]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/tty/tty_io.c
TTY: fix atime/mtime regression
[karo-tx-linux.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (!tty)
185                 return;
186         if (tty->dev)
187                 put_device(tty->dev);
188         kfree(tty->write_buf);
189         tty->magic = 0xDEADDEAD;
190         kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195         return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200         struct tty_file_private *priv;
201
202         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203         if (!priv)
204                 return -ENOMEM;
205
206         file->private_data = priv;
207
208         return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214         struct tty_file_private *priv = file->private_data;
215
216         priv->tty = tty;
217         priv->file = file;
218
219         spin_lock(&tty_files_lock);
220         list_add(&priv->list, &tty->tty_files);
221         spin_unlock(&tty_files_lock);
222 }
223
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232         struct tty_file_private *priv = file->private_data;
233
234         file->private_data = NULL;
235         kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241         struct tty_file_private *priv = file->private_data;
242
243         spin_lock(&tty_files_lock);
244         list_del(&priv->list);
245         spin_unlock(&tty_files_lock);
246         tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253  *      tty_name        -       return tty naming
254  *      @tty: tty structure
255  *      @buf: buffer for output
256  *
257  *      Convert a tty structure into a name. The name reflects the kernel
258  *      naming policy and if udev is in use may not reflect user space
259  *
260  *      Locking: none
261  */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266                 strcpy(buf, "NULL tty");
267         else
268                 strcpy(buf, tty->name);
269         return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275                               const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278         if (!tty) {
279                 printk(KERN_WARNING
280                         "null TTY for (%d:%d) in %s\n",
281                         imajor(inode), iminor(inode), routine);
282                 return 1;
283         }
284         if (tty->magic != TTY_MAGIC) {
285                 printk(KERN_WARNING
286                         "bad magic number for tty struct (%d:%d) in %s\n",
287                         imajor(inode), iminor(inode), routine);
288                 return 1;
289         }
290 #endif
291         return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297         struct list_head *p;
298         int count = 0;
299
300         spin_lock(&tty_files_lock);
301         list_for_each(p, &tty->tty_files) {
302                 count++;
303         }
304         spin_unlock(&tty_files_lock);
305         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306             tty->driver->subtype == PTY_TYPE_SLAVE &&
307             tty->link && tty->link->count)
308                 count++;
309         if (tty->count != count) {
310                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311                                     "!= #fd's(%d) in %s\n",
312                        tty->name, tty->count, count, routine);
313                 return count;
314         }
315 #endif
316         return 0;
317 }
318
319 /**
320  *      get_tty_driver          -       find device of a tty
321  *      @dev_t: device identifier
322  *      @index: returns the index of the tty
323  *
324  *      This routine returns a tty driver structure, given a device number
325  *      and also passes back the index number.
326  *
327  *      Locking: caller must hold tty_mutex
328  */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332         struct tty_driver *p;
333
334         list_for_each_entry(p, &tty_drivers, tty_drivers) {
335                 dev_t base = MKDEV(p->major, p->minor_start);
336                 if (device < base || device >= base + p->num)
337                         continue;
338                 *index = device - base;
339                 return tty_driver_kref_get(p);
340         }
341         return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347  *      tty_find_polling_driver -       find device of a polled tty
348  *      @name: name string to match
349  *      @line: pointer to resulting tty line nr
350  *
351  *      This routine returns a tty driver structure, given a name
352  *      and the condition that the tty driver is capable of polled
353  *      operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357         struct tty_driver *p, *res = NULL;
358         int tty_line = 0;
359         int len;
360         char *str, *stp;
361
362         for (str = name; *str; str++)
363                 if ((*str >= '0' && *str <= '9') || *str == ',')
364                         break;
365         if (!*str)
366                 return NULL;
367
368         len = str - name;
369         tty_line = simple_strtoul(str, &str, 10);
370
371         mutex_lock(&tty_mutex);
372         /* Search through the tty devices to look for a match */
373         list_for_each_entry(p, &tty_drivers, tty_drivers) {
374                 if (strncmp(name, p->name, len) != 0)
375                         continue;
376                 stp = str;
377                 if (*stp == ',')
378                         stp++;
379                 if (*stp == '\0')
380                         stp = NULL;
381
382                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384                         res = tty_driver_kref_get(p);
385                         *line = tty_line;
386                         break;
387                 }
388         }
389         mutex_unlock(&tty_mutex);
390
391         return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397  *      tty_check_change        -       check for POSIX terminal changes
398  *      @tty: tty to check
399  *
400  *      If we try to write to, or set the state of, a terminal and we're
401  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *      Locking: ctrl_lock
405  */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409         unsigned long flags;
410         int ret = 0;
411
412         if (current->signal->tty != tty)
413                 return 0;
414
415         spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417         if (!tty->pgrp) {
418                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419                 goto out_unlock;
420         }
421         if (task_pgrp(current) == tty->pgrp)
422                 goto out_unlock;
423         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424         if (is_ignored(SIGTTOU))
425                 goto out;
426         if (is_current_pgrp_orphaned()) {
427                 ret = -EIO;
428                 goto out;
429         }
430         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431         set_thread_flag(TIF_SIGPENDING);
432         ret = -ERESTARTSYS;
433 out:
434         return ret;
435 out_unlock:
436         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437         return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443                                 size_t count, loff_t *ppos)
444 {
445         return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449                                  size_t count, loff_t *ppos)
450 {
451         return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461                 unsigned long arg)
462 {
463         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467                                      unsigned int cmd, unsigned long arg)
468 {
469         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473         .llseek         = no_llseek,
474         .read           = tty_read,
475         .write          = tty_write,
476         .poll           = tty_poll,
477         .unlocked_ioctl = tty_ioctl,
478         .compat_ioctl   = tty_compat_ioctl,
479         .open           = tty_open,
480         .release        = tty_release,
481         .fasync         = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485         .llseek         = no_llseek,
486         .read           = tty_read,
487         .write          = redirected_tty_write,
488         .poll           = tty_poll,
489         .unlocked_ioctl = tty_ioctl,
490         .compat_ioctl   = tty_compat_ioctl,
491         .open           = tty_open,
492         .release        = tty_release,
493         .fasync         = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497         .llseek         = no_llseek,
498         .read           = hung_up_tty_read,
499         .write          = hung_up_tty_write,
500         .poll           = hung_up_tty_poll,
501         .unlocked_ioctl = hung_up_tty_ioctl,
502         .compat_ioctl   = hung_up_tty_compat_ioctl,
503         .release        = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510  *      tty_wakeup      -       request more data
511  *      @tty: terminal
512  *
513  *      Internal and external helper for wakeups of tty. This function
514  *      informs the line discipline if present that the driver is ready
515  *      to receive more output data.
