acl_list);
362                 }
363                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
364         }
365 }
366 EXPORT_SYMBOL(transport_deregister_session_configfs);
367
368 void transport_free_session(struct se_session *se_sess)
369 {
370         kmem_cache_free(se_sess_cache, se_sess);
371 }
372 EXPORT_SYMBOL(transport_free_session);
373
374 void transport_deregister_session(struct se_session *se_sess)
375 {
376         struct se_portal_group *se_tpg = se_sess->se_tpg;
377         struct target_core_fabric_ops *se_tfo;
378         struct se_node_acl *se_nacl;
379         unsigned long flags;
380         bool comp_nacl = true;
381
382         if (!se_tpg) {
383                 transport_free_session(se_sess);
384                 return;
385         }
386         se_tfo = se_tpg->se_tpg_tfo;
387
388         spin_lock_irqsave(&se_tpg->session_lock, flags);
389         list_del(&se_sess->sess_list);
390         se_sess->se_tpg = NULL;
391         se_sess->fabric_sess_ptr = NULL;
392         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
393
394         /*
395          * Determine if we need to do extra work for this initiator node's
396          * struct se_node_acl if it had been previously dynamically generated.
397          */
398         se_nacl = se_sess->se_node_acl;
399
400         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
401         if (se_nacl && se_nacl->dynamic_node_acl) {
402                 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
403                         list_del(&se_nacl->acl_list);
404                         se_tpg->num_node_acls--;
405                         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
406                         core_tpg_wait_for_nacl_pr_ref(se_nacl);
407                         core_free_device_list_for_node(se_nacl, se_tpg);
408                         se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
409
410                         comp_nacl = false;
411                         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
412                 }
413         }
414         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
415
416         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
417                 se_tpg->se_tpg_tfo->get_fabric_name());
418         /*
419          * If last kref is dropping now for an explict NodeACL, awake sleeping
420          * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
421          * removal context.
422          */
423         if (se_nacl && comp_nacl == true)
424                 target_put_nacl(se_nacl);
425
426         transport_free_session(se_sess);
427 }
428 EXPORT_SYMBOL(transport_deregister_session);
429
430 /*
431  * Called with cmd->t_state_lock held.
432  */
433 static void target_remove_from_state_list(struct se_cmd *cmd)
434 {
435         struct se_device *dev = cmd->se_dev;
436         unsigned long flags;
437
438         if (!dev)
439                 return;
440
441         if (cmd->transport_state & CMD_T_BUSY)
442                 return;
443
444         spin_lock_irqsave(&dev->execute_task_lock, flags);
445         if (cmd->state_active) {
446                 list_del(&cmd->state_list);
447                 cmd->state_active = false;
448         }
449         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
450 }
451
452 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
453                                     bool write_pending)
454 {
455         unsigned long flags;
456
457         spin_lock_irqsave(&cmd->t_state_lock, flags);
458         if (write_pending)
459                 cmd->t_state = TRANSPORT_WRITE_PENDING;
460
461         /*
462          * Determine if IOCTL context caller in requesting the stopping of this
463          * command for LUN shutdown purposes.
464          */
465         if (cmd->transport_state & CMD_T_LUN_STOP) {
466                 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
467                         __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
468
469                 cmd->transport_state &= ~CMD_T_ACTIVE;
470                 if (remove_from_lists)
471                         target_remove_from_state_list(cmd);
472                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
473
474                 complete(&cmd->transport_lun_stop_comp);
475                 return 1;
476         }
477
478         if (remove_from_lists) {
479                 target_remove_from_state_list(cmd);
480
481                 /*
482                  * Clear struct se_cmd->se_lun before the handoff to FE.
483                  */
484                 cmd->se_lun = NULL;
485         }
486
487         /*
488          * Determine if frontend context caller is requesting the stopping of
489          * this command for frontend exceptions.
490          */
491         if (cmd->transport_state & CMD_T_STOP) {
492                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
493                         __func__, __LINE__,
494                         cmd->se_tfo->get_task_tag(cmd));
495
496                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
497
498                 complete(&cmd->t_transport_stop_comp);
499                 return 1;
500         }
501
502         cmd->transport_state &= ~CMD_T_ACTIVE;
503         if (remove_from_lists) {
504                 /*
505                  * Some fabric modules like tcm_loop can release
506                  * their internally allocated I/O reference now and
507                  * struct se_cmd now.
508                  *
509                  * Fabric modules are expected to return '1' here if the
510                  * se_cmd being passed is released at this point,
511                  * or zero if not being released.
512                  */
513                 if (cmd->se_tfo->check_stop_free != NULL) {
514                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
515                         return cmd->se_tfo->check_stop_free(cmd);
516                 }
517         }
518
519         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
520         return 0;
521 }
522
523 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
524 {
525         return transport_cmd_check_stop(cmd, true, false);
526 }
527
528 static void transport_lun_remove_cmd(struct se_cmd *cmd)
529 {
530         struct se_lun *lun = cmd->se_lun;
531         unsigned long flags;
532
533         if (!lun)
534                 return;
535
536         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
537         if (!list_empty(&cmd->se_lun_node))
538                 list_del_init(&cmd->se_lun_node);
539         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
540 }
541
542 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
543 {
544         if (transport_cmd_check_stop_to_fabric(cmd))
545                 return;
546         if (remove)
547                 transport_put_cmd(cmd);
548 }
549
550 static void target_complete_failure_work(struct work_struct *work)
551 {
552         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
553
554         transport_generic_request_failure(cmd,
555                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
556 }
557
558 /*
559  * Used when asking transport to copy Sense Data from the underlying
560  * Linux/SCSI struct scsi_cmnd
561  */
562 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
563 {
564         struct se_device *dev = cmd->se_dev;
565
566         WARN_ON(!cmd->se_lun);
567
568         if (!dev)
569                 return NULL;
570
571         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
572                 return NULL;
573
574         cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
575
576         pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
577                 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
578         return cmd->sense_buffer;
579 }
580
581 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
582 {
583         struct se_device *dev = cmd->se_dev;
584         int success = scsi_status == GOOD;
585         unsigned long flags;
586
587         cmd->scsi_status = scsi_status;
588
589
590         spin_lock_irqsave(&cmd->t_state_lock, flags);
591         cmd->transport_state &= ~CMD_T_BUSY;
592
593         if (dev && dev->transport->transport_complete) {
594                 dev->transport->transport_complete(cmd,
595                                 cmd->t_data_sg,
596                                 transport_get_sense_buffer(cmd));
597                 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
598                         success = 1;
599         }
600
601         /*
602          * See if we are waiting to complete for an exception condition.
603          */
604         if (cmd->transport_state & CMD_T_REQUEST_STOP) {
605                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
606                 complete(&cmd->task_stop_comp);
607                 return;
608         }
609
610         if (!success)
611                 cmd->transport_state |= CMD_T_FAILED;
612
613         /*
614          * Check for case where an explict ABORT_TASK has been received
615          * and transport_wait_for_tasks() will be waiting for completion..
616          */
617         if (cmd->transport_state & CMD_T_ABORTED &&
618             cmd->transport_state & CMD_T_STOP) {
619                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
620                 complete(&cmd->t_transport_stop_comp);
621                 return;
622         } else if (cmd->transport_state & CMD_T_FAILED) {
623                 INIT_WORK(&cmd->work, target_complete_failure_work);
624         } else {
625                 INIT_WORK(&cmd->work, target_complete_ok_work);
626         }
627
628         cmd->t_state = TRANSPORT_COMPLETE;
629         cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
630         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
631
632         queue_work(target_completion_wq, &cmd->work);
633 }
634 EXPORT_SYMBOL(target_complete_cmd);
635
636 static void target_add_to_state_list(struct se_cmd *cmd)
637 {
638         struct se_device *dev = cmd->se_dev;
639         unsigned long flags;
640
641         spin_lock_irqsave(&dev->execute_task_lock, flags);
642         if (!cmd->state_active) {
643                 list_add_tail(&cmd->state_list, &dev->state_list);
644                 cmd->state_active = true;
645         }
646         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
647 }
648
649 /*
650  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
651  */
652 static void transport_write_pending_qf(struct se_cmd *cmd);
653 static void transport_complete_qf(struct se_cmd *cmd);
654
655 void target_qf_do_work(struct work_struct *work)
656 {
657         struct se_device *dev = container_of(work, struct se_device,
658                                         qf_work_queue);
659         LIST_HEAD(qf_cmd_list);
660         struct se_cmd *cmd, *cmd_tmp;
661
662         spin_lock_irq(&dev->qf_cmd_lock);
663         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
664         spin_unlock_irq(&dev->qf_cmd_lock);
665
666         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
667                 list_del(&cmd->se_qf_node);
668                 atomic_dec(&dev->dev_qf_count);
669                 smp_mb__after_atomic_dec();
670
671                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
672                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
673                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
674                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
675                         : "UNKNOWN");
676
677                 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
678                         transport_write_pending_qf(cmd);
679                 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
680                         transport_complete_qf(cmd);
681         }
682 }
683
684 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
685 {
686         switch (cmd->data_direction) {
687         case DMA_NONE:
688                 return "NONE";
689         case DMA_FROM_DEVICE:
690                 return "READ";
691         case DMA_TO_DEVICE:
692                 return "WRITE";
693         case DMA_BIDIRECTIONAL:
694                 return "BIDI";
695         default:
696                 break;
697         }
698
699         return "UNKNOWN";
700 }
701
702 void transport_dump_dev_state(
703         struct se_device *dev,
704         char *b,
705         int *bl)
706 {
707         *bl += sprintf(b + *bl, "Status: ");
708         if (dev->export_count)
709                 *bl += sprintf(b + *bl, "ACTIVATED");
710         else
711                 *bl += sprintf(b + *bl, "DEACTIVATED");
712
713         *bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
714         *bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
715                 dev->dev_attrib.block_size,
716                 dev->dev_attrib.hw_max_sectors);
717         *bl += sprintf(b + *bl, "        ");
718 }
719
720 void transport_dump_vpd_proto_id(
721         struct t10_vpd *vpd,
722         unsigned char *p_buf,
723         int p_buf_len)
724 {
725         unsigned char buf[VPD_TMP_BUF_SIZE];
726         int len;
727
728         memset(buf, 0, VPD_TMP_BUF_SIZE);
729         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
730
731         switch (vpd->protocol_identifier) {
732         case 0x00:
733                 sprintf(buf+len, "Fibre Channel\n");
734                 break;
735         case 0x10:
736                 sprintf(buf+len, "Parallel SCSI\n");
737                 break;
738         case 0x20:
739                 sprintf(buf+len, "SSA\n");
740                 break;
741         case 0x30:
742                 sprintf(buf+len, "IEEE 1394\n");
743                 break;
744         case 0x40:
745                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
746                                 " Protocol\n");
747                 break;
748         case 0x50:
749                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
750                 break;
751         case 0x60:
752                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
753                 break;
754         case 0x70:
755                 sprintf(buf+len, "Automation/Drive Interface Transport"
756                                 " Protocol\n");
757                 break;
758         case 0x80:
759                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
760                 break;
761         default:
762                 sprintf(buf+len, "Unknown 0x%02x\n",
763                                 vpd->protocol_identifier);
764                 break;
765         }
766
767         if (p_buf)
768                 strncpy(p_buf, buf, p_buf_len);
769         else
770                 pr_debug("%s", buf);
771 }
772
773 void
774 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
775 {
776         /*
777          * Check if the Protocol Identifier Valid (PIV) bit is set..
