]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/thermal/samsung/exynos_tmu.c
122ae663d0a8bcba287ee2a03dfe6db3f361d5f0
[karo-tx-linux.git] / drivers / thermal / samsung / exynos_tmu.c
1 /*
2  * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit)
3  *
4  *  Copyright (C) 2011 Samsung Electronics
5  *  Donggeun Kim <dg77.kim@samsung.com>
6  *  Amit Daniel Kachhap <amit.kachhap@linaro.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23
24 #include <linux/clk.h>
25 #include <linux/io.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/platform_device.h>
32 #include <linux/regulator/consumer.h>
33
34 #include "exynos_thermal_common.h"
35 #include "exynos_tmu.h"
36 #include "exynos_tmu_data.h"
37
38 /**
39  * struct exynos_tmu_data : A structure to hold the private data of the TMU
40         driver
41  * @id: identifier of the one instance of the TMU controller.
42  * @pdata: pointer to the tmu platform/configuration data
43  * @base: base address of the single instance of the TMU controller.
44  * @base_second: base address of the common registers of the TMU controller.
45  * @irq: irq number of the TMU controller.
46  * @soc: id of the SOC type.
47  * @irq_work: pointer to the irq work structure.
48  * @lock: lock to implement synchronization.
49  * @clk: pointer to the clock structure.
50  * @clk_sec: pointer to the clock structure for accessing the base_second.
51  * @temp_error1: fused value of the first point trim.
52  * @temp_error2: fused value of the second point trim.
53  * @regulator: pointer to the TMU regulator structure.
54  * @reg_conf: pointer to structure to register with core thermal.
55  */
56 struct exynos_tmu_data {
57         int id;
58         struct exynos_tmu_platform_data *pdata;
59         void __iomem *base;
60         void __iomem *base_second;
61         int irq;
62         enum soc_type soc;
63         struct work_struct irq_work;
64         struct mutex lock;
65         struct clk *clk, *clk_sec;
66         u8 temp_error1, temp_error2;
67         struct regulator *regulator;
68         struct thermal_sensor_conf *reg_conf;
69 };
70
71 /*
72  * TMU treats temperature as a mapped temperature code.
73  * The temperature is converted differently depending on the calibration type.
74  */
75 static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
76 {
77         struct exynos_tmu_platform_data *pdata = data->pdata;
78         int temp_code;
79
80         switch (pdata->cal_type) {
81         case TYPE_TWO_POINT_TRIMMING:
82                 temp_code = (temp - pdata->first_point_trim) *
83                         (data->temp_error2 - data->temp_error1) /
84                         (pdata->second_point_trim - pdata->first_point_trim) +
85                         data->temp_error1;
86                 break;
87         case TYPE_ONE_POINT_TRIMMING:
88                 temp_code = temp + data->temp_error1 - pdata->first_point_trim;
89                 break;
90         default:
91                 temp_code = temp + pdata->default_temp_offset;
92                 break;
93         }
94
95         return temp_code;
96 }
97
98 /*
99  * Calculate a temperature value from a temperature code.
100  * The unit of the temperature is degree Celsius.
