]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/tty/tty_io.c
TTY: pass flags to alloc_tty_driver
[karo-tx-linux.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (!tty)
185                 return;
186         if (tty->dev)
187                 put_device(tty->dev);
188         kfree(tty->write_buf);
189         tty_buffer_free_all(tty);
190         tty->magic = 0xDEADDEAD;
191         kfree(tty);
192 }
193
194 static inline struct tty_struct *file_tty(struct file *file)
195 {
196         return ((struct tty_file_private *)file->private_data)->tty;
197 }
198
199 int tty_alloc_file(struct file *file)
200 {
201         struct tty_file_private *priv;
202
203         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
204         if (!priv)
205                 return -ENOMEM;
206
207         file->private_data = priv;
208
209         return 0;
210 }
211
212 /* Associate a new file with the tty structure */
213 void tty_add_file(struct tty_struct *tty, struct file *file)
214 {
215         struct tty_file_private *priv = file->private_data;
216
217         priv->tty = tty;
218         priv->file = file;
219
220         spin_lock(&tty_files_lock);
221         list_add(&priv->list, &tty->tty_files);
222         spin_unlock(&tty_files_lock);
223 }
224
225 /**
226  * tty_free_file - free file->private_data
227  *
228  * This shall be used only for fail path handling when tty_add_file was not
229  * called yet.
230  */
231 void tty_free_file(struct file *file)
232 {
233         struct tty_file_private *priv = file->private_data;
234
235         file->private_data = NULL;
236         kfree(priv);
237 }
238
239 /* Delete file from its tty */
240 void tty_del_file(struct file *file)
241 {
242         struct tty_file_private *priv = file->private_data;
243
244         spin_lock(&tty_files_lock);
245         list_del(&priv->list);
246         spin_unlock(&tty_files_lock);
247         tty_free_file(file);
248 }
249
250
251 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
252
253 /**
254  *      tty_name        -       return tty naming
255  *      @tty: tty structure
256  *      @buf: buffer for output
257  *
258  *      Convert a tty structure into a name. The name reflects the kernel
259  *      naming policy and if udev is in use may not reflect user space
260  *
261  *      Locking: none
262  */
263
264 char *tty_name(struct tty_struct *tty, char *buf)
265 {
266         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
267                 strcpy(buf, "NULL tty");
268         else
269                 strcpy(buf, tty->name);
270         return buf;
271 }
272
273 EXPORT_SYMBOL(tty_name);
274
275 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
276                               const char *routine)
277 {
278 #ifdef TTY_PARANOIA_CHECK
279         if (!tty) {
280                 printk(KERN_WARNING
281                         "null TTY for (%d:%d) in %s\n",
282                         imajor(inode), iminor(inode), routine);
283                 return 1;
284         }
285         if (tty->magic != TTY_MAGIC) {
286                 printk(KERN_WARNING
287                         "bad magic number for tty struct (%d:%d) in %s\n",
288                         imajor(inode), iminor(inode), routine);
289                 return 1;
290         }
291 #endif
292         return 0;
293 }
294
295 static int check_tty_count(struct tty_struct *tty, const char *routine)
296 {
297 #ifdef CHECK_TTY_COUNT
298         struct list_head *p;
299         int count = 0;
300
301         spin_lock(&tty_files_lock);
302         list_for_each(p, &tty->tty_files) {
303                 count++;
304         }
305         spin_unlock(&tty_files_lock);
306         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
307             tty->driver->subtype == PTY_TYPE_SLAVE &&
308             tty->link && tty->link->count)
309                 count++;
310         if (tty->count != count) {
311                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
312                                     "!= #fd's(%d) in %s\n",
313                        tty->name, tty->count, count, routine);
314                 return count;
315         }
316 #endif
317         return 0;
318 }
319
320 /**
321  *      get_tty_driver          -       find device of a tty
322  *      @dev_t: device identifier
323  *      @index: returns the index of the tty
324  *
325  *      This routine returns a tty driver structure, given a device number
326  *      and also passes back the index number.
327  *
328  *      Locking: caller must hold tty_mutex
329  */
330
331 static struct tty_driver *get_tty_driver(dev_t device, int *index)
332 {
333         struct tty_driver *p;
334
335         list_for_each_entry(p, &tty_drivers, tty_drivers) {
336                 dev_t base = MKDEV(p->major, p->minor_start);
337                 if (device < base || device >= base + p->num)
338                         continue;
339                 *index = device - base;
340                 return tty_driver_kref_get(p);
341         }
342         return NULL;
343 }
344
345 #ifdef CONFIG_CONSOLE_POLL
346
347 /**
348  *      tty_find_polling_driver -       find device of a polled tty
349  *      @name: name string to match
350  *      @line: pointer to resulting tty line nr
351  *
352  *      This routine returns a tty driver structure, given a name
353  *      and the condition that the tty driver is capable of polled
354  *      operation.
355  */
356 struct tty_driver *tty_find_polling_driver(char *name, int *line)
357 {
358         struct tty_driver *p, *res = NULL;
359         int tty_line = 0;
360         int len;
361         char *str, *stp;
362
363         for (str = name; *str; str++)
364                 if ((*str >= '0' && *str <= '9') || *str == ',')
365                         break;
366         if (!*str)
367                 return NULL;
368
369         len = str - name;
370         tty_line = simple_strtoul(str, &str, 10);
371
372         mutex_lock(&tty_mutex);
373         /* Search through the tty devices to look for a match */
374         list_for_each_entry(p, &tty_drivers, tty_drivers) {
375                 if (strncmp(name, p->name, len) != 0)
376                         continue;
377                 stp = str;
378                 if (*stp == ',')
379                         stp++;
380                 if (*stp == '\0')
381                         stp = NULL;
382
383                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
384                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
385                         res = tty_driver_kref_get(p);
386                         *line = tty_line;
387                         break;
388                 }
389         }
390         mutex_unlock(&tty_mutex);
391
392         return res;
393 }
394 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
395 #endif
396
397 /**
398  *      tty_check_change        -       check for POSIX terminal changes
399  *      @tty: tty to check
400  *
401  *      If we try to write to, or set the state of, a terminal and we're
402  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
403  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
404  *
405  *      Locking: ctrl_lock
406  */
407
408 int tty_check_change(struct tty_struct *tty)
409 {
410         unsigned long flags;
411         int ret = 0;
412
413         if (current->signal->tty != tty)
414                 return 0;
415
416         spin_lock_irqsave(&tty->ctrl_lock, flags);
417
418         if (!tty->pgrp) {
419                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
420                 goto out_unlock;
421         }
422         if (task_pgrp(current) == tty->pgrp)
423                 goto out_unlock;
424         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
425         if (is_ignored(SIGTTOU))
426                 goto out;
427         if (is_current_pgrp_orphaned()) {
428                 ret = -EIO;
429                 goto out;
430         }
431         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
432         set_thread_flag(TIF_SIGPENDING);
433         ret = -ERESTARTSYS;
434 out:
435         return ret;
436 out_unlock:
437         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
438         return ret;
439 }
440
441 EXPORT_SYMBOL(tty_check_change);
442
443 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
444                                 size_t count, loff_t *ppos)
445 {
446         return 0;
447 }
448
449 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
450                                  size_t count, loff_t *ppos)
451 {
452         return -EIO;
453 }
454
455 /* No kernel lock held - none needed ;) */
456 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
457 {
458         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
459 }
460
461 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
462                 unsigned long arg)
463 {
464         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
465 }
466
467 static long hung_up_tty_compat_ioctl(struct file *file,
468                                      unsigned int cmd, unsigned long arg)
469 {
470         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
471 }
472
473 static const struct file_operations tty_fops = {
474         .llseek         = no_llseek,
475         .read           = tty_read,
476         .write          = tty_write,
477         .poll           = tty_poll,
478         .unlocked_ioctl = tty_ioctl,
479         .compat_ioctl   = tty_compat_ioctl,
480         .open           = tty_open,
481         .release        = tty_release,
482         .fasync         = tty_fasync,
483 };
484
485 static const struct file_operations console_fops = {
486         .llseek         = no_llseek,
487         .read           = tty_read,
488         .write          = redirected_tty_write,
489         .poll           = tty_poll,
490         .unlocked_ioctl = tty_ioctl,
491         .compat_ioctl   = tty_compat_ioctl,
492         .open           = tty_open,
493         .release        = tty_release,
494         .fasync         = tty_fasync,
495 };
496
497 static const struct file_operations hung_up_tty_fops = {
498         .llseek         = no_llseek,
499         .read           = hung_up_tty_read,
500         .write          = hung_up_tty_write,
501         .poll           = hung_up_tty_poll,
502         .unlocked_ioctl = hung_up_tty_ioctl,
503         .compat_ioctl   = hung_up_tty_compat_ioctl,
504         .release        = tty_release,
505 };
506
507 static DEFINE_SPINLOCK(redirect_lock);
508 static struct file *redirect;
509
510 /**
511  *      tty_wakeup      -       request more data
512  *      @tty: terminal
513  *
514  *      Internal and external helper for wakeups of tty. This function
515  *      informs the line discipline if present that the driver is ready
516  *      to receive more output data.
517  */
518
519 void tty_wakeup(struct tty_struct *tty)
520 {
521         struct tty_ldisc *ld;
522
523         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
524                 ld = tty_ldisc_ref(tty);
525                 if (ld) {
526                         if (ld->ops->write_wakeup)
527                                 ld->ops->write_wakeup(tty);
528                         tty_ldisc_deref(ld);
529                 }
530         }
531         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
532 }
533
534 EXPORT_SYMBOL_GPL(tty_wakeup);
535
536 /**
537  *      __tty_hangup            -       actual handler for hangup events
538  *      @work: tty device
539  *
540  *      This can be called by the "eventd" kernel thread.  That is process
541  *      synchronous but doesn't hold any locks, so we need to make sure we
542  *      have the appropriate locks for what we're doing.
543  *
544  *      The hangup event clears any pending redirections onto the hung up
545  *      device. It ensures future writes will error and it does the needed
546  *      line discipline hangup and signal delivery. The tty object itself
547  *      remains intact.
548  *
549  *      Locking:
550  *              BTM
551  *                redirect lock for undoing redirection
552  *                file list lock for manipulating list of ttys
553  *                tty_ldisc_lock from called functions
554  *                termios_mutex resetting termios data
555  *                tasklist_lock to walk task list for hangup event
556  *                  ->siglock to protect ->signal/->sighand
557  */
558 void __tty_hangup(struct tty_struct *tty)
559 {
560         struct file *cons_filp = NULL;
561         struct file *filp, *f = NULL;
562         struct task_struct *p;
563         struct tty_file_private *priv;
564         int    closecount = 0, n;
565         unsigned long flags;
566         int refs = 0;
567
568         if (!tty)
569                 return;
570
571
572         spin_lock(&redirect_lock);
573         if (redirect && file_tty(redirect) == tty) {
574                 f = redirect;
575                 redirect = NULL;
576         }
577         spin_unlock(&redirect_lock);
578
579         tty_lock(tty);
580
581         /* some functions below drop BTM, so we need this bit */
582         set_bit(TTY_HUPPING, &tty->flags);
583
584         /* inuse_filps is protected by the single tty lock,
585            this really needs to change if we want to flush the
586            workqueue with the lock held */
587         check_tty_count(tty, "tty_hangup");
588
589         spin_lock(&tty_files_lock);
590         /* This breaks for file handles being sent over AF_UNIX sockets ? */
591         list_for_each_entry(priv, &tty->tty_files, list) {
592                 filp = priv->file;
593                 if (filp->f_op->write == redirected_tty_write)
594                         cons_filp = filp;
595                 if (filp->f_op->write != tty_write)
596                         continue;
597                 closecount++;
598                 __tty_fasync(-1, filp, 0);      /* can't block */
599                 filp->f_op = &hung_up_tty_fops;
600         }
601         spin_unlock(&tty_files_lock);
602
603         /*
604          * it drops BTM and thus races with reopen
605          * we protect the race by TTY_HUPPING
606          */
607         tty_ldisc_hangup(tty);
608
609         read_lock(&tasklist_lock);
610         if (tty->session) {
611                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
612                         spin_lock_irq(&p->sighand->siglock);
613                         if (p->signal->tty == tty) {
614                                 p->signal->tty = NULL;
615                                 /* We defer the dereferences outside fo
616                                    the tasklist lock */
617                                 refs++;
618                         }
619                         if (!p->signal->leader) {
620                                 spin_unlock_irq(&p->sighand->siglock);
621                                 continue;
622                         }
623                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
624                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
625                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
626                         spin_lock_irqsave(&tty->ctrl_lock, flags);
627                         if (tty->pgrp)
628                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
629                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
630                         spin_unlock_irq(&p->sighand->siglock);
631                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
632         }
633         read_unlock(&tasklist_lock);
634
635         spin_lock_irqsave(&tty->ctrl_lock, flags);
636         clear_bit(TTY_THROTTLED, &tty->flags);
637         clear_bit(TTY_PUSH, &tty->flags);
638         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
639         put_pid(tty->session);
640         put_pid(tty->pgrp);
641         tty->session = NULL;
642         tty->pgrp = NULL;
643         tty->ctrl_status = 0;
644         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
645
646         /* Account for the p->signal references we killed */
647         while (refs--)
648                 tty_kref_put(tty);
649
650         /*
651          * If one of the devices matches a console pointer, we
652          * cannot just call hangup() because that will cause
653          * tty->count and state->count to go out of sync.