778          *
779          * from spc3r23.pdf section 7.5.1
780          */
781          if (page_83[1] & 0x80) {
782                 vpd->protocol_identifier = (page_83[0] & 0xf0);
783                 vpd->protocol_identifier_set = 1;
784                 transport_dump_vpd_proto_id(vpd, NULL, 0);
785         }
786 }
787 EXPORT_SYMBOL(transport_set_vpd_proto_id);
788
789 int transport_dump_vpd_assoc(
790         struct t10_vpd *vpd,
791         unsigned char *p_buf,
792         int p_buf_len)
793 {
794         unsigned char buf[VPD_TMP_BUF_SIZE];
795         int ret = 0;
796         int len;
797
798         memset(buf, 0, VPD_TMP_BUF_SIZE);
799         len = sprintf(buf, "T10 VPD Identifier Association: ");
800
801         switch (vpd->association) {
802         case 0x00:
803                 sprintf(buf+len, "addressed logical unit\n");
804                 break;
805         case 0x10:
806                 sprintf(buf+len, "target port\n");
807                 break;
808         case 0x20:
809                 sprintf(buf+len, "SCSI target device\n");
810                 break;
811         default:
812                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
813                 ret = -EINVAL;
814                 break;
815         }
816
817         if (p_buf)
818                 strncpy(p_buf, buf, p_buf_len);
819         else
820                 pr_debug("%s", buf);
821
822         return ret;
823 }
824
825 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
826 {
827         /*
828          * The VPD identification association..
829          *
830          * from spc3r23.pdf Section 7.6.3.1 Table 297
831          */
832         vpd->association = (page_83[1] & 0x30);
833         return transport_dump_vpd_assoc(vpd, NULL, 0);
834 }
835 EXPORT_SYMBOL(transport_set_vpd_assoc);
836
837 int transport_dump_vpd_ident_type(
838         struct t10_vpd *vpd,
839         unsigned char *p_buf,
840         int p_buf_len)
841 {
842         unsigned char buf[VPD_TMP_BUF_SIZE];
843         int ret = 0;
844         int len;
845
846         memset(buf, 0, VPD_TMP_BUF_SIZE);
847         len = sprintf(buf, "T10 VPD Identifier Type: ");
848
849         switch (vpd->device_identifier_type) {
850         case 0x00:
851                 sprintf(buf+len, "Vendor specific\n");
852                 break;
853         case 0x01:
854                 sprintf(buf+len, "T10 Vendor ID based\n");
855                 break;
856         case 0x02:
857                 sprintf(buf+len, "EUI-64 based\n");
858                 break;
859         case 0x03:
860                 sprintf(buf+len, "NAA\n");
861                 break;
862         case 0x04:
863                 sprintf(buf+len, "Relative target port identifier\n");
864                 break;
865         case 0x08:
866                 sprintf(buf+len, "SCSI name string\n");
867                 break;
868         default:
869                 sprintf(buf+len, "Unsupported: 0x%02x\n",
870                                 vpd->device_identifier_type);
871                 ret = -EINVAL;
872                 break;
873         }
874
875         if (p_buf) {
876                 if (p_buf_len < strlen(buf)+1)
877                         return -EINVAL;
878                 strncpy(p_buf, buf, p_buf_len);
879         } else {
880                 pr_debug("%s", buf);
881         }
882
883         return ret;
884 }
885
886 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
887 {
888         /*
889          * The VPD identifier type..
890          *
891          * from spc3r23.pdf Section 7.6.3.1 Table 298
892          */
893         vpd->device_identifier_type = (page_83[1] & 0x0f);
894         return transport_dump_vpd_ident_type(vpd, NULL, 0);
895 }
896 EXPORT_SYMBOL(transport_set_vpd_ident_type);
897
898 int transport_dump_vpd_ident(
899         struct t10_vpd *vpd,
900         unsigned char *p_buf,
901         int p_buf_len)
902 {
903         unsigned char buf[VPD_TMP_BUF_SIZE];
904         int ret = 0;
905
906         memset(buf, 0, VPD_TMP_BUF_SIZE);
907
908         switch (vpd->device_identifier_code_set) {
909         case 0x01: /* Binary */
910                 snprintf(buf, sizeof(buf),
911                         "T10 VPD Binary Device Identifier: %s\n",
912                         &vpd->device_identifier[0]);
913                 break;
914         case 0x02: /* ASCII */
915                 snprintf(buf, sizeof(buf),
916                         "T10 VPD ASCII Device Identifier: %s\n",
917                         &vpd->device_identifier[0]);
918                 break;
919         case 0x03: /* UTF-8 */
920                 snprintf(buf, sizeof(buf),
921                         "T10 VPD UTF-8 Device Identifier: %s\n",
922                         &vpd->device_identifier[0]);
923                 break;
924         default:
925                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
926                         " 0x%02x", vpd->device_identifier_code_set);
927                 ret = -EINVAL;
928                 break;
929         }
930
931         if (p_buf)
932                 strncpy(p_buf, buf, p_buf_len);
933         else
934                 pr_debug("%s", buf);
935
936         return ret;
937 }
938
939 int
940 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
941 {
942         static const char hex_str[] = "0123456789abcdef";
943         int j = 0, i = 4; /* offset to start of the identifier */
944
945         /*
946          * The VPD Code Set (encoding)
947          *
948          * from spc3r23.pdf Section 7.6.3.1 Table 296
949          */
950         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
951         switch (vpd->device_identifier_code_set) {
952         case 0x01: /* Binary */
953                 vpd->device_identifier[j++] =
954                                 hex_str[vpd->device_identifier_type];
955                 while (i < (4 + page_83[3])) {
956                         vpd->device_identifier[j++] =
957                                 hex_str[(page_83[i] & 0xf0) >> 4];
958                         vpd->device_identifier[j++] =
959                                 hex_str[page_83[i] & 0x0f];
960                         i++;
961                 }
962                 break;
963         case 0x02: /* ASCII */
964         case 0x03: /* UTF-8 */
965                 while (i < (4 + page_83[3]))
966                         vpd->device_identifier[j++] = page_83[i++];
967                 break;
968         default:
969                 break;
970         }
971
972         return transport_dump_vpd_ident(vpd, NULL, 0);
973 }
974 EXPORT_SYMBOL(transport_set_vpd_ident);
975
976 sense_reason_t
977 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
978 {
979         struct se_device *dev = cmd->se_dev;
980
981         if (cmd->unknown_data_length) {
982                 cmd->data_length = size;
983         } else if (size != cmd->data_length) {
984                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
985                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
986                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
987                                 cmd->data_length, size, cmd->t_task_cdb[0]);
988
989                 if (cmd->data_direction == DMA_TO_DEVICE) {
990                         pr_err("Rejecting underflow/overflow"
991                                         " WRITE data\n");
992                         return TCM_INVALID_CDB_FIELD;
993                 }
994                 /*
995                  * Reject READ_* or WRITE_* with overflow/underflow for
996                  * type SCF_SCSI_DATA_CDB.
997                  */
998                 if (dev->dev_attrib.block_size != 512)  {
999                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1000                                 " CDB on non 512-byte sector setup subsystem"
1001                                 " plugin: %s\n", dev->transport->name);
1002                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1003                         return TCM_INVALID_CDB_FIELD;
1004                 }
1005                 /*
1006                  * For the overflow case keep the existing fabric provided
1007                  * ->data_length.  Otherwise for the underflow case, reset
1008                  * ->data_length to the smaller SCSI expected data transfer
1009                  * length.
1010                  */
1011                 if (size > cmd->data_length) {
1012                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1013                         cmd->residual_count = (size - cmd->data_length);
1014                 } else {
1015                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1016                         cmd->residual_count = (cmd->data_length - size);
1017                         cmd->data_length = size;
1018                 }
1019         }
1020
1021         return 0;
1022
1023 }
1024
1025 /*
1026  * Used by fabric modules containing a local struct se_cmd within their
1027  * fabric dependent per I/O descriptor.
