]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/target/target_core_transport.c
Merge remote-tracking branch 'kumar/merge' into merge
[mv-sheeva.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
46
47 #include <target/target_core_base.h>
48 #include <target/target_core_backend.h>
49 #include <target/target_core_fabric.h>
50 #include <target/target_core_configfs.h>
51
52 #include "target_core_internal.h"
53 #include "target_core_alua.h"
54 #include "target_core_pr.h"
55 #include "target_core_ua.h"
56
57 static int sub_api_initialized;
58
59 static struct workqueue_struct *target_completion_wq;
60 static struct kmem_cache *se_sess_cache;
61 struct kmem_cache *se_tmr_req_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74                 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void transport_generic_request_failure(struct se_cmd *);
81 static void target_complete_ok_work(struct work_struct *work);
82
83 int init_se_kmem_caches(void)
84 {
85         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
86                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
87                         0, NULL);
88         if (!se_tmr_req_cache) {
89                 pr_err("kmem_cache_create() for struct se_tmr_req"
90                                 " failed\n");
91                 goto out;
92         }
93         se_sess_cache = kmem_cache_create("se_sess_cache",
94                         sizeof(struct se_session), __alignof__(struct se_session),
95                         0, NULL);
96         if (!se_sess_cache) {
97                 pr_err("kmem_cache_create() for struct se_session"
98                                 " failed\n");
99                 goto out_free_tmr_req_cache;
100         }
101         se_ua_cache = kmem_cache_create("se_ua_cache",
102                         sizeof(struct se_ua), __alignof__(struct se_ua),
103                         0, NULL);
104         if (!se_ua_cache) {
105                 pr_err("kmem_cache_create() for struct se_ua failed\n");
106                 goto out_free_sess_cache;
107         }
108         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
109                         sizeof(struct t10_pr_registration),
110                         __alignof__(struct t10_pr_registration), 0, NULL);
111         if (!t10_pr_reg_cache) {
112                 pr_err("kmem_cache_create() for struct t10_pr_registration"
113                                 " failed\n");
114                 goto out_free_ua_cache;
115         }
116         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
117                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
118                         0, NULL);
119         if (!t10_alua_lu_gp_cache) {
120                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
121                                 " failed\n");
122                 goto out_free_pr_reg_cache;
123         }
124         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
125                         sizeof(struct t10_alua_lu_gp_member),
126                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
127         if (!t10_alua_lu_gp_mem_cache) {
128                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
129                                 "cache failed\n");
130                 goto out_free_lu_gp_cache;
131         }
132         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
133                         sizeof(struct t10_alua_tg_pt_gp),
134                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
135         if (!t10_alua_tg_pt_gp_cache) {
136                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
137                                 "cache failed\n");
138                 goto out_free_lu_gp_mem_cache;
139         }
140         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
141                         "t10_alua_tg_pt_gp_mem_cache",
142                         sizeof(struct t10_alua_tg_pt_gp_member),
143                         __alignof__(struct t10_alua_tg_pt_gp_member),
144                         0, NULL);
145         if (!t10_alua_tg_pt_gp_mem_cache) {
146                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
147                                 "mem_t failed\n");
148                 goto out_free_tg_pt_gp_cache;
149         }
150
151         target_completion_wq = alloc_workqueue("target_completion",
152                                                WQ_MEM_RECLAIM, 0);
153         if (!target_completion_wq)
154                 goto out_free_tg_pt_gp_mem_cache;
155
156         return 0;
157
158 out_free_tg_pt_gp_mem_cache:
159         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
160 out_free_tg_pt_gp_cache:
161         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
162 out_free_lu_gp_mem_cache:
163         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
164 out_free_lu_gp_cache:
165         kmem_cache_destroy(t10_alua_lu_gp_cache);
166 out_free_pr_reg_cache:
167         kmem_cache_destroy(t10_pr_reg_cache);
168 out_free_ua_cache:
169         kmem_cache_destroy(se_ua_cache);
170 out_free_sess_cache:
171         kmem_cache_destroy(se_sess_cache);
172 out_free_tmr_req_cache:
173         kmem_cache_destroy(se_tmr_req_cache);
174 out:
175         return -ENOMEM;
176 }
177
178 void release_se_kmem_caches(void)
179 {
180         destroy_workqueue(target_completion_wq);
181         kmem_cache_destroy(se_tmr_req_cache);
182         kmem_cache_destroy(se_sess_cache);
183         kmem_cache_destroy(se_ua_cache);
184         kmem_cache_destroy(t10_pr_reg_cache);
185         kmem_cache_destroy(t10_alua_lu_gp_cache);
186         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
187         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
188         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
189 }
190
191 /* This code ensures unique mib indexes are handed out. */
192 static DEFINE_SPINLOCK(scsi_mib_index_lock);
193 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
194
195 /*
196  * Allocate a new row index for the entry type specified
197  */
198 u32 scsi_get_new_index(scsi_index_t type)
199 {
200         u32 new_index;
201
202         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
203
204         spin_lock(&scsi_mib_index_lock);
205         new_index = ++scsi_mib_index[type];
206         spin_unlock(&scsi_mib_index_lock);
207
208         return new_index;
209 }
210
211 static void transport_init_queue_obj(struct se_queue_obj *qobj)
212 {
213         atomic_set(&qobj->queue_cnt, 0);
214         INIT_LIST_HEAD(&qobj->qobj_list);
215         init_waitqueue_head(&qobj->thread_wq);
216         spin_lock_init(&qobj->cmd_queue_lock);
217 }
218
219 void transport_subsystem_check_init(void)
220 {
221         int ret;
222
223         if (sub_api_initialized)
224                 return;
225
226         ret = request_module("target_core_iblock");
227         if (ret != 0)
228                 pr_err("Unable to load target_core_iblock\n");
229
230         ret = request_module("target_core_file");
231         if (ret != 0)
232                 pr_err("Unable to load target_core_file\n");
233
234         ret = request_module("target_core_pscsi");
235         if (ret != 0)
236                 pr_err("Unable to load target_core_pscsi\n");
237
238         ret = request_module("target_core_stgt");
239         if (ret != 0)
240                 pr_err("Unable to load target_core_stgt\n");
241
242         sub_api_initialized = 1;
243         return;
244 }
245
246 struct se_session *transport_init_session(void)
247 {
248         struct se_session *se_sess;
249
250         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
251         if (!se_sess) {
252                 pr_err("Unable to allocate struct se_session from"
253                                 " se_sess_cache\n");
254                 return ERR_PTR(-ENOMEM);
255         }
256         INIT_LIST_HEAD(&se_sess->sess_list);
257         INIT_LIST_HEAD(&se_sess->sess_acl_list);
258         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
259         INIT_LIST_HEAD(&se_sess->sess_wait_list);
260         spin_lock_init(&se_sess->sess_cmd_lock);
261
262         return se_sess;
263 }
264 EXPORT_SYMBOL(transport_init_session);
265
266 /*
267  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
268  */
269 void __transport_register_session(
270         struct se_portal_group *se_tpg,
271         struct se_node_acl *se_nacl,
272         struct se_session *se_sess,
273         void *fabric_sess_ptr)
274 {
275         unsigned char buf[PR_REG_ISID_LEN];
276
277         se_sess->se_tpg = se_tpg;
278         se_sess->fabric_sess_ptr = fabric_sess_ptr;
279         /*
280          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
281          *
282          * Only set for struct se_session's that will actually be moving I/O.
283          * eg: *NOT* discovery sessions.
284          */
285         if (se_nacl) {
286                 /*
287                  * If the fabric module supports an ISID based TransportID,
288                  * save this value in binary from the fabric I_T Nexus now.
289                  */
290                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
291                         memset(&buf[0], 0, PR_REG_ISID_LEN);
292                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
293                                         &buf[0], PR_REG_ISID_LEN);
294                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
295                 }
296                 spin_lock_irq(&se_nacl->nacl_sess_lock);
297                 /*
298                  * The se_nacl->nacl_sess pointer will be set to the
299                  * last active I_T Nexus for each struct se_node_acl.
300                  */
301                 se_nacl->nacl_sess = se_sess;
302
303                 list_add_tail(&se_sess->sess_acl_list,
304                               &se_nacl->acl_sess_list);
305                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
306         }
307         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
308
309         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
310                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
311 }
312 EXPORT_SYMBOL(__transport_register_session);
313
314 void transport_register_session(
315         struct se_portal_group *se_tpg,
316         struct se_node_acl *se_nacl,
317         struct se_session *se_sess,
318         void *fabric_sess_ptr)
319 {
320         spin_lock_bh(&se_tpg->session_lock);
321         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
322         spin_unlock_bh(&se_tpg->session_lock);
323 }
324 EXPORT_SYMBOL(transport_register_session);
325
326 void transport_deregister_session_configfs(struct se_session *se_sess)
327 {
328         struct se_node_acl *se_nacl;
329         unsigned long flags;
330         /*
331          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
332          */
333         se_nacl = se_sess->se_node_acl;
334         if (se_nacl) {
335                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
336                 list_del(&se_sess->sess_acl_list);
337                 /*
338                  * If the session list is empty, then clear the pointer.
339                  * Otherwise, set the struct se_session pointer from the tail
340                  * element of the per struct se_node_acl active session list.
341                  */
342                 if (list_empty(&se_nacl->acl_sess_list))
343                         se_nacl->nacl_sess = NULL;
344                 else {
345                         se_nacl->nacl_sess = container_of(
346                                         se_nacl->acl_sess_list.prev,
347                                         struct se_session, sess_acl_list);
348                 }
349                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
350         }
351 }
352 EXPORT_SYMBOL(transport_deregister_session_configfs);
353
354 void transport_free_session(struct se_session *se_sess)
355 {
356         kmem_cache_free(se_sess_cache, se_sess);
357 }
358 EXPORT_SYMBOL(transport_free_session);
359
360 void transport_deregister_session(struct se_session *se_sess)
361 {
362         struct se_portal_group *se_tpg = se_sess->se_tpg;
363         struct se_node_acl *se_nacl;
364         unsigned long flags;
365
366         if (!se_tpg) {
367                 transport_free_session(se_sess);
368                 return;
369         }
370
371         spin_lock_irqsave(&se_tpg->session_lock, flags);
372         list_del(&se_sess->sess_list);
373         se_sess->se_tpg = NULL;
374         se_sess->fabric_sess_ptr = NULL;
375         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
376
377         /*
378          * Determine if we need to do extra work for this initiator node's
379          * struct se_node_acl if it had been previously dynamically generated.
380          */
381         se_nacl = se_sess->se_node_acl;
382         if (se_nacl) {
383                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
384                 if (se_nacl->dynamic_node_acl) {
385                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
386                                         se_tpg)) {
387                                 list_del(&se_nacl->acl_list);
388                                 se_tpg->num_node_acls--;
389                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
390
391                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
392                                 core_free_device_list_for_node(se_nacl, se_tpg);
393                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
394                                                 se_nacl);
395                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
396                         }
397                 }
398                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
399         }
400
401         transport_free_session(se_sess);
402
403         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
404                 se_tpg->se_tpg_tfo->get_fabric_name());
405 }
406 EXPORT_SYMBOL(transport_deregister_session);
407
408 /*
409  * Called with cmd->t_state_lock held.
410  */
411 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
412 {
413         struct se_device *dev = cmd->se_dev;
414         struct se_task *task;
415         unsigned long flags;
416
417         if (!dev)
418                 return;
419
420         list_for_each_entry(task, &cmd->t_task_list, t_list) {
421                 if (task->task_flags & TF_ACTIVE)
422                         continue;
423
424                 spin_lock_irqsave(&dev->execute_task_lock, flags);
425                 if (task->t_state_active) {
426                         pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
427                                 cmd->se_tfo->get_task_tag(cmd), dev, task);
428
429                         list_del(&task->t_state_list);
430                         atomic_dec(&cmd->t_task_cdbs_ex_left);
431                         task->t_state_active = false;
432                 }
433                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
434         }
435
436 }
437
438 /*      transport_cmd_check_stop():
439  *
440  *      'transport_off = 1' determines if t_transport_active should be cleared.
441  *      'transport_off = 2' determines if task_dev_state should be removed.
442  *
443  *      A non-zero u8 t_state sets cmd->t_state.
444  *      Returns 1 when command is stopped, else 0.
445  */
446 static int transport_cmd_check_stop(
447         struct se_cmd *cmd,
448         int transport_off,
449         u8 t_state)
450 {
451         unsigned long flags;
452
453         spin_lock_irqsave(&cmd->t_state_lock, flags);
454         /*
455          * Determine if IOCTL context caller in requesting the stopping of this
456          * command for LUN shutdown purposes.
457          */
458         if (atomic_read(&cmd->transport_lun_stop)) {
459                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
460                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
461                         cmd->se_tfo->get_task_tag(cmd));
462
463                 atomic_set(&cmd->t_transport_active, 0);
464                 if (transport_off == 2)
465                         transport_all_task_dev_remove_state(cmd);
466                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
467
468                 complete(&cmd->transport_lun_stop_comp);
469                 return 1;
470         }
471         /*
472          * Determine if frontend context caller is requesting the stopping of
473          * this command for frontend exceptions.
474          */
475         if (atomic_read(&cmd->t_transport_stop)) {
476                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
477                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
478                         cmd->se_tfo->get_task_tag(cmd));
479
480                 if (transport_off == 2)
481                         transport_all_task_dev_remove_state(cmd);
482
483                 /*
484                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
485                  * to FE.
486                  */
487                 if (transport_off == 2)
488                         cmd->se_lun = NULL;
489                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
490
491                 complete(&cmd->t_transport_stop_comp);
492                 return 1;
493         }
494         if (transport_off) {
495                 atomic_set(&cmd->t_transport_active, 0);
496                 if (transport_off == 2) {
497                         transport_all_task_dev_remove_state(cmd);
498                         /*
499                          * Clear struct se_cmd->se_lun before the transport_off == 2
500                          * handoff to fabric module.
501                          */
502                         cmd->se_lun = NULL;
503                         /*
504                          * Some fabric modules like tcm_loop can release
505                          * their internally allocated I/O reference now and
506                          * struct se_cmd now.
507                          *
508                          * Fabric modules are expected to return '1' here if the
509                          * se_cmd being passed is released at this point,
510                          * or zero if not being released.
511                          */
512                         if (cmd->se_tfo->check_stop_free != NULL) {
513                                 spin_unlock_irqrestore(
514                                         &cmd->t_state_lock, flags);
515
516                                 return cmd->se_tfo->check_stop_free(cmd);
517                         }
518                 }
519                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
520
521                 return 0;
522         } else if (t_state)
523                 cmd->t_state = t_state;
524         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525
526         return 0;
527 }
528
529 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
530 {
531         return transport_cmd_check_stop(cmd, 2, 0);
532 }
533
534 static void transport_lun_remove_cmd(struct se_cmd *cmd)
535 {
536         struct se_lun *lun = cmd->se_lun;
537         unsigned long flags;
538
539         if (!lun)
540                 return;
541
542         spin_lock_irqsave(&cmd->t_state_lock, flags);
543         if (!atomic_read(&cmd->transport_dev_active)) {
544                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545                 goto check_lun;
546         }
547         atomic_set(&cmd->transport_dev_active, 0);
548         transport_all_task_dev_remove_state(cmd);
549         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
550
551
552 check_lun:
553         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
554         if (atomic_read(&cmd->transport_lun_active)) {
555                 list_del(&cmd->se_lun_node);
556                 atomic_set(&cmd->transport_lun_active, 0);
557 #if 0
558                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
559                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
560 #endif
561         }
562         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
563 }
564
565 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
566 {
567         if (!cmd->se_tmr_req)
568                 transport_lun_remove_cmd(cmd);
569
570         if (transport_cmd_check_stop_to_fabric(cmd))
571                 return;
572         if (remove) {
573                 transport_remove_cmd_from_queue(cmd);
574                 transport_put_cmd(cmd);
575         }
576 }
577
578 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
579                 bool at_head)
580 {
581         struct se_device *dev = cmd->se_dev;
582         struct se_queue_obj *qobj = &dev->dev_queue_obj;
583         unsigned long flags;
584
585         if (t_state) {
586                 spin_lock_irqsave(&cmd->t_state_lock, flags);
587                 cmd->t_state = t_state;
588                 atomic_set(&cmd->t_transport_active, 1);
589                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
590         }
591
592         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
593
594         /* If the cmd is already on the list, remove it before we add it */
595         if (!list_empty(&cmd->se_queue_node))
596                 list_del(&cmd->se_queue_node);
597         else
598                 atomic_inc(&qobj->queue_cnt);
599
600         if (at_head)
601                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
602         else
603                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
604         atomic_set(&cmd->t_transport_queue_active, 1);
605         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
606
607         wake_up_interruptible(&qobj->thread_wq);
608 }
609
610 static struct se_cmd *
611 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
612 {
613         struct se_cmd *cmd;
614         unsigned long flags;
615
616         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
617         if (list_empty(&qobj->qobj_list)) {
618                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
619                 return NULL;
620         }
621         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
622
623         atomic_set(&cmd->t_transport_queue_active, 0);
624
625         list_del_init(&cmd->se_queue_node);
626         atomic_dec(&qobj->queue_cnt);
627         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
628
629         return cmd;
630 }
631
632 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
633 {
634         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
635         unsigned long flags;
636
637         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
638         if (!atomic_read(&cmd->t_transport_queue_active)) {
639                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
640                 return;
641         }
642         atomic_set(&cmd->t_transport_queue_active, 0);
643         atomic_dec(&qobj->queue_cnt);
644         list_del_init(&cmd->se_queue_node);
645         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
646
647         if (atomic_read(&cmd->t_transport_queue_active)) {
648                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
649                         cmd->se_tfo->get_task_tag(cmd),
650                         atomic_read(&cmd->t_transport_queue_active));
651         }
652 }
653
654 /*
655  * Completion function used by TCM subsystem plugins (such as FILEIO)
656  * for queueing up response from struct se_subsystem_api->do_task()
657  */
658 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
659 {
660         struct se_task *task = list_entry(cmd->t_task_list.next,
661                                 struct se_task, t_list);
662
663         if (good) {
664                 cmd->scsi_status = SAM_STAT_GOOD;
665                 task->task_scsi_status = GOOD;
666         } else {
667                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
668                 task->task_se_cmd->scsi_sense_reason =
669                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
670
671         }
672
673         transport_complete_task(task, good);
674 }
675 EXPORT_SYMBOL(transport_complete_sync_cache);
676
677 static void target_complete_failure_work(struct work_struct *work)
678 {
679         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
680
681         transport_generic_request_failure(cmd);
682 }
683
684 /*      transport_complete_task():
685  *
686  *      Called from interrupt and non interrupt context depending
687  *      on the transport plugin.
