]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/tty/tty_io.c
thp: fix memory-failure hugetlbfs vs THP collision
[mv-sheeva.git] / drivers / tty / tty_io.c
1 /*
2  *  linux/drivers/char/tty_io.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9  * or rs-channels. It also implements echoing, cooked mode etc.
10  *
11  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12  *
13  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14  * tty_struct and tty_queue structures.  Previously there was an array
15  * of 256 tty_struct's which was statically allocated, and the
16  * tty_queue structures were allocated at boot time.  Both are now
17  * dynamically allocated only when the tty is open.
18  *
19  * Also restructured routines so that there is more of a separation
20  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21  * the low-level tty routines (serial.c, pty.c, console.c).  This
22  * makes for cleaner and more compact code.  -TYT, 9/17/92
23  *
24  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25  * which can be dynamically activated and de-activated by the line
26  * discipline handling modules (like SLIP).
27  *
28  * NOTE: pay no attention to the line discipline code (yet); its
29  * interface is still subject to change in this version...
30  * -- TYT, 1/31/92
31  *
32  * Added functionality to the OPOST tty handling.  No delays, but all
33  * other bits should be there.
34  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35  *
36  * Rewrote canonical mode and added more termios flags.
37  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38  *
39  * Reorganized FASYNC support so mouse code can share it.
40  *      -- ctm@ardi.com, 9Sep95
41  *
42  * New TIOCLINUX variants added.
43  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
44  *
45  * Restrict vt switching via ioctl()
46  *      -- grif@cs.ucr.edu, 5-Dec-95
47  *
48  * Move console and virtual terminal code to more appropriate files,
49  * implement CONFIG_VT and generalize console device interface.
50  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51  *
52  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53  *      -- Bill Hawes <whawes@star.net>, June 97
54  *
55  * Added devfs support.
56  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57  *
58  * Added support for a Unix98-style ptmx device.
59  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60  *
61  * Reduced memory usage for older ARM systems
62  *      -- Russell King <rmk@arm.linux.org.uk>
63  *
64  * Move do_SAK() into process context.  Less stack use in devfs functions.
65  * alloc_tty_struct() always uses kmalloc()
66  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67  */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99 #include <linux/serial.h>
100
101 #include <linux/uaccess.h>
102 #include <asm/system.h>
103
104 #include <linux/kbd_kern.h>
105 #include <linux/vt_kern.h>
106 #include <linux/selection.h>
107
108 #include <linux/kmod.h>
109 #include <linux/nsproxy.h>
110
111 #undef TTY_DEBUG_HANGUP
112
113 #define TTY_PARANOIA_CHECK 1
114 #define CHECK_TTY_COUNT 1
115
116 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
117         .c_iflag = ICRNL | IXON,
118         .c_oflag = OPOST | ONLCR,
119         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
120         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
121                    ECHOCTL | ECHOKE | IEXTEN,
122         .c_cc = INIT_C_CC,
123         .c_ispeed = 38400,
124         .c_ospeed = 38400
125 };
126
127 EXPORT_SYMBOL(tty_std_termios);
128
129 /* This list gets poked at by procfs and various bits of boot up code. This
130    could do with some rationalisation such as pulling the tty proc function
131    into this file */
132
133 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
134
135 /* Mutex to protect creating and releasing a tty. This is shared with
136    vt.c for deeply disgusting hack reasons */
137 DEFINE_MUTEX(tty_mutex);
138 EXPORT_SYMBOL(tty_mutex);
139
140 /* Spinlock to protect the tty->tty_files list */
141 DEFINE_SPINLOCK(tty_files_lock);
142
143 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
144 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
145 ssize_t redirected_tty_write(struct file *, const char __user *,
146                                                         size_t, loff_t *);
147 static unsigned int tty_poll(struct file *, poll_table *);
148 static int tty_open(struct inode *, struct file *);
149 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
150 #ifdef CONFIG_COMPAT
151 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
152                                 unsigned long arg);
153 #else
154 #define tty_compat_ioctl NULL
155 #endif
156 static int __tty_fasync(int fd, struct file *filp, int on);
157 static int tty_fasync(int fd, struct file *filp, int on);
158 static void release_tty(struct tty_struct *tty, int idx);
159 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
160 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
161
162 /**
163  *      alloc_tty_struct        -       allocate a tty object
164  *
165  *      Return a new empty tty structure. The data fields have not
166  *      been initialized in any way but has been zeroed
167  *
168  *      Locking: none
169  */
170
171 struct tty_struct *alloc_tty_struct(void)
172 {
173         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
174 }
175
176 /**
177  *      free_tty_struct         -       free a disused tty
178  *      @tty: tty struct to free
179  *
180  *      Free the write buffers, tty queue and tty memory itself.
181  *
182  *      Locking: none. Must be called after tty is definitely unused
183  */
184
185 void free_tty_struct(struct tty_struct *tty)
186 {
187         if (tty->dev)
188                 put_device(tty->dev);
189         kfree(tty->write_buf);
190         tty_buffer_free_all(tty);
191         kfree(tty);
192 }
193
194 static inline struct tty_struct *file_tty(struct file *file)
195 {
196         return ((struct tty_file_private *)file->private_data)->tty;
197 }
198
199 /* Associate a new file with the tty structure */
200 int tty_add_file(struct tty_struct *tty, struct file *file)
201 {
202         struct tty_file_private *priv;
203
204         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
205         if (!priv)
206                 return -ENOMEM;
207
208         priv->tty = tty;
209         priv->file = file;
210         file->private_data = priv;
211
212         spin_lock(&tty_files_lock);
213         list_add(&priv->list, &tty->tty_files);
214         spin_unlock(&tty_files_lock);
215
216         return 0;
217 }
218
219 /* Delete file from its tty */
220 void tty_del_file(struct file *file)
221 {
222         struct tty_file_private *priv = file->private_data;
223
224         spin_lock(&tty_files_lock);
225         list_del(&priv->list);
226         spin_unlock(&tty_files_lock);
227         file->private_data = NULL;
228         kfree(priv);
229 }
230
231
232 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
233
234 /**
235  *      tty_name        -       return tty naming
236  *      @tty: tty structure
237  *      @buf: buffer for output
238  *
239  *      Convert a tty structure into a name. The name reflects the kernel
240  *      naming policy and if udev is in use may not reflect user space
241  *
242  *      Locking: none
243  */
244
245 char *tty_name(struct tty_struct *tty, char *buf)
246 {
247         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
248                 strcpy(buf, "NULL tty");
249         else
250                 strcpy(buf, tty->name);
251         return buf;
252 }
253
254 EXPORT_SYMBOL(tty_name);
255
256 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
257                               const char *routine)
258 {
259 #ifdef TTY_PARANOIA_CHECK
260         if (!tty) {
261                 printk(KERN_WARNING
262                         "null TTY for (%d:%d) in %s\n",
263                         imajor(inode), iminor(inode), routine);
264                 return 1;
265         }
266         if (tty->magic != TTY_MAGIC) {
267                 printk(KERN_WARNING
268                         "bad magic number for tty struct (%d:%d) in %s\n",
269                         imajor(inode), iminor(inode), routine);
270                 return 1;
271         }
272 #endif
273         return 0;
274 }
275
276 static int check_tty_count(struct tty_struct *tty, const char *routine)
277 {
278 #ifdef CHECK_TTY_COUNT
279         struct list_head *p;
280         int count = 0;
281
282         spin_lock(&tty_files_lock);
283         list_for_each(p, &tty->tty_files) {
284                 count++;
285         }
286         spin_unlock(&tty_files_lock);
287         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
288             tty->driver->subtype == PTY_TYPE_SLAVE &&
289             tty->link && tty->link->count)
290                 count++;
291         if (tty->count != count) {
292                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
293                                     "!= #fd's(%d) in %s\n",
294                        tty->name, tty->count, count, routine);
295                 return count;
296         }
297 #endif
298         return 0;
299 }
300
301 /**
302  *      get_tty_driver          -       find device of a tty
303  *      @dev_t: device identifier
304  *      @index: returns the index of the tty
305  *
306  *      This routine returns a tty driver structure, given a device number
307  *      and also passes back the index number.
308  *
309  *      Locking: caller must hold tty_mutex
310  */
311
312 static struct tty_driver *get_tty_driver(dev_t device, int *index)
313 {
314         struct tty_driver *p;
315
316         list_for_each_entry(p, &tty_drivers, tty_drivers) {
317                 dev_t base = MKDEV(p->major, p->minor_start);
318                 if (device < base || device >= base + p->num)
319                         continue;
320                 *index = device - base;
321                 return tty_driver_kref_get(p);
322         }
323         return NULL;
324 }
325
326 #ifdef CONFIG_CONSOLE_POLL
327
328 /**
329  *      tty_find_polling_driver -       find device of a polled tty
330  *      @name: name string to match
331  *      @line: pointer to resulting tty line nr
332  *
333  *      This routine returns a tty driver structure, given a name
334  *      and the condition that the tty driver is capable of polled
335  *      operation.
336  */
337 struct tty_driver *tty_find_polling_driver(char *name, int *line)
338 {
339         struct tty_driver *p, *res = NULL;
340         int tty_line = 0;
341         int len;
342         char *str, *stp;
343
344         for (str = name; *str; str++)
345                 if ((*str >= '0' && *str <= '9') || *str == ',')
346                         break;
347         if (!*str)
348                 return NULL;
349
350         len = str - name;
351         tty_line = simple_strtoul(str, &str, 10);
352
353         mutex_lock(&tty_mutex);
354         /* Search through the tty devices to look for a match */
355         list_for_each_entry(p, &tty_drivers, tty_drivers) {
356                 if (strncmp(name, p->name, len) != 0)
357                         continue;
358                 stp = str;
359                 if (*stp == ',')
360                         stp++;
361                 if (*stp == '\0')
362                         stp = NULL;
363
364                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
365                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
366                         res = tty_driver_kref_get(p);
367                         *line = tty_line;
368                         break;
369                 }
370         }
371         mutex_unlock(&tty_mutex);
372
373         return res;
374 }
375 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
376 #endif
377
378 /**
379  *      tty_check_change        -       check for POSIX terminal changes
380  *      @tty: tty to check
381  *
382  *      If we try to write to, or set the state of, a terminal and we're
383  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
384  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
385  *
386  *      Locking: ctrl_lock
387  */
388
389 int tty_check_change(struct tty_struct *tty)
390 {
391         unsigned long flags;
392         int ret = 0;
393
394         if (current->signal->tty != tty)
395                 return 0;
396
397         spin_lock_irqsave(&tty->ctrl_lock, flags);
398
399         if (!tty->pgrp) {
400                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
401                 goto out_unlock;
402         }
403         if (task_pgrp(current) == tty->pgrp)
404                 goto out_unlock;
405         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
406         if (is_ignored(SIGTTOU))
407                 goto out;
408         if (is_current_pgrp_orphaned()) {
409                 ret = -EIO;
410                 goto out;
411         }
412         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
413         set_thread_flag(TIF_SIGPENDING);
414         ret = -ERESTARTSYS;
415 out:
416         return ret;
417 out_unlock:
418         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
419         return ret;
420 }
421
422 EXPORT_SYMBOL(tty_check_change);
423
424 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
425                                 size_t count, loff_t *ppos)
426 {
427         return 0;
428 }
429
430 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
431                                  size_t count, loff_t *ppos)
432 {
433         return -EIO;
434 }
435
436 /* No kernel lock held - none needed ;) */
437 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
438 {
439         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
440 }
441
442 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
443                 unsigned long arg)
444 {
445         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
446 }
447
448 static long hung_up_tty_compat_ioctl(struct file *file,
449                                      unsigned int cmd, unsigned long arg)
450 {
451         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
452 }
453
454 static const struct file_operations tty_fops = {
455         .llseek         = no_llseek,
456         .read           = tty_read,
457         .write          = tty_write,
458         .poll           = tty_poll,
459         .unlocked_ioctl = tty_ioctl,
460         .compat_ioctl   = tty_compat_ioctl,
461         .open           = tty_open,
462         .release        = tty_release,
463         .fasync         = tty_fasync,
464 };
465
466 static const struct file_operations console_fops = {
467         .llseek         = no_llseek,
468         .read           = tty_read,
469         .write          = redirected_tty_write,
470         .poll           = tty_poll,
471         .unlocked_ioctl = tty_ioctl,
472         .compat_ioctl   = tty_compat_ioctl,
473         .open           = tty_open,
474         .release        = tty_release,
475         .fasync         = tty_fasync,
476 };
477
478 static const struct file_operations hung_up_tty_fops = {
479         .llseek         = no_llseek,
480         .read           = hung_up_tty_read,
481         .write          = hung_up_tty_write,
482         .poll           = hung_up_tty_poll,
483         .unlocked_ioctl = hung_up_tty_ioctl,
484         .compat_ioctl   = hung_up_tty_compat_ioctl,
485         .release        = tty_release,
486 };
487
488 static DEFINE_SPINLOCK(redirect_lock);
489 static struct file *redirect;
490
491 /**
492  *      tty_wakeup      -       request more data
493  *      @tty: terminal
494  *
495  *      Internal and external helper for wakeups of tty. This function
496  *      informs the line discipline if present that the driver is ready
497  *      to receive more output data.
