]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/target/target_core_transport.c
target: Fix COMPARE_AND_WRITE with SG_TO_MEM_NOALLOC handling
[karo-tx-linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
38 #include <net/sock.h>
39 #include <net/tcp.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
48
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
56
57 static struct workqueue_struct *target_completion_wq;
58 static struct kmem_cache *se_sess_cache;
59 struct kmem_cache *se_ua_cache;
60 struct kmem_cache *t10_pr_reg_cache;
61 struct kmem_cache *t10_alua_lu_gp_cache;
62 struct kmem_cache *t10_alua_lu_gp_mem_cache;
63 struct kmem_cache *t10_alua_tg_pt_gp_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
65 struct kmem_cache *t10_alua_lba_map_cache;
66 struct kmem_cache *t10_alua_lba_map_mem_cache;
67
68 static void transport_complete_task_attr(struct se_cmd *cmd);
69 static void transport_handle_queue_full(struct se_cmd *cmd,
70                 struct se_device *dev);
71 static int transport_put_cmd(struct se_cmd *cmd);
72 static void target_complete_ok_work(struct work_struct *work);
73
74 int init_se_kmem_caches(void)
75 {
76         se_sess_cache = kmem_cache_create("se_sess_cache",
77                         sizeof(struct se_session), __alignof__(struct se_session),
78                         0, NULL);
79         if (!se_sess_cache) {
80                 pr_err("kmem_cache_create() for struct se_session"
81                                 " failed\n");
82                 goto out;
83         }
84         se_ua_cache = kmem_cache_create("se_ua_cache",
85                         sizeof(struct se_ua), __alignof__(struct se_ua),
86                         0, NULL);
87         if (!se_ua_cache) {
88                 pr_err("kmem_cache_create() for struct se_ua failed\n");
89                 goto out_free_sess_cache;
90         }
91         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
92                         sizeof(struct t10_pr_registration),
93                         __alignof__(struct t10_pr_registration), 0, NULL);
94         if (!t10_pr_reg_cache) {
95                 pr_err("kmem_cache_create() for struct t10_pr_registration"
96                                 " failed\n");
97                 goto out_free_ua_cache;
98         }
99         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
100                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
101                         0, NULL);
102         if (!t10_alua_lu_gp_cache) {
103                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104                                 " failed\n");
105                 goto out_free_pr_reg_cache;
106         }
107         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
108                         sizeof(struct t10_alua_lu_gp_member),
109                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
110         if (!t10_alua_lu_gp_mem_cache) {
111                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112                                 "cache failed\n");
113                 goto out_free_lu_gp_cache;
114         }
115         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
116                         sizeof(struct t10_alua_tg_pt_gp),
117                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
118         if (!t10_alua_tg_pt_gp_cache) {
119                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120                                 "cache failed\n");
121                 goto out_free_lu_gp_mem_cache;
122         }
123         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
124                         "t10_alua_tg_pt_gp_mem_cache",
125                         sizeof(struct t10_alua_tg_pt_gp_member),
126                         __alignof__(struct t10_alua_tg_pt_gp_member),
127                         0, NULL);
128         if (!t10_alua_tg_pt_gp_mem_cache) {
129                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
130                                 "mem_t failed\n");
131                 goto out_free_tg_pt_gp_cache;
132         }
133         t10_alua_lba_map_cache = kmem_cache_create(
134                         "t10_alua_lba_map_cache",
135                         sizeof(struct t10_alua_lba_map),
136                         __alignof__(struct t10_alua_lba_map), 0, NULL);
137         if (!t10_alua_lba_map_cache) {
138                 pr_err("kmem_cache_create() for t10_alua_lba_map_"
139                                 "cache failed\n");
140                 goto out_free_tg_pt_gp_mem_cache;
141         }
142         t10_alua_lba_map_mem_cache = kmem_cache_create(
143                         "t10_alua_lba_map_mem_cache",
144                         sizeof(struct t10_alua_lba_map_member),
145                         __alignof__(struct t10_alua_lba_map_member), 0, NULL);
146         if (!t10_alua_lba_map_mem_cache) {
147                 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
148                                 "cache failed\n");
149                 goto out_free_lba_map_cache;
150         }
151
152         target_completion_wq = alloc_workqueue("target_completion",
153                                                WQ_MEM_RECLAIM, 0);
154         if (!target_completion_wq)
155                 goto out_free_lba_map_mem_cache;
156
157         return 0;
158
159 out_free_lba_map_mem_cache:
160         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
161 out_free_lba_map_cache:
162         kmem_cache_destroy(t10_alua_lba_map_cache);
163 out_free_tg_pt_gp_mem_cache:
164         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
165 out_free_tg_pt_gp_cache:
166         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
167 out_free_lu_gp_mem_cache:
168         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
169 out_free_lu_gp_cache:
170         kmem_cache_destroy(t10_alua_lu_gp_cache);
171 out_free_pr_reg_cache:
172         kmem_cache_destroy(t10_pr_reg_cache);
173 out_free_ua_cache:
174         kmem_cache_destroy(se_ua_cache);
175 out_free_sess_cache:
176         kmem_cache_destroy(se_sess_cache);
177 out:
178         return -ENOMEM;
179 }
180
181 void release_se_kmem_caches(void)
182 {
183         destroy_workqueue(target_completion_wq);
184         kmem_cache_destroy(se_sess_cache);
185         kmem_cache_destroy(se_ua_cache);
186         kmem_cache_destroy(t10_pr_reg_cache);
187         kmem_cache_destroy(t10_alua_lu_gp_cache);
188         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
189         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
191         kmem_cache_destroy(t10_alua_lba_map_cache);
192         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
193 }
194
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock);
197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
198
199 /*
200  * Allocate a new row index for the entry type specified
201  */
202 u32 scsi_get_new_index(scsi_index_t type)
203 {
204         u32 new_index;
205
206         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
207
208         spin_lock(&scsi_mib_index_lock);
209         new_index = ++scsi_mib_index[type];
210         spin_unlock(&scsi_mib_index_lock);
211
212         return new_index;
213 }
214
215 void transport_subsystem_check_init(void)
216 {
217         int ret;
218         static int sub_api_initialized;
219
220         if (sub_api_initialized)
221                 return;
222
223         ret = request_module("target_core_iblock");
224         if (ret != 0)
225                 pr_err("Unable to load target_core_iblock\n");
226
227         ret = request_module("target_core_file");
228         if (ret != 0)
229                 pr_err("Unable to load target_core_file\n");
230
231         ret = request_module("target_core_pscsi");
232         if (ret != 0)
233                 pr_err("Unable to load target_core_pscsi\n");
234
235         ret = request_module("target_core_user");
236         if (ret != 0)
237                 pr_err("Unable to load target_core_user\n");
238
239         sub_api_initialized = 1;
240 }
241
242 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
243 {
244         struct se_session *se_sess;
245
246         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
247         if (!se_sess) {
248                 pr_err("Unable to allocate struct se_session from"
249                                 " se_sess_cache\n");
250                 return ERR_PTR(-ENOMEM);
251         }
252         INIT_LIST_HEAD(&se_sess->sess_list);
253         INIT_LIST_HEAD(&se_sess->sess_acl_list);
254         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
255         INIT_LIST_HEAD(&se_sess->sess_wait_list);
256         spin_lock_init(&se_sess->sess_cmd_lock);
257         kref_init(&se_sess->sess_kref);
258         se_sess->sup_prot_ops = sup_prot_ops;
259
260         return se_sess;
261 }
262 EXPORT_SYMBOL(transport_init_session);
263
264 int transport_alloc_session_tags(struct se_session *se_sess,
265                                  unsigned int tag_num, unsigned int tag_size)
266 {
267         int rc;
268
269         se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
270                                         GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
271         if (!se_sess->sess_cmd_map) {
272                 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
273                 if (!se_sess->sess_cmd_map) {
274                         pr_err("Unable to allocate se_sess->sess_cmd_map\n");
275                         return -ENOMEM;
276                 }
277         }
278
279         rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
280         if (rc < 0) {
281                 pr_err("Unable to init se_sess->sess_tag_pool,"
282                         " tag_num: %u\n", tag_num);
283                 if (is_vmalloc_addr(se_sess->sess_cmd_map))
284                         vfree(se_sess->sess_cmd_map);
285                 else
286                         kfree(se_sess->sess_cmd_map);
287                 se_sess->sess_cmd_map = NULL;
288                 return -ENOMEM;
289         }
290
291         return 0;
292 }
293 EXPORT_SYMBOL(transport_alloc_session_tags);
294
295 struct se_session *transport_init_session_tags(unsigned int tag_num,
296                                                unsigned int tag_size,
297                                                enum target_prot_op sup_prot_ops)
298 {
299         struct se_session *se_sess;
300         int rc;
301
302         se_sess = transport_init_session(sup_prot_ops);
303         if (IS_ERR(se_sess))
304                 return se_sess;
305
306         rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
307         if (rc < 0) {
308                 transport_free_session(se_sess);
309                 return ERR_PTR(-ENOMEM);
310         }
311
312         return se_sess;
313 }
314 EXPORT_SYMBOL(transport_init_session_tags);
315
316 /*
317  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
318  */
319 void __transport_register_session(
320         struct se_portal_group *se_tpg,
321         struct se_node_acl *se_nacl,
322         struct se_session *se_sess,
323         void *fabric_sess_ptr)
324 {
325         const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
326         unsigned char buf[PR_REG_ISID_LEN];
327
328         se_sess->se_tpg = se_tpg;
329         se_sess->fabric_sess_ptr = fabric_sess_ptr;
330         /*
331          * Determine if fabric allows for T10-PI feature bits to be exposed
332          * to initiators for device backends with !dev->dev_attrib.pi_prot_type
333          */
334         if (tfo->tpg_check_prot_fabric_only)
335                 se_sess->sess_prot_type = tfo->tpg_check_prot_fabric_only(se_tpg);
336
337         /*
338          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
339          *
340          * Only set for struct se_session's that will actually be moving I/O.
341          * eg: *NOT* discovery sessions.
342          */
343         if (se_nacl) {
344                 /*
345                  * If the fabric module supports an ISID based TransportID,
346                  * save this value in binary from the fabric I_T Nexus now.
347                  */
348                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
349                         memset(&buf[0], 0, PR_REG_ISID_LEN);
350                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
351                                         &buf[0], PR_REG_ISID_LEN);
352                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
353                 }
354                 kref_get(&se_nacl->acl_kref);
355
356                 spin_lock_irq(&se_nacl->nacl_sess_lock);
357                 /*
358                  * The se_nacl->nacl_sess pointer will be set to the
359                  * last active I_T Nexus for each struct se_node_acl.