1028  */
1029 void transport_init_se_cmd(
1030         struct se_cmd *cmd,
1031         struct target_core_fabric_ops *tfo,
1032         struct se_session *se_sess,
1033         u32 data_length,
1034         int data_direction,
1035         int task_attr,
1036         unsigned char *sense_buffer)
1037 {
1038         INIT_LIST_HEAD(&cmd->se_lun_node);
1039         INIT_LIST_HEAD(&cmd->se_delayed_node);
1040         INIT_LIST_HEAD(&cmd->se_qf_node);
1041         INIT_LIST_HEAD(&cmd->se_cmd_list);
1042         INIT_LIST_HEAD(&cmd->state_list);
1043         init_completion(&cmd->transport_lun_fe_stop_comp);
1044         init_completion(&cmd->transport_lun_stop_comp);
1045         init_completion(&cmd->t_transport_stop_comp);
1046         init_completion(&cmd->cmd_wait_comp);
1047         init_completion(&cmd->task_stop_comp);
1048         spin_lock_init(&cmd->t_state_lock);
1049         cmd->transport_state = CMD_T_DEV_ACTIVE;
1050
1051         cmd->se_tfo = tfo;
1052         cmd->se_sess = se_sess;
1053         cmd->data_length = data_length;
1054         cmd->data_direction = data_direction;
1055         cmd->sam_task_attr = task_attr;
1056         cmd->sense_buffer = sense_buffer;
1057
1058         cmd->state_active = false;
1059 }
1060 EXPORT_SYMBOL(transport_init_se_cmd);
1061
1062 static sense_reason_t
1063 transport_check_alloc_task_attr(struct se_cmd *cmd)
1064 {
1065         struct se_device *dev = cmd->se_dev;
1066
1067         /*
1068          * Check if SAM Task Attribute emulation is enabled for this
1069          * struct se_device storage object
1070          */
1071         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1072                 return 0;
1073
1074         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1075                 pr_debug("SAM Task Attribute ACA"
1076                         " emulation is not supported\n");
1077                 return TCM_INVALID_CDB_FIELD;
1078         }
1079         /*
1080          * Used to determine when ORDERED commands should go from
1081          * Dormant to Active status.
1082          */
1083         cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1084         smp_mb__after_atomic_inc();
1085         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1086                         cmd->se_ordered_id, cmd->sam_task_attr,
1087                         dev->transport->name);
1088         return 0;
1089 }
1090
1091 sense_reason_t
1092 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1093 {
1094         struct se_device *dev = cmd->se_dev;
1095         sense_reason_t ret;
1096
1097         /*
1098          * Ensure that the received CDB is less than the max (252 + 8) bytes
1099          * for VARIABLE_LENGTH_CMD
1100          */
1101         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1102                 pr_err("Received SCSI CDB with command_size: %d that"
1103                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1104                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1105                 return TCM_INVALID_CDB_FIELD;
1106         }
1107         /*
1108          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1109          * allocate the additional extended CDB buffer now..  Otherwise
1110          * setup the pointer from __t_task_cdb to t_task_cdb.
1111          */
1112         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1113                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1114                                                 GFP_KERNEL);
1115                 if (!cmd->t_task_cdb) {
1116                         pr_err("Unable to allocate cmd->t_task_cdb"
1117                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1118                                 scsi_command_size(cdb),
1119                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1120                         return TCM_OUT_OF_RESOURCES;
1121                 }
1122         } else
1123                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1124         /*
1125          * Copy the original CDB into cmd->
1126          */
1127         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1128
1129         trace_target_sequencer_start(cmd);
1130
1131         /*
1132          * Check for an existing UNIT ATTENTION condition
1133          */
1134         ret = target_scsi3_ua_check(cmd);
1135         if (ret)
1136                 return ret;
1137
1138         ret = target_alua_state_check(cmd);
1139         if (ret)
1140                 return ret;
1141
1142         ret = target_check_reservation(cmd);
1143         if (ret) {
1144                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1145                 return ret;
1146         }
1147
1148         ret = dev->transport->parse_cdb(cmd);
1149         if (ret)
1150                 return ret;
1151
1152         ret = transport_check_alloc_task_attr(cmd);
1153         if (ret)
1154                 return ret;
1155
1156         cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1157
1158         spin_lock(&cmd->se_lun->lun_sep_lock);
1159         if (cmd->se_lun->lun_sep)
1160                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1161         spin_unlock(&cmd->se_lun->lun_sep_lock);
1162         return 0;
1163 }
1164 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1165
1166 /*
1167  * Used by fabric module frontends to queue tasks directly.
1168  * Many only be used from process context only
1169  */
1170 int transport_handle_cdb_direct(
1171         struct se_cmd *cmd)
1172 {
1173         sense_reason_t ret;
1174
1175         if (!cmd->se_lun) {
1176                 dump_stack();
1177                 pr_err("cmd->se_lun is NULL\n");
1178                 return -EINVAL;
1179         }
1180         if (in_interrupt()) {
1181                 dump_stack();
1182                 pr_err("transport_generic_handle_cdb cannot be called"
1183                                 " from interrupt context\n");
1184                 return -EINVAL;
1185         }
1186         /*
1187          * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1188          * outstanding descriptors are handled correctly during shutdown via
1189          * transport_wait_for_tasks()
1190          *
1191          * Also, we don't take cmd->t_state_lock here as we only expect
1192          * this to be called for initial descriptor submission.
1193          */
1194         cmd->t_state = TRANSPORT_NEW_CMD;
1195         cmd->transport_state |= CMD_T_ACTIVE;
1196
1197         /*
1198          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1199          * so follow TRANSPORT_NEW_CMD processing thread context usage
1200          * and call transport_generic_request_failure() if necessary..
1201          */
1202         ret = transport_generic_new_cmd(cmd);
1203         if (ret)
1204                 transport_generic_request_failure(cmd, ret);
1205         return 0;
1206 }
1207 EXPORT_SYMBOL(transport_handle_cdb_direct);
1208
1209 static sense_reason_t
1210 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1211                 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1212 {
1213         if (!sgl || !sgl_count)
1214                 return 0;
1215
1216         /*
1217          * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1218          * scatterlists already have been set to follow what the fabric
1219          * passes for the original expected data transfer length.
1220          */
1221         if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1222                 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1223                         " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1224                 return TCM_INVALID_CDB_FIELD;
1225         }
1226
1227         cmd->t_data_sg = sgl;
1228         cmd->t_data_nents = sgl_count;
1229
1230         if (sgl_bidi && sgl_bidi_count) {
1231                 cmd->t_bidi_data_sg = sgl_bidi;
1232                 cmd->t_bidi_data_nents = sgl_bidi_count;
1233         }
1234         cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1235         return 0;
1236 }
1237
1238 /*
1239  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1240  *                       se_cmd + use pre-allocated SGL memory.
1241  *
1242  * @se_cmd: command descriptor to submit
1243  * @se_sess: associated se_sess for endpoint
1244  * @cdb: pointer to SCSI CDB
1245  * @sense: pointer to SCSI sense buffer
1246  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1247  * @data_length: fabric expected data transfer length
1248  * @task_addr: SAM task attribute
1249  * @data_dir: DMA data direction
1250  * @flags: flags for command submission from target_sc_flags_tables
1251  * @sgl: struct scatterlist memory for unidirectional mapping
1252  * @sgl_count: scatterlist count for unidirectional mapping
1253  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1254  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1255  *
1256  * Returns non zero to signal active I/O shutdown failure.  All other
1257  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1258  * but still return zero here.
1259  *
1260  * This may only be called from process context, and also currently
1261  * assumes internal allocation of fabric payload buffer by target-core.
1262  */
1263 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1264                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1265                 u32 data_length, int task_attr, int data_dir, int flags,
1266                 struct scatterlist *sgl, u32 sgl_count,
1267                 struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1268 {
1269         struct se_portal_group *se_tpg;
1270         sense_reason_t rc;
1271         int ret;
1272
1273         se_tpg = se_sess->se_tpg;
1274         BUG_ON(!se_tpg);
1275         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1276         BUG_ON(in_interrupt());
1277         /*
1278          * Initialize se_cmd for target operation.  From this point
1279          * exceptions are handled by sending exception status via
1280          * target_core_fabric_ops->queue_status() callback
1281          */
1282         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1283                                 data_length, data_dir, task_attr, sense);
1284         if (flags & TARGET_SCF_UNKNOWN_SIZE)
1285                 se_cmd->unknown_data_length = 1;
1286         /*
1287          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1288          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1289          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1290          * kref_put() to happen during fabric packet acknowledgement.
1291          */
1292         ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1293         if (ret)
1294                 return ret;
1295         /*
1296          * Signal bidirectional data payloads to target-core
1297          */
1298         if (flags & TARGET_SCF_BIDI_OP)
1299                 se_cmd->se_cmd_flags |= SCF_BIDI;
1300         /*
1301          * Locate se_lun pointer and attach it to struct se_cmd
1302          */
1303         rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1304         if (rc) {
1305                 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1306                 target_put_sess_cmd(se_sess, se_cmd);
1307                 return 0;
1308         }
1309
1310         rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1311         if (rc != 0) {
1312                 transport_generic_request_failure(se_cmd, rc);
1313                 return 0;
1314         }
1315         /*
1316          * When a non zero sgl_count has been passed perform SGL passthrough
1317          * mapping for pre-allocated fabric memory instead of having target
1318          * core perform an internal SGL allocation..
1319          */
1320         if (sgl_count != 0) {
1321                 BUG_ON(!sgl);
1322
1323                 /*
1324                  * A work-around for tcm_loop as some userspace code via
1325                  * scsi-generic do not memset their associated read buffers,
1326                  * so go ahead and do that here for type non-data CDBs.  Also
1327                  * note that this is currently guaranteed to be a single SGL
1328                  * for this case by target core in target_setup_cmd_from_cdb()
1329                  * -> transport_generic_cmd_sequencer().