688  */
689 void transport_complete_task(struct se_task *task, int success)
690 {
691         struct se_cmd *cmd = task->task_se_cmd;
692         struct se_device *dev = cmd->se_dev;
693         unsigned long flags;
694
695         spin_lock_irqsave(&cmd->t_state_lock, flags);
696         task->task_flags &= ~TF_ACTIVE;
697
698         /*
699          * See if any sense data exists, if so set the TASK_SENSE flag.
700          * Also check for any other post completion work that needs to be
701          * done by the plugins.
702          */
703         if (dev && dev->transport->transport_complete) {
704                 if (dev->transport->transport_complete(task) != 0) {
705                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
706                         task->task_flags |= TF_HAS_SENSE;
707                         success = 1;
708                 }
709         }
710
711         /*
712          * See if we are waiting for outstanding struct se_task
713          * to complete for an exception condition
714          */
715         if (task->task_flags & TF_REQUEST_STOP) {
716                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
717                 complete(&task->task_stop_comp);
718                 return;
719         }
720
721         if (!success)
722                 cmd->t_tasks_failed = 1;
723
724         /*
725          * Decrement the outstanding t_task_cdbs_left count.  The last
726          * struct se_task from struct se_cmd will complete itself into the
727          * device queue depending upon int success.
728          */
729         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
730                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
731                 return;
732         }
733
734         if (cmd->t_tasks_failed) {
735                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
736                 INIT_WORK(&cmd->work, target_complete_failure_work);
737         } else {
738                 atomic_set(&cmd->t_transport_complete, 1);
739                 INIT_WORK(&cmd->work, target_complete_ok_work);
740         }
741
742         cmd->t_state = TRANSPORT_COMPLETE;
743         atomic_set(&cmd->t_transport_active, 1);
744         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
745
746         queue_work(target_completion_wq, &cmd->work);
747 }
748 EXPORT_SYMBOL(transport_complete_task);
749
750 /*
751  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
752  * struct se_task list are ready to be added to the active execution list
753  * struct se_device
754
755  * Called with se_dev_t->execute_task_lock called.
756  */
757 static inline int transport_add_task_check_sam_attr(
758         struct se_task *task,
759         struct se_task *task_prev,
760         struct se_device *dev)
761 {
762         /*
763          * No SAM Task attribute emulation enabled, add to tail of
764          * execution queue
765          */
766         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
767                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
768                 return 0;
769         }
770         /*
771          * HEAD_OF_QUEUE attribute for received CDB, which means
772          * the first task that is associated with a struct se_cmd goes to
773          * head of the struct se_device->execute_task_list, and task_prev
774          * after that for each subsequent task
775          */
776         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
777                 list_add(&task->t_execute_list,
778                                 (task_prev != NULL) ?
779                                 &task_prev->t_execute_list :
780                                 &dev->execute_task_list);
781
782                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
783                                 " in execution queue\n",
784                                 task->task_se_cmd->t_task_cdb[0]);
785                 return 1;
786         }
787         /*
788          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
789          * transitioned from Dermant -> Active state, and are added to the end
790          * of the struct se_device->execute_task_list
791          */
792         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
793         return 0;
794 }
795
796 /*      __transport_add_task_to_execute_queue():
797  *
798  *      Called with se_dev_t->execute_task_lock called.
799  */
800 static void __transport_add_task_to_execute_queue(
801         struct se_task *task,
802         struct se_task *task_prev,
803         struct se_device *dev)
804 {
805         int head_of_queue;
806
807         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
808         atomic_inc(&dev->execute_tasks);
809
810         if (task->t_state_active)
811                 return;
812         /*
813          * Determine if this task needs to go to HEAD_OF_QUEUE for the
814          * state list as well.  Running with SAM Task Attribute emulation
815          * will always return head_of_queue == 0 here
816          */
817         if (head_of_queue)
818                 list_add(&task->t_state_list, (task_prev) ?
819                                 &task_prev->t_state_list :
820                                 &dev->state_task_list);
821         else
822                 list_add_tail(&task->t_state_list, &dev->state_task_list);
823
824         task->t_state_active = true;
825
826         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
827                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
828                 task, dev);
829 }
830
831 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
832 {
833         struct se_device *dev = cmd->se_dev;
834         struct se_task *task;
835         unsigned long flags;
836
837         spin_lock_irqsave(&cmd->t_state_lock, flags);
838         list_for_each_entry(task, &cmd->t_task_list, t_list) {
839                 spin_lock(&dev->execute_task_lock);
840                 if (!task->t_state_active) {
841                         list_add_tail(&task->t_state_list,
842                                       &dev->state_task_list);
843                         task->t_state_active = true;
844
845                         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
846                                 task->task_se_cmd->se_tfo->get_task_tag(
847                                 task->task_se_cmd), task, dev);
848                 }
849                 spin_unlock(&dev->execute_task_lock);
850         }
851         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
852 }
853
854 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
855 {
856         struct se_device *dev = cmd->se_dev;
857         struct se_task *task, *task_prev = NULL;
858
859         list_for_each_entry(task, &cmd->t_task_list, t_list) {
860                 if (!list_empty(&task->t_execute_list))
861                         continue;
862                 /*
863                  * __transport_add_task_to_execute_queue() handles the
864                  * SAM Task Attribute emulation if enabled
865                  */
866                 __transport_add_task_to_execute_queue(task, task_prev, dev);
867                 task_prev = task;
868         }
869 }
870
871 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
872 {
873         unsigned long flags;
874         struct se_device *dev = cmd->se_dev;
875
876         spin_lock_irqsave(&dev->execute_task_lock, flags);
877         __transport_add_tasks_from_cmd(cmd);
878         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
879 }
880
881 void __transport_remove_task_from_execute_queue(struct se_task *task,
882                 struct se_device *dev)
883 {
884         list_del_init(&task->t_execute_list);
885         atomic_dec(&dev->execute_tasks);
886 }
887
888 static void transport_remove_task_from_execute_queue(
889         struct se_task *task,
890         struct se_device *dev)
891 {
892         unsigned long flags;
893
894         if (WARN_ON(list_empty(&task->t_execute_list)))
895                 return;
896
897         spin_lock_irqsave(&dev->execute_task_lock, flags);
898         __transport_remove_task_from_execute_queue(task, dev);
899         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
900 }
901
902 /*
903  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
904  */
905
906 static void target_qf_do_work(struct work_struct *work)
907 {
908         struct se_device *dev = container_of(work, struct se_device,
909                                         qf_work_queue);
910         LIST_HEAD(qf_cmd_list);
911         struct se_cmd *cmd, *cmd_tmp;
912
913         spin_lock_irq(&dev->qf_cmd_lock);
914         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
915         spin_unlock_irq(&dev->qf_cmd_lock);
916
917         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
918                 list_del(&cmd->se_qf_node);
919                 atomic_dec(&dev->dev_qf_count);
920                 smp_mb__after_atomic_dec();
921
922                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
923                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
924                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
925                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
926                         : "UNKNOWN");
927
928                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
929         }
930 }
931
932 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
933 {
934         switch (cmd->data_direction) {
935         case DMA_NONE:
936                 return "NONE";
937         case DMA_FROM_DEVICE:
938                 return "READ";
939         case DMA_TO_DEVICE:
940                 return "WRITE";
941         case DMA_BIDIRECTIONAL:
942                 return "BIDI";
943         default:
944                 break;
945         }
946
947         return "UNKNOWN";
948 }
949
950 void transport_dump_dev_state(
951         struct se_device *dev,
952         char *b,
953         int *bl)
954 {
955         *bl += sprintf(b + *bl, "Status: ");
956         switch (dev->dev_status) {
957         case TRANSPORT_DEVICE_ACTIVATED:
958                 *bl += sprintf(b + *bl, "ACTIVATED");
959                 break;
960         case TRANSPORT_DEVICE_DEACTIVATED:
961                 *bl += sprintf(b + *bl, "DEACTIVATED");
962                 break;
963         case TRANSPORT_DEVICE_SHUTDOWN:
964                 *bl += sprintf(b + *bl, "SHUTDOWN");
965                 break;
966         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
967         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
968                 *bl += sprintf(b + *bl, "OFFLINE");
969                 break;
970         default:
971                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
972                 break;
973         }
974
975         *bl += sprintf(b + *bl, "  Execute/Max Queue Depth: %d/%d",
976                 atomic_read(&dev->execute_tasks), dev->queue_depth);
977         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
978                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
979         *bl += sprintf(b + *bl, "        ");
980 }
981
982 void transport_dump_vpd_proto_id(
983         struct t10_vpd *vpd,
984         unsigned char *p_buf,
985         int p_buf_len)
986 {
987         unsigned char buf[VPD_TMP_BUF_SIZE];
988         int len;
989
990         memset(buf, 0, VPD_TMP_BUF_SIZE);
991         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
992
993         switch (vpd->protocol_identifier) {
994         case 0x00:
995                 sprintf(buf+len, "Fibre Channel\n");
996                 break;
997         case 0x10:
998                 sprintf(buf+len, "Parallel SCSI\n");
999                 break;
1000         case 0x20:
1001                 sprintf(buf+len, "SSA\n");
1002                 break;
1003         case 0x30:
1004                 sprintf(buf+len, "IEEE 1394\n");
1005                 break;
1006         case 0x40:
1007                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1008                                 " Protocol\n");
1009                 break;
1010         case 0x50:
1011                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1012                 break;
1013         case 0x60:
1014                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1015                 break;
1016         case 0x70:
1017                 sprintf(buf+len, "Automation/Drive Interface Transport"
1018                                 " Protocol\n");
1019                 break;
1020         case 0x80:
1021                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1022                 break;
1023         default:
1024                 sprintf(buf+len, "Unknown 0x%02x\n",
1025                                 vpd->protocol_identifier);
1026                 break;
1027         }
1028
1029         if (p_buf)
1030                 strncpy(p_buf, buf, p_buf_len);
1031         else
1032                 pr_debug("%s", buf);
1033 }
1034
1035 void
1036 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1037 {
1038         /*
1039          * Check if the Protocol Identifier Valid (PIV) bit is set..
1040          *
1041          * from spc3r23.pdf section 7.5.1
1042          */
1043          if (page_83[1] & 0x80) {
1044                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1045                 vpd->protocol_identifier_set = 1;
1046                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1047         }
1048 }
1049 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1050
1051 int transport_dump_vpd_assoc(
1052         struct t10_vpd *vpd,
1053         unsigned char *p_buf,
1054         int p_buf_len)
1055 {
1056         unsigned char buf[VPD_TMP_BUF_SIZE];
1057         int ret = 0;
1058         int len;
1059
1060         memset(buf, 0, VPD_TMP_BUF_SIZE);
1061         len = sprintf(buf, "T10 VPD Identifier Association: ");
1062
1063         switch (vpd->association) {
1064         case 0x00:
1065                 sprintf(buf+len, "addressed logical unit\n");
1066                 break;
1067         case 0x10:
1068                 sprintf(buf+len, "target port\n");
1069                 break;
1070         case 0x20:
1071                 sprintf(buf+len, "SCSI target device\n");
1072                 break;
1073         default:
1074                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1075                 ret = -EINVAL;
1076                 break;
1077         }
1078
1079         if (p_buf)
1080                 strncpy(p_buf, buf, p_buf_len);
1081         else
1082                 pr_debug("%s", buf);
1083
1084         return ret;
1085 }
1086
1087 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1088 {
1089         /*
1090          * The VPD identification association..
1091          *
1092          * from spc3r23.pdf Section 7.6.3.1 Table 297
1093          */
1094         vpd->association = (page_83[1] & 0x30);
1095         return transport_dump_vpd_assoc(vpd, NULL, 0);
1096 }
1097 EXPORT_SYMBOL(transport_set_vpd_assoc);
1098
1099 int transport_dump_vpd_ident_type(
1100         struct t10_vpd *vpd,
1101         unsigned char *p_buf,
1102         int p_buf_len)
1103 {
1104         unsigned char buf[VPD_TMP_BUF_SIZE];
1105         int ret = 0;
1106         int len;
1107
1108         memset(buf, 0, VPD_TMP_BUF_SIZE);
1109         len = sprintf(buf, "T10 VPD Identifier Type: ");
1110
1111         switch (vpd->device_identifier_type) {
1112         case 0x00:
1113                 sprintf(buf+len, "Vendor specific\n");
1114                 break;
1115         case 0x01:
1116                 sprintf(buf+len, "T10 Vendor ID based\n");
1117                 break;
1118         case 0x02:
1119                 sprintf(buf+len, "EUI-64 based\n");
1120                 break;
1121         case 0x03:
1122                 sprintf(buf+len, "NAA\n");
1123                 break;
1124         case 0x04:
1125                 sprintf(buf+len, "Relative target port identifier\n");
1126                 break;
1127         case 0x08:
1128                 sprintf(buf+len, "SCSI name string\n");
1129                 break;
1130         default:
1131                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1132                                 vpd->device_identifier_type);
1133                 ret = -EINVAL;
1134                 break;
1135         }
1136
1137         if (p_buf) {
1138                 if (p_buf_len < strlen(buf)+1)
1139                         return -EINVAL;
1140                 strncpy(p_buf, buf, p_buf_len);
1141         } else {
1142                 pr_debug("%s", buf);
1143         }
1144
1145         return ret;
1146 }
1147
1148 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1149 {
1150         /*
1151          * The VPD identifier type..
1152          *
1153          * from spc3r23.pdf Section 7.6.3.1 Table 298
1154          */
1155         vpd->device_identifier_type = (page_83[1] & 0x0f);
1156         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1157 }
1158 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1159
1160 int transport_dump_vpd_ident(
1161         struct t10_vpd *vpd,
1162         unsigned char *p_buf,
1163         int p_buf_len)
1164 {
1165         unsigned char buf[VPD_TMP_BUF_SIZE];
1166         int ret = 0;
1167
1168         memset(buf, 0, VPD_TMP_BUF_SIZE);
1169
1170         switch (vpd->device_identifier_code_set) {
1171         case 0x01: /* Binary */
1172                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1173                         &vpd->device_identifier[0]);
1174                 break;
1175         case 0x02: /* ASCII */
1176                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1177                         &vpd->device_identifier[0]);
1178                 break;
1179         case 0x03: /* UTF-8 */
1180                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1181                         &vpd->device_identifier[0]);
1182                 break;
1183         default:
1184                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1185                         " 0x%02x", vpd->device_identifier_code_set);
1186                 ret = -EINVAL;
1187                 break;
1188         }
1189
1190         if (p_buf)
1191                 strncpy(p_buf, buf, p_buf_len);
1192         else
1193                 pr_debug("%s", buf);
1194
1195         return ret;
1196 }
1197
1198 int
1199 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1200 {
1201         static const char hex_str[] = "0123456789abcdef";
1202         int j = 0, i = 4; /* offset to start of the identifer */
1203
1204         /*
1205          * The VPD Code Set (encoding)
1206          *
1207          * from spc3r23.pdf Section 7.6.3.1 Table 296
1208          */
1209         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1210         switch (vpd->device_identifier_code_set) {
1211         case 0x01: /* Binary */
1212                 vpd->device_identifier[j++] =
1213                                 hex_str[vpd->device_identifier_type];
1214                 while (i < (4 + page_83[3])) {
1215                         vpd->device_identifier[j++] =
1216                                 hex_str[(page_83[i] & 0xf0) >> 4];
1217                         vpd->device_identifier[j++] =
1218                                 hex_str[page_83[i] & 0x0f];
1219                         i++;
1220                 }
1221                 break;
1222         case 0x02: /* ASCII */
1223         case 0x03: /* UTF-8 */
1224                 while (i < (4 + page_83[3]))
1225                         vpd->device_identifier[j++] = page_83[i++];
1226                 break;
1227         default:
1228                 break;
1229         }
1230
1231         return transport_dump_vpd_ident(vpd, NULL, 0);
1232 }
1233 EXPORT_SYMBOL(transport_set_vpd_ident);
1234
1235 static void core_setup_task_attr_emulation(struct se_device *dev)
1236 {
1237         /*
1238          * If this device is from Target_Core_Mod/pSCSI, disable the
1239          * SAM Task Attribute emulation.