101  */
102 static int code_to_temp(struct exynos_tmu_data *data, u8 temp_code)
103 {
104         struct exynos_tmu_platform_data *pdata = data->pdata;
105         int temp;
106
107         switch (pdata->cal_type) {
108         case TYPE_TWO_POINT_TRIMMING:
109                 temp = (temp_code - data->temp_error1) *
110                         (pdata->second_point_trim - pdata->first_point_trim) /
111                         (data->temp_error2 - data->temp_error1) +
112                         pdata->first_point_trim;
113                 break;
114         case TYPE_ONE_POINT_TRIMMING:
115                 temp = temp_code - data->temp_error1 + pdata->first_point_trim;
116                 break;
117         default:
118                 temp = temp_code - pdata->default_temp_offset;
119                 break;
120         }
121
122         return temp;
123 }
124
125 static int exynos_tmu_initialize(struct platform_device *pdev)
126 {
127         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
128         struct exynos_tmu_platform_data *pdata = data->pdata;
129         const struct exynos_tmu_registers *reg = pdata->registers;
130         unsigned int status, trim_info = 0, con;
131         unsigned int rising_threshold = 0, falling_threshold = 0;
132         int ret = 0, threshold_code, i;
133
134         mutex_lock(&data->lock);
135         clk_enable(data->clk);
136         if (!IS_ERR(data->clk_sec))
137                 clk_enable(data->clk_sec);
138
139         if (TMU_SUPPORTS(pdata, READY_STATUS)) {
140                 status = readb(data->base + reg->tmu_status);
141                 if (!status) {
142                         ret = -EBUSY;
143                         goto out;
144                 }
145         }
146
147         if (TMU_SUPPORTS(pdata, TRIM_RELOAD))
148                 __raw_writel(1, data->base + reg->triminfo_ctrl);
149
150         /* Save trimming info in order to perform calibration */
151         if (data->soc == SOC_ARCH_EXYNOS5440) {
152                 /*
153                  * For exynos5440 soc triminfo value is swapped between TMU0 and
154                  * TMU2, so the below logic is needed.
155                  */
156                 switch (data->id) {
157                 case 0:
158                         trim_info = readl(data->base +
159                         EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data);
160                         break;
161                 case 1:
162                         trim_info = readl(data->base + reg->triminfo_data);
163                         break;
164                 case 2:
165                         trim_info = readl(data->base -
166                         EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data);
167                 }
168         } else {
169                 /* On exynos5420 the triminfo register is in the shared space */
170                 if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO)
171                         trim_info = readl(data->base_second +
172                                                         reg->triminfo_data);
173                 else
174                         trim_info = readl(data->base + reg->triminfo_data);
175         }
176         data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK;
177         data->temp_error2 = ((trim_info >> reg->triminfo_85_shift) &
178                                 EXYNOS_TMU_TEMP_MASK);
179
180         if (!data->temp_error1 ||
181                 (pdata->min_efuse_value > data->temp_error1) ||
182                 (data->temp_error1 > pdata->max_efuse_value))
183                 data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
184
185         if (!data->temp_error2)
186                 data->temp_error2 =
187                         (pdata->efuse_value >> reg->triminfo_85_shift) &
188                         EXYNOS_TMU_TEMP_MASK;
189
190         rising_threshold = readl(data->base + reg->threshold_th0);
191
192         if (data->soc == SOC_ARCH_EXYNOS4210) {
193                 /* Write temperature code for threshold */
194                 threshold_code = temp_to_code(data, pdata->threshold);
195                 writeb(threshold_code,
196                         data->base + reg->threshold_temp);
197                 for (i = 0; i < pdata->non_hw_trigger_levels; i++)
198                         writeb(pdata->trigger_levels[i], data->base +
199                         reg->threshold_th0 + i * sizeof(reg->threshold_th0));
200
201                 writel(reg->intclr_rise_mask, data->base + reg->tmu_intclear);