1330                  */
1331                 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1332                      se_cmd->data_direction == DMA_FROM_DEVICE) {
1333                         unsigned char *buf = NULL;
1334
1335                         if (sgl)
1336                                 buf = kmap(sg_page(sgl)) + sgl->offset;
1337
1338                         if (buf) {
1339                                 memset(buf, 0, sgl->length);
1340                                 kunmap(sg_page(sgl));
1341                         }
1342                 }
1343
1344                 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1345                                 sgl_bidi, sgl_bidi_count);
1346                 if (rc != 0) {
1347                         transport_generic_request_failure(se_cmd, rc);
1348                         return 0;
1349                 }
1350         }
1351         /*
1352          * Check if we need to delay processing because of ALUA
1353          * Active/NonOptimized primary access state..
1354          */
1355         core_alua_check_nonop_delay(se_cmd);
1356
1357         transport_handle_cdb_direct(se_cmd);
1358         return 0;
1359 }
1360 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1361
1362 /*
1363  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1364  *
1365  * @se_cmd: command descriptor to submit
1366  * @se_sess: associated se_sess for endpoint
1367  * @cdb: pointer to SCSI CDB
1368  * @sense: pointer to SCSI sense buffer
1369  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1370  * @data_length: fabric expected data transfer length
1371  * @task_addr: SAM task attribute
1372  * @data_dir: DMA data direction
1373  * @flags: flags for command submission from target_sc_flags_tables
1374  *
1375  * Returns non zero to signal active I/O shutdown failure.  All other
1376  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1377  * but still return zero here.
1378  *
1379  * This may only be called from process context, and also currently
1380  * assumes internal allocation of fabric payload buffer by target-core.
1381  *
1382  * It also assumes interal target core SGL memory allocation.
1383  */
1384 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1385                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1386                 u32 data_length, int task_attr, int data_dir, int flags)
1387 {
1388         return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1389                         unpacked_lun, data_length, task_attr, data_dir,
1390                         flags, NULL, 0, NULL, 0);
1391 }
1392 EXPORT_SYMBOL(target_submit_cmd);
1393
1394 static void target_complete_tmr_failure(struct work_struct *work)
1395 {
1396         struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1397
1398         se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1399         se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1400
1401         transport_cmd_check_stop_to_fabric(se_cmd);
1402 }
1403
1404 /**
1405  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1406  *                     for TMR CDBs
1407  *
1408  * @se_cmd: command descriptor to submit
1409  * @se_sess: associated se_sess for endpoint
1410  * @sense: pointer to SCSI sense buffer
1411  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1412  * @fabric_context: fabric context for TMR req
1413  * @tm_type: Type of TM request
1414  * @gfp: gfp type for caller
1415  * @tag: referenced task tag for TMR_ABORT_TASK
1416  * @flags: submit cmd flags
1417  *
1418  * Callable from all contexts.
1419  **/
1420
1421 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1422                 unsigned char *sense, u32 unpacked_lun,
1423                 void *fabric_tmr_ptr, unsigned char tm_type,
1424                 gfp_t gfp, unsigned int tag, int flags)
1425 {
1426         struct se_portal_group *se_tpg;
1427         int ret;
1428
1429         se_tpg = se_sess->se_tpg;
1430         BUG_ON(!se_tpg);
1431
1432         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1433                               0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1434         /*
1435          * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1436          * allocation failure.
1437          */
1438         ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1439         if (ret < 0)
1440                 return -ENOMEM;
1441
1442         if (tm_type == TMR_ABORT_TASK)
1443                 se_cmd->se_tmr_req->ref_task_tag = tag;
1444
1445         /* See target_submit_cmd for commentary */
1446         ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1447         if (ret) {
1448                 core_tmr_release_req(se_cmd->se_tmr_req);
1449                 return ret;
1450         }
1451
1452         ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1453         if (ret) {
1454                 /*
1455                  * For callback during failure handling, push this work off
1456                  * to process context with TMR_LUN_DOES_NOT_EXIST status.
1457                  */
1458                 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1459                 schedule_work(&se_cmd->work);
1460                 return 0;
1461         }
1462         transport_generic_handle_tmr(se_cmd);
1463         return 0;
1464 }
1465 EXPORT_SYMBOL(target_submit_tmr);
1466
1467 /*
1468  * If the cmd is active, request it to be stopped and sleep until it
1469  * has completed.
1470  */
1471 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1472 {
1473         bool was_active = false;
1474
1475         if (cmd->transport_state & CMD_T_BUSY) {
1476                 cmd->transport_state |= CMD_T_REQUEST_STOP;
1477                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1478
1479                 pr_debug("cmd %p waiting to complete\n", cmd);
1480                 wait_for_completion(&cmd->task_stop_comp);
1481                 pr_debug("cmd %p stopped successfully\n", cmd);
1482
1483                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1484                 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1485                 cmd->transport_state &= ~CMD_T_BUSY;
1486                 was_active = true;
1487         }
1488
1489         return was_active;
1490 }
1491
1492 /*
1493  * Handle SAM-esque emulation for generic transport request failures.
1494  */
1495 void transport_generic_request_failure(struct se_cmd *cmd,
1496                 sense_reason_t sense_reason)
1497 {
1498         int ret = 0;
1499
1500         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1501                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1502                 cmd->t_task_cdb[0]);
1503         pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1504                 cmd->se_tfo->get_cmd_state(cmd),
1505                 cmd->t_state, sense_reason);
1506         pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1507                 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1508                 (cmd->transport_state & CMD_T_STOP) != 0,
1509                 (cmd->transport_state & CMD_T_SENT) != 0);
1510
1511         /*
1512          * For SAM Task Attribute emulation for failed struct se_cmd
1513          */
1514         transport_complete_task_attr(cmd);
1515
1516         switch (sense_reason) {
1517         case TCM_NON_EXISTENT_LUN:
1518         case TCM_UNSUPPORTED_SCSI_OPCODE:
1519         case TCM_INVALID_CDB_FIELD:
1520         case TCM_INVALID_PARAMETER_LIST:
1521         case TCM_PARAMETER_LIST_LENGTH_ERROR:
1522         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1523         case TCM_UNKNOWN_MODE_PAGE:
1524         case TCM_WRITE_PROTECTED:
1525         case TCM_ADDRESS_OUT_OF_RANGE:
1526         case TCM_CHECK_CONDITION_ABORT_CMD:
1527         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1528         case TCM_CHECK_CONDITION_NOT_READY:
1529                 break;
1530         case TCM_OUT_OF_RESOURCES:
1531                 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1532                 break;
1533         case TCM_RESERVATION_CONFLICT:
1534                 /*
1535                  * No SENSE Data payload for this case, set SCSI Status
1536                  * and queue the response to $FABRIC_MOD.
1537                  *
1538                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1539                  */
1540                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1541                 /*
1542                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1543                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1544                  * CONFLICT STATUS.
1545                  *
1546                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1547                  */
1548                 if (cmd->se_sess &&
1549                     cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1550                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1551                                 cmd->orig_fe_lun, 0x2C,
1552                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1553
1554                 trace_target_cmd_complete(cmd);
1555                 ret = cmd->se_tfo-> queue_status(cmd);
1556                 if (ret == -EAGAIN || ret == -ENOMEM)
1557                         goto queue_full;
1558                 goto check_stop;
1559         default:
1560                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1561                         cmd->t_task_cdb[0], sense_reason);
1562                 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1563                 break;
1564         }
1565
1566         ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1567         if (ret == -EAGAIN || ret == -ENOMEM)
1568                 goto queue_full;
1569
1570 check_stop:
1571         transport_lun_remove_cmd(cmd);
1572         if (!transport_cmd_check_stop_to_fabric(cmd))
1573                 ;
1574         return;
1575
1576 queue_full:
1577         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1578         transport_handle_queue_full(cmd, cmd->se_dev);
1579 }
1580 EXPORT_SYMBOL(transport_generic_request_failure);
1581
1582 static void __target_execute_cmd(struct se_cmd *cmd)
1583 {
1584         sense_reason_t ret;
1585
1586         if (cmd->execute_cmd) {
1587                 ret = cmd->execute_cmd(cmd);
1588                 if (ret) {
1589                         spin_lock_irq(&cmd->t_state_lock);
1590                         cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1591                         spin_unlock_irq(&cmd->t_state_lock);
1592
1593                         transport_generic_request_failure(cmd, ret);
1594                 }
1595         }
1596 }
1597
1598 static bool target_handle_task_attr(struct se_cmd *cmd)
1599 {
1600         struct se_device *dev = cmd->se_dev;
1601
1602         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1603                 return false;
1604
1605         /*
1606          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1607          * to allow the passed struct se_cmd list of tasks to the front of the list.
1608          */
1609         switch (cmd->sam_task_attr) {
1610         case MSG_HEAD_TAG:
1611                 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1612                          "se_ordered_id: %u\n",
1613                          cmd->t_task_cdb[0], cmd->se_ordered_id);
1614                 return false;
1615         case MSG_ORDERED_TAG:
1616                 atomic_inc(&dev->dev_ordered_sync);
1617                 smp_mb__after_atomic_inc();
1618
1619                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1620                          " se_ordered_id: %u\n",
1621                          cmd->t_task_cdb[0], cmd->se_ordered_id);
1622
1623                 /*
1624                  * Execute an ORDERED command if no other older commands
1625                  * exist that need to be completed first.