1240          *
1241          * This is currently not available in upsream Linux/SCSI Target
1242          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1243          */
1244         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1245                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1246                 return;
1247         }
1248
1249         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1250         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1251                 " device\n", dev->transport->name,
1252                 dev->transport->get_device_rev(dev));
1253 }
1254
1255 static void scsi_dump_inquiry(struct se_device *dev)
1256 {
1257         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1258         int i, device_type;
1259         /*
1260          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1261          */
1262         pr_debug("  Vendor: ");
1263         for (i = 0; i < 8; i++)
1264                 if (wwn->vendor[i] >= 0x20)
1265                         pr_debug("%c", wwn->vendor[i]);
1266                 else
1267                         pr_debug(" ");
1268
1269         pr_debug("  Model: ");
1270         for (i = 0; i < 16; i++)
1271                 if (wwn->model[i] >= 0x20)
1272                         pr_debug("%c", wwn->model[i]);
1273                 else
1274                         pr_debug(" ");
1275
1276         pr_debug("  Revision: ");
1277         for (i = 0; i < 4; i++)
1278                 if (wwn->revision[i] >= 0x20)
1279                         pr_debug("%c", wwn->revision[i]);
1280                 else
1281                         pr_debug(" ");
1282
1283         pr_debug("\n");
1284
1285         device_type = dev->transport->get_device_type(dev);
1286         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1287         pr_debug("                 ANSI SCSI revision: %02x\n",
1288                                 dev->transport->get_device_rev(dev));
1289 }
1290
1291 struct se_device *transport_add_device_to_core_hba(
1292         struct se_hba *hba,
1293         struct se_subsystem_api *transport,
1294         struct se_subsystem_dev *se_dev,
1295         u32 device_flags,
1296         void *transport_dev,
1297         struct se_dev_limits *dev_limits,
1298         const char *inquiry_prod,
1299         const char *inquiry_rev)
1300 {
1301         int force_pt;
1302         struct se_device  *dev;
1303
1304         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1305         if (!dev) {
1306                 pr_err("Unable to allocate memory for se_dev_t\n");
1307                 return NULL;
1308         }
1309
1310         transport_init_queue_obj(&dev->dev_queue_obj);
1311         dev->dev_flags          = device_flags;
1312         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1313         dev->dev_ptr            = transport_dev;
1314         dev->se_hba             = hba;
1315         dev->se_sub_dev         = se_dev;
1316         dev->transport          = transport;
1317         INIT_LIST_HEAD(&dev->dev_list);
1318         INIT_LIST_HEAD(&dev->dev_sep_list);
1319         INIT_LIST_HEAD(&dev->dev_tmr_list);
1320         INIT_LIST_HEAD(&dev->execute_task_list);
1321         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1322         INIT_LIST_HEAD(&dev->state_task_list);
1323         INIT_LIST_HEAD(&dev->qf_cmd_list);
1324         spin_lock_init(&dev->execute_task_lock);
1325         spin_lock_init(&dev->delayed_cmd_lock);
1326         spin_lock_init(&dev->dev_reservation_lock);
1327         spin_lock_init(&dev->dev_status_lock);
1328         spin_lock_init(&dev->se_port_lock);
1329         spin_lock_init(&dev->se_tmr_lock);
1330         spin_lock_init(&dev->qf_cmd_lock);
1331         atomic_set(&dev->dev_ordered_id, 0);
1332
1333         se_dev_set_default_attribs(dev, dev_limits);
1334
1335         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1336         dev->creation_time = get_jiffies_64();
1337         spin_lock_init(&dev->stats_lock);
1338
1339         spin_lock(&hba->device_lock);
1340         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1341         hba->dev_count++;
1342         spin_unlock(&hba->device_lock);
1343         /*
1344          * Setup the SAM Task Attribute emulation for struct se_device
1345          */
1346         core_setup_task_attr_emulation(dev);
1347         /*
1348          * Force PR and ALUA passthrough emulation with internal object use.
1349          */
1350         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1351         /*
1352          * Setup the Reservations infrastructure for struct se_device
1353          */
1354         core_setup_reservations(dev, force_pt);
1355         /*
1356          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1357          */
1358         if (core_setup_alua(dev, force_pt) < 0)
1359                 goto out;
1360
1361         /*
1362          * Startup the struct se_device processing thread
1363          */
1364         dev->process_thread = kthread_run(transport_processing_thread, dev,
1365                                           "LIO_%s", dev->transport->name);
1366         if (IS_ERR(dev->process_thread)) {
1367                 pr_err("Unable to create kthread: LIO_%s\n",
1368                         dev->transport->name);
1369                 goto out;
1370         }
1371         /*
1372          * Setup work_queue for QUEUE_FULL
1373          */
1374         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1375         /*
1376          * Preload the initial INQUIRY const values if we are doing
1377          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1378          * passthrough because this is being provided by the backend LLD.
1379          * This is required so that transport_get_inquiry() copies these
1380          * originals once back into DEV_T10_WWN(dev) for the virtual device
1381          * setup.
1382          */
1383         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1384                 if (!inquiry_prod || !inquiry_rev) {
1385                         pr_err("All non TCM/pSCSI plugins require"
1386                                 " INQUIRY consts\n");
1387                         goto out;
1388                 }
1389
1390                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1391                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1392                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1393         }
1394         scsi_dump_inquiry(dev);
1395
1396         return dev;
1397 out:
1398         kthread_stop(dev->process_thread);
1399
1400         spin_lock(&hba->device_lock);
1401         list_del(&dev->dev_list);
1402         hba->dev_count--;
1403         spin_unlock(&hba->device_lock);
1404
1405         se_release_vpd_for_dev(dev);
1406
1407         kfree(dev);
1408
1409         return NULL;
1410 }
1411 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1412
1413 /*      transport_generic_prepare_cdb():
1414  *
1415  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1416  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1417  *      The point of this is since we are mapping iSCSI LUNs to
1418  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1419  *      devices and HBAs for a loop.
1420  */
1421 static inline void transport_generic_prepare_cdb(
1422         unsigned char *cdb)
1423 {
1424         switch (cdb[0]) {
1425         case READ_10: /* SBC - RDProtect */
1426         case READ_12: /* SBC - RDProtect */
1427         case READ_16: /* SBC - RDProtect */
1428         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1429         case VERIFY: /* SBC - VRProtect */
1430         case VERIFY_16: /* SBC - VRProtect */
1431         case WRITE_VERIFY: /* SBC - VRProtect */
1432         case WRITE_VERIFY_12: /* SBC - VRProtect */
1433                 break;
1434         default:
1435                 cdb[1] &= 0x1f; /* clear logical unit number */
1436                 break;
1437         }
1438 }
1439
1440 static struct se_task *
1441 transport_generic_get_task(struct se_cmd *cmd,
1442                 enum dma_data_direction data_direction)
1443 {
1444         struct se_task *task;
1445         struct se_device *dev = cmd->se_dev;
1446
1447         task = dev->transport->alloc_task(cmd->t_task_cdb);
1448         if (!task) {
1449                 pr_err("Unable to allocate struct se_task\n");
1450                 return NULL;
1451         }
1452
1453         INIT_LIST_HEAD(&task->t_list);
1454         INIT_LIST_HEAD(&task->t_execute_list);
1455         INIT_LIST_HEAD(&task->t_state_list);
1456         init_completion(&task->task_stop_comp);
1457         task->task_se_cmd = cmd;
1458         task->task_data_direction = data_direction;
1459
1460         return task;
1461 }
1462
1463 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1464
1465 /*
1466  * Used by fabric modules containing a local struct se_cmd within their
1467  * fabric dependent per I/O descriptor.
1468  */
1469 void transport_init_se_cmd(
1470         struct se_cmd *cmd,
1471         struct target_core_fabric_ops *tfo,
1472         struct se_session *se_sess,
1473         u32 data_length,
1474         int data_direction,
1475         int task_attr,
1476         unsigned char *sense_buffer)
1477 {
1478         INIT_LIST_HEAD(&cmd->se_lun_node);
1479         INIT_LIST_HEAD(&cmd->se_delayed_node);
1480         INIT_LIST_HEAD(&cmd->se_qf_node);
1481         INIT_LIST_HEAD(&cmd->se_queue_node);
1482         INIT_LIST_HEAD(&cmd->se_cmd_list);
1483         INIT_LIST_HEAD(&cmd->t_task_list);
1484         init_completion(&cmd->transport_lun_fe_stop_comp);
1485         init_completion(&cmd->transport_lun_stop_comp);
1486         init_completion(&cmd->t_transport_stop_comp);
1487         init_completion(&cmd->cmd_wait_comp);
1488         spin_lock_init(&cmd->t_state_lock);
1489         atomic_set(&cmd->transport_dev_active, 1);
1490
1491         cmd->se_tfo = tfo;
1492         cmd->se_sess = se_sess;
1493         cmd->data_length = data_length;
1494         cmd->data_direction = data_direction;
1495         cmd->sam_task_attr = task_attr;
1496         cmd->sense_buffer = sense_buffer;
1497 }
1498 EXPORT_SYMBOL(transport_init_se_cmd);
1499
1500 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1501 {
1502         /*
1503          * Check if SAM Task Attribute emulation is enabled for this
1504          * struct se_device storage object
1505          */
1506         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1507                 return 0;
1508
1509         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1510                 pr_debug("SAM Task Attribute ACA"
1511                         " emulation is not supported\n");
1512                 return -EINVAL;
1513         }
1514         /*
1515          * Used to determine when ORDERED commands should go from
1516          * Dormant to Active status.
1517          */
1518         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1519         smp_mb__after_atomic_inc();
1520         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1521                         cmd->se_ordered_id, cmd->sam_task_attr,
1522                         cmd->se_dev->transport->name);
1523         return 0;
1524 }
1525
1526 /*      transport_generic_allocate_tasks():
1527  *
1528  *      Called from fabric RX Thread.
1529  */
1530 int transport_generic_allocate_tasks(
1531         struct se_cmd *cmd,
1532         unsigned char *cdb)
1533 {
1534         int ret;
1535
1536         transport_generic_prepare_cdb(cdb);
1537         /*
1538          * Ensure that the received CDB is less than the max (252 + 8) bytes
1539          * for VARIABLE_LENGTH_CMD
1540          */
1541         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1542                 pr_err("Received SCSI CDB with command_size: %d that"
1543                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1544                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1545                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1546                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1547                 return -EINVAL;
1548         }
1549         /*
1550          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1551          * allocate the additional extended CDB buffer now..  Otherwise
1552          * setup the pointer from __t_task_cdb to t_task_cdb.
1553          */
1554         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1555                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1556                                                 GFP_KERNEL);
1557                 if (!cmd->t_task_cdb) {
1558                         pr_err("Unable to allocate cmd->t_task_cdb"
1559                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1560                                 scsi_command_size(cdb),
1561                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1562                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1563                         cmd->scsi_sense_reason =
1564                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1565                         return -ENOMEM;
1566                 }
1567         } else
1568                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1569         /*
1570          * Copy the original CDB into cmd->
1571          */
1572         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1573         /*
1574          * Setup the received CDB based on SCSI defined opcodes and
1575          * perform unit attention, persistent reservations and ALUA
1576          * checks for virtual device backends.  The cmd->t_task_cdb
1577          * pointer is expected to be setup before we reach this point.
1578          */
1579         ret = transport_generic_cmd_sequencer(cmd, cdb);
1580         if (ret < 0)
1581                 return ret;
1582         /*
1583          * Check for SAM Task Attribute Emulation
1584          */
1585         if (transport_check_alloc_task_attr(cmd) < 0) {
1586                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1587                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1588                 return -EINVAL;
1589         }
1590         spin_lock(&cmd->se_lun->lun_sep_lock);
1591         if (cmd->se_lun->lun_sep)
1592                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1593         spin_unlock(&cmd->se_lun->lun_sep_lock);
1594         return 0;
1595 }
1596 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1597
1598 /*
1599  * Used by fabric module frontends to queue tasks directly.
1600  * Many only be used from process context only
1601  */
1602 int transport_handle_cdb_direct(
1603         struct se_cmd *cmd)
1604 {
1605         int ret;
1606
1607         if (!cmd->se_lun) {
1608                 dump_stack();
1609                 pr_err("cmd->se_lun is NULL\n");
1610                 return -EINVAL;
1611         }
1612         if (in_interrupt()) {
1613                 dump_stack();
1614                 pr_err("transport_generic_handle_cdb cannot be called"
1615                                 " from interrupt context\n");
1616                 return -EINVAL;
1617         }
1618         /*
1619          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1620          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1621          * in existing usage to ensure that outstanding descriptors are handled
1622          * correctly during shutdown via transport_wait_for_tasks()
1623          *
1624          * Also, we don't take cmd->t_state_lock here as we only expect
1625          * this to be called for initial descriptor submission.
1626          */
1627         cmd->t_state = TRANSPORT_NEW_CMD;
1628         atomic_set(&cmd->t_transport_active, 1);
1629         /*
1630          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1631          * so follow TRANSPORT_NEW_CMD processing thread context usage
1632          * and call transport_generic_request_failure() if necessary..
1633          */
1634         ret = transport_generic_new_cmd(cmd);
1635         if (ret < 0)
1636                 transport_generic_request_failure(cmd);
1637
1638         return 0;
1639 }
1640 EXPORT_SYMBOL(transport_handle_cdb_direct);
1641
1642 /**
1643  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1644  *
1645  * @se_cmd: command descriptor to submit
1646  * @se_sess: associated se_sess for endpoint
1647  * @cdb: pointer to SCSI CDB
1648  * @sense: pointer to SCSI sense buffer
1649  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1650  * @data_length: fabric expected data transfer length
1651  * @task_addr: SAM task attribute
1652  * @data_dir: DMA data direction
1653  * @flags: flags for command submission from target_sc_flags_tables
1654  *
1655  * This may only be called from process context, and also currently
1656  * assumes internal allocation of fabric payload buffer by target-core.
1657  **/
1658 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1659                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1660                 u32 data_length, int task_attr, int data_dir, int flags)
1661 {
1662         struct se_portal_group *se_tpg;
1663         int rc;
1664
1665         se_tpg = se_sess->se_tpg;
1666         BUG_ON(!se_tpg);
1667         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1668         BUG_ON(in_interrupt());
1669         /*
1670          * Initialize se_cmd for target operation.  From this point
1671          * exceptions are handled by sending exception status via
1672          * target_core_fabric_ops->queue_status() callback
1673          */
1674         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1675                                 data_length, data_dir, task_attr, sense);
1676         /*
1677          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1678          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1679          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1680          * kref_put() to happen during fabric packet acknowledgement.
1681          */
1682         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1683         /*
1684          * Signal bidirectional data payloads to target-core
1685          */
1686         if (flags & TARGET_SCF_BIDI_OP)
1687                 se_cmd->se_cmd_flags |= SCF_BIDI;
1688         /*
1689          * Locate se_lun pointer and attach it to struct se_cmd
1690          */
1691         if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0)
1692                 goto out_check_cond;
1693         /*
1694          * Sanitize CDBs via transport_generic_cmd_sequencer() and
1695          * allocate the necessary tasks to complete the received CDB+data
1696          */
1697         rc = transport_generic_allocate_tasks(se_cmd, cdb);
1698         if (rc != 0)
1699                 goto out_check_cond;
1700         /*
1701          * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1702          * for immediate execution of READs, otherwise wait for
1703          * transport_generic_handle_data() to be called for WRITEs
1704          * when fabric has filled the incoming buffer.
1705          */
1706         transport_handle_cdb_direct(se_cmd);
1707         return 0;
1708
1709 out_check_cond:
1710         transport_send_check_condition_and_sense(se_cmd,
1711                                 se_cmd->scsi_sense_reason, 0);
1712         return 0;
1713 }
1714 EXPORT_SYMBOL(target_submit_cmd);
1715
1716 /*
1717  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1718  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1719  * complete setup in TCM process context w/ TFO->new_cmd_map().
1720  */
1721 int transport_generic_handle_cdb_map(
1722         struct se_cmd *cmd)
1723 {
1724         if (!cmd->se_lun) {
1725                 dump_stack();
1726                 pr_err("cmd->se_lun is NULL\n");
1727                 return -EINVAL;
1728         }
1729
1730         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1731         return 0;
1732 }
1733 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1734
1735 /*      transport_generic_handle_data():
1736  *
1737  *
1738  */
1739 int transport_generic_handle_data(
1740         struct se_cmd *cmd)
1741 {
1742         /*
1743          * For the software fabric case, then we assume the nexus is being
1744          * failed/shutdown when signals are pending from the kthread context
1745          * caller, so we return a failure.  For the HW target mode case running
1746          * in interrupt code, the signal_pending() check is skipped.
1747          */
1748         if (!in_interrupt() && signal_pending(current))
1749                 return -EPERM;
1750         /*
1751          * If the received CDB has aleady been ABORTED by the generic
1752          * target engine, we now call transport_check_aborted_status()
1753          * to queue any delated TASK_ABORTED status for the received CDB to the
1754          * fabric module as we are expecting no further incoming DATA OUT
1755          * sequences at this point.
1756          */
1757         if (transport_check_aborted_status(cmd, 1) != 0)
1758                 return 0;
1759
1760         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1761         return 0;
1762 }
1763 EXPORT_SYMBOL(transport_generic_handle_data);
1764
1765 /*      transport_generic_handle_tmr():
1766  *
1767  *
1768  */
1769 int transport_generic_handle_tmr(
1770         struct se_cmd *cmd)
1771 {
1772         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1773         return 0;
1774 }
1775 EXPORT_SYMBOL(transport_generic_handle_tmr);
1776
1777 /*
1778  * If the task is active, request it to be stopped and sleep until it
1779  * has completed.