202         } else {
203                 /* Write temperature code for rising and falling threshold */
204                 for (i = 0; i < pdata->non_hw_trigger_levels; i++) {
205                         threshold_code = temp_to_code(data,
206                                                 pdata->trigger_levels[i]);
207                         rising_threshold &= ~(0xff << 8 * i);
208                         rising_threshold |= threshold_code << 8 * i;
209                         if (pdata->threshold_falling) {
210                                 threshold_code = temp_to_code(data,
211                                                 pdata->trigger_levels[i] -
212                                                 pdata->threshold_falling);
213                                 falling_threshold |= threshold_code << 8 * i;
214                         }
215                 }
216
217                 writel(rising_threshold,
218                                 data->base + reg->threshold_th0);
219                 writel(falling_threshold,
220                                 data->base + reg->threshold_th1);
221
222                 writel((reg->intclr_rise_mask << reg->intclr_rise_shift) |
223                         (reg->intclr_fall_mask << reg->intclr_fall_shift),
224                                 data->base + reg->tmu_intclear);
225
226                 /* if last threshold limit is also present */
227                 i = pdata->max_trigger_level - 1;
228                 if (pdata->trigger_levels[i] &&
229                                 (pdata->trigger_type[i] == HW_TRIP)) {
230                         threshold_code = temp_to_code(data,
231                                                 pdata->trigger_levels[i]);
232                         if (i == EXYNOS_MAX_TRIGGER_PER_REG - 1) {
233                                 /* 1-4 level to be assigned in th0 reg */
234                                 rising_threshold &= ~(0xff << 8 * i);
235                                 rising_threshold |= threshold_code << 8 * i;
236                                 writel(rising_threshold,
237                                         data->base + reg->threshold_th0);
238                         } else if (i == EXYNOS_MAX_TRIGGER_PER_REG) {
239                                 /* 5th level to be assigned in th2 reg */
240                                 rising_threshold =
241                                 threshold_code << reg->threshold_th3_l0_shift;
242                                 writel(rising_threshold,
243                                         data->base + reg->threshold_th2);
244                         }
245                         con = readl(data->base + reg->tmu_ctrl);
246                         con |= (1 << reg->therm_trip_en_shift);
247                         writel(con, data->base + reg->tmu_ctrl);
248                 }
249         }
250         /*Clear the PMIN in the common TMU register*/
251         if (reg->tmu_pmin && !data->id)
252                 writel(0, data->base_second + reg->tmu_pmin);
253 out:
254         clk_disable(data->clk);
255         mutex_unlock(&data->lock);
256         if (!IS_ERR(data->clk_sec))
257                 clk_disable(data->clk_sec);
258
259         return ret;
260 }
261
262 static void exynos_tmu_control(struct platform_device *pdev, bool on)
263 {
264         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
265         struct exynos_tmu_platform_data *pdata = data->pdata;
266         const struct exynos_tmu_registers *reg = pdata->registers;
267         unsigned int con, interrupt_en;
268
269         mutex_lock(&data->lock);
270         clk_enable(data->clk);
271
272         con = readl(data->base + reg->tmu_ctrl);
273
274         if (pdata->test_mux)
275                 con |= (pdata->test_mux << reg->test_mux_addr_shift);
276
277         con &= ~(reg->buf_vref_sel_mask << reg->buf_vref_sel_shift);
278         con |= pdata->reference_voltage << reg->buf_vref_sel_shift;
279
280         con &= ~(reg->buf_slope_sel_mask << reg->buf_slope_sel_shift);
281         con |= (pdata->gain << reg->buf_slope_sel_shift);
282
283         if (pdata->noise_cancel_mode) {
284                 con &= ~(reg->therm_trip_mode_mask <<
285                                         reg->therm_trip_mode_shift);
286                 con |= (pdata->noise_cancel_mode << reg->therm_trip_mode_shift);
287         }
288
289         if (on) {
290                 con |= (1 << reg->core_en_shift);
291                 interrupt_en =
