]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/tty/tty_io.c
iommu/arm-smmu: fix a signedness bug
[karo-tx-linux.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (!tty)
185                 return;
186         if (tty->dev)
187                 put_device(tty->dev);
188         kfree(tty->write_buf);
189         tty->magic = 0xDEADDEAD;
190         kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195         return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200         struct tty_file_private *priv;
201
202         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203         if (!priv)
204                 return -ENOMEM;
205
206         file->private_data = priv;
207
208         return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214         struct tty_file_private *priv = file->private_data;
215
216         priv->tty = tty;
217         priv->file = file;
218
219         spin_lock(&tty_files_lock);
220         list_add(&priv->list, &tty->tty_files);
221         spin_unlock(&tty_files_lock);
222 }
223
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232         struct tty_file_private *priv = file->private_data;
233
234         file->private_data = NULL;
235         kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241         struct tty_file_private *priv = file->private_data;
242
243         spin_lock(&tty_files_lock);
244         list_del(&priv->list);
245         spin_unlock(&tty_files_lock);
246         tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253  *      tty_name        -       return tty naming
254  *      @tty: tty structure
255  *      @buf: buffer for output
256  *
257  *      Convert a tty structure into a name. The name reflects the kernel
258  *      naming policy and if udev is in use may not reflect user space
259  *
260  *      Locking: none
261  */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266                 strcpy(buf, "NULL tty");
267         else
268                 strcpy(buf, tty->name);
269         return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275                               const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278         if (!tty) {
279                 printk(KERN_WARNING
280                         "null TTY for (%d:%d) in %s\n",
281                         imajor(inode), iminor(inode), routine);
282                 return 1;
283         }
284         if (tty->magic != TTY_MAGIC) {
285                 printk(KERN_WARNING
286                         "bad magic number for tty struct (%d:%d) in %s\n",
287                         imajor(inode), iminor(inode), routine);
288                 return 1;
289         }
290 #endif
291         return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297         struct list_head *p;
298         int count = 0;
299
300         spin_lock(&tty_files_lock);
301         list_for_each(p, &tty->tty_files) {
302                 count++;
303         }
304         spin_unlock(&tty_files_lock);
305         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306             tty->driver->subtype == PTY_TYPE_SLAVE &&
307             tty->link && tty->link->count)
308                 count++;
309         if (tty->count != count) {
310                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311                                     "!= #fd's(%d) in %s\n",
312                        tty->name, tty->count, count, routine);
313                 return count;
314         }
315 #endif
316         return 0;
317 }
318
319 /**
320  *      get_tty_driver          -       find device of a tty
321  *      @dev_t: device identifier
322  *      @index: returns the index of the tty
323  *
324  *      This routine returns a tty driver structure, given a device number
325  *      and also passes back the index number.
326  *
327  *      Locking: caller must hold tty_mutex
328  */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332         struct tty_driver *p;
333
334         list_for_each_entry(p, &tty_drivers, tty_drivers) {
335                 dev_t base = MKDEV(p->major, p->minor_start);
336                 if (device < base || device >= base + p->num)
337                         continue;
338                 *index = device - base;
339                 return tty_driver_kref_get(p);
340         }
341         return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347  *      tty_find_polling_driver -       find device of a polled tty
348  *      @name: name string to match
349  *      @line: pointer to resulting tty line nr
350  *
351  *      This routine returns a tty driver structure, given a name
352  *      and the condition that the tty driver is capable of polled
353  *      operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357         struct tty_driver *p, *res = NULL;
358         int tty_line = 0;
359         int len;
360         char *str, *stp;
361
362         for (str = name; *str; str++)
363                 if ((*str >= '0' && *str <= '9') || *str == ',')
364                         break;
365         if (!*str)
366                 return NULL;
367
368         len = str - name;
369         tty_line = simple_strtoul(str, &str, 10);
370
371         mutex_lock(&tty_mutex);
372         /* Search through the tty devices to look for a match */
373         list_for_each_entry(p, &tty_drivers, tty_drivers) {
374                 if (strncmp(name, p->name, len) != 0)
375                         continue;
376                 stp = str;
377                 if (*stp == ',')
378                         stp++;
379                 if (*stp == '\0')
380                         stp = NULL;
381
382                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384                         res = tty_driver_kref_get(p);
385                         *line = tty_line;
386                         break;
387                 }
388         }
389         mutex_unlock(&tty_mutex);
390
391         return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397  *      tty_check_change        -       check for POSIX terminal changes
398  *      @tty: tty to check
399  *
400  *      If we try to write to, or set the state of, a terminal and we're
401  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *      Locking: ctrl_lock
405  */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409         unsigned long flags;
410         int ret = 0;
411
412         if (current->signal->tty != tty)
413                 return 0;
414
415         spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417         if (!tty->pgrp) {
418                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419                 goto out_unlock;
420         }
421         if (task_pgrp(current) == tty->pgrp)
422                 goto out_unlock;
423         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424         if (is_ignored(SIGTTOU))
425                 goto out;
426         if (is_current_pgrp_orphaned()) {
427                 ret = -EIO;
428                 goto out;
429         }
430         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431         set_thread_flag(TIF_SIGPENDING);
432         ret = -ERESTARTSYS;
433 out:
434         return ret;
435 out_unlock:
436         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437         return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443                                 size_t count, loff_t *ppos)
444 {
445         return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449                                  size_t count, loff_t *ppos)
450 {
451         return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461                 unsigned long arg)
462 {
463         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467                                      unsigned int cmd, unsigned long arg)
468 {
469         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473         .llseek         = no_llseek,
474         .read           = tty_read,
475         .write          = tty_write,
476         .poll           = tty_poll,
477         .unlocked_ioctl = tty_ioctl,
478         .compat_ioctl   = tty_compat_ioctl,
479         .open           = tty_open,
480         .release        = tty_release,
481         .fasync         = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485         .llseek         = no_llseek,
486         .read           = tty_read,
487         .write          = redirected_tty_write,
488         .poll           = tty_poll,
489         .unlocked_ioctl = tty_ioctl,
490         .compat_ioctl   = tty_compat_ioctl,
491         .open           = tty_open,
492         .release        = tty_release,
493         .fasync         = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497         .llseek         = no_llseek,
498         .read           = hung_up_tty_read,
499         .write          = hung_up_tty_write,
500         .poll           = hung_up_tty_poll,
501         .unlocked_ioctl = hung_up_tty_ioctl,
502         .compat_ioctl   = hung_up_tty_compat_ioctl,
503         .release        = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510  *      tty_wakeup      -       request more data
511  *      @tty: terminal
512  *
513  *      Internal and external helper for wakeups of tty. This function
514  *      informs the line discipline if present that the driver is ready
515  *      to receive more output data.
516  */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520         struct tty_ldisc *ld;
521
522         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523                 ld = tty_ldisc_ref(tty);
524                 if (ld) {
525                         if (ld->ops->write_wakeup)
526                                 ld->ops->write_wakeup(tty);
527                         tty_ldisc_deref(ld);
528                 }
529         }
530         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536  *      tty_signal_session_leader       - sends SIGHUP to session leader
537  *      @tty            controlling tty
538  *      @exit_session   if non-zero, signal all foreground group processes
539  *
540  *      Send SIGHUP and SIGCONT to the session leader and its process group.
541  *      Optionally, signal all processes in the foreground process group.
542  *
543  *      Returns the number of processes in the session with this tty
544  *      as their controlling terminal. This value is used to drop
545  *      tty references for those processes.
546  */
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549         struct task_struct *p;
550         int refs = 0;
551         struct pid *tty_pgrp = NULL;
552
553         read_lock(&tasklist_lock);
554         if (tty->session) {
555                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556                         spin_lock_irq(&p->sighand->siglock);
557                         if (p->signal->tty == tty) {
558                                 p->signal->tty = NULL;
559                                 /* We defer the dereferences outside fo
560                                    the tasklist lock */
561                                 refs++;
562                         }
563                         if (!p->signal->leader) {
564                                 spin_unlock_irq(&p->sighand->siglock);
565                                 continue;
566                         }
567                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
570                         spin_lock(&tty->ctrl_lock);
571                         tty_pgrp = get_pid(tty->pgrp);
572                         if (tty->pgrp)
573                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574                         spin_unlock(&tty->ctrl_lock);
575                         spin_unlock_irq(&p->sighand->siglock);
576                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
577         }
578         read_unlock(&tasklist_lock);
579
580         if (tty_pgrp) {
581                 if (exit_session)
582                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583                 put_pid(tty_pgrp);
584         }
585
586         return refs;
587 }
588
589 /**
590  *      __tty_hangup            -       actual handler for hangup events
591  *      @work: tty device
592  *
593  *      This can be called by a "kworker" kernel thread.  That is process
594  *      synchronous but doesn't hold any locks, so we need to make sure we
595  *      have the appropriate locks for what we're doing.
596  *
597  *      The hangup event clears any pending redirections onto the hung up
598  *      device. It ensures future writes will error and it does the needed
599  *      line discipline hangup and signal delivery. The tty object itself
600  *      remains intact.
601  *
602  *      Locking:
603  *              BTM
604  *                redirect lock for undoing redirection
605  *                file list lock for manipulating list of ttys
606  *                tty_ldiscs_lock from called functions
607  *                termios_rwsem resetting termios data
608  *                tasklist_lock to walk task list for hangup event
609  *                  ->siglock to protect ->signal/->sighand
610  */
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613         struct file *cons_filp = NULL;
614         struct file *filp, *f = NULL;
615         struct tty_file_private *priv;
616         int    closecount = 0, n;
617         int refs;
618
619         if (!tty)
620                 return;
621
622
623         spin_lock(&redirect_lock);
624         if (redirect && file_tty(redirect) == tty) {
625                 f = redirect;
626                 redirect = NULL;
627         }
628         spin_unlock(&redirect_lock);
629
630         tty_lock(tty);
631
632         if (test_bit(TTY_HUPPED, &tty->flags)) {
633                 tty_unlock(tty);
634                 return;
635         }
636
637         /* some functions below drop BTM, so we need this bit */
638         set_bit(TTY_HUPPING, &tty->flags);
639
640         /* inuse_filps is protected by the single tty lock,
641            this really needs to change if we want to flush the
642            workqueue with the lock held */
643         check_tty_count(tty, "tty_hangup");
644
645         spin_lock(&tty_files_lock);
646         /* This breaks for file handles being sent over AF_UNIX sockets ? */
647         list_for_each_entry(priv, &tty->tty_files, list) {
648                 filp = priv->file;
649                 if (filp->f_op->write == redirected_tty_write)
650                         cons_filp = filp;
651                 if (filp->f_op->write != tty_write)
652                         continue;
653                 closecount++;
654                 __tty_fasync(-1, filp, 0);      /* can't block */
655                 filp->f_op = &hung_up_tty_fops;
656         }
657         spin_unlock(&tty_files_lock);
658
659         refs = tty_signal_session_leader(tty, exit_session);
660         /* Account for the p->signal references we killed */
661         while (refs--)
662                 tty_kref_put(tty);
663
664         /*
665          * it drops BTM and thus races with reopen
666          * we protect the race by TTY_HUPPING
667          */
668         tty_ldisc_hangup(tty);
669
670         spin_lock_irq(&tty->ctrl_lock);
671         clear_bit(TTY_THROTTLED, &tty->flags);
672         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
673         put_pid(tty->session);
674         put_pid(tty->pgrp);
675         tty->session = NULL;
676         tty->pgrp = NULL;
677         tty->ctrl_status = 0;
678         spin_unlock_irq(&tty->ctrl_lock);
679
680         /*
681          * If one of the devices matches a console pointer, we
682          * cannot just call hangup() because that will cause
683          * tty->count and state->count to go out of sync.
684          * So we just call close() the right number of times.
685          */
686         if (cons_filp) {
687                 if (tty->ops->close)
688                         for (n = 0; n < closecount; n++)
689                                 tty->ops->close(tty, cons_filp);
690         } else if (tty->ops->hangup)
691                 (tty->ops->hangup)(tty);
692         /*
693          * We don't want to have driver/ldisc interactions beyond
694          * the ones we did here. The driver layer expects no
695          * calls after ->hangup() from the ldisc side. However we
696          * can't yet guarantee all that.
697          */
698         set_bit(TTY_HUPPED, &tty->flags);
699         clear_bit(TTY_HUPPING, &tty->flags);
700
701         tty_unlock(tty);
702
703         if (f)
704                 fput(f);
705 }
706
707 static void do_tty_hangup(struct work_struct *work)
708 {
709         struct tty_struct *tty =
710                 container_of(work, struct tty_struct, hangup_work);
711
712         __tty_hangup(tty, 0);
713 }
714
715 /**
716  *      tty_hangup              -       trigger a hangup event
717  *      @tty: tty to hangup
718  *
719  *      A carrier loss (virtual or otherwise) has occurred on this like
720  *      schedule a hangup sequence to run after this event.