1780  */
1781 bool target_stop_task(struct se_task *task, unsigned long *flags)
1782 {
1783         struct se_cmd *cmd = task->task_se_cmd;
1784         bool was_active = false;
1785
1786         if (task->task_flags & TF_ACTIVE) {
1787                 task->task_flags |= TF_REQUEST_STOP;
1788                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1789
1790                 pr_debug("Task %p waiting to complete\n", task);
1791                 wait_for_completion(&task->task_stop_comp);
1792                 pr_debug("Task %p stopped successfully\n", task);
1793
1794                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1795                 atomic_dec(&cmd->t_task_cdbs_left);
1796                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1797                 was_active = true;
1798         }
1799
1800         return was_active;
1801 }
1802
1803 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1804 {
1805         struct se_task *task, *task_tmp;
1806         unsigned long flags;
1807         int ret = 0;
1808
1809         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1810                 cmd->se_tfo->get_task_tag(cmd));
1811
1812         /*
1813          * No tasks remain in the execution queue
1814          */
1815         spin_lock_irqsave(&cmd->t_state_lock, flags);
1816         list_for_each_entry_safe(task, task_tmp,
1817                                 &cmd->t_task_list, t_list) {
1818                 pr_debug("Processing task %p\n", task);
1819                 /*
1820                  * If the struct se_task has not been sent and is not active,
1821                  * remove the struct se_task from the execution queue.
1822                  */
1823                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1824                         spin_unlock_irqrestore(&cmd->t_state_lock,
1825                                         flags);
1826                         transport_remove_task_from_execute_queue(task,
1827                                         cmd->se_dev);
1828
1829                         pr_debug("Task %p removed from execute queue\n", task);
1830                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1831                         continue;
1832                 }
1833
1834                 if (!target_stop_task(task, &flags)) {
1835                         pr_debug("Task %p - did nothing\n", task);
1836                         ret++;
1837                 }
1838         }
1839         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1840
1841         return ret;
1842 }
1843
1844 /*
1845  * Handle SAM-esque emulation for generic transport request failures.
1846  */
1847 static void transport_generic_request_failure(struct se_cmd *cmd)
1848 {
1849         int ret = 0;
1850
1851         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1852                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1853                 cmd->t_task_cdb[0]);
1854         pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1855                 cmd->se_tfo->get_cmd_state(cmd),
1856                 cmd->t_state, cmd->scsi_sense_reason);
1857         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1858                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1859                 " t_transport_active: %d t_transport_stop: %d"
1860                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1861                 atomic_read(&cmd->t_task_cdbs_left),
1862                 atomic_read(&cmd->t_task_cdbs_sent),
1863                 atomic_read(&cmd->t_task_cdbs_ex_left),
1864                 atomic_read(&cmd->t_transport_active),
1865                 atomic_read(&cmd->t_transport_stop),
1866                 atomic_read(&cmd->t_transport_sent));
1867
1868         /*
1869          * For SAM Task Attribute emulation for failed struct se_cmd
1870          */
1871         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1872                 transport_complete_task_attr(cmd);
1873
1874         switch (cmd->scsi_sense_reason) {
1875         case TCM_NON_EXISTENT_LUN:
1876         case TCM_UNSUPPORTED_SCSI_OPCODE:
1877         case TCM_INVALID_CDB_FIELD:
1878         case TCM_INVALID_PARAMETER_LIST:
1879         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1880         case TCM_UNKNOWN_MODE_PAGE:
1881         case TCM_WRITE_PROTECTED:
1882         case TCM_CHECK_CONDITION_ABORT_CMD:
1883         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1884         case TCM_CHECK_CONDITION_NOT_READY:
1885                 break;
1886         case TCM_RESERVATION_CONFLICT:
1887                 /*
1888                  * No SENSE Data payload for this case, set SCSI Status
1889                  * and queue the response to $FABRIC_MOD.
1890                  *
1891                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1892                  */
1893                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1894                 /*
1895                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1896                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1897                  * CONFLICT STATUS.
1898                  *
1899                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1900                  */
1901                 if (cmd->se_sess &&
1902                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1903                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1904                                 cmd->orig_fe_lun, 0x2C,
1905                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1906
1907                 ret = cmd->se_tfo->queue_status(cmd);
1908                 if (ret == -EAGAIN || ret == -ENOMEM)
1909                         goto queue_full;
1910                 goto check_stop;
1911         default:
1912                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1913                         cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1914                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1915                 break;
1916         }
1917         /*
1918          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1919          * make the call to transport_send_check_condition_and_sense()
1920          * directly.  Otherwise expect the fabric to make the call to
1921          * transport_send_check_condition_and_sense() after handling
1922          * possible unsoliticied write data payloads.
1923          */
1924         ret = transport_send_check_condition_and_sense(cmd,
1925                         cmd->scsi_sense_reason, 0);
1926         if (ret == -EAGAIN || ret == -ENOMEM)
1927                 goto queue_full;
1928
1929 check_stop:
1930         transport_lun_remove_cmd(cmd);
1931         if (!transport_cmd_check_stop_to_fabric(cmd))
1932                 ;
1933         return;
1934
1935 queue_full:
1936         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1937         transport_handle_queue_full(cmd, cmd->se_dev);
1938 }
1939
1940 static inline u32 transport_lba_21(unsigned char *cdb)
1941 {
1942         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1943 }
1944
1945 static inline u32 transport_lba_32(unsigned char *cdb)
1946 {
1947         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1948 }
1949
1950 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1951 {
1952         unsigned int __v1, __v2;
1953
1954         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1955         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1956
1957         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1958 }
1959
1960 /*
1961  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1962  */
1963 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1964 {
1965         unsigned int __v1, __v2;
1966
1967         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1968         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1969
1970         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1971 }
1972
1973 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1974 {
1975         unsigned long flags;
1976
1977         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1978         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1979         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1980 }
1981
1982 /*
1983  * Called from Fabric Module context from transport_execute_tasks()
1984  *
1985  * The return of this function determins if the tasks from struct se_cmd
1986  * get added to the execution queue in transport_execute_tasks(),
1987  * or are added to the delayed or ordered lists here.
1988  */
1989 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1990 {
1991         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1992                 return 1;
1993         /*
1994          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1995          * to allow the passed struct se_cmd list of tasks to the front of the list.
1996          */
1997          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1998                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
1999                         " 0x%02x, se_ordered_id: %u\n",
2000                         cmd->t_task_cdb[0],
2001                         cmd->se_ordered_id);
2002                 return 1;
2003         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2004                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2005                 smp_mb__after_atomic_inc();
2006
2007                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2008                                 " list, se_ordered_id: %u\n",
2009                                 cmd->t_task_cdb[0],
2010                                 cmd->se_ordered_id);
2011                 /*
2012                  * Add ORDERED command to tail of execution queue if
2013                  * no other older commands exist that need to be
2014                  * completed first.
2015                  */
2016                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2017                         return 1;
2018         } else {
2019                 /*
2020                  * For SIMPLE and UNTAGGED Task Attribute commands
2021                  */
2022                 atomic_inc(&cmd->se_dev->simple_cmds);
2023                 smp_mb__after_atomic_inc();
2024         }
2025         /*
2026          * Otherwise if one or more outstanding ORDERED task attribute exist,
2027          * add the dormant task(s) built for the passed struct se_cmd to the
2028          * execution queue and become in Active state for this struct se_device.
2029          */
2030         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2031                 /*
2032                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2033                  * will be drained upon completion of HEAD_OF_QUEUE task.
2034                  */
2035                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2036                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2037                 list_add_tail(&cmd->se_delayed_node,
2038                                 &cmd->se_dev->delayed_cmd_list);
2039                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2040
2041                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2042                         " delayed CMD list, se_ordered_id: %u\n",
2043                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2044                         cmd->se_ordered_id);
2045                 /*
2046                  * Return zero to let transport_execute_tasks() know
2047                  * not to add the delayed tasks to the execution list.
2048                  */
2049                 return 0;
2050         }
2051         /*
2052          * Otherwise, no ORDERED task attributes exist..
2053          */
2054         return 1;
2055 }
2056
2057 /*
2058  * Called from fabric module context in transport_generic_new_cmd() and
2059  * transport_generic_process_write()
2060  */
2061 static int transport_execute_tasks(struct se_cmd *cmd)
2062 {
2063         int add_tasks;
2064         struct se_device *se_dev = cmd->se_dev;
2065         /*
2066          * Call transport_cmd_check_stop() to see if a fabric exception
2067          * has occurred that prevents execution.
2068          */
2069         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2070                 /*
2071                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2072                  * attribute for the tasks of the received struct se_cmd CDB
2073                  */
2074                 add_tasks = transport_execute_task_attr(cmd);
2075                 if (!add_tasks)
2076                         goto execute_tasks;
2077                 /*
2078                  * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2079                  * adds associated se_tasks while holding dev->execute_task_lock
2080                  * before I/O dispath to avoid a double spinlock access.
2081                  */
2082                 __transport_execute_tasks(se_dev, cmd);
2083                 return 0;
2084         }
2085
2086 execute_tasks:
2087         __transport_execute_tasks(se_dev, NULL);
2088         return 0;
2089 }
2090
2091 /*
2092  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2093  * from struct se_device->execute_task_list and
2094  *
2095  * Called from transport_processing_thread()
2096  */
2097 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2098 {
2099         int error;
2100         struct se_cmd *cmd = NULL;
2101         struct se_task *task = NULL;
2102         unsigned long flags;
2103
2104 check_depth:
2105         spin_lock_irq(&dev->execute_task_lock);
2106         if (new_cmd != NULL)
2107                 __transport_add_tasks_from_cmd(new_cmd);
2108
2109         if (list_empty(&dev->execute_task_list)) {
2110                 spin_unlock_irq(&dev->execute_task_lock);
2111                 return 0;
2112         }
2113         task = list_first_entry(&dev->execute_task_list,
2114                                 struct se_task, t_execute_list);
2115         __transport_remove_task_from_execute_queue(task, dev);
2116         spin_unlock_irq(&dev->execute_task_lock);
2117
2118         cmd = task->task_se_cmd;
2119         spin_lock_irqsave(&cmd->t_state_lock, flags);
2120         task->task_flags |= (TF_ACTIVE | TF_SENT);
2121         atomic_inc(&cmd->t_task_cdbs_sent);
2122
2123         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2124             cmd->t_task_list_num)
2125                 atomic_set(&cmd->t_transport_sent, 1);
2126
2127         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2128
2129         if (cmd->execute_task)
2130                 error = cmd->execute_task(task);
2131         else
2132                 error = dev->transport->do_task(task);
2133         if (error != 0) {
2134                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2135                 task->task_flags &= ~TF_ACTIVE;
2136                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2137                 atomic_set(&cmd->t_transport_sent, 0);
2138                 transport_stop_tasks_for_cmd(cmd);
2139                 transport_generic_request_failure(cmd);
2140         }
2141
2142         new_cmd = NULL;
2143         goto check_depth;
2144
2145         return 0;
2146 }
2147
2148 static inline u32 transport_get_sectors_6(
2149         unsigned char *cdb,
2150         struct se_cmd *cmd,
2151         int *ret)
2152 {
2153         struct se_device *dev = cmd->se_dev;
2154
2155         /*
2156          * Assume TYPE_DISK for non struct se_device objects.
2157          * Use 8-bit sector value.
2158          */
2159         if (!dev)
2160                 goto type_disk;
2161
2162         /*
2163          * Use 24-bit allocation length for TYPE_TAPE.
2164          */
2165         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2166                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2167
2168         /*
2169          * Everything else assume TYPE_DISK Sector CDB location.
2170          * Use 8-bit sector value.  SBC-3 says:
2171          *
2172          *   A TRANSFER LENGTH field set to zero specifies that 256
2173          *   logical blocks shall be written.  Any other value
2174          *   specifies the number of logical blocks that shall be
2175          *   written.
2176          */
2177 type_disk:
2178         return cdb[4] ? : 256;
2179 }
2180
2181 static inline u32 transport_get_sectors_10(
2182         unsigned char *cdb,
2183         struct se_cmd *cmd,
2184         int *ret)
2185 {
2186         struct se_device *dev = cmd->se_dev;
2187
2188         /*
2189          * Assume TYPE_DISK for non struct se_device objects.
2190          * Use 16-bit sector value.
2191          */
2192         if (!dev)
2193                 goto type_disk;
2194
2195         /*
2196          * XXX_10 is not defined in SSC, throw an exception
2197          */
2198         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2199                 *ret = -EINVAL;
2200                 return 0;
2201         }
2202
2203         /*
2204          * Everything else assume TYPE_DISK Sector CDB location.
2205          * Use 16-bit sector value.
2206          */
2207 type_disk:
2208         return (u32)(cdb[7] << 8) + cdb[8];
2209 }
2210
2211 static inline u32 transport_get_sectors_12(
2212         unsigned char *cdb,
2213         struct se_cmd *cmd,
2214         int *ret)
2215 {
2216         struct se_device *dev = cmd->se_dev;
2217
2218         /*
2219          * Assume TYPE_DISK for non struct se_device objects.
2220          * Use 32-bit sector value.
2221          */
2222         if (!dev)
2223                 goto type_disk;
2224
2225         /*
2226          * XXX_12 is not defined in SSC, throw an exception
2227          */
2228         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2229                 *ret = -EINVAL;
2230                 return 0;
2231         }
2232
2233         /*
2234          * Everything else assume TYPE_DISK Sector CDB location.
2235          * Use 32-bit sector value.
2236          */
2237 type_disk:
2238         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2239 }
2240
2241 static inline u32 transport_get_sectors_16(
2242         unsigned char *cdb,
2243         struct se_cmd *cmd,
2244         int *ret)
2245 {
2246         struct se_device *dev = cmd->se_dev;
2247
2248         /*
2249          * Assume TYPE_DISK for non struct se_device objects.
2250          * Use 32-bit sector value.
2251          */
2252         if (!dev)
2253                 goto type_disk;
2254
2255         /*
2256          * Use 24-bit allocation length for TYPE_TAPE.
2257          */
2258         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2259                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2260
2261 type_disk:
2262         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2263                     (cdb[12] << 8) + cdb[13];
2264 }
2265
2266 /*
2267  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2268  */
2269 static inline u32 transport_get_sectors_32(
2270         unsigned char *cdb,
2271         struct se_cmd *cmd,
2272         int *ret)
2273 {
2274         /*
2275          * Assume TYPE_DISK for non struct se_device objects.
2276          * Use 32-bit sector value.
2277          */
2278         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2279                     (cdb[30] << 8) + cdb[31];
2280
2281 }
2282
2283 static inline u32 transport_get_size(
2284         u32 sectors,
2285         unsigned char *cdb,
2286         struct se_cmd *cmd)
2287 {
2288         struct se_device *dev = cmd->se_dev;
2289
2290         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2291                 if (cdb[1] & 1) { /* sectors */
2292                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2293                 } else /* bytes */
2294                         return sectors;
2295         }
2296 #if 0
2297         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2298                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2299                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2300                         dev->transport->name);
2301 #endif
2302         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2303 }
2304
2305 static void transport_xor_callback(struct se_cmd *cmd)
2306 {
2307         unsigned char *buf, *addr;
2308         struct scatterlist *sg;
2309         unsigned int offset;
2310         int i;
2311         int count;
2312         /*
2313          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2314          *
2315          * 1) read the specified logical block(s);
2316          * 2) transfer logical blocks from the data-out buffer;
2317          * 3) XOR the logical blocks transferred from the data-out buffer with
2318          *    the logical blocks read, storing the resulting XOR data in a buffer;
2319          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2320          *    blocks transferred from the data-out buffer; and
2321          * 5) transfer the resulting XOR data to the data-in buffer.
2322          */
2323         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2324         if (!buf) {
2325                 pr_err("Unable to allocate xor_callback buf\n");
2326                 return;
2327         }
2328         /*
2329          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2330          * into the locally allocated *buf
2331          */
2332         sg_copy_to_buffer(cmd->t_data_sg,
2333                           cmd->t_data_nents,
2334                           buf,
2335                           cmd->data_length);
2336
2337         /*
2338          * Now perform the XOR against the BIDI read memory located at
2339          * cmd->t_mem_bidi_list
2340          */
2341
2342         offset = 0;
2343         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2344                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2345                 if (!addr)
2346                         goto out;
2347
2348                 for (i = 0; i < sg->length; i++)
2349                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2350
2351                 offset += sg->length;
2352                 kunmap_atomic(addr, KM_USER0);
2353         }
2354
2355 out:
2356         kfree(buf);
2357 }
2358
2359 /*
2360  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2361  */
2362 static int transport_get_sense_data(struct se_cmd *cmd)
2363 {
2364         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2365         struct se_device *dev = cmd->se_dev;
2366         struct se_task *task = NULL, *task_tmp;
2367         unsigned long flags;
2368         u32 offset = 0;
2369
2370         WARN_ON(!cmd->se_lun);
2371
2372         if (!dev)
2373                 return 0;
2374
2375         spin_lock_irqsave(&cmd->t_state_lock, flags);
2376         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2377                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2378                 return 0;
2379         }
2380
2381         list_for_each_entry_safe(task, task_tmp,
2382                                 &cmd->t_task_list, t_list) {
2383                 if (!(task->task_flags & TF_HAS_SENSE))
2384                         continue;
2385
2386                 if (!dev->transport->get_sense_buffer) {
2387                         pr_err("dev->transport->get_sense_buffer"
2388                                         " is NULL\n");
2389                         continue;
2390                 }
2391
2392                 sense_buffer = dev->transport->get_sense_buffer(task);
2393                 if (!sense_buffer) {
2394                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2395                                 " sense buffer for task with sense\n",
2396                                 cmd->se_tfo->get_task_tag(cmd), task);
2397                         continue;
2398                 }
2399                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2400
2401                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2402                                 TRANSPORT_SENSE_BUFFER);
2403
2404                 memcpy(&buffer[offset], sense_buffer,
2405                                 TRANSPORT_SENSE_BUFFER);
2406                 cmd->scsi_status = task->task_scsi_status;
2407                 /* Automatically padded */
2408                 cmd->scsi_sense_length =
2409                                 (TRANSPORT_SENSE_BUFFER + offset);
2410
2411                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2412                                 " and sense\n",
2413                         dev->se_hba->hba_id, dev->transport->name,
2414                                 cmd->scsi_status);
2415                 return 0;
2416         }
2417         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2418
2419         return -1;
2420 }
2421
2422 static inline long long transport_dev_end_lba(struct se_device *dev)
2423 {
2424         return dev->transport->get_blocks(dev) + 1;
2425 }
2426
2427 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2428 {
2429         struct se_device *dev = cmd->se_dev;
2430         u32 sectors;
2431
2432         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2433                 return 0;
2434
2435         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2436
2437         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2438                 pr_err("LBA: %llu Sectors: %u exceeds"
2439                         " transport_dev_end_lba(): %llu\n",
2440                         cmd->t_task_lba, sectors,
2441                         transport_dev_end_lba(dev));
2442                 return -EINVAL;
2443         }
2444
2445         return 0;
2446 }
2447
2448 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2449 {
2450         /*
2451          * Determine if the received WRITE_SAME is used to for direct
2452          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2453          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2454          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2455          */
2456         int passthrough = (dev->transport->transport_type ==
2457                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2458
2459         if (!passthrough) {
2460                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2461                         pr_err("WRITE_SAME PBDATA and LBDATA"
2462                                 " bits not supported for Block Discard"
2463                                 " Emulation\n");
2464                         return -ENOSYS;
2465                 }
2466                 /*
2467                  * Currently for the emulated case we only accept
2468                  * tpws with the UNMAP=1 bit set.