292                         pdata->trigger_enable[3] << reg->inten_rise3_shift |
293                         pdata->trigger_enable[2] << reg->inten_rise2_shift |
294                         pdata->trigger_enable[1] << reg->inten_rise1_shift |
295                         pdata->trigger_enable[0] << reg->inten_rise0_shift;
296                 if (TMU_SUPPORTS(pdata, FALLING_TRIP))
297                         interrupt_en |=
298                                 interrupt_en << reg->inten_fall0_shift;
299         } else {
300                 con &= ~(1 << reg->core_en_shift);
301                 interrupt_en = 0; /* Disable all interrupts */
302         }
303         writel(interrupt_en, data->base + reg->tmu_inten);
304         writel(con, data->base + reg->tmu_ctrl);
305
306         clk_disable(data->clk);
307         mutex_unlock(&data->lock);
308 }
309
310 static int exynos_tmu_read(struct exynos_tmu_data *data)
311 {
312         struct exynos_tmu_platform_data *pdata = data->pdata;
313         const struct exynos_tmu_registers *reg = pdata->registers;
314         u8 temp_code;
315         int temp;
316
317         mutex_lock(&data->lock);
318         clk_enable(data->clk);
319
320         temp_code = readb(data->base + reg->tmu_cur_temp);
321
322         if (data->soc == SOC_ARCH_EXYNOS4210)
323                 /* temp_code should range between 75 and 175 */
324                 if (temp_code < 75 || temp_code > 175) {
325                         temp = -ENODATA;
326                         goto out;
327                 }
328
329         temp = code_to_temp(data, temp_code);
330 out:
331         clk_disable(data->clk);
332         mutex_unlock(&data->lock);
333
334         return temp;
335 }
336
337 #ifdef CONFIG_THERMAL_EMULATION
338 static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp)
339 {
340         struct exynos_tmu_data *data = drv_data;
341         struct exynos_tmu_platform_data *pdata = data->pdata;
342         const struct exynos_tmu_registers *reg = pdata->registers;
343         unsigned int val;
344         int ret = -EINVAL;
345
346         if (!TMU_SUPPORTS(pdata, EMULATION))
347                 goto out;
348
349         if (temp && temp < MCELSIUS)
350                 goto out;
351
352         mutex_lock(&data->lock);
353         clk_enable(data->clk);
354
355         val = readl(data->base + reg->emul_con);
356
357         if (temp) {
358                 temp /= MCELSIUS;
359
360                 if (TMU_SUPPORTS(pdata, EMUL_TIME)) {
361                         val &= ~(EXYNOS_EMUL_TIME_MASK << reg->emul_time_shift);
362                         val |= (EXYNOS_EMUL_TIME << reg->emul_time_shift);
363                 }
364                 val &= ~(EXYNOS_EMUL_DATA_MASK << reg->emul_temp_shift);
365                 val |= (temp_to_code(data, temp) << reg->emul_temp_shift) |
366                         EXYNOS_EMUL_ENABLE;
367         } else {
368                 val &= ~EXYNOS_EMUL_ENABLE;
369         }
370
371         writel(val, data->base + reg->emul_con);
372
373         clk_disable(data->clk);
374         mutex_unlock(&data->lock);
375         return 0;
376 out:
377         return ret;
378 }
379 #else
380 static int exynos_tmu_set_emulation(void *drv_data,     unsigned long temp)
381         { return -EINVAL; }
382 #endif/*CONFIG_THERMAL_EMULATION*/
383
384 static void exynos_tmu_work(struct work_struct *work)
385 {
386         struct exynos_tmu_data *data = container_of(work,
387                         struct exynos_tmu_data, irq_work);
388         struct exynos_tmu_platform_data *pdata = data->pdata;
389         const struct exynos_tmu_registers *reg = pdata->registers;
390         unsigned int val_irq, val_type;
391
392         if (!IS_ERR(data->clk_sec))
393                 clk_enable(data->clk_sec);
394         /* Find which sensor generated this interrupt */
395         if (reg->tmu_irqstatus) {
396                 val_type = readl(data->base_second + reg->tmu_irqstatus);
397                 if (!((val_type >> data->id) & 0x1))
398                         goto out;
399         }
400         if (!IS_ERR(data->clk_sec))
401                 clk_disable(data->clk_sec);
402
403         exynos_report_trigger(data->reg_conf);
404         mutex_lock(&data->lock);
405         clk_enable(data->clk);
406
407         /* TODO: take action based on particular interrupt */
408         val_irq = readl(data->base + reg->tmu_intstat);
409         /* clear the interrupts */
410         writel(val_irq, data->base + reg->tmu_intclear);
411
412         clk_disable(data->clk);