721  */
722
723 void tty_hangup(struct tty_struct *tty)
724 {
725 #ifdef TTY_DEBUG_HANGUP
726         char    buf[64];
727         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
728 #endif
729         schedule_work(&tty->hangup_work);
730 }
731
732 EXPORT_SYMBOL(tty_hangup);
733
734 /**
735  *      tty_vhangup             -       process vhangup
736  *      @tty: tty to hangup
737  *
738  *      The user has asked via system call for the terminal to be hung up.
739  *      We do this synchronously so that when the syscall returns the process
740  *      is complete. That guarantee is necessary for security reasons.
741  */
742
743 void tty_vhangup(struct tty_struct *tty)
744 {
745 #ifdef TTY_DEBUG_HANGUP
746         char    buf[64];
747
748         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
749 #endif
750         __tty_hangup(tty, 0);
751 }
752
753 EXPORT_SYMBOL(tty_vhangup);
754
755
756 /**
757  *      tty_vhangup_self        -       process vhangup for own ctty
758  *
759  *      Perform a vhangup on the current controlling tty
760  */
761
762 void tty_vhangup_self(void)
763 {
764         struct tty_struct *tty;
765
766         tty = get_current_tty();
767         if (tty) {
768                 tty_vhangup(tty);
769                 tty_kref_put(tty);
770         }
771 }
772
773 /**
774  *      tty_vhangup_session             -       hangup session leader exit
775  *      @tty: tty to hangup
776  *
777  *      The session leader is exiting and hanging up its controlling terminal.
778  *      Every process in the foreground process group is signalled SIGHUP.
779  *
780  *      We do this synchronously so that when the syscall returns the process
781  *      is complete. That guarantee is necessary for security reasons.
782  */
783
784 static void tty_vhangup_session(struct tty_struct *tty)
785 {
786 #ifdef TTY_DEBUG_HANGUP
787         char    buf[64];
788
789         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
790 #endif
791         __tty_hangup(tty, 1);
792 }
793
794 /**
795  *      tty_hung_up_p           -       was tty hung up
796  *      @filp: file pointer of tty
797  *
798  *      Return true if the tty has been subject to a vhangup or a carrier
799  *      loss
800  */
801
802 int tty_hung_up_p(struct file *filp)
803 {
804         return (filp->f_op == &hung_up_tty_fops);
805 }
806
807 EXPORT_SYMBOL(tty_hung_up_p);
808
809 static void session_clear_tty(struct pid *session)
810 {
811         struct task_struct *p;
812         do_each_pid_task(session, PIDTYPE_SID, p) {
813                 proc_clear_tty(p);
814         } while_each_pid_task(session, PIDTYPE_SID, p);
815 }
816
817 /**
818  *      disassociate_ctty       -       disconnect controlling tty
819  *      @on_exit: true if exiting so need to "hang up" the session
820  *
821  *      This function is typically called only by the session leader, when
822  *      it wants to disassociate itself from its controlling tty.
823  *
824  *      It performs the following functions:
825  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
826  *      (2)  Clears the tty from being controlling the session
827  *      (3)  Clears the controlling tty for all processes in the
828  *              session group.
829  *
830  *      The argument on_exit is set to 1 if called when a process is
831  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
832  *
833  *      Locking:
834  *              BTM is taken for hysterical raisins, and held when
835  *                called from no_tty().
836  *                tty_mutex is taken to protect tty
837  *                ->siglock is taken to protect ->signal/->sighand
838  *                tasklist_lock is taken to walk process list for sessions
839  *                  ->siglock is taken to protect ->signal/->sighand
840  */
841
842 void disassociate_ctty(int on_exit)
843 {
844         struct tty_struct *tty;
845
846         if (!current->signal->leader)
847                 return;
848
849         tty = get_current_tty();
850         if (tty) {
851                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
852                         tty_vhangup_session(tty);
853                 } else {
854                         struct pid *tty_pgrp = tty_get_pgrp(tty);
855                         if (tty_pgrp) {
856                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
857                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
858                                 put_pid(tty_pgrp);
859                         }
860                 }
861                 tty_kref_put(tty);
862
863         } else if (on_exit) {
864                 struct pid *old_pgrp;
865                 spin_lock_irq(&current->sighand->siglock);
866                 old_pgrp = current->signal->tty_old_pgrp;
867                 current->signal->tty_old_pgrp = NULL;
868                 spin_unlock_irq(&current->sighand->siglock);
869                 if (old_pgrp) {
870                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
871                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
872                         put_pid(old_pgrp);
873                 }
874                 return;
875         }
876
877         spin_lock_irq(&current->sighand->siglock);
878         put_pid(current->signal->tty_old_pgrp);
879         current->signal->tty_old_pgrp = NULL;
880         spin_unlock_irq(&current->sighand->siglock);
881
882         tty = get_current_tty();
883         if (tty) {
884                 unsigned long flags;
885                 spin_lock_irqsave(&tty->ctrl_lock, flags);
886                 put_pid(tty->session);
887                 put_pid(tty->pgrp);
888                 tty->session = NULL;
889                 tty->pgrp = NULL;
890                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
891                 tty_kref_put(tty);
892         } else {
893 #ifdef TTY_DEBUG_HANGUP
894                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
895                        " = NULL", tty);
896 #endif
897         }
898
899         /* Now clear signal->tty under the lock */
900         read_lock(&tasklist_lock);
901         session_clear_tty(task_session(current));
902         read_unlock(&tasklist_lock);
903 }
904
905 /**
906  *
907  *      no_tty  - Ensure the current process does not have a controlling tty
908  */
909 void no_tty(void)
910 {
911         /* FIXME: Review locking here. The tty_lock never covered any race
912            between a new association and proc_clear_tty but possible we need
913            to protect against this anyway */
914         struct task_struct *tsk = current;
915         disassociate_ctty(0);
916         proc_clear_tty(tsk);
917 }
918
919
920 /**
921  *      stop_tty        -       propagate flow control
922  *      @tty: tty to stop
923  *
924  *      Perform flow control to the driver. For PTY/TTY pairs we
925  *      must also propagate the TIOCKPKT status. May be called
926  *      on an already stopped device and will not re-call the driver
927  *      method.
928  *
929  *      This functionality is used by both the line disciplines for
930  *      halting incoming flow and by the driver. It may therefore be
931  *      called from any context, may be under the tty atomic_write_lock
932  *      but not always.
933  *
934  *      Locking:
935  *              Uses the tty control lock internally
936  */
937
938 void stop_tty(struct tty_struct *tty)
939 {
940         unsigned long flags;
941         spin_lock_irqsave(&tty->ctrl_lock, flags);
942         if (tty->stopped) {
943                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
944                 return;
945         }
946         tty->stopped = 1;
947         if (tty->link && tty->link->packet) {
948                 tty->ctrl_status &= ~TIOCPKT_START;
949                 tty->ctrl_status |= TIOCPKT_STOP;
950                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
951         }
952         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
953         if (tty->ops->stop)
954                 (tty->ops->stop)(tty);
955 }
956
957 EXPORT_SYMBOL(stop_tty);
958
959 /**
960  *      start_tty       -       propagate flow control
961  *      @tty: tty to start
962  *
963  *      Start a tty that has been stopped if at all possible. Perform
964  *      any necessary wakeups and propagate the TIOCPKT status. If this
965  *      is the tty was previous stopped and is being started then the
966  *      driver start method is invoked and the line discipline woken.
967  *
968  *      Locking:
969  *              ctrl_lock
970  */
971
972 void start_tty(struct tty_struct *tty)
973 {
974         unsigned long flags;
975         spin_lock_irqsave(&tty->ctrl_lock, flags);
976         if (!tty->stopped || tty->flow_stopped) {
977                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
978                 return;
979         }
980         tty->stopped = 0;
981         if (tty->link && tty->link->packet) {
982                 tty->ctrl_status &= ~TIOCPKT_STOP;
983                 tty->ctrl_status |= TIOCPKT_START;
984                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
985         }
986         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
987         if (tty->ops->start)
988                 (tty->ops->start)(tty);
989         /* If we have a running line discipline it may need kicking */
990         tty_wakeup(tty);
991 }
992
993 EXPORT_SYMBOL(start_tty);
994
995 /* We limit tty time update visibility to every 8 seconds or so. */
996 static void tty_update_time(struct timespec *time)
997 {
998         unsigned long sec = get_seconds() & ~7;
999         if ((long)(sec - time->tv_sec) > 0)
1000                 time->tv_sec = sec;
1001 }
1002
1003 /**
1004  *      tty_read        -       read method for tty device files
1005  *      @file: pointer to tty file
1006  *      @buf: user buffer
1007  *      @count: size of user buffer
1008  *      @ppos: unused
1009  *
1010  *      Perform the read system call function on this terminal device. Checks
1011  *      for hung up devices before calling the line discipline method.
1012  *
1013  *      Locking:
1014  *              Locks the line discipline internally while needed. Multiple
1015  *      read calls may be outstanding in parallel.
1016  */
1017
1018 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1019                         loff_t *ppos)
1020 {
1021         int i;
1022         struct inode *inode = file_inode(file);
1023         struct tty_struct *tty = file_tty(file);
1024         struct tty_ldisc *ld;
1025
1026         if (tty_paranoia_check(tty, inode, "tty_read"))
1027                 return -EIO;
1028         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1029                 return -EIO;
1030
1031         /* We want to wait for the line discipline to sort out in this
1032            situation */
1033         ld = tty_ldisc_ref_wait(tty);
1034         if (ld->ops->read)
1035                 i = (ld->ops->read)(tty, file, buf, count);
1036         else
1037                 i = -EIO;
1038         tty_ldisc_deref(ld);
1039
1040         if (i > 0)
1041                 tty_update_time(&inode->i_atime);
1042
1043         return i;
1044 }
1045
1046 void tty_write_unlock(struct tty_struct *tty)
1047         __releases(&tty->atomic_write_lock)
1048 {
1049         mutex_unlock(&tty->atomic_write_lock);
1050         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1051 }
1052
1053 int tty_write_lock(struct tty_struct *tty, int ndelay)
1054         __acquires(&tty->atomic_write_lock)
1055 {
1056         if (!mutex_trylock(&tty->atomic_write_lock)) {
1057                 if (ndelay)
1058                         return -EAGAIN;
1059                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1060                         return -ERESTARTSYS;
1061         }
1062         return 0;
1063 }
1064
1065 /*
1066  * Split writes up in sane blocksizes to avoid
1067  * denial-of-service type attacks
1068  */
1069 static inline ssize_t do_tty_write(
1070         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1071         struct tty_struct *tty,
1072         struct file *file,
1073         const char __user *buf,
1074         size_t count)
1075 {
1076         ssize_t ret, written = 0;
1077         unsigned int chunk;
1078
1079         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1080         if (ret < 0)
1081                 return ret;
1082
1083         /*
1084          * We chunk up writes into a temporary buffer. This
1085          * simplifies low-level drivers immensely, since they
1086          * don't have locking issues and user mode accesses.
1087          *
1088          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1089          * big chunk-size..
1090          *
1091          * The default chunk-size is 2kB, because the NTTY
1092          * layer has problems with bigger chunks. It will
1093          * claim to be able to handle more characters than
1094          * it actually does.
1095          *
1096          * FIXME: This can probably go away now except that 64K chunks
1097          * are too likely to fail unless switched to vmalloc...
1098          */
1099         chunk = 2048;
1100         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1101                 chunk = 65536;
1102         if (count < chunk)
1103                 chunk = count;
1104
1105         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1106         if (tty->write_cnt < chunk) {
1107                 unsigned char *buf_chunk;
1108
1109                 if (chunk < 1024)
1110                         chunk = 1024;
1111
1112                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1113                 if (!buf_chunk) {
1114                         ret = -ENOMEM;
1115                         goto out;
1116                 }
1117                 kfree(tty->write_buf);
1118                 tty->write_cnt = chunk;
1119                 tty->write_buf = buf_chunk;
1120         }
1121
1122         /* Do the write .. */
1123         for (;;) {
1124                 size_t size = count;
1125                 if (size > chunk)
1126                         size = chunk;
1127                 ret = -EFAULT;
1128                 if (copy_from_user(tty->write_buf, buf, size))
1129                         break;
1130                 ret = write(tty, file, tty->write_buf, size);
1131                 if (ret <= 0)
1132                         break;
1133                 written += ret;
1134                 buf += ret;
1135                 count -= ret;
1136                 if (!count)
1137                         break;
1138                 ret = -ERESTARTSYS;
1139                 if (signal_pending(current))
1140                         break;
1141                 cond_resched();
1142         }
1143         if (written) {
1144                 tty_update_time(&file_inode(file)->i_mtime);
1145                 ret = written;
1146         }
1147 out:
1148         tty_write_unlock(tty);
1149         return ret;
1150 }
1151
1152 /**
1153  * tty_write_message - write a message to a certain tty, not just the console.