2469                  */
2470                 if (!(flags[0] & 0x08)) {
2471                         pr_err("WRITE_SAME w/o UNMAP bit not"
2472                                 " supported for Block Discard Emulation\n");
2473                         return -ENOSYS;
2474                 }
2475         }
2476
2477         return 0;
2478 }
2479
2480 /*      transport_generic_cmd_sequencer():
2481  *
2482  *      Generic Command Sequencer that should work for most DAS transport
2483  *      drivers.
2484  *
2485  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2486  *      RX Thread.
2487  *
2488  *      FIXME: Need to support other SCSI OPCODES where as well.
2489  */
2490 static int transport_generic_cmd_sequencer(
2491         struct se_cmd *cmd,
2492         unsigned char *cdb)
2493 {
2494         struct se_device *dev = cmd->se_dev;
2495         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2496         int ret = 0, sector_ret = 0, passthrough;
2497         u32 sectors = 0, size = 0, pr_reg_type = 0;
2498         u16 service_action;
2499         u8 alua_ascq = 0;
2500         /*
2501          * Check for an existing UNIT ATTENTION condition
2502          */
2503         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2504                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2505                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2506                 return -EINVAL;
2507         }
2508         /*
2509          * Check status of Asymmetric Logical Unit Assignment port
2510          */
2511         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2512         if (ret != 0) {
2513                 /*
2514                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2515                  * The ALUA additional sense code qualifier (ASCQ) is determined
2516                  * by the ALUA primary or secondary access state..
2517                  */
2518                 if (ret > 0) {
2519 #if 0
2520                         pr_debug("[%s]: ALUA TG Port not available,"
2521                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2522                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2523 #endif
2524                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2525                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2526                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2527                         return -EINVAL;
2528                 }
2529                 goto out_invalid_cdb_field;
2530         }
2531         /*
2532          * Check status for SPC-3 Persistent Reservations
2533          */
2534         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2535                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2536                                         cmd, cdb, pr_reg_type) != 0) {
2537                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2538                         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2539                         cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2540                         return -EBUSY;
2541                 }
2542                 /*
2543                  * This means the CDB is allowed for the SCSI Initiator port
2544                  * when said port is *NOT* holding the legacy SPC-2 or
2545                  * SPC-3 Persistent Reservation.
2546                  */
2547         }
2548
2549         /*
2550          * If we operate in passthrough mode we skip most CDB emulation and
2551          * instead hand the commands down to the physical SCSI device.
2552          */
2553         passthrough =
2554                 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2555
2556         switch (cdb[0]) {
2557         case READ_6:
2558                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2559                 if (sector_ret)
2560                         goto out_unsupported_cdb;
2561                 size = transport_get_size(sectors, cdb, cmd);
2562                 cmd->t_task_lba = transport_lba_21(cdb);
2563                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2564                 break;
2565         case READ_10:
2566                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2567                 if (sector_ret)
2568                         goto out_unsupported_cdb;
2569                 size = transport_get_size(sectors, cdb, cmd);
2570                 cmd->t_task_lba = transport_lba_32(cdb);
2571                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2572                 break;
2573         case READ_12:
2574                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2575                 if (sector_ret)
2576                         goto out_unsupported_cdb;
2577                 size = transport_get_size(sectors, cdb, cmd);
2578                 cmd->t_task_lba = transport_lba_32(cdb);
2579                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2580                 break;
2581         case READ_16:
2582                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2583                 if (sector_ret)
2584                         goto out_unsupported_cdb;
2585                 size = transport_get_size(sectors, cdb, cmd);
2586                 cmd->t_task_lba = transport_lba_64(cdb);
2587                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2588                 break;
2589         case WRITE_6:
2590                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2591                 if (sector_ret)
2592                         goto out_unsupported_cdb;
2593                 size = transport_get_size(sectors, cdb, cmd);
2594                 cmd->t_task_lba = transport_lba_21(cdb);
2595                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2596                 break;
2597         case WRITE_10:
2598                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2599                 if (sector_ret)
2600                         goto out_unsupported_cdb;
2601                 size = transport_get_size(sectors, cdb, cmd);
2602                 cmd->t_task_lba = transport_lba_32(cdb);
2603                 if (cdb[1] & 0x8)
2604                         cmd->se_cmd_flags |= SCF_FUA;
2605                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2606                 break;
2607         case WRITE_12:
2608                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2609                 if (sector_ret)
2610                         goto out_unsupported_cdb;
2611                 size = transport_get_size(sectors, cdb, cmd);
2612                 cmd->t_task_lba = transport_lba_32(cdb);
2613                 if (cdb[1] & 0x8)
2614                         cmd->se_cmd_flags |= SCF_FUA;
2615                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2616                 break;
2617         case WRITE_16:
2618                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2619                 if (sector_ret)
2620                         goto out_unsupported_cdb;
2621                 size = transport_get_size(sectors, cdb, cmd);
2622                 cmd->t_task_lba = transport_lba_64(cdb);
2623                 if (cdb[1] & 0x8)
2624                         cmd->se_cmd_flags |= SCF_FUA;
2625                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2626                 break;
2627         case XDWRITEREAD_10:
2628                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2629                     !(cmd->se_cmd_flags & SCF_BIDI))
2630                         goto out_invalid_cdb_field;
2631                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2632                 if (sector_ret)
2633                         goto out_unsupported_cdb;
2634                 size = transport_get_size(sectors, cdb, cmd);
2635                 cmd->t_task_lba = transport_lba_32(cdb);
2636                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2637
2638                 /*
2639                  * Do now allow BIDI commands for passthrough mode.
2640                  */
2641                 if (passthrough)
2642                         goto out_unsupported_cdb;
2643
2644                 /*
2645                  * Setup BIDI XOR callback to be run after I/O completion.
2646                  */
2647                 cmd->transport_complete_callback = &transport_xor_callback;
2648                 if (cdb[1] & 0x8)
2649                         cmd->se_cmd_flags |= SCF_FUA;
2650                 break;
2651         case VARIABLE_LENGTH_CMD:
2652                 service_action = get_unaligned_be16(&cdb[8]);
2653                 switch (service_action) {
2654                 case XDWRITEREAD_32:
2655                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2656                         if (sector_ret)
2657                                 goto out_unsupported_cdb;
2658                         size = transport_get_size(sectors, cdb, cmd);
2659                         /*
2660                          * Use WRITE_32 and READ_32 opcodes for the emulated
2661                          * XDWRITE_READ_32 logic.
2662                          */
2663                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2664                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2665
2666                         /*
2667                          * Do now allow BIDI commands for passthrough mode.
2668                          */
2669                         if (passthrough)
2670                                 goto out_unsupported_cdb;
2671
2672                         /*
2673                          * Setup BIDI XOR callback to be run during after I/O
2674                          * completion.
2675                          */
2676                         cmd->transport_complete_callback = &transport_xor_callback;
2677                         if (cdb[1] & 0x8)
2678                                 cmd->se_cmd_flags |= SCF_FUA;
2679                         break;
2680                 case WRITE_SAME_32:
2681                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2682                         if (sector_ret)
2683                                 goto out_unsupported_cdb;
2684
2685                         if (sectors)
2686                                 size = transport_get_size(1, cdb, cmd);
2687                         else {
2688                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2689                                        " supported\n");
2690                                 goto out_invalid_cdb_field;
2691                         }
2692
2693                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2694                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2695
2696                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2697                                 goto out_invalid_cdb_field;
2698                         if (!passthrough)
2699                                 cmd->execute_task = target_emulate_write_same;
2700                         break;
2701                 default:
2702                         pr_err("VARIABLE_LENGTH_CMD service action"
2703                                 " 0x%04x not supported\n", service_action);
2704                         goto out_unsupported_cdb;
2705                 }
2706                 break;
2707         case MAINTENANCE_IN:
2708                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2709                         /* MAINTENANCE_IN from SCC-2 */
2710                         /*
2711                          * Check for emulated MI_REPORT_TARGET_PGS.
2712                          */
2713                         if (cdb[1] == MI_REPORT_TARGET_PGS &&
2714                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2715                                 cmd->execute_task =
2716                                         target_emulate_report_target_port_groups;
2717                         }
2718                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2719                                (cdb[8] << 8) | cdb[9];
2720                 } else {
2721                         /* GPCMD_SEND_KEY from multi media commands */
2722                         size = (cdb[8] << 8) + cdb[9];
2723                 }
2724                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2725                 break;
2726         case MODE_SELECT:
2727                 size = cdb[4];
2728                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2729                 break;
2730         case MODE_SELECT_10:
2731                 size = (cdb[7] << 8) + cdb[8];
2732                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2733                 break;
2734         case MODE_SENSE:
2735                 size = cdb[4];
2736                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2737                 if (!passthrough)
2738                         cmd->execute_task = target_emulate_modesense;
2739                 break;
2740         case MODE_SENSE_10:
2741                 size = (cdb[7] << 8) + cdb[8];
2742                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2743                 if (!passthrough)
2744                         cmd->execute_task = target_emulate_modesense;
2745                 break;
2746         case GPCMD_READ_BUFFER_CAPACITY:
2747         case GPCMD_SEND_OPC:
2748         case LOG_SELECT:
2749         case LOG_SENSE:
2750                 size = (cdb[7] << 8) + cdb[8];
2751                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2752                 break;
2753         case READ_BLOCK_LIMITS:
2754                 size = READ_BLOCK_LEN;
2755                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2756                 break;
2757         case GPCMD_GET_CONFIGURATION:
2758         case GPCMD_READ_FORMAT_CAPACITIES:
2759         case GPCMD_READ_DISC_INFO:
2760         case GPCMD_READ_TRACK_RZONE_INFO:
2761                 size = (cdb[7] << 8) + cdb[8];
2762                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2763                 break;
2764         case PERSISTENT_RESERVE_IN:
2765                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2766                         cmd->execute_task = target_scsi3_emulate_pr_in;
2767                 size = (cdb[7] << 8) + cdb[8];
2768                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2769                 break;
2770         case PERSISTENT_RESERVE_OUT:
2771                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2772                         cmd->execute_task = target_scsi3_emulate_pr_out;
2773                 size = (cdb[7] << 8) + cdb[8];
2774                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2775                 break;
2776         case GPCMD_MECHANISM_STATUS:
2777         case GPCMD_READ_DVD_STRUCTURE:
2778                 size = (cdb[8] << 8) + cdb[9];
2779                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2780                 break;
2781         case READ_POSITION:
2782                 size = READ_POSITION_LEN;
2783                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2784                 break;
2785         case MAINTENANCE_OUT:
2786                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2787                         /* MAINTENANCE_OUT from SCC-2
2788                          *
2789                          * Check for emulated MO_SET_TARGET_PGS.
2790                          */
2791                         if (cdb[1] == MO_SET_TARGET_PGS &&
2792                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2793                                 cmd->execute_task =
2794                                         target_emulate_set_target_port_groups;
2795                         }
2796
2797                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2798                                (cdb[8] << 8) | cdb[9];
2799                 } else  {
2800                         /* GPCMD_REPORT_KEY from multi media commands */
2801                         size = (cdb[8] << 8) + cdb[9];
2802                 }
2803                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2804                 break;
2805         case INQUIRY:
2806                 size = (cdb[3] << 8) + cdb[4];
2807                 /*
2808                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2809                  * See spc4r17 section 5.3
2810                  */
2811                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2812                         cmd->sam_task_attr = MSG_HEAD_TAG;
2813                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2814                 if (!passthrough)
2815                         cmd->execute_task = target_emulate_inquiry;
2816                 break;
2817         case READ_BUFFER:
2818                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2819                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2820                 break;
2821         case READ_CAPACITY:
2822                 size = READ_CAP_LEN;
2823                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2824                 if (!passthrough)
2825                         cmd->execute_task = target_emulate_readcapacity;
2826                 break;
2827         case READ_MEDIA_SERIAL_NUMBER:
2828         case SECURITY_PROTOCOL_IN:
2829         case SECURITY_PROTOCOL_OUT:
2830                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2831                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2832                 break;
2833         case SERVICE_ACTION_IN:
2834                 switch (cmd->t_task_cdb[1] & 0x1f) {
2835                 case SAI_READ_CAPACITY_16:
2836                         if (!passthrough)
2837                                 cmd->execute_task =
2838                                         target_emulate_readcapacity_16;
2839                         break;
2840                 default:
2841                         if (passthrough)
2842                                 break;
2843
2844                         pr_err("Unsupported SA: 0x%02x\n",
2845                                 cmd->t_task_cdb[1] & 0x1f);
2846                         goto out_unsupported_cdb;
2847                 }
2848                 /*FALLTHROUGH*/
2849         case ACCESS_CONTROL_IN:
2850         case ACCESS_CONTROL_OUT:
2851         case EXTENDED_COPY:
2852         case READ_ATTRIBUTE:
2853         case RECEIVE_COPY_RESULTS:
2854         case WRITE_ATTRIBUTE:
2855                 size = (cdb[10] << 24) | (cdb[11] << 16) |
2856                        (cdb[12] << 8) | cdb[13];
2857                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2858                 break;
2859         case RECEIVE_DIAGNOSTIC:
2860         case SEND_DIAGNOSTIC:
2861                 size = (cdb[3] << 8) | cdb[4];
2862                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2863                 break;
2864 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2865 #if 0
2866         case GPCMD_READ_CD:
2867                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2868                 size = (2336 * sectors);
2869                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2870                 break;
2871 #endif
2872         case READ_TOC:
2873                 size = cdb[8];
2874                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2875                 break;
2876         case REQUEST_SENSE:
2877                 size = cdb[4];
2878                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2879                 if (!passthrough)
2880                         cmd->execute_task = target_emulate_request_sense;
2881                 break;
2882         case READ_ELEMENT_STATUS:
2883                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2884                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2885                 break;
2886         case WRITE_BUFFER:
2887                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2888                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2889                 break;
2890         case RESERVE:
2891         case RESERVE_10:
2892                 /*
2893                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2894                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2895                  */
2896                 if (cdb[0] == RESERVE_10)
2897                         size = (cdb[7] << 8) | cdb[8];
2898                 else
2899                         size = cmd->data_length;
2900
2901                 /*
2902                  * Setup the legacy emulated handler for SPC-2 and
2903                  * >= SPC-3 compatible reservation handling (CRH=1)
2904                  * Otherwise, we assume the underlying SCSI logic is
2905                  * is running in SPC_PASSTHROUGH, and wants reservations
2906                  * emulation disabled.