498  */
499
500 void tty_wakeup(struct tty_struct *tty)
501 {
502         struct tty_ldisc *ld;
503
504         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
505                 ld = tty_ldisc_ref(tty);
506                 if (ld) {
507                         if (ld->ops->write_wakeup)
508                                 ld->ops->write_wakeup(tty);
509                         tty_ldisc_deref(ld);
510                 }
511         }
512         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
513 }
514
515 EXPORT_SYMBOL_GPL(tty_wakeup);
516
517 /**
518  *      __tty_hangup            -       actual handler for hangup events
519  *      @work: tty device
520  *
521  *      This can be called by the "eventd" kernel thread.  That is process
522  *      synchronous but doesn't hold any locks, so we need to make sure we
523  *      have the appropriate locks for what we're doing.
524  *
525  *      The hangup event clears any pending redirections onto the hung up
526  *      device. It ensures future writes will error and it does the needed
527  *      line discipline hangup and signal delivery. The tty object itself
528  *      remains intact.
529  *
530  *      Locking:
531  *              BTM
532  *                redirect lock for undoing redirection
533  *                file list lock for manipulating list of ttys
534  *                tty_ldisc_lock from called functions
535  *                termios_mutex resetting termios data
536  *                tasklist_lock to walk task list for hangup event
537  *                  ->siglock to protect ->signal/->sighand
538  */
539 void __tty_hangup(struct tty_struct *tty)
540 {
541         struct file *cons_filp = NULL;
542         struct file *filp, *f = NULL;
543         struct task_struct *p;
544         struct tty_file_private *priv;
545         int    closecount = 0, n;
546         unsigned long flags;
547         int refs = 0;
548
549         if (!tty)
550                 return;
551
552
553         spin_lock(&redirect_lock);
554         if (redirect && file_tty(redirect) == tty) {
555                 f = redirect;
556                 redirect = NULL;
557         }
558         spin_unlock(&redirect_lock);
559
560         tty_lock();
561
562         /* some functions below drop BTM, so we need this bit */
563         set_bit(TTY_HUPPING, &tty->flags);
564
565         /* inuse_filps is protected by the single tty lock,
566            this really needs to change if we want to flush the
567            workqueue with the lock held */
568         check_tty_count(tty, "tty_hangup");
569
570         spin_lock(&tty_files_lock);
571         /* This breaks for file handles being sent over AF_UNIX sockets ? */
572         list_for_each_entry(priv, &tty->tty_files, list) {
573                 filp = priv->file;
574                 if (filp->f_op->write == redirected_tty_write)
575                         cons_filp = filp;
576                 if (filp->f_op->write != tty_write)
577                         continue;
578                 closecount++;
579                 __tty_fasync(-1, filp, 0);      /* can't block */
580                 filp->f_op = &hung_up_tty_fops;
581         }
582         spin_unlock(&tty_files_lock);
583
584         /*
585          * it drops BTM and thus races with reopen
586          * we protect the race by TTY_HUPPING
587          */
588         tty_ldisc_hangup(tty);
589
590         read_lock(&tasklist_lock);
591         if (tty->session) {
592                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
593                         spin_lock_irq(&p->sighand->siglock);
594                         if (p->signal->tty == tty) {
595                                 p->signal->tty = NULL;
596                                 /* We defer the dereferences outside fo
597                                    the tasklist lock */
598                                 refs++;
599                         }
600                         if (!p->signal->leader) {
601                                 spin_unlock_irq(&p->sighand->siglock);
602                                 continue;
603                         }
604                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
605                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
606                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
607                         spin_lock_irqsave(&tty->ctrl_lock, flags);
608                         if (tty->pgrp)
609                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
610                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
611                         spin_unlock_irq(&p->sighand->siglock);
612                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
613         }
614         read_unlock(&tasklist_lock);
615
616         spin_lock_irqsave(&tty->ctrl_lock, flags);
617         clear_bit(TTY_THROTTLED, &tty->flags);
618         clear_bit(TTY_PUSH, &tty->flags);
619         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
620         put_pid(tty->session);
621         put_pid(tty->pgrp);
622         tty->session = NULL;
623         tty->pgrp = NULL;
624         tty->ctrl_status = 0;
625         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
626
627         /* Account for the p->signal references we killed */
628         while (refs--)
629                 tty_kref_put(tty);
630
631         /*
632          * If one of the devices matches a console pointer, we
633          * cannot just call hangup() because that will cause
634          * tty->count and state->count to go out of sync.
635          * So we just call close() the right number of times.
636          */
637         if (cons_filp) {
638                 if (tty->ops->close)
639                         for (n = 0; n < closecount; n++)
640                                 tty->ops->close(tty, cons_filp);
641         } else if (tty->ops->hangup)
642                 (tty->ops->hangup)(tty);
643         /*
644          * We don't want to have driver/ldisc interactions beyond
645          * the ones we did here. The driver layer expects no
646          * calls after ->hangup() from the ldisc side. However we
647          * can't yet guarantee all that.
648          */
649         set_bit(TTY_HUPPED, &tty->flags);
650         clear_bit(TTY_HUPPING, &tty->flags);
651         tty_ldisc_enable(tty);
652
653         tty_unlock();
654
655         if (f)
656                 fput(f);
657 }
658
659 static void do_tty_hangup(struct work_struct *work)
660 {
661         struct tty_struct *tty =
662                 container_of(work, struct tty_struct, hangup_work);
663
664         __tty_hangup(tty);
665 }
666
667 /**
668  *      tty_hangup              -       trigger a hangup event
669  *      @tty: tty to hangup
670  *
671  *      A carrier loss (virtual or otherwise) has occurred on this like
672  *      schedule a hangup sequence to run after this event.
673  */
674
675 void tty_hangup(struct tty_struct *tty)
676 {
677 #ifdef TTY_DEBUG_HANGUP
678         char    buf[64];
679         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
680 #endif
681         schedule_work(&tty->hangup_work);
682 }
683
684 EXPORT_SYMBOL(tty_hangup);
685
686 /**
687  *      tty_vhangup             -       process vhangup
688  *      @tty: tty to hangup
689  *
690  *      The user has asked via system call for the terminal to be hung up.
691  *      We do this synchronously so that when the syscall returns the process
692  *      is complete. That guarantee is necessary for security reasons.
693  */
694
695 void tty_vhangup(struct tty_struct *tty)
696 {
697 #ifdef TTY_DEBUG_HANGUP
698         char    buf[64];
699
700         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
701 #endif
702         __tty_hangup(tty);
703 }
704
705 EXPORT_SYMBOL(tty_vhangup);
706
707
708 /**
709  *      tty_vhangup_self        -       process vhangup for own ctty
710  *
711  *      Perform a vhangup on the current controlling tty
712  */
713
714 void tty_vhangup_self(void)
715 {
716         struct tty_struct *tty;
717
718         tty = get_current_tty();
719         if (tty) {
720                 tty_vhangup(tty);
721                 tty_kref_put(tty);
722         }
723 }
724
725 /**
726  *      tty_hung_up_p           -       was tty hung up
727  *      @filp: file pointer of tty
728  *
729  *      Return true if the tty has been subject to a vhangup or a carrier
730  *      loss
731  */
732
733 int tty_hung_up_p(struct file *filp)
734 {
735         return (filp->f_op == &hung_up_tty_fops);
736 }
737
738 EXPORT_SYMBOL(tty_hung_up_p);
739
740 static void session_clear_tty(struct pid *session)
741 {
742         struct task_struct *p;
743         do_each_pid_task(session, PIDTYPE_SID, p) {
744                 proc_clear_tty(p);
745         } while_each_pid_task(session, PIDTYPE_SID, p);
746 }
747
748 /**
749  *      disassociate_ctty       -       disconnect controlling tty
750  *      @on_exit: true if exiting so need to "hang up" the session
751  *
752  *      This function is typically called only by the session leader, when
753  *      it wants to disassociate itself from its controlling tty.
754  *
755  *      It performs the following functions:
756  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
757  *      (2)  Clears the tty from being controlling the session
758  *      (3)  Clears the controlling tty for all processes in the
759  *              session group.
760  *
761  *      The argument on_exit is set to 1 if called when a process is
762  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
763  *
764  *      Locking:
765  *              BTM is taken for hysterical raisins, and held when
766  *                called from no_tty().
767  *                tty_mutex is taken to protect tty
768  *                ->siglock is taken to protect ->signal/->sighand
769  *                tasklist_lock is taken to walk process list for sessions
770  *                  ->siglock is taken to protect ->signal/->sighand
771  */
772
773 void disassociate_ctty(int on_exit)
774 {
775         struct tty_struct *tty;
776         struct pid *tty_pgrp = NULL;
777
778         if (!current->signal->leader)
779                 return;
780
781         tty = get_current_tty();
782         if (tty) {
783                 tty_pgrp = get_pid(tty->pgrp);
784                 if (on_exit) {
785                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
786                                 tty_vhangup(tty);
787                 }
788                 tty_kref_put(tty);
789         } else if (on_exit) {
790                 struct pid *old_pgrp;
791                 spin_lock_irq(&current->sighand->siglock);
792                 old_pgrp = current->signal->tty_old_pgrp;
793                 current->signal->tty_old_pgrp = NULL;
794                 spin_unlock_irq(&current->sighand->siglock);
795                 if (old_pgrp) {
796                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
797                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
798                         put_pid(old_pgrp);
799                 }
800                 return;
801         }
802         if (tty_pgrp) {
803                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
804                 if (!on_exit)
805                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
806                 put_pid(tty_pgrp);
807         }
808
809         spin_lock_irq(&current->sighand->siglock);
810         put_pid(current->signal->tty_old_pgrp);
811         current->signal->tty_old_pgrp = NULL;
812         spin_unlock_irq(&current->sighand->siglock);
813
814         tty = get_current_tty();
815         if (tty) {
816                 unsigned long flags;
817                 spin_lock_irqsave(&tty->ctrl_lock, flags);
818                 put_pid(tty->session);
819                 put_pid(tty->pgrp);
820                 tty->session = NULL;
821                 tty->pgrp = NULL;
822                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
823                 tty_kref_put(tty);
824         } else {
825 #ifdef TTY_DEBUG_HANGUP
826                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
827                        " = NULL", tty);
828 #endif
829         }
830
831         /* Now clear signal->tty under the lock */
832         read_lock(&tasklist_lock);
833         session_clear_tty(task_session(current));
834         read_unlock(&tasklist_lock);
835 }
836
837 /**
838  *
839  *      no_tty  - Ensure the current process does not have a controlling tty
840  */
841 void no_tty(void)
842 {
843         struct task_struct *tsk = current;
844         tty_lock();
845         disassociate_ctty(0);
846         tty_unlock();
847         proc_clear_tty(tsk);
848 }
849
850
851 /**
852  *      stop_tty        -       propagate flow control
853  *      @tty: tty to stop
854  *
855  *      Perform flow control to the driver. For PTY/TTY pairs we
856  *      must also propagate the TIOCKPKT status. May be called
857  *      on an already stopped device and will not re-call the driver
858  *      method.
859  *
860  *      This functionality is used by both the line disciplines for
861  *      halting incoming flow and by the driver. It may therefore be
862  *      called from any context, may be under the tty atomic_write_lock
863  *      but not always.
864  *
865  *      Locking:
866  *              Uses the tty control lock internally
867  */
868
869 void stop_tty(struct tty_struct *tty)
870 {
871         unsigned long flags;
872         spin_lock_irqsave(&tty->ctrl_lock, flags);
873         if (tty->stopped) {
874                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
875                 return;
876         }
877         tty->stopped = 1;
878         if (tty->link && tty->link->packet) {
879                 tty->ctrl_status &= ~TIOCPKT_START;
880                 tty->ctrl_status |= TIOCPKT_STOP;
881                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
882         }
883         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
884         if (tty->ops->stop)
885                 (tty->ops->stop)(tty);
886 }
887
888 EXPORT_SYMBOL(stop_tty);
889
890 /**
891  *      start_tty       -       propagate flow control
892  *      @tty: tty to start
893  *
894  *      Start a tty that has been stopped if at all possible. Perform
895  *      any necessary wakeups and propagate the TIOCPKT status. If this
896  *      is the tty was previous stopped and is being started then the
897  *      driver start method is invoked and the line discipline woken.