516  */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520         struct tty_ldisc *ld;
521
522         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523                 ld = tty_ldisc_ref(tty);
524                 if (ld) {
525                         if (ld->ops->write_wakeup)
526                                 ld->ops->write_wakeup(tty);
527                         tty_ldisc_deref(ld);
528                 }
529         }
530         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536  *      __tty_hangup            -       actual handler for hangup events
537  *      @work: tty device
538  *
539  *      This can be called by a "kworker" kernel thread.  That is process
540  *      synchronous but doesn't hold any locks, so we need to make sure we
541  *      have the appropriate locks for what we're doing.
542  *
543  *      The hangup event clears any pending redirections onto the hung up
544  *      device. It ensures future writes will error and it does the needed
545  *      line discipline hangup and signal delivery. The tty object itself
546  *      remains intact.
547  *
548  *      Locking:
549  *              BTM
550  *                redirect lock for undoing redirection
551  *                file list lock for manipulating list of ttys
552  *                tty_ldisc_lock from called functions
553  *                termios_mutex resetting termios data
554  *                tasklist_lock to walk task list for hangup event
555  *                  ->siglock to protect ->signal/->sighand
556  */
557 static void __tty_hangup(struct tty_struct *tty)
558 {
559         struct file *cons_filp = NULL;
560         struct file *filp, *f = NULL;
561         struct task_struct *p;
562         struct tty_file_private *priv;
563         int    closecount = 0, n;
564         unsigned long flags;
565         int refs = 0;
566
567         if (!tty)
568                 return;
569
570
571         spin_lock(&redirect_lock);
572         if (redirect && file_tty(redirect) == tty) {
573                 f = redirect;
574                 redirect = NULL;
575         }
576         spin_unlock(&redirect_lock);
577
578         tty_lock(tty);
579
580         /* some functions below drop BTM, so we need this bit */
581         set_bit(TTY_HUPPING, &tty->flags);
582
583         /* inuse_filps is protected by the single tty lock,
584            this really needs to change if we want to flush the
585            workqueue with the lock held */
586         check_tty_count(tty, "tty_hangup");
587
588         spin_lock(&tty_files_lock);
589         /* This breaks for file handles being sent over AF_UNIX sockets ? */
590         list_for_each_entry(priv, &tty->tty_files, list) {
591                 filp = priv->file;
592                 if (filp->f_op->write == redirected_tty_write)
593                         cons_filp = filp;
594                 if (filp->f_op->write != tty_write)
595                         continue;
596                 closecount++;
597                 __tty_fasync(-1, filp, 0);      /* can't block */
598                 filp->f_op = &hung_up_tty_fops;
599         }
600         spin_unlock(&tty_files_lock);
601
602         /*
603          * it drops BTM and thus races with reopen
604          * we protect the race by TTY_HUPPING
605          */
606         tty_ldisc_hangup(tty);
607
608         read_lock(&tasklist_lock);
609         if (tty->session) {
610                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
611                         spin_lock_irq(&p->sighand->siglock);
612                         if (p->signal->tty == tty) {
613                                 p->signal->tty = NULL;
614                                 /* We defer the dereferences outside fo
615                                    the tasklist lock */
616                                 refs++;
617                         }
618                         if (!p->signal->leader) {
619                                 spin_unlock_irq(&p->sighand->siglock);
620                                 continue;
621                         }
622                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
623                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
624                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
625                         spin_lock_irqsave(&tty->ctrl_lock, flags);
626                         if (tty->pgrp)
627                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
628                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
629                         spin_unlock_irq(&p->sighand->siglock);
630                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
631         }
632         read_unlock(&tasklist_lock);
633
634         spin_lock_irqsave(&tty->ctrl_lock, flags);
635         clear_bit(TTY_THROTTLED, &tty->flags);
636         clear_bit(TTY_PUSH, &tty->flags);
637         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
638         put_pid(tty->session);
639         put_pid(tty->pgrp);
640         tty->session = NULL;
641         tty->pgrp = NULL;
642         tty->ctrl_status = 0;
643         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
644
645         /* Account for the p->signal references we killed */
646         while (refs--)
647                 tty_kref_put(tty);
648
649         /*
650          * If one of the devices matches a console pointer, we
651          * cannot just call hangup() because that will cause
652          * tty->count and state->count to go out of sync.
653          * So we just call close() the right number of times.
654          */
655         if (cons_filp) {
656                 if (tty->ops->close)
657                         for (n = 0; n < closecount; n++)
658                                 tty->ops->close(tty, cons_filp);
659         } else if (tty->ops->hangup)
660                 (tty->ops->hangup)(tty);
661         /*
662          * We don't want to have driver/ldisc interactions beyond
663          * the ones we did here. The driver layer expects no
664          * calls after ->hangup() from the ldisc side. However we
665          * can't yet guarantee all that.
666          */
667         set_bit(TTY_HUPPED, &tty->flags);
668         clear_bit(TTY_HUPPING, &tty->flags);
669         tty_ldisc_enable(tty);
670
671         tty_unlock(tty);
672
673         if (f)
674                 fput(f);
675 }
676
677 static void do_tty_hangup(struct work_struct *work)
678 {
679         struct tty_struct *tty =
680                 container_of(work, struct tty_struct, hangup_work);
681
682         __tty_hangup(tty);
683 }
684
685 /**
686  *      tty_hangup              -       trigger a hangup event
687  *      @tty: tty to hangup
688  *
689  *      A carrier loss (virtual or otherwise) has occurred on this like
690  *      schedule a hangup sequence to run after this event.
691  */
692
693 void tty_hangup(struct tty_struct *tty)
694 {
695 #ifdef TTY_DEBUG_HANGUP
696         char    buf[64];
697         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
698 #endif
699         schedule_work(&tty->hangup_work);
700 }
701
702 EXPORT_SYMBOL(tty_hangup);
703
704 /**
705  *      tty_vhangup             -       process vhangup
706  *      @tty: tty to hangup
707  *
708  *      The user has asked via system call for the terminal to be hung up.
709  *      We do this synchronously so that when the syscall returns the process
710  *      is complete. That guarantee is necessary for security reasons.