360                  */
361                 se_nacl->nacl_sess = se_sess;
362
363                 list_add_tail(&se_sess->sess_acl_list,
364                               &se_nacl->acl_sess_list);
365                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
366         }
367         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
368
369         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
370                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
371 }
372 EXPORT_SYMBOL(__transport_register_session);
373
374 void transport_register_session(
375         struct se_portal_group *se_tpg,
376         struct se_node_acl *se_nacl,
377         struct se_session *se_sess,
378         void *fabric_sess_ptr)
379 {
380         unsigned long flags;
381
382         spin_lock_irqsave(&se_tpg->session_lock, flags);
383         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
384         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
385 }
386 EXPORT_SYMBOL(transport_register_session);
387
388 static void target_release_session(struct kref *kref)
389 {
390         struct se_session *se_sess = container_of(kref,
391                         struct se_session, sess_kref);
392         struct se_portal_group *se_tpg = se_sess->se_tpg;
393
394         se_tpg->se_tpg_tfo->close_session(se_sess);
395 }
396
397 void target_get_session(struct se_session *se_sess)
398 {
399         kref_get(&se_sess->sess_kref);
400 }
401 EXPORT_SYMBOL(target_get_session);
402
403 void target_put_session(struct se_session *se_sess)
404 {
405         struct se_portal_group *tpg = se_sess->se_tpg;
406
407         if (tpg->se_tpg_tfo->put_session != NULL) {
408                 tpg->se_tpg_tfo->put_session(se_sess);
409                 return;
410         }
411         kref_put(&se_sess->sess_kref, target_release_session);
412 }
413 EXPORT_SYMBOL(target_put_session);
414
415 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
416 {
417         struct se_session *se_sess;
418         ssize_t len = 0;
419
420         spin_lock_bh(&se_tpg->session_lock);
421         list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
422                 if (!se_sess->se_node_acl)
423                         continue;
424                 if (!se_sess->se_node_acl->dynamic_node_acl)
425                         continue;
426                 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
427                         break;
428
429                 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
430                                 se_sess->se_node_acl->initiatorname);
431                 len += 1; /* Include NULL terminator */
432         }
433         spin_unlock_bh(&se_tpg->session_lock);
434
435         return len;
436 }
437 EXPORT_SYMBOL(target_show_dynamic_sessions);
438
439 static void target_complete_nacl(struct kref *kref)
440 {
441         struct se_node_acl *nacl = container_of(kref,
442                                 struct se_node_acl, acl_kref);
443
444         complete(&nacl->acl_free_comp);
445 }
446
447 void target_put_nacl(struct se_node_acl *nacl)
448 {
449         kref_put(&nacl->acl_kref, target_complete_nacl);
450 }
451
452 void transport_deregister_session_configfs(struct se_session *se_sess)
453 {
454         struct se_node_acl *se_nacl;
455         unsigned long flags;
456         /*
457          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
458          */
459         se_nacl = se_sess->se_node_acl;
460         if (se_nacl) {
461                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
462                 if (se_nacl->acl_stop == 0)
463                         list_del(&se_sess->sess_acl_list);
464                 /*
465                  * If the session list is empty, then clear the pointer.
466                  * Otherwise, set the struct se_session pointer from the tail
467                  * element of the per struct se_node_acl active session list.
468                  */
469                 if (list_empty(&se_nacl->acl_sess_list))
470                         se_nacl->nacl_sess = NULL;
471                 else {
472                         se_nacl->nacl_sess = container_of(
473                                         se_nacl->acl_sess_list.prev,
474                                         struct se_session, sess_acl_list);
475                 }
476                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
477         }
478 }
479 EXPORT_SYMBOL(transport_deregister_session_configfs);
480
481 void transport_free_session(struct se_session *se_sess)
482 {
483         if (se_sess->sess_cmd_map) {
484                 percpu_ida_destroy(&se_sess->sess_tag_pool);
485                 if (is_vmalloc_addr(se_sess->sess_cmd_map))
486                         vfree(se_sess->sess_cmd_map);
487                 else
488                         kfree(se_sess->sess_cmd_map);
489         }
490         kmem_cache_free(se_sess_cache, se_sess);
491 }
492 EXPORT_SYMBOL(transport_free_session);
493
494 void transport_deregister_session(struct se_session *se_sess)
495 {
496         struct se_portal_group *se_tpg = se_sess->se_tpg;
497         const struct target_core_fabric_ops *se_tfo;
498         struct se_node_acl *se_nacl;
499         unsigned long flags;
500         bool comp_nacl = true;
501
502         if (!se_tpg) {
503                 transport_free_session(se_sess);
504                 return;
505         }
506         se_tfo = se_tpg->se_tpg_tfo;
507
508         spin_lock_irqsave(&se_tpg->session_lock, flags);
509         list_del(&se_sess->sess_list);
510         se_sess->se_tpg = NULL;
511         se_sess->fabric_sess_ptr = NULL;
512         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
513
514         /*
515          * Determine if we need to do extra work for this initiator node's
516          * struct se_node_acl if it had been previously dynamically generated.
517          */
518         se_nacl = se_sess->se_node_acl;
519
520         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
521         if (se_nacl && se_nacl->dynamic_node_acl) {
522                 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
523                         list_del(&se_nacl->acl_list);
524                         se_tpg->num_node_acls--;
525                         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
526                         core_tpg_wait_for_nacl_pr_ref(se_nacl);
527                         core_free_device_list_for_node(se_nacl, se_tpg);
528                         se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
529
530                         comp_nacl = false;
531                         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
532                 }
533         }
534         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
535
536         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
537                 se_tpg->se_tpg_tfo->get_fabric_name());
538         /*
539          * If last kref is dropping now for an explicit NodeACL, awake sleeping
540          * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
541          * removal context.
542          */
543         if (se_nacl && comp_nacl)
544                 target_put_nacl(se_nacl);
545
546         transport_free_session(se_sess);
547 }
548 EXPORT_SYMBOL(transport_deregister_session);
549
550 /*
551  * Called with cmd->t_state_lock held.
552  */
553 static void target_remove_from_state_list(struct se_cmd *cmd)
554 {
555         struct se_device *dev = cmd->se_dev;
556         unsigned long flags;
557
558         if (!dev)
559                 return;
560
561         if (cmd->transport_state & CMD_T_BUSY)
562                 return;
563
564         spin_lock_irqsave(&dev->execute_task_lock, flags);
565         if (cmd->state_active) {
566                 list_del(&cmd->state_list);
567                 cmd->state_active = false;
568         }
569         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
570 }
571
572 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
573                                     bool write_pending)
574 {
575         unsigned long flags;
576
577         spin_lock_irqsave(&cmd->t_state_lock, flags);
578         if (write_pending)
579                 cmd->t_state = TRANSPORT_WRITE_PENDING;
580
581         if (remove_from_lists) {
582                 target_remove_from_state_list(cmd);
583
584                 /*
585                  * Clear struct se_cmd->se_lun before the handoff to FE.
586                  */
587                 cmd->se_lun = NULL;
588         }
589
590         /*
591          * Determine if frontend context caller is requesting the stopping of
592          * this command for frontend exceptions.
593          */
594         if (cmd->transport_state & CMD_T_STOP) {
595                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
596                         __func__, __LINE__,
597                         cmd->se_tfo->get_task_tag(cmd));
598
599                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
600
601                 complete_all(&cmd->t_transport_stop_comp);
602                 return 1;
603         }
604
605         cmd->transport_state &= ~CMD_T_ACTIVE;
606         if (remove_from_lists) {
607                 /*
608                  * Some fabric modules like tcm_loop can release
609                  * their internally allocated I/O reference now and
610                  * struct se_cmd now.
611                  *
612                  * Fabric modules are expected to return '1' here if the
613                  * se_cmd being passed is released at this point,
614                  * or zero if not being released.
615                  */
616                 if (cmd->se_tfo->check_stop_free != NULL) {
617                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
618                         return cmd->se_tfo->check_stop_free(cmd);
619                 }
620         }
621
622         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
623         return 0;
624 }
625
626 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
627 {
628         return transport_cmd_check_stop(cmd, true, false);
629 }
630
631 static void transport_lun_remove_cmd(struct se_cmd *cmd)
632 {
633         struct se_lun *lun = cmd->se_lun;
634
635         if (!lun)
636                 return;
637
638         if (cmpxchg(&cmd->lun_ref_active, true, false))
639                 percpu_ref_put(&lun->lun_ref);
640 }
641
642 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
643 {
644         if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
645                 transport_lun_remove_cmd(cmd);
646         /*
647          * Allow the fabric driver to unmap any resources before
648          * releasing the descriptor via TFO->release_cmd()
649          */
650         if (remove)
651                 cmd->se_tfo->aborted_task(cmd);
652
653         if (transport_cmd_check_stop_to_fabric(cmd))
654                 return;
655         if (remove)
656                 transport_put_cmd(cmd);
657 }
658
659 static void target_complete_failure_work(struct work_struct *work)
660 {
661         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
662
663         transport_generic_request_failure(cmd,
664                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
665 }
666
667 /*
668  * Used when asking transport to copy Sense Data from the underlying
669  * Linux/SCSI struct scsi_cmnd
670  */
671 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
672 {
673         struct se_device *dev = cmd->se_dev;
674
675         WARN_ON(!cmd->se_lun);
676
677         if (!dev)
678                 return NULL;
679
680         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
681                 return NULL;
682
683         cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
684
685         pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
686                 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
687         return cmd->sense_buffer;
688 }
689
690 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
691 {
692         struct se_device *dev = cmd->se_dev;
693         int success = scsi_status == GOOD;
694         unsigned long flags;
695
696         cmd->scsi_status = scsi_status;
697
698
699         spin_lock_irqsave(&cmd->t_state_lock, flags);
700         cmd->transport_state &= ~CMD_T_BUSY;
701
702         if (dev && dev->transport->transport_complete) {
703                 dev->transport->transport_complete(cmd,
704                                 cmd->t_data_sg,
705                                 transport_get_sense_buffer(cmd));
706                 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
707                         success = 1;
708         }
709
710         /*
711          * See if we are waiting to complete for an exception condition.
712          */
713         if (cmd->transport_state & CMD_T_REQUEST_STOP) {
714                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
715                 complete(&cmd->task_stop_comp);
716                 return;
717         }
718
719         /*
720          * Check for case where an explicit ABORT_TASK has been received
721          * and transport_wait_for_tasks() will be waiting for completion..