1626                  */
1627                 if (!atomic_read(&dev->simple_cmds))
1628                         return false;
1629                 break;
1630         default:
1631                 /*
1632                  * For SIMPLE and UNTAGGED Task Attribute commands
1633                  */
1634                 atomic_inc(&dev->simple_cmds);
1635                 smp_mb__after_atomic_inc();
1636                 break;
1637         }
1638
1639         if (atomic_read(&dev->dev_ordered_sync) == 0)
1640                 return false;
1641
1642         spin_lock(&dev->delayed_cmd_lock);
1643         list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1644         spin_unlock(&dev->delayed_cmd_lock);
1645
1646         pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1647                 " delayed CMD list, se_ordered_id: %u\n",
1648                 cmd->t_task_cdb[0], cmd->sam_task_attr,
1649                 cmd->se_ordered_id);
1650         return true;
1651 }
1652
1653 void target_execute_cmd(struct se_cmd *cmd)
1654 {
1655         /*
1656          * If the received CDB has aleady been aborted stop processing it here.
1657          */
1658         if (transport_check_aborted_status(cmd, 1)) {
1659                 complete(&cmd->transport_lun_stop_comp);
1660                 return;
1661         }
1662
1663         /*
1664          * Determine if IOCTL context caller in requesting the stopping of this
1665          * command for LUN shutdown purposes.
1666          */
1667         spin_lock_irq(&cmd->t_state_lock);
1668         if (cmd->transport_state & CMD_T_LUN_STOP) {
1669                 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
1670                         __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
1671
1672                 cmd->transport_state &= ~CMD_T_ACTIVE;
1673                 spin_unlock_irq(&cmd->t_state_lock);
1674                 complete(&cmd->transport_lun_stop_comp);
1675                 return;
1676         }
1677         /*
1678          * Determine if frontend context caller is requesting the stopping of
1679          * this command for frontend exceptions.
1680          */
1681         if (cmd->transport_state & CMD_T_STOP) {
1682                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1683                         __func__, __LINE__,
1684                         cmd->se_tfo->get_task_tag(cmd));
1685
1686                 spin_unlock_irq(&cmd->t_state_lock);
1687                 complete(&cmd->t_transport_stop_comp);
1688                 return;
1689         }
1690
1691         cmd->t_state = TRANSPORT_PROCESSING;
1692         cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1693         spin_unlock_irq(&cmd->t_state_lock);
1694
1695         if (target_handle_task_attr(cmd)) {
1696                 spin_lock_irq(&cmd->t_state_lock);
1697                 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1698                 spin_unlock_irq(&cmd->t_state_lock);
1699                 return;
1700         }
1701
1702         __target_execute_cmd(cmd);
1703 }
1704 EXPORT_SYMBOL(target_execute_cmd);
1705
1706 /*
1707  * Process all commands up to the last received ORDERED task attribute which
1708  * requires another blocking boundary
1709  */
1710 static void target_restart_delayed_cmds(struct se_device *dev)
1711 {
1712         for (;;) {
1713                 struct se_cmd *cmd;
1714
1715                 spin_lock(&dev->delayed_cmd_lock);
1716                 if (list_empty(&dev->delayed_cmd_list)) {
1717                         spin_unlock(&dev->delayed_cmd_lock);
1718                         break;
1719                 }
1720
1721                 cmd = list_entry(dev->delayed_cmd_list.next,
1722                                  struct se_cmd, se_delayed_node);
1723                 list_del(&cmd->se_delayed_node);
1724                 spin_unlock(&dev->delayed_cmd_lock);
1725
1726                 __target_execute_cmd(cmd);
1727
1728                 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1729                         break;
1730         }
1731 }
1732
1733 /*
1734  * Called from I/O completion to determine which dormant/delayed
1735  * and ordered cmds need to have their tasks added to the execution queue.
1736  */
1737 static void transport_complete_task_attr(struct se_cmd *cmd)
1738 {
1739         struct se_device *dev = cmd->se_dev;
1740
1741         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1742                 return;
1743
1744         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1745                 atomic_dec(&dev->simple_cmds);
1746                 smp_mb__after_atomic_dec();
1747                 dev->dev_cur_ordered_id++;
1748                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1749                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1750                         cmd->se_ordered_id);
1751         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1752                 dev->dev_cur_ordered_id++;
1753                 pr_debug("Incremented dev_cur_ordered_id: %u for"
1754                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1755                         cmd->se_ordered_id);
1756         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1757                 atomic_dec(&dev->dev_ordered_sync);
1758                 smp_mb__after_atomic_dec();
1759
1760                 dev->dev_cur_ordered_id++;
1761                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1762                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1763         }
1764
1765         target_restart_delayed_cmds(dev);
1766 }
1767
1768 static void transport_complete_qf(struct se_cmd *cmd)
1769 {
1770         int ret = 0;
1771
1772         transport_complete_task_attr(cmd);
1773
1774         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1775                 trace_target_cmd_complete(cmd);
1776                 ret = cmd->se_tfo->queue_status(cmd);
1777                 if (ret)
1778                         goto out;
1779         }
1780
1781         switch (cmd->data_direction) {
1782         case DMA_FROM_DEVICE:
1783                 trace_target_cmd_complete(cmd);
1784                 ret = cmd->se_tfo->queue_data_in(cmd);
1785                 break;
1786         case DMA_TO_DEVICE:
1787                 if (cmd->t_bidi_data_sg) {
1788                         ret = cmd->se_tfo->queue_data_in(cmd);
1789                         if (ret < 0)
1790                                 break;
1791                 }
1792                 /* Fall through for DMA_TO_DEVICE */
1793         case DMA_NONE:
1794                 trace_target_cmd_complete(cmd);
1795                 ret = cmd->se_tfo->queue_status(cmd);
1796                 break;
1797         default:
1798                 break;
1799         }
1800
1801 out:
1802         if (ret < 0) {
1803                 transport_handle_queue_full(cmd, cmd->se_dev);
1804                 return;
1805         }
1806         transport_lun_remove_cmd(cmd);
1807         transport_cmd_check_stop_to_fabric(cmd);
1808 }
1809
1810 static void transport_handle_queue_full(
1811         struct se_cmd *cmd,
1812         struct se_device *dev)
1813 {
1814         spin_lock_irq(&dev->qf_cmd_lock);
1815         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1816         atomic_inc(&dev->dev_qf_count);
1817         smp_mb__after_atomic_inc();
1818         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1819
1820         schedule_work(&cmd->se_dev->qf_work_queue);
1821 }
1822
1823 static void target_complete_ok_work(struct work_struct *work)
1824 {
1825         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1826         int ret;
1827
1828         /*
1829          * Check if we need to move delayed/dormant tasks from cmds on the
1830          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1831          * Attribute.
1832          */
1833         transport_complete_task_attr(cmd);
1834
1835         /*
1836          * Check to schedule QUEUE_FULL work, or execute an existing
1837          * cmd->transport_qf_callback()
1838          */
1839         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1840                 schedule_work(&cmd->se_dev->qf_work_queue);
1841
1842         /*
1843          * Check if we need to send a sense buffer from
1844          * the struct se_cmd in question.
1845          */
1846         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1847                 WARN_ON(!cmd->scsi_status);
1848                 ret = transport_send_check_condition_and_sense(
1849                                         cmd, 0, 1);
1850                 if (ret == -EAGAIN || ret == -ENOMEM)
1851                         goto queue_full;
1852
1853                 transport_lun_remove_cmd(cmd);
1854                 transport_cmd_check_stop_to_fabric(cmd);
1855                 return;
1856         }
1857         /*
1858          * Check for a callback, used by amongst other things
1859          * XDWRITE_READ_10 emulation.
1860          */
1861         if (cmd->transport_complete_callback)
1862                 cmd->transport_complete_callback(cmd);
1863
1864         switch (cmd->data_direction) {
1865         case DMA_FROM_DEVICE:
1866                 spin_lock(&cmd->se_lun->lun_sep_lock);
1867                 if (cmd->se_lun->lun_sep) {
1868                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1869                                         cmd->data_length;
1870                 }
1871                 spin_unlock(&cmd->se_lun->lun_sep_lock);
1872
1873                 trace_target_cmd_complete(cmd);
1874                 ret = cmd->se_tfo->queue_data_in(cmd);
1875                 if (ret == -EAGAIN || ret == -ENOMEM)
1876                         goto queue_full;
1877                 break;
1878         case DMA_TO_DEVICE:
1879                 spin_lock(&cmd->se_lun->lun_sep_lock);
1880                 if (cmd->se_lun->lun_sep) {
1881                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1882                                 cmd->data_length;
1883                 }
1884                 spin_unlock(&cmd->se_lun->lun_sep_lock);
1885                 /*
1886                  * Check if we need to send READ payload for BIDI-COMMAND
1887                  */
1888                 if (cmd->t_bidi_data_sg) {
1889                         spin_lock(&cmd->se_lun->lun_sep_lock);
1890                         if (cmd->se_lun->lun_sep) {
1891                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1892                                         cmd->data_length;
1893                         }
1894                         spin_unlock(&cmd->se_lun->lun_sep_lock);
1895                         ret = cmd->se_tfo->queue_data_in(cmd);
1896                         if (ret == -EAGAIN || ret == -ENOMEM)
1897                                 goto queue_full;
1898                         break;
1899                 }
1900                 /* Fall through for DMA_TO_DEVICE */
1901         case DMA_NONE:
1902                 trace_target_cmd_complete(cmd);
1903                 ret = cmd->se_tfo->queue_status(cmd);
1904                 if (ret == -EAGAIN || ret == -ENOMEM)
1905                         goto queue_full;
1906                 break;
1907         default:
1908                 break;
1909         }
1910
1911         transport_lun_remove_cmd(cmd);
1912         transport_cmd_check_stop_to_fabric(cmd);
1913         return;
1914
1915 queue_full:
1916         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
1917                 " data_direction: %d\n", cmd, cmd->data_direction);
1918         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1919         transport_handle_queue_full(cmd, cmd->se_dev);
1920 }
1921
1922 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
1923 {
1924         struct scatterlist *sg;
1925         int count;
1926
1927         for_each_sg(sgl, sg, nents, count)
1928                 __free_page(sg_page(sg));
1929
1930         kfree(sgl);
1931 }
1932
1933 static inline void transport_free_pages(struct se_cmd *cmd)
1934 {
1935         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
1936                 return;
1937
1938         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
1939         cmd->t_data_sg = NULL;
1940         cmd->t_data_nents = 0;
1941
1942         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
1943         cmd->t_bidi_data_sg = NULL;
1944         cmd->t_bidi_data_nents = 0;
1945 }
1946
1947 /**
1948  * transport_release_cmd - free a command
1949  * @cmd:       command to free
1950  *
1951  * This routine unconditionally frees a command, and reference counting
1952  * or list removal must be done in the caller.