1154  * @tty: the destination tty_struct
1155  * @msg: the message to write
1156  *
1157  * This is used for messages that need to be redirected to a specific tty.
1158  * We don't put it into the syslog queue right now maybe in the future if
1159  * really needed.
1160  *
1161  * We must still hold the BTM and test the CLOSING flag for the moment.
1162  */
1163
1164 void tty_write_message(struct tty_struct *tty, char *msg)
1165 {
1166         if (tty) {
1167                 mutex_lock(&tty->atomic_write_lock);
1168                 tty_lock(tty);
1169                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1170                         tty_unlock(tty);
1171                         tty->ops->write(tty, msg, strlen(msg));
1172                 } else
1173                         tty_unlock(tty);
1174                 tty_write_unlock(tty);
1175         }
1176         return;
1177 }
1178
1179
1180 /**
1181  *      tty_write               -       write method for tty device file
1182  *      @file: tty file pointer
1183  *      @buf: user data to write
1184  *      @count: bytes to write
1185  *      @ppos: unused
1186  *
1187  *      Write data to a tty device via the line discipline.
1188  *
1189  *      Locking:
1190  *              Locks the line discipline as required
1191  *              Writes to the tty driver are serialized by the atomic_write_lock
1192  *      and are then processed in chunks to the device. The line discipline
1193  *      write method will not be invoked in parallel for each device.
1194  */
1195
1196 static ssize_t tty_write(struct file *file, const char __user *buf,
1197                                                 size_t count, loff_t *ppos)
1198 {
1199         struct tty_struct *tty = file_tty(file);
1200         struct tty_ldisc *ld;
1201         ssize_t ret;
1202
1203         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1204                 return -EIO;
1205         if (!tty || !tty->ops->write ||
1206                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1207                         return -EIO;
1208         /* Short term debug to catch buggy drivers */
1209         if (tty->ops->write_room == NULL)
1210                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1211                         tty->driver->name);
1212         ld = tty_ldisc_ref_wait(tty);
1213         if (!ld->ops->write)
1214                 ret = -EIO;
1215         else
1216                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1217         tty_ldisc_deref(ld);
1218         return ret;
1219 }
1220
1221 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1222                                                 size_t count, loff_t *ppos)
1223 {
1224         struct file *p = NULL;
1225
1226         spin_lock(&redirect_lock);
1227         if (redirect)
1228                 p = get_file(redirect);
1229         spin_unlock(&redirect_lock);
1230
1231         if (p) {
1232                 ssize_t res;
1233                 res = vfs_write(p, buf, count, &p->f_pos);
1234                 fput(p);
1235                 return res;
1236         }
1237         return tty_write(file, buf, count, ppos);
1238 }
1239
1240 static char ptychar[] = "pqrstuvwxyzabcde";
1241
1242 /**
1243  *      pty_line_name   -       generate name for a pty
1244  *      @driver: the tty driver in use
1245  *      @index: the minor number
1246  *      @p: output buffer of at least 6 bytes
1247  *
1248  *      Generate a name from a driver reference and write it to the output
1249  *      buffer.
1250  *
1251  *      Locking: None
1252  */
1253 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1254 {
1255         int i = index + driver->name_base;
1256         /* ->name is initialized to "ttyp", but "tty" is expected */
1257         sprintf(p, "%s%c%x",
1258                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1259                 ptychar[i >> 4 & 0xf], i & 0xf);
1260 }
1261
1262 /**
1263  *      tty_line_name   -       generate name for a tty
1264  *      @driver: the tty driver in use
1265  *      @index: the minor number
1266  *      @p: output buffer of at least 7 bytes
1267  *
1268  *      Generate a name from a driver reference and write it to the output
1269  *      buffer.
1270  *
1271  *      Locking: None
1272  */
1273 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1274 {
1275         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1276                 strcpy(p, driver->name);
1277         else
1278                 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1279 }
1280
1281 /**
1282  *      tty_driver_lookup_tty() - find an existing tty, if any
1283  *      @driver: the driver for the tty
1284  *      @idx:    the minor number
1285  *
1286  *      Return the tty, if found or ERR_PTR() otherwise.
1287  *
1288  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1289  *      be held until the 'fast-open' is also done. Will change once we
1290  *      have refcounting in the driver and per driver locking
1291  */
1292 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1293                 struct inode *inode, int idx)
1294 {
1295         if (driver->ops->lookup)
1296                 return driver->ops->lookup(driver, inode, idx);
1297
1298         return driver->ttys[idx];
1299 }
1300
1301 /**
1302  *      tty_init_termios        -  helper for termios setup
1303  *      @tty: the tty to set up
1304  *
1305  *      Initialise the termios structures for this tty. Thus runs under
1306  *      the tty_mutex currently so we can be relaxed about ordering.
1307  */
1308
1309 int tty_init_termios(struct tty_struct *tty)
1310 {
1311         struct ktermios *tp;
1312         int idx = tty->index;
1313
1314         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1315                 tty->termios = tty->driver->init_termios;
1316         else {
1317                 /* Check for lazy saved data */
1318                 tp = tty->driver->termios[idx];
1319                 if (tp != NULL)
1320                         tty->termios = *tp;
1321                 else
1322                         tty->termios = tty->driver->init_termios;
1323         }
1324         /* Compatibility until drivers always set this */
1325         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1326         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1327         return 0;
1328 }
1329 EXPORT_SYMBOL_GPL(tty_init_termios);
1330
1331 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1332 {
1333         int ret = tty_init_termios(tty);
1334         if (ret)
1335                 return ret;
1336
1337         tty_driver_kref_get(driver);
1338         tty->count++;
1339         driver->ttys[tty->index] = tty;
1340         return 0;
1341 }
1342 EXPORT_SYMBOL_GPL(tty_standard_install);
1343
1344 /**
1345  *      tty_driver_install_tty() - install a tty entry in the driver
1346  *      @driver: the driver for the tty
1347  *      @tty: the tty
1348  *
1349  *      Install a tty object into the driver tables. The tty->index field
1350  *      will be set by the time this is called. This method is responsible
1351  *      for ensuring any need additional structures are allocated and
1352  *      configured.
1353  *
1354  *      Locking: tty_mutex for now
1355  */
1356 static int tty_driver_install_tty(struct tty_driver *driver,
1357                                                 struct tty_struct *tty)
1358 {
1359         return driver->ops->install ? driver->ops->install(driver, tty) :
1360                 tty_standard_install(driver, tty);
1361 }
1362
1363 /**
1364  *      tty_driver_remove_tty() - remove a tty from the driver tables
1365  *      @driver: the driver for the tty
1366  *      @idx:    the minor number
1367  *
1368  *      Remvoe a tty object from the driver tables. The tty->index field
1369  *      will be set by the time this is called.
1370  *
1371  *      Locking: tty_mutex for now
1372  */
1373 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1374 {
1375         if (driver->ops->remove)
1376                 driver->ops->remove(driver, tty);
1377         else
1378                 driver->ttys[tty->index] = NULL;
1379 }
1380
1381 /*
1382  *      tty_reopen()    - fast re-open of an open tty
1383  *      @tty    - the tty to open
1384  *
1385  *      Return 0 on success, -errno on error.
1386  *
1387  *      Locking: tty_mutex must be held from the time the tty was found
1388  *               till this open completes.
1389  */
1390 static int tty_reopen(struct tty_struct *tty)
1391 {
1392         struct tty_driver *driver = tty->driver;
1393
1394         if (test_bit(TTY_CLOSING, &tty->flags) ||
1395                         test_bit(TTY_HUPPING, &tty->flags))
1396                 return -EIO;
1397
1398         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1399             driver->subtype == PTY_TYPE_MASTER) {
1400                 /*
1401                  * special case for PTY masters: only one open permitted,
1402                  * and the slave side open count is incremented as well.
1403                  */
1404                 if (tty->count)
1405                         return -EIO;
1406
1407                 tty->link->count++;
1408         }
1409         tty->count++;
1410
1411         WARN_ON(!tty->ldisc);
1412
1413         return 0;
1414 }
1415
1416 /**
1417  *      tty_init_dev            -       initialise a tty device
1418  *      @driver: tty driver we are opening a device on
1419  *      @idx: device index
1420  *      @ret_tty: returned tty structure
1421  *
1422  *      Prepare a tty device. This may not be a "new" clean device but
1423  *      could also be an active device. The pty drivers require special
1424  *      handling because of this.
1425  *
1426  *      Locking:
1427  *              The function is called under the tty_mutex, which
1428  *      protects us from the tty struct or driver itself going away.
1429  *
1430  *      On exit the tty device has the line discipline attached and
1431  *      a reference count of 1. If a pair was created for pty/tty use
1432  *      and the other was a pty master then it too has a reference count of 1.
1433  *
1434  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1435  * failed open.  The new code protects the open with a mutex, so it's
1436  * really quite straightforward.  The mutex locking can probably be
1437  * relaxed for the (most common) case of reopening a tty.
1438  */
1439
1440 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1441 {
1442         struct tty_struct *tty;
1443         int retval;
1444
1445         /*
1446          * First time open is complex, especially for PTY devices.
1447          * This code guarantees that either everything succeeds and the
1448          * TTY is ready for operation, or else the table slots are vacated
1449          * and the allocated memory released.  (Except that the termios
1450          * and locked termios may be retained.)
1451          */
1452
1453         if (!try_module_get(driver->owner))
1454                 return ERR_PTR(-ENODEV);
1455
1456         tty = alloc_tty_struct();
1457         if (!tty) {
1458                 retval = -ENOMEM;
1459                 goto err_module_put;
1460         }
1461         initialize_tty_struct(tty, driver, idx);
1462
1463         tty_lock(tty);
1464         retval = tty_driver_install_tty(driver, tty);
1465         if (retval < 0)
1466                 goto err_deinit_tty;
1467
1468         if (!tty->port)
1469                 tty->port = driver->ports[idx];
1470
1471         WARN_RATELIMIT(!tty->port,
1472                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1473                         __func__, tty->driver->name);
1474
1475         tty->port->itty = tty;
1476
1477         /*
1478          * Structures all installed ... call the ldisc open routines.
1479          * If we fail here just call release_tty to clean up.  No need
1480          * to decrement the use counts, as release_tty doesn't care.
1481          */
1482         retval = tty_ldisc_setup(tty, tty->link);
1483         if (retval)
1484                 goto err_release_tty;
1485         /* Return the tty locked so that it cannot vanish under the caller */
1486         return tty;
1487
1488 err_deinit_tty:
1489         tty_unlock(tty);
1490         deinitialize_tty_struct(tty);
1491         free_tty_struct(tty);
1492 err_module_put:
1493         module_put(driver->owner);
1494         return ERR_PTR(retval);
1495
1496         /* call the tty release_tty routine to clean out this slot */
1497 err_release_tty:
1498         tty_unlock(tty);
1499         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1500                                  "clearing slot %d\n", idx);
1501         release_tty(tty, idx);
1502         return ERR_PTR(retval);
1503 }
1504
1505 void tty_free_termios(struct tty_struct *tty)
1506 {
1507         struct ktermios *tp;
1508         int idx = tty->index;
1509
1510         /* If the port is going to reset then it has no termios to save */
1511         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1512                 return;
1513
1514         /* Stash the termios data */
1515         tp = tty->driver->termios[idx];
1516         if (tp == NULL) {
1517                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1518                 if (tp == NULL) {
1519                         pr_warn("tty: no memory to save termios state.\n");
1520                         return;
1521                 }
1522                 tty->driver->termios[idx] = tp;
1523         }
1524         *tp = tty->termios;
1525 }
1526 EXPORT_SYMBOL(tty_free_termios);
1527
1528 /**
1529  *      tty_flush_works         -       flush all works of a tty
1530  *      @tty: tty device to flush works for
1531  *
1532  *      Sync flush all works belonging to @tty.
1533  */
1534 static void tty_flush_works(struct tty_struct *tty)
1535 {
1536         flush_work(&tty->SAK_work);
1537         flush_work(&tty->hangup_work);
1538 }
1539
1540 /**
1541  *      release_one_tty         -       release tty structure memory
1542  *      @kref: kref of tty we are obliterating
1543  *
1544  *      Releases memory associated with a tty structure, and clears out the
1545  *      driver table slots. This function is called when a device is no longer
1546  *      in use. It also gets called when setup of a device fails.
1547  *
1548  *      Locking:
1549  *              takes the file list lock internally when working on the list
1550  *      of ttys that the driver keeps.