722          */
723         if (cmd->transport_state & CMD_T_ABORTED &&
724             cmd->transport_state & CMD_T_STOP) {
725                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
726                 complete_all(&cmd->t_transport_stop_comp);
727                 return;
728         } else if (!success) {
729                 INIT_WORK(&cmd->work, target_complete_failure_work);
730         } else {
731                 INIT_WORK(&cmd->work, target_complete_ok_work);
732         }
733
734         cmd->t_state = TRANSPORT_COMPLETE;
735         cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
736         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
737
738         queue_work(target_completion_wq, &cmd->work);
739 }
740 EXPORT_SYMBOL(target_complete_cmd);
741
742 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
743 {
744         if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
745                 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
746                         cmd->residual_count += cmd->data_length - length;
747                 } else {
748                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
749                         cmd->residual_count = cmd->data_length - length;
750                 }
751
752                 cmd->data_length = length;
753         }
754
755         target_complete_cmd(cmd, scsi_status);
756 }
757 EXPORT_SYMBOL(target_complete_cmd_with_length);
758
759 static void target_add_to_state_list(struct se_cmd *cmd)
760 {
761         struct se_device *dev = cmd->se_dev;
762         unsigned long flags;
763
764         spin_lock_irqsave(&dev->execute_task_lock, flags);
765         if (!cmd->state_active) {
766                 list_add_tail(&cmd->state_list, &dev->state_list);
767                 cmd->state_active = true;
768         }
769         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
770 }
771
772 /*
773  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
774  */
775 static void transport_write_pending_qf(struct se_cmd *cmd);
776 static void transport_complete_qf(struct se_cmd *cmd);
777
778 void target_qf_do_work(struct work_struct *work)
779 {
780         struct se_device *dev = container_of(work, struct se_device,
781                                         qf_work_queue);
782         LIST_HEAD(qf_cmd_list);
783         struct se_cmd *cmd, *cmd_tmp;
784
785         spin_lock_irq(&dev->qf_cmd_lock);
786         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
787         spin_unlock_irq(&dev->qf_cmd_lock);
788
789         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
790                 list_del(&cmd->se_qf_node);
791                 atomic_dec_mb(&dev->dev_qf_count);
792
793                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
794                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
795                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
796                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
797                         : "UNKNOWN");
798
799                 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
800                         transport_write_pending_qf(cmd);
801                 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
802                         transport_complete_qf(cmd);
803         }
804 }
805
806 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
807 {
808         switch (cmd->data_direction) {
809         case DMA_NONE:
810                 return "NONE";
811         case DMA_FROM_DEVICE:
812                 return "READ";
813         case DMA_TO_DEVICE:
814                 return "WRITE";
815         case DMA_BIDIRECTIONAL:
816                 return "BIDI";
817         default:
818                 break;
819         }
820
821         return "UNKNOWN";
822 }
823
824 void transport_dump_dev_state(
825         struct se_device *dev,
826         char *b,
827         int *bl)
828 {
829         *bl += sprintf(b + *bl, "Status: ");
830         if (dev->export_count)
831                 *bl += sprintf(b + *bl, "ACTIVATED");
832         else
833                 *bl += sprintf(b + *bl, "DEACTIVATED");
834
835         *bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
836         *bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
837                 dev->dev_attrib.block_size,
838                 dev->dev_attrib.hw_max_sectors);
839         *bl += sprintf(b + *bl, "        ");
840 }
841
842 void transport_dump_vpd_proto_id(
843         struct t10_vpd *vpd,
844         unsigned char *p_buf,
845         int p_buf_len)
846 {
847         unsigned char buf[VPD_TMP_BUF_SIZE];
848         int len;
849
850         memset(buf, 0, VPD_TMP_BUF_SIZE);
851         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
852
853         switch (vpd->protocol_identifier) {
854         case 0x00:
855                 sprintf(buf+len, "Fibre Channel\n");
856                 break;
857         case 0x10:
858                 sprintf(buf+len, "Parallel SCSI\n");
859                 break;
860         case 0x20:
861                 sprintf(buf+len, "SSA\n");
862                 break;
863         case 0x30:
864                 sprintf(buf+len, "IEEE 1394\n");
865                 break;
866         case 0x40:
867                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
868                                 " Protocol\n");
869                 break;
870         case 0x50:
871                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
872                 break;
873         case 0x60:
874                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
875                 break;
876         case 0x70:
877                 sprintf(buf+len, "Automation/Drive Interface Transport"
878                                 " Protocol\n");
879                 break;
880         case 0x80:
881                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
882                 break;
883         default:
884                 sprintf(buf+len, "Unknown 0x%02x\n",
885                                 vpd->protocol_identifier);
886                 break;
887         }
888
889         if (p_buf)
890                 strncpy(p_buf, buf, p_buf_len);
891         else
892                 pr_debug("%s", buf);
893 }
894
895 void
896 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
897 {
898         /*
899          * Check if the Protocol Identifier Valid (PIV) bit is set..
900          *
901          * from spc3r23.pdf section 7.5.1
902          */
903          if (page_83[1] & 0x80) {
904                 vpd->protocol_identifier = (page_83[0] & 0xf0);
905                 vpd->protocol_identifier_set = 1;
906                 transport_dump_vpd_proto_id(vpd, NULL, 0);
907         }
908 }
909 EXPORT_SYMBOL(transport_set_vpd_proto_id);
910
911 int transport_dump_vpd_assoc(
912         struct t10_vpd *vpd,
913         unsigned char *p_buf,
914         int p_buf_len)
915 {
916         unsigned char buf[VPD_TMP_BUF_SIZE];
917         int ret = 0;
918         int len;
919
920         memset(buf, 0, VPD_TMP_BUF_SIZE);
921         len = sprintf(buf, "T10 VPD Identifier Association: ");
922
923         switch (vpd->association) {
924         case 0x00:
925                 sprintf(buf+len, "addressed logical unit\n");
926                 break;
927         case 0x10:
928                 sprintf(buf+len, "target port\n");
929                 break;
930         case 0x20:
931                 sprintf(buf+len, "SCSI target device\n");
932                 break;
933         default:
934                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
935                 ret = -EINVAL;
936                 break;
937         }
938
939         if (p_buf)
940                 strncpy(p_buf, buf, p_buf_len);
941         else
942                 pr_debug("%s", buf);
943
944         return ret;
945 }
946
947 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
948 {
949         /*
950          * The VPD identification association..
951          *
952          * from spc3r23.pdf Section 7.6.3.1 Table 297
953          */
954         vpd->association = (page_83[1] & 0x30);
955         return transport_dump_vpd_assoc(vpd, NULL, 0);
956 }
957 EXPORT_SYMBOL(transport_set_vpd_assoc);
958
959 int transport_dump_vpd_ident_type(
960         struct t10_vpd *vpd,
961         unsigned char *p_buf,
962         int p_buf_len)
963 {
964         unsigned char buf[VPD_TMP_BUF_SIZE];
965         int ret = 0;
966         int len;
967
968         memset(buf, 0, VPD_TMP_BUF_SIZE);
969         len = sprintf(buf, "T10 VPD Identifier Type: ");
970
971         switch (vpd->device_identifier_type) {
972         case 0x00:
973                 sprintf(buf+len, "Vendor specific\n");
974                 break;
975         case 0x01:
976                 sprintf(buf+len, "T10 Vendor ID based\n");
977                 break;
978         case 0x02:
979                 sprintf(buf+len, "EUI-64 based\n");
980                 break;
981         case 0x03:
982                 sprintf(buf+len, "NAA\n");
983                 break;
984         case 0x04:
985                 sprintf(buf+len, "Relative target port identifier\n");
986                 break;
987         case 0x08:
988                 sprintf(buf+len, "SCSI name string\n");
989                 break;
990         default:
991                 sprintf(buf+len, "Unsupported: 0x%02x\n",
992                                 vpd->device_identifier_type);
993                 ret = -EINVAL;
994                 break;
995         }
996
997         if (p_buf) {
998                 if (p_buf_len < strlen(buf)+1)
999                         return -EINVAL;
1000                 strncpy(p_buf, buf, p_buf_len);
1001         } else {
1002                 pr_debug("%s", buf);
1003         }
1004
1005         return ret;
1006 }
1007
1008 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1009 {
1010         /*
1011          * The VPD identifier type..
1012          *
1013          * from spc3r23.pdf Section 7.6.3.1 Table 298
1014          */
1015         vpd->device_identifier_type = (page_83[1] & 0x0f);
1016         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1017 }
1018 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1019
1020 int transport_dump_vpd_ident(
1021         struct t10_vpd *vpd,
1022         unsigned char *p_buf,
1023         int p_buf_len)
1024 {
1025         unsigned char buf[VPD_TMP_BUF_SIZE];
1026         int ret = 0;
1027
1028         memset(buf, 0, VPD_TMP_BUF_SIZE);
1029
1030         switch (vpd->device_identifier_code_set) {
1031         case 0x01: /* Binary */
1032                 snprintf(buf, sizeof(buf),
1033                         "T10 VPD Binary Device Identifier: %s\n",
1034                         &vpd->device_identifier[0]);
1035                 break;
1036         case 0x02: /* ASCII */
1037                 snprintf(buf, sizeof(buf),
1038                         "T10 VPD ASCII Device Identifier: %s\n",
1039                         &vpd->device_identifier[0]);
1040                 break;
1041         case 0x03: /* UTF-8 */
1042                 snprintf(buf, sizeof(buf),
1043                         "T10 VPD UTF-8 Device Identifier: %s\n",
1044                         &vpd->device_identifier[0]);
1045                 break;
1046         default:
1047                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1048                         " 0x%02x", vpd->device_identifier_code_set);
1049                 ret = -EINVAL;
1050                 break;
1051         }
1052
1053         if (p_buf)
1054                 strncpy(p_buf, buf, p_buf_len);
1055         else
1056                 pr_debug("%s", buf);
1057
1058         return ret;
1059 }
1060
1061 int
1062 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1063 {
1064         static const char hex_str[] = "0123456789abcdef";
1065         int j = 0, i = 4; /* offset to start of the identifier */
1066
1067         /*
1068          * The VPD Code Set (encoding)
1069          *
1070          * from spc3r23.pdf Section 7.6.3.1 Table 296
1071          */
1072         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1073         switch (vpd->device_identifier_code_set) {
1074         case 0x01: /* Binary */
1075                 vpd->device_identifier[j++] =
1076                                 hex_str[vpd->device_identifier_type];
1077                 while (i < (4 + page_83[3])) {
1078                         vpd->device_identifier[j++] =
1079                                 hex_str[(page_83[i] & 0xf0) >> 4];
1080                         vpd->device_identifier[j++] =
1081                                 hex_str[page_83[i] & 0x0f];
1082                         i++;
1083                 }
1084                 break;
1085         case 0x02: /* ASCII */
1086         case 0x03: /* UTF-8 */
1087                 while (i < (4 + page_83[3]))
1088                         vpd->device_identifier[j++] = page_83[i++];
1089                 break;
1090         default:
1091                 break;
1092         }
1093
1094         return transport_dump_vpd_ident(vpd, NULL, 0);
1095 }
1096 EXPORT_SYMBOL(transport_set_vpd_ident);
1097
1098 sense_reason_t
1099 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1100 {
1101         struct se_device *dev = cmd->se_dev;
1102
1103         if (cmd->unknown_data_length) {
1104                 cmd->data_length = size;
1105         } else if (size != cmd->data_length) {
1106                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1107                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1108                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1109                                 cmd->data_length, size, cmd->t_task_cdb[0]);
1110
1111                 if (cmd->data_direction == DMA_TO_DEVICE) {
1112                         pr_err("Rejecting underflow/overflow"
1113                                         " WRITE data\n");
1114                         return TCM_INVALID_CDB_FIELD;
1115                 }
1116                 /*
1117                  * Reject READ_* or WRITE_* with overflow/underflow for
1118                  * type SCF_SCSI_DATA_CDB.
1119                  */
1120                 if (dev->dev_attrib.block_size != 512)  {
1121                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1122                                 " CDB on non 512-byte sector setup subsystem"
1123                                 " plugin: %s\n", dev->transport->name);
1124                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1125                         return TCM_INVALID_CDB_FIELD;
1126                 }
1127                 /*
1128                  * For the overflow case keep the existing fabric provided
1129                  * ->data_length.  Otherwise for the underflow case, reset
1130                  * ->data_length to the smaller SCSI expected data transfer
1131                  * length.
1132                  */
1133                 if (size > cmd->data_length) {
1134                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1135                         cmd->residual_count = (size - cmd->data_length);
1136                 } else {
1137                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1138                         cmd->residual_count = (cmd->data_length - size);
1139                         cmd->data_length = size;
1140                 }
1141         }
1142
1143         return 0;
1144
1145 }
1146
1147 /*
1148  * Used by fabric modules containing a local struct se_cmd within their
1149  * fabric dependent per I/O descriptor.
1150  */
1151 void transport_init_se_cmd(
1152         struct se_cmd *cmd,
1153         const struct target_core_fabric_ops *tfo,
1154         struct se_session *se_sess,
1155         u32 data_length,
1156         int data_direction,
1157         int task_attr,
1158         unsigned char *sense_buffer)
1159 {
1160         INIT_LIST_HEAD(&cmd->se_delayed_node);
1161         INIT_LIST_HEAD(&cmd->se_qf_node);
1162         INIT_LIST_HEAD(&cmd->se_cmd_list);
1163         INIT_LIST_HEAD(&cmd->state_list);
1164         init_completion(&cmd->t_transport_stop_comp);
1165         init_completion(&cmd->cmd_wait_comp);
1166         init_completion(&cmd->task_stop_comp);
1167         spin_lock_init(&cmd->t_state_lock);
1168         kref_init(&cmd->cmd_kref);
1169         cmd->transport_state = CMD_T_DEV_ACTIVE;
1170
1171         cmd->se_tfo = tfo;
1172         cmd->se_sess = se_sess;
1173         cmd->data_length = data_length;
1174         cmd->data_direction = data_direction;
1175         cmd->sam_task_attr = task_attr;
1176         cmd->sense_buffer = sense_buffer;
1177
1178         cmd->state_active = false;
1179 }
1180 EXPORT_SYMBOL(transport_init_se_cmd);
1181
1182 static sense_reason_t
1183 transport_check_alloc_task_attr(struct se_cmd *cmd)
1184 {
1185         struct se_device *dev = cmd->se_dev;
1186
1187         /*
1188          * Check if SAM Task Attribute emulation is enabled for this
1189          * struct se_device storage object
1190          */
1191         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1192                 return 0;
1193
1194         if (cmd->sam_task_attr == TCM_ACA_TAG) {
1195                 pr_debug("SAM Task Attribute ACA"
1196                         " emulation is not supported\n");
1197                 return TCM_INVALID_CDB_FIELD;
1198         }
1199         /*
1200          * Used to determine when ORDERED commands should go from
1201          * Dormant to Active status.