413         mutex_unlock(&data->lock);
414 out:
415         enable_irq(data->irq);
416 }
417
418 static irqreturn_t exynos_tmu_irq(int irq, void *id)
419 {
420         struct exynos_tmu_data *data = id;
421
422         disable_irq_nosync(irq);
423         schedule_work(&data->irq_work);
424
425         return IRQ_HANDLED;
426 }
427
428 static const struct of_device_id exynos_tmu_match[] = {
429         {
430                 .compatible = "samsung,exynos3250-tmu",
431                 .data = (void *)EXYNOS3250_TMU_DRV_DATA,
432         },
433         {
434                 .compatible = "samsung,exynos4210-tmu",
435                 .data = (void *)EXYNOS4210_TMU_DRV_DATA,
436         },
437         {
438                 .compatible = "samsung,exynos4412-tmu",
439                 .data = (void *)EXYNOS4412_TMU_DRV_DATA,
440         },
441         {
442                 .compatible = "samsung,exynos5250-tmu",
443                 .data = (void *)EXYNOS5250_TMU_DRV_DATA,
444         },
445         {
446                 .compatible = "samsung,exynos5260-tmu",
447                 .data = (void *)EXYNOS5260_TMU_DRV_DATA,
448         },
449         {
450                 .compatible = "samsung,exynos5420-tmu",
451                 .data = (void *)EXYNOS5420_TMU_DRV_DATA,
452         },
453         {
454                 .compatible = "samsung,exynos5420-tmu-ext-triminfo",
455                 .data = (void *)EXYNOS5420_TMU_DRV_DATA,
456         },
457         {
458                 .compatible = "samsung,exynos5440-tmu",
459                 .data = (void *)EXYNOS5440_TMU_DRV_DATA,
460         },
461         {},
462 };
463 MODULE_DEVICE_TABLE(of, exynos_tmu_match);
464
465 static inline struct  exynos_tmu_platform_data *exynos_get_driver_data(
466                         struct platform_device *pdev, int id)
467 {
468         struct  exynos_tmu_init_data *data_table;
469         struct exynos_tmu_platform_data *tmu_data;
470         const struct of_device_id *match;
471
472         match = of_match_node(exynos_tmu_match, pdev->dev.of_node);
473         if (!match)
474                 return NULL;
475         data_table = (struct exynos_tmu_init_data *) match->data;
476         if (!data_table || id >= data_table->tmu_count)
477                 return NULL;
478         tmu_data = data_table->tmu_data;
479         return (struct exynos_tmu_platform_data *) (tmu_data + id);
480 }
481
482 static int exynos_map_dt_data(struct platform_device *pdev)
483 {
484         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
485         struct exynos_tmu_platform_data *pdata;
486         struct resource res;
487         int ret;
488
489         if (!data || !pdev->dev.of_node)
490                 return -ENODEV;
491
492         /*
493          * Try enabling the regulator if found
494          * TODO: Add regulator as an SOC feature, so that regulator enable
495          * is a compulsory call.
496          */
497         data->regulator = devm_regulator_get(&pdev->dev, "vtmu");
498         if (!IS_ERR(data->regulator)) {
499                 ret = regulator_enable(data->regulator);
500                 if (ret) {
501                         dev_err(&pdev->dev, "failed to enable vtmu\n");
502                         return ret;
503                 }
504         } else {
505                 dev_info(&pdev->dev, "Regulator node (vtmu) not found\n");
506         }
507
508         data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl");
509         if (data->id < 0)
510                 data->id = 0;
511
512         data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
513         if (data->irq <= 0) {
514                 dev_err(&pdev->dev, "failed to get IRQ\n");
515                 return -ENODEV;
516         }
517
518         if (of_address_to_resource(pdev->dev.of_node, 0, &res)) {
519                 dev_err(&pdev->dev, "failed to get Resource 0\n");
520                 return -ENODEV;
521         }
522
523         data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
524         if (!data->base) {
525                 dev_err(&pdev->dev, "Failed to ioremap memory\n");
526                 return -EADDRNOTAVAIL;
527         }
528
529         pdata = exynos_get_driver_data(pdev, data->id);
530         if (!pdata) {
531                 dev_err(&pdev->dev, "No platform init data supplied.\n");
532                 return -ENODEV;
533         }
534         data->pdata = pdata;
535         /*
536          * Check if the TMU shares some registers and then try to map the
537          * memory of common registers.