898  *
899  *      Locking:
900  *              ctrl_lock
901  */
902
903 void start_tty(struct tty_struct *tty)
904 {
905         unsigned long flags;
906         spin_lock_irqsave(&tty->ctrl_lock, flags);
907         if (!tty->stopped || tty->flow_stopped) {
908                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
909                 return;
910         }
911         tty->stopped = 0;
912         if (tty->link && tty->link->packet) {
913                 tty->ctrl_status &= ~TIOCPKT_STOP;
914                 tty->ctrl_status |= TIOCPKT_START;
915                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
916         }
917         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
918         if (tty->ops->start)
919                 (tty->ops->start)(tty);
920         /* If we have a running line discipline it may need kicking */
921         tty_wakeup(tty);
922 }
923
924 EXPORT_SYMBOL(start_tty);
925
926 /**
927  *      tty_read        -       read method for tty device files
928  *      @file: pointer to tty file
929  *      @buf: user buffer
930  *      @count: size of user buffer
931  *      @ppos: unused
932  *
933  *      Perform the read system call function on this terminal device. Checks
934  *      for hung up devices before calling the line discipline method.
935  *
936  *      Locking:
937  *              Locks the line discipline internally while needed. Multiple
938  *      read calls may be outstanding in parallel.
939  */
940
941 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
942                         loff_t *ppos)
943 {
944         int i;
945         struct inode *inode = file->f_path.dentry->d_inode;
946         struct tty_struct *tty = file_tty(file);
947         struct tty_ldisc *ld;
948
949         if (tty_paranoia_check(tty, inode, "tty_read"))
950                 return -EIO;
951         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
952                 return -EIO;
953
954         /* We want to wait for the line discipline to sort out in this
955            situation */
956         ld = tty_ldisc_ref_wait(tty);
957         if (ld->ops->read)
958                 i = (ld->ops->read)(tty, file, buf, count);
959         else
960                 i = -EIO;
961         tty_ldisc_deref(ld);
962         if (i > 0)
963                 inode->i_atime = current_fs_time(inode->i_sb);
964         return i;
965 }
966
967 void tty_write_unlock(struct tty_struct *tty)
968 {
969         mutex_unlock(&tty->atomic_write_lock);
970         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
971 }
972
973 int tty_write_lock(struct tty_struct *tty, int ndelay)
974 {
975         if (!mutex_trylock(&tty->atomic_write_lock)) {
976                 if (ndelay)
977                         return -EAGAIN;
978                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
979                         return -ERESTARTSYS;
980         }
981         return 0;
982 }
983
984 /*
985  * Split writes up in sane blocksizes to avoid
986  * denial-of-service type attacks
987  */
988 static inline ssize_t do_tty_write(
989         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
990         struct tty_struct *tty,
991         struct file *file,
992         const char __user *buf,
993         size_t count)
994 {
995         ssize_t ret, written = 0;
996         unsigned int chunk;
997
998         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
999         if (ret < 0)
1000                 return ret;
1001
1002         /*
1003          * We chunk up writes into a temporary buffer. This
1004          * simplifies low-level drivers immensely, since they
1005          * don't have locking issues and user mode accesses.
1006          *
1007          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1008          * big chunk-size..
1009          *
1010          * The default chunk-size is 2kB, because the NTTY
1011          * layer has problems with bigger chunks. It will
1012          * claim to be able to handle more characters than
1013          * it actually does.
1014          *
1015          * FIXME: This can probably go away now except that 64K chunks
1016          * are too likely to fail unless switched to vmalloc...
1017          */
1018         chunk = 2048;
1019         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1020                 chunk = 65536;
1021         if (count < chunk)
1022                 chunk = count;
1023
1024         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1025         if (tty->write_cnt < chunk) {
1026                 unsigned char *buf_chunk;
1027
1028                 if (chunk < 1024)
1029                         chunk = 1024;
1030
1031                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1032                 if (!buf_chunk) {
1033                         ret = -ENOMEM;
1034                         goto out;
1035                 }
1036                 kfree(tty->write_buf);
1037                 tty->write_cnt = chunk;
1038                 tty->write_buf = buf_chunk;
1039         }
1040
1041         /* Do the write .. */
1042         for (;;) {
1043                 size_t size = count;
1044                 if (size > chunk)
1045                         size = chunk;
1046                 ret = -EFAULT;
1047                 if (copy_from_user(tty->write_buf, buf, size))
1048                         break;
1049                 ret = write(tty, file, tty->write_buf, size);
1050                 if (ret <= 0)
1051                         break;
1052                 written += ret;
1053                 buf += ret;
1054                 count -= ret;
1055                 if (!count)
1056                         break;
1057                 ret = -ERESTARTSYS;
1058                 if (signal_pending(current))
1059                         break;
1060                 cond_resched();
1061         }
1062         if (written) {
1063                 struct inode *inode = file->f_path.dentry->d_inode;
1064                 inode->i_mtime = current_fs_time(inode->i_sb);
1065                 ret = written;
1066         }
1067 out:
1068         tty_write_unlock(tty);
1069         return ret;
1070 }
1071
1072 /**
1073  * tty_write_message - write a message to a certain tty, not just the console.
1074  * @tty: the destination tty_struct
1075  * @msg: the message to write
1076  *
1077  * This is used for messages that need to be redirected to a specific tty.
1078  * We don't put it into the syslog queue right now maybe in the future if
1079  * really needed.
1080  *
1081  * We must still hold the BTM and test the CLOSING flag for the moment.
1082  */
1083
1084 void tty_write_message(struct tty_struct *tty, char *msg)
1085 {
1086         if (tty) {
1087                 mutex_lock(&tty->atomic_write_lock);
1088                 tty_lock();
1089                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1090                         tty_unlock();
1091                         tty->ops->write(tty, msg, strlen(msg));
1092                 } else
1093                         tty_unlock();
1094                 tty_write_unlock(tty);
1095         }
1096         return;
1097 }
1098
1099
1100 /**
1101  *      tty_write               -       write method for tty device file
1102  *      @file: tty file pointer
1103  *      @buf: user data to write
1104  *      @count: bytes to write
1105  *      @ppos: unused
1106  *
1107  *      Write data to a tty device via the line discipline.
1108  *
1109  *      Locking:
1110  *              Locks the line discipline as required
1111  *              Writes to the tty driver are serialized by the atomic_write_lock
1112  *      and are then processed in chunks to the device. The line discipline
1113  *      write method will not be invoked in parallel for each device.
1114  */
1115
1116 static ssize_t tty_write(struct file *file, const char __user *buf,
1117                                                 size_t count, loff_t *ppos)
1118 {
1119         struct inode *inode = file->f_path.dentry->d_inode;
1120         struct tty_struct *tty = file_tty(file);
1121         struct tty_ldisc *ld;
1122         ssize_t ret;
1123
1124         if (tty_paranoia_check(tty, inode, "tty_write"))
1125                 return -EIO;
1126         if (!tty || !tty->ops->write ||
1127                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1128                         return -EIO;
1129         /* Short term debug to catch buggy drivers */
1130         if (tty->ops->write_room == NULL)
1131                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1132                         tty->driver->name);
1133         ld = tty_ldisc_ref_wait(tty);
1134         if (!ld->ops->write)
1135                 ret = -EIO;
1136         else
1137                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1138         tty_ldisc_deref(ld);
1139         return ret;
1140 }
1141
1142 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1143                                                 size_t count, loff_t *ppos)
1144 {
1145         struct file *p = NULL;
1146
1147         spin_lock(&redirect_lock);
1148         if (redirect) {
1149                 get_file(redirect);
1150                 p = redirect;
1151         }
1152         spin_unlock(&redirect_lock);
1153
1154         if (p) {
1155                 ssize_t res;
1156                 res = vfs_write(p, buf, count, &p->f_pos);
1157                 fput(p);
1158                 return res;
1159         }
1160         return tty_write(file, buf, count, ppos);
1161 }
1162
1163 static char ptychar[] = "pqrstuvwxyzabcde";
1164
1165 /**
1166  *      pty_line_name   -       generate name for a pty
1167  *      @driver: the tty driver in use
1168  *      @index: the minor number
1169  *      @p: output buffer of at least 6 bytes
1170  *
1171  *      Generate a name from a driver reference and write it to the output
1172  *      buffer.
1173  *
1174  *      Locking: None
1175  */
1176 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1177 {
1178         int i = index + driver->name_base;
1179         /* ->name is initialized to "ttyp", but "tty" is expected */
1180         sprintf(p, "%s%c%x",
1181                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1182                 ptychar[i >> 4 & 0xf], i & 0xf);
1183 }
1184
1185 /**
1186  *      tty_line_name   -       generate name for a tty
1187  *      @driver: the tty driver in use
1188  *      @index: the minor number
1189  *      @p: output buffer of at least 7 bytes
1190  *
1191  *      Generate a name from a driver reference and write it to the output
1192  *      buffer.
1193  *
1194  *      Locking: None
1195  */
1196 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1197 {
1198         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1199 }
1200
1201 /**
1202  *      tty_driver_lookup_tty() - find an existing tty, if any
1203  *      @driver: the driver for the tty
1204  *      @idx:    the minor number
1205  *
1206  *      Return the tty, if found or ERR_PTR() otherwise.
1207  *
1208  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1209  *      be held until the 'fast-open' is also done. Will change once we
1210  *      have refcounting in the driver and per driver locking
1211  */
1212 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1213                 struct inode *inode, int idx)
1214 {
1215         struct tty_struct *tty;
1216
1217         if (driver->ops->lookup)
1218                 return driver->ops->lookup(driver, inode, idx);
1219
1220         tty = driver->ttys[idx];
1221         return tty;
1222 }
1223
1224 /**
1225  *      tty_init_termios        -  helper for termios setup
1226  *      @tty: the tty to set up
1227  *
1228  *      Initialise the termios structures for this tty. Thus runs under
1229  *      the tty_mutex currently so we can be relaxed about ordering.
1230  */
1231
1232 int tty_init_termios(struct tty_struct *tty)
1233 {
1234         struct ktermios *tp;
1235         int idx = tty->index;
1236
1237         tp = tty->driver->termios[idx];
1238         if (tp == NULL) {
1239                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1240                 if (tp == NULL)
1241                         return -ENOMEM;
1242                 memcpy(tp, &tty->driver->init_termios,
1243                                                 sizeof(struct ktermios));
1244                 tty->driver->termios[idx] = tp;
1245         }
1246         tty->termios = tp;
1247         tty->termios_locked = tp + 1;
1248
1249         /* Compatibility until drivers always set this */
1250         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1251         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1252         return 0;
1253 }
1254 EXPORT_SYMBOL_GPL(tty_init_termios);
1255
1256 /**
1257  *      tty_driver_install_tty() - install a tty entry in the driver
1258  *      @driver: the driver for the tty
1259  *      @tty: the tty
1260  *
1261  *      Install a tty object into the driver tables. The tty->index field
1262  *      will be set by the time this is called. This method is responsible
1263  *      for ensuring any need additional structures are allocated and
1264  *      configured.
1265  *
1266  *      Locking: tty_mutex for now
1267  */
1268 static int tty_driver_install_tty(struct tty_driver *driver,
1269                                                 struct tty_struct *tty)
1270 {
1271         int idx = tty->index;
1272         int ret;
1273
1274         if (driver->ops->install) {
1275                 ret = driver->ops->install(driver, tty);
1276                 return ret;
1277         }
1278
1279         if (tty_init_termios(tty) == 0) {
1280                 tty_driver_kref_get(driver);
1281                 tty->count++;
1282                 driver->ttys[idx] = tty;
1283                 return 0;
1284         }
1285         return -ENOMEM;
1286 }
1287
1288 /**
1289  *      tty_driver_remove_tty() - remove a tty from the driver tables
1290  *      @driver: the driver for the tty
1291  *      @idx:    the minor number
1292  *
1293  *      Remvoe a tty object from the driver tables. The tty->index field
1294  *      will be set by the time this is called.
1295  *
1296  *      Locking: tty_mutex for now
1297  */
1298 static void tty_driver_remove_tty(struct tty_driver *driver,
1299                                                 struct tty_struct *tty)
1300 {
1301         if (driver->ops->remove)
1302                 driver->ops->remove(driver, tty);
1303         else
1304                 driver->ttys[tty->index] = NULL;
1305 }
1306
1307 /*
1308  *      tty_reopen()    - fast re-open of an open tty
1309  *      @tty    - the tty to open
1310  *
1311  *      Return 0 on success, -errno on error.