1202          */
1203         cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1204         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1205                         cmd->se_ordered_id, cmd->sam_task_attr,
1206                         dev->transport->name);
1207         return 0;
1208 }
1209
1210 sense_reason_t
1211 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1212 {
1213         struct se_device *dev = cmd->se_dev;
1214         sense_reason_t ret;
1215
1216         /*
1217          * Ensure that the received CDB is less than the max (252 + 8) bytes
1218          * for VARIABLE_LENGTH_CMD
1219          */
1220         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1221                 pr_err("Received SCSI CDB with command_size: %d that"
1222                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1223                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1224                 return TCM_INVALID_CDB_FIELD;
1225         }
1226         /*
1227          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1228          * allocate the additional extended CDB buffer now..  Otherwise
1229          * setup the pointer from __t_task_cdb to t_task_cdb.
1230          */
1231         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1232                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1233                                                 GFP_KERNEL);
1234                 if (!cmd->t_task_cdb) {
1235                         pr_err("Unable to allocate cmd->t_task_cdb"
1236                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1237                                 scsi_command_size(cdb),
1238                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1239                         return TCM_OUT_OF_RESOURCES;
1240                 }
1241         } else
1242                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1243         /*
1244          * Copy the original CDB into cmd->
1245          */
1246         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1247
1248         trace_target_sequencer_start(cmd);
1249
1250         /*
1251          * Check for an existing UNIT ATTENTION condition
1252          */
1253         ret = target_scsi3_ua_check(cmd);
1254         if (ret)
1255                 return ret;
1256
1257         ret = target_alua_state_check(cmd);
1258         if (ret)
1259                 return ret;
1260
1261         ret = target_check_reservation(cmd);
1262         if (ret) {
1263                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1264                 return ret;
1265         }
1266
1267         ret = dev->transport->parse_cdb(cmd);
1268         if (ret)
1269                 return ret;
1270
1271         ret = transport_check_alloc_task_attr(cmd);
1272         if (ret)
1273                 return ret;
1274
1275         cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1276
1277         spin_lock(&cmd->se_lun->lun_sep_lock);
1278         if (cmd->se_lun->lun_sep)
1279                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1280         spin_unlock(&cmd->se_lun->lun_sep_lock);
1281         return 0;
1282 }
1283 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1284
1285 /*
1286  * Used by fabric module frontends to queue tasks directly.
1287  * Many only be used from process context only
1288  */
1289 int transport_handle_cdb_direct(
1290         struct se_cmd *cmd)
1291 {
1292         sense_reason_t ret;
1293
1294         if (!cmd->se_lun) {
1295                 dump_stack();
1296                 pr_err("cmd->se_lun is NULL\n");
1297                 return -EINVAL;
1298         }
1299         if (in_interrupt()) {
1300                 dump_stack();
1301                 pr_err("transport_generic_handle_cdb cannot be called"
1302                                 " from interrupt context\n");
1303                 return -EINVAL;
1304         }
1305         /*
1306          * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1307          * outstanding descriptors are handled correctly during shutdown via
1308          * transport_wait_for_tasks()
1309          *
1310          * Also, we don't take cmd->t_state_lock here as we only expect
1311          * this to be called for initial descriptor submission.
1312          */
1313         cmd->t_state = TRANSPORT_NEW_CMD;
1314         cmd->transport_state |= CMD_T_ACTIVE;
1315
1316         /*
1317          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1318          * so follow TRANSPORT_NEW_CMD processing thread context usage
1319          * and call transport_generic_request_failure() if necessary..
1320          */
1321         ret = transport_generic_new_cmd(cmd);
1322         if (ret)
1323                 transport_generic_request_failure(cmd, ret);
1324         return 0;
1325 }
1326 EXPORT_SYMBOL(transport_handle_cdb_direct);
1327
1328 sense_reason_t
1329 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1330                 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1331 {
1332         if (!sgl || !sgl_count)
1333                 return 0;
1334
1335         /*
1336          * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1337          * scatterlists already have been set to follow what the fabric
1338          * passes for the original expected data transfer length.
1339          */
1340         if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1341                 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1342                         " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1343                 return TCM_INVALID_CDB_FIELD;
1344         }
1345
1346         cmd->t_data_sg = sgl;
1347         cmd->t_data_nents = sgl_count;
1348
1349         if (sgl_bidi && sgl_bidi_count) {
1350                 cmd->t_bidi_data_sg = sgl_bidi;
1351                 cmd->t_bidi_data_nents = sgl_bidi_count;
1352         }
1353         cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1354         return 0;
1355 }
1356
1357 /*
1358  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1359  *                       se_cmd + use pre-allocated SGL memory.
1360  *
1361  * @se_cmd: command descriptor to submit
1362  * @se_sess: associated se_sess for endpoint
1363  * @cdb: pointer to SCSI CDB
1364  * @sense: pointer to SCSI sense buffer
1365  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1366  * @data_length: fabric expected data transfer length
1367  * @task_addr: SAM task attribute
1368  * @data_dir: DMA data direction
1369  * @flags: flags for command submission from target_sc_flags_tables
1370  * @sgl: struct scatterlist memory for unidirectional mapping
1371  * @sgl_count: scatterlist count for unidirectional mapping
1372  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1373  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1374  * @sgl_prot: struct scatterlist memory protection information
1375  * @sgl_prot_count: scatterlist count for protection information
1376  *
1377  * Returns non zero to signal active I/O shutdown failure.  All other
1378  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1379  * but still return zero here.
1380  *
1381  * This may only be called from process context, and also currently
1382  * assumes internal allocation of fabric payload buffer by target-core.
1383  */
1384 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1385                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1386                 u32 data_length, int task_attr, int data_dir, int flags,
1387                 struct scatterlist *sgl, u32 sgl_count,
1388                 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1389                 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1390 {
1391         struct se_portal_group *se_tpg;
1392         sense_reason_t rc;
1393         int ret;
1394
1395         se_tpg = se_sess->se_tpg;
1396         BUG_ON(!se_tpg);
1397         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1398         BUG_ON(in_interrupt());
1399         /*
1400          * Initialize se_cmd for target operation.  From this point
1401          * exceptions are handled by sending exception status via
1402          * target_core_fabric_ops->queue_status() callback
1403          */
1404         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1405                                 data_length, data_dir, task_attr, sense);
1406         if (flags & TARGET_SCF_UNKNOWN_SIZE)
1407                 se_cmd->unknown_data_length = 1;
1408         /*
1409          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1410          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1411          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1412          * kref_put() to happen during fabric packet acknowledgement.
1413          */
1414         ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1415         if (ret)
1416                 return ret;
1417         /*
1418          * Signal bidirectional data payloads to target-core
1419          */
1420         if (flags & TARGET_SCF_BIDI_OP)
1421                 se_cmd->se_cmd_flags |= SCF_BIDI;
1422         /*
1423          * Locate se_lun pointer and attach it to struct se_cmd
1424          */
1425         rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1426         if (rc) {
1427                 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1428                 target_put_sess_cmd(se_sess, se_cmd);
1429                 return 0;
1430         }
1431
1432         rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1433         if (rc != 0) {
1434                 transport_generic_request_failure(se_cmd, rc);
1435                 return 0;
1436         }
1437
1438         /*
1439          * Save pointers for SGLs containing protection information,
1440          * if present.
1441          */
1442         if (sgl_prot_count) {
1443                 se_cmd->t_prot_sg = sgl_prot;
1444                 se_cmd->t_prot_nents = sgl_prot_count;
1445         }
1446
1447         /*
1448          * When a non zero sgl_count has been passed perform SGL passthrough
1449          * mapping for pre-allocated fabric memory instead of having target
1450          * core perform an internal SGL allocation..
1451          */
1452         if (sgl_count != 0) {
1453                 BUG_ON(!sgl);
1454
1455                 /*
1456                  * A work-around for tcm_loop as some userspace code via
1457                  * scsi-generic do not memset their associated read buffers,
1458                  * so go ahead and do that here for type non-data CDBs.  Also
1459                  * note that this is currently guaranteed to be a single SGL
1460                  * for this case by target core in target_setup_cmd_from_cdb()
1461                  * -> transport_generic_cmd_sequencer().
1462                  */
1463                 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1464                      se_cmd->data_direction == DMA_FROM_DEVICE) {
1465                         unsigned char *buf = NULL;
1466
1467                         if (sgl)
1468                                 buf = kmap(sg_page(sgl)) + sgl->offset;
1469
1470                         if (buf) {
1471                                 memset(buf, 0, sgl->length);
1472                                 kunmap(sg_page(sgl));
1473                         }
1474                 }
1475
1476                 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1477                                 sgl_bidi, sgl_bidi_count);
1478                 if (rc != 0) {
1479                         transport_generic_request_failure(se_cmd, rc);
1480                         return 0;
1481                 }
1482         }
1483
1484         /*
1485          * Check if we need to delay processing because of ALUA
1486          * Active/NonOptimized primary access state..
1487          */
1488         core_alua_check_nonop_delay(se_cmd);
1489
1490         transport_handle_cdb_direct(se_cmd);
1491         return 0;
1492 }
1493 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1494
1495 /*
1496  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1497  *
1498  * @se_cmd: command descriptor to submit
1499  * @se_sess: associated se_sess for endpoint
1500  * @cdb: pointer to SCSI CDB
1501  * @sense: pointer to SCSI sense buffer
1502  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1503  * @data_length: fabric expected data transfer length
1504  * @task_addr: SAM task attribute
1505  * @data_dir: DMA data direction
1506  * @flags: flags for command submission from target_sc_flags_tables
1507  *
1508  * Returns non zero to signal active I/O shutdown failure.  All other
1509  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1510  * but still return zero here.
1511  *
1512  * This may only be called from process context, and also currently
1513  * assumes internal allocation of fabric payload buffer by target-core.
1514  *
1515  * It also assumes interal target core SGL memory allocation.
1516  */
1517 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1518                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1519                 u32 data_length, int task_attr, int data_dir, int flags)
1520 {
1521         return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1522                         unpacked_lun, data_length, task_attr, data_dir,
1523                         flags, NULL, 0, NULL, 0, NULL, 0);
1524 }
1525 EXPORT_SYMBOL(target_submit_cmd);
1526
1527 static void target_complete_tmr_failure(struct work_struct *work)
1528 {
1529         struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1530
1531         se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1532         se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1533
1534         transport_cmd_check_stop_to_fabric(se_cmd);
1535 }
1536
1537 /**
1538  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1539  *                     for TMR CDBs
1540  *
1541  * @se_cmd: command descriptor to submit
1542  * @se_sess: associated se_sess for endpoint
1543  * @sense: pointer to SCSI sense buffer
1544  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1545  * @fabric_context: fabric context for TMR req
1546  * @tm_type: Type of TM request
1547  * @gfp: gfp type for caller
1548  * @tag: referenced task tag for TMR_ABORT_TASK
1549  * @flags: submit cmd flags
1550  *
1551  * Callable from all contexts.