1551  *
1552  *      This method gets called from a work queue so that the driver private
1553  *      cleanup ops can sleep (needed for USB at least)
1554  */
1555 static void release_one_tty(struct work_struct *work)
1556 {
1557         struct tty_struct *tty =
1558                 container_of(work, struct tty_struct, hangup_work);
1559         struct tty_driver *driver = tty->driver;
1560
1561         if (tty->ops->cleanup)
1562                 tty->ops->cleanup(tty);
1563
1564         tty->magic = 0;
1565         tty_driver_kref_put(driver);
1566         module_put(driver->owner);
1567
1568         spin_lock(&tty_files_lock);
1569         list_del_init(&tty->tty_files);
1570         spin_unlock(&tty_files_lock);
1571
1572         put_pid(tty->pgrp);
1573         put_pid(tty->session);
1574         free_tty_struct(tty);
1575 }
1576
1577 static void queue_release_one_tty(struct kref *kref)
1578 {
1579         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1580
1581         /* The hangup queue is now free so we can reuse it rather than
1582            waste a chunk of memory for each port */
1583         INIT_WORK(&tty->hangup_work, release_one_tty);
1584         schedule_work(&tty->hangup_work);
1585 }
1586
1587 /**
1588  *      tty_kref_put            -       release a tty kref
1589  *      @tty: tty device
1590  *
1591  *      Release a reference to a tty device and if need be let the kref
1592  *      layer destruct the object for us
1593  */
1594
1595 void tty_kref_put(struct tty_struct *tty)
1596 {
1597         if (tty)
1598                 kref_put(&tty->kref, queue_release_one_tty);
1599 }
1600 EXPORT_SYMBOL(tty_kref_put);
1601
1602 /**
1603  *      release_tty             -       release tty structure memory
1604  *
1605  *      Release both @tty and a possible linked partner (think pty pair),
1606  *      and decrement the refcount of the backing module.
1607  *
1608  *      Locking:
1609  *              tty_mutex
1610  *              takes the file list lock internally when working on the list
1611  *      of ttys that the driver keeps.
1612  *
1613  */
1614 static void release_tty(struct tty_struct *tty, int idx)
1615 {
1616         /* This should always be true but check for the moment */
1617         WARN_ON(tty->index != idx);
1618         WARN_ON(!mutex_is_locked(&tty_mutex));
1619         if (tty->ops->shutdown)
1620                 tty->ops->shutdown(tty);
1621         tty_free_termios(tty);
1622         tty_driver_remove_tty(tty->driver, tty);
1623         tty->port->itty = NULL;
1624         if (tty->link)
1625                 tty->link->port->itty = NULL;
1626         cancel_work_sync(&tty->port->buf.work);
1627
1628         if (tty->link)
1629                 tty_kref_put(tty->link);
1630         tty_kref_put(tty);
1631 }
1632
1633 /**
1634  *      tty_release_checks - check a tty before real release
1635  *      @tty: tty to check
1636  *      @o_tty: link of @tty (if any)
1637  *      @idx: index of the tty
1638  *
1639  *      Performs some paranoid checking before true release of the @tty.
1640  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1641  */
1642 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1643                 int idx)
1644 {
1645 #ifdef TTY_PARANOIA_CHECK
1646         if (idx < 0 || idx >= tty->driver->num) {
1647                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1648                                 __func__, tty->name);
1649                 return -1;
1650         }
1651
1652         /* not much to check for devpts */
1653         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1654                 return 0;
1655
1656         if (tty != tty->driver->ttys[idx]) {
1657                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1658                                 __func__, idx, tty->name);
1659                 return -1;
1660         }
1661         if (tty->driver->other) {
1662                 if (o_tty != tty->driver->other->ttys[idx]) {
1663                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1664                                         __func__, idx, tty->name);
1665                         return -1;
1666                 }
1667                 if (o_tty->link != tty) {
1668                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1669                         return -1;
1670                 }
1671         }
1672 #endif
1673         return 0;
1674 }
1675
1676 /**
1677  *      tty_release             -       vfs callback for close
1678  *      @inode: inode of tty
1679  *      @filp: file pointer for handle to tty
1680  *
1681  *      Called the last time each file handle is closed that references
1682  *      this tty. There may however be several such references.
1683  *
1684  *      Locking:
1685  *              Takes bkl. See tty_release_dev
1686  *
1687  * Even releasing the tty structures is a tricky business.. We have
1688  * to be very careful that the structures are all released at the
1689  * same time, as interrupts might otherwise get the wrong pointers.
1690  *
1691  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1692  * lead to double frees or releasing memory still in use.
1693  */
1694
1695 int tty_release(struct inode *inode, struct file *filp)
1696 {
1697         struct tty_struct *tty = file_tty(filp);
1698         struct tty_struct *o_tty;
1699         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1700         int     idx;
1701         char    buf[64];
1702
1703         if (tty_paranoia_check(tty, inode, __func__))
1704                 return 0;
1705
1706         tty_lock(tty);
1707         check_tty_count(tty, __func__);
1708
1709         __tty_fasync(-1, filp, 0);
1710
1711         idx = tty->index;
1712         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1713                       tty->driver->subtype == PTY_TYPE_MASTER);
1714         /* Review: parallel close */
1715         o_tty = tty->link;
1716
1717         if (tty_release_checks(tty, o_tty, idx)) {
1718                 tty_unlock(tty);
1719                 return 0;
1720         }
1721
1722 #ifdef TTY_DEBUG_HANGUP
1723         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1724                         tty_name(tty, buf), tty->count);
1725 #endif
1726
1727         if (tty->ops->close)
1728                 tty->ops->close(tty, filp);
1729
1730         tty_unlock(tty);
1731         /*
1732          * Sanity check: if tty->count is going to zero, there shouldn't be
1733          * any waiters on tty->read_wait or tty->write_wait.  We test the
1734          * wait queues and kick everyone out _before_ actually starting to
1735          * close.  This ensures that we won't block while releasing the tty
1736          * structure.
1737          *
1738          * The test for the o_tty closing is necessary, since the master and
1739          * slave sides may close in any order.  If the slave side closes out
1740          * first, its count will be one, since the master side holds an open.
1741          * Thus this test wouldn't be triggered at the time the slave closes,
1742          * so we do it now.
1743          *
1744          * Note that it's possible for the tty to be opened again while we're
1745          * flushing out waiters.  By recalculating the closing flags before
1746          * each iteration we avoid any problems.
1747          */
1748         while (1) {
1749                 /* Guard against races with tty->count changes elsewhere and
1750                    opens on /dev/tty */
1751
1752                 mutex_lock(&tty_mutex);
1753                 tty_lock_pair(tty, o_tty);
1754                 tty_closing = tty->count <= 1;
1755                 o_tty_closing = o_tty &&
1756                         (o_tty->count <= (pty_master ? 1 : 0));
1757                 do_sleep = 0;
1758
1759                 if (tty_closing) {
1760                         if (waitqueue_active(&tty->read_wait)) {
1761                                 wake_up_poll(&tty->read_wait, POLLIN);
1762                                 do_sleep++;
1763                         }
1764                         if (waitqueue_active(&tty->write_wait)) {
1765                                 wake_up_poll(&tty->write_wait, POLLOUT);
1766                                 do_sleep++;
1767                         }
1768                 }
1769                 if (o_tty_closing) {
1770                         if (waitqueue_active(&o_tty->read_wait)) {
1771                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1772                                 do_sleep++;
1773                         }
1774                         if (waitqueue_active(&o_tty->write_wait)) {
1775                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1776                                 do_sleep++;
1777                         }
1778                 }
1779                 if (!do_sleep)
1780                         break;
1781
1782                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1783                                 __func__, tty_name(tty, buf));
1784                 tty_unlock_pair(tty, o_tty);
1785                 mutex_unlock(&tty_mutex);
1786                 schedule();
1787         }
1788
1789         /*
1790          * The closing flags are now consistent with the open counts on
1791          * both sides, and we've completed the last operation that could
1792          * block, so it's safe to proceed with closing.
1793          *
1794          * We must *not* drop the tty_mutex until we ensure that a further
1795          * entry into tty_open can not pick up this tty.
1796          */
1797         if (pty_master) {
1798                 if (--o_tty->count < 0) {
1799                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1800                                 __func__, o_tty->count, tty_name(o_tty, buf));
1801                         o_tty->count = 0;
1802                 }
1803         }
1804         if (--tty->count < 0) {
1805                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1806                                 __func__, tty->count, tty_name(tty, buf));
1807                 tty->count = 0;
1808         }
1809
1810         /*
1811          * We've decremented tty->count, so we need to remove this file
1812          * descriptor off the tty->tty_files list; this serves two
1813          * purposes:
1814          *  - check_tty_count sees the correct number of file descriptors
1815          *    associated with this tty.
1816          *  - do_tty_hangup no longer sees this file descriptor as
1817          *    something that needs to be handled for hangups.
1818          */
1819         tty_del_file(filp);
1820
1821         /*
1822          * Perform some housekeeping before deciding whether to return.
1823          *
1824          * Set the TTY_CLOSING flag if this was the last open.  In the
1825          * case of a pty we may have to wait around for the other side
1826          * to close, and TTY_CLOSING makes sure we can't be reopened.
1827          */
1828         if (tty_closing)
1829                 set_bit(TTY_CLOSING, &tty->flags);
1830         if (o_tty_closing)
1831                 set_bit(TTY_CLOSING, &o_tty->flags);
1832
1833         /*
1834          * If _either_ side is closing, make sure there aren't any
1835          * processes that still think tty or o_tty is their controlling
1836          * tty.
1837          */
1838         if (tty_closing || o_tty_closing) {
1839                 read_lock(&tasklist_lock);
1840                 session_clear_tty(tty->session);
1841                 if (o_tty)
1842                         session_clear_tty(o_tty->session);
1843                 read_unlock(&tasklist_lock);
1844         }
1845
1846         mutex_unlock(&tty_mutex);
1847         tty_unlock_pair(tty, o_tty);
1848         /* At this point the TTY_CLOSING flag should ensure a dead tty
1849            cannot be re-opened by a racing opener */
1850
1851         /* check whether both sides are closing ... */
1852         if (!tty_closing || (o_tty && !o_tty_closing))
1853                 return 0;
1854
1855 #ifdef TTY_DEBUG_HANGUP
1856         printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1857 #endif
1858         /*
1859          * Ask the line discipline code to release its structures
1860          */
1861         tty_ldisc_release(tty, o_tty);
1862
1863         /* Wait for pending work before tty destruction commmences */
1864         tty_flush_works(tty);
1865         if (o_tty)
1866                 tty_flush_works(o_tty);
1867
1868 #ifdef TTY_DEBUG_HANGUP
1869         printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1870 #endif
1871         /*
1872          * The release_tty function takes care of the details of clearing
1873          * the slots and preserving the termios structure. The tty_unlock_pair
1874          * should be safe as we keep a kref while the tty is locked (so the
1875          * unlock never unlocks a freed tty).
1876          */
1877         mutex_lock(&tty_mutex);
1878         release_tty(tty, idx);
1879         mutex_unlock(&tty_mutex);
1880
1881         return 0;
1882 }
1883
1884 /**
1885  *      tty_open_current_tty - get tty of current task for open
1886  *      @device: device number
1887  *      @filp: file pointer to tty
1888  *      @return: tty of the current task iff @device is /dev/tty
1889  *
1890  *      We cannot return driver and index like for the other nodes because
1891  *      devpts will not work then. It expects inodes to be from devpts FS.
1892  *
1893  *      We need to move to returning a refcounted object from all the lookup
1894  *      paths including this one.
1895  */
1896 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1897 {
1898         struct tty_struct *tty;
1899
1900         if (device != MKDEV(TTYAUX_MAJOR, 0))
1901                 return NULL;
1902
1903         tty = get_current_tty();
1904         if (!tty)
1905                 return ERR_PTR(-ENXIO);
1906
1907         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1908         /* noctty = 1; */
1909         tty_kref_put(tty);
1910         /* FIXME: we put a reference and return a TTY! */
1911         /* This is only safe because the caller holds tty_mutex */
1912         return tty;
1913 }
1914
1915 /**
1916  *      tty_lookup_driver - lookup a tty driver for a given device file
1917  *      @device: device number
1918  *      @filp: file pointer to tty
1919  *      @noctty: set if the device should not become a controlling tty
1920  *      @index: index for the device in the @return driver
1921  *      @return: driver for this inode (with increased refcount)
1922  *
1923  *      If @return is not erroneous, the caller is responsible to decrement the
1924  *      refcount by tty_driver_kref_put.