1953  */
1954 static int transport_release_cmd(struct se_cmd *cmd)
1955 {
1956         BUG_ON(!cmd->se_tfo);
1957
1958         if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1959                 core_tmr_release_req(cmd->se_tmr_req);
1960         if (cmd->t_task_cdb != cmd->__t_task_cdb)
1961                 kfree(cmd->t_task_cdb);
1962         /*
1963          * If this cmd has been setup with target_get_sess_cmd(), drop
1964          * the kref and call ->release_cmd() in kref callback.
1965          */
1966         return target_put_sess_cmd(cmd->se_sess, cmd);
1967 }
1968
1969 /**
1970  * transport_put_cmd - release a reference to a command
1971  * @cmd:       command to release
1972  *
1973  * This routine releases our reference to the command and frees it if possible.
1974  */
1975 static int transport_put_cmd(struct se_cmd *cmd)
1976 {
1977         transport_free_pages(cmd);
1978         return transport_release_cmd(cmd);
1979 }
1980
1981 void *transport_kmap_data_sg(struct se_cmd *cmd)
1982 {
1983         struct scatterlist *sg = cmd->t_data_sg;
1984         struct page **pages;
1985         int i;
1986
1987         /*
1988          * We need to take into account a possible offset here for fabrics like
1989          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
1990          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
1991          */
1992         if (!cmd->t_data_nents)
1993                 return NULL;
1994
1995         BUG_ON(!sg);
1996         if (cmd->t_data_nents == 1)
1997                 return kmap(sg_page(sg)) + sg->offset;
1998
1999         /* >1 page. use vmap */
2000         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2001         if (!pages)
2002                 return NULL;
2003
2004         /* convert sg[] to pages[] */
2005         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2006                 pages[i] = sg_page(sg);
2007         }
2008
2009         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2010         kfree(pages);
2011         if (!cmd->t_data_vmap)
2012                 return NULL;
2013
2014         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2015 }
2016 EXPORT_SYMBOL(transport_kmap_data_sg);
2017
2018 void transport_kunmap_data_sg(struct se_cmd *cmd)
2019 {
2020         if (!cmd->t_data_nents) {
2021                 return;
2022         } else if (cmd->t_data_nents == 1) {
2023                 kunmap(sg_page(cmd->t_data_sg));
2024                 return;
2025         }
2026
2027         vunmap(cmd->t_data_vmap);
2028         cmd->t_data_vmap = NULL;
2029 }
2030 EXPORT_SYMBOL(transport_kunmap_data_sg);
2031
2032 static int
2033 transport_generic_get_mem(struct se_cmd *cmd)
2034 {
2035         u32 length = cmd->data_length;
2036         unsigned int nents;
2037         struct page *page;
2038         gfp_t zero_flag;
2039         int i = 0;
2040
2041         nents = DIV_ROUND_UP(length, PAGE_SIZE);
2042         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
2043         if (!cmd->t_data_sg)
2044                 return -ENOMEM;
2045
2046         cmd->t_data_nents = nents;
2047         sg_init_table(cmd->t_data_sg, nents);
2048
2049         zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_CDB ? 0 : __GFP_ZERO;
2050
2051         while (length) {
2052                 u32 page_len = min_t(u32, length, PAGE_SIZE);
2053                 page = alloc_page(GFP_KERNEL | zero_flag);
2054                 if (!page)
2055                         goto out;
2056
2057                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
2058                 length -= page_len;
2059                 i++;
2060         }
2061         return 0;
2062
2063 out:
2064         while (i > 0) {
2065                 i--;
2066                 __free_page(sg_page(&cmd->t_data_sg[i]));
2067         }
2068         kfree(cmd->t_data_sg);
2069         cmd->t_data_sg = NULL;
2070         return -ENOMEM;
2071 }
2072
2073 /*
2074  * Allocate any required resources to execute the command.  For writes we
2075  * might not have the payload yet, so notify the fabric via a call to
2076  * ->write_pending instead. Otherwise place it on the execution queue.
2077  */
2078 sense_reason_t
2079 transport_generic_new_cmd(struct se_cmd *cmd)
2080 {
2081         int ret = 0;
2082
2083         /*
2084          * Determine is the TCM fabric module has already allocated physical
2085          * memory, and is directly calling transport_generic_map_mem_to_cmd()
2086          * beforehand.
2087          */
2088         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2089             cmd->data_length) {
2090                 ret = transport_generic_get_mem(cmd);
2091                 if (ret < 0)
2092                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2093         }
2094         /*
2095          * If this command is not a write we can execute it right here,
2096          * for write buffers we need to notify the fabric driver first
2097          * and let it call back once the write buffers are ready.
2098          */
2099         target_add_to_state_list(cmd);
2100         if (cmd->data_direction != DMA_TO_DEVICE) {
2101                 target_execute_cmd(cmd);
2102                 return 0;
2103         }
2104         transport_cmd_check_stop(cmd, false, true);
2105
2106         ret = cmd->se_tfo->write_pending(cmd);
2107         if (ret == -EAGAIN || ret == -ENOMEM)
2108                 goto queue_full;
2109
2110         /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2111         WARN_ON(ret);
2112
2113         return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2114
2115 queue_full:
2116         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2117         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2118         transport_handle_queue_full(cmd, cmd->se_dev);
2119         return 0;
2120 }
2121 EXPORT_SYMBOL(transport_generic_new_cmd);
2122
2123 static void transport_write_pending_qf(struct se_cmd *cmd)
2124 {
2125         int ret;
2126
2127         ret = cmd->se_tfo->write_pending(cmd);
2128         if (ret == -EAGAIN || ret == -ENOMEM) {
2129                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2130                          cmd);
2131                 transport_handle_queue_full(cmd, cmd->se_dev);
2132         }
2133 }
2134
2135 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2136 {
2137         unsigned long flags;
2138         int ret = 0;
2139
2140         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2141                 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2142                          transport_wait_for_tasks(cmd);
2143
2144                 ret = transport_release_cmd(cmd);
2145         } else {
2146                 if (wait_for_tasks)
2147                         transport_wait_for_tasks(cmd);
2148                 /*
2149                  * Handle WRITE failure case where transport_generic_new_cmd()
2150                  * has already added se_cmd to state_list, but fabric has
2151                  * failed command before I/O submission.
2152                  */
2153                 if (cmd->state_active) {
2154                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2155                         target_remove_from_state_list(cmd);
2156                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2157                 }
2158
2159                 if (cmd->se_lun)
2160                         transport_lun_remove_cmd(cmd);
2161
2162                 ret = transport_put_cmd(cmd);
2163         }
2164         return ret;
2165 }
2166 EXPORT_SYMBOL(transport_generic_free_cmd);
2167
2168 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2169  * @se_sess:    session to reference
2170  * @se_cmd:     command descriptor to add
2171  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
2172  */
2173 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2174                                bool ack_kref)
2175 {
2176         unsigned long flags;
2177         int ret = 0;
2178
2179         kref_init(&se_cmd->cmd_kref);
2180         /*
2181          * Add a second kref if the fabric caller is expecting to handle
2182          * fabric acknowledgement that requires two target_put_sess_cmd()
2183          * invocations before se_cmd descriptor release.
2184          */
2185         if (ack_kref == true) {
2186                 kref_get(&se_cmd->cmd_kref);
2187                 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2188         }
2189
2190         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2191         if (se_sess->sess_tearing_down) {
2192                 ret = -ESHUTDOWN;
2193                 goto out;
2194         }
2195         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2196 out:
2197         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2198         return ret;
2199 }
2200 EXPORT_SYMBOL(target_get_sess_cmd);
2201
2202 static void target_release_cmd_kref(struct kref *kref)
2203 {
2204         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2205         struct se_session *se_sess = se_cmd->se_sess;
2206
2207         if (list_empty(&se_cmd->se_cmd_list)) {
2208                 spin_unlock(&se_sess->sess_cmd_lock);
2209                 se_cmd->se_tfo->release_cmd(se_cmd);
2210                 return;
2211         }
2212         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2213                 spin_unlock(&se_sess->sess_cmd_lock);
2214                 complete(&se_cmd->cmd_wait_comp);
2215                 return;
2216         }
2217         list_del(&se_cmd->se_cmd_list);
2218         spin_unlock(&se_sess->sess_cmd_lock);
2219
2220         se_cmd->se_tfo->release_cmd(se_cmd);
2221 }
2222
2223 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2224  * @se_sess:    session to reference
2225  * @se_cmd:     command descriptor to drop
2226  */
2227 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2228 {
2229         return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2230                         &se_sess->sess_cmd_lock);
2231 }
2232 EXPORT_SYMBOL(target_put_sess_cmd);
2233
2234 /* target_sess_cmd_list_set_waiting - Flag all commands in
2235  *         sess_cmd_list to complete cmd_wait_comp.  Set
2236  *         sess_tearing_down so no more commands are queued.