711  */
712
713 void tty_vhangup(struct tty_struct *tty)
714 {
715 #ifdef TTY_DEBUG_HANGUP
716         char    buf[64];
717
718         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
719 #endif
720         __tty_hangup(tty);
721 }
722
723 EXPORT_SYMBOL(tty_vhangup);
724
725
726 /**
727  *      tty_vhangup_self        -       process vhangup for own ctty
728  *
729  *      Perform a vhangup on the current controlling tty
730  */
731
732 void tty_vhangup_self(void)
733 {
734         struct tty_struct *tty;
735
736         tty = get_current_tty();
737         if (tty) {
738                 tty_vhangup(tty);
739                 tty_kref_put(tty);
740         }
741 }
742
743 /**
744  *      tty_hung_up_p           -       was tty hung up
745  *      @filp: file pointer of tty
746  *
747  *      Return true if the tty has been subject to a vhangup or a carrier
748  *      loss
749  */
750
751 int tty_hung_up_p(struct file *filp)
752 {
753         return (filp->f_op == &hung_up_tty_fops);
754 }
755
756 EXPORT_SYMBOL(tty_hung_up_p);
757
758 static void session_clear_tty(struct pid *session)
759 {
760         struct task_struct *p;
761         do_each_pid_task(session, PIDTYPE_SID, p) {
762                 proc_clear_tty(p);
763         } while_each_pid_task(session, PIDTYPE_SID, p);
764 }
765
766 /**
767  *      disassociate_ctty       -       disconnect controlling tty
768  *      @on_exit: true if exiting so need to "hang up" the session
769  *
770  *      This function is typically called only by the session leader, when
771  *      it wants to disassociate itself from its controlling tty.
772  *
773  *      It performs the following functions:
774  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
775  *      (2)  Clears the tty from being controlling the session
776  *      (3)  Clears the controlling tty for all processes in the
777  *              session group.
778  *
779  *      The argument on_exit is set to 1 if called when a process is
780  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
781  *
782  *      Locking:
783  *              BTM is taken for hysterical raisins, and held when
784  *                called from no_tty().
785  *                tty_mutex is taken to protect tty
786  *                ->siglock is taken to protect ->signal/->sighand
787  *                tasklist_lock is taken to walk process list for sessions
788  *                  ->siglock is taken to protect ->signal/->sighand
789  */
790
791 void disassociate_ctty(int on_exit)
792 {
793         struct tty_struct *tty;
794
795         if (!current->signal->leader)
796                 return;
797
798         tty = get_current_tty();
799         if (tty) {
800                 struct pid *tty_pgrp = get_pid(tty->pgrp);
801                 if (on_exit) {
802                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
803                                 tty_vhangup(tty);
804                 }
805                 tty_kref_put(tty);
806                 if (tty_pgrp) {
807                         kill_pgrp(tty_pgrp, SIGHUP, on_exit);
808                         if (!on_exit)
809                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
810                         put_pid(tty_pgrp);
811                 }
812         } else if (on_exit) {
813                 struct pid *old_pgrp;
814                 spin_lock_irq(&current->sighand->siglock);
815                 old_pgrp = current->signal->tty_old_pgrp;
816                 current->signal->tty_old_pgrp = NULL;
817                 spin_unlock_irq(&current->sighand->siglock);
818                 if (old_pgrp) {
819                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
820                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
821                         put_pid(old_pgrp);
822                 }
823                 return;
824         }
825
826         spin_lock_irq(&current->sighand->siglock);
827         put_pid(current->signal->tty_old_pgrp);
828         current->signal->tty_old_pgrp = NULL;
829         spin_unlock_irq(&current->sighand->siglock);
830
831         tty = get_current_tty();
832         if (tty) {
833                 unsigned long flags;
834                 spin_lock_irqsave(&tty->ctrl_lock, flags);
835                 put_pid(tty->session);
836                 put_pid(tty->pgrp);
837                 tty->session = NULL;
838                 tty->pgrp = NULL;
839                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
840                 tty_kref_put(tty);
841         } else {
842 #ifdef TTY_DEBUG_HANGUP
843                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
844                        " = NULL", tty);
845 #endif
846         }
847
848         /* Now clear signal->tty under the lock */
849         read_lock(&tasklist_lock);
850         session_clear_tty(task_session(current));
851         read_unlock(&tasklist_lock);
852 }
853
854 /**
855  *
856  *      no_tty  - Ensure the current process does not have a controlling tty
857  */
858 void no_tty(void)
859 {
860         /* FIXME: Review locking here. The tty_lock never covered any race
861            between a new association and proc_clear_tty but possible we need
862            to protect against this anyway */
863         struct task_struct *tsk = current;
864         disassociate_ctty(0);
865         proc_clear_tty(tsk);
866 }
867
868
869 /**
870  *      stop_tty        -       propagate flow control
871  *      @tty: tty to stop
872  *
873  *      Perform flow control to the driver. For PTY/TTY pairs we
874  *      must also propagate the TIOCKPKT status. May be called
875  *      on an already stopped device and will not re-call the driver
876  *      method.
877  *
878  *      This functionality is used by both the line disciplines for
879  *      halting incoming flow and by the driver. It may therefore be
880  *      called from any context, may be under the tty atomic_write_lock
881  *      but not always.
882  *
883  *      Locking:
884  *              Uses the tty control lock internally
885  */
886
887 void stop_tty(struct tty_struct *tty)
888 {
889         unsigned long flags;
890         spin_lock_irqsave(&tty->ctrl_lock, flags);
891         if (tty->stopped) {
892                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
893                 return;
894         }
895         tty->stopped = 1;
896         if (tty->link && tty->link->packet) {
897                 tty->ctrl_status &= ~TIOCPKT_START;
898                 tty->ctrl_status |= TIOCPKT_STOP;
899                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
900         }
901         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
902         if (tty->ops->stop)
903                 (tty->ops->stop)(tty);
904 }
905
906 EXPORT_SYMBOL(stop_tty);
907
908 /**
909  *      start_tty       -       propagate flow control
910  *      @tty: tty to start
911  *
912  *      Start a tty that has been stopped if at all possible. Perform
913  *      any necessary wakeups and propagate the TIOCPKT status. If this
914  *      is the tty was previous stopped and is being started then the
915  *      driver start method is invoked and the line discipline woken.
916  *
917  *      Locking:
918  *              ctrl_lock
919  */
920
921 void start_tty(struct tty_struct *tty)
922 {
923         unsigned long flags;
924         spin_lock_irqsave(&tty->ctrl_lock, flags);
925         if (!tty->stopped || tty->flow_stopped) {
926                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
927                 return;
928         }
929         tty->stopped = 0;
930         if (tty->link && tty->link->packet) {
931                 tty->ctrl_status &= ~TIOCPKT_STOP;
932                 tty->ctrl_status |= TIOCPKT_START;
933                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
934         }
935         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
936         if (tty->ops->start)
937                 (tty->ops->start)(tty);
938         /* If we have a running line discipline it may need kicking */
939         tty_wakeup(tty);
940 }
941
942 EXPORT_SYMBOL(start_tty);
943
944 static void tty_update_time(struct timespec *time)
945 {
946         unsigned long sec = get_seconds();
947         sec -= sec % 60;
948         if ((long)(sec - time->tv_sec) > 0)
949                 time->tv_sec = sec;
950 }
951
952 /**
953  *      tty_read        -       read method for tty device files
954  *      @file: pointer to tty file
955  *      @buf: user buffer
956  *      @count: size of user buffer
957  *      @ppos: unused
958  *
959  *      Perform the read system call function on this terminal device. Checks
960  *      for hung up devices before calling the line discipline method.