1925  *
1926  *      Locking: tty_mutex protects get_tty_driver
1927  */
1928 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1929                 int *noctty, int *index)
1930 {
1931         struct tty_driver *driver;
1932
1933         switch (device) {
1934 #ifdef CONFIG_VT
1935         case MKDEV(TTY_MAJOR, 0): {
1936                 extern struct tty_driver *console_driver;
1937                 driver = tty_driver_kref_get(console_driver);
1938                 *index = fg_console;
1939                 *noctty = 1;
1940                 break;
1941         }
1942 #endif
1943         case MKDEV(TTYAUX_MAJOR, 1): {
1944                 struct tty_driver *console_driver = console_device(index);
1945                 if (console_driver) {
1946                         driver = tty_driver_kref_get(console_driver);
1947                         if (driver) {
1948                                 /* Don't let /dev/console block */
1949                                 filp->f_flags |= O_NONBLOCK;
1950                                 *noctty = 1;
1951                                 break;
1952                         }
1953                 }
1954                 return ERR_PTR(-ENODEV);
1955         }
1956         default:
1957                 driver = get_tty_driver(device, index);
1958                 if (!driver)
1959                         return ERR_PTR(-ENODEV);
1960                 break;
1961         }
1962         return driver;
1963 }
1964
1965 /**
1966  *      tty_open                -       open a tty device
1967  *      @inode: inode of device file
1968  *      @filp: file pointer to tty
1969  *
1970  *      tty_open and tty_release keep up the tty count that contains the
1971  *      number of opens done on a tty. We cannot use the inode-count, as
1972  *      different inodes might point to the same tty.
1973  *
1974  *      Open-counting is needed for pty masters, as well as for keeping
1975  *      track of serial lines: DTR is dropped when the last close happens.
1976  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1977  *
1978  *      The termios state of a pty is reset on first open so that
1979  *      settings don't persist across reuse.
1980  *
1981  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1982  *               tty->count should protect the rest.
1983  *               ->siglock protects ->signal/->sighand
1984  *
1985  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1986  *      tty_mutex
1987  */
1988
1989 static int tty_open(struct inode *inode, struct file *filp)
1990 {
1991         struct tty_struct *tty;
1992         int noctty, retval;
1993         struct tty_driver *driver = NULL;
1994         int index;
1995         dev_t device = inode->i_rdev;
1996         unsigned saved_flags = filp->f_flags;
1997
1998         nonseekable_open(inode, filp);
1999
2000 retry_open:
2001         retval = tty_alloc_file(filp);
2002         if (retval)
2003                 return -ENOMEM;
2004
2005         noctty = filp->f_flags & O_NOCTTY;
2006         index  = -1;
2007         retval = 0;
2008
2009         mutex_lock(&tty_mutex);
2010         /* This is protected by the tty_mutex */
2011         tty = tty_open_current_tty(device, filp);
2012         if (IS_ERR(tty)) {
2013                 retval = PTR_ERR(tty);
2014                 goto err_unlock;
2015         } else if (!tty) {
2016                 driver = tty_lookup_driver(device, filp, &noctty, &index);
2017                 if (IS_ERR(driver)) {
2018                         retval = PTR_ERR(driver);
2019                         goto err_unlock;
2020                 }
2021
2022                 /* check whether we're reopening an existing tty */
2023                 tty = tty_driver_lookup_tty(driver, inode, index);
2024                 if (IS_ERR(tty)) {
2025                         retval = PTR_ERR(tty);
2026                         goto err_unlock;
2027                 }
2028         }
2029
2030         if (tty) {
2031                 tty_lock(tty);
2032                 retval = tty_reopen(tty);
2033                 if (retval < 0) {
2034                         tty_unlock(tty);
2035                         tty = ERR_PTR(retval);
2036                 }
2037         } else  /* Returns with the tty_lock held for now */
2038                 tty = tty_init_dev(driver, index);
2039
2040         mutex_unlock(&tty_mutex);
2041         if (driver)
2042                 tty_driver_kref_put(driver);
2043         if (IS_ERR(tty)) {
2044                 retval = PTR_ERR(tty);
2045                 goto err_file;
2046         }
2047
2048         tty_add_file(tty, filp);
2049
2050         check_tty_count(tty, __func__);
2051         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2052             tty->driver->subtype == PTY_TYPE_MASTER)
2053                 noctty = 1;
2054 #ifdef TTY_DEBUG_HANGUP
2055         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2056 #endif
2057         if (tty->ops->open)
2058                 retval = tty->ops->open(tty, filp);
2059         else
2060                 retval = -ENODEV;
2061         filp->f_flags = saved_flags;
2062
2063         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2064                                                 !capable(CAP_SYS_ADMIN))
2065                 retval = -EBUSY;
2066
2067         if (retval) {
2068 #ifdef TTY_DEBUG_HANGUP
2069                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2070                                 retval, tty->name);
2071 #endif
2072                 tty_unlock(tty); /* need to call tty_release without BTM */
2073                 tty_release(inode, filp);
2074                 if (retval != -ERESTARTSYS)
2075                         return retval;
2076
2077                 if (signal_pending(current))
2078                         return retval;
2079
2080                 schedule();
2081                 /*
2082                  * Need to reset f_op in case a hangup happened.
2083                  */
2084                 if (filp->f_op == &hung_up_tty_fops)
2085                         filp->f_op = &tty_fops;
2086                 goto retry_open;
2087         }
2088         tty_unlock(tty);
2089
2090
2091         mutex_lock(&tty_mutex);
2092         tty_lock(tty);
2093         spin_lock_irq(&current->sighand->siglock);
2094         if (!noctty &&
2095             current->signal->leader &&
2096             !current->signal->tty &&
2097             tty->session == NULL)
2098                 __proc_set_tty(current, tty);
2099         spin_unlock_irq(&current->sighand->siglock);
2100         tty_unlock(tty);
2101         mutex_unlock(&tty_mutex);
2102         return 0;
2103 err_unlock:
2104         mutex_unlock(&tty_mutex);
2105         /* after locks to avoid deadlock */
2106         if (!IS_ERR_OR_NULL(driver))
2107                 tty_driver_kref_put(driver);
2108 err_file:
2109         tty_free_file(filp);
2110         return retval;
2111 }
2112
2113
2114
2115 /**
2116  *      tty_poll        -       check tty status
2117  *      @filp: file being polled
2118  *      @wait: poll wait structures to update
2119  *
2120  *      Call the line discipline polling method to obtain the poll
2121  *      status of the device.
2122  *
2123  *      Locking: locks called line discipline but ldisc poll method
2124  *      may be re-entered freely by other callers.
2125  */
2126
2127 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2128 {
2129         struct tty_struct *tty = file_tty(filp);
2130         struct tty_ldisc *ld;
2131         int ret = 0;
2132
2133         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2134                 return 0;
2135
2136         ld = tty_ldisc_ref_wait(tty);
2137         if (ld->ops->poll)
2138                 ret = (ld->ops->poll)(tty, filp, wait);
2139         tty_ldisc_deref(ld);
2140         return ret;
2141 }
2142
2143 static int __tty_fasync(int fd, struct file *filp, int on)
2144 {
2145         struct tty_struct *tty = file_tty(filp);
2146         struct tty_ldisc *ldisc;
2147         unsigned long flags;
2148         int retval = 0;
2149
2150         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2151                 goto out;
2152
2153         retval = fasync_helper(fd, filp, on, &tty->fasync);
2154         if (retval <= 0)
2155                 goto out;
2156
2157         ldisc = tty_ldisc_ref(tty);
2158         if (ldisc) {
2159                 if (ldisc->ops->fasync)
2160                         ldisc->ops->fasync(tty, on);
2161                 tty_ldisc_deref(ldisc);
2162         }
2163
2164         if (on) {
2165                 enum pid_type type;
2166                 struct pid *pid;
2167
2168                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2169                 if (tty->pgrp) {
2170                         pid = tty->pgrp;
2171                         type = PIDTYPE_PGID;
2172                 } else {
2173                         pid = task_pid(current);
2174                         type = PIDTYPE_PID;
2175                 }
2176                 get_pid(pid);
2177                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2178                 retval = __f_setown(filp, pid, type, 0);
2179                 put_pid(pid);
2180         }
2181 out:
2182         return retval;
2183 }
2184
2185 static int tty_fasync(int fd, struct file *filp, int on)
2186 {
2187         struct tty_struct *tty = file_tty(filp);
2188         int retval;
2189
2190         tty_lock(tty);
2191         retval = __tty_fasync(fd, filp, on);
2192         tty_unlock(tty);
2193
2194         return retval;
2195 }
2196
2197 /**
2198  *      tiocsti                 -       fake input character
2199  *      @tty: tty to fake input into
2200  *      @p: pointer to character
2201  *
2202  *      Fake input to a tty device. Does the necessary locking and
2203  *      input management.
2204  *
2205  *      FIXME: does not honour flow control ??
2206  *
2207  *      Locking:
2208  *              Called functions take tty_ldiscs_lock
2209  *              current->signal->tty check is safe without locks
2210  *
2211  *      FIXME: may race normal receive processing
2212  */
2213
2214 static int tiocsti(struct tty_struct *tty, char __user *p)
2215 {
2216         char ch, mbz = 0;
2217         struct tty_ldisc *ld;
2218
2219         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2220                 return -EPERM;
2221         if (get_user(ch, p))
2222                 return -EFAULT;
2223         tty_audit_tiocsti(tty, ch);
2224         ld = tty_ldisc_ref_wait(tty);
2225         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2226         tty_ldisc_deref(ld);
2227         return 0;
2228 }
2229
2230 /**
2231  *      tiocgwinsz              -       implement window query ioctl
2232  *      @tty; tty
2233  *      @arg: user buffer for result
2234  *
2235  *      Copies the kernel idea of the window size into the user buffer.
2236  *
2237  *      Locking: tty->winsize_mutex is taken to ensure the winsize data
2238  *              is consistent.
2239  */
2240
2241 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2242 {
2243         int err;
2244
2245         mutex_lock(&tty->winsize_mutex);
2246         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2247         mutex_unlock(&tty->winsize_mutex);
2248
2249         return err ? -EFAULT: 0;
2250 }
2251
2252 /**
2253  *      tty_do_resize           -       resize event
2254  *      @tty: tty being resized
2255  *      @rows: rows (character)
2256  *      @cols: cols (character)
2257  *
2258  *      Update the termios variables and send the necessary signals to
2259  *      peform a terminal resize correctly
2260  */
2261
2262 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2263 {
2264         struct pid *pgrp;
2265         unsigned long flags;
2266
2267         /* Lock the tty */
2268         mutex_lock(&tty->winsize_mutex);
2269         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2270                 goto done;
2271         /* Get the PID values and reference them so we can
2272            avoid holding the tty ctrl lock while sending signals */
2273         spin_lock_irqsave(&tty->ctrl_lock, flags);
2274         pgrp = get_pid(tty->pgrp);
2275         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2276
2277         if (pgrp)
2278                 kill_pgrp(pgrp, SIGWINCH, 1);
2279         put_pid(pgrp);
2280
2281         tty->winsize = *ws;
2282 done:
2283         mutex_unlock(&tty->winsize_mutex);
2284         return 0;
2285 }
2286 EXPORT_SYMBOL(tty_do_resize);
2287
2288 /**
2289  *      tiocswinsz              -       implement window size set ioctl
2290  *      @tty; tty side of tty
2291  *      @arg: user buffer for result
2292  *
2293  *      Copies the user idea of the window size to the kernel. Traditionally
2294  *      this is just advisory information but for the Linux console it
2295  *      actually has driver level meaning and triggers a VC resize.
2296  *
2297  *      Locking:
2298  *              Driver dependent. The default do_resize method takes the
2299  *      tty termios mutex and ctrl_lock. The console takes its own lock
2300  *      then calls into the default method.
2301  */
2302
2303 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2304 {
2305         struct winsize tmp_ws;
2306         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2307                 return -EFAULT;
2308
2309         if (tty->ops->resize)
2310                 return tty->ops->resize(tty, &tmp_ws);
2311         else
2312                 return tty_do_resize(tty, &tmp_ws);
2313 }
2314
2315 /**
2316  *      tioccons        -       allow admin to move logical console
2317  *      @file: the file to become console
2318  *
2319  *      Allow the administrator to move the redirected console device
2320  *
2321  *      Locking: uses redirect_lock to guard the redirect information
2322  */
2323
2324 static int tioccons(struct file *file)
2325 {
2326         if (!capable(CAP_SYS_ADMIN))
2327                 return -EPERM;
2328         if (file->f_op->write == redirected_tty_write) {
2329                 struct file *f;
2330                 spin_lock(&redirect_lock);
2331                 f = redirect;
2332                 redirect = NULL;
2333                 spin_unlock(&redirect_lock);
2334                 if (f)
2335                         fput(f);
2336                 return 0;
2337         }
2338         spin_lock(&redirect_lock);
2339         if (redirect) {
2340                 spin_unlock(&redirect_lock);
2341                 return -EBUSY;
2342         }
2343         redirect = get_file(file);
2344         spin_unlock(&redirect_lock);
2345         return 0;
2346 }
2347
2348 /**
2349  *      fionbio         -       non blocking ioctl
2350  *      @file: file to set blocking value
2351  *      @p: user parameter
2352  *
2353  *      Historical tty interfaces had a blocking control ioctl before
2354  *      the generic functionality existed. This piece of history is preserved
2355  *      in the expected tty API of posix OS's.