654          * So we just call close() the right number of times.
655          */
656         if (cons_filp) {
657                 if (tty->ops->close)
658                         for (n = 0; n < closecount; n++)
659                                 tty->ops->close(tty, cons_filp);
660         } else if (tty->ops->hangup)
661                 (tty->ops->hangup)(tty);
662         /*
663          * We don't want to have driver/ldisc interactions beyond
664          * the ones we did here. The driver layer expects no
665          * calls after ->hangup() from the ldisc side. However we
666          * can't yet guarantee all that.
667          */
668         set_bit(TTY_HUPPED, &tty->flags);
669         clear_bit(TTY_HUPPING, &tty->flags);
670         tty_ldisc_enable(tty);
671
672         tty_unlock(tty);
673
674         if (f)
675                 fput(f);
676 }
677
678 static void do_tty_hangup(struct work_struct *work)
679 {
680         struct tty_struct *tty =
681                 container_of(work, struct tty_struct, hangup_work);
682
683         __tty_hangup(tty);
684 }
685
686 /**
687  *      tty_hangup              -       trigger a hangup event
688  *      @tty: tty to hangup
689  *
690  *      A carrier loss (virtual or otherwise) has occurred on this like
691  *      schedule a hangup sequence to run after this event.
692  */
693
694 void tty_hangup(struct tty_struct *tty)
695 {
696 #ifdef TTY_DEBUG_HANGUP
697         char    buf[64];
698         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
699 #endif
700         schedule_work(&tty->hangup_work);
701 }
702
703 EXPORT_SYMBOL(tty_hangup);
704
705 /**
706  *      tty_vhangup             -       process vhangup
707  *      @tty: tty to hangup
708  *
709  *      The user has asked via system call for the terminal to be hung up.
710  *      We do this synchronously so that when the syscall returns the process
711  *      is complete. That guarantee is necessary for security reasons.
712  */
713
714 void tty_vhangup(struct tty_struct *tty)
715 {
716 #ifdef TTY_DEBUG_HANGUP
717         char    buf[64];
718
719         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
720 #endif
721         __tty_hangup(tty);
722 }
723
724 EXPORT_SYMBOL(tty_vhangup);
725
726
727 /**
728  *      tty_vhangup_self        -       process vhangup for own ctty
729  *
730  *      Perform a vhangup on the current controlling tty
731  */
732
733 void tty_vhangup_self(void)
734 {
735         struct tty_struct *tty;
736
737         tty = get_current_tty();
738         if (tty) {
739                 tty_vhangup(tty);
740                 tty_kref_put(tty);
741         }
742 }
743
744 /**
745  *      tty_hung_up_p           -       was tty hung up
746  *      @filp: file pointer of tty
747  *
748  *      Return true if the tty has been subject to a vhangup or a carrier
749  *      loss
750  */
751
752 int tty_hung_up_p(struct file *filp)
753 {
754         return (filp->f_op == &hung_up_tty_fops);
755 }
756
757 EXPORT_SYMBOL(tty_hung_up_p);
758
759 static void session_clear_tty(struct pid *session)
760 {
761         struct task_struct *p;
762         do_each_pid_task(session, PIDTYPE_SID, p) {
763                 proc_clear_tty(p);
764         } while_each_pid_task(session, PIDTYPE_SID, p);
765 }
766
767 /**
768  *      disassociate_ctty       -       disconnect controlling tty
769  *      @on_exit: true if exiting so need to "hang up" the session
770  *
771  *      This function is typically called only by the session leader, when
772  *      it wants to disassociate itself from its controlling tty.
773  *
774  *      It performs the following functions:
775  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
776  *      (2)  Clears the tty from being controlling the session
777  *      (3)  Clears the controlling tty for all processes in the
778  *              session group.
779  *
780  *      The argument on_exit is set to 1 if called when a process is
781  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
782  *
783  *      Locking:
784  *              BTM is taken for hysterical raisins, and held when
785  *                called from no_tty().
786  *                tty_mutex is taken to protect tty
787  *                ->siglock is taken to protect ->signal/->sighand
788  *                tasklist_lock is taken to walk process list for sessions
789  *                  ->siglock is taken to protect ->signal/->sighand
790  */
791
792 void disassociate_ctty(int on_exit)
793 {
794         struct tty_struct *tty;
795
796         if (!current->signal->leader)
797                 return;
798
799         tty = get_current_tty();
800         if (tty) {
801                 struct pid *tty_pgrp = get_pid(tty->pgrp);
802                 if (on_exit) {
803                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
804                                 tty_vhangup(tty);
805                 }
806                 tty_kref_put(tty);
807                 if (tty_pgrp) {
808                         kill_pgrp(tty_pgrp, SIGHUP, on_exit);
809                         if (!on_exit)
810                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
811                         put_pid(tty_pgrp);
812                 }
813         } else if (on_exit) {
814                 struct pid *old_pgrp;
815                 spin_lock_irq(&current->sighand->siglock);
816                 old_pgrp = current->signal->tty_old_pgrp;
817                 current->signal->tty_old_pgrp = NULL;
818                 spin_unlock_irq(&current->sighand->siglock);
819                 if (old_pgrp) {
820                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
821                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
822                         put_pid(old_pgrp);
823                 }
824                 return;
825         }
826
827         spin_lock_irq(&current->sighand->siglock);
828         put_pid(current->signal->tty_old_pgrp);
829         current->signal->tty_old_pgrp = NULL;
830         spin_unlock_irq(&current->sighand->siglock);
831
832         tty = get_current_tty();
833         if (tty) {
834                 unsigned long flags;
835                 spin_lock_irqsave(&tty->ctrl_lock, flags);
836                 put_pid(tty->session);
837                 put_pid(tty->pgrp);
838                 tty->session = NULL;
839                 tty->pgrp = NULL;
840                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
841                 tty_kref_put(tty);
842         } else {
843 #ifdef TTY_DEBUG_HANGUP
844                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
845                        " = NULL", tty);
846 #endif
847         }
848
849         /* Now clear signal->tty under the lock */
850         read_lock(&tasklist_lock);
851         session_clear_tty(task_session(current));
852         read_unlock(&tasklist_lock);
853 }
854
855 /**
856  *
857  *      no_tty  - Ensure the current process does not have a controlling tty
858  */
859 void no_tty(void)
860 {
861         /* FIXME: Review locking here. The tty_lock never covered any race
862            between a new association and proc_clear_tty but possible we need
863            to protect against this anyway */
864         struct task_struct *tsk = current;
865         disassociate_ctty(0);
866         proc_clear_tty(tsk);
867 }
868
869
870 /**
871  *      stop_tty        -       propagate flow control
872  *      @tty: tty to stop
873  *
874  *      Perform flow control to the driver. For PTY/TTY pairs we
875  *      must also propagate the TIOCKPKT status. May be called
876  *      on an already stopped device and will not re-call the driver
877  *      method.
878  *
879  *      This functionality is used by both the line disciplines for
880  *      halting incoming flow and by the driver. It may therefore be
881  *      called from any context, may be under the tty atomic_write_lock
882  *      but not always.
883  *
884  *      Locking:
885  *              Uses the tty control lock internally
886  */
887
888 void stop_tty(struct tty_struct *tty)
889 {
890         unsigned long flags;
891         spin_lock_irqsave(&tty->ctrl_lock, flags);
892         if (tty->stopped) {
893                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
894                 return;
895         }
896         tty->stopped = 1;
897         if (tty->link && tty->link->packet) {
898                 tty->ctrl_status &= ~TIOCPKT_START;
899                 tty->ctrl_status |= TIOCPKT_STOP;
900                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
901         }
902         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
903         if (tty->ops->stop)
904                 (tty->ops->stop)(tty);
905 }
906
907 EXPORT_SYMBOL(stop_tty);
908
909 /**
910  *      start_tty       -       propagate flow control
911  *      @tty: tty to start
912  *
913  *      Start a tty that has been stopped if at all possible. Perform
914  *      any necessary wakeups and propagate the TIOCPKT status. If this
915  *      is the tty was previous stopped and is being started then the
916  *      driver start method is invoked and the line discipline woken.
917  *
918  *      Locking:
919  *              ctrl_lock
920  */
921
922 void start_tty(struct tty_struct *tty)
923 {
924         unsigned long flags;
925         spin_lock_irqsave(&tty->ctrl_lock, flags);
926         if (!tty->stopped || tty->flow_stopped) {
927                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
928                 return;
929         }
930         tty->stopped = 0;
931         if (tty->link && tty->link->packet) {
932                 tty->ctrl_status &= ~TIOCPKT_STOP;
933                 tty->ctrl_status |= TIOCPKT_START;
934                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
935         }
936         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
937         if (tty->ops->start)
938                 (tty->ops->start)(tty);
939         /* If we have a running line discipline it may need kicking */
940         tty_wakeup(tty);
941 }
942
943 EXPORT_SYMBOL(start_tty);
944
945 /**
946  *      tty_read        -       read method for tty device files
947  *      @file: pointer to tty file
948  *      @buf: user buffer
949  *      @count: size of user buffer
950  *      @ppos: unused
951  *
952  *      Perform the read system call function on this terminal device. Checks
953  *      for hung up devices before calling the line discipline method.
954  *
955  *      Locking:
956  *              Locks the line discipline internally while needed. Multiple
957  *      read calls may be outstanding in parallel.
958  */
959
960 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
961                         loff_t *ppos)
962 {
963         int i;
964         struct inode *inode = file->f_path.dentry->d_inode;
965         struct tty_struct *tty = file_tty(file);
966         struct tty_ldisc *ld;
967
968         if (tty_paranoia_check(tty, inode, "tty_read"))
969                 return -EIO;
970         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
971                 return -EIO;
972
973         /* We want to wait for the line discipline to sort out in this
974            situation */
975         ld = tty_ldisc_ref_wait(tty);
976         if (ld->ops->read)
977                 i = (ld->ops->read)(tty, file, buf, count);
978         else
979                 i = -EIO;
980         tty_ldisc_deref(ld);
981         if (i > 0)
982                 inode->i_atime = current_fs_time(inode->i_sb);
983         return i;
984 }
985
986 void tty_write_unlock(struct tty_struct *tty)
987         __releases(&tty->atomic_write_lock)
988 {
989         mutex_unlock(&tty->atomic_write_lock);
990         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
991 }
992
993 int tty_write_lock(struct tty_struct *tty, int ndelay)
994         __acquires(&tty->atomic_write_lock)
995 {
996         if (!mutex_trylock(&tty->atomic_write_lock)) {
997                 if (ndelay)
998                         return -EAGAIN;
999                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1000                         return -ERESTARTSYS;
1001         }
1002         return 0;
1003 }
1004
1005 /*
1006  * Split writes up in sane blocksizes to avoid
1007  * denial-of-service type attacks
1008  */
1009 static inline ssize_t do_tty_write(
1010         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1011         struct tty_struct *tty,
1012         struct file *file,
1013         const char __user *buf,
1014         size_t count)
1015 {
1016         ssize_t ret, written = 0;
1017         unsigned int chunk;
1018
1019         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1020         if (ret < 0)
1021                 return ret;
1022
1023         /*
1024          * We chunk up writes into a temporary buffer. This
1025          * simplifies low-level drivers immensely, since they
1026          * don't have locking issues and user mode accesses.
1027          *
1028          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1029          * big chunk-size..
1030          *
1031          * The default chunk-size is 2kB, because the NTTY
1032          * layer has problems with bigger chunks. It will
1033          * claim to be able to handle more characters than
1034          * it actually does.
1035          *
1036          * FIXME: This can probably go away now except that 64K chunks
1037          * are too likely to fail unless switched to vmalloc...