961  *
962  *      Locking:
963  *              Locks the line discipline internally while needed. Multiple
964  *      read calls may be outstanding in parallel.
965  */
966
967 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
968                         loff_t *ppos)
969 {
970         int i;
971         struct inode *inode = file_inode(file);
972         struct tty_struct *tty = file_tty(file);
973         struct tty_ldisc *ld;
974
975         if (tty_paranoia_check(tty, inode, "tty_read"))
976                 return -EIO;
977         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
978                 return -EIO;
979
980         /* We want to wait for the line discipline to sort out in this
981            situation */
982         ld = tty_ldisc_ref_wait(tty);
983         if (ld->ops->read)
984                 i = (ld->ops->read)(tty, file, buf, count);
985         else
986                 i = -EIO;
987         tty_ldisc_deref(ld);
988
989         if (i > 0)
990                 tty_update_time(&inode->i_atime);
991
992         return i;
993 }
994
995 void tty_write_unlock(struct tty_struct *tty)
996         __releases(&tty->atomic_write_lock)
997 {
998         mutex_unlock(&tty->atomic_write_lock);
999         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1000 }
1001
1002 int tty_write_lock(struct tty_struct *tty, int ndelay)
1003         __acquires(&tty->atomic_write_lock)
1004 {
1005         if (!mutex_trylock(&tty->atomic_write_lock)) {
1006                 if (ndelay)
1007                         return -EAGAIN;
1008                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1009                         return -ERESTARTSYS;
1010         }
1011         return 0;
1012 }
1013
1014 /*
1015  * Split writes up in sane blocksizes to avoid
1016  * denial-of-service type attacks
1017  */
1018 static inline ssize_t do_tty_write(
1019         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1020         struct tty_struct *tty,
1021         struct file *file,
1022         const char __user *buf,
1023         size_t count)
1024 {
1025         ssize_t ret, written = 0;
1026         unsigned int chunk;
1027
1028         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1029         if (ret < 0)
1030                 return ret;
1031
1032         /*
1033          * We chunk up writes into a temporary buffer. This
1034          * simplifies low-level drivers immensely, since they
1035          * don't have locking issues and user mode accesses.
1036          *
1037          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1038          * big chunk-size..
1039          *
1040          * The default chunk-size is 2kB, because the NTTY
1041          * layer has problems with bigger chunks. It will
1042          * claim to be able to handle more characters than
1043          * it actually does.
1044          *
1045          * FIXME: This can probably go away now except that 64K chunks
1046          * are too likely to fail unless switched to vmalloc...
1047          */
1048         chunk = 2048;
1049         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1050                 chunk = 65536;
1051         if (count < chunk)
1052                 chunk = count;
1053
1054         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1055         if (tty->write_cnt < chunk) {
1056                 unsigned char *buf_chunk;
1057
1058                 if (chunk < 1024)
1059                         chunk = 1024;
1060
1061                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1062                 if (!buf_chunk) {
1063                         ret = -ENOMEM;
1064                         goto out;
1065                 }
1066                 kfree(tty->write_buf);
1067                 tty->write_cnt = chunk;
1068                 tty->write_buf = buf_chunk;
1069         }
1070
1071         /* Do the write .. */
1072         for (;;) {
1073                 size_t size = count;
1074                 if (size > chunk)
1075                         size = chunk;
1076                 ret = -EFAULT;
1077                 if (copy_from_user(tty->write_buf, buf, size))
1078                         break;
1079                 ret = write(tty, file, tty->write_buf, size);
1080                 if (ret <= 0)
1081                         break;
1082                 written += ret;
1083                 buf += ret;
1084                 count -= ret;
1085                 if (!count)
1086                         break;
1087                 ret = -ERESTARTSYS;
1088                 if (signal_pending(current))
1089                         break;
1090                 cond_resched();
1091         }
1092         if (written) {
1093                 tty_update_time(&file_inode(file)->i_mtime);
1094                 ret = written;
1095         }
1096 out:
1097         tty_write_unlock(tty);
1098         return ret;
1099 }
1100
1101 /**
1102  * tty_write_message - write a message to a certain tty, not just the console.
1103  * @tty: the destination tty_struct
1104  * @msg: the message to write
1105  *
1106  * This is used for messages that need to be redirected to a specific tty.
1107  * We don't put it into the syslog queue right now maybe in the future if
1108  * really needed.
1109  *
1110  * We must still hold the BTM and test the CLOSING flag for the moment.
1111  */
1112
1113 void tty_write_message(struct tty_struct *tty, char *msg)
1114 {
1115         if (tty) {
1116                 mutex_lock(&tty->atomic_write_lock);
1117                 tty_lock(tty);
1118                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1119                         tty_unlock(tty);
1120                         tty->ops->write(tty, msg, strlen(msg));
1121                 } else
1122                         tty_unlock(tty);
1123                 tty_write_unlock(tty);
1124         }
1125         return;
1126 }
1127
1128
1129 /**
1130  *      tty_write               -       write method for tty device file
1131  *      @file: tty file pointer
1132  *      @buf: user data to write
1133  *      @count: bytes to write
1134  *      @ppos: unused
1135  *
1136  *      Write data to a tty device via the line discipline.
1137  *
1138  *      Locking:
1139  *              Locks the line discipline as required
1140  *              Writes to the tty driver are serialized by the atomic_write_lock
1141  *      and are then processed in chunks to the device. The line discipline
1142  *      write method will not be invoked in parallel for each device.
1143  */
1144
1145 static ssize_t tty_write(struct file *file, const char __user *buf,
1146                                                 size_t count, loff_t *ppos)
1147 {
1148         struct tty_struct *tty = file_tty(file);
1149         struct tty_ldisc *ld;
1150         ssize_t ret;
1151
1152         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1153                 return -EIO;
1154         if (!tty || !tty->ops->write ||
1155                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1156                         return -EIO;
1157         /* Short term debug to catch buggy drivers */
1158         if (tty->ops->write_room == NULL)
1159                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1160                         tty->driver->name);
1161         ld = tty_ldisc_ref_wait(tty);
1162         if (!ld->ops->write)
1163                 ret = -EIO;
1164         else
1165                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1166         tty_ldisc_deref(ld);
1167         return ret;
1168 }
1169
1170 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1171                                                 size_t count, loff_t *ppos)
1172 {
1173         struct file *p = NULL;
1174
1175         spin_lock(&redirect_lock);
1176         if (redirect)
1177                 p = get_file(redirect);
1178         spin_unlock(&redirect_lock);
1179
1180         if (p) {
1181                 ssize_t res;
1182                 res = vfs_write(p, buf, count, &p->f_pos);
1183                 fput(p);
1184                 return res;
1185         }
1186         return tty_write(file, buf, count, ppos);
1187 }
1188
1189 static char ptychar[] = "pqrstuvwxyzabcde";
1190
1191 /**
1192  *      pty_line_name   -       generate name for a pty
1193  *      @driver: the tty driver in use
1194  *      @index: the minor number
1195  *      @p: output buffer of at least 6 bytes
1196  *
1197  *      Generate a name from a driver reference and write it to the output
1198  *      buffer.