1312  *
1313  *      Locking: tty_mutex must be held from the time the tty was found
1314  *               till this open completes.
1315  */
1316 static int tty_reopen(struct tty_struct *tty)
1317 {
1318         struct tty_driver *driver = tty->driver;
1319
1320         if (test_bit(TTY_CLOSING, &tty->flags) ||
1321                         test_bit(TTY_HUPPING, &tty->flags) ||
1322                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1323                 return -EIO;
1324
1325         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1326             driver->subtype == PTY_TYPE_MASTER) {
1327                 /*
1328                  * special case for PTY masters: only one open permitted,
1329                  * and the slave side open count is incremented as well.
1330                  */
1331                 if (tty->count)
1332                         return -EIO;
1333
1334                 tty->link->count++;
1335         }
1336         tty->count++;
1337         tty->driver = driver; /* N.B. why do this every time?? */
1338
1339         mutex_lock(&tty->ldisc_mutex);
1340         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1341         mutex_unlock(&tty->ldisc_mutex);
1342
1343         return 0;
1344 }
1345
1346 /**
1347  *      tty_init_dev            -       initialise a tty device
1348  *      @driver: tty driver we are opening a device on
1349  *      @idx: device index
1350  *      @ret_tty: returned tty structure
1351  *      @first_ok: ok to open a new device (used by ptmx)
1352  *
1353  *      Prepare a tty device. This may not be a "new" clean device but
1354  *      could also be an active device. The pty drivers require special
1355  *      handling because of this.
1356  *
1357  *      Locking:
1358  *              The function is called under the tty_mutex, which
1359  *      protects us from the tty struct or driver itself going away.
1360  *
1361  *      On exit the tty device has the line discipline attached and
1362  *      a reference count of 1. If a pair was created for pty/tty use
1363  *      and the other was a pty master then it too has a reference count of 1.
1364  *
1365  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1366  * failed open.  The new code protects the open with a mutex, so it's
1367  * really quite straightforward.  The mutex locking can probably be
1368  * relaxed for the (most common) case of reopening a tty.
1369  */
1370
1371 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1372                                                                 int first_ok)
1373 {
1374         struct tty_struct *tty;
1375         int retval;
1376
1377         /* Check if pty master is being opened multiple times */
1378         if (driver->subtype == PTY_TYPE_MASTER &&
1379                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1380                 return ERR_PTR(-EIO);
1381         }
1382
1383         /*
1384          * First time open is complex, especially for PTY devices.
1385          * This code guarantees that either everything succeeds and the
1386          * TTY is ready for operation, or else the table slots are vacated
1387          * and the allocated memory released.  (Except that the termios
1388          * and locked termios may be retained.)
1389          */
1390
1391         if (!try_module_get(driver->owner))
1392                 return ERR_PTR(-ENODEV);
1393
1394         tty = alloc_tty_struct();
1395         if (!tty)
1396                 goto fail_no_mem;
1397         initialize_tty_struct(tty, driver, idx);
1398
1399         retval = tty_driver_install_tty(driver, tty);
1400         if (retval < 0) {
1401                 free_tty_struct(tty);
1402                 module_put(driver->owner);
1403                 return ERR_PTR(retval);
1404         }
1405
1406         /*
1407          * Structures all installed ... call the ldisc open routines.
1408          * If we fail here just call release_tty to clean up.  No need
1409          * to decrement the use counts, as release_tty doesn't care.
1410          */
1411         retval = tty_ldisc_setup(tty, tty->link);
1412         if (retval)
1413                 goto release_mem_out;
1414         return tty;
1415
1416 fail_no_mem:
1417         module_put(driver->owner);
1418         return ERR_PTR(-ENOMEM);
1419
1420         /* call the tty release_tty routine to clean out this slot */
1421 release_mem_out:
1422         if (printk_ratelimit())
1423                 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1424                                  "clearing slot %d\n", idx);
1425         release_tty(tty, idx);
1426         return ERR_PTR(retval);
1427 }
1428
1429 void tty_free_termios(struct tty_struct *tty)
1430 {
1431         struct ktermios *tp;
1432         int idx = tty->index;
1433         /* Kill this flag and push into drivers for locking etc */
1434         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1435                 /* FIXME: Locking on ->termios array */
1436                 tp = tty->termios;
1437                 tty->driver->termios[idx] = NULL;
1438                 kfree(tp);
1439         }
1440 }
1441 EXPORT_SYMBOL(tty_free_termios);
1442
1443 void tty_shutdown(struct tty_struct *tty)
1444 {
1445         tty_driver_remove_tty(tty->driver, tty);
1446         tty_free_termios(tty);
1447 }
1448 EXPORT_SYMBOL(tty_shutdown);
1449
1450 /**
1451  *      release_one_tty         -       release tty structure memory
1452  *      @kref: kref of tty we are obliterating
1453  *
1454  *      Releases memory associated with a tty structure, and clears out the
1455  *      driver table slots. This function is called when a device is no longer
1456  *      in use. It also gets called when setup of a device fails.
1457  *
1458  *      Locking:
1459  *              tty_mutex - sometimes only
1460  *              takes the file list lock internally when working on the list
1461  *      of ttys that the driver keeps.
1462  *
1463  *      This method gets called from a work queue so that the driver private
1464  *      cleanup ops can sleep (needed for USB at least)
1465  */
1466 static void release_one_tty(struct work_struct *work)
1467 {
1468         struct tty_struct *tty =
1469                 container_of(work, struct tty_struct, hangup_work);
1470         struct tty_driver *driver = tty->driver;
1471
1472         if (tty->ops->cleanup)
1473                 tty->ops->cleanup(tty);
1474
1475         tty->magic = 0;
1476         tty_driver_kref_put(driver);
1477         module_put(driver->owner);
1478
1479         spin_lock(&tty_files_lock);
1480         list_del_init(&tty->tty_files);
1481         spin_unlock(&tty_files_lock);
1482
1483         put_pid(tty->pgrp);
1484         put_pid(tty->session);
1485         free_tty_struct(tty);
1486 }
1487
1488 static void queue_release_one_tty(struct kref *kref)
1489 {
1490         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1491
1492         if (tty->ops->shutdown)
1493                 tty->ops->shutdown(tty);
1494         else
1495                 tty_shutdown(tty);
1496
1497         /* The hangup queue is now free so we can reuse it rather than
1498            waste a chunk of memory for each port */
1499         INIT_WORK(&tty->hangup_work, release_one_tty);
1500         schedule_work(&tty->hangup_work);
1501 }
1502
1503 /**
1504  *      tty_kref_put            -       release a tty kref
1505  *      @tty: tty device
1506  *
1507  *      Release a reference to a tty device and if need be let the kref
1508  *      layer destruct the object for us
1509  */
1510
1511 void tty_kref_put(struct tty_struct *tty)
1512 {
1513         if (tty)
1514                 kref_put(&tty->kref, queue_release_one_tty);
1515 }
1516 EXPORT_SYMBOL(tty_kref_put);
1517
1518 /**
1519  *      release_tty             -       release tty structure memory
1520  *
1521  *      Release both @tty and a possible linked partner (think pty pair),
1522  *      and decrement the refcount of the backing module.
1523  *
1524  *      Locking:
1525  *              tty_mutex - sometimes only
1526  *              takes the file list lock internally when working on the list
1527  *      of ttys that the driver keeps.
1528  *              FIXME: should we require tty_mutex is held here ??
1529  *
1530  */
1531 static void release_tty(struct tty_struct *tty, int idx)
1532 {
1533         /* This should always be true but check for the moment */
1534         WARN_ON(tty->index != idx);
1535
1536         if (tty->link)
1537                 tty_kref_put(tty->link);
1538         tty_kref_put(tty);
1539 }
1540
1541 /**
1542  *      tty_release             -       vfs callback for close
1543  *      @inode: inode of tty
1544  *      @filp: file pointer for handle to tty
1545  *
1546  *      Called the last time each file handle is closed that references
1547  *      this tty. There may however be several such references.
1548  *
1549  *      Locking:
1550  *              Takes bkl. See tty_release_dev
1551  *
1552  * Even releasing the tty structures is a tricky business.. We have
1553  * to be very careful that the structures are all released at the
1554  * same time, as interrupts might otherwise get the wrong pointers.
1555  *
1556  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1557  * lead to double frees or releasing memory still in use.
1558  */
1559
1560 int tty_release(struct inode *inode, struct file *filp)
1561 {
1562         struct tty_struct *tty = file_tty(filp);
1563         struct tty_struct *o_tty;
1564         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1565         int     devpts;
1566         int     idx;
1567         char    buf[64];
1568
1569         if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1570                 return 0;
1571
1572         tty_lock();
1573         check_tty_count(tty, "tty_release_dev");
1574
1575         __tty_fasync(-1, filp, 0);
1576
1577         idx = tty->index;
1578         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1579                       tty->driver->subtype == PTY_TYPE_MASTER);
1580         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1581         o_tty = tty->link;
1582
1583 #ifdef TTY_PARANOIA_CHECK
1584         if (idx < 0 || idx >= tty->driver->num) {
1585                 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1586                                   "free (%s)\n", tty->name);
1587                 tty_unlock();
1588                 return 0;
1589         }
1590         if (!devpts) {
1591                 if (tty != tty->driver->ttys[idx]) {
1592                         tty_unlock();
1593                         printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1594                                "for (%s)\n", idx, tty->name);
1595                         return 0;
1596                 }
1597                 if (tty->termios != tty->driver->termios[idx]) {
1598                         tty_unlock();
1599                         printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1600                                "for (%s)\n",
1601                                idx, tty->name);
1602                         return 0;
1603                 }
1604         }
1605 #endif
1606
1607 #ifdef TTY_DEBUG_HANGUP
1608         printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1609                tty_name(tty, buf), tty->count);
1610 #endif
1611
1612 #ifdef TTY_PARANOIA_CHECK
1613         if (tty->driver->other &&
1614              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1615                 if (o_tty != tty->driver->other->ttys[idx]) {
1616                         tty_unlock();
1617                         printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1618                                           "not o_tty for (%s)\n",
1619                                idx, tty->name);
1620                         return 0 ;
1621                 }
1622                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1623                         tty_unlock();
1624                         printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1625                                           "not o_termios for (%s)\n",
1626                                idx, tty->name);
1627                         return 0;
1628                 }
1629                 if (o_tty->link != tty) {
1630                         tty_unlock();
1631                         printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1632                         return 0;
1633                 }
1634         }
1635 #endif
1636         if (tty->ops->close)
1637                 tty->ops->close(tty, filp);
1638
1639         tty_unlock();
1640         /*
1641          * Sanity check: if tty->count is going to zero, there shouldn't be
1642          * any waiters on tty->read_wait or tty->write_wait.  We test the
1643          * wait queues and kick everyone out _before_ actually starting to
1644          * close.  This ensures that we won't block while releasing the tty
1645          * structure.
1646          *
1647          * The test for the o_tty closing is necessary, since the master and
1648          * slave sides may close in any order.  If the slave side closes out
1649          * first, its count will be one, since the master side holds an open.
1650          * Thus this test wouldn't be triggered at the time the slave closes,
1651          * so we do it now.
1652          *
1653          * Note that it's possible for the tty to be opened again while we're
1654          * flushing out waiters.  By recalculating the closing flags before
1655          * each iteration we avoid any problems.
1656          */
1657         while (1) {
1658                 /* Guard against races with tty->count changes elsewhere and
1659                    opens on /dev/tty */
1660
1661                 mutex_lock(&tty_mutex);
1662                 tty_lock();
1663                 tty_closing = tty->count <= 1;
1664                 o_tty_closing = o_tty &&
1665                         (o_tty->count <= (pty_master ? 1 : 0));
1666                 do_sleep = 0;
1667
1668                 if (tty_closing) {
1669                         if (waitqueue_active(&tty->read_wait)) {
1670                                 wake_up_poll(&tty->read_wait, POLLIN);
1671                                 do_sleep++;
1672                         }
1673                         if (waitqueue_active(&tty->write_wait)) {
1674                                 wake_up_poll(&tty->write_wait, POLLOUT);
1675                                 do_sleep++;
1676                         }
1677                 }
1678                 if (o_tty_closing) {
1679                         if (waitqueue_active(&o_tty->read_wait)) {
1680                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1681                                 do_sleep++;
1682                         }
1683                         if (waitqueue_active(&o_tty->write_wait)) {
1684                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1685                                 do_sleep++;
1686                         }
1687                 }
1688                 if (!do_sleep)
1689                         break;
1690
1691                 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1692                                     "active!\n", tty_name(tty, buf));
1693                 tty_unlock();
1694                 mutex_unlock(&tty_mutex);
1695                 schedule();
1696         }
1697
1698         /*
1699          * The closing flags are now consistent with the open counts on
1700          * both sides, and we've completed the last operation that could
1701          * block, so it's safe to proceed with closing.