2237  * @se_sess:    session to flag
2238  */
2239 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2240 {
2241         struct se_cmd *se_cmd;
2242         unsigned long flags;
2243
2244         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2245         if (se_sess->sess_tearing_down) {
2246                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2247                 return;
2248         }
2249         se_sess->sess_tearing_down = 1;
2250         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2251
2252         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2253                 se_cmd->cmd_wait_set = 1;
2254
2255         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2256 }
2257 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2258
2259 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2260  * @se_sess:    session to wait for active I/O
2261  */
2262 void target_wait_for_sess_cmds(struct se_session *se_sess)
2263 {
2264         struct se_cmd *se_cmd, *tmp_cmd;
2265         unsigned long flags;
2266
2267         list_for_each_entry_safe(se_cmd, tmp_cmd,
2268                                 &se_sess->sess_wait_list, se_cmd_list) {
2269                 list_del(&se_cmd->se_cmd_list);
2270
2271                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2272                         " %d\n", se_cmd, se_cmd->t_state,
2273                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2274
2275                 wait_for_completion(&se_cmd->cmd_wait_comp);
2276                 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2277                         " fabric state: %d\n", se_cmd, se_cmd->t_state,
2278                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2279
2280                 se_cmd->se_tfo->release_cmd(se_cmd);
2281         }
2282
2283         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2284         WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2285         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2286
2287 }
2288 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2289
2290 /*      transport_lun_wait_for_tasks():
2291  *
2292  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
2293  *      an struct se_lun to be successfully shutdown.
2294  */
2295 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
2296 {
2297         unsigned long flags;
2298         int ret = 0;
2299
2300         /*
2301          * If the frontend has already requested this struct se_cmd to
2302          * be stopped, we can safely ignore this struct se_cmd.
2303          */
2304         spin_lock_irqsave(&cmd->t_state_lock, flags);
2305         if (cmd->transport_state & CMD_T_STOP) {
2306                 cmd->transport_state &= ~CMD_T_LUN_STOP;
2307
2308                 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
2309                          cmd->se_tfo->get_task_tag(cmd));
2310                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2311                 transport_cmd_check_stop(cmd, false, false);
2312                 return -EPERM;
2313         }
2314         cmd->transport_state |= CMD_T_LUN_FE_STOP;
2315         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2316
2317         // XXX: audit task_flags checks.
2318         spin_lock_irqsave(&cmd->t_state_lock, flags);
2319         if ((cmd->transport_state & CMD_T_BUSY) &&
2320             (cmd->transport_state & CMD_T_SENT)) {
2321                 if (!target_stop_cmd(cmd, &flags))
2322                         ret++;
2323         }
2324         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2325
2326         pr_debug("ConfigFS: cmd: %p stop tasks ret:"
2327                         " %d\n", cmd, ret);
2328         if (!ret) {
2329                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
2330                                 cmd->se_tfo->get_task_tag(cmd));
2331                 wait_for_completion(&cmd->transport_lun_stop_comp);
2332                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
2333                                 cmd->se_tfo->get_task_tag(cmd));
2334         }
2335
2336         return 0;
2337 }
2338
2339 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
2340 {
2341         struct se_cmd *cmd = NULL;
2342         unsigned long lun_flags, cmd_flags;
2343         /*
2344          * Do exception processing and return CHECK_CONDITION status to the
2345          * Initiator Port.
2346          */
2347         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2348         while (!list_empty(&lun->lun_cmd_list)) {
2349                 cmd = list_first_entry(&lun->lun_cmd_list,
2350                        struct se_cmd, se_lun_node);
2351                 list_del_init(&cmd->se_lun_node);
2352
2353                 spin_lock(&cmd->t_state_lock);
2354                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
2355                         "_lun_stop for  ITT: 0x%08x\n",
2356                         cmd->se_lun->unpacked_lun,
2357                         cmd->se_tfo->get_task_tag(cmd));
2358                 cmd->transport_state |= CMD_T_LUN_STOP;
2359                 spin_unlock(&cmd->t_state_lock);
2360
2361                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2362
2363                 if (!cmd->se_lun) {
2364                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
2365                                 cmd->se_tfo->get_task_tag(cmd),
2366                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2367                         BUG();
2368                 }
2369                 /*
2370                  * If the Storage engine still owns the iscsi_cmd_t, determine
2371                  * and/or stop its context.
2372                  */
2373                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
2374                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
2375                         cmd->se_tfo->get_task_tag(cmd));
2376
2377                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
2378                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2379                         continue;
2380                 }
2381
2382                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
2383                         "_wait_for_tasks(): SUCCESS\n",
2384                         cmd->se_lun->unpacked_lun,
2385                         cmd->se_tfo->get_task_tag(cmd));
2386
2387                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2388                 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
2389                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2390                         goto check_cond;
2391                 }
2392                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2393                 target_remove_from_state_list(cmd);
2394                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2395
2396                 /*
2397                  * The Storage engine stopped this struct se_cmd before it was
2398                  * send to the fabric frontend for delivery back to the
2399                  * Initiator Node.  Return this SCSI CDB back with an
2400                  * CHECK_CONDITION status.
2401                  */
2402 check_cond:
2403                 transport_send_check_condition_and_sense(cmd,
2404                                 TCM_NON_EXISTENT_LUN, 0);
2405                 /*
2406                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
2407                  * be released, notify the waiting thread now that LU has
2408                  * finished accessing it.
2409                  */
2410                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2411                 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
2412                         pr_debug("SE_LUN[%d] - Detected FE stop for"
2413                                 " struct se_cmd: %p ITT: 0x%08x\n",
2414                                 lun->unpacked_lun,
2415                                 cmd, cmd->se_tfo->get_task_tag(cmd));
2416
2417                         spin_unlock_irqrestore(&cmd->t_state_lock,
2418                                         cmd_flags);
2419                         transport_cmd_check_stop(cmd, false, false);
2420                         complete(&cmd->transport_lun_fe_stop_comp);
2421                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2422                         continue;
2423                 }
2424                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
2425                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
2426
2427                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2428                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2429         }
2430         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2431 }
2432
2433 static int transport_clear_lun_thread(void *p)
2434 {
2435         struct se_lun *lun = p;
2436
2437         __transport_clear_lun_from_sessions(lun);
2438         complete(&lun->lun_shutdown_comp);
2439
2440         return 0;
2441 }
2442
2443 int transport_clear_lun_from_sessions(struct se_lun *lun)
2444 {
2445         struct task_struct *kt;
2446
2447         kt = kthread_run(transport_clear_lun_thread, lun,
2448                         "tcm_cl_%u", lun->unpacked_lun);
2449         if (IS_ERR(kt)) {
2450                 pr_err("Unable to start clear_lun thread\n");
2451                 return PTR_ERR(kt);
2452         }
2453         wait_for_completion(&lun->lun_shutdown_comp);
2454
2455         return 0;
2456 }
2457
2458 /**
2459  * transport_wait_for_tasks - wait for completion to occur
2460  * @cmd:        command to wait
2461  *
2462  * Called from frontend fabric context to wait for storage engine
2463  * to pause and/or release frontend generated struct se_cmd.
2464  */
2465 bool transport_wait_for_tasks(struct se_cmd *cmd)
2466 {
2467         unsigned long flags;
2468
2469         spin_lock_irqsave(&cmd->t_state_lock, flags);
2470         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2471             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2472                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2473                 return false;
2474         }
2475
2476         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2477             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2478                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2479                 return false;
2480         }
2481         /*
2482          * If we are already stopped due to an external event (ie: LUN shutdown)
2483          * sleep until the connection can have the passed struct se_cmd back.
2484          * The cmd->transport_lun_stopped_sem will be upped by
2485          * transport_clear_lun_from_sessions() once the ConfigFS context caller
2486          * has completed its operation on the struct se_cmd.
2487          */
2488         if (cmd->transport_state & CMD_T_LUN_STOP) {
2489                 pr_debug("wait_for_tasks: Stopping"
2490                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
2491                         "_stop_comp); for ITT: 0x%08x\n",
2492                         cmd->se_tfo->get_task_tag(cmd));
2493                 /*
2494                  * There is a special case for WRITES where a FE exception +
2495                  * LUN shutdown means ConfigFS context is still sleeping on
2496                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
2497                  * We go ahead and up transport_lun_stop_comp just to be sure
2498                  * here.
2499                  */
2500                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2501                 complete(&cmd->transport_lun_stop_comp);
2502                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
2503                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2504
2505                 target_remove_from_state_list(cmd);
2506                 /*
2507                  * At this point, the frontend who was the originator of this
2508                  * struct se_cmd, now owns the structure and can be released through
2509                  * normal means below.