1199  *
1200  *      Locking: None
1201  */
1202 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1203 {
1204         int i = index + driver->name_base;
1205         /* ->name is initialized to "ttyp", but "tty" is expected */
1206         sprintf(p, "%s%c%x",
1207                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1208                 ptychar[i >> 4 & 0xf], i & 0xf);
1209 }
1210
1211 /**
1212  *      tty_line_name   -       generate name for a tty
1213  *      @driver: the tty driver in use
1214  *      @index: the minor number
1215  *      @p: output buffer of at least 7 bytes
1216  *
1217  *      Generate a name from a driver reference and write it to the output
1218  *      buffer.
1219  *
1220  *      Locking: None
1221  */
1222 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1223 {
1224         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1225                 strcpy(p, driver->name);
1226         else
1227                 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1228 }
1229
1230 /**
1231  *      tty_driver_lookup_tty() - find an existing tty, if any
1232  *      @driver: the driver for the tty
1233  *      @idx:    the minor number
1234  *
1235  *      Return the tty, if found or ERR_PTR() otherwise.
1236  *
1237  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1238  *      be held until the 'fast-open' is also done. Will change once we
1239  *      have refcounting in the driver and per driver locking
1240  */
1241 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1242                 struct inode *inode, int idx)
1243 {
1244         if (driver->ops->lookup)
1245                 return driver->ops->lookup(driver, inode, idx);
1246
1247         return driver->ttys[idx];
1248 }
1249
1250 /**
1251  *      tty_init_termios        -  helper for termios setup
1252  *      @tty: the tty to set up
1253  *
1254  *      Initialise the termios structures for this tty. Thus runs under
1255  *      the tty_mutex currently so we can be relaxed about ordering.
1256  */
1257
1258 int tty_init_termios(struct tty_struct *tty)
1259 {
1260         struct ktermios *tp;
1261         int idx = tty->index;
1262
1263         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1264                 tty->termios = tty->driver->init_termios;
1265         else {
1266                 /* Check for lazy saved data */
1267                 tp = tty->driver->termios[idx];
1268                 if (tp != NULL)
1269                         tty->termios = *tp;
1270                 else
1271                         tty->termios = tty->driver->init_termios;
1272         }
1273         /* Compatibility until drivers always set this */
1274         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1275         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1276         return 0;
1277 }
1278 EXPORT_SYMBOL_GPL(tty_init_termios);
1279
1280 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1281 {
1282         int ret = tty_init_termios(tty);
1283         if (ret)
1284                 return ret;
1285
1286         tty_driver_kref_get(driver);
1287         tty->count++;
1288         driver->ttys[tty->index] = tty;
1289         return 0;
1290 }
1291 EXPORT_SYMBOL_GPL(tty_standard_install);
1292
1293 /**
1294  *      tty_driver_install_tty() - install a tty entry in the driver
1295  *      @driver: the driver for the tty
1296  *      @tty: the tty
1297  *
1298  *      Install a tty object into the driver tables. The tty->index field
1299  *      will be set by the time this is called. This method is responsible
1300  *      for ensuring any need additional structures are allocated and
1301  *      configured.
1302  *
1303  *      Locking: tty_mutex for now
1304  */
1305 static int tty_driver_install_tty(struct tty_driver *driver,
1306                                                 struct tty_struct *tty)
1307 {
1308         return driver->ops->install ? driver->ops->install(driver, tty) :
1309                 tty_standard_install(driver, tty);
1310 }
1311
1312 /**
1313  *      tty_driver_remove_tty() - remove a tty from the driver tables
1314  *      @driver: the driver for the tty
1315  *      @idx:    the minor number
1316  *
1317  *      Remvoe a tty object from the driver tables. The tty->index field
1318  *      will be set by the time this is called.
1319  *
1320  *      Locking: tty_mutex for now
1321  */
1322 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1323 {
1324         if (driver->ops->remove)
1325                 driver->ops->remove(driver, tty);
1326         else
1327                 driver->ttys[tty->index] = NULL;
1328 }
1329
1330 /*
1331  *      tty_reopen()    - fast re-open of an open tty
1332  *      @tty    - the tty to open
1333  *
1334  *      Return 0 on success, -errno on error.
1335  *
1336  *      Locking: tty_mutex must be held from the time the tty was found
1337  *               till this open completes.
1338  */
1339 static int tty_reopen(struct tty_struct *tty)
1340 {
1341         struct tty_driver *driver = tty->driver;
1342
1343         if (test_bit(TTY_CLOSING, &tty->flags) ||
1344                         test_bit(TTY_HUPPING, &tty->flags) ||
1345                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1346                 return -EIO;
1347
1348         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1349             driver->subtype == PTY_TYPE_MASTER) {
1350                 /*
1351                  * special case for PTY masters: only one open permitted,
1352                  * and the slave side open count is incremented as well.
1353                  */
1354                 if (tty->count)
1355                         return -EIO;
1356
1357                 tty->link->count++;
1358         }
1359         tty->count++;
1360
1361         mutex_lock(&tty->ldisc_mutex);
1362         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1363         mutex_unlock(&tty->ldisc_mutex);
1364
1365         return 0;
1366 }
1367
1368 /**
1369  *      tty_init_dev            -       initialise a tty device
1370  *      @driver: tty driver we are opening a device on
1371  *      @idx: device index
1372  *      @ret_tty: returned tty structure
1373  *
1374  *      Prepare a tty device. This may not be a "new" clean device but
1375  *      could also be an active device. The pty drivers require special
1376  *      handling because of this.
1377  *
1378  *      Locking:
1379  *              The function is called under the tty_mutex, which
1380  *      protects us from the tty struct or driver itself going away.
1381  *
1382  *      On exit the tty device has the line discipline attached and
1383  *      a reference count of 1. If a pair was created for pty/tty use
1384  *      and the other was a pty master then it too has a reference count of 1.
1385  *
1386  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1387  * failed open.  The new code protects the open with a mutex, so it's
1388  * really quite straightforward.  The mutex locking can probably be
1389  * relaxed for the (most common) case of reopening a tty.