1702          */
1703         if (pty_master) {
1704                 if (--o_tty->count < 0) {
1705                         printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1706                                             "(%d) for %s\n",
1707                                o_tty->count, tty_name(o_tty, buf));
1708                         o_tty->count = 0;
1709                 }
1710         }
1711         if (--tty->count < 0) {
1712                 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1713                        tty->count, tty_name(tty, buf));
1714                 tty->count = 0;
1715         }
1716
1717         /*
1718          * We've decremented tty->count, so we need to remove this file
1719          * descriptor off the tty->tty_files list; this serves two
1720          * purposes:
1721          *  - check_tty_count sees the correct number of file descriptors
1722          *    associated with this tty.
1723          *  - do_tty_hangup no longer sees this file descriptor as
1724          *    something that needs to be handled for hangups.
1725          */
1726         tty_del_file(filp);
1727
1728         /*
1729          * Perform some housekeeping before deciding whether to return.
1730          *
1731          * Set the TTY_CLOSING flag if this was the last open.  In the
1732          * case of a pty we may have to wait around for the other side
1733          * to close, and TTY_CLOSING makes sure we can't be reopened.
1734          */
1735         if (tty_closing)
1736                 set_bit(TTY_CLOSING, &tty->flags);
1737         if (o_tty_closing)
1738                 set_bit(TTY_CLOSING, &o_tty->flags);
1739
1740         /*
1741          * If _either_ side is closing, make sure there aren't any
1742          * processes that still think tty or o_tty is their controlling
1743          * tty.
1744          */
1745         if (tty_closing || o_tty_closing) {
1746                 read_lock(&tasklist_lock);
1747                 session_clear_tty(tty->session);
1748                 if (o_tty)
1749                         session_clear_tty(o_tty->session);
1750                 read_unlock(&tasklist_lock);
1751         }
1752
1753         mutex_unlock(&tty_mutex);
1754
1755         /* check whether both sides are closing ... */
1756         if (!tty_closing || (o_tty && !o_tty_closing)) {
1757                 tty_unlock();
1758                 return 0;
1759         }
1760
1761 #ifdef TTY_DEBUG_HANGUP
1762         printk(KERN_DEBUG "freeing tty structure...");
1763 #endif
1764         /*
1765          * Ask the line discipline code to release its structures
1766          */
1767         tty_ldisc_release(tty, o_tty);
1768         /*
1769          * The release_tty function takes care of the details of clearing
1770          * the slots and preserving the termios structure.
1771          */
1772         release_tty(tty, idx);
1773
1774         /* Make this pty number available for reallocation */
1775         if (devpts)
1776                 devpts_kill_index(inode, idx);
1777         tty_unlock();
1778         return 0;
1779 }
1780
1781 /**
1782  *      tty_open                -       open a tty device
1783  *      @inode: inode of device file
1784  *      @filp: file pointer to tty
1785  *
1786  *      tty_open and tty_release keep up the tty count that contains the
1787  *      number of opens done on a tty. We cannot use the inode-count, as
1788  *      different inodes might point to the same tty.
1789  *
1790  *      Open-counting is needed for pty masters, as well as for keeping
1791  *      track of serial lines: DTR is dropped when the last close happens.
1792  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1793  *
1794  *      The termios state of a pty is reset on first open so that
1795  *      settings don't persist across reuse.
1796  *
1797  *      Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1798  *               tty->count should protect the rest.
1799  *               ->siglock protects ->signal/->sighand
1800  */
1801
1802 static int tty_open(struct inode *inode, struct file *filp)
1803 {
1804         struct tty_struct *tty = NULL;
1805         int noctty, retval;
1806         struct tty_driver *driver;
1807         int index;
1808         dev_t device = inode->i_rdev;
1809         unsigned saved_flags = filp->f_flags;
1810
1811         nonseekable_open(inode, filp);
1812
1813 retry_open:
1814         noctty = filp->f_flags & O_NOCTTY;
1815         index  = -1;
1816         retval = 0;
1817
1818         mutex_lock(&tty_mutex);
1819         tty_lock();
1820
1821         if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1822                 tty = get_current_tty();
1823                 if (!tty) {
1824                         tty_unlock();
1825                         mutex_unlock(&tty_mutex);
1826                         return -ENXIO;
1827                 }
1828                 driver = tty_driver_kref_get(tty->driver);
1829                 index = tty->index;
1830                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1831                 /* noctty = 1; */
1832                 /* FIXME: Should we take a driver reference ? */
1833                 tty_kref_put(tty);
1834                 goto got_driver;
1835         }
1836 #ifdef CONFIG_VT
1837         if (device == MKDEV(TTY_MAJOR, 0)) {
1838                 extern struct tty_driver *console_driver;
1839                 driver = tty_driver_kref_get(console_driver);
1840                 index = fg_console;
1841                 noctty = 1;
1842                 goto got_driver;
1843         }
1844 #endif
1845         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1846                 struct tty_driver *console_driver = console_device(&index);
1847                 if (console_driver) {
1848                         driver = tty_driver_kref_get(console_driver);
1849                         if (driver) {
1850                                 /* Don't let /dev/console block */
1851                                 filp->f_flags |= O_NONBLOCK;
1852                                 noctty = 1;
1853                                 goto got_driver;
1854                         }
1855                 }
1856                 tty_unlock();
1857                 mutex_unlock(&tty_mutex);
1858                 return -ENODEV;
1859         }
1860
1861         driver = get_tty_driver(device, &index);
1862         if (!driver) {
1863                 tty_unlock();
1864                 mutex_unlock(&tty_mutex);
1865                 return -ENODEV;
1866         }
1867 got_driver:
1868         if (!tty) {
1869                 /* check whether we're reopening an existing tty */
1870                 tty = tty_driver_lookup_tty(driver, inode, index);
1871
1872                 if (IS_ERR(tty)) {
1873                         tty_unlock();
1874                         mutex_unlock(&tty_mutex);
1875                         return PTR_ERR(tty);
1876                 }
1877         }
1878
1879         if (tty) {
1880                 retval = tty_reopen(tty);
1881                 if (retval)
1882                         tty = ERR_PTR(retval);
1883         } else
1884                 tty = tty_init_dev(driver, index, 0);
1885
1886         mutex_unlock(&tty_mutex);
1887         tty_driver_kref_put(driver);
1888         if (IS_ERR(tty)) {
1889                 tty_unlock();
1890                 return PTR_ERR(tty);
1891         }
1892
1893         retval = tty_add_file(tty, filp);
1894         if (retval) {
1895                 tty_unlock();
1896                 return retval;
1897         }
1898
1899         check_tty_count(tty, "tty_open");
1900         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1901             tty->driver->subtype == PTY_TYPE_MASTER)
1902                 noctty = 1;
1903 #ifdef TTY_DEBUG_HANGUP
1904         printk(KERN_DEBUG "opening %s...", tty->name);
1905 #endif
1906         if (!retval) {
1907                 if (tty->ops->open)
1908                         retval = tty->ops->open(tty, filp);
1909                 else
1910                         retval = -ENODEV;
1911         }
1912         filp->f_flags = saved_flags;
1913
1914         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1915                                                 !capable(CAP_SYS_ADMIN))
1916                 retval = -EBUSY;
1917
1918         if (retval) {
1919 #ifdef TTY_DEBUG_HANGUP
1920                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1921                        tty->name);
1922 #endif
1923                 tty_unlock(); /* need to call tty_release without BTM */
1924                 tty_release(inode, filp);
1925                 if (retval != -ERESTARTSYS)
1926                         return retval;
1927
1928                 if (signal_pending(current))
1929                         return retval;
1930
1931                 schedule();
1932                 /*
1933                  * Need to reset f_op in case a hangup happened.
1934                  */
1935                 tty_lock();
1936                 if (filp->f_op == &hung_up_tty_fops)
1937                         filp->f_op = &tty_fops;
1938                 tty_unlock();
1939                 goto retry_open;
1940         }
1941         tty_unlock();
1942
1943
1944         mutex_lock(&tty_mutex);
1945         tty_lock();
1946         spin_lock_irq(&current->sighand->siglock);
1947         if (!noctty &&
1948             current->signal->leader &&
1949             !current->signal->tty &&
1950             tty->session == NULL)
1951                 __proc_set_tty(current, tty);
1952         spin_unlock_irq(&current->sighand->siglock);
1953         tty_unlock();
1954         mutex_unlock(&tty_mutex);
1955         return 0;
1956 }
1957
1958
1959
1960 /**
1961  *      tty_poll        -       check tty status
1962  *      @filp: file being polled
1963  *      @wait: poll wait structures to update
1964  *
1965  *      Call the line discipline polling method to obtain the poll
1966  *      status of the device.
1967  *
1968  *      Locking: locks called line discipline but ldisc poll method
1969  *      may be re-entered freely by other callers.
1970  */
1971
1972 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1973 {
1974         struct tty_struct *tty = file_tty(filp);
1975         struct tty_ldisc *ld;
1976         int ret = 0;
1977
1978         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1979                 return 0;
1980
1981         ld = tty_ldisc_ref_wait(tty);
1982         if (ld->ops->poll)
1983                 ret = (ld->ops->poll)(tty, filp, wait);
1984         tty_ldisc_deref(ld);
1985         return ret;
1986 }
1987
1988 static int __tty_fasync(int fd, struct file *filp, int on)
1989 {
1990         struct tty_struct *tty = file_tty(filp);
1991         unsigned long flags;
1992         int retval = 0;
1993
1994         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1995                 goto out;
1996
1997         retval = fasync_helper(fd, filp, on, &tty->fasync);
1998         if (retval <= 0)
1999                 goto out;
2000
2001         if (on) {
2002                 enum pid_type type;
2003                 struct pid *pid;
2004                 if (!waitqueue_active(&tty->read_wait))
2005                         tty->minimum_to_wake = 1;
2006                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2007                 if (tty->pgrp) {
2008                         pid = tty->pgrp;
2009                         type = PIDTYPE_PGID;
2010                 } else {
2011                         pid = task_pid(current);
2012                         type = PIDTYPE_PID;
2013                 }
2014                 get_pid(pid);
2015                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2016                 retval = __f_setown(filp, pid, type, 0);
2017                 put_pid(pid);
2018                 if (retval)
2019                         goto out;
2020         } else {
2021                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2022                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2023         }
2024         retval = 0;
2025 out:
2026         return retval;
2027 }
2028
2029 static int tty_fasync(int fd, struct file *filp, int on)
2030 {
2031         int retval;
2032         tty_lock();
2033         retval = __tty_fasync(fd, filp, on);
2034         tty_unlock();
2035         return retval;
2036 }
2037
2038 /**
2039  *      tiocsti                 -       fake input character
2040  *      @tty: tty to fake input into
2041  *      @p: pointer to character
2042  *
2043  *      Fake input to a tty device. Does the necessary locking and
2044  *      input management.
2045  *
2046  *      FIXME: does not honour flow control ??
2047  *
2048  *      Locking:
2049  *              Called functions take tty_ldisc_lock
2050  *              current->signal->tty check is safe without locks
2051  *
2052  *      FIXME: may race normal receive processing
2053  */
2054
2055 static int tiocsti(struct tty_struct *tty, char __user *p)
2056 {
2057         char ch, mbz = 0;
2058         struct tty_ldisc *ld;
2059
2060         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2061                 return -EPERM;
2062         if (get_user(ch, p))
2063                 return -EFAULT;
2064         tty_audit_tiocsti(tty, ch);
2065         ld = tty_ldisc_ref_wait(tty);
2066         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2067         tty_ldisc_deref(ld);
2068         return 0;
2069 }
2070
2071 /**
2072  *      tiocgwinsz              -       implement window query ioctl
2073  *      @tty; tty
2074  *      @arg: user buffer for result
2075  *
2076  *      Copies the kernel idea of the window size into the user buffer.
2077  *
2078  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2079  *              is consistent.