1552  **/
1553
1554 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1555                 unsigned char *sense, u32 unpacked_lun,
1556                 void *fabric_tmr_ptr, unsigned char tm_type,
1557                 gfp_t gfp, unsigned int tag, int flags)
1558 {
1559         struct se_portal_group *se_tpg;
1560         int ret;
1561
1562         se_tpg = se_sess->se_tpg;
1563         BUG_ON(!se_tpg);
1564
1565         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1566                               0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1567         /*
1568          * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1569          * allocation failure.
1570          */
1571         ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1572         if (ret < 0)
1573                 return -ENOMEM;
1574
1575         if (tm_type == TMR_ABORT_TASK)
1576                 se_cmd->se_tmr_req->ref_task_tag = tag;
1577
1578         /* See target_submit_cmd for commentary */
1579         ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1580         if (ret) {
1581                 core_tmr_release_req(se_cmd->se_tmr_req);
1582                 return ret;
1583         }
1584
1585         ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1586         if (ret) {
1587                 /*
1588                  * For callback during failure handling, push this work off
1589                  * to process context with TMR_LUN_DOES_NOT_EXIST status.
1590                  */
1591                 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1592                 schedule_work(&se_cmd->work);
1593                 return 0;
1594         }
1595         transport_generic_handle_tmr(se_cmd);
1596         return 0;
1597 }
1598 EXPORT_SYMBOL(target_submit_tmr);
1599
1600 /*
1601  * If the cmd is active, request it to be stopped and sleep until it
1602  * has completed.
1603  */
1604 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1605 {
1606         bool was_active = false;
1607
1608         if (cmd->transport_state & CMD_T_BUSY) {
1609                 cmd->transport_state |= CMD_T_REQUEST_STOP;
1610                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1611
1612                 pr_debug("cmd %p waiting to complete\n", cmd);
1613                 wait_for_completion(&cmd->task_stop_comp);
1614                 pr_debug("cmd %p stopped successfully\n", cmd);
1615
1616                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1617                 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1618                 cmd->transport_state &= ~CMD_T_BUSY;
1619                 was_active = true;
1620         }
1621
1622         return was_active;
1623 }
1624
1625 /*
1626  * Handle SAM-esque emulation for generic transport request failures.
1627  */
1628 void transport_generic_request_failure(struct se_cmd *cmd,
1629                 sense_reason_t sense_reason)
1630 {
1631         int ret = 0;
1632
1633         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1634                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1635                 cmd->t_task_cdb[0]);
1636         pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1637                 cmd->se_tfo->get_cmd_state(cmd),
1638                 cmd->t_state, sense_reason);
1639         pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1640                 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1641                 (cmd->transport_state & CMD_T_STOP) != 0,
1642                 (cmd->transport_state & CMD_T_SENT) != 0);
1643
1644         /*
1645          * For SAM Task Attribute emulation for failed struct se_cmd
1646          */
1647         transport_complete_task_attr(cmd);
1648         /*
1649          * Handle special case for COMPARE_AND_WRITE failure, where the
1650          * callback is expected to drop the per device ->caw_sem.
1651          */
1652         if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1653              cmd->transport_complete_callback)
1654                 cmd->transport_complete_callback(cmd, false);
1655
1656         switch (sense_reason) {
1657         case TCM_NON_EXISTENT_LUN:
1658         case TCM_UNSUPPORTED_SCSI_OPCODE:
1659         case TCM_INVALID_CDB_FIELD:
1660         case TCM_INVALID_PARAMETER_LIST:
1661         case TCM_PARAMETER_LIST_LENGTH_ERROR:
1662         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1663         case TCM_UNKNOWN_MODE_PAGE:
1664         case TCM_WRITE_PROTECTED:
1665         case TCM_ADDRESS_OUT_OF_RANGE:
1666         case TCM_CHECK_CONDITION_ABORT_CMD:
1667         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1668         case TCM_CHECK_CONDITION_NOT_READY:
1669         case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1670         case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1671         case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1672                 break;
1673         case TCM_OUT_OF_RESOURCES:
1674                 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1675                 break;
1676         case TCM_RESERVATION_CONFLICT:
1677                 /*
1678                  * No SENSE Data payload for this case, set SCSI Status
1679                  * and queue the response to $FABRIC_MOD.
1680                  *
1681                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1682                  */
1683                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1684                 /*
1685                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1686                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1687                  * CONFLICT STATUS.
1688                  *
1689                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1690                  */
1691                 if (cmd->se_sess &&
1692                     cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1693                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1694                                 cmd->orig_fe_lun, 0x2C,
1695                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1696
1697                 trace_target_cmd_complete(cmd);
1698                 ret = cmd->se_tfo-> queue_status(cmd);
1699                 if (ret == -EAGAIN || ret == -ENOMEM)
1700                         goto queue_full;
1701                 goto check_stop;
1702         default:
1703                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1704                         cmd->t_task_cdb[0], sense_reason);
1705                 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1706                 break;
1707         }
1708
1709         ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1710         if (ret == -EAGAIN || ret == -ENOMEM)
1711                 goto queue_full;
1712
1713 check_stop:
1714         transport_lun_remove_cmd(cmd);
1715         if (!transport_cmd_check_stop_to_fabric(cmd))
1716                 ;
1717         return;
1718
1719 queue_full:
1720         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1721         transport_handle_queue_full(cmd, cmd->se_dev);
1722 }
1723 EXPORT_SYMBOL(transport_generic_request_failure);
1724
1725 void __target_execute_cmd(struct se_cmd *cmd)
1726 {
1727         sense_reason_t ret;
1728
1729         if (cmd->execute_cmd) {
1730                 ret = cmd->execute_cmd(cmd);
1731                 if (ret) {
1732                         spin_lock_irq(&cmd->t_state_lock);
1733                         cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1734                         spin_unlock_irq(&cmd->t_state_lock);
1735
1736                         transport_generic_request_failure(cmd, ret);
1737                 }
1738         }
1739 }
1740
1741 static int target_write_prot_action(struct se_cmd *cmd)
1742 {
1743         u32 sectors;
1744         /*
1745          * Perform WRITE_INSERT of PI using software emulation when backend
1746          * device has PI enabled, if the transport has not already generated
1747          * PI using hardware WRITE_INSERT offload.
1748          */
1749         switch (cmd->prot_op) {
1750         case TARGET_PROT_DOUT_INSERT:
1751                 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1752                         sbc_dif_generate(cmd);
1753                 break;
1754         case TARGET_PROT_DOUT_STRIP:
1755                 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1756                         break;
1757
1758                 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1759                 cmd->pi_err = sbc_dif_verify_write(cmd, cmd->t_task_lba,
1760                                                    sectors, 0, NULL, 0);
1761                 if (unlikely(cmd->pi_err)) {
1762                         spin_lock_irq(&cmd->t_state_lock);
1763                         cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1764                         spin_unlock_irq(&cmd->t_state_lock);
1765                         transport_generic_request_failure(cmd, cmd->pi_err);
1766                         return -1;
1767                 }
1768                 break;
1769         default:
1770                 break;
1771         }
1772
1773         return 0;
1774 }
1775
1776 static bool target_handle_task_attr(struct se_cmd *cmd)
1777 {
1778         struct se_device *dev = cmd->se_dev;
1779
1780         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1781                 return false;
1782
1783         /*
1784          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1785          * to allow the passed struct se_cmd list of tasks to the front of the list.
1786          */
1787         switch (cmd->sam_task_attr) {
1788         case TCM_HEAD_TAG:
1789                 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1790                          "se_ordered_id: %u\n",
1791                          cmd->t_task_cdb[0], cmd->se_ordered_id);
1792                 return false;
1793         case TCM_ORDERED_TAG:
1794                 atomic_inc_mb(&dev->dev_ordered_sync);
1795
1796                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1797                          " se_ordered_id: %u\n",
1798                          cmd->t_task_cdb[0], cmd->se_ordered_id);
1799
1800                 /*
1801                  * Execute an ORDERED command if no other older commands
1802                  * exist that need to be completed first.
1803                  */
1804                 if (!atomic_read(&dev->simple_cmds))
1805                         return false;
1806                 break;
1807         default:
1808                 /*
1809                  * For SIMPLE and UNTAGGED Task Attribute commands
1810                  */
1811                 atomic_inc_mb(&dev->simple_cmds);
1812                 break;
1813         }
1814
1815         if (atomic_read(&dev->dev_ordered_sync) == 0)
1816                 return false;
1817
1818         spin_lock(&dev->delayed_cmd_lock);
1819         list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1820         spin_unlock(&dev->delayed_cmd_lock);
1821
1822         pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1823                 " delayed CMD list, se_ordered_id: %u\n",
1824                 cmd->t_task_cdb[0], cmd->sam_task_attr,
1825                 cmd->se_ordered_id);
1826         return true;
1827 }
1828
1829 void target_execute_cmd(struct se_cmd *cmd)
1830 {
1831         /*
1832          * If the received CDB has aleady been aborted stop processing it here.
1833          */
1834         if (transport_check_aborted_status(cmd, 1))
1835                 return;
1836
1837         /*
1838          * Determine if frontend context caller is requesting the stopping of
1839          * this command for frontend exceptions.
1840          */
1841         spin_lock_irq(&cmd->t_state_lock);
1842         if (cmd->transport_state & CMD_T_STOP) {
1843                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1844                         __func__, __LINE__,
1845                         cmd->se_tfo->get_task_tag(cmd));
1846
1847                 spin_unlock_irq(&cmd->t_state_lock);
1848                 complete_all(&cmd->t_transport_stop_comp);
1849                 return;
1850         }
1851
1852         cmd->t_state = TRANSPORT_PROCESSING;
1853         cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1854         spin_unlock_irq(&cmd->t_state_lock);
1855
1856         if (target_write_prot_action(cmd))
1857                 return;
1858
1859         if (target_handle_task_attr(cmd)) {
1860                 spin_lock_irq(&cmd->t_state_lock);
1861                 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1862                 spin_unlock_irq(&cmd->t_state_lock);
1863                 return;
1864         }
1865
1866         __target_execute_cmd(cmd);
1867 }
1868 EXPORT_SYMBOL(target_execute_cmd);
1869
1870 /*
1871  * Process all commands up to the last received ORDERED task attribute which
1872  * requires another blocking boundary
1873  */
1874 static void target_restart_delayed_cmds(struct se_device *dev)
1875 {
1876         for (;;) {
1877                 struct se_cmd *cmd;
1878
1879                 spin_lock(&dev->delayed_cmd_lock);
1880                 if (list_empty(&dev->delayed_cmd_list)) {
1881                         spin_unlock(&dev->delayed_cmd_lock);
1882                         break;
1883                 }
1884
1885                 cmd = list_entry(dev->delayed_cmd_list.next,
1886                                  struct se_cmd, se_delayed_node);
1887                 list_del(&cmd->se_delayed_node);
1888                 spin_unlock(&dev->delayed_cmd_lock);
1889
1890                 __target_execute_cmd(cmd);
1891
1892                 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1893                         break;
1894         }
1895 }
1896
1897 /*
1898  * Called from I/O completion to determine which dormant/delayed
1899  * and ordered cmds need to have their tasks added to the execution queue.