1038          */
1039         chunk = 2048;
1040         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1041                 chunk = 65536;
1042         if (count < chunk)
1043                 chunk = count;
1044
1045         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1046         if (tty->write_cnt < chunk) {
1047                 unsigned char *buf_chunk;
1048
1049                 if (chunk < 1024)
1050                         chunk = 1024;
1051
1052                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1053                 if (!buf_chunk) {
1054                         ret = -ENOMEM;
1055                         goto out;
1056                 }
1057                 kfree(tty->write_buf);
1058                 tty->write_cnt = chunk;
1059                 tty->write_buf = buf_chunk;
1060         }
1061
1062         /* Do the write .. */
1063         for (;;) {
1064                 size_t size = count;
1065                 if (size > chunk)
1066                         size = chunk;
1067                 ret = -EFAULT;
1068                 if (copy_from_user(tty->write_buf, buf, size))
1069                         break;
1070                 ret = write(tty, file, tty->write_buf, size);
1071                 if (ret <= 0)
1072                         break;
1073                 written += ret;
1074                 buf += ret;
1075                 count -= ret;
1076                 if (!count)
1077                         break;
1078                 ret = -ERESTARTSYS;
1079                 if (signal_pending(current))
1080                         break;
1081                 cond_resched();
1082         }
1083         if (written) {
1084                 struct inode *inode = file->f_path.dentry->d_inode;
1085                 inode->i_mtime = current_fs_time(inode->i_sb);
1086                 ret = written;
1087         }
1088 out:
1089         tty_write_unlock(tty);
1090         return ret;
1091 }
1092
1093 /**
1094  * tty_write_message - write a message to a certain tty, not just the console.
1095  * @tty: the destination tty_struct
1096  * @msg: the message to write
1097  *
1098  * This is used for messages that need to be redirected to a specific tty.
1099  * We don't put it into the syslog queue right now maybe in the future if
1100  * really needed.
1101  *
1102  * We must still hold the BTM and test the CLOSING flag for the moment.
1103  */
1104
1105 void tty_write_message(struct tty_struct *tty, char *msg)
1106 {
1107         if (tty) {
1108                 mutex_lock(&tty->atomic_write_lock);
1109                 tty_lock(tty);
1110                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1111                         tty_unlock(tty);
1112                         tty->ops->write(tty, msg, strlen(msg));
1113                 } else
1114                         tty_unlock(tty);
1115                 tty_write_unlock(tty);
1116         }
1117         return;
1118 }
1119
1120
1121 /**
1122  *      tty_write               -       write method for tty device file
1123  *      @file: tty file pointer
1124  *      @buf: user data to write
1125  *      @count: bytes to write
1126  *      @ppos: unused
1127  *
1128  *      Write data to a tty device via the line discipline.
1129  *
1130  *      Locking:
1131  *              Locks the line discipline as required
1132  *              Writes to the tty driver are serialized by the atomic_write_lock
1133  *      and are then processed in chunks to the device. The line discipline
1134  *      write method will not be invoked in parallel for each device.
1135  */
1136
1137 static ssize_t tty_write(struct file *file, const char __user *buf,
1138                                                 size_t count, loff_t *ppos)
1139 {
1140         struct inode *inode = file->f_path.dentry->d_inode;
1141         struct tty_struct *tty = file_tty(file);
1142         struct tty_ldisc *ld;
1143         ssize_t ret;
1144
1145         if (tty_paranoia_check(tty, inode, "tty_write"))
1146                 return -EIO;
1147         if (!tty || !tty->ops->write ||
1148                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1149                         return -EIO;
1150         /* Short term debug to catch buggy drivers */
1151         if (tty->ops->write_room == NULL)
1152                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1153                         tty->driver->name);
1154         ld = tty_ldisc_ref_wait(tty);
1155         if (!ld->ops->write)
1156                 ret = -EIO;
1157         else
1158                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1159         tty_ldisc_deref(ld);
1160         return ret;
1161 }
1162
1163 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1164                                                 size_t count, loff_t *ppos)
1165 {
1166         struct file *p = NULL;
1167
1168         spin_lock(&redirect_lock);
1169         if (redirect) {
1170                 get_file(redirect);
1171                 p = redirect;
1172         }
1173         spin_unlock(&redirect_lock);
1174
1175         if (p) {
1176                 ssize_t res;
1177                 res = vfs_write(p, buf, count, &p->f_pos);
1178                 fput(p);
1179                 return res;
1180         }
1181         return tty_write(file, buf, count, ppos);
1182 }
1183
1184 static char ptychar[] = "pqrstuvwxyzabcde";
1185
1186 /**
1187  *      pty_line_name   -       generate name for a pty
1188  *      @driver: the tty driver in use
1189  *      @index: the minor number
1190  *      @p: output buffer of at least 6 bytes
1191  *
1192  *      Generate a name from a driver reference and write it to the output
1193  *      buffer.
1194  *
1195  *      Locking: None
1196  */
1197 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1198 {
1199         int i = index + driver->name_base;
1200         /* ->name is initialized to "ttyp", but "tty" is expected */
1201         sprintf(p, "%s%c%x",
1202                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1203                 ptychar[i >> 4 & 0xf], i & 0xf);
1204 }
1205
1206 /**
1207  *      tty_line_name   -       generate name for a tty
1208  *      @driver: the tty driver in use
1209  *      @index: the minor number
1210  *      @p: output buffer of at least 7 bytes
1211  *
1212  *      Generate a name from a driver reference and write it to the output
1213  *      buffer.
1214  *
1215  *      Locking: None
1216  */
1217 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1218 {
1219         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1220 }
1221
1222 /**
1223  *      tty_driver_lookup_tty() - find an existing tty, if any
1224  *      @driver: the driver for the tty
1225  *      @idx:    the minor number
1226  *
1227  *      Return the tty, if found or ERR_PTR() otherwise.
1228  *
1229  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1230  *      be held until the 'fast-open' is also done. Will change once we
1231  *      have refcounting in the driver and per driver locking
1232  */
1233 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1234                 struct inode *inode, int idx)
1235 {
1236         if (driver->ops->lookup)
1237                 return driver->ops->lookup(driver, inode, idx);
1238
1239         return driver->ttys[idx];
1240 }
1241
1242 /**
1243  *      tty_init_termios        -  helper for termios setup
1244  *      @tty: the tty to set up
1245  *
1246  *      Initialise the termios structures for this tty. Thus runs under
1247  *      the tty_mutex currently so we can be relaxed about ordering.
1248  */
1249
1250 int tty_init_termios(struct tty_struct *tty)
1251 {
1252         struct ktermios *tp;
1253         int idx = tty->index;
1254
1255         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1256                 tty->termios = tty->driver->init_termios;
1257         else {
1258                 /* Check for lazy saved data */
1259                 tp = tty->driver->termios[idx];
1260                 if (tp != NULL)
1261                         tty->termios = *tp;
1262                 else
1263                         tty->termios = tty->driver->init_termios;
1264         }
1265         /* Compatibility until drivers always set this */
1266         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1267         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1268         return 0;
1269 }
1270 EXPORT_SYMBOL_GPL(tty_init_termios);
1271
1272 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1273 {
1274         int ret = tty_init_termios(tty);
1275         if (ret)
1276                 return ret;
1277
1278         tty_driver_kref_get(driver);
1279         tty->count++;
1280         driver->ttys[tty->index] = tty;
1281         return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(tty_standard_install);
1284
1285 /**
1286  *      tty_driver_install_tty() - install a tty entry in the driver
1287  *      @driver: the driver for the tty
1288  *      @tty: the tty
1289  *
1290  *      Install a tty object into the driver tables. The tty->index field
1291  *      will be set by the time this is called. This method is responsible
1292  *      for ensuring any need additional structures are allocated and
1293  *      configured.
1294  *
1295  *      Locking: tty_mutex for now
1296  */
1297 static int tty_driver_install_tty(struct tty_driver *driver,
1298                                                 struct tty_struct *tty)
1299 {
1300         return driver->ops->install ? driver->ops->install(driver, tty) :
1301                 tty_standard_install(driver, tty);
1302 }
1303
1304 /**
1305  *      tty_driver_remove_tty() - remove a tty from the driver tables
1306  *      @driver: the driver for the tty
1307  *      @idx:    the minor number
1308  *
1309  *      Remvoe a tty object from the driver tables. The tty->index field
1310  *      will be set by the time this is called.
1311  *
1312  *      Locking: tty_mutex for now
1313  */
1314 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1315 {
1316         if (driver->ops->remove)
1317                 driver->ops->remove(driver, tty);
1318         else
1319                 driver->ttys[tty->index] = NULL;
1320 }
1321
1322 /*
1323  *      tty_reopen()    - fast re-open of an open tty
1324  *      @tty    - the tty to open
1325  *
1326  *      Return 0 on success, -errno on error.
1327  *
1328  *      Locking: tty_mutex must be held from the time the tty was found
1329  *               till this open completes.
1330  */
1331 static int tty_reopen(struct tty_struct *tty)
1332 {
1333         struct tty_driver *driver = tty->driver;
1334
1335         if (test_bit(TTY_CLOSING, &tty->flags) ||
1336                         test_bit(TTY_HUPPING, &tty->flags) ||
1337                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1338                 return -EIO;
1339
1340         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1341             driver->subtype == PTY_TYPE_MASTER) {
1342                 /*
1343                  * special case for PTY masters: only one open permitted,
1344                  * and the slave side open count is incremented as well.
1345                  */
1346                 if (tty->count)
1347                         return -EIO;
1348
1349                 tty->link->count++;
1350         }
1351         tty->count++;
1352
1353         mutex_lock(&tty->ldisc_mutex);
1354         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1355         mutex_unlock(&tty->ldisc_mutex);
1356
1357         return 0;
1358 }
1359
1360 /**
1361  *      tty_init_dev            -       initialise a tty device
1362  *      @driver: tty driver we are opening a device on
1363  *      @idx: device index
1364  *      @ret_tty: returned tty structure
1365  *
1366  *      Prepare a tty device. This may not be a "new" clean device but
1367  *      could also be an active device. The pty drivers require special
1368  *      handling because of this.
1369  *
1370  *      Locking:
1371  *              The function is called under the tty_mutex, which
1372  *      protects us from the tty struct or driver itself going away.
1373  *
1374  *      On exit the tty device has the line discipline attached and
1375  *      a reference count of 1. If a pair was created for pty/tty use
1376  *      and the other was a pty master then it too has a reference count of 1.
1377  *
1378  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1379  * failed open.  The new code protects the open with a mutex, so it's
1380  * really quite straightforward.  The mutex locking can probably be
1381  * relaxed for the (most common) case of reopening a tty.
1382  */
1383
1384 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1385 {
1386         struct tty_struct *tty;
1387         int retval;
1388
1389         /*
1390          * First time open is complex, especially for PTY devices.
1391          * This code guarantees that either everything succeeds and the
1392          * TTY is ready for operation, or else the table slots are vacated
1393          * and the allocated memory released.  (Except that the termios
1394          * and locked termios may be retained.)
1395          */
1396
1397         if (!try_module_get(driver->owner))
1398                 return ERR_PTR(-ENODEV);
1399
1400         tty = alloc_tty_struct();
1401         if (!tty) {
1402                 retval = -ENOMEM;
1403                 goto err_module_put;
1404         }
1405         initialize_tty_struct(tty, driver, idx);
1406
1407         tty_lock(tty);
1408         retval = tty_driver_install_tty(driver, tty);
1409         if (retval < 0)
1410                 goto err_deinit_tty;
1411
1412         if (!tty->port)
1413                 tty->port = driver->ports[idx];
1414
1415         /*
1416          * Structures all installed ... call the ldisc open routines.
1417          * If we fail here just call release_tty to clean up.  No need
1418          * to decrement the use counts, as release_tty doesn't care.
1419          */
1420         retval = tty_ldisc_setup(tty, tty->link);
1421         if (retval)
1422                 goto err_release_tty;
1423         /* Return the tty locked so that it cannot vanish under the caller */
1424         return tty;
1425
1426 err_deinit_tty:
1427         tty_unlock(tty);
1428         deinitialize_tty_struct(tty);
1429         free_tty_struct(tty);
1430 err_module_put:
1431         module_put(driver->owner);
1432         return ERR_PTR(retval);
1433
1434         /* call the tty release_tty routine to clean out this slot */
1435 err_release_tty:
1436         tty_unlock(tty);
1437         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1438                                  "clearing slot %d\n", idx);
1439         release_tty(tty, idx);
1440         return ERR_PTR(retval);
1441 }
1442
1443 void tty_free_termios(struct tty_struct *tty)
1444 {
1445         struct ktermios *tp;
1446         int idx = tty->index;
1447
1448         /* If the port is going to reset then it has no termios to save */
1449         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1450                 return;
1451
1452         /* Stash the termios data */
1453         tp = tty->driver->termios[idx];
1454         if (tp == NULL) {
1455                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1456                 if (tp == NULL) {
1457                         pr_warn("tty: no memory to save termios state.\n");
1458                         return;
1459                 }
1460                 tty->driver->termios[idx] = tp;
1461         }
1462         *tp = tty->termios;
1463 }
1464 EXPORT_SYMBOL(tty_free_termios);
1465
1466
1467 /**
1468  *      release_one_tty         -       release tty structure memory
1469  *      @kref: kref of tty we are obliterating
1470  *
1471  *      Releases memory associated with a tty structure, and clears out the
1472  *      driver table slots. This function is called when a device is no longer
1473  *      in use. It also gets called when setup of a device fails.