2907                  */
2908                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2909                         cmd->execute_task = target_scsi2_reservation_reserve;
2910                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2911                 break;
2912         case RELEASE:
2913         case RELEASE_10:
2914                 /*
2915                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2916                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2917                 */
2918                 if (cdb[0] == RELEASE_10)
2919                         size = (cdb[7] << 8) | cdb[8];
2920                 else
2921                         size = cmd->data_length;
2922
2923                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2924                         cmd->execute_task = target_scsi2_reservation_release;
2925                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2926                 break;
2927         case SYNCHRONIZE_CACHE:
2928         case 0x91: /* SYNCHRONIZE_CACHE_16: */
2929                 /*
2930                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2931                  */
2932                 if (cdb[0] == SYNCHRONIZE_CACHE) {
2933                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2934                         cmd->t_task_lba = transport_lba_32(cdb);
2935                 } else {
2936                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2937                         cmd->t_task_lba = transport_lba_64(cdb);
2938                 }
2939                 if (sector_ret)
2940                         goto out_unsupported_cdb;
2941
2942                 size = transport_get_size(sectors, cdb, cmd);
2943                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2944
2945                 if (passthrough)
2946                         break;
2947
2948                 /*
2949                  * Check to ensure that LBA + Range does not exceed past end of
2950                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2951                  */
2952                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2953                         if (transport_cmd_get_valid_sectors(cmd) < 0)
2954                                 goto out_invalid_cdb_field;
2955                 }
2956                 cmd->execute_task = target_emulate_synchronize_cache;
2957                 break;
2958         case UNMAP:
2959                 size = get_unaligned_be16(&cdb[7]);
2960                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2961                 if (!passthrough)
2962                         cmd->execute_task = target_emulate_unmap;
2963                 break;
2964         case WRITE_SAME_16:
2965                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2966                 if (sector_ret)
2967                         goto out_unsupported_cdb;
2968
2969                 if (sectors)
2970                         size = transport_get_size(1, cdb, cmd);
2971                 else {
2972                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2973                         goto out_invalid_cdb_field;
2974                 }
2975
2976                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2977                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2978
2979                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2980                         goto out_invalid_cdb_field;
2981                 if (!passthrough)
2982                         cmd->execute_task = target_emulate_write_same;
2983                 break;
2984         case WRITE_SAME:
2985                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2986                 if (sector_ret)
2987                         goto out_unsupported_cdb;
2988
2989                 if (sectors)
2990                         size = transport_get_size(1, cdb, cmd);
2991                 else {
2992                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2993                         goto out_invalid_cdb_field;
2994                 }
2995
2996                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
2997                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2998                 /*
2999                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3000                  * of byte 1 bit 3 UNMAP instead of original reserved field
3001                  */
3002                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3003                         goto out_invalid_cdb_field;
3004                 if (!passthrough)
3005                         cmd->execute_task = target_emulate_write_same;
3006                 break;
3007         case ALLOW_MEDIUM_REMOVAL:
3008         case ERASE:
3009         case REZERO_UNIT:
3010         case SEEK_10:
3011         case SPACE:
3012         case START_STOP:
3013         case TEST_UNIT_READY:
3014         case VERIFY:
3015         case WRITE_FILEMARKS:
3016                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3017                 if (!passthrough)
3018                         cmd->execute_task = target_emulate_noop;
3019                 break;
3020         case GPCMD_CLOSE_TRACK:
3021         case INITIALIZE_ELEMENT_STATUS:
3022         case GPCMD_LOAD_UNLOAD:
3023         case GPCMD_SET_SPEED:
3024         case MOVE_MEDIUM:
3025                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3026                 break;
3027         case REPORT_LUNS:
3028                 cmd->execute_task = target_report_luns;
3029                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3030                 /*
3031                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3032                  * See spc4r17 section 5.3
3033                  */
3034                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3035                         cmd->sam_task_attr = MSG_HEAD_TAG;
3036                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3037                 break;
3038         default:
3039                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3040                         " 0x%02x, sending CHECK_CONDITION.\n",
3041                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3042                 goto out_unsupported_cdb;
3043         }
3044
3045         if (size != cmd->data_length) {
3046                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3047                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3048                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3049                                 cmd->data_length, size, cdb[0]);
3050
3051                 cmd->cmd_spdtl = size;
3052
3053                 if (cmd->data_direction == DMA_TO_DEVICE) {
3054                         pr_err("Rejecting underflow/overflow"
3055                                         " WRITE data\n");
3056                         goto out_invalid_cdb_field;
3057                 }
3058                 /*
3059                  * Reject READ_* or WRITE_* with overflow/underflow for
3060                  * type SCF_SCSI_DATA_SG_IO_CDB.
3061                  */
3062                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3063                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3064                                 " CDB on non 512-byte sector setup subsystem"
3065                                 " plugin: %s\n", dev->transport->name);
3066                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3067                         goto out_invalid_cdb_field;
3068                 }
3069
3070                 if (size > cmd->data_length) {
3071                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3072                         cmd->residual_count = (size - cmd->data_length);
3073                 } else {
3074                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3075                         cmd->residual_count = (cmd->data_length - size);
3076                 }
3077                 cmd->data_length = size;
3078         }
3079
3080         /* reject any command that we don't have a handler for */
3081         if (!(passthrough || cmd->execute_task ||
3082              (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3083                 goto out_unsupported_cdb;
3084
3085         /* Let's limit control cdbs to a page, for simplicity's sake. */
3086         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3087             size > PAGE_SIZE)
3088                 goto out_invalid_cdb_field;
3089
3090         transport_set_supported_SAM_opcode(cmd);
3091         return ret;
3092
3093 out_unsupported_cdb:
3094         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3095         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3096         return -EINVAL;
3097 out_invalid_cdb_field:
3098         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3099         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3100         return -EINVAL;
3101 }
3102
3103 /*
3104  * Called from I/O completion to determine which dormant/delayed
3105  * and ordered cmds need to have their tasks added to the execution queue.
3106  */
3107 static void transport_complete_task_attr(struct se_cmd *cmd)
3108 {
3109         struct se_device *dev = cmd->se_dev;
3110         struct se_cmd *cmd_p, *cmd_tmp;
3111         int new_active_tasks = 0;
3112
3113         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3114                 atomic_dec(&dev->simple_cmds);
3115                 smp_mb__after_atomic_dec();
3116                 dev->dev_cur_ordered_id++;
3117                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3118                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3119                         cmd->se_ordered_id);
3120         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3121                 dev->dev_cur_ordered_id++;
3122                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3123                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3124                         cmd->se_ordered_id);
3125         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3126                 atomic_dec(&dev->dev_ordered_sync);
3127                 smp_mb__after_atomic_dec();
3128
3129                 dev->dev_cur_ordered_id++;
3130                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3131                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3132         }
3133         /*
3134          * Process all commands up to the last received
3135          * ORDERED task attribute which requires another blocking
3136          * boundary
3137          */
3138         spin_lock(&dev->delayed_cmd_lock);
3139         list_for_each_entry_safe(cmd_p, cmd_tmp,
3140                         &dev->delayed_cmd_list, se_delayed_node) {
3141
3142                 list_del(&cmd_p->se_delayed_node);
3143                 spin_unlock(&dev->delayed_cmd_lock);
3144
3145                 pr_debug("Calling add_tasks() for"
3146                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3147                         " Dormant -> Active, se_ordered_id: %u\n",
3148                         cmd_p->t_task_cdb[0],
3149                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3150
3151                 transport_add_tasks_from_cmd(cmd_p);
3152                 new_active_tasks++;
3153
3154                 spin_lock(&dev->delayed_cmd_lock);
3155                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3156                         break;
3157         }
3158         spin_unlock(&dev->delayed_cmd_lock);
3159         /*
3160          * If new tasks have become active, wake up the transport thread
3161          * to do the processing of the Active tasks.
3162          */
3163         if (new_active_tasks != 0)
3164                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3165 }
3166
3167 static void transport_complete_qf(struct se_cmd *cmd)
3168 {
3169         int ret = 0;
3170
3171         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3172                 transport_complete_task_attr(cmd);
3173
3174         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3175                 ret = cmd->se_tfo->queue_status(cmd);
3176                 if (ret)
3177                         goto out;
3178         }
3179
3180         switch (cmd->data_direction) {
3181         case DMA_FROM_DEVICE:
3182                 ret = cmd->se_tfo->queue_data_in(cmd);
3183                 break;
3184         case DMA_TO_DEVICE:
3185                 if (cmd->t_bidi_data_sg) {
3186                         ret = cmd->se_tfo->queue_data_in(cmd);
3187                         if (ret < 0)
3188                                 break;
3189                 }
3190                 /* Fall through for DMA_TO_DEVICE */
3191         case DMA_NONE:
3192                 ret = cmd->se_tfo->queue_status(cmd);
3193                 break;
3194         default:
3195                 break;
3196         }
3197
3198 out:
3199         if (ret < 0) {
3200                 transport_handle_queue_full(cmd, cmd->se_dev);
3201                 return;
3202         }
3203         transport_lun_remove_cmd(cmd);
3204         transport_cmd_check_stop_to_fabric(cmd);
3205 }
3206
3207 static void transport_handle_queue_full(
3208         struct se_cmd *cmd,
3209         struct se_device *dev)
3210 {
3211         spin_lock_irq(&dev->qf_cmd_lock);
3212         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3213         atomic_inc(&dev->dev_qf_count);
3214         smp_mb__after_atomic_inc();
3215         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3216
3217         schedule_work(&cmd->se_dev->qf_work_queue);
3218 }
3219
3220 static void target_complete_ok_work(struct work_struct *work)
3221 {
3222         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3223         int reason = 0, ret;
3224
3225         /*
3226          * Check if we need to move delayed/dormant tasks from cmds on the
3227          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3228          * Attribute.
3229          */
3230         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3231                 transport_complete_task_attr(cmd);
3232         /*
3233          * Check to schedule QUEUE_FULL work, or execute an existing
3234          * cmd->transport_qf_callback()
3235          */
3236         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3237                 schedule_work(&cmd->se_dev->qf_work_queue);
3238
3239         /*
3240          * Check if we need to retrieve a sense buffer from
3241          * the struct se_cmd in question.
3242          */
3243         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3244                 if (transport_get_sense_data(cmd) < 0)
3245                         reason = TCM_NON_EXISTENT_LUN;
3246
3247                 /*
3248                  * Only set when an struct se_task->task_scsi_status returned
3249                  * a non GOOD status.
3250                  */
3251                 if (cmd->scsi_status) {
3252                         ret = transport_send_check_condition_and_sense(
3253                                         cmd, reason, 1);
3254                         if (ret == -EAGAIN || ret == -ENOMEM)
3255                                 goto queue_full;
3256
3257                         transport_lun_remove_cmd(cmd);
3258                         transport_cmd_check_stop_to_fabric(cmd);
3259                         return;
3260                 }
3261         }
3262         /*
3263          * Check for a callback, used by amongst other things
3264          * XDWRITE_READ_10 emulation.
3265          */
3266         if (cmd->transport_complete_callback)
3267                 cmd->transport_complete_callback(cmd);
3268
3269         switch (cmd->data_direction) {
3270         case DMA_FROM_DEVICE:
3271                 spin_lock(&cmd->se_lun->lun_sep_lock);
3272                 if (cmd->se_lun->lun_sep) {
3273                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3274                                         cmd->data_length;
3275                 }
3276                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3277
3278                 ret = cmd->se_tfo->queue_data_in(cmd);
3279                 if (ret == -EAGAIN || ret == -ENOMEM)
3280                         goto queue_full;
3281                 break;
3282         case DMA_TO_DEVICE:
3283                 spin_lock(&cmd->se_lun->lun_sep_lock);
3284                 if (cmd->se_lun->lun_sep) {
3285                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3286                                 cmd->data_length;
3287                 }
3288                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3289                 /*
3290                  * Check if we need to send READ payload for BIDI-COMMAND
3291                  */
3292                 if (cmd->t_bidi_data_sg) {
3293                         spin_lock(&cmd->se_lun->lun_sep_lock);
3294                         if (cmd->se_lun->lun_sep) {
3295                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3296                                         cmd->data_length;
3297                         }
3298                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3299                         ret = cmd->se_tfo->queue_data_in(cmd);
3300                         if (ret == -EAGAIN || ret == -ENOMEM)
3301                                 goto queue_full;
3302                         break;
3303                 }
3304                 /* Fall through for DMA_TO_DEVICE */
3305         case DMA_NONE:
3306                 ret = cmd->se_tfo->queue_status(cmd);
3307                 if (ret == -EAGAIN || ret == -ENOMEM)
3308                         goto queue_full;
3309                 break;
3310         default:
3311                 break;
3312         }
3313
3314         transport_lun_remove_cmd(cmd);
3315         transport_cmd_check_stop_to_fabric(cmd);
3316         return;
3317
3318 queue_full:
3319         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3320                 " data_direction: %d\n", cmd, cmd->data_direction);
3321         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3322         transport_handle_queue_full(cmd, cmd->se_dev);
3323 }
3324
3325 static void transport_free_dev_tasks(struct se_cmd *cmd)
3326 {
3327         struct se_task *task, *task_tmp;
3328         unsigned long flags;
3329         LIST_HEAD(dispose_list);
3330
3331         spin_lock_irqsave(&cmd->t_state_lock, flags);
3332         list_for_each_entry_safe(task, task_tmp,
3333                                 &cmd->t_task_list, t_list) {
3334                 if (!(task->task_flags & TF_ACTIVE))
3335                         list_move_tail(&task->t_list, &dispose_list);
3336         }
3337         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3338
3339         while (!list_empty(&dispose_list)) {
3340                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3341
3342                 if (task->task_sg != cmd->t_data_sg &&
3343                     task->task_sg != cmd->t_bidi_data_sg)
3344                         kfree(task->task_sg);
3345
3346                 list_del(&task->t_list);
3347
3348                 cmd->se_dev->transport->free_task(task);
3349         }
3350 }
3351
3352 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3353 {
3354         struct scatterlist *sg;
3355         int count;
3356
3357         for_each_sg(sgl, sg, nents, count)
3358                 __free_page(sg_page(sg));
3359
3360         kfree(sgl);
3361 }
3362
3363 static inline void transport_free_pages(struct se_cmd *cmd)
3364 {
3365         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3366                 return;
3367
3368         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3369         cmd->t_data_sg = NULL;
3370         cmd->t_data_nents = 0;
3371
3372         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3373         cmd->t_bidi_data_sg = NULL;
3374         cmd->t_bidi_data_nents = 0;
3375 }
3376
3377 /**
3378  * transport_release_cmd - free a command
3379  * @cmd:       command to free
3380  *
3381  * This routine unconditionally frees a command, and reference counting
3382  * or list removal must be done in the caller.
3383  */
3384 static void transport_release_cmd(struct se_cmd *cmd)
3385 {
3386         BUG_ON(!cmd->se_tfo);
3387
3388         if (cmd->se_tmr_req)
3389                 core_tmr_release_req(cmd->se_tmr_req);
3390         if (cmd->t_task_cdb != cmd->__t_task_cdb)
3391                 kfree(cmd->t_task_cdb);
3392         /*
3393          * If this cmd has been setup with target_get_sess_cmd(), drop
3394          * the kref and call ->release_cmd() in kref callback.
3395          */
3396          if (cmd->check_release != 0) {
3397                 target_put_sess_cmd(cmd->se_sess, cmd);
3398                 return;
3399         }
3400         cmd->se_tfo->release_cmd(cmd);
3401 }
3402
3403 /**
3404  * transport_put_cmd - release a reference to a command
3405  * @cmd:       command to release
3406  *
3407  * This routine releases our reference to the command and frees it if possible.
3408  */
3409 static void transport_put_cmd(struct se_cmd *cmd)
3410 {
3411         unsigned long flags;
3412         int free_tasks = 0;
3413
3414         spin_lock_irqsave(&cmd->t_state_lock, flags);
3415         if (atomic_read(&cmd->t_fe_count)) {
3416                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3417                         goto out_busy;
3418         }
3419
3420         if (atomic_read(&cmd->t_se_count)) {
3421                 if (!atomic_dec_and_test(&cmd->t_se_count))
3422                         goto out_busy;
3423         }
3424
3425         if (atomic_read(&cmd->transport_dev_active)) {
3426                 atomic_set(&cmd->transport_dev_active, 0);
3427                 transport_all_task_dev_remove_state(cmd);
3428                 free_tasks = 1;
3429         }
3430         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3431
3432         if (free_tasks != 0)
3433                 transport_free_dev_tasks(cmd);
3434
3435         transport_free_pages(cmd);
3436         transport_release_cmd(cmd);
3437         return;
3438 out_busy:
3439         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3440 }
3441
3442 /*
3443  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3444  * allocating in the core.
3445  * @cmd:  Associated se_cmd descriptor
3446  * @mem:  SGL style memory for TCM WRITE / READ
3447  * @sg_mem_num: Number of SGL elements
3448  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3449  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3450  *
3451  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3452  * of parameters.
3453  */
3454 int transport_generic_map_mem_to_cmd(
3455         struct se_cmd *cmd,
3456         struct scatterlist *sgl,
3457         u32 sgl_count,
3458         struct scatterlist *sgl_bidi,
3459         u32 sgl_bidi_count)
3460 {
3461         if (!sgl || !sgl_count)
3462                 return 0;
3463
3464         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3465             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3466                 /*
3467                  * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3468                  * scatterlists already have been set to follow what the fabric
3469                  * passes for the original expected data transfer length.
3470                  */
3471                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3472                         pr_warn("Rejecting SCSI DATA overflow for fabric using"
3473                                 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3474                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3475                         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3476                         return -EINVAL;
3477                 }
3478
3479                 cmd->t_data_sg = sgl;
3480                 cmd->t_data_nents = sgl_count;
3481
3482                 if (sgl_bidi && sgl_bidi_count) {
3483                         cmd->t_bidi_data_sg = sgl_bidi;
3484                         cmd->t_bidi_data_nents = sgl_bidi_count;
3485                 }
3486                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3487         }
3488
3489         return 0;
3490 }
3491 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3492
3493 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3494 {
3495         struct scatterlist *sg = cmd->t_data_sg;
3496
3497         BUG_ON(!sg);
3498         /*
3499          * We need to take into account a possible offset here for fabrics like
3500          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3501          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3502          */
3503         return kmap(sg_page(sg)) + sg->offset;
3504 }
3505 EXPORT_SYMBOL(transport_kmap_first_data_page);
3506
3507 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3508 {
3509         kunmap(sg_page(cmd->t_data_sg));
3510 }
3511 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3512
3513 static int
3514 transport_generic_get_mem(struct se_cmd *cmd)
3515 {
3516         u32 length = cmd->data_length;
3517         unsigned int nents;
3518         struct page *page;
3519         int i = 0;
3520
3521         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3522         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3523         if (!cmd->t_data_sg)
3524                 return -ENOMEM;
3525
3526         cmd->t_data_nents = nents;
3527         sg_init_table(cmd->t_data_sg, nents);
3528
3529         while (length) {
3530                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3531                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3532                 if (!page)
3533                         goto out;
3534
3535                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3536                 length -= page_len;
3537                 i++;
3538         }
3539         return 0;
3540
3541 out:
3542         while (i >= 0) {
3543                 __free_page(sg_page(&cmd->t_data_sg[i]));
3544                 i--;
3545         }
3546         kfree(cmd->t_data_sg);
3547         cmd->t_data_sg = NULL;
3548         return -ENOMEM;
3549 }
3550
3551 /* Reduce sectors if they are too long for the device */
3552 static inline sector_t transport_limit_task_sectors(
3553         struct se_device *dev,
3554         unsigned long long lba,
3555         sector_t sectors)
3556 {
3557         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3558
3559         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3560                 if ((lba + sectors) > transport_dev_end_lba(dev))
3561                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3562
3563         return sectors;
3564 }
3565
3566
3567 /*
3568  * This function can be used by HW target mode drivers to create a linked
3569  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3570  * This is intended to be called during the completion path by TCM Core
3571  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3572  */
3573 void transport_do_task_sg_chain(struct se_cmd *cmd)
3574 {
3575         struct scatterlist *sg_first = NULL;
3576         struct scatterlist *sg_prev = NULL;
3577         int sg_prev_nents = 0;
3578         struct scatterlist *sg;
3579         struct se_task *task;
3580         u32 chained_nents = 0;
3581         int i;
3582
3583         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3584
3585         /*
3586          * Walk the struct se_task list and setup scatterlist chains
3587          * for each contiguously allocated struct se_task->task_sg[].