1390  */
1391
1392 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1393 {
1394         struct tty_struct *tty;
1395         int retval;
1396
1397         /*
1398          * First time open is complex, especially for PTY devices.
1399          * This code guarantees that either everything succeeds and the
1400          * TTY is ready for operation, or else the table slots are vacated
1401          * and the allocated memory released.  (Except that the termios
1402          * and locked termios may be retained.)
1403          */
1404
1405         if (!try_module_get(driver->owner))
1406                 return ERR_PTR(-ENODEV);
1407
1408         tty = alloc_tty_struct();
1409         if (!tty) {
1410                 retval = -ENOMEM;
1411                 goto err_module_put;
1412         }
1413         initialize_tty_struct(tty, driver, idx);
1414
1415         tty_lock(tty);
1416         retval = tty_driver_install_tty(driver, tty);
1417         if (retval < 0)
1418                 goto err_deinit_tty;
1419
1420         if (!tty->port)
1421                 tty->port = driver->ports[idx];
1422
1423         WARN_RATELIMIT(!tty->port,
1424                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1425                         __func__, tty->driver->name);
1426
1427         tty->port->itty = tty;
1428
1429         /*
1430          * Structures all installed ... call the ldisc open routines.
1431          * If we fail here just call release_tty to clean up.  No need
1432          * to decrement the use counts, as release_tty doesn't care.
1433          */
1434         retval = tty_ldisc_setup(tty, tty->link);
1435         if (retval)
1436                 goto err_release_tty;
1437         /* Return the tty locked so that it cannot vanish under the caller */
1438         return tty;
1439
1440 err_deinit_tty:
1441         tty_unlock(tty);
1442         deinitialize_tty_struct(tty);
1443         free_tty_struct(tty);
1444 err_module_put:
1445         module_put(driver->owner);
1446         return ERR_PTR(retval);
1447
1448         /* call the tty release_tty routine to clean out this slot */
1449 err_release_tty:
1450         tty_unlock(tty);
1451         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1452                                  "clearing slot %d\n", idx);
1453         release_tty(tty, idx);
1454         return ERR_PTR(retval);
1455 }
1456
1457 void tty_free_termios(struct tty_struct *tty)
1458 {
1459         struct ktermios *tp;
1460         int idx = tty->index;
1461
1462         /* If the port is going to reset then it has no termios to save */
1463         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1464                 return;
1465
1466         /* Stash the termios data */
1467         tp = tty->driver->termios[idx];
1468         if (tp == NULL) {
1469                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1470                 if (tp == NULL) {
1471                         pr_warn("tty: no memory to save termios state.\n");
1472                         return;
1473                 }
1474                 tty->driver->termios[idx] = tp;
1475         }
1476         *tp = tty->termios;
1477 }
1478 EXPORT_SYMBOL(tty_free_termios);
1479
1480
1481 /**
1482  *      release_one_tty         -       release tty structure memory
1483  *      @kref: kref of tty we are obliterating
1484  *
1485  *      Releases memory associated with a tty structure, and clears out the
1486  *      driver table slots. This function is called when a device is no longer
1487  *      in use. It also gets called when setup of a device fails.
1488  *
1489  *      Locking:
1490  *              takes the file list lock internally when working on the list
1491  *      of ttys that the driver keeps.
1492  *
1493  *      This method gets called from a work queue so that the driver private
1494  *      cleanup ops can sleep (needed for USB at least)
1495  */
1496 static void release_one_tty(struct work_struct *work)
1497 {
1498         struct tty_struct *tty =
1499                 container_of(work, struct tty_struct, hangup_work);
1500         struct tty_driver *driver = tty->driver;
1501
1502         if (tty->ops->cleanup)
1503                 tty->ops->cleanup(tty);
1504
1505         tty->magic = 0;
1506         tty_driver_kref_put(driver);
1507         module_put(driver->owner);
1508
1509         spin_lock(&tty_files_lock);
1510         list_del_init(&tty->tty_files);
1511         spin_unlock(&tty_files_lock);
1512
1513         put_pid(tty->pgrp);
1514         put_pid(tty->session);
1515         free_tty_struct(tty);
1516 }
1517
1518 static void queue_release_one_tty(struct kref *kref)
1519 {
1520         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1521
1522         /* The hangup queue is now free so we can reuse it rather than
1523            waste a chunk of memory for each port */
1524         INIT_WORK(&tty->hangup_work, release_one_tty);
1525         schedule_work(&tty->hangup_work);
1526 }
1527
1528 /**
1529  *      tty_kref_put            -       release a tty kref
1530  *      @tty: tty device
1531  *
1532  *      Release a reference to a tty device and if need be let the kref
1533  *      layer destruct the object for us
1534  */
1535
1536 void tty_kref_put(struct tty_struct *tty)
1537 {
1538         if (tty)
1539                 kref_put(&tty->kref, queue_release_one_tty);
1540 }
1541 EXPORT_SYMBOL(tty_kref_put);
1542
1543 /**
1544  *      release_tty             -       release tty structure memory
1545  *
1546  *      Release both @tty and a possible linked partner (think pty pair),
1547  *      and decrement the refcount of the backing module.
1548  *
1549  *      Locking:
1550  *              tty_mutex
1551  *              takes the file list lock internally when working on the list
1552  *      of ttys that the driver keeps.
1553  *
1554  */
1555 static void release_tty(struct tty_struct *tty, int idx)
1556 {
1557         /* This should always be true but check for the moment */
1558         WARN_ON(tty->index != idx);
1559         WARN_ON(!mutex_is_locked(&tty_mutex));
1560         if (tty->ops->shutdown)
1561                 tty->ops->shutdown(tty);
1562         tty_free_termios(tty);
1563         tty_driver_remove_tty(tty->driver, tty);
1564         tty->port->itty = NULL;
1565
1566         if (tty->link)
1567                 tty_kref_put(tty->link);
1568         tty_kref_put(tty);
1569 }
1570
1571 /**
1572  *      tty_release_checks - check a tty before real release
1573  *      @tty: tty to check
1574  *      @o_tty: link of @tty (if any)
1575  *      @idx: index of the tty
1576  *
1577  *      Performs some paranoid checking before true release of the @tty.