2080  */
2081
2082 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2083 {
2084         int err;
2085
2086         mutex_lock(&tty->termios_mutex);
2087         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2088         mutex_unlock(&tty->termios_mutex);
2089
2090         return err ? -EFAULT: 0;
2091 }
2092
2093 /**
2094  *      tty_do_resize           -       resize event
2095  *      @tty: tty being resized
2096  *      @rows: rows (character)
2097  *      @cols: cols (character)
2098  *
2099  *      Update the termios variables and send the necessary signals to
2100  *      peform a terminal resize correctly
2101  */
2102
2103 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2104 {
2105         struct pid *pgrp;
2106         unsigned long flags;
2107
2108         /* Lock the tty */
2109         mutex_lock(&tty->termios_mutex);
2110         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2111                 goto done;
2112         /* Get the PID values and reference them so we can
2113            avoid holding the tty ctrl lock while sending signals */
2114         spin_lock_irqsave(&tty->ctrl_lock, flags);
2115         pgrp = get_pid(tty->pgrp);
2116         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2117
2118         if (pgrp)
2119                 kill_pgrp(pgrp, SIGWINCH, 1);
2120         put_pid(pgrp);
2121
2122         tty->winsize = *ws;
2123 done:
2124         mutex_unlock(&tty->termios_mutex);
2125         return 0;
2126 }
2127
2128 /**
2129  *      tiocswinsz              -       implement window size set ioctl
2130  *      @tty; tty side of tty
2131  *      @arg: user buffer for result
2132  *
2133  *      Copies the user idea of the window size to the kernel. Traditionally
2134  *      this is just advisory information but for the Linux console it
2135  *      actually has driver level meaning and triggers a VC resize.
2136  *
2137  *      Locking:
2138  *              Driver dependant. The default do_resize method takes the
2139  *      tty termios mutex and ctrl_lock. The console takes its own lock
2140  *      then calls into the default method.
2141  */
2142
2143 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2144 {
2145         struct winsize tmp_ws;
2146         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2147                 return -EFAULT;
2148
2149         if (tty->ops->resize)
2150                 return tty->ops->resize(tty, &tmp_ws);
2151         else
2152                 return tty_do_resize(tty, &tmp_ws);
2153 }
2154
2155 /**
2156  *      tioccons        -       allow admin to move logical console
2157  *      @file: the file to become console
2158  *
2159  *      Allow the adminstrator to move the redirected console device
2160  *
2161  *      Locking: uses redirect_lock to guard the redirect information
2162  */
2163
2164 static int tioccons(struct file *file)
2165 {
2166         if (!capable(CAP_SYS_ADMIN))
2167                 return -EPERM;
2168         if (file->f_op->write == redirected_tty_write) {
2169                 struct file *f;
2170                 spin_lock(&redirect_lock);
2171                 f = redirect;
2172                 redirect = NULL;
2173                 spin_unlock(&redirect_lock);
2174                 if (f)
2175                         fput(f);
2176                 return 0;
2177         }
2178         spin_lock(&redirect_lock);
2179         if (redirect) {
2180                 spin_unlock(&redirect_lock);
2181                 return -EBUSY;
2182         }
2183         get_file(file);
2184         redirect = file;
2185         spin_unlock(&redirect_lock);
2186         return 0;
2187 }
2188
2189 /**
2190  *      fionbio         -       non blocking ioctl
2191  *      @file: file to set blocking value
2192  *      @p: user parameter
2193  *
2194  *      Historical tty interfaces had a blocking control ioctl before
2195  *      the generic functionality existed. This piece of history is preserved
2196  *      in the expected tty API of posix OS's.
2197  *
2198  *      Locking: none, the open file handle ensures it won't go away.
2199  */
2200
2201 static int fionbio(struct file *file, int __user *p)
2202 {
2203         int nonblock;
2204
2205         if (get_user(nonblock, p))
2206                 return -EFAULT;
2207
2208         spin_lock(&file->f_lock);
2209         if (nonblock)
2210                 file->f_flags |= O_NONBLOCK;
2211         else
2212                 file->f_flags &= ~O_NONBLOCK;
2213         spin_unlock(&file->f_lock);
2214         return 0;
2215 }
2216
2217 /**
2218  *      tiocsctty       -       set controlling tty
2219  *      @tty: tty structure
2220  *      @arg: user argument
2221  *
2222  *      This ioctl is used to manage job control. It permits a session
2223  *      leader to set this tty as the controlling tty for the session.
2224  *
2225  *      Locking:
2226  *              Takes tty_mutex() to protect tty instance
2227  *              Takes tasklist_lock internally to walk sessions
2228  *              Takes ->siglock() when updating signal->tty
2229  */
2230
2231 static int tiocsctty(struct tty_struct *tty, int arg)
2232 {
2233         int ret = 0;
2234         if (current->signal->leader && (task_session(current) == tty->session))
2235                 return ret;
2236
2237         mutex_lock(&tty_mutex);
2238         /*
2239          * The process must be a session leader and
2240          * not have a controlling tty already.
2241          */
2242         if (!current->signal->leader || current->signal->tty) {
2243                 ret = -EPERM;
2244                 goto unlock;
2245         }
2246
2247         if (tty->session) {
2248                 /*
2249                  * This tty is already the controlling
2250                  * tty for another session group!
2251                  */
2252                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2253                         /*
2254                          * Steal it away
2255                          */
2256                         read_lock(&tasklist_lock);
2257                         session_clear_tty(tty->session);
2258                         read_unlock(&tasklist_lock);
2259                 } else {
2260                         ret = -EPERM;
2261                         goto unlock;
2262                 }
2263         }
2264         proc_set_tty(current, tty);
2265 unlock:
2266         mutex_unlock(&tty_mutex);
2267         return ret;
2268 }
2269
2270 /**
2271  *      tty_get_pgrp    -       return a ref counted pgrp pid
2272  *      @tty: tty to read
2273  *
2274  *      Returns a refcounted instance of the pid struct for the process
2275  *      group controlling the tty.
2276  */
2277
2278 struct pid *tty_get_pgrp(struct tty_struct *tty)
2279 {
2280         unsigned long flags;
2281         struct pid *pgrp;
2282
2283         spin_lock_irqsave(&tty->ctrl_lock, flags);
2284         pgrp = get_pid(tty->pgrp);
2285         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2286
2287         return pgrp;
2288 }
2289 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2290
2291 /**
2292  *      tiocgpgrp               -       get process group
2293  *      @tty: tty passed by user
2294  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2295  *      @p: returned pid
2296  *
2297  *      Obtain the process group of the tty. If there is no process group
2298  *      return an error.
2299  *
2300  *      Locking: none. Reference to current->signal->tty is safe.
2301  */
2302
2303 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2304 {
2305         struct pid *pid;
2306         int ret;
2307         /*
2308          * (tty == real_tty) is a cheap way of
2309          * testing if the tty is NOT a master pty.
2310          */
2311         if (tty == real_tty && current->signal->tty != real_tty)
2312                 return -ENOTTY;
2313         pid = tty_get_pgrp(real_tty);
2314         ret =  put_user(pid_vnr(pid), p);
2315         put_pid(pid);
2316         return ret;
2317 }
2318
2319 /**
2320  *      tiocspgrp               -       attempt to set process group
2321  *      @tty: tty passed by user
2322  *      @real_tty: tty side device matching tty passed by user
2323  *      @p: pid pointer
2324  *
2325  *      Set the process group of the tty to the session passed. Only
2326  *      permitted where the tty session is our session.
2327  *
2328  *      Locking: RCU, ctrl lock
2329  */
2330
2331 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2332 {
2333         struct pid *pgrp;
2334         pid_t pgrp_nr;
2335         int retval = tty_check_change(real_tty);
2336         unsigned long flags;
2337
2338         if (retval == -EIO)
2339                 return -ENOTTY;
2340         if (retval)
2341                 return retval;
2342         if (!current->signal->tty ||
2343             (current->signal->tty != real_tty) ||
2344             (real_tty->session != task_session(current)))
2345                 return -ENOTTY;
2346         if (get_user(pgrp_nr, p))
2347                 return -EFAULT;
2348         if (pgrp_nr < 0)
2349                 return -EINVAL;
2350         rcu_read_lock();
2351         pgrp = find_vpid(pgrp_nr);
2352         retval = -ESRCH;
2353         if (!pgrp)
2354                 goto out_unlock;
2355         retval = -EPERM;
2356         if (session_of_pgrp(pgrp) != task_session(current))
2357                 goto out_unlock;
2358         retval = 0;
2359         spin_lock_irqsave(&tty->ctrl_lock, flags);
2360         put_pid(real_tty->pgrp);
2361         real_tty->pgrp = get_pid(pgrp);
2362         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2363 out_unlock:
2364         rcu_read_unlock();
2365         return retval;
2366 }
2367
2368 /**
2369  *      tiocgsid                -       get session id
2370  *      @tty: tty passed by user
2371  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2372  *      @p: pointer to returned session id
2373  *
2374  *      Obtain the session id of the tty. If there is no session
2375  *      return an error.
2376  *
2377  *      Locking: none. Reference to current->signal->tty is safe.
2378  */
2379
2380 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2381 {
2382         /*
2383          * (tty == real_tty) is a cheap way of
2384          * testing if the tty is NOT a master pty.
2385         */
2386         if (tty == real_tty && current->signal->tty != real_tty)
2387                 return -ENOTTY;
2388         if (!real_tty->session)
2389                 return -ENOTTY;
2390         return put_user(pid_vnr(real_tty->session), p);
2391 }
2392
2393 /**
2394  *      tiocsetd        -       set line discipline
2395  *      @tty: tty device
2396  *      @p: pointer to user data
2397  *
2398  *      Set the line discipline according to user request.
2399  *
2400  *      Locking: see tty_set_ldisc, this function is just a helper
2401  */
2402
2403 static int tiocsetd(struct tty_struct *tty, int __user *p)
2404 {
2405         int ldisc;
2406         int ret;
2407
2408         if (get_user(ldisc, p))
2409                 return -EFAULT;
2410
2411         ret = tty_set_ldisc(tty, ldisc);
2412
2413         return ret;
2414 }
2415
2416 /**
2417  *      send_break      -       performed time break
2418  *      @tty: device to break on
2419  *      @duration: timeout in mS
2420  *
2421  *      Perform a timed break on hardware that lacks its own driver level
2422  *      timed break functionality.
2423  *
2424  *      Locking:
2425  *              atomic_write_lock serializes
2426  *
2427  */
2428
2429 static int send_break(struct tty_struct *tty, unsigned int duration)
2430 {
2431         int retval;
2432
2433         if (tty->ops->break_ctl == NULL)
2434                 return 0;
2435
2436         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2437                 retval = tty->ops->break_ctl(tty, duration);
2438         else {
2439                 /* Do the work ourselves */
2440                 if (tty_write_lock(tty, 0) < 0)
2441                         return -EINTR;
2442                 retval = tty->ops->break_ctl(tty, -1);
2443                 if (retval)
2444                         goto out;
2445                 if (!signal_pending(current))
2446                         msleep_interruptible(duration);
2447                 retval = tty->ops->break_ctl(tty, 0);
2448 out:
2449                 tty_write_unlock(tty);
2450                 if (signal_pending(current))
2451                         retval = -EINTR;
2452         }
2453         return retval;
2454 }
2455
2456 /**
2457  *      tty_tiocmget            -       get modem status
2458  *      @tty: tty device
2459  *      @file: user file pointer
2460  *      @p: pointer to result
2461  *
2462  *      Obtain the modem status bits from the tty driver if the feature
2463  *      is supported. Return -EINVAL if it is not available.
2464  *
2465  *      Locking: none (up to the driver)
2466  */
2467
2468 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2469 {
2470         int retval = -EINVAL;
2471
2472         if (tty->ops->tiocmget) {
2473                 retval = tty->ops->tiocmget(tty, file);
2474
2475                 if (retval >= 0)
2476                         retval = put_user(retval, p);
2477         }
2478         return retval;
2479 }
2480
2481 /**
2482  *      tty_tiocmset            -       set modem status
2483  *      @tty: tty device
2484  *      @file: user file pointer
2485  *      @cmd: command - clear bits, set bits or set all
2486  *      @p: pointer to desired bits
2487  *
2488  *      Set the modem status bits from the tty driver if the feature
2489  *      is supported. Return -EINVAL if it is not available.