2356  *
2357  *      Locking: none, the open file handle ensures it won't go away.
2358  */
2359
2360 static int fionbio(struct file *file, int __user *p)
2361 {
2362         int nonblock;
2363
2364         if (get_user(nonblock, p))
2365                 return -EFAULT;
2366
2367         spin_lock(&file->f_lock);
2368         if (nonblock)
2369                 file->f_flags |= O_NONBLOCK;
2370         else
2371                 file->f_flags &= ~O_NONBLOCK;
2372         spin_unlock(&file->f_lock);
2373         return 0;
2374 }
2375
2376 /**
2377  *      tiocsctty       -       set controlling tty
2378  *      @tty: tty structure
2379  *      @arg: user argument
2380  *
2381  *      This ioctl is used to manage job control. It permits a session
2382  *      leader to set this tty as the controlling tty for the session.
2383  *
2384  *      Locking:
2385  *              Takes tty_mutex() to protect tty instance
2386  *              Takes tasklist_lock internally to walk sessions
2387  *              Takes ->siglock() when updating signal->tty
2388  */
2389
2390 static int tiocsctty(struct tty_struct *tty, int arg)
2391 {
2392         int ret = 0;
2393         if (current->signal->leader && (task_session(current) == tty->session))
2394                 return ret;
2395
2396         mutex_lock(&tty_mutex);
2397         /*
2398          * The process must be a session leader and
2399          * not have a controlling tty already.
2400          */
2401         if (!current->signal->leader || current->signal->tty) {
2402                 ret = -EPERM;
2403                 goto unlock;
2404         }
2405
2406         if (tty->session) {
2407                 /*
2408                  * This tty is already the controlling
2409                  * tty for another session group!
2410                  */
2411                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2412                         /*
2413                          * Steal it away
2414                          */
2415                         read_lock(&tasklist_lock);
2416                         session_clear_tty(tty->session);
2417                         read_unlock(&tasklist_lock);
2418                 } else {
2419                         ret = -EPERM;
2420                         goto unlock;
2421                 }
2422         }
2423         proc_set_tty(current, tty);
2424 unlock:
2425         mutex_unlock(&tty_mutex);
2426         return ret;
2427 }
2428
2429 /**
2430  *      tty_get_pgrp    -       return a ref counted pgrp pid
2431  *      @tty: tty to read
2432  *
2433  *      Returns a refcounted instance of the pid struct for the process
2434  *      group controlling the tty.
2435  */
2436
2437 struct pid *tty_get_pgrp(struct tty_struct *tty)
2438 {
2439         unsigned long flags;
2440         struct pid *pgrp;
2441
2442         spin_lock_irqsave(&tty->ctrl_lock, flags);
2443         pgrp = get_pid(tty->pgrp);
2444         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2445
2446         return pgrp;
2447 }
2448 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2449
2450 /**
2451  *      tiocgpgrp               -       get process group
2452  *      @tty: tty passed by user
2453  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2454  *      @p: returned pid
2455  *
2456  *      Obtain the process group of the tty. If there is no process group
2457  *      return an error.
2458  *
2459  *      Locking: none. Reference to current->signal->tty is safe.
2460  */
2461
2462 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2463 {
2464         struct pid *pid;
2465         int ret;
2466         /*
2467          * (tty == real_tty) is a cheap way of
2468          * testing if the tty is NOT a master pty.
2469          */
2470         if (tty == real_tty && current->signal->tty != real_tty)
2471                 return -ENOTTY;
2472         pid = tty_get_pgrp(real_tty);
2473         ret =  put_user(pid_vnr(pid), p);
2474         put_pid(pid);
2475         return ret;
2476 }
2477
2478 /**
2479  *      tiocspgrp               -       attempt to set process group
2480  *      @tty: tty passed by user
2481  *      @real_tty: tty side device matching tty passed by user
2482  *      @p: pid pointer
2483  *
2484  *      Set the process group of the tty to the session passed. Only
2485  *      permitted where the tty session is our session.
2486  *
2487  *      Locking: RCU, ctrl lock
2488  */
2489
2490 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2491 {
2492         struct pid *pgrp;
2493         pid_t pgrp_nr;
2494         int retval = tty_check_change(real_tty);
2495         unsigned long flags;
2496
2497         if (retval == -EIO)
2498                 return -ENOTTY;
2499         if (retval)
2500                 return retval;
2501         if (!current->signal->tty ||
2502             (current->signal->tty != real_tty) ||
2503             (real_tty->session != task_session(current)))
2504                 return -ENOTTY;
2505         if (get_user(pgrp_nr, p))
2506                 return -EFAULT;
2507         if (pgrp_nr < 0)
2508                 return -EINVAL;
2509         rcu_read_lock();
2510         pgrp = find_vpid(pgrp_nr);
2511         retval = -ESRCH;
2512         if (!pgrp)
2513                 goto out_unlock;
2514         retval = -EPERM;
2515         if (session_of_pgrp(pgrp) != task_session(current))
2516                 goto out_unlock;
2517         retval = 0;
2518         spin_lock_irqsave(&tty->ctrl_lock, flags);
2519         put_pid(real_tty->pgrp);
2520         real_tty->pgrp = get_pid(pgrp);
2521         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2522 out_unlock:
2523         rcu_read_unlock();
2524         return retval;
2525 }
2526
2527 /**
2528  *      tiocgsid                -       get session id
2529  *      @tty: tty passed by user
2530  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2531  *      @p: pointer to returned session id
2532  *
2533  *      Obtain the session id of the tty. If there is no session
2534  *      return an error.
2535  *
2536  *      Locking: none. Reference to current->signal->tty is safe.
2537  */
2538
2539 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2540 {
2541         /*
2542          * (tty == real_tty) is a cheap way of
2543          * testing if the tty is NOT a master pty.
2544         */
2545         if (tty == real_tty && current->signal->tty != real_tty)
2546                 return -ENOTTY;
2547         if (!real_tty->session)
2548                 return -ENOTTY;
2549         return put_user(pid_vnr(real_tty->session), p);
2550 }
2551
2552 /**
2553  *      tiocsetd        -       set line discipline
2554  *      @tty: tty device
2555  *      @p: pointer to user data
2556  *
2557  *      Set the line discipline according to user request.
2558  *
2559  *      Locking: see tty_set_ldisc, this function is just a helper
2560  */
2561
2562 static int tiocsetd(struct tty_struct *tty, int __user *p)
2563 {
2564         int ldisc;
2565         int ret;
2566
2567         if (get_user(ldisc, p))
2568                 return -EFAULT;
2569
2570         ret = tty_set_ldisc(tty, ldisc);
2571
2572         return ret;
2573 }
2574
2575 /**
2576  *      send_break      -       performed time break
2577  *      @tty: device to break on
2578  *      @duration: timeout in mS
2579  *
2580  *      Perform a timed break on hardware that lacks its own driver level
2581  *      timed break functionality.
2582  *
2583  *      Locking:
2584  *              atomic_write_lock serializes
2585  *
2586  */
2587
2588 static int send_break(struct tty_struct *tty, unsigned int duration)
2589 {
2590         int retval;
2591
2592         if (tty->ops->break_ctl == NULL)
2593                 return 0;
2594
2595         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2596                 retval = tty->ops->break_ctl(tty, duration);
2597         else {
2598                 /* Do the work ourselves */
2599                 if (tty_write_lock(tty, 0) < 0)
2600                         return -EINTR;
2601                 retval = tty->ops->break_ctl(tty, -1);
2602                 if (retval)
2603                         goto out;
2604                 if (!signal_pending(current))
2605                         msleep_interruptible(duration);
2606                 retval = tty->ops->break_ctl(tty, 0);
2607 out:
2608                 tty_write_unlock(tty);
2609                 if (signal_pending(current))
2610                         retval = -EINTR;
2611         }
2612         return retval;
2613 }
2614
2615 /**
2616  *      tty_tiocmget            -       get modem status
2617  *      @tty: tty device
2618  *      @file: user file pointer
2619  *      @p: pointer to result
2620  *
2621  *      Obtain the modem status bits from the tty driver if the feature
2622  *      is supported. Return -EINVAL if it is not available.
2623  *
2624  *      Locking: none (up to the driver)
2625  */
2626
2627 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2628 {
2629         int retval = -EINVAL;
2630
2631         if (tty->ops->tiocmget) {
2632                 retval = tty->ops->tiocmget(tty);
2633
2634                 if (retval >= 0)
2635                         retval = put_user(retval, p);
2636         }
2637         return retval;
2638 }
2639
2640 /**
2641  *      tty_tiocmset            -       set modem status
2642  *      @tty: tty device
2643  *      @cmd: command - clear bits, set bits or set all
2644  *      @p: pointer to desired bits
2645  *
2646  *      Set the modem status bits from the tty driver if the feature
2647  *      is supported. Return -EINVAL if it is not available.
2648  *
2649  *      Locking: none (up to the driver)
2650  */
2651
2652 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2653              unsigned __user *p)
2654 {
2655         int retval;
2656         unsigned int set, clear, val;
2657
2658         if (tty->ops->tiocmset == NULL)
2659                 return -EINVAL;
2660
2661         retval = get_user(val, p);
2662         if (retval)
2663                 return retval;
2664         set = clear = 0;
2665         switch (cmd) {
2666         case TIOCMBIS:
2667                 set = val;
2668                 break;
2669         case TIOCMBIC:
2670                 clear = val;
2671                 break;
2672         case TIOCMSET:
2673                 set = val;
2674                 clear = ~val;
2675                 break;
2676         }
2677         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2678         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2679         return tty->ops->tiocmset(tty, set, clear);
2680 }
2681
2682 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2683 {
2684         int retval = -EINVAL;
2685         struct serial_icounter_struct icount;
2686         memset(&icount, 0, sizeof(icount));
2687         if (tty->ops->get_icount)
2688                 retval = tty->ops->get_icount(tty, &icount);
2689         if (retval != 0)
2690                 return retval;
2691         if (copy_to_user(arg, &icount, sizeof(icount)))
2692                 return -EFAULT;
2693         return 0;
2694 }
2695
2696 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2697 {
2698         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2699             tty->driver->subtype == PTY_TYPE_MASTER)
2700                 tty = tty->link;
2701         return tty;
2702 }
2703 EXPORT_SYMBOL(tty_pair_get_tty);
2704
2705 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2706 {
2707         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2708             tty->driver->subtype == PTY_TYPE_MASTER)
2709             return tty;
2710         return tty->link;
2711 }
2712 EXPORT_SYMBOL(tty_pair_get_pty);
2713
2714 /*
2715  * Split this up, as gcc can choke on it otherwise..
2716  */
2717 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2718 {
2719         struct tty_struct *tty = file_tty(file);
2720         struct tty_struct *real_tty;
2721         void __user *p = (void __user *)arg;
2722         int retval;
2723         struct tty_ldisc *ld;
2724
2725         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2726                 return -EINVAL;
2727
2728         real_tty = tty_pair_get_tty(tty);
2729
2730         /*
2731          * Factor out some common prep work
2732          */
2733         switch (cmd) {
2734         case TIOCSETD:
2735         case TIOCSBRK:
2736         case TIOCCBRK:
2737         case TCSBRK:
2738         case TCSBRKP:
2739                 retval = tty_check_change(tty);
2740                 if (retval)
2741                         return retval;
2742                 if (cmd != TIOCCBRK) {
2743                         tty_wait_until_sent(tty, 0);
2744                         if (signal_pending(current))
2745                                 return -EINTR;
2746                 }
2747                 break;
2748         }
2749
2750         /*
2751          *      Now do the stuff.