1578  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1579  */
1580 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1581                 int idx)
1582 {
1583 #ifdef TTY_PARANOIA_CHECK
1584         if (idx < 0 || idx >= tty->driver->num) {
1585                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1586                                 __func__, tty->name);
1587                 return -1;
1588         }
1589
1590         /* not much to check for devpts */
1591         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1592                 return 0;
1593
1594         if (tty != tty->driver->ttys[idx]) {
1595                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1596                                 __func__, idx, tty->name);
1597                 return -1;
1598         }
1599         if (tty->driver->other) {
1600                 if (o_tty != tty->driver->other->ttys[idx]) {
1601                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1602                                         __func__, idx, tty->name);
1603                         return -1;
1604                 }
1605                 if (o_tty->link != tty) {
1606                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1607                         return -1;
1608                 }
1609         }
1610 #endif
1611         return 0;
1612 }
1613
1614 /**
1615  *      tty_release             -       vfs callback for close
1616  *      @inode: inode of tty
1617  *      @filp: file pointer for handle to tty
1618  *
1619  *      Called the last time each file handle is closed that references
1620  *      this tty. There may however be several such references.
1621  *
1622  *      Locking:
1623  *              Takes bkl. See tty_release_dev
1624  *
1625  * Even releasing the tty structures is a tricky business.. We have
1626  * to be very careful that the structures are all released at the
1627  * same time, as interrupts might otherwise get the wrong pointers.
1628  *
1629  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1630  * lead to double frees or releasing memory still in use.
1631  */
1632
1633 int tty_release(struct inode *inode, struct file *filp)
1634 {
1635         struct tty_struct *tty = file_tty(filp);
1636         struct tty_struct *o_tty;
1637         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1638         int     idx;
1639         char    buf[64];
1640
1641         if (tty_paranoia_check(tty, inode, __func__))
1642                 return 0;
1643
1644         tty_lock(tty);
1645         check_tty_count(tty, __func__);
1646
1647         __tty_fasync(-1, filp, 0);
1648
1649         idx = tty->index;
1650         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1651                       tty->driver->subtype == PTY_TYPE_MASTER);
1652         /* Review: parallel close */
1653         o_tty = tty->link;
1654
1655         if (tty_release_checks(tty, o_tty, idx)) {
1656                 tty_unlock(tty);
1657                 return 0;
1658         }
1659
1660 #ifdef TTY_DEBUG_HANGUP
1661         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1662                         tty_name(tty, buf), tty->count);
1663 #endif
1664
1665         if (tty->ops->close)
1666                 tty->ops->close(tty, filp);
1667
1668         tty_unlock(tty);
1669         /*
1670          * Sanity check: if tty->count is going to zero, there shouldn't be
1671          * any waiters on tty->read_wait or tty->write_wait.  We test the
1672          * wait queues and kick everyone out _before_ actually starting to
1673          * close.  This ensures that we won't block while releasing the tty
1674          * structure.
1675          *
1676          * The test for the o_tty closing is necessary, since the master and
1677          * slave sides may close in any order.  If the slave side closes out
1678          * first, its count will be one, since the master side holds an open.
1679          * Thus this test wouldn't be triggered at the time the slave closes,
1680          * so we do it now.
1681          *
1682          * Note that it's possible for the tty to be opened again while we're
1683          * flushing out waiters.  By recalculating the closing flags before
1684          * each iteration we avoid any problems.
1685          */
1686         while (1) {
1687                 /* Guard against races with tty->count changes elsewhere and
1688                    opens on /dev/tty */
1689
1690                 mutex_lock(&tty_mutex);
1691                 tty_lock_pair(tty, o_tty);
1692                 tty_closing = tty->count <= 1;
1693                 o_tty_closing = o_tty &&
1694                         (o_tty->count <= (pty_master ? 1 : 0));
1695                 do_sleep = 0;
1696
1697                 if (tty_closing) {
1698                         if (waitqueue_active(&tty->read_wait)) {
1699                                 wake_up_poll(&tty->read_wait, POLLIN);
1700                                 do_sleep++;
1701                         }
1702                         if (waitqueue_active(&tty->write_wait)) {
1703                                 wake_up_poll(&tty->write_wait, POLLOUT);
1704                                 do_sleep++;
1705                         }
1706                 }
1707                 if (o_tty_closing) {
1708                         if (waitqueue_active(&o_tty->read_wait)) {
1709                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1710                                 do_sleep++;
1711                         }
1712                         if (waitqueue_active(&o_tty->write_wait)) {
1713                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1714                                 do_sleep++;
1715                         }
1716                 }
1717                 if (!do_sleep)
1718                         break;
1719
1720                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1721                                 __func__, tty_name(tty, buf));
1722                 tty_unlock_pair(tty, o_tty);
1723                 mutex_unlock(&tty_mutex);
1724                 schedule();
1725         }
1726
1727         /*
1728          * The closing flags are now consistent with the open counts on
1729          * both sides, and we've completed the last operation that could
1730          * block, so it's safe to proceed with closing.
1731          *
1732          * We must *not* drop the tty_mutex until we ensure that a further
1733          * entry into tty_open can not pick up this tty.
1734          */
1735         if (pty_master) {
1736                 if (--o_tty->count < 0) {
1737                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1738                                 __func__, o_tty->count, tty_name(o_tty, buf));
1739                         o_tty->count = 0;
1740                 }
1741         }
1742         if (--tty->count < 0) {
1743                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1744                                 __func__, tty->count, tty_name(tty, buf));
1745                 tty->count = 0;
1746         }
1747
1748         /*
1749          * We've decremented tty->count, so we need to remove this file
1750          * descriptor off the tty->tty_files list; this serves two
1751          * purposes:
1752          *  - check_tty_count sees the correct number of file descriptors
1753          *    associated with this tty.
1754          *  - do_tty_hangup no longer sees this file descriptor as
1755          *    something that needs to be handled for hangups.
1756          */
1757         tty_del_file(filp);
1758
1759         /*
1760          * Perform some housekeeping before deciding whether to return.
1761          *
1762          * Set the TTY_CLOSING flag if this was the last open.  In the
1763          * case of a pty we may have to wait around for the other side
1764          * to close, and TTY_CLOSING makes sure we can't be reopened.
1765          */
1766         if (tty_closing)
1767                 set_bit(TTY_CLOSING, &tty->flags);
1768         if (o_tty_closing)
1769                 set_bit(TTY_CLOSING, &o_tty->flags);
1770
1771         /*
1772          * If _either_ side is closing, make sure there aren't any
1773          * processes that still think tty or o_tty is their controlling
1774          * tty.
1775          */
1776         if (tty_closing || o_tty_closing) {
1777                 read_lock(&tasklist_lock);
1778                 session_clear_tty(tty->session);
1779                 if (o_tty)
1780                         session_clear_tty(o_tty->session);
1781                 read_unlock(&tasklist_lock);
1782         }
1783
1784         mutex_unlock(&tty_mutex);
1785         tty_unlock_pair(tty, o_tty);
1786         /* At this point the TTY_CLOSING flag should ensure a dead tty
1787            cannot be re-opened by a racing opener */
1788
1789         /* check whether both sides are closing ... */
1790         if (!tty_closing || (o_tty && !o_tty_closing))
1791                 return 0;
1792
1793 #ifdef TTY_DEBUG_HANGUP
1794         printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1795 #endif
1796         /*
1797          * Ask the line discipline code to release its structures
1798          */
1799         tty_ldisc_release(tty, o_tty);
1800         /*
1801          * The release_tty function takes care of the details of clearing
1802          * the slots and preserving the termios structure. The tty_unlock_pair
1803          * should be safe as we keep a kref while the tty is locked (so the
1804          * unlock never unlocks a freed tty).