1900  */
1901 static void transport_complete_task_attr(struct se_cmd *cmd)
1902 {
1903         struct se_device *dev = cmd->se_dev;
1904
1905         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1906                 return;
1907
1908         if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1909                 atomic_dec_mb(&dev->simple_cmds);
1910                 dev->dev_cur_ordered_id++;
1911                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1912                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1913                         cmd->se_ordered_id);
1914         } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1915                 dev->dev_cur_ordered_id++;
1916                 pr_debug("Incremented dev_cur_ordered_id: %u for"
1917                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1918                         cmd->se_ordered_id);
1919         } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1920                 atomic_dec_mb(&dev->dev_ordered_sync);
1921
1922                 dev->dev_cur_ordered_id++;
1923                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1924                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1925         }
1926
1927         target_restart_delayed_cmds(dev);
1928 }
1929
1930 static void transport_complete_qf(struct se_cmd *cmd)
1931 {
1932         int ret = 0;
1933
1934         transport_complete_task_attr(cmd);
1935
1936         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1937                 trace_target_cmd_complete(cmd);
1938                 ret = cmd->se_tfo->queue_status(cmd);
1939                 goto out;
1940         }
1941
1942         switch (cmd->data_direction) {
1943         case DMA_FROM_DEVICE:
1944                 trace_target_cmd_complete(cmd);
1945                 ret = cmd->se_tfo->queue_data_in(cmd);
1946                 break;
1947         case DMA_TO_DEVICE:
1948                 if (cmd->se_cmd_flags & SCF_BIDI) {
1949                         ret = cmd->se_tfo->queue_data_in(cmd);
1950                         if (ret < 0)
1951                                 break;
1952                 }
1953                 /* Fall through for DMA_TO_DEVICE */
1954         case DMA_NONE:
1955                 trace_target_cmd_complete(cmd);
1956                 ret = cmd->se_tfo->queue_status(cmd);
1957                 break;
1958         default:
1959                 break;
1960         }
1961
1962 out:
1963         if (ret < 0) {
1964                 transport_handle_queue_full(cmd, cmd->se_dev);
1965                 return;
1966         }
1967         transport_lun_remove_cmd(cmd);
1968         transport_cmd_check_stop_to_fabric(cmd);
1969 }
1970
1971 static void transport_handle_queue_full(
1972         struct se_cmd *cmd,
1973         struct se_device *dev)
1974 {
1975         spin_lock_irq(&dev->qf_cmd_lock);
1976         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1977         atomic_inc_mb(&dev->dev_qf_count);
1978         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1979
1980         schedule_work(&cmd->se_dev->qf_work_queue);
1981 }
1982
1983 static bool target_read_prot_action(struct se_cmd *cmd)
1984 {
1985         sense_reason_t rc;
1986
1987         switch (cmd->prot_op) {
1988         case TARGET_PROT_DIN_STRIP:
1989                 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
1990                         rc = sbc_dif_read_strip(cmd);
1991                         if (rc) {
1992                                 cmd->pi_err = rc;
1993                                 return true;
1994                         }
1995                 }
1996                 break;
1997         case TARGET_PROT_DIN_INSERT:
1998                 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
1999                         break;
2000
2001                 sbc_dif_generate(cmd);
2002                 break;
2003         default:
2004                 break;
2005         }
2006
2007         return false;
2008 }
2009
2010 static void target_complete_ok_work(struct work_struct *work)
2011 {
2012         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2013         int ret;
2014
2015         /*
2016          * Check if we need to move delayed/dormant tasks from cmds on the
2017          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2018          * Attribute.
2019          */
2020         transport_complete_task_attr(cmd);
2021
2022         /*
2023          * Check to schedule QUEUE_FULL work, or execute an existing
2024          * cmd->transport_qf_callback()
2025          */
2026         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2027                 schedule_work(&cmd->se_dev->qf_work_queue);
2028
2029         /*
2030          * Check if we need to send a sense buffer from
2031          * the struct se_cmd in question.
2032          */
2033         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2034                 WARN_ON(!cmd->scsi_status);
2035                 ret = transport_send_check_condition_and_sense(
2036                                         cmd, 0, 1);
2037                 if (ret == -EAGAIN || ret == -ENOMEM)
2038                         goto queue_full;
2039
2040                 transport_lun_remove_cmd(cmd);
2041                 transport_cmd_check_stop_to_fabric(cmd);
2042                 return;
2043         }
2044         /*
2045          * Check for a callback, used by amongst other things
2046          * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2047          */
2048         if (cmd->transport_complete_callback) {
2049                 sense_reason_t rc;
2050
2051                 rc = cmd->transport_complete_callback(cmd, true);
2052                 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
2053                         if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2054                             !cmd->data_length)
2055                                 goto queue_rsp;
2056
2057                         return;
2058                 } else if (rc) {
2059                         ret = transport_send_check_condition_and_sense(cmd,
2060                                                 rc, 0);
2061                         if (ret == -EAGAIN || ret == -ENOMEM)
2062                                 goto queue_full;
2063
2064                         transport_lun_remove_cmd(cmd);
2065                         transport_cmd_check_stop_to_fabric(cmd);
2066                         return;
2067                 }
2068         }
2069
2070 queue_rsp:
2071         switch (cmd->data_direction) {
2072         case DMA_FROM_DEVICE:
2073                 spin_lock(&cmd->se_lun->lun_sep_lock);
2074                 if (cmd->se_lun->lun_sep) {
2075                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2076                                         cmd->data_length;
2077                 }
2078                 spin_unlock(&cmd->se_lun->lun_sep_lock);
2079                 /*
2080                  * Perform READ_STRIP of PI using software emulation when
2081                  * backend had PI enabled, if the transport will not be
2082                  * performing hardware READ_STRIP offload.
2083                  */
2084                 if (target_read_prot_action(cmd)) {
2085                         ret = transport_send_check_condition_and_sense(cmd,
2086                                                 cmd->pi_err, 0);
2087                         if (ret == -EAGAIN || ret == -ENOMEM)
2088                                 goto queue_full;
2089
2090                         transport_lun_remove_cmd(cmd);
2091                         transport_cmd_check_stop_to_fabric(cmd);
2092                         return;
2093                 }
2094
2095                 trace_target_cmd_complete(cmd);
2096                 ret = cmd->se_tfo->queue_data_in(cmd);
2097                 if (ret == -EAGAIN || ret == -ENOMEM)
2098                         goto queue_full;
2099                 break;
2100         case DMA_TO_DEVICE:
2101                 spin_lock(&cmd->se_lun->lun_sep_lock);
2102                 if (cmd->se_lun->lun_sep) {
2103                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
2104                                 cmd->data_length;
2105                 }
2106                 spin_unlock(&cmd->se_lun->lun_sep_lock);
2107                 /*
2108                  * Check if we need to send READ payload for BIDI-COMMAND
2109                  */
2110                 if (cmd->se_cmd_flags & SCF_BIDI) {
2111                         spin_lock(&cmd->se_lun->lun_sep_lock);
2112                         if (cmd->se_lun->lun_sep) {
2113                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2114                                         cmd->data_length;
2115                         }
2116                         spin_unlock(&cmd->se_lun->lun_sep_lock);
2117                         ret = cmd->se_tfo->queue_data_in(cmd);
2118                         if (ret == -EAGAIN || ret == -ENOMEM)
2119                                 goto queue_full;
2120                         break;
2121                 }
2122                 /* Fall through for DMA_TO_DEVICE */
2123         case DMA_NONE:
2124                 trace_target_cmd_complete(cmd);
2125                 ret = cmd->se_tfo->queue_status(cmd);
2126                 if (ret == -EAGAIN || ret == -ENOMEM)
2127                         goto queue_full;
2128                 break;
2129         default:
2130                 break;
2131         }
2132
2133         transport_lun_remove_cmd(cmd);
2134         transport_cmd_check_stop_to_fabric(cmd);
2135         return;
2136
2137 queue_full:
2138         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2139                 " data_direction: %d\n", cmd, cmd->data_direction);
2140         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2141         transport_handle_queue_full(cmd, cmd->se_dev);
2142 }
2143
2144 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2145 {
2146         struct scatterlist *sg;
2147         int count;
2148
2149         for_each_sg(sgl, sg, nents, count)
2150                 __free_page(sg_page(sg));
2151
2152         kfree(sgl);
2153 }
2154
2155 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2156 {
2157         /*
2158          * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2159          * emulation, and free + reset pointers if necessary..
2160          */
2161         if (!cmd->t_data_sg_orig)
2162                 return;
2163
2164         kfree(cmd->t_data_sg);
2165         cmd->t_data_sg = cmd->t_data_sg_orig;
2166         cmd->t_data_sg_orig = NULL;
2167         cmd->t_data_nents = cmd->t_data_nents_orig;
2168         cmd->t_data_nents_orig = 0;
2169 }
2170
2171 static inline void transport_free_pages(struct se_cmd *cmd)
2172 {
2173         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2174                 /*
2175                  * Release special case READ buffer payload required for
2176                  * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2177                  */
2178                 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2179                         transport_free_sgl(cmd->t_bidi_data_sg,
2180                                            cmd->t_bidi_data_nents);
2181                         cmd->t_bidi_data_sg = NULL;
2182                         cmd->t_bidi_data_nents = 0;
2183                 }
2184                 transport_reset_sgl_orig(cmd);
2185                 return;
2186         }
2187         transport_reset_sgl_orig(cmd);
2188
2189         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2190         cmd->t_data_sg = NULL;
2191         cmd->t_data_nents = 0;
2192
2193         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2194         cmd->t_bidi_data_sg = NULL;
2195         cmd->t_bidi_data_nents = 0;
2196
2197         transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2198         cmd->t_prot_sg = NULL;
2199         cmd->t_prot_nents = 0;
2200 }
2201
2202 /**
2203  * transport_release_cmd - free a command
2204  * @cmd:       command to free
2205  *
2206  * This routine unconditionally frees a command, and reference counting
2207  * or list removal must be done in the caller.
2208  */
2209 static int transport_release_cmd(struct se_cmd *cmd)
2210 {
2211         BUG_ON(!cmd->se_tfo);
2212
2213         if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2214                 core_tmr_release_req(cmd->se_tmr_req);
2215         if (cmd->t_task_cdb != cmd->__t_task_cdb)
2216                 kfree(cmd->t_task_cdb);
2217         /*
2218          * If this cmd has been setup with target_get_sess_cmd(), drop
2219          * the kref and call ->release_cmd() in kref callback.
2220          */
2221         return target_put_sess_cmd(cmd->se_sess, cmd);
2222 }
2223
2224 /**
2225  * transport_put_cmd - release a reference to a command
2226  * @cmd:       command to release
2227  *
2228  * This routine releases our reference to the command and frees it if possible.