2752          */
2753         switch (cmd) {
2754         case TIOCSTI:
2755                 return tiocsti(tty, p);
2756         case TIOCGWINSZ:
2757                 return tiocgwinsz(real_tty, p);
2758         case TIOCSWINSZ:
2759                 return tiocswinsz(real_tty, p);
2760         case TIOCCONS:
2761                 return real_tty != tty ? -EINVAL : tioccons(file);
2762         case FIONBIO:
2763                 return fionbio(file, p);
2764         case TIOCEXCL:
2765                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2766                 return 0;
2767         case TIOCNXCL:
2768                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2769                 return 0;
2770         case TIOCGEXCL:
2771         {
2772                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2773                 return put_user(excl, (int __user *)p);
2774         }
2775         case TIOCNOTTY:
2776                 if (current->signal->tty != tty)
2777                         return -ENOTTY;
2778                 no_tty();
2779                 return 0;
2780         case TIOCSCTTY:
2781                 return tiocsctty(tty, arg);
2782         case TIOCGPGRP:
2783                 return tiocgpgrp(tty, real_tty, p);
2784         case TIOCSPGRP:
2785                 return tiocspgrp(tty, real_tty, p);
2786         case TIOCGSID:
2787                 return tiocgsid(tty, real_tty, p);
2788         case TIOCGETD:
2789                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2790         case TIOCSETD:
2791                 return tiocsetd(tty, p);
2792         case TIOCVHANGUP:
2793                 if (!capable(CAP_SYS_ADMIN))
2794                         return -EPERM;
2795                 tty_vhangup(tty);
2796                 return 0;
2797         case TIOCGDEV:
2798         {
2799                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2800                 return put_user(ret, (unsigned int __user *)p);
2801         }
2802         /*
2803          * Break handling
2804          */
2805         case TIOCSBRK:  /* Turn break on, unconditionally */
2806                 if (tty->ops->break_ctl)
2807                         return tty->ops->break_ctl(tty, -1);
2808                 return 0;
2809         case TIOCCBRK:  /* Turn break off, unconditionally */
2810                 if (tty->ops->break_ctl)
2811                         return tty->ops->break_ctl(tty, 0);
2812                 return 0;
2813         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2814                 /* non-zero arg means wait for all output data
2815                  * to be sent (performed above) but don't send break.
2816                  * This is used by the tcdrain() termios function.
2817                  */
2818                 if (!arg)
2819                         return send_break(tty, 250);
2820                 return 0;
2821         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2822                 return send_break(tty, arg ? arg*100 : 250);
2823
2824         case TIOCMGET:
2825                 return tty_tiocmget(tty, p);
2826         case TIOCMSET:
2827         case TIOCMBIC:
2828         case TIOCMBIS:
2829                 return tty_tiocmset(tty, cmd, p);
2830         case TIOCGICOUNT:
2831                 retval = tty_tiocgicount(tty, p);
2832                 /* For the moment allow fall through to the old method */
2833                 if (retval != -EINVAL)
2834                         return retval;
2835                 break;
2836         case TCFLSH:
2837                 switch (arg) {
2838                 case TCIFLUSH:
2839                 case TCIOFLUSH:
2840                 /* flush tty buffer and allow ldisc to process ioctl */
2841                         tty_buffer_flush(tty);
2842                         break;
2843                 }
2844                 break;
2845         }
2846         if (tty->ops->ioctl) {
2847                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2848                 if (retval != -ENOIOCTLCMD)
2849                         return retval;
2850         }
2851         ld = tty_ldisc_ref_wait(tty);
2852         retval = -EINVAL;
2853         if (ld->ops->ioctl) {
2854                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2855                 if (retval == -ENOIOCTLCMD)
2856                         retval = -ENOTTY;
2857         }
2858         tty_ldisc_deref(ld);
2859         return retval;
2860 }
2861
2862 #ifdef CONFIG_COMPAT
2863 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2864                                 unsigned long arg)
2865 {
2866         struct tty_struct *tty = file_tty(file);
2867         struct tty_ldisc *ld;
2868         int retval = -ENOIOCTLCMD;
2869
2870         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2871                 return -EINVAL;
2872
2873         if (tty->ops->compat_ioctl) {
2874                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2875                 if (retval != -ENOIOCTLCMD)
2876                         return retval;
2877         }
2878
2879         ld = tty_ldisc_ref_wait(tty);
2880         if (ld->ops->compat_ioctl)
2881                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2882         else
2883                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2884         tty_ldisc_deref(ld);
2885
2886         return retval;
2887 }
2888 #endif
2889
2890 static int this_tty(const void *t, struct file *file, unsigned fd)
2891 {
2892         if (likely(file->f_op->read != tty_read))
2893                 return 0;
2894         return file_tty(file) != t ? 0 : fd + 1;
2895 }
2896         
2897 /*
2898  * This implements the "Secure Attention Key" ---  the idea is to
2899  * prevent trojan horses by killing all processes associated with this
2900  * tty when the user hits the "Secure Attention Key".  Required for
2901  * super-paranoid applications --- see the Orange Book for more details.
2902  *
2903  * This code could be nicer; ideally it should send a HUP, wait a few
2904  * seconds, then send a INT, and then a KILL signal.  But you then
2905  * have to coordinate with the init process, since all processes associated
2906  * with the current tty must be dead before the new getty is allowed
2907  * to spawn.
2908  *
2909  * Now, if it would be correct ;-/ The current code has a nasty hole -
2910  * it doesn't catch files in flight. We may send the descriptor to ourselves
2911  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2912  *
2913  * Nasty bug: do_SAK is being called in interrupt context.  This can
2914  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2915  */
2916 void __do_SAK(struct tty_struct *tty)
2917 {
2918 #ifdef TTY_SOFT_SAK
2919         tty_hangup(tty);
2920 #else
2921         struct task_struct *g, *p;
2922         struct pid *session;
2923         int             i;
2924
2925         if (!tty)
2926                 return;
2927         session = tty->session;
2928
2929         tty_ldisc_flush(tty);
2930
2931         tty_driver_flush_buffer(tty);
2932
2933         read_lock(&tasklist_lock);
2934         /* Kill the entire session */
2935         do_each_pid_task(session, PIDTYPE_SID, p) {
2936                 printk(KERN_NOTICE "SAK: killed process %d"
2937                         " (%s): task_session(p)==tty->session\n",
2938                         task_pid_nr(p), p->comm);
2939                 send_sig(SIGKILL, p, 1);
2940         } while_each_pid_task(session, PIDTYPE_SID, p);
2941         /* Now kill any processes that happen to have the
2942          * tty open.
2943          */
2944         do_each_thread(g, p) {
2945                 if (p->signal->tty == tty) {
2946                         printk(KERN_NOTICE "SAK: killed process %d"
2947                             " (%s): task_session(p)==tty->session\n",
2948                             task_pid_nr(p), p->comm);
2949                         send_sig(SIGKILL, p, 1);
2950                         continue;
2951                 }
2952                 task_lock(p);
2953                 i = iterate_fd(p->files, 0, this_tty, tty);
2954                 if (i != 0) {
2955                         printk(KERN_NOTICE "SAK: killed process %d"
2956                             " (%s): fd#%d opened to the tty\n",
2957                                     task_pid_nr(p), p->comm, i - 1);
2958                         force_sig(SIGKILL, p);
2959                 }
2960                 task_unlock(p);
2961         } while_each_thread(g, p);
2962         read_unlock(&tasklist_lock);
2963 #endif
2964 }
2965
2966 static void do_SAK_work(struct work_struct *work)
2967 {
2968         struct tty_struct *tty =
2969                 container_of(work, struct tty_struct, SAK_work);
2970         __do_SAK(tty);
2971 }
2972
2973 /*
2974  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2975  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2976  * the values which we write to it will be identical to the values which it
2977  * already has. --akpm
2978  */
2979 void do_SAK(struct tty_struct *tty)
2980 {
2981         if (!tty)
2982                 return;
2983         schedule_work(&tty->SAK_work);
2984 }
2985
2986 EXPORT_SYMBOL(do_SAK);
2987
2988 static int dev_match_devt(struct device *dev, const void *data)
2989 {
2990         const dev_t *devt = data;
2991         return dev->devt == *devt;
2992 }
2993
2994 /* Must put_device() after it's unused! */
2995 static struct device *tty_get_device(struct tty_struct *tty)
2996 {
2997         dev_t devt = tty_devnum(tty);
2998         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2999 }
3000
3001
3002 /**
3003  *      initialize_tty_struct
3004  *      @tty: tty to initialize
3005  *
3006  *      This subroutine initializes a tty structure that has been newly
3007  *      allocated.
3008  *
3009  *      Locking: none - tty in question must not be exposed at this point
3010  */
3011
3012 void initialize_tty_struct(struct tty_struct *tty,
3013                 struct tty_driver *driver, int idx)
3014 {
3015         memset(tty, 0, sizeof(struct tty_struct));
3016         kref_init(&tty->kref);
3017         tty->magic = TTY_MAGIC;
3018         tty_ldisc_init(tty);
3019         tty->session = NULL;
3020         tty->pgrp = NULL;
3021         mutex_init(&tty->legacy_mutex);
3022         mutex_init(&tty->throttle_mutex);
3023         init_rwsem(&tty->termios_rwsem);
3024         mutex_init(&tty->winsize_mutex);
3025         init_ldsem(&tty->ldisc_sem);
3026         init_waitqueue_head(&tty->write_wait);
3027         init_waitqueue_head(&tty->read_wait);
3028         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3029         mutex_init(&tty->atomic_write_lock);
3030         spin_lock_init(&tty->ctrl_lock);
3031         INIT_LIST_HEAD(&tty->tty_files);
3032         INIT_WORK(&tty->SAK_work, do_SAK_work);
3033
3034         tty->driver = driver;
3035         tty->ops = driver->ops;
3036         tty->index = idx;
3037         tty_line_name(driver, idx, tty->name);
3038         tty->dev = tty_get_device(tty);
3039 }
3040
3041 /**
3042  *      deinitialize_tty_struct
3043  *      @tty: tty to deinitialize
3044  *
3045  *      This subroutine deinitializes a tty structure that has been newly
3046  *      allocated but tty_release cannot be called on that yet.
3047  *
3048  *      Locking: none - tty in question must not be exposed at this point
3049  */
3050 void deinitialize_tty_struct(struct tty_struct *tty)
3051 {
3052         tty_ldisc_deinit(tty);
3053 }
3054
3055 /**
3056  *      tty_put_char    -       write one character to a tty
3057  *      @tty: tty
3058  *      @ch: character
3059  *
3060  *      Write one byte to the tty using the provided put_char method
3061  *      if present. Returns the number of characters successfully output.
3062  *
3063  *      Note: the specific put_char operation in the driver layer may go
3064  *      away soon. Don't call it directly, use this method
3065  */
3066
3067 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3068 {
3069         if (tty->ops->put_char)
3070                 return tty->ops->put_char(tty, ch);
3071         return tty->ops->write(tty, &ch, 1);
3072 }
3073 EXPORT_SYMBOL_GPL(tty_put_char);
3074
3075 struct class *tty_class;
3076
3077 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3078                 unsigned int index, unsigned int count)
3079 {
3080         /* init here, since reused cdevs cause crashes */
3081         cdev_init(&driver->cdevs[index], &tty_fops);
3082         driver->cdevs[index].owner = driver->owner;
3083         return cdev_add(&driver->cdevs[index], dev, count);
3084 }
3085
3086 /**
3087  *      tty_register_device - register a tty device
3088  *      @driver: the tty driver that describes the tty device
3089  *      @index: the index in the tty driver for this tty device
3090  *      @device: a struct device that is associated with this tty device.
3091  *              This field is optional, if there is no known struct device
3092  *              for this tty device it can be set to NULL safely.
3093  *
3094  *      Returns a pointer to the struct device for this tty device
3095  *      (or ERR_PTR(-EFOO) on error).
3096  *
3097  *      This call is required to be made to register an individual tty device
3098  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3099  *      that bit is not set, this function should not be called by a tty
3100  *      driver.
3101  *
3102  *      Locking: ??
3103  */
3104
3105 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3106                                    struct device *device)
3107 {
3108         return tty_register_device_attr(driver, index, device, NULL, NULL);
3109 }
3110 EXPORT_SYMBOL(tty_register_device);
3111
3112 static void tty_device_create_release(struct device *dev)
3113 {
3114         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3115         kfree(dev);
3116 }
3117
3118 /**
3119  *      tty_register_device_attr - register a tty device
3120  *      @driver: the tty driver that describes the tty device
3121  *      @index: the index in the tty driver for this tty device
3122  *      @device: a struct device that is associated with this tty device.
3123  *              This field is optional, if there is no known struct device
3124  *              for this tty device it can be set to NULL safely.
3125  *      @drvdata: Driver data to be set to device.
3126  *      @attr_grp: Attribute group to be set on device.
3127  *
3128  *      Returns a pointer to the struct device for this tty device
3129  *      (or ERR_PTR(-EFOO) on error).
3130  *
3131  *      This call is required to be made to register an individual tty device
3132  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3133  *      that bit is not set, this function should not be called by a tty
3134  *      driver.
3135  *
3136  *      Locking: ??