2510                  */
2511                 pr_debug("wait_for_tasks: Stopped"
2512                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
2513                         "stop_comp); for ITT: 0x%08x\n",
2514                         cmd->se_tfo->get_task_tag(cmd));
2515
2516                 cmd->transport_state &= ~CMD_T_LUN_STOP;
2517         }
2518
2519         if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2520                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2521                 return false;
2522         }
2523
2524         cmd->transport_state |= CMD_T_STOP;
2525
2526         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2527                 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2528                 cmd, cmd->se_tfo->get_task_tag(cmd),
2529                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2530
2531         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2532
2533         wait_for_completion(&cmd->t_transport_stop_comp);
2534
2535         spin_lock_irqsave(&cmd->t_state_lock, flags);
2536         cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2537
2538         pr_debug("wait_for_tasks: Stopped wait_for_completion("
2539                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2540                 cmd->se_tfo->get_task_tag(cmd));
2541
2542         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2543
2544         return true;
2545 }
2546 EXPORT_SYMBOL(transport_wait_for_tasks);
2547
2548 static int transport_get_sense_codes(
2549         struct se_cmd *cmd,
2550         u8 *asc,
2551         u8 *ascq)
2552 {
2553         *asc = cmd->scsi_asc;
2554         *ascq = cmd->scsi_ascq;
2555
2556         return 0;
2557 }
2558
2559 int
2560 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2561                 sense_reason_t reason, int from_transport)
2562 {
2563         unsigned char *buffer = cmd->sense_buffer;
2564         unsigned long flags;
2565         u8 asc = 0, ascq = 0;
2566
2567         spin_lock_irqsave(&cmd->t_state_lock, flags);
2568         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2569                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2570                 return 0;
2571         }
2572         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2573         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2574
2575         if (!reason && from_transport)
2576                 goto after_reason;
2577
2578         if (!from_transport)
2579                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2580
2581         /*
2582          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
2583          * SENSE KEY values from include/scsi/scsi.h
2584          */
2585         switch (reason) {
2586         case TCM_NO_SENSE:
2587                 /* CURRENT ERROR */
2588                 buffer[0] = 0x70;
2589                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2590                 /* Not Ready */
2591                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2592                 /* NO ADDITIONAL SENSE INFORMATION */
2593                 buffer[SPC_ASC_KEY_OFFSET] = 0;
2594                 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2595                 break;
2596         case TCM_NON_EXISTENT_LUN:
2597                 /* CURRENT ERROR */
2598                 buffer[0] = 0x70;
2599                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2600                 /* ILLEGAL REQUEST */
2601                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2602                 /* LOGICAL UNIT NOT SUPPORTED */
2603                 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2604                 break;
2605         case TCM_UNSUPPORTED_SCSI_OPCODE:
2606         case TCM_SECTOR_COUNT_TOO_MANY:
2607                 /* CURRENT ERROR */
2608                 buffer[0] = 0x70;
2609                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2610                 /* ILLEGAL REQUEST */
2611                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2612                 /* INVALID COMMAND OPERATION CODE */
2613                 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2614                 break;
2615         case TCM_UNKNOWN_MODE_PAGE:
2616                 /* CURRENT ERROR */
2617                 buffer[0] = 0x70;
2618                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2619                 /* ILLEGAL REQUEST */
2620                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2621                 /* INVALID FIELD IN CDB */
2622                 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2623                 break;
2624         case TCM_CHECK_CONDITION_ABORT_CMD:
2625                 /* CURRENT ERROR */
2626                 buffer[0] = 0x70;
2627                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2628                 /* ABORTED COMMAND */
2629                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2630                 /* BUS DEVICE RESET FUNCTION OCCURRED */
2631                 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2632                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2633                 break;
2634         case TCM_INCORRECT_AMOUNT_OF_DATA:
2635                 /* CURRENT ERROR */
2636                 buffer[0] = 0x70;
2637                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2638                 /* ABORTED COMMAND */
2639                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2640                 /* WRITE ERROR */
2641                 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2642                 /* NOT ENOUGH UNSOLICITED DATA */
2643                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2644                 break;
2645         case TCM_INVALID_CDB_FIELD:
2646                 /* CURRENT ERROR */
2647                 buffer[0] = 0x70;
2648                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2649                 /* ILLEGAL REQUEST */
2650                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2651                 /* INVALID FIELD IN CDB */
2652                 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2653                 break;
2654         case TCM_INVALID_PARAMETER_LIST:
2655                 /* CURRENT ERROR */
2656                 buffer[0] = 0x70;
2657                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2658                 /* ILLEGAL REQUEST */
2659                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2660                 /* INVALID FIELD IN PARAMETER LIST */
2661                 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2662                 break;
2663         case TCM_PARAMETER_LIST_LENGTH_ERROR:
2664                 /* CURRENT ERROR */
2665                 buffer[0] = 0x70;
2666                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2667                 /* ILLEGAL REQUEST */
2668                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2669                 /* PARAMETER LIST LENGTH ERROR */
2670                 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2671                 break;
2672         case TCM_UNEXPECTED_UNSOLICITED_DATA:
2673                 /* CURRENT ERROR */
2674                 buffer[0] = 0x70;
2675                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2676                 /* ABORTED COMMAND */
2677                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2678                 /* WRITE ERROR */
2679                 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2680                 /* UNEXPECTED_UNSOLICITED_DATA */
2681                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2682                 break;
2683         case TCM_SERVICE_CRC_ERROR:
2684                 /* CURRENT ERROR */
2685                 buffer[0] = 0x70;
2686                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2687                 /* ABORTED COMMAND */
2688                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2689                 /* PROTOCOL SERVICE CRC ERROR */
2690                 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2691                 /* N/A */
2692                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2693                 break;
2694         case TCM_SNACK_REJECTED:
2695                 /* CURRENT ERROR */
2696                 buffer[0] = 0x70;
2697                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2698                 /* ABORTED COMMAND */
2699                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2700                 /* READ ERROR */
2701                 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2702                 /* FAILED RETRANSMISSION REQUEST */
2703                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2704                 break;
2705         case TCM_WRITE_PROTECTED:
2706                 /* CURRENT ERROR */
2707                 buffer[0] = 0x70;
2708                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2709                 /* DATA PROTECT */
2710                 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2711                 /* WRITE PROTECTED */
2712                 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2713                 break;
2714         case TCM_ADDRESS_OUT_OF_RANGE:
2715                 /* CURRENT ERROR */
2716                 buffer[0] = 0x70;
2717                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2718                 /* ILLEGAL REQUEST */
2719                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2720                 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2721                 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2722                 break;
2723         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2724                 /* CURRENT ERROR */
2725                 buffer[0] = 0x70;
2726                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2727                 /* UNIT ATTENTION */
2728                 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2729                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2730                 buffer[SPC_ASC_KEY_OFFSET] = asc;
2731                 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2732                 break;
2733         case TCM_CHECK_CONDITION_NOT_READY:
2734                 /* CURRENT ERROR */
2735                 buffer[0] = 0x70;
2736                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2737                 /* Not Ready */
2738                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2739                 transport_get_sense_codes(cmd, &asc, &ascq);
2740                 buffer[SPC_ASC_KEY_OFFSET] = asc;
2741                 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2742                 break;
2743         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2744         default:
2745                 /* CURRENT ERROR */
2746                 buffer[0] = 0x70;
2747                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2748                 /*
2749                  * Returning ILLEGAL REQUEST would cause immediate IO errors on
2750                  * Solaris initiators.  Returning NOT READY instead means the
2751                  * operations will be retried a finite number of times and we
2752                  * can survive intermittent errors.
2753                  */
2754                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2755                 /* LOGICAL UNIT COMMUNICATION FAILURE */
2756                 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2757                 break;
2758         }
2759         /*
2760          * This code uses linux/include/scsi/scsi.h SAM status codes!
2761          */
2762         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2763         /*
2764          * Automatically padded, this value is encoded in the fabric's
2765          * data_length response PDU containing the SCSI defined sense data.
2766          */
2767         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2768
2769 after_reason:
2770         trace_target_cmd_complete(cmd);
2771         return cmd->se_tfo->queue_status(cmd);
2772 }
2773 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2774
2775 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2776 {
2777         if (!(cmd->transport_state & CMD_T_ABORTED))
2778                 return 0;
2779
2780         if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
2781                 return 1;
2782
2783         pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2784                  cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2785
2786         cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
2787         trace_target_cmd_complete(cmd);
2788         cmd->se_tfo->queue_status(cmd);
2789
2790         return 1;
2791 }
2792 EXPORT_SYMBOL(transport_check_aborted_status);
2793
2794 void transport_send_task_abort(struct se_cmd *cmd)
2795 {
2796         unsigned long flags;
2797
2798         spin_lock_irqsave(&cmd->t_state_lock, flags);
2799         if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) {
2800                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2801                 return;
2802         }
2803         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2804
2805         /*
2806          * If there are still expected incoming fabric WRITEs, we wait
2807          * until until they have completed before sending a TASK_ABORTED
2808          * response.  This response with TASK_ABORTED status will be
2809          * queued back to fabric module by transport_check_aborted_status().
2810          */
2811         if (cmd->data_direction == DMA_TO_DEVICE) {
2812                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2813                         cmd->transport_state |= CMD_T_ABORTED;
2814                         smp_mb__after_atomic_inc();
2815                 }
2816         }
2817         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2818
2819         transport_lun_remove_cmd(cmd);
2820
2821         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2822                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
2823                 cmd->se_tfo->get_task_tag(cmd));
2824
2825         trace_target_cmd_complete(cmd);
2826         cmd->se_tfo->queue_status(cmd);
2827 }
2828
2829 static void target_tmr_work(struct work_struct *work)
2830 {
2831         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2832         struct se_device *dev = cmd->se_dev;
2833         struct se_tmr_req *tmr = cmd->se_tmr_req;
2834         int ret;
2835
2836         switch (tmr->function) {
2837         case TMR_ABORT_TASK:
2838                 core_tmr_abort_task(dev, tmr, cmd->se_sess);
2839                 break;
2840         case TMR_ABORT_TASK_SET:
2841         case TMR_CLEAR_ACA:
2842         case TMR_CLEAR_TASK_SET:
2843                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2844                 break;
2845         case TMR_LUN_RESET:
2846                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2847                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2848                                          TMR_FUNCTION_REJECTED;
2849                 break;
2850         case TMR_TARGET_WARM_RESET:
2851                 tmr->response = TMR_FUNCTION_REJECTED;
2852                 break;
2853         case TMR_TARGET_COLD_RESET:
2854                 tmr->response = TMR_FUNCTION_REJECTED;
2855                 break;
2856         default:
2857                 pr_err("Uknown TMR function: 0x%02x.\n",
2858                                 tmr->function);
2859                 tmr->response = TMR_FUNCTION_REJECTED;
2860                 break;
2861         }
2862
2863         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2864         cmd->se_tfo->queue_tm_rsp(cmd);
2865
2866         transport_cmd_check_stop_to_fabric(cmd);
2867 }
2868
2869 int transport_generic_handle_tmr(
2870         struct se_cmd *cmd)
2871 {
2872         INIT_WORK(&cmd->work, target_tmr_work);
2873         queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2874         return 0;
2875 }
2876 EXPORT_SYMBOL(transport_generic_handle_tmr);