1474  *
1475  *      Locking:
1476  *              takes the file list lock internally when working on the list
1477  *      of ttys that the driver keeps.
1478  *
1479  *      This method gets called from a work queue so that the driver private
1480  *      cleanup ops can sleep (needed for USB at least)
1481  */
1482 static void release_one_tty(struct work_struct *work)
1483 {
1484         struct tty_struct *tty =
1485                 container_of(work, struct tty_struct, hangup_work);
1486         struct tty_driver *driver = tty->driver;
1487
1488         if (tty->ops->cleanup)
1489                 tty->ops->cleanup(tty);
1490
1491         tty->magic = 0;
1492         tty_driver_kref_put(driver);
1493         module_put(driver->owner);
1494
1495         spin_lock(&tty_files_lock);
1496         list_del_init(&tty->tty_files);
1497         spin_unlock(&tty_files_lock);
1498
1499         put_pid(tty->pgrp);
1500         put_pid(tty->session);
1501         free_tty_struct(tty);
1502 }
1503
1504 static void queue_release_one_tty(struct kref *kref)
1505 {
1506         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1507
1508         /* The hangup queue is now free so we can reuse it rather than
1509            waste a chunk of memory for each port */
1510         INIT_WORK(&tty->hangup_work, release_one_tty);
1511         schedule_work(&tty->hangup_work);
1512 }
1513
1514 /**
1515  *      tty_kref_put            -       release a tty kref
1516  *      @tty: tty device
1517  *
1518  *      Release a reference to a tty device and if need be let the kref
1519  *      layer destruct the object for us
1520  */
1521
1522 void tty_kref_put(struct tty_struct *tty)
1523 {
1524         if (tty)
1525                 kref_put(&tty->kref, queue_release_one_tty);
1526 }
1527 EXPORT_SYMBOL(tty_kref_put);
1528
1529 /**
1530  *      release_tty             -       release tty structure memory
1531  *
1532  *      Release both @tty and a possible linked partner (think pty pair),
1533  *      and decrement the refcount of the backing module.
1534  *
1535  *      Locking:
1536  *              tty_mutex
1537  *              takes the file list lock internally when working on the list
1538  *      of ttys that the driver keeps.
1539  *
1540  */
1541 static void release_tty(struct tty_struct *tty, int idx)
1542 {
1543         /* This should always be true but check for the moment */
1544         WARN_ON(tty->index != idx);
1545         WARN_ON(!mutex_is_locked(&tty_mutex));
1546         if (tty->ops->shutdown)
1547                 tty->ops->shutdown(tty);
1548         tty_free_termios(tty);
1549         tty_driver_remove_tty(tty->driver, tty);
1550
1551         if (tty->link)
1552                 tty_kref_put(tty->link);
1553         tty_kref_put(tty);
1554 }
1555
1556 /**
1557  *      tty_release_checks - check a tty before real release
1558  *      @tty: tty to check
1559  *      @o_tty: link of @tty (if any)
1560  *      @idx: index of the tty
1561  *
1562  *      Performs some paranoid checking before true release of the @tty.
1563  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1564  */
1565 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1566                 int idx)
1567 {
1568 #ifdef TTY_PARANOIA_CHECK
1569         if (idx < 0 || idx >= tty->driver->num) {
1570                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1571                                 __func__, tty->name);
1572                 return -1;
1573         }
1574
1575         /* not much to check for devpts */
1576         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1577                 return 0;
1578
1579         if (tty != tty->driver->ttys[idx]) {
1580                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1581                                 __func__, idx, tty->name);
1582                 return -1;
1583         }
1584         if (tty->driver->other) {
1585                 if (o_tty != tty->driver->other->ttys[idx]) {
1586                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1587                                         __func__, idx, tty->name);
1588                         return -1;
1589                 }
1590                 if (o_tty->link != tty) {
1591                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1592                         return -1;
1593                 }
1594         }
1595 #endif
1596         return 0;
1597 }
1598
1599 /**
1600  *      tty_release             -       vfs callback for close
1601  *      @inode: inode of tty
1602  *      @filp: file pointer for handle to tty
1603  *
1604  *      Called the last time each file handle is closed that references
1605  *      this tty. There may however be several such references.
1606  *
1607  *      Locking:
1608  *              Takes bkl. See tty_release_dev
1609  *
1610  * Even releasing the tty structures is a tricky business.. We have
1611  * to be very careful that the structures are all released at the
1612  * same time, as interrupts might otherwise get the wrong pointers.
1613  *
1614  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1615  * lead to double frees or releasing memory still in use.
1616  */
1617
1618 int tty_release(struct inode *inode, struct file *filp)
1619 {
1620         struct tty_struct *tty = file_tty(filp);
1621         struct tty_struct *o_tty;
1622         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1623         int     devpts;
1624         int     idx;
1625         char    buf[64];
1626
1627         if (tty_paranoia_check(tty, inode, __func__))
1628                 return 0;
1629
1630         tty_lock(tty);
1631         check_tty_count(tty, __func__);
1632
1633         __tty_fasync(-1, filp, 0);
1634
1635         idx = tty->index;
1636         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1637                       tty->driver->subtype == PTY_TYPE_MASTER);
1638         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1639         /* Review: parallel close */
1640         o_tty = tty->link;
1641
1642         if (tty_release_checks(tty, o_tty, idx)) {
1643                 tty_unlock(tty);
1644                 return 0;
1645         }
1646
1647 #ifdef TTY_DEBUG_HANGUP
1648         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1649                         tty_name(tty, buf), tty->count);
1650 #endif
1651
1652         if (tty->ops->close)
1653                 tty->ops->close(tty, filp);
1654
1655         tty_unlock(tty);
1656         /*
1657          * Sanity check: if tty->count is going to zero, there shouldn't be
1658          * any waiters on tty->read_wait or tty->write_wait.  We test the
1659          * wait queues and kick everyone out _before_ actually starting to
1660          * close.  This ensures that we won't block while releasing the tty
1661          * structure.
1662          *
1663          * The test for the o_tty closing is necessary, since the master and
1664          * slave sides may close in any order.  If the slave side closes out
1665          * first, its count will be one, since the master side holds an open.
1666          * Thus this test wouldn't be triggered at the time the slave closes,
1667          * so we do it now.
1668          *
1669          * Note that it's possible for the tty to be opened again while we're
1670          * flushing out waiters.  By recalculating the closing flags before
1671          * each iteration we avoid any problems.
1672          */
1673         while (1) {
1674                 /* Guard against races with tty->count changes elsewhere and
1675                    opens on /dev/tty */
1676
1677                 mutex_lock(&tty_mutex);
1678                 tty_lock_pair(tty, o_tty);
1679                 tty_closing = tty->count <= 1;
1680                 o_tty_closing = o_tty &&
1681                         (o_tty->count <= (pty_master ? 1 : 0));
1682                 do_sleep = 0;
1683
1684                 if (tty_closing) {
1685                         if (waitqueue_active(&tty->read_wait)) {
1686                                 wake_up_poll(&tty->read_wait, POLLIN);
1687                                 do_sleep++;
1688                         }
1689                         if (waitqueue_active(&tty->write_wait)) {
1690                                 wake_up_poll(&tty->write_wait, POLLOUT);
1691                                 do_sleep++;
1692                         }
1693                 }
1694                 if (o_tty_closing) {
1695                         if (waitqueue_active(&o_tty->read_wait)) {
1696                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1697                                 do_sleep++;
1698                         }
1699                         if (waitqueue_active(&o_tty->write_wait)) {
1700                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1701                                 do_sleep++;
1702                         }
1703                 }
1704                 if (!do_sleep)
1705                         break;
1706
1707                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1708                                 __func__, tty_name(tty, buf));
1709                 tty_unlock_pair(tty, o_tty);
1710                 mutex_unlock(&tty_mutex);
1711                 schedule();
1712         }
1713
1714         /*
1715          * The closing flags are now consistent with the open counts on
1716          * both sides, and we've completed the last operation that could
1717          * block, so it's safe to proceed with closing.
1718          *
1719          * We must *not* drop the tty_mutex until we ensure that a further
1720          * entry into tty_open can not pick up this tty.
1721          */
1722         if (pty_master) {
1723                 if (--o_tty->count < 0) {
1724                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1725                                 __func__, o_tty->count, tty_name(o_tty, buf));
1726                         o_tty->count = 0;
1727                 }
1728         }
1729         if (--tty->count < 0) {
1730                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1731                                 __func__, tty->count, tty_name(tty, buf));
1732                 tty->count = 0;
1733         }
1734
1735         /*
1736          * We've decremented tty->count, so we need to remove this file
1737          * descriptor off the tty->tty_files list; this serves two
1738          * purposes:
1739          *  - check_tty_count sees the correct number of file descriptors
1740          *    associated with this tty.
1741          *  - do_tty_hangup no longer sees this file descriptor as
1742          *    something that needs to be handled for hangups.
1743          */
1744         tty_del_file(filp);
1745
1746         /*
1747          * Perform some housekeeping before deciding whether to return.
1748          *
1749          * Set the TTY_CLOSING flag if this was the last open.  In the
1750          * case of a pty we may have to wait around for the other side
1751          * to close, and TTY_CLOSING makes sure we can't be reopened.
1752          */
1753         if (tty_closing)
1754                 set_bit(TTY_CLOSING, &tty->flags);
1755         if (o_tty_closing)
1756                 set_bit(TTY_CLOSING, &o_tty->flags);
1757
1758         /*
1759          * If _either_ side is closing, make sure there aren't any
1760          * processes that still think tty or o_tty is their controlling
1761          * tty.
1762          */
1763         if (tty_closing || o_tty_closing) {
1764                 read_lock(&tasklist_lock);
1765                 session_clear_tty(tty->session);
1766                 if (o_tty)
1767                         session_clear_tty(o_tty->session);
1768                 read_unlock(&tasklist_lock);
1769         }
1770
1771         mutex_unlock(&tty_mutex);
1772         tty_unlock_pair(tty, o_tty);
1773         /* At this point the TTY_CLOSING flag should ensure a dead tty
1774            cannot be re-opened by a racing opener */
1775
1776         /* check whether both sides are closing ... */
1777         if (!tty_closing || (o_tty && !o_tty_closing))
1778                 return 0;
1779
1780 #ifdef TTY_DEBUG_HANGUP
1781         printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1782 #endif
1783         /*
1784          * Ask the line discipline code to release its structures
1785          */
1786         tty_ldisc_release(tty, o_tty);
1787         /*
1788          * The release_tty function takes care of the details of clearing
1789          * the slots and preserving the termios structure. The tty_unlock_pair
1790          * should be safe as we keep a kref while the tty is locked (so the
1791          * unlock never unlocks a freed tty).
1792          */
1793         mutex_lock(&tty_mutex);
1794         release_tty(tty, idx);
1795         mutex_unlock(&tty_mutex);
1796
1797         /* Make this pty number available for reallocation */
1798         if (devpts)
1799                 devpts_kill_index(inode, idx);
1800         return 0;
1801 }
1802
1803 /**
1804  *      tty_open_current_tty - get tty of current task for open
1805  *      @device: device number
1806  *      @filp: file pointer to tty
1807  *      @return: tty of the current task iff @device is /dev/tty
1808  *
1809  *      We cannot return driver and index like for the other nodes because
1810  *      devpts will not work then. It expects inodes to be from devpts FS.
1811  *
1812  *      We need to move to returning a refcounted object from all the lookup
1813  *      paths including this one.