2229  */
2230 static int transport_put_cmd(struct se_cmd *cmd)
2231 {
2232         transport_free_pages(cmd);
2233         return transport_release_cmd(cmd);
2234 }
2235
2236 void *transport_kmap_data_sg(struct se_cmd *cmd)
2237 {
2238         struct scatterlist *sg = cmd->t_data_sg;
2239         struct page **pages;
2240         int i;
2241
2242         /*
2243          * We need to take into account a possible offset here for fabrics like
2244          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2245          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2246          */
2247         if (!cmd->t_data_nents)
2248                 return NULL;
2249
2250         BUG_ON(!sg);
2251         if (cmd->t_data_nents == 1)
2252                 return kmap(sg_page(sg)) + sg->offset;
2253
2254         /* >1 page. use vmap */
2255         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2256         if (!pages)
2257                 return NULL;
2258
2259         /* convert sg[] to pages[] */
2260         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2261                 pages[i] = sg_page(sg);
2262         }
2263
2264         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2265         kfree(pages);
2266         if (!cmd->t_data_vmap)
2267                 return NULL;
2268
2269         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2270 }
2271 EXPORT_SYMBOL(transport_kmap_data_sg);
2272
2273 void transport_kunmap_data_sg(struct se_cmd *cmd)
2274 {
2275         if (!cmd->t_data_nents) {
2276                 return;
2277         } else if (cmd->t_data_nents == 1) {
2278                 kunmap(sg_page(cmd->t_data_sg));
2279                 return;
2280         }
2281
2282         vunmap(cmd->t_data_vmap);
2283         cmd->t_data_vmap = NULL;
2284 }
2285 EXPORT_SYMBOL(transport_kunmap_data_sg);
2286
2287 int
2288 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2289                  bool zero_page)
2290 {
2291         struct scatterlist *sg;
2292         struct page *page;
2293         gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2294         unsigned int nent;
2295         int i = 0;
2296
2297         nent = DIV_ROUND_UP(length, PAGE_SIZE);
2298         sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2299         if (!sg)
2300                 return -ENOMEM;
2301
2302         sg_init_table(sg, nent);
2303
2304         while (length) {
2305                 u32 page_len = min_t(u32, length, PAGE_SIZE);
2306                 page = alloc_page(GFP_KERNEL | zero_flag);
2307                 if (!page)
2308                         goto out;
2309
2310                 sg_set_page(&sg[i], page, page_len, 0);
2311                 length -= page_len;
2312                 i++;
2313         }
2314         *sgl = sg;
2315         *nents = nent;
2316         return 0;
2317
2318 out:
2319         while (i > 0) {
2320                 i--;
2321                 __free_page(sg_page(&sg[i]));
2322         }
2323         kfree(sg);
2324         return -ENOMEM;
2325 }
2326
2327 /*
2328  * Allocate any required resources to execute the command.  For writes we
2329  * might not have the payload yet, so notify the fabric via a call to
2330  * ->write_pending instead. Otherwise place it on the execution queue.
2331  */
2332 sense_reason_t
2333 transport_generic_new_cmd(struct se_cmd *cmd)
2334 {
2335         int ret = 0;
2336         bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2337
2338         /*
2339          * Determine is the TCM fabric module has already allocated physical
2340          * memory, and is directly calling transport_generic_map_mem_to_cmd()
2341          * beforehand.
2342          */
2343         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2344             cmd->data_length) {
2345
2346                 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2347                     (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2348                         u32 bidi_length;
2349
2350                         if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2351                                 bidi_length = cmd->t_task_nolb *
2352                                               cmd->se_dev->dev_attrib.block_size;
2353                         else
2354                                 bidi_length = cmd->data_length;
2355
2356                         ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2357                                                &cmd->t_bidi_data_nents,
2358                                                bidi_length, zero_flag);
2359                         if (ret < 0)
2360                                 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2361                 }
2362
2363                 if (cmd->prot_op != TARGET_PROT_NORMAL) {
2364                         ret = target_alloc_sgl(&cmd->t_prot_sg,
2365                                                &cmd->t_prot_nents,
2366                                                cmd->prot_length, true);
2367                         if (ret < 0)
2368                                 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2369                 }
2370
2371                 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2372                                        cmd->data_length, zero_flag);
2373                 if (ret < 0)
2374                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2375         } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2376                     cmd->data_length) {
2377                 /*
2378                  * Special case for COMPARE_AND_WRITE with fabrics
2379                  * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2380                  */
2381                 u32 caw_length = cmd->t_task_nolb *
2382                                  cmd->se_dev->dev_attrib.block_size;
2383
2384                 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2385                                        &cmd->t_bidi_data_nents,
2386                                        caw_length, zero_flag);
2387                 if (ret < 0)
2388                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2389         }
2390         /*
2391          * If this command is not a write we can execute it right here,
2392          * for write buffers we need to notify the fabric driver first
2393          * and let it call back once the write buffers are ready.
2394          */
2395         target_add_to_state_list(cmd);
2396         if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2397                 target_execute_cmd(cmd);
2398                 return 0;
2399         }
2400         transport_cmd_check_stop(cmd, false, true);
2401
2402         ret = cmd->se_tfo->write_pending(cmd);
2403         if (ret == -EAGAIN || ret == -ENOMEM)
2404                 goto queue_full;
2405
2406         /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2407         WARN_ON(ret);
2408
2409         return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2410
2411 queue_full:
2412         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2413         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2414         transport_handle_queue_full(cmd, cmd->se_dev);
2415         return 0;
2416 }
2417 EXPORT_SYMBOL(transport_generic_new_cmd);
2418
2419 static void transport_write_pending_qf(struct se_cmd *cmd)
2420 {
2421         int ret;
2422
2423         ret = cmd->se_tfo->write_pending(cmd);
2424         if (ret == -EAGAIN || ret == -ENOMEM) {
2425                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2426                          cmd);
2427                 transport_handle_queue_full(cmd, cmd->se_dev);
2428         }
2429 }
2430
2431 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2432 {
2433         unsigned long flags;
2434         int ret = 0;
2435
2436         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2437                 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2438                          transport_wait_for_tasks(cmd);
2439
2440                 ret = transport_release_cmd(cmd);
2441         } else {
2442                 if (wait_for_tasks)
2443                         transport_wait_for_tasks(cmd);
2444                 /*
2445                  * Handle WRITE failure case where transport_generic_new_cmd()
2446                  * has already added se_cmd to state_list, but fabric has
2447                  * failed command before I/O submission.
2448                  */
2449                 if (cmd->state_active) {
2450                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2451                         target_remove_from_state_list(cmd);
2452                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2453                 }
2454
2455                 if (cmd->se_lun)
2456                         transport_lun_remove_cmd(cmd);
2457
2458                 ret = transport_put_cmd(cmd);
2459         }
2460         return ret;
2461 }
2462 EXPORT_SYMBOL(transport_generic_free_cmd);
2463
2464 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2465  * @se_sess:    session to reference
2466  * @se_cmd:     command descriptor to add
2467  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
2468  */
2469 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2470                                bool ack_kref)
2471 {
2472         unsigned long flags;
2473         int ret = 0;
2474
2475         /*
2476          * Add a second kref if the fabric caller is expecting to handle
2477          * fabric acknowledgement that requires two target_put_sess_cmd()
2478          * invocations before se_cmd descriptor release.
2479          */
2480         if (ack_kref) {
2481                 kref_get(&se_cmd->cmd_kref);
2482                 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2483         }
2484
2485         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2486         if (se_sess->sess_tearing_down) {
2487                 ret = -ESHUTDOWN;
2488                 goto out;
2489         }
2490         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2491 out:
2492         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2493         return ret;
2494 }
2495 EXPORT_SYMBOL(target_get_sess_cmd);
2496
2497 static void target_release_cmd_kref(struct kref *kref)
2498                 __releases(&se_cmd->se_sess->sess_cmd_lock)
2499 {
2500         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2501         struct se_session *se_sess = se_cmd->se_sess;
2502
2503         if (list_empty(&se_cmd->se_cmd_list)) {
2504                 spin_unlock(&se_sess->sess_cmd_lock);
2505                 se_cmd->se_tfo->release_cmd(se_cmd);
2506                 return;
2507         }
2508         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2509                 spin_unlock(&se_sess->sess_cmd_lock);
2510                 complete(&se_cmd->cmd_wait_comp);
2511                 return;
2512         }
2513         list_del(&se_cmd->se_cmd_list);
2514         spin_unlock(&se_sess->sess_cmd_lock);
2515
2516         se_cmd->se_tfo->release_cmd(se_cmd);
2517 }
2518
2519 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2520  * @se_sess:    session to reference
2521  * @se_cmd:     command descriptor to drop
2522  */
2523 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2524 {
2525         if (!se_sess) {
2526                 se_cmd->se_tfo->release_cmd(se_cmd);
2527                 return 1;
2528         }
2529         return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2530                         &se_sess->sess_cmd_lock);
2531 }
2532 EXPORT_SYMBOL(target_put_sess_cmd);
2533
2534 /* target_sess_cmd_list_set_waiting - Flag all commands in
2535  *         sess_cmd_list to complete cmd_wait_comp.  Set
2536  *         sess_tearing_down so no more commands are queued.
2537  * @se_sess:    session to flag
2538  */
2539 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2540 {
2541         struct se_cmd *se_cmd;
2542         unsigned long flags;
2543
2544         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2545         if (se_sess->sess_tearing_down) {
2546                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2547                 return;
2548         }
2549         se_sess->sess_tearing_down = 1;
2550         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2551
2552         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2553                 se_cmd->cmd_wait_set = 1;
2554
2555         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2556 }
2557 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2558
2559 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2560  * @se_sess:    session to wait for active I/O
2561  */
2562 void target_wait_for_sess_cmds(struct se_session *se_sess)
2563 {
2564         struct se_cmd *se_cmd, *tmp_cmd;
2565         unsigned long flags;
2566
2567         list_for_each_entry_safe(se_cmd, tmp_cmd,
2568                                 &se_sess->sess_wait_list, se_cmd_list) {
2569                 list_del(&se_cmd->se_cmd_list);
2570
2571                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2572                         " %d\n", se_cmd, se_cmd->t_state,
2573                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2574
2575                 wait_for_completion(&se_cmd->cmd_wait_comp);
2576                 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2577                         " fabric state: %d\n", se_cmd, se_cmd->t_state,
2578                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2579
2580                 se_cmd->se_tfo->release_cmd(se_cmd);
2581         }
2582
2583         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2584         WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2585         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2586
2587 }
2588 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2589
2590 static int transport_clear_lun_ref_thread(void *p)
2591 {
2592         struct se_lun *lun = p;
2593
2594         percpu_ref_kill(&lun->lun_ref);
2595
2596         wait_for_completion(&lun->lun_ref_comp);
2597         complete(&lun->lun_shutdown_comp);
2598
2599         return 0;
2600 }
2601
2602 int transport_clear_lun_ref(struct se_lun *lun)
2603 {
2604         struct task_struct *kt;
2605
2606         kt = kthread_run(transport_clear_lun_ref_thread, lun,
2607                         "tcm_cl_%u", lun->unpacked_lun);
2608         if (IS_ERR(kt)) {
2609                 pr_err("Unable to start clear_lun thread\n");
2610                 return PTR_ERR(kt);
2611         }
2612         wait_for_completion(&lun->lun_shutdown_comp);
2613
2614         return 0;
2615 }
2616
2617 /**
2618  * transport_wait_for_tasks - wait for completion to occur
2619  * @cmd:        command to wait
2620  *
2621  * Called from frontend fabric context to wait for storage engine
2622  * to pause and/or release frontend generated struct se_cmd.