538          */
539         if (!TMU_SUPPORTS(pdata, ADDRESS_MULTIPLE))
540                 return 0;
541
542         if (of_address_to_resource(pdev->dev.of_node, 1, &res)) {
543                 dev_err(&pdev->dev, "failed to get Resource 1\n");
544                 return -ENODEV;
545         }
546
547         data->base_second = devm_ioremap(&pdev->dev, res.start,
548                                         resource_size(&res));
549         if (!data->base_second) {
550                 dev_err(&pdev->dev, "Failed to ioremap memory\n");
551                 return -ENOMEM;
552         }
553
554         return 0;
555 }
556
557 static int exynos_tmu_probe(struct platform_device *pdev)
558 {
559         struct exynos_tmu_data *data;
560         struct exynos_tmu_platform_data *pdata;
561         struct thermal_sensor_conf *sensor_conf;
562         int ret, i;
563
564         data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data),
565                                         GFP_KERNEL);
566         if (!data)
567                 return -ENOMEM;
568
569         platform_set_drvdata(pdev, data);
570         mutex_init(&data->lock);
571
572         ret = exynos_map_dt_data(pdev);
573         if (ret)
574                 return ret;
575
576         pdata = data->pdata;
577
578         INIT_WORK(&data->irq_work, exynos_tmu_work);
579
580         data->clk = devm_clk_get(&pdev->dev, "tmu_apbif");
581         if (IS_ERR(data->clk)) {
582                 dev_err(&pdev->dev, "Failed to get clock\n");
583                 return  PTR_ERR(data->clk);
584         }
585
586         data->clk_sec = devm_clk_get(&pdev->dev, "tmu_triminfo_apbif");
587         if (IS_ERR(data->clk_sec)) {
588                 if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) {
589                         dev_err(&pdev->dev, "Failed to get triminfo clock\n");
590                         return PTR_ERR(data->clk_sec);
591                 }
592         } else {
593                 ret = clk_prepare(data->clk_sec);
594                 if (ret) {
595                         dev_err(&pdev->dev, "Failed to get clock\n");
596                         return ret;
597                 }
598         }
599
600         ret = clk_prepare(data->clk);
601         if (ret) {
602                 dev_err(&pdev->dev, "Failed to get clock\n");
603                 goto err_clk_sec;
604         }
605
606         if (pdata->type == SOC_ARCH_EXYNOS3250 ||
607             pdata->type == SOC_ARCH_EXYNOS4210 ||
608             pdata->type == SOC_ARCH_EXYNOS4412 ||
609             pdata->type == SOC_ARCH_EXYNOS5250 ||
610             pdata->type == SOC_ARCH_EXYNOS5260 ||
611             pdata->type == SOC_ARCH_EXYNOS5420_TRIMINFO ||
612             pdata->type == SOC_ARCH_EXYNOS5440)
613                 data->soc = pdata->type;
614         else {
615                 ret = -EINVAL;
616                 dev_err(&pdev->dev, "Platform not supported\n");
617                 goto err_clk;
618         }
619
620         ret = exynos_tmu_initialize(pdev);
621         if (ret) {
622                 dev_err(&pdev->dev, "Failed to initialize TMU\n");
623                 goto err_clk;
624         }
625
626         exynos_tmu_control(pdev, true);
627
628         /* Allocate a structure to register with the exynos core thermal */
629         sensor_conf = devm_kzalloc(&pdev->dev,
630                                 sizeof(struct thermal_sensor_conf), GFP_KERNEL);
631         if (!sensor_conf) {
632                 ret = -ENOMEM;
633                 goto err_clk;
634         }
635         sprintf(sensor_conf->name, "therm_zone%d", data->id);
636         sensor_conf->read_temperature = (int (*)(void *))exynos_tmu_read;
637         sensor_conf->write_emul_temp =
638                 (int (*)(void *, unsigned long))exynos_tmu_set_emulation;