1814  */
1815 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1816 {
1817         struct tty_struct *tty;
1818
1819         if (device != MKDEV(TTYAUX_MAJOR, 0))
1820                 return NULL;
1821
1822         tty = get_current_tty();
1823         if (!tty)
1824                 return ERR_PTR(-ENXIO);
1825
1826         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1827         /* noctty = 1; */
1828         tty_kref_put(tty);
1829         /* FIXME: we put a reference and return a TTY! */
1830         /* This is only safe because the caller holds tty_mutex */
1831         return tty;
1832 }
1833
1834 /**
1835  *      tty_lookup_driver - lookup a tty driver for a given device file
1836  *      @device: device number
1837  *      @filp: file pointer to tty
1838  *      @noctty: set if the device should not become a controlling tty
1839  *      @index: index for the device in the @return driver
1840  *      @return: driver for this inode (with increased refcount)
1841  *
1842  *      If @return is not erroneous, the caller is responsible to decrement the
1843  *      refcount by tty_driver_kref_put.
1844  *
1845  *      Locking: tty_mutex protects get_tty_driver
1846  */
1847 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1848                 int *noctty, int *index)
1849 {
1850         struct tty_driver *driver;
1851
1852         switch (device) {
1853 #ifdef CONFIG_VT
1854         case MKDEV(TTY_MAJOR, 0): {
1855                 extern struct tty_driver *console_driver;
1856                 driver = tty_driver_kref_get(console_driver);
1857                 *index = fg_console;
1858                 *noctty = 1;
1859                 break;
1860         }
1861 #endif
1862         case MKDEV(TTYAUX_MAJOR, 1): {
1863                 struct tty_driver *console_driver = console_device(index);
1864                 if (console_driver) {
1865                         driver = tty_driver_kref_get(console_driver);
1866                         if (driver) {
1867                                 /* Don't let /dev/console block */
1868                                 filp->f_flags |= O_NONBLOCK;
1869                                 *noctty = 1;
1870                                 break;
1871                         }
1872                 }
1873                 return ERR_PTR(-ENODEV);
1874         }
1875         default:
1876                 driver = get_tty_driver(device, index);
1877                 if (!driver)
1878                         return ERR_PTR(-ENODEV);
1879                 break;
1880         }
1881         return driver;
1882 }
1883
1884 /**
1885  *      tty_open                -       open a tty device
1886  *      @inode: inode of device file
1887  *      @filp: file pointer to tty
1888  *
1889  *      tty_open and tty_release keep up the tty count that contains the
1890  *      number of opens done on a tty. We cannot use the inode-count, as
1891  *      different inodes might point to the same tty.
1892  *
1893  *      Open-counting is needed for pty masters, as well as for keeping
1894  *      track of serial lines: DTR is dropped when the last close happens.
1895  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1896  *
1897  *      The termios state of a pty is reset on first open so that
1898  *      settings don't persist across reuse.
1899  *
1900  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1901  *               tty->count should protect the rest.
1902  *               ->siglock protects ->signal/->sighand
1903  *
1904  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1905  *      tty_mutex
1906  */
1907
1908 static int tty_open(struct inode *inode, struct file *filp)
1909 {
1910         struct tty_struct *tty;
1911         int noctty, retval;
1912         struct tty_driver *driver = NULL;
1913         int index;
1914         dev_t device = inode->i_rdev;
1915         unsigned saved_flags = filp->f_flags;
1916
1917         nonseekable_open(inode, filp);
1918
1919 retry_open:
1920         retval = tty_alloc_file(filp);
1921         if (retval)
1922                 return -ENOMEM;
1923
1924         noctty = filp->f_flags & O_NOCTTY;
1925         index  = -1;
1926         retval = 0;
1927
1928         mutex_lock(&tty_mutex);
1929         /* This is protected by the tty_mutex */
1930         tty = tty_open_current_tty(device, filp);
1931         if (IS_ERR(tty)) {
1932                 retval = PTR_ERR(tty);
1933                 goto err_unlock;
1934         } else if (!tty) {
1935                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1936                 if (IS_ERR(driver)) {
1937                         retval = PTR_ERR(driver);
1938                         goto err_unlock;
1939                 }
1940
1941                 /* check whether we're reopening an existing tty */
1942                 tty = tty_driver_lookup_tty(driver, inode, index);
1943                 if (IS_ERR(tty)) {
1944                         retval = PTR_ERR(tty);
1945                         goto err_unlock;
1946                 }
1947         }
1948
1949         if (tty) {
1950                 tty_lock(tty);
1951                 retval = tty_reopen(tty);
1952                 if (retval < 0) {
1953                         tty_unlock(tty);
1954                         tty = ERR_PTR(retval);
1955                 }
1956         } else  /* Returns with the tty_lock held for now */
1957                 tty = tty_init_dev(driver, index);
1958
1959         mutex_unlock(&tty_mutex);
1960         if (driver)
1961                 tty_driver_kref_put(driver);
1962         if (IS_ERR(tty)) {
1963                 retval = PTR_ERR(tty);
1964                 goto err_file;
1965         }
1966
1967         tty_add_file(tty, filp);
1968
1969         check_tty_count(tty, __func__);
1970         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1971             tty->driver->subtype == PTY_TYPE_MASTER)
1972                 noctty = 1;
1973 #ifdef TTY_DEBUG_HANGUP
1974         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1975 #endif
1976         if (tty->ops->open)
1977                 retval = tty->ops->open(tty, filp);
1978         else
1979                 retval = -ENODEV;
1980         filp->f_flags = saved_flags;
1981
1982         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1983                                                 !capable(CAP_SYS_ADMIN))
1984                 retval = -EBUSY;
1985
1986         if (retval) {
1987 #ifdef TTY_DEBUG_HANGUP
1988                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1989                                 retval, tty->name);
1990 #endif
1991                 tty_unlock(tty); /* need to call tty_release without BTM */
1992                 tty_release(inode, filp);
1993                 if (retval != -ERESTARTSYS)
1994                         return retval;
1995
1996                 if (signal_pending(current))
1997                         return retval;
1998
1999                 schedule();
2000                 /*
2001                  * Need to reset f_op in case a hangup happened.
2002                  */
2003                 if (filp->f_op == &hung_up_tty_fops)
2004                         filp->f_op = &tty_fops;
2005                 goto retry_open;
2006         }
2007         tty_unlock(tty);
2008
2009
2010         mutex_lock(&tty_mutex);
2011         tty_lock(tty);
2012         spin_lock_irq(&current->sighand->siglock);
2013         if (!noctty &&
2014             current->signal->leader &&
2015             !current->signal->tty &&
2016             tty->session == NULL)
2017                 __proc_set_tty(current, tty);
2018         spin_unlock_irq(&current->sighand->siglock);
2019         tty_unlock(tty);
2020         mutex_unlock(&tty_mutex);
2021         return 0;
2022 err_unlock:
2023         mutex_unlock(&tty_mutex);
2024         /* after locks to avoid deadlock */
2025         if (!IS_ERR_OR_NULL(driver))
2026                 tty_driver_kref_put(driver);
2027 err_file:
2028         tty_free_file(filp);
2029         return retval;
2030 }
2031
2032
2033
2034 /**
2035  *      tty_poll        -       check tty status
2036  *      @filp: file being polled
2037  *      @wait: poll wait structures to update
2038  *
2039  *      Call the line discipline polling method to obtain the poll
2040  *      status of the device.
2041  *
2042  *      Locking: locks called line discipline but ldisc poll method
2043  *      may be re-entered freely by other callers.
2044  */
2045
2046 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2047 {
2048         struct tty_struct *tty = file_tty(filp);
2049         struct tty_ldisc *ld;
2050         int ret = 0;
2051
2052         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2053                 return 0;
2054
2055         ld = tty_ldisc_ref_wait(tty);
2056         if (ld->ops->poll)
2057                 ret = (ld->ops->poll)(tty, filp, wait);
2058         tty_ldisc_deref(ld);
2059         return ret;
2060 }
2061
2062 static int __tty_fasync(int fd, struct file *filp, int on)
2063 {
2064         struct tty_struct *tty = file_tty(filp);
2065         unsigned long flags;
2066         int retval = 0;
2067
2068         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2069                 goto out;
2070
2071         retval = fasync_helper(fd, filp, on, &tty->fasync);
2072         if (retval <= 0)
2073                 goto out;
2074
2075         if (on) {
2076                 enum pid_type type;
2077                 struct pid *pid;
2078                 if (!waitqueue_active(&tty->read_wait))
2079                         tty->minimum_to_wake = 1;
2080                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2081                 if (tty->pgrp) {
2082                         pid = tty->pgrp;
2083                         type = PIDTYPE_PGID;
2084                 } else {
2085                         pid = task_pid(current);
2086                         type = PIDTYPE_PID;
2087                 }
2088                 get_pid(pid);
2089                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2090                 retval = __f_setown(filp, pid, type, 0);
2091                 put_pid(pid);
2092                 if (retval)
2093                         goto out;
2094         } else {
2095                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2096                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2097         }
2098         retval = 0;
2099 out:
2100         return retval;
2101 }
2102
2103 static int tty_fasync(int fd, struct file *filp, int on)
2104 {
2105         struct tty_struct *tty = file_tty(filp);
2106         int retval;
2107
2108         tty_lock(tty);
2109         retval = __tty_fasync(fd, filp, on);
2110         tty_unlock(tty);
2111
2112         return retval;
2113 }
2114
2115 /**
2116  *      tiocsti                 -       fake input character
2117  *      @tty: tty to fake input into
2118  *      @p: pointer to character
2119  *
2120  *      Fake input to a tty device. Does the necessary locking and
2121  *      input management.
2122  *
2123  *      FIXME: does not honour flow control ??
2124  *
2125  *      Locking:
2126  *              Called functions take tty_ldisc_lock
2127  *              current->signal->tty check is safe without locks
2128  *
2129  *      FIXME: may race normal receive processing
2130  */
2131
2132 static int tiocsti(struct tty_struct *tty, char __user *p)
2133 {
2134         char ch, mbz = 0;
2135         struct tty_ldisc *ld;
2136
2137         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2138                 return -EPERM;
2139         if (get_user(ch, p))
2140                 return -EFAULT;
2141         tty_audit_tiocsti(tty, ch);
2142         ld = tty_ldisc_ref_wait(tty);
2143         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2144         tty_ldisc_deref(ld);
2145         return 0;
2146 }
2147
2148 /**
2149  *      tiocgwinsz              -       implement window query ioctl
2150  *      @tty; tty
2151  *      @arg: user buffer for result
2152  *
2153  *      Copies the kernel idea of the window size into the user buffer.
2154  *
2155  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2156  *              is consistent.
2157  */
2158
2159 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2160 {
2161         int err;
2162
2163         mutex_lock(&tty->termios_mutex);
2164         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2165         mutex_unlock(&tty->termios_mutex);
2166
2167         return err ? -EFAULT: 0;
2168 }
2169
2170 /**
2171  *      tty_do_resize           -       resize event
2172  *      @tty: tty being resized
2173  *      @rows: rows (character)
2174  *      @cols: cols (character)
2175  *
2176  *      Update the termios variables and send the necessary signals to
2177  *      peform a terminal resize correctly
2178  */
2179
2180 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2181 {
2182         struct pid *pgrp;
2183         unsigned long flags;
2184
2185         /* Lock the tty */
2186         mutex_lock(&tty->termios_mutex);
2187         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2188                 goto done;
2189         /* Get the PID values and reference them so we can
2190            avoid holding the tty ctrl lock while sending signals */
2191         spin_lock_irqsave(&tty->ctrl_lock, flags);
2192         pgrp = get_pid(tty->pgrp);
2193         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2194
2195         if (pgrp)
2196                 kill_pgrp(pgrp, SIGWINCH, 1);
2197         put_pid(pgrp);
2198
2199         tty->winsize = *ws;
2200 done:
2201         mutex_unlock(&tty->termios_mutex);
2202         return 0;
2203 }
2204
2205 /**
2206  *      tiocswinsz              -       implement window size set ioctl
2207  *      @tty; tty side of tty
2208  *      @arg: user buffer for result
2209  *
2210  *      Copies the user idea of the window size to the kernel. Traditionally
2211  *      this is just advisory information but for the Linux console it
2212  *      actually has driver level meaning and triggers a VC resize.
2213  *
2214  *      Locking:
2215  *              Driver dependent. The default do_resize method takes the
2216  *      tty termios mutex and ctrl_lock. The console takes its own lock
2217  *      then calls into the default method.