2623  */
2624 bool transport_wait_for_tasks(struct se_cmd *cmd)
2625 {
2626         unsigned long flags;
2627
2628         spin_lock_irqsave(&cmd->t_state_lock, flags);
2629         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2630             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2631                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2632                 return false;
2633         }
2634
2635         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2636             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2637                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2638                 return false;
2639         }
2640
2641         if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2642                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2643                 return false;
2644         }
2645
2646         cmd->transport_state |= CMD_T_STOP;
2647
2648         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2649                 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2650                 cmd, cmd->se_tfo->get_task_tag(cmd),
2651                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2652
2653         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2654
2655         wait_for_completion(&cmd->t_transport_stop_comp);
2656
2657         spin_lock_irqsave(&cmd->t_state_lock, flags);
2658         cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2659
2660         pr_debug("wait_for_tasks: Stopped wait_for_completion("
2661                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2662                 cmd->se_tfo->get_task_tag(cmd));
2663
2664         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2665
2666         return true;
2667 }
2668 EXPORT_SYMBOL(transport_wait_for_tasks);
2669
2670 static int transport_get_sense_codes(
2671         struct se_cmd *cmd,
2672         u8 *asc,
2673         u8 *ascq)
2674 {
2675         *asc = cmd->scsi_asc;
2676         *ascq = cmd->scsi_ascq;
2677
2678         return 0;
2679 }
2680
2681 static
2682 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector)
2683 {
2684         /* Place failed LBA in sense data information descriptor 0. */
2685         buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc;
2686         buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */
2687         buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa;
2688         buffer[SPC_VALIDITY_OFFSET] = 0x80;
2689
2690         /* Descriptor Information: failing sector */
2691         put_unaligned_be64(bad_sector, &buffer[12]);
2692 }
2693
2694 int
2695 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2696                 sense_reason_t reason, int from_transport)
2697 {
2698         unsigned char *buffer = cmd->sense_buffer;
2699         unsigned long flags;
2700         u8 asc = 0, ascq = 0;
2701
2702         spin_lock_irqsave(&cmd->t_state_lock, flags);
2703         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2704                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2705                 return 0;
2706         }
2707         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2708         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2709
2710         if (!reason && from_transport)
2711                 goto after_reason;
2712
2713         if (!from_transport)
2714                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2715
2716         /*
2717          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
2718          * SENSE KEY values from include/scsi/scsi.h
2719          */
2720         switch (reason) {
2721         case TCM_NO_SENSE:
2722                 /* CURRENT ERROR */
2723                 buffer[0] = 0x70;
2724                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2725                 /* Not Ready */
2726                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2727                 /* NO ADDITIONAL SENSE INFORMATION */
2728                 buffer[SPC_ASC_KEY_OFFSET] = 0;
2729                 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2730                 break;
2731         case TCM_NON_EXISTENT_LUN:
2732                 /* CURRENT ERROR */
2733                 buffer[0] = 0x70;
2734                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2735                 /* ILLEGAL REQUEST */
2736                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2737                 /* LOGICAL UNIT NOT SUPPORTED */
2738                 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2739                 break;
2740         case TCM_UNSUPPORTED_SCSI_OPCODE:
2741         case TCM_SECTOR_COUNT_TOO_MANY:
2742                 /* CURRENT ERROR */
2743                 buffer[0] = 0x70;
2744                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2745                 /* ILLEGAL REQUEST */
2746                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2747                 /* INVALID COMMAND OPERATION CODE */
2748                 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2749                 break;
2750         case TCM_UNKNOWN_MODE_PAGE:
2751                 /* CURRENT ERROR */
2752                 buffer[0] = 0x70;
2753                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2754                 /* ILLEGAL REQUEST */
2755                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2756                 /* INVALID FIELD IN CDB */
2757                 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2758                 break;
2759         case TCM_CHECK_CONDITION_ABORT_CMD:
2760                 /* CURRENT ERROR */
2761                 buffer[0] = 0x70;
2762                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2763                 /* ABORTED COMMAND */
2764                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2765                 /* BUS DEVICE RESET FUNCTION OCCURRED */
2766                 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2767                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2768                 break;
2769         case TCM_INCORRECT_AMOUNT_OF_DATA:
2770                 /* CURRENT ERROR */
2771                 buffer[0] = 0x70;
2772                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2773                 /* ABORTED COMMAND */
2774                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2775                 /* WRITE ERROR */
2776                 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2777                 /* NOT ENOUGH UNSOLICITED DATA */
2778                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2779                 break;
2780         case TCM_INVALID_CDB_FIELD:
2781                 /* CURRENT ERROR */
2782                 buffer[0] = 0x70;
2783                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2784                 /* ILLEGAL REQUEST */
2785                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2786                 /* INVALID FIELD IN CDB */
2787                 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2788                 break;
2789         case TCM_INVALID_PARAMETER_LIST:
2790                 /* CURRENT ERROR */
2791                 buffer[0] = 0x70;
2792                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2793                 /* ILLEGAL REQUEST */
2794                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2795                 /* INVALID FIELD IN PARAMETER LIST */
2796                 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2797                 break;
2798         case TCM_PARAMETER_LIST_LENGTH_ERROR:
2799                 /* CURRENT ERROR */
2800                 buffer[0] = 0x70;
2801                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2802                 /* ILLEGAL REQUEST */
2803                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2804                 /* PARAMETER LIST LENGTH ERROR */
2805                 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2806                 break;
2807         case TCM_UNEXPECTED_UNSOLICITED_DATA:
2808                 /* CURRENT ERROR */
2809                 buffer[0] = 0x70;
2810                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2811                 /* ABORTED COMMAND */
2812                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2813                 /* WRITE ERROR */
2814                 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2815                 /* UNEXPECTED_UNSOLICITED_DATA */
2816                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2817                 break;
2818         case TCM_SERVICE_CRC_ERROR:
2819                 /* CURRENT ERROR */
2820                 buffer[0] = 0x70;
2821                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2822                 /* ABORTED COMMAND */
2823                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2824                 /* PROTOCOL SERVICE CRC ERROR */
2825                 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2826                 /* N/A */
2827                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2828                 break;
2829         case TCM_SNACK_REJECTED:
2830                 /* CURRENT ERROR */
2831                 buffer[0] = 0x70;
2832                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2833                 /* ABORTED COMMAND */
2834                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2835                 /* READ ERROR */
2836                 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2837                 /* FAILED RETRANSMISSION REQUEST */
2838                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2839                 break;
2840         case TCM_WRITE_PROTECTED:
2841                 /* CURRENT ERROR */
2842                 buffer[0] = 0x70;
2843                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2844                 /* DATA PROTECT */
2845                 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2846                 /* WRITE PROTECTED */
2847                 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2848                 break;
2849         case TCM_ADDRESS_OUT_OF_RANGE:
2850                 /* CURRENT ERROR */
2851                 buffer[0] = 0x70;
2852                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2853                 /* ILLEGAL REQUEST */
2854                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2855                 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2856                 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2857                 break;
2858         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2859                 /* CURRENT ERROR */
2860                 buffer[0] = 0x70;
2861                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2862                 /* UNIT ATTENTION */
2863                 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2864                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2865                 buffer[SPC_ASC_KEY_OFFSET] = asc;
2866                 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2867                 break;
2868         case TCM_CHECK_CONDITION_NOT_READY:
2869                 /* CURRENT ERROR */
2870                 buffer[0] = 0x70;
2871                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2872                 /* Not Ready */
2873                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2874                 transport_get_sense_codes(cmd, &asc, &ascq);
2875                 buffer[SPC_ASC_KEY_OFFSET] = asc;
2876                 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2877                 break;
2878         case TCM_MISCOMPARE_VERIFY:
2879                 /* CURRENT ERROR */
2880                 buffer[0] = 0x70;
2881                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2882                 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2883                 /* MISCOMPARE DURING VERIFY OPERATION */
2884                 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2885                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2886                 break;
2887         case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2888                 /* CURRENT ERROR */
2889                 buffer[0] = 0x70;
2890                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2891                 /* ILLEGAL REQUEST */
2892                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2893                 /* LOGICAL BLOCK GUARD CHECK FAILED */
2894                 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2895                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01;
2896                 transport_err_sector_info(buffer, cmd->bad_sector);
2897                 break;
2898         case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2899                 /* CURRENT ERROR */
2900                 buffer[0] = 0x70;
2901                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2902                 /* ILLEGAL REQUEST */
2903                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2904                 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2905                 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2906                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02;
2907                 transport_err_sector_info(buffer, cmd->bad_sector);
2908                 break;
2909         case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2910                 /* CURRENT ERROR */
2911                 buffer[0] = 0x70;
2912                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2913                 /* ILLEGAL REQUEST */
2914                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2915                 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2916                 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2917                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2918                 transport_err_sector_info(buffer, cmd->bad_sector);
2919                 break;
2920         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2921         default:
2922                 /* CURRENT ERROR */
2923                 buffer[0] = 0x70;
2924                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2925                 /*
2926                  * Returning ILLEGAL REQUEST would cause immediate IO errors on
2927                  * Solaris initiators.  Returning NOT READY instead means the
2928                  * operations will be retried a finite number of times and we
2929                  * can survive intermittent errors.
2930                  */
2931                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2932                 /* LOGICAL UNIT COMMUNICATION FAILURE */
2933                 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2934                 break;
2935         }
2936         /*
2937          * This code uses linux/include/scsi/scsi.h SAM status codes!
2938          */
2939         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2940         /*
2941          * Automatically padded, this value is encoded in the fabric's
2942          * data_length response PDU containing the SCSI defined sense data.
2943          */
2944         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2945
2946 after_reason:
2947         trace_target_cmd_complete(cmd);
2948         return cmd->se_tfo->queue_status(cmd);
2949 }
2950 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2951
2952 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2953 {
2954         if (!(cmd->transport_state & CMD_T_ABORTED))
2955                 return 0;
2956
2957         /*
2958          * If cmd has been aborted but either no status is to be sent or it has
2959          * already been sent, just return
2960          */
2961         if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS))
2962                 return 1;
2963
2964         pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2965                  cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2966
2967         cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2968         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2969         trace_target_cmd_complete(cmd);
2970         cmd->se_tfo->queue_status(cmd);
2971
2972         return 1;
2973 }
2974 EXPORT_SYMBOL(transport_check_aborted_status);
2975
2976 void transport_send_task_abort(struct se_cmd *cmd)
2977 {
2978         unsigned long flags;
2979
2980         spin_lock_irqsave(&cmd->t_state_lock, flags);
2981         if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2982                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2983                 return;
2984         }
2985         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2986
2987         /*
2988          * If there are still expected incoming fabric WRITEs, we wait
2989          * until until they have completed before sending a TASK_ABORTED
2990          * response.  This response with TASK_ABORTED status will be
2991          * queued back to fabric module by transport_check_aborted_status().
2992          */
2993         if (cmd->data_direction == DMA_TO_DEVICE) {
2994                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2995                         cmd->transport_state |= CMD_T_ABORTED;
2996                         cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2997                         return;
2998                 }
2999         }
3000         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3001
3002         transport_lun_remove_cmd(cmd);
3003
3004         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
3005                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
3006                 cmd->se_tfo->get_task_tag(cmd));
3007
3008         trace_target_cmd_complete(cmd);
3009         cmd->se_tfo->queue_status(cmd);
3010 }
3011
3012 static void target_tmr_work(struct work_struct *work)
3013 {
3014         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3015         struct se_device *dev = cmd->se_dev;
3016         struct se_tmr_req *tmr = cmd->se_tmr_req;
3017         int ret;
3018
3019         switch (tmr->function) {
3020         case TMR_ABORT_TASK:
3021                 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3022                 break;
3023         case TMR_ABORT_TASK_SET:
3024         case TMR_CLEAR_ACA:
3025         case TMR_CLEAR_TASK_SET:
3026                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3027                 break;
3028         case TMR_LUN_RESET:
3029                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3030                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3031                                          TMR_FUNCTION_REJECTED;
3032                 break;
3033         case TMR_TARGET_WARM_RESET:
3034                 tmr->response = TMR_FUNCTION_REJECTED;
3035                 break;
3036         case TMR_TARGET_COLD_RESET:
3037                 tmr->response = TMR_FUNCTION_REJECTED;
3038                 break;
3039         default:
3040                 pr_err("Uknown TMR function: 0x%02x.\n",
3041                                 tmr->function);
3042                 tmr->response = TMR_FUNCTION_REJECTED;
3043                 break;
3044         }
3045
3046         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3047         cmd->se_tfo->queue_tm_rsp(cmd);
3048
3049         transport_cmd_check_stop_to_fabric(cmd);
3050 }
3051
3052 int transport_generic_handle_tmr(
3053         struct se_cmd *cmd)
3054 {
3055         unsigned long flags;
3056
3057         spin_lock_irqsave(&cmd->t_state_lock, flags);
3058         cmd->transport_state |= CMD_T_ACTIVE;
3059         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3060
3061         INIT_WORK(&cmd->work, target_tmr_work);
3062         queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3063         return 0;
3064 }
3065 EXPORT_SYMBOL(transport_generic_handle_tmr);