2490  *
2491  *      Locking: none (up to the driver)
2492  */
2493
2494 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2495              unsigned __user *p)
2496 {
2497         int retval;
2498         unsigned int set, clear, val;
2499
2500         if (tty->ops->tiocmset == NULL)
2501                 return -EINVAL;
2502
2503         retval = get_user(val, p);
2504         if (retval)
2505                 return retval;
2506         set = clear = 0;
2507         switch (cmd) {
2508         case TIOCMBIS:
2509                 set = val;
2510                 break;
2511         case TIOCMBIC:
2512                 clear = val;
2513                 break;
2514         case TIOCMSET:
2515                 set = val;
2516                 clear = ~val;
2517                 break;
2518         }
2519         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2520         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2521         return tty->ops->tiocmset(tty, file, set, clear);
2522 }
2523
2524 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2525 {
2526         int retval = -EINVAL;
2527         struct serial_icounter_struct icount;
2528         memset(&icount, 0, sizeof(icount));
2529         if (tty->ops->get_icount)
2530                 retval = tty->ops->get_icount(tty, &icount);
2531         if (retval != 0)
2532                 return retval;
2533         if (copy_to_user(arg, &icount, sizeof(icount)))
2534                 return -EFAULT;
2535         return 0;
2536 }
2537
2538 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2539 {
2540         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2541             tty->driver->subtype == PTY_TYPE_MASTER)
2542                 tty = tty->link;
2543         return tty;
2544 }
2545 EXPORT_SYMBOL(tty_pair_get_tty);
2546
2547 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2548 {
2549         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2550             tty->driver->subtype == PTY_TYPE_MASTER)
2551             return tty;
2552         return tty->link;
2553 }
2554 EXPORT_SYMBOL(tty_pair_get_pty);
2555
2556 /*
2557  * Split this up, as gcc can choke on it otherwise..
2558  */
2559 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2560 {
2561         struct tty_struct *tty = file_tty(file);
2562         struct tty_struct *real_tty;
2563         void __user *p = (void __user *)arg;
2564         int retval;
2565         struct tty_ldisc *ld;
2566         struct inode *inode = file->f_dentry->d_inode;
2567
2568         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2569                 return -EINVAL;
2570
2571         real_tty = tty_pair_get_tty(tty);
2572
2573         /*
2574          * Factor out some common prep work
2575          */
2576         switch (cmd) {
2577         case TIOCSETD:
2578         case TIOCSBRK:
2579         case TIOCCBRK:
2580         case TCSBRK:
2581         case TCSBRKP:
2582                 retval = tty_check_change(tty);
2583                 if (retval)
2584                         return retval;
2585                 if (cmd != TIOCCBRK) {
2586                         tty_wait_until_sent(tty, 0);
2587                         if (signal_pending(current))
2588                                 return -EINTR;
2589                 }
2590                 break;
2591         }
2592
2593         /*
2594          *      Now do the stuff.
2595          */
2596         switch (cmd) {
2597         case TIOCSTI:
2598                 return tiocsti(tty, p);
2599         case TIOCGWINSZ:
2600                 return tiocgwinsz(real_tty, p);
2601         case TIOCSWINSZ:
2602                 return tiocswinsz(real_tty, p);
2603         case TIOCCONS:
2604                 return real_tty != tty ? -EINVAL : tioccons(file);
2605         case FIONBIO:
2606                 return fionbio(file, p);
2607         case TIOCEXCL:
2608                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2609                 return 0;
2610         case TIOCNXCL:
2611                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2612                 return 0;
2613         case TIOCNOTTY:
2614                 if (current->signal->tty != tty)
2615                         return -ENOTTY;
2616                 no_tty();
2617                 return 0;
2618         case TIOCSCTTY:
2619                 return tiocsctty(tty, arg);
2620         case TIOCGPGRP:
2621                 return tiocgpgrp(tty, real_tty, p);
2622         case TIOCSPGRP:
2623                 return tiocspgrp(tty, real_tty, p);
2624         case TIOCGSID:
2625                 return tiocgsid(tty, real_tty, p);
2626         case TIOCGETD:
2627                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2628         case TIOCSETD:
2629                 return tiocsetd(tty, p);
2630         case TIOCGDEV:
2631         {
2632                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2633                 return put_user(ret, (unsigned int __user *)p);
2634         }
2635         /*
2636          * Break handling
2637          */
2638         case TIOCSBRK:  /* Turn break on, unconditionally */
2639                 if (tty->ops->break_ctl)
2640                         return tty->ops->break_ctl(tty, -1);
2641                 return 0;
2642         case TIOCCBRK:  /* Turn break off, unconditionally */
2643                 if (tty->ops->break_ctl)
2644                         return tty->ops->break_ctl(tty, 0);
2645                 return 0;
2646         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2647                 /* non-zero arg means wait for all output data
2648                  * to be sent (performed above) but don't send break.
2649                  * This is used by the tcdrain() termios function.
2650                  */
2651                 if (!arg)
2652                         return send_break(tty, 250);
2653                 return 0;
2654         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2655                 return send_break(tty, arg ? arg*100 : 250);
2656
2657         case TIOCMGET:
2658                 return tty_tiocmget(tty, file, p);
2659         case TIOCMSET:
2660         case TIOCMBIC:
2661         case TIOCMBIS:
2662                 return tty_tiocmset(tty, file, cmd, p);
2663         case TIOCGICOUNT:
2664                 retval = tty_tiocgicount(tty, p);
2665                 /* For the moment allow fall through to the old method */
2666                 if (retval != -EINVAL)
2667                         return retval;
2668                 break;
2669         case TCFLSH:
2670                 switch (arg) {
2671                 case TCIFLUSH:
2672                 case TCIOFLUSH:
2673                 /* flush tty buffer and allow ldisc to process ioctl */
2674                         tty_buffer_flush(tty);
2675                         break;
2676                 }
2677                 break;
2678         }
2679         if (tty->ops->ioctl) {
2680                 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2681                 if (retval != -ENOIOCTLCMD)
2682                         return retval;
2683         }
2684         ld = tty_ldisc_ref_wait(tty);
2685         retval = -EINVAL;
2686         if (ld->ops->ioctl) {
2687                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2688                 if (retval == -ENOIOCTLCMD)
2689                         retval = -EINVAL;
2690         }
2691         tty_ldisc_deref(ld);
2692         return retval;
2693 }
2694
2695 #ifdef CONFIG_COMPAT
2696 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2697                                 unsigned long arg)
2698 {
2699         struct inode *inode = file->f_dentry->d_inode;
2700         struct tty_struct *tty = file_tty(file);
2701         struct tty_ldisc *ld;
2702         int retval = -ENOIOCTLCMD;
2703
2704         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2705                 return -EINVAL;
2706
2707         if (tty->ops->compat_ioctl) {
2708                 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2709                 if (retval != -ENOIOCTLCMD)
2710                         return retval;
2711         }
2712
2713         ld = tty_ldisc_ref_wait(tty);
2714         if (ld->ops->compat_ioctl)
2715                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2716         tty_ldisc_deref(ld);
2717
2718         return retval;
2719 }
2720 #endif
2721
2722 /*
2723  * This implements the "Secure Attention Key" ---  the idea is to
2724  * prevent trojan horses by killing all processes associated with this
2725  * tty when the user hits the "Secure Attention Key".  Required for
2726  * super-paranoid applications --- see the Orange Book for more details.
2727  *
2728  * This code could be nicer; ideally it should send a HUP, wait a few
2729  * seconds, then send a INT, and then a KILL signal.  But you then
2730  * have to coordinate with the init process, since all processes associated
2731  * with the current tty must be dead before the new getty is allowed
2732  * to spawn.
2733  *
2734  * Now, if it would be correct ;-/ The current code has a nasty hole -
2735  * it doesn't catch files in flight. We may send the descriptor to ourselves
2736  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2737  *
2738  * Nasty bug: do_SAK is being called in interrupt context.  This can
2739  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2740  */
2741 void __do_SAK(struct tty_struct *tty)
2742 {
2743 #ifdef TTY_SOFT_SAK
2744         tty_hangup(tty);
2745 #else
2746         struct task_struct *g, *p;
2747         struct pid *session;
2748         int             i;
2749         struct file     *filp;
2750         struct fdtable *fdt;
2751
2752         if (!tty)
2753                 return;
2754         session = tty->session;
2755
2756         tty_ldisc_flush(tty);
2757
2758         tty_driver_flush_buffer(tty);
2759
2760         read_lock(&tasklist_lock);
2761         /* Kill the entire session */
2762         do_each_pid_task(session, PIDTYPE_SID, p) {
2763                 printk(KERN_NOTICE "SAK: killed process %d"
2764                         " (%s): task_session(p)==tty->session\n",
2765                         task_pid_nr(p), p->comm);
2766                 send_sig(SIGKILL, p, 1);
2767         } while_each_pid_task(session, PIDTYPE_SID, p);
2768         /* Now kill any processes that happen to have the
2769          * tty open.
2770          */
2771         do_each_thread(g, p) {
2772                 if (p->signal->tty == tty) {
2773                         printk(KERN_NOTICE "SAK: killed process %d"
2774                             " (%s): task_session(p)==tty->session\n",
2775                             task_pid_nr(p), p->comm);
2776                         send_sig(SIGKILL, p, 1);
2777                         continue;
2778                 }
2779                 task_lock(p);
2780                 if (p->files) {
2781                         /*
2782                          * We don't take a ref to the file, so we must
2783                          * hold ->file_lock instead.
2784                          */
2785                         spin_lock(&p->files->file_lock);
2786                         fdt = files_fdtable(p->files);
2787                         for (i = 0; i < fdt->max_fds; i++) {
2788                                 filp = fcheck_files(p->files, i);
2789                                 if (!filp)
2790                                         continue;
2791                                 if (filp->f_op->read == tty_read &&
2792                                     file_tty(filp) == tty) {
2793                                         printk(KERN_NOTICE "SAK: killed process %d"
2794                                             " (%s): fd#%d opened to the tty\n",
2795                                             task_pid_nr(p), p->comm, i);
2796                                         force_sig(SIGKILL, p);
2797                                         break;
2798                                 }
2799                         }
2800                         spin_unlock(&p->files->file_lock);
2801                 }
2802                 task_unlock(p);
2803         } while_each_thread(g, p);
2804         read_unlock(&tasklist_lock);
2805 #endif
2806 }
2807
2808 static void do_SAK_work(struct work_struct *work)
2809 {
2810         struct tty_struct *tty =
2811                 container_of(work, struct tty_struct, SAK_work);
2812         __do_SAK(tty);
2813 }
2814
2815 /*
2816  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2817  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2818  * the values which we write to it will be identical to the values which it
2819  * already has. --akpm
2820  */
2821 void do_SAK(struct tty_struct *tty)
2822 {
2823         if (!tty)
2824                 return;
2825         schedule_work(&tty->SAK_work);
2826 }
2827
2828 EXPORT_SYMBOL(do_SAK);
2829
2830 static int dev_match_devt(struct device *dev, void *data)
2831 {
2832         dev_t *devt = data;
2833         return dev->devt == *devt;
2834 }
2835
2836 /* Must put_device() after it's unused! */
2837 static struct device *tty_get_device(struct tty_struct *tty)
2838 {
2839         dev_t devt = tty_devnum(tty);
2840         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2841 }
2842
2843
2844 /**
2845  *      initialize_tty_struct
2846  *      @tty: tty to initialize
2847  *
2848  *      This subroutine initializes a tty structure that has been newly
2849  *      allocated.
2850  *
2851  *      Locking: none - tty in question must not be exposed at this point
2852  */
2853
2854 void initialize_tty_struct(struct tty_struct *tty,
2855                 struct tty_driver *driver, int idx)
2856 {
2857         memset(tty, 0, sizeof(struct tty_struct));
2858         kref_init(&tty->kref);
2859         tty->magic = TTY_MAGIC;
2860         tty_ldisc_init(tty);
2861         tty->session = NULL;
2862         tty->pgrp = NULL;
2863         tty->overrun_time = jiffies;
2864         tty->buf.head = tty->buf.tail = NULL;
2865         tty_buffer_init(tty);
2866         mutex_init(&tty->termios_mutex);
2867         mutex_init(&tty->ldisc_mutex);
2868         init_waitqueue_head(&tty->write_wait);
2869         init_waitqueue_head(&tty->read_wait);
2870         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2871         mutex_init(&tty->atomic_read_lock);
2872         mutex_init(&tty->atomic_write_lock);
2873         mutex_init(&tty->output_lock);
2874         mutex_init(&tty->echo_lock);
2875         spin_lock_init(&tty->read_lock);
2876         spin_lock_init(&tty->ctrl_lock);
2877         INIT_LIST_HEAD(&tty->tty_files);
2878         INIT_WORK(&tty->SAK_work, do_SAK_work);
2879
2880         tty->driver = driver;
2881         tty->ops = driver->ops;
2882         tty->index = idx;
2883         tty_line_name(driver, idx, tty->name);
2884         tty->dev = tty_get_device(tty);
2885 }
2886
2887 /**
2888  *      tty_put_char    -       write one character to a tty
2889  *      @tty: tty
2890  *      @ch: character
2891  *
2892  *      Write one byte to the tty using the provided put_char method
2893  *      if present. Returns the number of characters successfully output.