2218  */
2219
2220 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2221 {
2222         struct winsize tmp_ws;
2223         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2224                 return -EFAULT;
2225
2226         if (tty->ops->resize)
2227                 return tty->ops->resize(tty, &tmp_ws);
2228         else
2229                 return tty_do_resize(tty, &tmp_ws);
2230 }
2231
2232 /**
2233  *      tioccons        -       allow admin to move logical console
2234  *      @file: the file to become console
2235  *
2236  *      Allow the administrator to move the redirected console device
2237  *
2238  *      Locking: uses redirect_lock to guard the redirect information
2239  */
2240
2241 static int tioccons(struct file *file)
2242 {
2243         if (!capable(CAP_SYS_ADMIN))
2244                 return -EPERM;
2245         if (file->f_op->write == redirected_tty_write) {
2246                 struct file *f;
2247                 spin_lock(&redirect_lock);
2248                 f = redirect;
2249                 redirect = NULL;
2250                 spin_unlock(&redirect_lock);
2251                 if (f)
2252                         fput(f);
2253                 return 0;
2254         }
2255         spin_lock(&redirect_lock);
2256         if (redirect) {
2257                 spin_unlock(&redirect_lock);
2258                 return -EBUSY;
2259         }
2260         get_file(file);
2261         redirect = file;
2262         spin_unlock(&redirect_lock);
2263         return 0;
2264 }
2265
2266 /**
2267  *      fionbio         -       non blocking ioctl
2268  *      @file: file to set blocking value
2269  *      @p: user parameter
2270  *
2271  *      Historical tty interfaces had a blocking control ioctl before
2272  *      the generic functionality existed. This piece of history is preserved
2273  *      in the expected tty API of posix OS's.
2274  *
2275  *      Locking: none, the open file handle ensures it won't go away.
2276  */
2277
2278 static int fionbio(struct file *file, int __user *p)
2279 {
2280         int nonblock;
2281
2282         if (get_user(nonblock, p))
2283                 return -EFAULT;
2284
2285         spin_lock(&file->f_lock);
2286         if (nonblock)
2287                 file->f_flags |= O_NONBLOCK;
2288         else
2289                 file->f_flags &= ~O_NONBLOCK;
2290         spin_unlock(&file->f_lock);
2291         return 0;
2292 }
2293
2294 /**
2295  *      tiocsctty       -       set controlling tty
2296  *      @tty: tty structure
2297  *      @arg: user argument
2298  *
2299  *      This ioctl is used to manage job control. It permits a session
2300  *      leader to set this tty as the controlling tty for the session.
2301  *
2302  *      Locking:
2303  *              Takes tty_mutex() to protect tty instance
2304  *              Takes tasklist_lock internally to walk sessions
2305  *              Takes ->siglock() when updating signal->tty
2306  */
2307
2308 static int tiocsctty(struct tty_struct *tty, int arg)
2309 {
2310         int ret = 0;
2311         if (current->signal->leader && (task_session(current) == tty->session))
2312                 return ret;
2313
2314         mutex_lock(&tty_mutex);
2315         /*
2316          * The process must be a session leader and
2317          * not have a controlling tty already.
2318          */
2319         if (!current->signal->leader || current->signal->tty) {
2320                 ret = -EPERM;
2321                 goto unlock;
2322         }
2323
2324         if (tty->session) {
2325                 /*
2326                  * This tty is already the controlling
2327                  * tty for another session group!
2328                  */
2329                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2330                         /*
2331                          * Steal it away
2332                          */
2333                         read_lock(&tasklist_lock);
2334                         session_clear_tty(tty->session);
2335                         read_unlock(&tasklist_lock);
2336                 } else {
2337                         ret = -EPERM;
2338                         goto unlock;
2339                 }
2340         }
2341         proc_set_tty(current, tty);
2342 unlock:
2343         mutex_unlock(&tty_mutex);
2344         return ret;
2345 }
2346
2347 /**
2348  *      tty_get_pgrp    -       return a ref counted pgrp pid
2349  *      @tty: tty to read
2350  *
2351  *      Returns a refcounted instance of the pid struct for the process
2352  *      group controlling the tty.
2353  */
2354
2355 struct pid *tty_get_pgrp(struct tty_struct *tty)
2356 {
2357         unsigned long flags;
2358         struct pid *pgrp;
2359
2360         spin_lock_irqsave(&tty->ctrl_lock, flags);
2361         pgrp = get_pid(tty->pgrp);
2362         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2363
2364         return pgrp;
2365 }
2366 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2367
2368 /**
2369  *      tiocgpgrp               -       get process group
2370  *      @tty: tty passed by user
2371  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2372  *      @p: returned pid
2373  *
2374  *      Obtain the process group of the tty. If there is no process group
2375  *      return an error.
2376  *
2377  *      Locking: none. Reference to current->signal->tty is safe.
2378  */
2379
2380 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2381 {
2382         struct pid *pid;
2383         int ret;
2384         /*
2385          * (tty == real_tty) is a cheap way of
2386          * testing if the tty is NOT a master pty.
2387          */
2388         if (tty == real_tty && current->signal->tty != real_tty)
2389                 return -ENOTTY;
2390         pid = tty_get_pgrp(real_tty);
2391         ret =  put_user(pid_vnr(pid), p);
2392         put_pid(pid);
2393         return ret;
2394 }
2395
2396 /**
2397  *      tiocspgrp               -       attempt to set process group
2398  *      @tty: tty passed by user
2399  *      @real_tty: tty side device matching tty passed by user
2400  *      @p: pid pointer
2401  *
2402  *      Set the process group of the tty to the session passed. Only
2403  *      permitted where the tty session is our session.
2404  *
2405  *      Locking: RCU, ctrl lock
2406  */
2407
2408 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2409 {
2410         struct pid *pgrp;
2411         pid_t pgrp_nr;
2412         int retval = tty_check_change(real_tty);
2413         unsigned long flags;
2414
2415         if (retval == -EIO)
2416                 return -ENOTTY;
2417         if (retval)
2418                 return retval;
2419         if (!current->signal->tty ||
2420             (current->signal->tty != real_tty) ||
2421             (real_tty->session != task_session(current)))
2422                 return -ENOTTY;
2423         if (get_user(pgrp_nr, p))
2424                 return -EFAULT;
2425         if (pgrp_nr < 0)
2426                 return -EINVAL;
2427         rcu_read_lock();
2428         pgrp = find_vpid(pgrp_nr);
2429         retval = -ESRCH;
2430         if (!pgrp)
2431                 goto out_unlock;
2432         retval = -EPERM;
2433         if (session_of_pgrp(pgrp) != task_session(current))
2434                 goto out_unlock;
2435         retval = 0;
2436         spin_lock_irqsave(&tty->ctrl_lock, flags);
2437         put_pid(real_tty->pgrp);
2438         real_tty->pgrp = get_pid(pgrp);
2439         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2440 out_unlock:
2441         rcu_read_unlock();
2442         return retval;
2443 }
2444
2445 /**
2446  *      tiocgsid                -       get session id
2447  *      @tty: tty passed by user
2448  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2449  *      @p: pointer to returned session id
2450  *
2451  *      Obtain the session id of the tty. If there is no session
2452  *      return an error.
2453  *
2454  *      Locking: none. Reference to current->signal->tty is safe.
2455  */
2456
2457 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2458 {
2459         /*
2460          * (tty == real_tty) is a cheap way of
2461          * testing if the tty is NOT a master pty.
2462         */
2463         if (tty == real_tty && current->signal->tty != real_tty)
2464                 return -ENOTTY;
2465         if (!real_tty->session)
2466                 return -ENOTTY;
2467         return put_user(pid_vnr(real_tty->session), p);
2468 }
2469
2470 /**
2471  *      tiocsetd        -       set line discipline
2472  *      @tty: tty device
2473  *      @p: pointer to user data
2474  *
2475  *      Set the line discipline according to user request.
2476  *
2477  *      Locking: see tty_set_ldisc, this function is just a helper
2478  */
2479
2480 static int tiocsetd(struct tty_struct *tty, int __user *p)
2481 {
2482         int ldisc;
2483         int ret;
2484
2485         if (get_user(ldisc, p))
2486                 return -EFAULT;
2487
2488         ret = tty_set_ldisc(tty, ldisc);
2489
2490         return ret;
2491 }
2492
2493 /**
2494  *      send_break      -       performed time break
2495  *      @tty: device to break on
2496  *      @duration: timeout in mS
2497  *
2498  *      Perform a timed break on hardware that lacks its own driver level
2499  *      timed break functionality.
2500  *
2501  *      Locking:
2502  *              atomic_write_lock serializes
2503  *
2504  */
2505
2506 static int send_break(struct tty_struct *tty, unsigned int duration)
2507 {
2508         int retval;
2509
2510         if (tty->ops->break_ctl == NULL)
2511                 return 0;
2512
2513         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2514                 retval = tty->ops->break_ctl(tty, duration);
2515         else {
2516                 /* Do the work ourselves */
2517                 if (tty_write_lock(tty, 0) < 0)
2518                         return -EINTR;
2519                 retval = tty->ops->break_ctl(tty, -1);
2520                 if (retval)
2521                         goto out;
2522                 if (!signal_pending(current))
2523                         msleep_interruptible(duration);
2524                 retval = tty->ops->break_ctl(tty, 0);
2525 out:
2526                 tty_write_unlock(tty);
2527                 if (signal_pending(current))
2528                         retval = -EINTR;
2529         }
2530         return retval;
2531 }
2532
2533 /**
2534  *      tty_tiocmget            -       get modem status
2535  *      @tty: tty device
2536  *      @file: user file pointer
2537  *      @p: pointer to result
2538  *
2539  *      Obtain the modem status bits from the tty driver if the feature
2540  *      is supported. Return -EINVAL if it is not available.
2541  *
2542  *      Locking: none (up to the driver)
2543  */
2544
2545 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2546 {
2547         int retval = -EINVAL;
2548
2549         if (tty->ops->tiocmget) {
2550                 retval = tty->ops->tiocmget(tty);
2551
2552                 if (retval >= 0)
2553                         retval = put_user(retval, p);
2554         }
2555         return retval;
2556 }
2557
2558 /**
2559  *      tty_tiocmset            -       set modem status
2560  *      @tty: tty device
2561  *      @cmd: command - clear bits, set bits or set all
2562  *      @p: pointer to desired bits
2563  *
2564  *      Set the modem status bits from the tty driver if the feature
2565  *      is supported. Return -EINVAL if it is not available.
2566  *
2567  *      Locking: none (up to the driver)
2568  */
2569
2570 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2571              unsigned __user *p)
2572 {
2573         int retval;
2574         unsigned int set, clear, val;
2575
2576         if (tty->ops->tiocmset == NULL)
2577                 return -EINVAL;
2578
2579         retval = get_user(val, p);
2580         if (retval)
2581                 return retval;
2582         set = clear = 0;
2583         switch (cmd) {
2584         case TIOCMBIS:
2585                 set = val;
2586                 break;
2587         case TIOCMBIC:
2588                 clear = val;
2589                 break;
2590         case TIOCMSET:
2591                 set = val;
2592                 clear = ~val;
2593                 break;
2594         }
2595         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2596         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2597         return tty->ops->tiocmset(tty, set, clear);
2598 }
2599
2600 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2601 {
2602         int retval = -EINVAL;
2603         struct serial_icounter_struct icount;
2604         memset(&icount, 0, sizeof(icount));
2605         if (tty->ops->get_icount)
2606                 retval = tty->ops->get_icount(tty, &icount);
2607         if (retval != 0)
2608                 return retval;
2609         if (copy_to_user(arg, &icount, sizeof(icount)))
2610                 return -EFAULT;
2611         return 0;
2612 }
2613
2614 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2615 {
2616         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2617             tty->driver->subtype == PTY_TYPE_MASTER)
2618                 tty = tty->link;
2619         return tty;
2620 }
2621 EXPORT_SYMBOL(tty_pair_get_tty);
2622
2623 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2624 {
2625         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2626             tty->driver->subtype == PTY_TYPE_MASTER)
2627             return tty;
2628         return tty->link;
2629 }
2630 EXPORT_SYMBOL(tty_pair_get_pty);
2631
2632 /*
2633  * Split this up, as gcc can choke on it otherwise..
2634  */
2635 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2636 {
2637         struct tty_struct *tty = file_tty(file);
2638         struct tty_struct *real_tty;
2639         void __user *p = (void __user *)arg;
2640         int retval;
2641         struct tty_ldisc *ld;
2642         struct inode *inode = file->f_dentry->d_inode;
2643
2644         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2645                 return -EINVAL;
2646
2647         real_tty = tty_pair_get_tty(tty);
2648
2649         /*
2650          * Factor out some common prep work
2651          */
2652         switch (cmd) {
2653         case TIOCSETD:
2654         case TIOCSBRK:
2655         case TIOCCBRK:
2656         case TCSBRK:
2657         case TCSBRKP:
2658                 retval = tty_check_change(tty);
2659                 if (retval)
2660                         return retval;
2661                 if (cmd != TIOCCBRK) {
2662                         tty_wait_until_sent(tty, 0);
2663                         if (signal_pending(current))
2664                                 return -EINTR;
2665                 }
2666                 break;
2667         }
2668
2669         /*
2670          *      Now do the stuff.