3588          */
3589         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3590                 if (!task->task_sg)
3591                         continue;
3592
3593                 if (!sg_first) {
3594                         sg_first = task->task_sg;
3595                         chained_nents = task->task_sg_nents;
3596                 } else {
3597                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3598                         chained_nents += task->task_sg_nents;
3599                 }
3600                 /*
3601                  * For the padded tasks, use the extra SGL vector allocated
3602                  * in transport_allocate_data_tasks() for the sg_prev_nents
3603                  * offset into sg_chain() above.
3604                  *
3605                  * We do not need the padding for the last task (or a single
3606                  * task), but in that case we will never use the sg_prev_nents
3607                  * value below which would be incorrect.
3608                  */
3609                 sg_prev_nents = (task->task_sg_nents + 1);
3610                 sg_prev = task->task_sg;
3611         }
3612         /*
3613          * Setup the starting pointer and total t_tasks_sg_linked_no including
3614          * padding SGs for linking and to mark the end.
3615          */
3616         cmd->t_tasks_sg_chained = sg_first;
3617         cmd->t_tasks_sg_chained_no = chained_nents;
3618
3619         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3620                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3621                 cmd->t_tasks_sg_chained_no);
3622
3623         for_each_sg(cmd->t_tasks_sg_chained, sg,
3624                         cmd->t_tasks_sg_chained_no, i) {
3625
3626                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3627                         i, sg, sg_page(sg), sg->length, sg->offset);
3628                 if (sg_is_chain(sg))
3629                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3630                 if (sg_is_last(sg))
3631                         pr_debug("SG: %p sg_is_last=1\n", sg);
3632         }
3633 }
3634 EXPORT_SYMBOL(transport_do_task_sg_chain);
3635
3636 /*
3637  * Break up cmd into chunks transport can handle
3638  */
3639 static int
3640 transport_allocate_data_tasks(struct se_cmd *cmd,
3641         enum dma_data_direction data_direction,
3642         struct scatterlist *cmd_sg, unsigned int sgl_nents)
3643 {
3644         struct se_device *dev = cmd->se_dev;
3645         int task_count, i;
3646         unsigned long long lba;
3647         sector_t sectors, dev_max_sectors;
3648         u32 sector_size;
3649
3650         if (transport_cmd_get_valid_sectors(cmd) < 0)
3651                 return -EINVAL;
3652
3653         dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3654         sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3655
3656         WARN_ON(cmd->data_length % sector_size);
3657
3658         lba = cmd->t_task_lba;
3659         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3660         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3661
3662         /*
3663          * If we need just a single task reuse the SG list in the command
3664          * and avoid a lot of work.
3665          */
3666         if (task_count == 1) {
3667                 struct se_task *task;
3668                 unsigned long flags;
3669
3670                 task = transport_generic_get_task(cmd, data_direction);
3671                 if (!task)
3672                         return -ENOMEM;
3673
3674                 task->task_sg = cmd_sg;
3675                 task->task_sg_nents = sgl_nents;
3676
3677                 task->task_lba = lba;
3678                 task->task_sectors = sectors;
3679                 task->task_size = task->task_sectors * sector_size;
3680
3681                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3682                 list_add_tail(&task->t_list, &cmd->t_task_list);
3683                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3684
3685                 return task_count;
3686         }
3687
3688         for (i = 0; i < task_count; i++) {
3689                 struct se_task *task;
3690                 unsigned int task_size, task_sg_nents_padded;
3691                 struct scatterlist *sg;
3692                 unsigned long flags;
3693                 int count;
3694
3695                 task = transport_generic_get_task(cmd, data_direction);
3696                 if (!task)
3697                         return -ENOMEM;
3698
3699                 task->task_lba = lba;
3700                 task->task_sectors = min(sectors, dev_max_sectors);
3701                 task->task_size = task->task_sectors * sector_size;
3702
3703                 /*
3704                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3705                  * in order to calculate the number per task SGL entries
3706                  */
3707                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3708                 /*
3709                  * Check if the fabric module driver is requesting that all
3710                  * struct se_task->task_sg[] be chained together..  If so,
3711                  * then allocate an extra padding SG entry for linking and
3712                  * marking the end of the chained SGL for every task except
3713                  * the last one for (task_count > 1) operation, or skipping
3714                  * the extra padding for the (task_count == 1) case.
3715                  */
3716                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3717                         task_sg_nents_padded = (task->task_sg_nents + 1);
3718                 } else
3719                         task_sg_nents_padded = task->task_sg_nents;
3720
3721                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3722                                         task_sg_nents_padded, GFP_KERNEL);
3723                 if (!task->task_sg) {
3724                         cmd->se_dev->transport->free_task(task);
3725                         return -ENOMEM;
3726                 }
3727
3728                 sg_init_table(task->task_sg, task_sg_nents_padded);
3729
3730                 task_size = task->task_size;
3731
3732                 /* Build new sgl, only up to task_size */
3733                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3734                         if (cmd_sg->length > task_size)
3735                                 break;
3736
3737                         *sg = *cmd_sg;
3738                         task_size -= cmd_sg->length;
3739                         cmd_sg = sg_next(cmd_sg);
3740                 }
3741
3742                 lba += task->task_sectors;
3743                 sectors -= task->task_sectors;
3744
3745                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3746                 list_add_tail(&task->t_list, &cmd->t_task_list);
3747                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3748         }
3749
3750         return task_count;
3751 }
3752
3753 static int
3754 transport_allocate_control_task(struct se_cmd *cmd)
3755 {
3756         struct se_task *task;
3757         unsigned long flags;
3758
3759         task = transport_generic_get_task(cmd, cmd->data_direction);
3760         if (!task)
3761                 return -ENOMEM;
3762
3763         task->task_sg = cmd->t_data_sg;
3764         task->task_size = cmd->data_length;
3765         task->task_sg_nents = cmd->t_data_nents;
3766
3767         spin_lock_irqsave(&cmd->t_state_lock, flags);
3768         list_add_tail(&task->t_list, &cmd->t_task_list);
3769         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3770
3771         /* Success! Return number of tasks allocated */
3772         return 1;
3773 }
3774
3775 /*
3776  * Allocate any required ressources to execute the command, and either place
3777  * it on the execution queue if possible.  For writes we might not have the
3778  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3779  */
3780 int transport_generic_new_cmd(struct se_cmd *cmd)
3781 {
3782         struct se_device *dev = cmd->se_dev;
3783         int task_cdbs, task_cdbs_bidi = 0;
3784         int set_counts = 1;
3785         int ret = 0;
3786
3787         /*
3788          * Determine is the TCM fabric module has already allocated physical
3789          * memory, and is directly calling transport_generic_map_mem_to_cmd()
3790          * beforehand.
3791          */
3792         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3793             cmd->data_length) {
3794                 ret = transport_generic_get_mem(cmd);
3795                 if (ret < 0)
3796                         goto out_fail;
3797         }
3798
3799         /*
3800          * For BIDI command set up the read tasks first.
3801          */
3802         if (cmd->t_bidi_data_sg &&
3803             dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3804                 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3805
3806                 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3807                                 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3808                                 cmd->t_bidi_data_nents);
3809                 if (task_cdbs_bidi <= 0)
3810                         goto out_fail;
3811
3812                 atomic_inc(&cmd->t_fe_count);
3813                 atomic_inc(&cmd->t_se_count);
3814                 set_counts = 0;
3815         }
3816
3817         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3818                 task_cdbs = transport_allocate_data_tasks(cmd,
3819                                         cmd->data_direction, cmd->t_data_sg,
3820                                         cmd->t_data_nents);
3821         } else {
3822                 task_cdbs = transport_allocate_control_task(cmd);
3823         }
3824
3825         if (task_cdbs < 0)
3826                 goto out_fail;
3827         else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3828                 cmd->t_state = TRANSPORT_COMPLETE;
3829                 atomic_set(&cmd->t_transport_active, 1);
3830                 INIT_WORK(&cmd->work, target_complete_ok_work);
3831                 queue_work(target_completion_wq, &cmd->work);
3832                 return 0;
3833         }
3834
3835         if (set_counts) {
3836                 atomic_inc(&cmd->t_fe_count);
3837                 atomic_inc(&cmd->t_se_count);
3838         }
3839
3840         cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3841         atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3842         atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3843
3844         /*
3845          * For WRITEs, let the fabric know its buffer is ready..
3846          * This WRITE struct se_cmd (and all of its associated struct se_task's)
3847          * will be added to the struct se_device execution queue after its WRITE
3848          * data has arrived. (ie: It gets handled by the transport processing
3849          * thread a second time)
3850          */
3851         if (cmd->data_direction == DMA_TO_DEVICE) {
3852                 transport_add_tasks_to_state_queue(cmd);
3853                 return transport_generic_write_pending(cmd);
3854         }
3855         /*
3856          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3857          * to the execution queue.
3858          */
3859         transport_execute_tasks(cmd);
3860         return 0;
3861
3862 out_fail:
3863         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3864         cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3865         return -EINVAL;
3866 }
3867 EXPORT_SYMBOL(transport_generic_new_cmd);
3868
3869 /*      transport_generic_process_write():
3870  *
3871  *
3872  */
3873 void transport_generic_process_write(struct se_cmd *cmd)
3874 {
3875         transport_execute_tasks(cmd);
3876 }
3877 EXPORT_SYMBOL(transport_generic_process_write);
3878
3879 static void transport_write_pending_qf(struct se_cmd *cmd)
3880 {
3881         int ret;
3882
3883         ret = cmd->se_tfo->write_pending(cmd);
3884         if (ret == -EAGAIN || ret == -ENOMEM) {
3885                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3886                          cmd);
3887                 transport_handle_queue_full(cmd, cmd->se_dev);
3888         }
3889 }
3890
3891 static int transport_generic_write_pending(struct se_cmd *cmd)
3892 {
3893         unsigned long flags;
3894         int ret;
3895
3896         spin_lock_irqsave(&cmd->t_state_lock, flags);
3897         cmd->t_state = TRANSPORT_WRITE_PENDING;
3898         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3899
3900         /*
3901          * Clear the se_cmd for WRITE_PENDING status in order to set
3902          * cmd->t_transport_active=0 so that transport_generic_handle_data
3903          * can be called from HW target mode interrupt code.  This is safe
3904          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3905          * because the se_cmd->se_lun pointer is not being cleared.
3906          */
3907         transport_cmd_check_stop(cmd, 1, 0);
3908
3909         /*
3910          * Call the fabric write_pending function here to let the
3911          * frontend know that WRITE buffers are ready.
3912          */
3913         ret = cmd->se_tfo->write_pending(cmd);
3914         if (ret == -EAGAIN || ret == -ENOMEM)
3915                 goto queue_full;
3916         else if (ret < 0)
3917                 return ret;
3918
3919         return 1;
3920
3921 queue_full:
3922         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3923         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3924         transport_handle_queue_full(cmd, cmd->se_dev);
3925         return 0;
3926 }
3927
3928 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3929 {
3930         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3931                 if (wait_for_tasks && cmd->se_tmr_req)
3932                          transport_wait_for_tasks(cmd);
3933
3934                 transport_release_cmd(cmd);
3935         } else {
3936                 if (wait_for_tasks)
3937                         transport_wait_for_tasks(cmd);
3938
3939                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3940
3941                 if (cmd->se_lun)
3942                         transport_lun_remove_cmd(cmd);
3943
3944                 transport_free_dev_tasks(cmd);
3945
3946                 transport_put_cmd(cmd);
3947         }
3948 }
3949 EXPORT_SYMBOL(transport_generic_free_cmd);
3950
3951 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3952  * @se_sess:    session to reference
3953  * @se_cmd:     command descriptor to add
3954  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
3955  */
3956 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
3957                         bool ack_kref)
3958 {
3959         unsigned long flags;
3960
3961         kref_init(&se_cmd->cmd_kref);
3962         /*
3963          * Add a second kref if the fabric caller is expecting to handle
3964          * fabric acknowledgement that requires two target_put_sess_cmd()
3965          * invocations before se_cmd descriptor release.
3966          */
3967         if (ack_kref == true)
3968                 kref_get(&se_cmd->cmd_kref);
3969
3970         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3971         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
3972         se_cmd->check_release = 1;
3973         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3974 }
3975 EXPORT_SYMBOL(target_get_sess_cmd);
3976
3977 static void target_release_cmd_kref(struct kref *kref)
3978 {
3979         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
3980         struct se_session *se_sess = se_cmd->se_sess;
3981         unsigned long flags;
3982
3983         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3984         if (list_empty(&se_cmd->se_cmd_list)) {
3985                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3986                 WARN_ON(1);
3987                 return;
3988         }
3989         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
3990                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3991                 complete(&se_cmd->cmd_wait_comp);
3992                 return;
3993         }
3994         list_del(&se_cmd->se_cmd_list);
3995         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3996
3997         se_cmd->se_tfo->release_cmd(se_cmd);
3998 }
3999
4000 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4001  * @se_sess:    session to reference
4002  * @se_cmd:     command descriptor to drop
4003  */
4004 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4005 {
4006         return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4007 }
4008 EXPORT_SYMBOL(target_put_sess_cmd);
4009
4010 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4011  * @se_sess:    session to split
4012  */
4013 void target_splice_sess_cmd_list(struct se_session *se_sess)
4014 {
4015         struct se_cmd *se_cmd;
4016         unsigned long flags;
4017
4018         WARN_ON(!list_empty(&se_sess->sess_wait_list));
4019         INIT_LIST_HEAD(&se_sess->sess_wait_list);
4020
4021         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4022         se_sess->sess_tearing_down = 1;
4023
4024         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4025
4026         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4027                 se_cmd->cmd_wait_set = 1;
4028
4029         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4030 }
4031 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4032
4033 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4034  * @se_sess:    session to wait for active I/O
4035  * @wait_for_tasks:     Make extra transport_wait_for_tasks call
4036  */
4037 void target_wait_for_sess_cmds(
4038         struct se_session *se_sess,
4039         int wait_for_tasks)
4040 {
4041         struct se_cmd *se_cmd, *tmp_cmd;
4042         bool rc = false;
4043
4044         list_for_each_entry_safe(se_cmd, tmp_cmd,
4045                                 &se_sess->sess_wait_list, se_cmd_list) {
4046                 list_del(&se_cmd->se_cmd_list);
4047
4048                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4049                         " %d\n", se_cmd, se_cmd->t_state,
4050                         se_cmd->se_tfo->get_cmd_state(se_cmd));
4051
4052                 if (wait_for_tasks) {
4053                         pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4054                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4055                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4056
4057                         rc = transport_wait_for_tasks(se_cmd);
4058
4059                         pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4060                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4061                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4062                 }
4063
4064                 if (!rc) {
4065                         wait_for_completion(&se_cmd->cmd_wait_comp);
4066                         pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4067                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4068                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4069                 }
4070
4071                 se_cmd->se_tfo->release_cmd(se_cmd);
4072         }
4073 }
4074 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4075
4076 /*      transport_lun_wait_for_tasks():
4077  *
4078  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4079  *      an struct se_lun to be successfully shutdown.
4080  */
4081 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4082 {
4083         unsigned long flags;
4084         int ret;
4085         /*
4086          * If the frontend has already requested this struct se_cmd to
4087          * be stopped, we can safely ignore this struct se_cmd.
4088          */
4089         spin_lock_irqsave(&cmd->t_state_lock, flags);
4090         if (atomic_read(&cmd->t_transport_stop)) {
4091                 atomic_set(&cmd->transport_lun_stop, 0);
4092                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4093                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4094                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4095                 transport_cmd_check_stop(cmd, 1, 0);
4096                 return -EPERM;
4097         }
4098         atomic_set(&cmd->transport_lun_fe_stop, 1);
4099         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4100
4101         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4102
4103         ret = transport_stop_tasks_for_cmd(cmd);
4104
4105         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4106                         " %d\n", cmd, cmd->t_task_list_num, ret);
4107         if (!ret) {
4108                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4109                                 cmd->se_tfo->get_task_tag(cmd));
4110                 wait_for_completion(&cmd->transport_lun_stop_comp);
4111                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4112                                 cmd->se_tfo->get_task_tag(cmd));
4113         }
4114         transport_remove_cmd_from_queue(cmd);
4115
4116         return 0;
4117 }
4118
4119 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4120 {
4121         struct se_cmd *cmd = NULL;
4122         unsigned long lun_flags, cmd_flags;
4123         /*
4124          * Do exception processing and return CHECK_CONDITION status to the
4125          * Initiator Port.
4126          */
4127         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4128         while (!list_empty(&lun->lun_cmd_list)) {
4129                 cmd = list_first_entry(&lun->lun_cmd_list,
4130                        struct se_cmd, se_lun_node);
4131                 list_del(&cmd->se_lun_node);
4132
4133                 atomic_set(&cmd->transport_lun_active, 0);
4134                 /*
4135                  * This will notify iscsi_target_transport.c:
4136                  * transport_cmd_check_stop() that a LUN shutdown is in
4137                  * progress for the iscsi_cmd_t.