639         sensor_conf->driver_data = data;
640         sensor_conf->trip_data.trip_count = pdata->trigger_enable[0] +
641                         pdata->trigger_enable[1] + pdata->trigger_enable[2]+
642                         pdata->trigger_enable[3];
643
644         for (i = 0; i < sensor_conf->trip_data.trip_count; i++) {
645                 sensor_conf->trip_data.trip_val[i] =
646                         pdata->threshold + pdata->trigger_levels[i];
647                 sensor_conf->trip_data.trip_type[i] =
648                                         pdata->trigger_type[i];
649         }
650
651         sensor_conf->trip_data.trigger_falling = pdata->threshold_falling;
652
653         sensor_conf->cooling_data.freq_clip_count = pdata->freq_tab_count;
654         for (i = 0; i < pdata->freq_tab_count; i++) {
655                 sensor_conf->cooling_data.freq_data[i].freq_clip_max =
656                                         pdata->freq_tab[i].freq_clip_max;
657                 sensor_conf->cooling_data.freq_data[i].temp_level =
658                                         pdata->freq_tab[i].temp_level;
659         }
660         sensor_conf->dev = &pdev->dev;
661         /* Register the sensor with thermal management interface */
662         ret = exynos_register_thermal(sensor_conf);
663         if (ret) {
664                 dev_err(&pdev->dev, "Failed to register thermal interface\n");
665                 goto err_clk;
666         }
667         data->reg_conf = sensor_conf;
668
669         ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq,
670                 IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data);
671         if (ret) {
672                 dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
673                 goto err_clk;
674         }
675
676         return 0;
677 err_clk:
678         clk_unprepare(data->clk);
679 err_clk_sec:
680         if (!IS_ERR(data->clk_sec))
681                 clk_unprepare(data->clk_sec);
682         return ret;
683 }
684
685 static int exynos_tmu_remove(struct platform_device *pdev)
686 {
687         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
688
689         exynos_unregister_thermal(data->reg_conf);
690
691         exynos_tmu_control(pdev, false);
692
693         clk_unprepare(data->clk);
694         if (!IS_ERR(data->clk_sec))
695                 clk_unprepare(data->clk_sec);
696
697         if (!IS_ERR(data->regulator))
698                 regulator_disable(data->regulator);
699
700         return 0;
701 }
702
703 #ifdef CONFIG_PM_SLEEP
704 static int exynos_tmu_suspend(struct device *dev)
705 {
706         exynos_tmu_control(to_platform_device(dev), false);
707
708         return 0;
709 }
710
711 static int exynos_tmu_resume(struct device *dev)
712 {
713         struct platform_device *pdev = to_platform_device(dev);
714
715         exynos_tmu_initialize(pdev);
716         exynos_tmu_control(pdev, true);
717
718         return 0;
719 }
720
721 static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
722                          exynos_tmu_suspend, exynos_tmu_resume);
723 #define EXYNOS_TMU_PM   (&exynos_tmu_pm)
724 #else
725 #define EXYNOS_TMU_PM   NULL
726 #endif
727
728 static struct platform_driver exynos_tmu_driver = {
729         .driver = {
730                 .name   = "exynos-tmu",
731                 .owner  = THIS_MODULE,
732                 .pm     = EXYNOS_TMU_PM,
733                 .of_match_table = exynos_tmu_match,
734         },
735         .probe = exynos_tmu_probe,
736         .remove = exynos_tmu_remove,
737 };
738
739 module_platform_driver(exynos_tmu_driver);
740
741 MODULE_DESCRIPTION("EXYNOS TMU Driver");
742 MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
743 MODULE_LICENSE("GPL");
744 MODULE_ALIAS("platform:exynos-tmu");