2671          */
2672         switch (cmd) {
2673         case TIOCSTI:
2674                 return tiocsti(tty, p);
2675         case TIOCGWINSZ:
2676                 return tiocgwinsz(real_tty, p);
2677         case TIOCSWINSZ:
2678                 return tiocswinsz(real_tty, p);
2679         case TIOCCONS:
2680                 return real_tty != tty ? -EINVAL : tioccons(file);
2681         case FIONBIO:
2682                 return fionbio(file, p);
2683         case TIOCEXCL:
2684                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2685                 return 0;
2686         case TIOCNXCL:
2687                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2688                 return 0;
2689         case TIOCNOTTY:
2690                 if (current->signal->tty != tty)
2691                         return -ENOTTY;
2692                 no_tty();
2693                 return 0;
2694         case TIOCSCTTY:
2695                 return tiocsctty(tty, arg);
2696         case TIOCGPGRP:
2697                 return tiocgpgrp(tty, real_tty, p);
2698         case TIOCSPGRP:
2699                 return tiocspgrp(tty, real_tty, p);
2700         case TIOCGSID:
2701                 return tiocgsid(tty, real_tty, p);
2702         case TIOCGETD:
2703                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2704         case TIOCSETD:
2705                 return tiocsetd(tty, p);
2706         case TIOCVHANGUP:
2707                 if (!capable(CAP_SYS_ADMIN))
2708                         return -EPERM;
2709                 tty_vhangup(tty);
2710                 return 0;
2711         case TIOCGDEV:
2712         {
2713                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2714                 return put_user(ret, (unsigned int __user *)p);
2715         }
2716         /*
2717          * Break handling
2718          */
2719         case TIOCSBRK:  /* Turn break on, unconditionally */
2720                 if (tty->ops->break_ctl)
2721                         return tty->ops->break_ctl(tty, -1);
2722                 return 0;
2723         case TIOCCBRK:  /* Turn break off, unconditionally */
2724                 if (tty->ops->break_ctl)
2725                         return tty->ops->break_ctl(tty, 0);
2726                 return 0;
2727         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2728                 /* non-zero arg means wait for all output data
2729                  * to be sent (performed above) but don't send break.
2730                  * This is used by the tcdrain() termios function.
2731                  */
2732                 if (!arg)
2733                         return send_break(tty, 250);
2734                 return 0;
2735         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2736                 return send_break(tty, arg ? arg*100 : 250);
2737
2738         case TIOCMGET:
2739                 return tty_tiocmget(tty, p);
2740         case TIOCMSET:
2741         case TIOCMBIC:
2742         case TIOCMBIS:
2743                 return tty_tiocmset(tty, cmd, p);
2744         case TIOCGICOUNT:
2745                 retval = tty_tiocgicount(tty, p);
2746                 /* For the moment allow fall through to the old method */
2747                 if (retval != -EINVAL)
2748                         return retval;
2749                 break;
2750         case TCFLSH:
2751                 switch (arg) {
2752                 case TCIFLUSH:
2753                 case TCIOFLUSH:
2754                 /* flush tty buffer and allow ldisc to process ioctl */
2755                         tty_buffer_flush(tty);
2756                         break;
2757                 }
2758                 break;
2759         }
2760         if (tty->ops->ioctl) {
2761                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2762                 if (retval != -ENOIOCTLCMD)
2763                         return retval;
2764         }
2765         ld = tty_ldisc_ref_wait(tty);
2766         retval = -EINVAL;
2767         if (ld->ops->ioctl) {
2768                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2769                 if (retval == -ENOIOCTLCMD)
2770                         retval = -EINVAL;
2771         }
2772         tty_ldisc_deref(ld);
2773         return retval;
2774 }
2775
2776 #ifdef CONFIG_COMPAT
2777 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2778                                 unsigned long arg)
2779 {
2780         struct inode *inode = file->f_dentry->d_inode;
2781         struct tty_struct *tty = file_tty(file);
2782         struct tty_ldisc *ld;
2783         int retval = -ENOIOCTLCMD;
2784
2785         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2786                 return -EINVAL;
2787
2788         if (tty->ops->compat_ioctl) {
2789                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2790                 if (retval != -ENOIOCTLCMD)
2791                         return retval;
2792         }
2793
2794         ld = tty_ldisc_ref_wait(tty);
2795         if (ld->ops->compat_ioctl)
2796                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2797         else
2798                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2799         tty_ldisc_deref(ld);
2800
2801         return retval;
2802 }
2803 #endif
2804
2805 /*
2806  * This implements the "Secure Attention Key" ---  the idea is to
2807  * prevent trojan horses by killing all processes associated with this
2808  * tty when the user hits the "Secure Attention Key".  Required for
2809  * super-paranoid applications --- see the Orange Book for more details.
2810  *
2811  * This code could be nicer; ideally it should send a HUP, wait a few
2812  * seconds, then send a INT, and then a KILL signal.  But you then
2813  * have to coordinate with the init process, since all processes associated
2814  * with the current tty must be dead before the new getty is allowed
2815  * to spawn.
2816  *
2817  * Now, if it would be correct ;-/ The current code has a nasty hole -
2818  * it doesn't catch files in flight. We may send the descriptor to ourselves
2819  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2820  *
2821  * Nasty bug: do_SAK is being called in interrupt context.  This can
2822  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2823  */
2824 void __do_SAK(struct tty_struct *tty)
2825 {
2826 #ifdef TTY_SOFT_SAK
2827         tty_hangup(tty);
2828 #else
2829         struct task_struct *g, *p;
2830         struct pid *session;
2831         int             i;
2832         struct file     *filp;
2833         struct fdtable *fdt;
2834
2835         if (!tty)
2836                 return;
2837         session = tty->session;
2838
2839         tty_ldisc_flush(tty);
2840
2841         tty_driver_flush_buffer(tty);
2842
2843         read_lock(&tasklist_lock);
2844         /* Kill the entire session */
2845         do_each_pid_task(session, PIDTYPE_SID, p) {
2846                 printk(KERN_NOTICE "SAK: killed process %d"
2847                         " (%s): task_session(p)==tty->session\n",
2848                         task_pid_nr(p), p->comm);
2849                 send_sig(SIGKILL, p, 1);
2850         } while_each_pid_task(session, PIDTYPE_SID, p);
2851         /* Now kill any processes that happen to have the
2852          * tty open.
2853          */
2854         do_each_thread(g, p) {
2855                 if (p->signal->tty == tty) {
2856                         printk(KERN_NOTICE "SAK: killed process %d"
2857                             " (%s): task_session(p)==tty->session\n",
2858                             task_pid_nr(p), p->comm);
2859                         send_sig(SIGKILL, p, 1);
2860                         continue;
2861                 }
2862                 task_lock(p);
2863                 if (p->files) {
2864                         /*
2865                          * We don't take a ref to the file, so we must
2866                          * hold ->file_lock instead.
2867                          */
2868                         spin_lock(&p->files->file_lock);
2869                         fdt = files_fdtable(p->files);
2870                         for (i = 0; i < fdt->max_fds; i++) {
2871                                 filp = fcheck_files(p->files, i);
2872                                 if (!filp)
2873                                         continue;
2874                                 if (filp->f_op->read == tty_read &&
2875                                     file_tty(filp) == tty) {
2876                                         printk(KERN_NOTICE "SAK: killed process %d"
2877                                             " (%s): fd#%d opened to the tty\n",
2878                                             task_pid_nr(p), p->comm, i);
2879                                         force_sig(SIGKILL, p);
2880                                         break;
2881                                 }
2882                         }
2883                         spin_unlock(&p->files->file_lock);
2884                 }
2885                 task_unlock(p);
2886         } while_each_thread(g, p);
2887         read_unlock(&tasklist_lock);
2888 #endif
2889 }
2890
2891 static void do_SAK_work(struct work_struct *work)
2892 {
2893         struct tty_struct *tty =
2894                 container_of(work, struct tty_struct, SAK_work);
2895         __do_SAK(tty);
2896 }
2897
2898 /*
2899  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2900  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2901  * the values which we write to it will be identical to the values which it
2902  * already has. --akpm
2903  */
2904 void do_SAK(struct tty_struct *tty)
2905 {
2906         if (!tty)
2907                 return;
2908         schedule_work(&tty->SAK_work);
2909 }
2910
2911 EXPORT_SYMBOL(do_SAK);
2912
2913 static int dev_match_devt(struct device *dev, void *data)
2914 {
2915         dev_t *devt = data;
2916         return dev->devt == *devt;
2917 }
2918
2919 /* Must put_device() after it's unused! */
2920 static struct device *tty_get_device(struct tty_struct *tty)
2921 {
2922         dev_t devt = tty_devnum(tty);
2923         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2924 }
2925
2926
2927 /**
2928  *      initialize_tty_struct
2929  *      @tty: tty to initialize
2930  *
2931  *      This subroutine initializes a tty structure that has been newly
2932  *      allocated.
2933  *
2934  *      Locking: none - tty in question must not be exposed at this point
2935  */
2936
2937 void initialize_tty_struct(struct tty_struct *tty,
2938                 struct tty_driver *driver, int idx)
2939 {
2940         memset(tty, 0, sizeof(struct tty_struct));
2941         kref_init(&tty->kref);
2942         tty->magic = TTY_MAGIC;
2943         tty_ldisc_init(tty);
2944         tty->session = NULL;
2945         tty->pgrp = NULL;
2946         tty->overrun_time = jiffies;
2947         tty_buffer_init(tty);
2948         mutex_init(&tty->legacy_mutex);
2949         mutex_init(&tty->termios_mutex);
2950         mutex_init(&tty->ldisc_mutex);
2951         init_waitqueue_head(&tty->write_wait);
2952         init_waitqueue_head(&tty->read_wait);
2953         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2954         mutex_init(&tty->atomic_read_lock);
2955         mutex_init(&tty->atomic_write_lock);
2956         mutex_init(&tty->output_lock);
2957         mutex_init(&tty->echo_lock);
2958         spin_lock_init(&tty->read_lock);
2959         spin_lock_init(&tty->ctrl_lock);
2960         INIT_LIST_HEAD(&tty->tty_files);
2961         INIT_WORK(&tty->SAK_work, do_SAK_work);
2962
2963         tty->driver = driver;
2964         tty->ops = driver->ops;
2965         tty->index = idx;
2966         tty_line_name(driver, idx, tty->name);
2967         tty->dev = tty_get_device(tty);
2968 }
2969
2970 /**
2971  *      deinitialize_tty_struct
2972  *      @tty: tty to deinitialize
2973  *
2974  *      This subroutine deinitializes a tty structure that has been newly
2975  *      allocated but tty_release cannot be called on that yet.
2976  *
2977  *      Locking: none - tty in question must not be exposed at this point
2978  */
2979 void deinitialize_tty_struct(struct tty_struct *tty)
2980 {
2981         tty_ldisc_deinit(tty);
2982 }
2983
2984 /**
2985  *      tty_put_char    -       write one character to a tty
2986  *      @tty: tty
2987  *      @ch: character
2988  *
2989  *      Write one byte to the tty using the provided put_char method
2990  *      if present. Returns the number of characters successfully output.
2991  *
2992  *      Note: the specific put_char operation in the driver layer may go
2993  *      away soon. Don't call it directly, use this method
2994  */
2995
2996 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2997 {
2998         if (tty->ops->put_char)
2999                 return tty->ops->put_char(tty, ch);
3000         return tty->ops->write(tty, &ch, 1);
3001 }
3002 EXPORT_SYMBOL_GPL(tty_put_char);
3003
3004 struct class *tty_class;
3005
3006 /**
3007  *      tty_register_device - register a tty device
3008  *      @driver: the tty driver that describes the tty device
3009  *      @index: the index in the tty driver for this tty device
3010  *      @device: a struct device that is associated with this tty device.
3011  *              This field is optional, if there is no known struct device
3012  *              for this tty device it can be set to NULL safely.
3013  *
3014  *      Returns a pointer to the struct device for this tty device
3015  *      (or ERR_PTR(-EFOO) on error).
3016  *
3017  *      This call is required to be made to register an individual tty device
3018  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3019  *      that bit is not set, this function should not be called by a tty
3020  *      driver.
3021  *
3022  *      Locking: ??