3137  */
3138 struct device *tty_register_device_attr(struct tty_driver *driver,
3139                                    unsigned index, struct device *device,
3140                                    void *drvdata,
3141                                    const struct attribute_group **attr_grp)
3142 {
3143         char name[64];
3144         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3145         struct device *dev = NULL;
3146         int retval = -ENODEV;
3147         bool cdev = false;
3148
3149         if (index >= driver->num) {
3150                 printk(KERN_ERR "Attempt to register invalid tty line number "
3151                        " (%d).\n", index);
3152                 return ERR_PTR(-EINVAL);
3153         }
3154
3155         if (driver->type == TTY_DRIVER_TYPE_PTY)
3156                 pty_line_name(driver, index, name);
3157         else
3158                 tty_line_name(driver, index, name);
3159
3160         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3161                 retval = tty_cdev_add(driver, devt, index, 1);
3162                 if (retval)
3163                         goto error;
3164                 cdev = true;
3165         }
3166
3167         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3168         if (!dev) {
3169                 retval = -ENOMEM;
3170                 goto error;
3171         }
3172
3173         dev->devt = devt;
3174         dev->class = tty_class;
3175         dev->parent = device;
3176         dev->release = tty_device_create_release;
3177         dev_set_name(dev, "%s", name);
3178         dev->groups = attr_grp;
3179         dev_set_drvdata(dev, drvdata);
3180
3181         retval = device_register(dev);
3182         if (retval)
3183                 goto error;
3184
3185         return dev;
3186
3187 error:
3188         put_device(dev);
3189         if (cdev)
3190                 cdev_del(&driver->cdevs[index]);
3191         return ERR_PTR(retval);
3192 }
3193 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3194
3195 /**
3196  *      tty_unregister_device - unregister a tty device
3197  *      @driver: the tty driver that describes the tty device
3198  *      @index: the index in the tty driver for this tty device
3199  *
3200  *      If a tty device is registered with a call to tty_register_device() then
3201  *      this function must be called when the tty device is gone.
3202  *
3203  *      Locking: ??
3204  */
3205
3206 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3207 {
3208         device_destroy(tty_class,
3209                 MKDEV(driver->major, driver->minor_start) + index);
3210         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3211                 cdev_del(&driver->cdevs[index]);
3212 }
3213 EXPORT_SYMBOL(tty_unregister_device);
3214
3215 /**
3216  * __tty_alloc_driver -- allocate tty driver
3217  * @lines: count of lines this driver can handle at most
3218  * @owner: module which is repsonsible for this driver
3219  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3220  *
3221  * This should not be called directly, some of the provided macros should be
3222  * used instead. Use IS_ERR and friends on @retval.
3223  */
3224 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3225                 unsigned long flags)
3226 {
3227         struct tty_driver *driver;
3228         unsigned int cdevs = 1;
3229         int err;
3230
3231         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3232                 return ERR_PTR(-EINVAL);
3233
3234         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3235         if (!driver)
3236                 return ERR_PTR(-ENOMEM);
3237
3238         kref_init(&driver->kref);
3239         driver->magic = TTY_DRIVER_MAGIC;
3240         driver->num = lines;
3241         driver->owner = owner;
3242         driver->flags = flags;
3243
3244         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3245                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3246                                 GFP_KERNEL);
3247                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3248                                 GFP_KERNEL);
3249                 if (!driver->ttys || !driver->termios) {
3250                         err = -ENOMEM;
3251                         goto err_free_all;
3252                 }
3253         }
3254
3255         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3256                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3257                                 GFP_KERNEL);
3258                 if (!driver->ports) {
3259                         err = -ENOMEM;
3260                         goto err_free_all;
3261                 }
3262                 cdevs = lines;
3263         }
3264
3265         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3266         if (!driver->cdevs) {
3267                 err = -ENOMEM;
3268                 goto err_free_all;
3269         }
3270
3271         return driver;
3272 err_free_all:
3273         kfree(driver->ports);
3274         kfree(driver->ttys);
3275         kfree(driver->termios);
3276         kfree(driver);
3277         return ERR_PTR(err);
3278 }
3279 EXPORT_SYMBOL(__tty_alloc_driver);
3280
3281 static void destruct_tty_driver(struct kref *kref)
3282 {
3283         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3284         int i;
3285         struct ktermios *tp;
3286
3287         if (driver->flags & TTY_DRIVER_INSTALLED) {
3288                 /*
3289                  * Free the termios and termios_locked structures because
3290                  * we don't want to get memory leaks when modular tty
3291                  * drivers are removed from the kernel.
3292                  */
3293                 for (i = 0; i < driver->num; i++) {
3294                         tp = driver->termios[i];
3295                         if (tp) {
3296                                 driver->termios[i] = NULL;
3297                                 kfree(tp);
3298                         }
3299                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3300                                 tty_unregister_device(driver, i);
3301                 }
3302                 proc_tty_unregister_driver(driver);
3303                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3304                         cdev_del(&driver->cdevs[0]);
3305         }
3306         kfree(driver->cdevs);
3307         kfree(driver->ports);
3308         kfree(driver->termios);
3309         kfree(driver->ttys);
3310         kfree(driver);
3311 }
3312
3313 void tty_driver_kref_put(struct tty_driver *driver)
3314 {
3315         kref_put(&driver->kref, destruct_tty_driver);
3316 }
3317 EXPORT_SYMBOL(tty_driver_kref_put);
3318
3319 void tty_set_operations(struct tty_driver *driver,
3320                         const struct tty_operations *op)
3321 {
3322         driver->ops = op;
3323 };
3324 EXPORT_SYMBOL(tty_set_operations);
3325
3326 void put_tty_driver(struct tty_driver *d)
3327 {
3328         tty_driver_kref_put(d);
3329 }
3330 EXPORT_SYMBOL(put_tty_driver);
3331
3332 /*
3333  * Called by a tty driver to register itself.
3334  */
3335 int tty_register_driver(struct tty_driver *driver)
3336 {
3337         int error;
3338         int i;
3339         dev_t dev;
3340         struct device *d;
3341
3342         if (!driver->major) {
3343                 error = alloc_chrdev_region(&dev, driver->minor_start,
3344                                                 driver->num, driver->name);
3345                 if (!error) {
3346                         driver->major = MAJOR(dev);
3347                         driver->minor_start = MINOR(dev);
3348                 }
3349         } else {
3350                 dev = MKDEV(driver->major, driver->minor_start);
3351                 error = register_chrdev_region(dev, driver->num, driver->name);
3352         }
3353         if (error < 0)
3354                 goto err;
3355
3356         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3357                 error = tty_cdev_add(driver, dev, 0, driver->num);
3358                 if (error)
3359                         goto err_unreg_char;
3360         }
3361
3362         mutex_lock(&tty_mutex);
3363         list_add(&driver->tty_drivers, &tty_drivers);
3364         mutex_unlock(&tty_mutex);
3365
3366         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3367                 for (i = 0; i < driver->num; i++) {
3368                         d = tty_register_device(driver, i, NULL);
3369                         if (IS_ERR(d)) {
3370                                 error = PTR_ERR(d);
3371                                 goto err_unreg_devs;
3372                         }
3373                 }
3374         }
3375         proc_tty_register_driver(driver);
3376         driver->flags |= TTY_DRIVER_INSTALLED;
3377         return 0;
3378
3379 err_unreg_devs:
3380         for (i--; i >= 0; i--)
3381                 tty_unregister_device(driver, i);
3382
3383         mutex_lock(&tty_mutex);
3384         list_del(&driver->tty_drivers);
3385         mutex_unlock(&tty_mutex);
3386
3387 err_unreg_char:
3388         unregister_chrdev_region(dev, driver->num);
3389 err:
3390         return error;
3391 }
3392 EXPORT_SYMBOL(tty_register_driver);
3393
3394 /*
3395  * Called by a tty driver to unregister itself.
3396  */
3397 int tty_unregister_driver(struct tty_driver *driver)
3398 {
3399 #if 0
3400         /* FIXME */
3401         if (driver->refcount)
3402                 return -EBUSY;
3403 #endif
3404         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3405                                 driver->num);
3406         mutex_lock(&tty_mutex);
3407         list_del(&driver->tty_drivers);
3408         mutex_unlock(&tty_mutex);
3409         return 0;
3410 }
3411
3412 EXPORT_SYMBOL(tty_unregister_driver);
3413
3414 dev_t tty_devnum(struct tty_struct *tty)
3415 {
3416         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3417 }
3418 EXPORT_SYMBOL(tty_devnum);
3419
3420 void proc_clear_tty(struct task_struct *p)
3421 {
3422         unsigned long flags;
3423         struct tty_struct *tty;
3424         spin_lock_irqsave(&p->sighand->siglock, flags);
3425         tty = p->signal->tty;
3426         p->signal->tty = NULL;
3427         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3428         tty_kref_put(tty);
3429 }
3430
3431 /* Called under the sighand lock */
3432
3433 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3434 {
3435         if (tty) {
3436                 unsigned long flags;
3437                 /* We should not have a session or pgrp to put here but.... */
3438                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3439                 put_pid(tty->session);
3440                 put_pid(tty->pgrp);
3441                 tty->pgrp = get_pid(task_pgrp(tsk));
3442                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3443                 tty->session = get_pid(task_session(tsk));
3444                 if (tsk->signal->tty) {
3445                         printk(KERN_DEBUG "tty not NULL!!\n");
3446                         tty_kref_put(tsk->signal->tty);
3447                 }
3448         }
3449         put_pid(tsk->signal->tty_old_pgrp);
3450         tsk->signal->tty = tty_kref_get(tty);
3451         tsk->signal->tty_old_pgrp = NULL;
3452 }
3453
3454 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3455 {
3456         spin_lock_irq(&tsk->sighand->siglock);
3457         __proc_set_tty(tsk, tty);
3458         spin_unlock_irq(&tsk->sighand->siglock);
3459 }
3460
3461 struct tty_struct *get_current_tty(void)
3462 {
3463         struct tty_struct *tty;
3464         unsigned long flags;
3465
3466         spin_lock_irqsave(&current->sighand->siglock, flags);
3467         tty = tty_kref_get(current->signal->tty);
3468         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3469         return tty;
3470 }
3471 EXPORT_SYMBOL_GPL(get_current_tty);
3472
3473 void tty_default_fops(struct file_operations *fops)
3474 {
3475         *fops = tty_fops;
3476 }
3477
3478 /*
3479  * Initialize the console device. This is called *early*, so
3480  * we can't necessarily depend on lots of kernel help here.
3481  * Just do some early initializations, and do the complex setup
3482  * later.
3483  */
3484 void __init console_init(void)
3485 {
3486         initcall_t *call;
3487
3488         /* Setup the default TTY line discipline. */
3489         tty_ldisc_begin();
3490
3491         /*
3492          * set up the console device so that later boot sequences can
3493          * inform about problems etc..
3494          */
3495         call = __con_initcall_start;
3496         while (call < __con_initcall_end) {
3497                 (*call)();
3498                 call++;
3499         }
3500 }
3501
3502 static char *tty_devnode(struct device *dev, umode_t *mode)
3503 {
3504         if (!mode)
3505                 return NULL;
3506         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3507             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3508                 *mode = 0666;
3509         return NULL;
3510 }
3511
3512 static int __init tty_class_init(void)
3513 {
3514         tty_class = class_create(THIS_MODULE, "tty");
3515         if (IS_ERR(tty_class))
3516                 return PTR_ERR(tty_class);
3517         tty_class->devnode = tty_devnode;
3518         return 0;
3519 }
3520
3521 postcore_initcall(tty_class_init);
3522
3523 /* 3/2004 jmc: why do these devices exist? */
3524 static struct cdev tty_cdev, console_cdev;
3525
3526 static ssize_t show_cons_active(struct device *dev,
3527                                 struct device_attribute *attr, char *buf)
3528 {
3529         struct console *cs[16];
3530         int i = 0;
3531         struct console *c;
3532         ssize_t count = 0;
3533
3534         console_lock();
3535         for_each_console(c) {
3536                 if (!c->device)
3537                         continue;
3538                 if (!c->write)
3539                         continue;
3540                 if ((c->flags & CON_ENABLED) == 0)
3541                         continue;
3542                 cs[i++] = c;
3543                 if (i >= ARRAY_SIZE(cs))
3544                         break;
3545         }
3546         while (i--)
3547                 count += sprintf(buf + count, "%s%d%c",
3548                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3549         console_unlock();
3550
3551         return count;
3552 }
3553 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3554
3555 static struct device *consdev;
3556
3557 void console_sysfs_notify(void)
3558 {
3559         if (consdev)
3560                 sysfs_notify(&consdev->kobj, NULL, "active");
3561 }
3562
3563 /*
3564  * Ok, now we can initialize the rest of the tty devices and can count
3565  * on memory allocations, interrupts etc..
3566  */
3567 int __init tty_init(void)
3568 {
3569         cdev_init(&tty_cdev, &tty_fops);
3570         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3571             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3572                 panic("Couldn't register /dev/tty driver\n");
3573         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3574
3575         cdev_init(&console_cdev, &console_fops);
3576         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3577             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3578                 panic("Couldn't register /dev/console driver\n");
3579         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3580                               "console");
3581         if (IS_ERR(consdev))
3582                 consdev = NULL;
3583         else
3584                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3585
3586 #ifdef CONFIG_VT
3587         vty_init(&console_fops);
3588 #endif
3589         return 0;
3590 }
3591