4138                  */
4139                 spin_lock(&cmd->t_state_lock);
4140                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4141                         "_lun_stop for  ITT: 0x%08x\n",
4142                         cmd->se_lun->unpacked_lun,
4143                         cmd->se_tfo->get_task_tag(cmd));
4144                 atomic_set(&cmd->transport_lun_stop, 1);
4145                 spin_unlock(&cmd->t_state_lock);
4146
4147                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4148
4149                 if (!cmd->se_lun) {
4150                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4151                                 cmd->se_tfo->get_task_tag(cmd),
4152                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4153                         BUG();
4154                 }
4155                 /*
4156                  * If the Storage engine still owns the iscsi_cmd_t, determine
4157                  * and/or stop its context.
4158                  */
4159                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4160                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4161                         cmd->se_tfo->get_task_tag(cmd));
4162
4163                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4164                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4165                         continue;
4166                 }
4167
4168                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4169                         "_wait_for_tasks(): SUCCESS\n",
4170                         cmd->se_lun->unpacked_lun,
4171                         cmd->se_tfo->get_task_tag(cmd));
4172
4173                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4174                 if (!atomic_read(&cmd->transport_dev_active)) {
4175                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4176                         goto check_cond;
4177                 }
4178                 atomic_set(&cmd->transport_dev_active, 0);
4179                 transport_all_task_dev_remove_state(cmd);
4180                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4181
4182                 transport_free_dev_tasks(cmd);
4183                 /*
4184                  * The Storage engine stopped this struct se_cmd before it was
4185                  * send to the fabric frontend for delivery back to the
4186                  * Initiator Node.  Return this SCSI CDB back with an
4187                  * CHECK_CONDITION status.
4188                  */
4189 check_cond:
4190                 transport_send_check_condition_and_sense(cmd,
4191                                 TCM_NON_EXISTENT_LUN, 0);
4192                 /*
4193                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4194                  * be released, notify the waiting thread now that LU has
4195                  * finished accessing it.
4196                  */
4197                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4198                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4199                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4200                                 " struct se_cmd: %p ITT: 0x%08x\n",
4201                                 lun->unpacked_lun,
4202                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4203
4204                         spin_unlock_irqrestore(&cmd->t_state_lock,
4205                                         cmd_flags);
4206                         transport_cmd_check_stop(cmd, 1, 0);
4207                         complete(&cmd->transport_lun_fe_stop_comp);
4208                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4209                         continue;
4210                 }
4211                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4212                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4213
4214                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4215                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4216         }
4217         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4218 }
4219
4220 static int transport_clear_lun_thread(void *p)
4221 {
4222         struct se_lun *lun = p;
4223
4224         __transport_clear_lun_from_sessions(lun);
4225         complete(&lun->lun_shutdown_comp);
4226
4227         return 0;
4228 }
4229
4230 int transport_clear_lun_from_sessions(struct se_lun *lun)
4231 {
4232         struct task_struct *kt;
4233
4234         kt = kthread_run(transport_clear_lun_thread, lun,
4235                         "tcm_cl_%u", lun->unpacked_lun);
4236         if (IS_ERR(kt)) {
4237                 pr_err("Unable to start clear_lun thread\n");
4238                 return PTR_ERR(kt);
4239         }
4240         wait_for_completion(&lun->lun_shutdown_comp);
4241
4242         return 0;
4243 }
4244
4245 /**
4246  * transport_wait_for_tasks - wait for completion to occur
4247  * @cmd:        command to wait
4248  *
4249  * Called from frontend fabric context to wait for storage engine
4250  * to pause and/or release frontend generated struct se_cmd.
4251  */
4252 bool transport_wait_for_tasks(struct se_cmd *cmd)
4253 {
4254         unsigned long flags;
4255
4256         spin_lock_irqsave(&cmd->t_state_lock, flags);
4257         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4258                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4259                 return false;
4260         }
4261         /*
4262          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4263          * has been set in transport_set_supported_SAM_opcode().
4264          */
4265         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4266                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4267                 return false;
4268         }
4269         /*
4270          * If we are already stopped due to an external event (ie: LUN shutdown)
4271          * sleep until the connection can have the passed struct se_cmd back.
4272          * The cmd->transport_lun_stopped_sem will be upped by
4273          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4274          * has completed its operation on the struct se_cmd.
4275          */
4276         if (atomic_read(&cmd->transport_lun_stop)) {
4277
4278                 pr_debug("wait_for_tasks: Stopping"
4279                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4280                         "_stop_comp); for ITT: 0x%08x\n",
4281                         cmd->se_tfo->get_task_tag(cmd));
4282                 /*
4283                  * There is a special case for WRITES where a FE exception +
4284                  * LUN shutdown means ConfigFS context is still sleeping on
4285                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4286                  * We go ahead and up transport_lun_stop_comp just to be sure
4287                  * here.
4288                  */
4289                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4290                 complete(&cmd->transport_lun_stop_comp);
4291                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4292                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4293
4294                 transport_all_task_dev_remove_state(cmd);
4295                 /*
4296                  * At this point, the frontend who was the originator of this
4297                  * struct se_cmd, now owns the structure and can be released through
4298                  * normal means below.
4299                  */
4300                 pr_debug("wait_for_tasks: Stopped"
4301                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4302                         "stop_comp); for ITT: 0x%08x\n",
4303                         cmd->se_tfo->get_task_tag(cmd));
4304
4305                 atomic_set(&cmd->transport_lun_stop, 0);
4306         }
4307         if (!atomic_read(&cmd->t_transport_active) ||
4308              atomic_read(&cmd->t_transport_aborted)) {
4309                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4310                 return false;
4311         }
4312
4313         atomic_set(&cmd->t_transport_stop, 1);
4314
4315         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4316                 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4317                 cmd, cmd->se_tfo->get_task_tag(cmd),
4318                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4319
4320         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4321
4322         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4323
4324         wait_for_completion(&cmd->t_transport_stop_comp);
4325
4326         spin_lock_irqsave(&cmd->t_state_lock, flags);
4327         atomic_set(&cmd->t_transport_active, 0);
4328         atomic_set(&cmd->t_transport_stop, 0);
4329
4330         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4331                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4332                 cmd->se_tfo->get_task_tag(cmd));
4333
4334         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4335
4336         return true;
4337 }
4338 EXPORT_SYMBOL(transport_wait_for_tasks);
4339
4340 static int transport_get_sense_codes(
4341         struct se_cmd *cmd,
4342         u8 *asc,
4343         u8 *ascq)
4344 {
4345         *asc = cmd->scsi_asc;
4346         *ascq = cmd->scsi_ascq;
4347
4348         return 0;
4349 }
4350
4351 static int transport_set_sense_codes(
4352         struct se_cmd *cmd,
4353         u8 asc,
4354         u8 ascq)
4355 {
4356         cmd->scsi_asc = asc;
4357         cmd->scsi_ascq = ascq;
4358
4359         return 0;
4360 }
4361
4362 int transport_send_check_condition_and_sense(
4363         struct se_cmd *cmd,
4364         u8 reason,
4365         int from_transport)
4366 {
4367         unsigned char *buffer = cmd->sense_buffer;
4368         unsigned long flags;
4369         int offset;
4370         u8 asc = 0, ascq = 0;
4371
4372         spin_lock_irqsave(&cmd->t_state_lock, flags);
4373         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4374                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4375                 return 0;
4376         }
4377         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4378         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4379
4380         if (!reason && from_transport)
4381                 goto after_reason;
4382
4383         if (!from_transport)
4384                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4385         /*
4386          * Data Segment and SenseLength of the fabric response PDU.
4387          *
4388          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4389          * from include/scsi/scsi_cmnd.h
4390          */
4391         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4392                                 TRANSPORT_SENSE_BUFFER);
4393         /*
4394          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4395          * SENSE KEY values from include/scsi/scsi.h
4396          */
4397         switch (reason) {
4398         case TCM_NON_EXISTENT_LUN:
4399                 /* CURRENT ERROR */
4400                 buffer[offset] = 0x70;
4401                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4402                 /* ILLEGAL REQUEST */
4403                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4404                 /* LOGICAL UNIT NOT SUPPORTED */
4405                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4406                 break;
4407         case TCM_UNSUPPORTED_SCSI_OPCODE:
4408         case TCM_SECTOR_COUNT_TOO_MANY:
4409                 /* CURRENT ERROR */
4410                 buffer[offset] = 0x70;
4411                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4412                 /* ILLEGAL REQUEST */
4413                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4414                 /* INVALID COMMAND OPERATION CODE */
4415                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4416                 break;
4417         case TCM_UNKNOWN_MODE_PAGE:
4418                 /* CURRENT ERROR */
4419                 buffer[offset] = 0x70;
4420                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4421                 /* ILLEGAL REQUEST */
4422                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4423                 /* INVALID FIELD IN CDB */
4424                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4425                 break;
4426         case TCM_CHECK_CONDITION_ABORT_CMD:
4427                 /* CURRENT ERROR */
4428                 buffer[offset] = 0x70;
4429                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4430                 /* ABORTED COMMAND */
4431                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4432                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4433                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4434                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4435                 break;
4436         case TCM_INCORRECT_AMOUNT_OF_DATA:
4437                 /* CURRENT ERROR */
4438                 buffer[offset] = 0x70;
4439                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4440                 /* ABORTED COMMAND */
4441                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4442                 /* WRITE ERROR */
4443                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4444                 /* NOT ENOUGH UNSOLICITED DATA */
4445                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4446                 break;
4447         case TCM_INVALID_CDB_FIELD:
4448                 /* CURRENT ERROR */
4449                 buffer[offset] = 0x70;
4450                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4451                 /* ABORTED COMMAND */
4452                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4453                 /* INVALID FIELD IN CDB */
4454                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4455                 break;
4456         case TCM_INVALID_PARAMETER_LIST:
4457                 /* CURRENT ERROR */
4458                 buffer[offset] = 0x70;
4459                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4460                 /* ABORTED COMMAND */
4461                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4462                 /* INVALID FIELD IN PARAMETER LIST */
4463                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4464                 break;
4465         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4466                 /* CURRENT ERROR */
4467                 buffer[offset] = 0x70;
4468                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4469                 /* ABORTED COMMAND */
4470                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4471                 /* WRITE ERROR */
4472                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4473                 /* UNEXPECTED_UNSOLICITED_DATA */
4474                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4475                 break;
4476         case TCM_SERVICE_CRC_ERROR:
4477                 /* CURRENT ERROR */
4478                 buffer[offset] = 0x70;
4479                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4480                 /* ABORTED COMMAND */
4481                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4482                 /* PROTOCOL SERVICE CRC ERROR */
4483                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4484                 /* N/A */
4485                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4486                 break;
4487         case TCM_SNACK_REJECTED:
4488                 /* CURRENT ERROR */
4489                 buffer[offset] = 0x70;
4490                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4491                 /* ABORTED COMMAND */
4492                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4493                 /* READ ERROR */
4494                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4495                 /* FAILED RETRANSMISSION REQUEST */
4496                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4497                 break;
4498         case TCM_WRITE_PROTECTED:
4499                 /* CURRENT ERROR */
4500                 buffer[offset] = 0x70;
4501                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4502                 /* DATA PROTECT */
4503                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4504                 /* WRITE PROTECTED */
4505                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4506                 break;
4507         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4508                 /* CURRENT ERROR */
4509                 buffer[offset] = 0x70;
4510                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4511                 /* UNIT ATTENTION */
4512                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4513                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4514                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4515                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4516                 break;
4517         case TCM_CHECK_CONDITION_NOT_READY:
4518                 /* CURRENT ERROR */
4519                 buffer[offset] = 0x70;
4520                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4521                 /* Not Ready */
4522                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4523                 transport_get_sense_codes(cmd, &asc, &ascq);
4524                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4525                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4526                 break;
4527         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4528         default:
4529                 /* CURRENT ERROR */
4530                 buffer[offset] = 0x70;
4531                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4532                 /* ILLEGAL REQUEST */
4533                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4534                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4535                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4536                 break;
4537         }
4538         /*
4539          * This code uses linux/include/scsi/scsi.h SAM status codes!
4540          */
4541         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4542         /*
4543          * Automatically padded, this value is encoded in the fabric's
4544          * data_length response PDU containing the SCSI defined sense data.
4545          */
4546         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4547
4548 after_reason:
4549         return cmd->se_tfo->queue_status(cmd);
4550 }
4551 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4552
4553 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4554 {
4555         int ret = 0;
4556
4557         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4558                 if (!send_status ||
4559                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4560                         return 1;
4561 #if 0
4562                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4563                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4564                         cmd->t_task_cdb[0],
4565                         cmd->se_tfo->get_task_tag(cmd));
4566 #endif
4567                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4568                 cmd->se_tfo->queue_status(cmd);
4569                 ret = 1;
4570         }
4571         return ret;
4572 }
4573 EXPORT_SYMBOL(transport_check_aborted_status);
4574
4575 void transport_send_task_abort(struct se_cmd *cmd)
4576 {
4577         unsigned long flags;
4578
4579         spin_lock_irqsave(&cmd->t_state_lock, flags);
4580         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4581                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4582                 return;
4583         }
4584         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4585
4586         /*
4587          * If there are still expected incoming fabric WRITEs, we wait
4588          * until until they have completed before sending a TASK_ABORTED
4589          * response.  This response with TASK_ABORTED status will be
4590          * queued back to fabric module by transport_check_aborted_status().
4591          */
4592         if (cmd->data_direction == DMA_TO_DEVICE) {
4593                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4594                         atomic_inc(&cmd->t_transport_aborted);
4595                         smp_mb__after_atomic_inc();
4596                 }
4597         }
4598         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4599 #if 0
4600         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4601                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4602                 cmd->se_tfo->get_task_tag(cmd));
4603 #endif
4604         cmd->se_tfo->queue_status(cmd);
4605 }
4606
4607 static int transport_generic_do_tmr(struct se_cmd *cmd)
4608 {
4609         struct se_device *dev = cmd->se_dev;
4610         struct se_tmr_req *tmr = cmd->se_tmr_req;
4611         int ret;
4612
4613         switch (tmr->function) {
4614         case TMR_ABORT_TASK:
4615                 tmr->response = TMR_FUNCTION_REJECTED;
4616                 break;
4617         case TMR_ABORT_TASK_SET:
4618         case TMR_CLEAR_ACA:
4619         case TMR_CLEAR_TASK_SET:
4620                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4621                 break;
4622         case TMR_LUN_RESET:
4623                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4624                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4625                                          TMR_FUNCTION_REJECTED;
4626                 break;
4627         case TMR_TARGET_WARM_RESET:
4628                 tmr->response = TMR_FUNCTION_REJECTED;
4629                 break;
4630         case TMR_TARGET_COLD_RESET:
4631                 tmr->response = TMR_FUNCTION_REJECTED;
4632                 break;
4633         default:
4634                 pr_err("Uknown TMR function: 0x%02x.\n",
4635                                 tmr->function);
4636                 tmr->response = TMR_FUNCTION_REJECTED;
4637                 break;
4638         }
4639
4640         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4641         cmd->se_tfo->queue_tm_rsp(cmd);
4642
4643         transport_cmd_check_stop_to_fabric(cmd);
4644         return 0;
4645 }
4646
4647 /*      transport_processing_thread():
4648  *
4649  *
4650  */
4651 static int transport_processing_thread(void *param)
4652 {
4653         int ret;
4654         struct se_cmd *cmd;
4655         struct se_device *dev = param;
4656
4657         while (!kthread_should_stop()) {
4658                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4659                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4660                                 kthread_should_stop());
4661                 if (ret < 0)
4662                         goto out;
4663
4664 get_cmd:
4665                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4666                 if (!cmd)
4667                         continue;
4668
4669                 switch (cmd->t_state) {
4670                 case TRANSPORT_NEW_CMD:
4671                         BUG();
4672                         break;
4673                 case TRANSPORT_NEW_CMD_MAP:
4674                         if (!cmd->se_tfo->new_cmd_map) {
4675                                 pr_err("cmd->se_tfo->new_cmd_map is"
4676                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4677                                 BUG();
4678                         }
4679                         ret = cmd->se_tfo->new_cmd_map(cmd);
4680                         if (ret < 0) {
4681                                 transport_generic_request_failure(cmd);
4682                                 break;
4683                         }
4684                         ret = transport_generic_new_cmd(cmd);
4685                         if (ret < 0) {
4686                                 transport_generic_request_failure(cmd);
4687                                 break;
4688                         }
4689                         break;
4690                 case TRANSPORT_PROCESS_WRITE:
4691                         transport_generic_process_write(cmd);
4692                         break;
4693                 case TRANSPORT_PROCESS_TMR:
4694                         transport_generic_do_tmr(cmd);
4695                         break;
4696                 case TRANSPORT_COMPLETE_QF_WP:
4697                         transport_write_pending_qf(cmd);
4698                         break;
4699                 case TRANSPORT_COMPLETE_QF_OK:
4700                         transport_complete_qf(cmd);
4701                         break;
4702                 default:
4703                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4704                                 "i_state: %d on SE LUN: %u\n",
4705                                 cmd->t_state,
4706                                 cmd->se_tfo->get_task_tag(cmd),
4707                                 cmd->se_tfo->get_cmd_state(cmd),
4708                                 cmd->se_lun->unpacked_lun);
4709                         BUG();
4710                 }
4711
4712                 goto get_cmd;
4713         }
4714
4715 out:
4716         WARN_ON(!list_empty(&dev->state_task_list));
4717         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4718         dev->process_thread = NULL;
4719         return 0;
4720 }