3023  */
3024
3025 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3026                                    struct device *device)
3027 {
3028         char name[64];
3029         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3030
3031         if (index >= driver->num) {
3032                 printk(KERN_ERR "Attempt to register invalid tty line number "
3033                        " (%d).\n", index);
3034                 return ERR_PTR(-EINVAL);
3035         }
3036
3037         if (driver->type == TTY_DRIVER_TYPE_PTY)
3038                 pty_line_name(driver, index, name);
3039         else
3040                 tty_line_name(driver, index, name);
3041
3042         return device_create(tty_class, device, dev, NULL, name);
3043 }
3044 EXPORT_SYMBOL(tty_register_device);
3045
3046 /**
3047  *      tty_unregister_device - unregister a tty device
3048  *      @driver: the tty driver that describes the tty device
3049  *      @index: the index in the tty driver for this tty device
3050  *
3051  *      If a tty device is registered with a call to tty_register_device() then
3052  *      this function must be called when the tty device is gone.
3053  *
3054  *      Locking: ??
3055  */
3056
3057 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3058 {
3059         device_destroy(tty_class,
3060                 MKDEV(driver->major, driver->minor_start) + index);
3061 }
3062 EXPORT_SYMBOL(tty_unregister_device);
3063
3064 /**
3065  * __tty_alloc_driver -- allocate tty driver
3066  * @lines: count of lines this driver can handle at most
3067  * @owner: module which is repsonsible for this driver
3068  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3069  *
3070  * This should not be called directly, some of the provided macros should be
3071  * used instead. Use IS_ERR and friends on @retval.
3072  */
3073 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3074                 unsigned long flags)
3075 {
3076         struct tty_driver *driver;
3077
3078         if (!lines)
3079                 return ERR_PTR(-EINVAL);
3080
3081         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3082         if (!driver)
3083                 return ERR_PTR(-ENOMEM);
3084
3085         kref_init(&driver->kref);
3086         driver->magic = TTY_DRIVER_MAGIC;
3087         driver->num = lines;
3088         driver->owner = owner;
3089         driver->flags = flags;
3090         /* later we'll move allocation of tables here */
3091
3092         return driver;
3093 }
3094 EXPORT_SYMBOL(__tty_alloc_driver);
3095
3096 static void destruct_tty_driver(struct kref *kref)
3097 {
3098         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3099         int i;
3100         struct ktermios *tp;
3101         void *p;
3102
3103         if (driver->flags & TTY_DRIVER_INSTALLED) {
3104                 /*
3105                  * Free the termios and termios_locked structures because
3106                  * we don't want to get memory leaks when modular tty
3107                  * drivers are removed from the kernel.
3108                  */
3109                 for (i = 0; i < driver->num; i++) {
3110                         tp = driver->termios[i];
3111                         if (tp) {
3112                                 driver->termios[i] = NULL;
3113                                 kfree(tp);
3114                         }
3115                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3116                                 tty_unregister_device(driver, i);
3117                 }
3118                 p = driver->ttys;
3119                 proc_tty_unregister_driver(driver);
3120                 driver->ttys = NULL;
3121                 driver->termios = NULL;
3122                 kfree(p);
3123                 cdev_del(&driver->cdev);
3124         }
3125         kfree(driver->ports);
3126         kfree(driver);
3127 }
3128
3129 void tty_driver_kref_put(struct tty_driver *driver)
3130 {
3131         kref_put(&driver->kref, destruct_tty_driver);
3132 }
3133 EXPORT_SYMBOL(tty_driver_kref_put);
3134
3135 void tty_set_operations(struct tty_driver *driver,
3136                         const struct tty_operations *op)
3137 {
3138         driver->ops = op;
3139 };
3140 EXPORT_SYMBOL(tty_set_operations);
3141
3142 void put_tty_driver(struct tty_driver *d)
3143 {
3144         tty_driver_kref_put(d);
3145 }
3146 EXPORT_SYMBOL(put_tty_driver);
3147
3148 /*
3149  * Called by a tty driver to register itself.
3150  */
3151 int tty_register_driver(struct tty_driver *driver)
3152 {
3153         int error;
3154         int i;
3155         dev_t dev;
3156         void **p = NULL;
3157         struct device *d;
3158
3159         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3160                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3161                 if (!p)
3162                         return -ENOMEM;
3163         }
3164         /*
3165          * There is too many lines in PTY and we won't need the array there
3166          * since it has an ->install hook where it assigns ports properly.
3167          */
3168         if (driver->type != TTY_DRIVER_TYPE_PTY) {
3169                 driver->ports = kcalloc(driver->num, sizeof(struct tty_port *),
3170                                 GFP_KERNEL);
3171                 if (!driver->ports) {
3172                         error = -ENOMEM;
3173                         goto err_free_p;
3174                 }
3175         }
3176
3177         if (!driver->major) {
3178                 error = alloc_chrdev_region(&dev, driver->minor_start,
3179                                                 driver->num, driver->name);
3180                 if (!error) {
3181                         driver->major = MAJOR(dev);
3182                         driver->minor_start = MINOR(dev);
3183                 }
3184         } else {
3185                 dev = MKDEV(driver->major, driver->minor_start);
3186                 error = register_chrdev_region(dev, driver->num, driver->name);
3187         }
3188         if (error < 0)
3189                 goto err_free_p;
3190
3191         if (p) {
3192                 driver->ttys = (struct tty_struct **)p;
3193                 driver->termios = (struct ktermios **)(p + driver->num);
3194         } else {
3195                 driver->ttys = NULL;
3196                 driver->termios = NULL;
3197         }
3198
3199         cdev_init(&driver->cdev, &tty_fops);
3200         driver->cdev.owner = driver->owner;
3201         error = cdev_add(&driver->cdev, dev, driver->num);
3202         if (error)
3203                 goto err_unreg_char;
3204
3205         mutex_lock(&tty_mutex);
3206         list_add(&driver->tty_drivers, &tty_drivers);
3207         mutex_unlock(&tty_mutex);
3208
3209         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3210                 for (i = 0; i < driver->num; i++) {
3211                         d = tty_register_device(driver, i, NULL);
3212                         if (IS_ERR(d)) {
3213                                 error = PTR_ERR(d);
3214                                 goto err;
3215                         }
3216                 }
3217         }
3218         proc_tty_register_driver(driver);
3219         driver->flags |= TTY_DRIVER_INSTALLED;
3220         return 0;
3221
3222 err:
3223         for (i--; i >= 0; i--)
3224                 tty_unregister_device(driver, i);
3225
3226         mutex_lock(&tty_mutex);
3227         list_del(&driver->tty_drivers);
3228         mutex_unlock(&tty_mutex);
3229
3230 err_unreg_char:
3231         unregister_chrdev_region(dev, driver->num);
3232         driver->ttys = NULL;
3233         driver->termios = NULL;
3234 err_free_p: /* destruct_tty_driver will free driver->ports */
3235         kfree(p);
3236         return error;
3237 }
3238 EXPORT_SYMBOL(tty_register_driver);
3239
3240 /*
3241  * Called by a tty driver to unregister itself.
3242  */
3243 int tty_unregister_driver(struct tty_driver *driver)
3244 {
3245 #if 0
3246         /* FIXME */
3247         if (driver->refcount)
3248                 return -EBUSY;
3249 #endif
3250         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3251                                 driver->num);
3252         mutex_lock(&tty_mutex);
3253         list_del(&driver->tty_drivers);
3254         mutex_unlock(&tty_mutex);
3255         return 0;
3256 }
3257
3258 EXPORT_SYMBOL(tty_unregister_driver);
3259
3260 dev_t tty_devnum(struct tty_struct *tty)
3261 {
3262         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3263 }
3264 EXPORT_SYMBOL(tty_devnum);
3265
3266 void proc_clear_tty(struct task_struct *p)
3267 {
3268         unsigned long flags;
3269         struct tty_struct *tty;
3270         spin_lock_irqsave(&p->sighand->siglock, flags);
3271         tty = p->signal->tty;
3272         p->signal->tty = NULL;
3273         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3274         tty_kref_put(tty);
3275 }
3276
3277 /* Called under the sighand lock */
3278
3279 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3280 {
3281         if (tty) {
3282                 unsigned long flags;
3283                 /* We should not have a session or pgrp to put here but.... */
3284                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3285                 put_pid(tty->session);
3286                 put_pid(tty->pgrp);
3287                 tty->pgrp = get_pid(task_pgrp(tsk));
3288                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3289                 tty->session = get_pid(task_session(tsk));
3290                 if (tsk->signal->tty) {
3291                         printk(KERN_DEBUG "tty not NULL!!\n");
3292                         tty_kref_put(tsk->signal->tty);
3293                 }
3294         }
3295         put_pid(tsk->signal->tty_old_pgrp);
3296         tsk->signal->tty = tty_kref_get(tty);
3297         tsk->signal->tty_old_pgrp = NULL;
3298 }
3299
3300 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3301 {
3302         spin_lock_irq(&tsk->sighand->siglock);
3303         __proc_set_tty(tsk, tty);
3304         spin_unlock_irq(&tsk->sighand->siglock);
3305 }
3306
3307 struct tty_struct *get_current_tty(void)
3308 {
3309         struct tty_struct *tty;
3310         unsigned long flags;
3311
3312         spin_lock_irqsave(&current->sighand->siglock, flags);
3313         tty = tty_kref_get(current->signal->tty);
3314         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3315         return tty;
3316 }
3317 EXPORT_SYMBOL_GPL(get_current_tty);
3318
3319 void tty_default_fops(struct file_operations *fops)
3320 {
3321         *fops = tty_fops;
3322 }
3323
3324 /*
3325  * Initialize the console device. This is called *early*, so
3326  * we can't necessarily depend on lots of kernel help here.
3327  * Just do some early initializations, and do the complex setup
3328  * later.
3329  */
3330 void __init console_init(void)
3331 {
3332         initcall_t *call;
3333
3334         /* Setup the default TTY line discipline. */
3335         tty_ldisc_begin();
3336
3337         /*
3338          * set up the console device so that later boot sequences can
3339          * inform about problems etc..
3340          */
3341         call = __con_initcall_start;
3342         while (call < __con_initcall_end) {
3343                 (*call)();
3344                 call++;
3345         }
3346 }
3347
3348 static char *tty_devnode(struct device *dev, umode_t *mode)
3349 {
3350         if (!mode)
3351                 return NULL;
3352         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3353             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3354                 *mode = 0666;
3355         return NULL;
3356 }
3357
3358 static int __init tty_class_init(void)
3359 {
3360         tty_class = class_create(THIS_MODULE, "tty");
3361         if (IS_ERR(tty_class))
3362                 return PTR_ERR(tty_class);
3363         tty_class->devnode = tty_devnode;
3364         return 0;
3365 }
3366
3367 postcore_initcall(tty_class_init);
3368
3369 /* 3/2004 jmc: why do these devices exist? */
3370 static struct cdev tty_cdev, console_cdev;
3371
3372 static ssize_t show_cons_active(struct device *dev,
3373                                 struct device_attribute *attr, char *buf)
3374 {
3375         struct console *cs[16];
3376         int i = 0;
3377         struct console *c;
3378         ssize_t count = 0;
3379
3380         console_lock();
3381         for_each_console(c) {
3382                 if (!c->device)
3383                         continue;
3384                 if (!c->write)
3385                         continue;
3386                 if ((c->flags & CON_ENABLED) == 0)
3387                         continue;
3388                 cs[i++] = c;
3389                 if (i >= ARRAY_SIZE(cs))
3390                         break;
3391         }
3392         while (i--)
3393                 count += sprintf(buf + count, "%s%d%c",
3394                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3395         console_unlock();
3396
3397         return count;
3398 }
3399 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3400
3401 static struct device *consdev;
3402
3403 void console_sysfs_notify(void)
3404 {
3405         if (consdev)
3406                 sysfs_notify(&consdev->kobj, NULL, "active");
3407 }
3408
3409 /*
3410  * Ok, now we can initialize the rest of the tty devices and can count
3411  * on memory allocations, interrupts etc..
3412  */
3413 int __init tty_init(void)
3414 {
3415         cdev_init(&tty_cdev, &tty_fops);
3416         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3417             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3418                 panic("Couldn't register /dev/tty driver\n");
3419         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3420
3421         cdev_init(&console_cdev, &console_fops);
3422         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3423             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3424                 panic("Couldn't register /dev/console driver\n");
3425         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3426                               "console");
3427         if (IS_ERR(consdev))
3428                 consdev = NULL;
3429         else
3430                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3431
3432 #ifdef CONFIG_VT
3433         vty_init(&console_fops);
3434 #endif
3435         return 0;
3436 }
3437