2894  *
2895  *      Note: the specific put_char operation in the driver layer may go
2896  *      away soon. Don't call it directly, use this method
2897  */
2898
2899 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2900 {
2901         if (tty->ops->put_char)
2902                 return tty->ops->put_char(tty, ch);
2903         return tty->ops->write(tty, &ch, 1);
2904 }
2905 EXPORT_SYMBOL_GPL(tty_put_char);
2906
2907 struct class *tty_class;
2908
2909 /**
2910  *      tty_register_device - register a tty device
2911  *      @driver: the tty driver that describes the tty device
2912  *      @index: the index in the tty driver for this tty device
2913  *      @device: a struct device that is associated with this tty device.
2914  *              This field is optional, if there is no known struct device
2915  *              for this tty device it can be set to NULL safely.
2916  *
2917  *      Returns a pointer to the struct device for this tty device
2918  *      (or ERR_PTR(-EFOO) on error).
2919  *
2920  *      This call is required to be made to register an individual tty device
2921  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2922  *      that bit is not set, this function should not be called by a tty
2923  *      driver.
2924  *
2925  *      Locking: ??
2926  */
2927
2928 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2929                                    struct device *device)
2930 {
2931         char name[64];
2932         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2933
2934         if (index >= driver->num) {
2935                 printk(KERN_ERR "Attempt to register invalid tty line number "
2936                        " (%d).\n", index);
2937                 return ERR_PTR(-EINVAL);
2938         }
2939
2940         if (driver->type == TTY_DRIVER_TYPE_PTY)
2941                 pty_line_name(driver, index, name);
2942         else
2943                 tty_line_name(driver, index, name);
2944
2945         return device_create(tty_class, device, dev, NULL, name);
2946 }
2947 EXPORT_SYMBOL(tty_register_device);
2948
2949 /**
2950  *      tty_unregister_device - unregister a tty device
2951  *      @driver: the tty driver that describes the tty device
2952  *      @index: the index in the tty driver for this tty device
2953  *
2954  *      If a tty device is registered with a call to tty_register_device() then
2955  *      this function must be called when the tty device is gone.
2956  *
2957  *      Locking: ??
2958  */
2959
2960 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2961 {
2962         device_destroy(tty_class,
2963                 MKDEV(driver->major, driver->minor_start) + index);
2964 }
2965 EXPORT_SYMBOL(tty_unregister_device);
2966
2967 struct tty_driver *alloc_tty_driver(int lines)
2968 {
2969         struct tty_driver *driver;
2970
2971         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2972         if (driver) {
2973                 kref_init(&driver->kref);
2974                 driver->magic = TTY_DRIVER_MAGIC;
2975                 driver->num = lines;
2976                 /* later we'll move allocation of tables here */
2977         }
2978         return driver;
2979 }
2980 EXPORT_SYMBOL(alloc_tty_driver);
2981
2982 static void destruct_tty_driver(struct kref *kref)
2983 {
2984         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2985         int i;
2986         struct ktermios *tp;
2987         void *p;
2988
2989         if (driver->flags & TTY_DRIVER_INSTALLED) {
2990                 /*
2991                  * Free the termios and termios_locked structures because
2992                  * we don't want to get memory leaks when modular tty
2993                  * drivers are removed from the kernel.
2994                  */
2995                 for (i = 0; i < driver->num; i++) {
2996                         tp = driver->termios[i];
2997                         if (tp) {
2998                                 driver->termios[i] = NULL;
2999                                 kfree(tp);
3000                         }
3001                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3002                                 tty_unregister_device(driver, i);
3003                 }
3004                 p = driver->ttys;
3005                 proc_tty_unregister_driver(driver);
3006                 driver->ttys = NULL;
3007                 driver->termios = NULL;
3008                 kfree(p);
3009                 cdev_del(&driver->cdev);
3010         }
3011         kfree(driver);
3012 }
3013
3014 void tty_driver_kref_put(struct tty_driver *driver)
3015 {
3016         kref_put(&driver->kref, destruct_tty_driver);
3017 }
3018 EXPORT_SYMBOL(tty_driver_kref_put);
3019
3020 void tty_set_operations(struct tty_driver *driver,
3021                         const struct tty_operations *op)
3022 {
3023         driver->ops = op;
3024 };
3025 EXPORT_SYMBOL(tty_set_operations);
3026
3027 void put_tty_driver(struct tty_driver *d)
3028 {
3029         tty_driver_kref_put(d);
3030 }
3031 EXPORT_SYMBOL(put_tty_driver);
3032
3033 /*
3034  * Called by a tty driver to register itself.
3035  */
3036 int tty_register_driver(struct tty_driver *driver)
3037 {
3038         int error;
3039         int i;
3040         dev_t dev;
3041         void **p = NULL;
3042         struct device *d;
3043
3044         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3045                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3046                 if (!p)
3047                         return -ENOMEM;
3048         }
3049
3050         if (!driver->major) {
3051                 error = alloc_chrdev_region(&dev, driver->minor_start,
3052                                                 driver->num, driver->name);
3053                 if (!error) {
3054                         driver->major = MAJOR(dev);
3055                         driver->minor_start = MINOR(dev);
3056                 }
3057         } else {
3058                 dev = MKDEV(driver->major, driver->minor_start);
3059                 error = register_chrdev_region(dev, driver->num, driver->name);
3060         }
3061         if (error < 0) {
3062                 kfree(p);
3063                 return error;
3064         }
3065
3066         if (p) {
3067                 driver->ttys = (struct tty_struct **)p;
3068                 driver->termios = (struct ktermios **)(p + driver->num);
3069         } else {
3070                 driver->ttys = NULL;
3071                 driver->termios = NULL;
3072         }
3073
3074         cdev_init(&driver->cdev, &tty_fops);
3075         driver->cdev.owner = driver->owner;
3076         error = cdev_add(&driver->cdev, dev, driver->num);
3077         if (error) {
3078                 unregister_chrdev_region(dev, driver->num);
3079                 driver->ttys = NULL;
3080                 driver->termios = NULL;
3081                 kfree(p);
3082                 return error;
3083         }
3084
3085         mutex_lock(&tty_mutex);
3086         list_add(&driver->tty_drivers, &tty_drivers);
3087         mutex_unlock(&tty_mutex);
3088
3089         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3090                 for (i = 0; i < driver->num; i++) {
3091                         d = tty_register_device(driver, i, NULL);
3092                         if (IS_ERR(d)) {
3093                                 error = PTR_ERR(d);
3094                                 goto err;
3095                         }
3096                 }
3097         }
3098         proc_tty_register_driver(driver);
3099         driver->flags |= TTY_DRIVER_INSTALLED;
3100         return 0;
3101
3102 err:
3103         for (i--; i >= 0; i--)
3104                 tty_unregister_device(driver, i);
3105
3106         mutex_lock(&tty_mutex);
3107         list_del(&driver->tty_drivers);
3108         mutex_unlock(&tty_mutex);
3109
3110         unregister_chrdev_region(dev, driver->num);
3111         driver->ttys = NULL;
3112         driver->termios = NULL;
3113         kfree(p);
3114         return error;
3115 }
3116
3117 EXPORT_SYMBOL(tty_register_driver);
3118
3119 /*
3120  * Called by a tty driver to unregister itself.
3121  */
3122 int tty_unregister_driver(struct tty_driver *driver)
3123 {
3124 #if 0
3125         /* FIXME */
3126         if (driver->refcount)
3127                 return -EBUSY;
3128 #endif
3129         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3130                                 driver->num);
3131         mutex_lock(&tty_mutex);
3132         list_del(&driver->tty_drivers);
3133         mutex_unlock(&tty_mutex);
3134         return 0;
3135 }
3136
3137 EXPORT_SYMBOL(tty_unregister_driver);
3138
3139 dev_t tty_devnum(struct tty_struct *tty)
3140 {
3141         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3142 }
3143 EXPORT_SYMBOL(tty_devnum);
3144
3145 void proc_clear_tty(struct task_struct *p)
3146 {
3147         unsigned long flags;
3148         struct tty_struct *tty;
3149         spin_lock_irqsave(&p->sighand->siglock, flags);
3150         tty = p->signal->tty;
3151         p->signal->tty = NULL;
3152         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3153         tty_kref_put(tty);
3154 }
3155
3156 /* Called under the sighand lock */
3157
3158 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3159 {
3160         if (tty) {
3161                 unsigned long flags;
3162                 /* We should not have a session or pgrp to put here but.... */
3163                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3164                 put_pid(tty->session);
3165                 put_pid(tty->pgrp);
3166                 tty->pgrp = get_pid(task_pgrp(tsk));
3167                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3168                 tty->session = get_pid(task_session(tsk));
3169                 if (tsk->signal->tty) {
3170                         printk(KERN_DEBUG "tty not NULL!!\n");
3171                         tty_kref_put(tsk->signal->tty);
3172                 }
3173         }
3174         put_pid(tsk->signal->tty_old_pgrp);
3175         tsk->signal->tty = tty_kref_get(tty);
3176         tsk->signal->tty_old_pgrp = NULL;
3177 }
3178
3179 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3180 {
3181         spin_lock_irq(&tsk->sighand->siglock);
3182         __proc_set_tty(tsk, tty);
3183         spin_unlock_irq(&tsk->sighand->siglock);
3184 }
3185
3186 struct tty_struct *get_current_tty(void)
3187 {
3188         struct tty_struct *tty;
3189         unsigned long flags;
3190
3191         spin_lock_irqsave(&current->sighand->siglock, flags);
3192         tty = tty_kref_get(current->signal->tty);
3193         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3194         return tty;
3195 }
3196 EXPORT_SYMBOL_GPL(get_current_tty);
3197
3198 void tty_default_fops(struct file_operations *fops)
3199 {
3200         *fops = tty_fops;
3201 }
3202
3203 /*
3204  * Initialize the console device. This is called *early*, so
3205  * we can't necessarily depend on lots of kernel help here.
3206  * Just do some early initializations, and do the complex setup
3207  * later.
3208  */
3209 void __init console_init(void)
3210 {
3211         initcall_t *call;
3212
3213         /* Setup the default TTY line discipline. */
3214         tty_ldisc_begin();
3215
3216         /*
3217          * set up the console device so that later boot sequences can
3218          * inform about problems etc..
3219          */
3220         call = __con_initcall_start;
3221         while (call < __con_initcall_end) {
3222                 (*call)();
3223                 call++;
3224         }
3225 }
3226
3227 static char *tty_devnode(struct device *dev, mode_t *mode)
3228 {
3229         if (!mode)
3230                 return NULL;
3231         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3232             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3233                 *mode = 0666;
3234         return NULL;
3235 }
3236
3237 static int __init tty_class_init(void)
3238 {
3239         tty_class = class_create(THIS_MODULE, "tty");
3240         if (IS_ERR(tty_class))
3241                 return PTR_ERR(tty_class);
3242         tty_class->devnode = tty_devnode;
3243         return 0;
3244 }
3245
3246 postcore_initcall(tty_class_init);
3247
3248 /* 3/2004 jmc: why do these devices exist? */
3249 static struct cdev tty_cdev, console_cdev;
3250
3251 static ssize_t show_cons_active(struct device *dev,
3252                                 struct device_attribute *attr, char *buf)
3253 {
3254         struct console *cs[16];
3255         int i = 0;
3256         struct console *c;
3257         ssize_t count = 0;
3258
3259         acquire_console_sem();
3260         for (c = console_drivers; c; c = c->next) {
3261                 if (!c->device)
3262                         continue;
3263                 if (!c->write)
3264                         continue;
3265                 if ((c->flags & CON_ENABLED) == 0)
3266                         continue;
3267                 cs[i++] = c;
3268                 if (i >= ARRAY_SIZE(cs))
3269                         break;
3270         }
3271         while (i--)
3272                 count += sprintf(buf + count, "%s%d%c",
3273                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3274         release_console_sem();
3275
3276         return count;
3277 }
3278 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3279
3280 static struct device *consdev;
3281
3282 void console_sysfs_notify(void)
3283 {
3284         if (consdev)
3285                 sysfs_notify(&consdev->kobj, NULL, "active");
3286 }
3287
3288 /*
3289  * Ok, now we can initialize the rest of the tty devices and can count
3290  * on memory allocations, interrupts etc..
3291  */
3292 int __init tty_init(void)
3293 {
3294         cdev_init(&tty_cdev, &tty_fops);
3295         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3296             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3297                 panic("Couldn't register /dev/tty driver\n");
3298         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3299
3300         cdev_init(&console_cdev, &console_fops);
3301         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3302             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3303                 panic("Couldn't register /dev/console driver\n");
3304         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3305                               "console");
3306         if (IS_ERR(consdev))
3307                 consdev = NULL;
3308         else
3309                 device_create_file(consdev, &dev_attr_active);
3310
3311 #ifdef CONFIG_VT
3312         vty_init(&console_fops);
3313 #endif
3314         return 0;
3315 }
3316