1805          */
1806         mutex_lock(&tty_mutex);
1807         release_tty(tty, idx);
1808         mutex_unlock(&tty_mutex);
1809
1810         return 0;
1811 }
1812
1813 /**
1814  *      tty_open_current_tty - get tty of current task for open
1815  *      @device: device number
1816  *      @filp: file pointer to tty
1817  *      @return: tty of the current task iff @device is /dev/tty
1818  *
1819  *      We cannot return driver and index like for the other nodes because
1820  *      devpts will not work then. It expects inodes to be from devpts FS.
1821  *
1822  *      We need to move to returning a refcounted object from all the lookup
1823  *      paths including this one.
1824  */
1825 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1826 {
1827         struct tty_struct *tty;
1828
1829         if (device != MKDEV(TTYAUX_MAJOR, 0))
1830                 return NULL;
1831
1832         tty = get_current_tty();
1833         if (!tty)
1834                 return ERR_PTR(-ENXIO);
1835
1836         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1837         /* noctty = 1; */
1838         tty_kref_put(tty);
1839         /* FIXME: we put a reference and return a TTY! */
1840         /* This is only safe because the caller holds tty_mutex */
1841         return tty;
1842 }
1843
1844 /**
1845  *      tty_lookup_driver - lookup a tty driver for a given device file
1846  *      @device: device number
1847  *      @filp: file pointer to tty
1848  *      @noctty: set if the device should not become a controlling tty
1849  *      @index: index for the device in the @return driver
1850  *      @return: driver for this inode (with increased refcount)
1851  *
1852  *      If @return is not erroneous, the caller is responsible to decrement the
1853  *      refcount by tty_driver_kref_put.
1854  *
1855  *      Locking: tty_mutex protects get_tty_driver
1856  */
1857 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1858                 int *noctty, int *index)
1859 {
1860         struct tty_driver *driver;
1861
1862         switch (device) {
1863 #ifdef CONFIG_VT
1864         case MKDEV(TTY_MAJOR, 0): {
1865                 extern struct tty_driver *console_driver;
1866                 driver = tty_driver_kref_get(console_driver);
1867                 *index = fg_console;
1868                 *noctty = 1;
1869                 break;
1870         }
1871 #endif
1872         case MKDEV(TTYAUX_MAJOR, 1): {
1873                 struct tty_driver *console_driver = console_device(index);
1874                 if (console_driver) {
1875                         driver = tty_driver_kref_get(console_driver);
1876                         if (driver) {
1877                                 /* Don't let /dev/console block */
1878                                 filp->f_flags |= O_NONBLOCK;
1879                                 *noctty = 1;
1880                                 break;
1881                         }
1882                 }
1883                 return ERR_PTR(-ENODEV);
1884         }
1885         default:
1886                 driver = get_tty_driver(device, index);
1887                 if (!driver)
1888                         return ERR_PTR(-ENODEV);
1889                 break;
1890         }
1891         return driver;
1892 }
1893
1894 /**
1895  *      tty_open                -       open a tty device
1896  *      @inode: inode of device file
1897  *      @filp: file pointer to tty
1898  *
1899  *      tty_open and tty_release keep up the tty count that contains the
1900  *      number of opens done on a tty. We cannot use the inode-count, as
1901  *      different inodes might point to the same tty.
1902  *
1903  *      Open-counting is needed for pty masters, as well as for keeping
1904  *      track of serial lines: DTR is dropped when the last close happens.
1905  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1906  *
1907  *      The termios state of a pty is reset on first open so that
1908  *      settings don't persist across reuse.
1909  *
1910  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1911  *               tty->count should protect the rest.
1912  *               ->siglock protects ->signal/->sighand
1913  *
1914  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1915  *      tty_mutex
1916  */
1917
1918 static int tty_open(struct inode *inode, struct file *filp)
1919 {
1920         struct tty_struct *tty;
1921         int noctty, retval;
1922         struct tty_driver *driver = NULL;
1923         int index;
1924         dev_t device = inode->i_rdev;
1925         unsigned saved_flags = filp->f_flags;
1926
1927         nonseekable_open(inode, filp);
1928
1929 retry_open:
1930         retval = tty_alloc_file(filp);
1931         if (retval)
1932                 return -ENOMEM;
1933
1934         noctty = filp->f_flags & O_NOCTTY;
1935         index  = -1;
1936         retval = 0;
1937
1938         mutex_lock(&tty_mutex);
1939         /* This is protected by the tty_mutex */
1940         tty = tty_open_current_tty(device, filp);
1941         if (IS_ERR(tty)) {
1942                 retval = PTR_ERR(tty);
1943                 goto err_unlock;
1944         } else if (!tty) {
1945                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1946                 if (IS_ERR(driver)) {
1947                         retval = PTR_ERR(driver);
1948                         goto err_unlock;
1949                 }
1950
1951                 /* check whether we're reopening an existing tty */
1952                 tty = tty_driver_lookup_tty(driver, inode, index);
1953                 if (IS_ERR(tty)) {
1954                         retval = PTR_ERR(tty);
1955                         goto err_unlock;
1956                 }
1957         }
1958
1959         if (tty) {
1960                 tty_lock(tty);
1961                 retval = tty_reopen(tty);
1962                 if (retval < 0) {
1963                         tty_unlock(tty);
1964                         tty = ERR_PTR(retval);
1965                 }
1966         } else  /* Returns with the tty_lock held for now */
1967                 tty = tty_init_dev(driver, index);
1968
1969         mutex_unlock(&tty_mutex);
1970         if (driver)
1971                 tty_driver_kref_put(driver);
1972         if (IS_ERR(tty)) {
1973                 retval = PTR_ERR(tty);
1974                 goto err_file;
1975         }
1976
1977         tty_add_file(tty, filp);
1978
1979         check_tty_count(tty, __func__);
1980         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1981             tty->driver->subtype == PTY_TYPE_MASTER)
1982                 noctty = 1;
1983 #ifdef TTY_DEBUG_HANGUP
1984         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1985 #endif
1986         if (tty->ops->open)
1987                 retval = tty->ops->open(tty, filp);
1988         else
1989                 retval = -ENODEV;
1990         filp->f_flags = saved_flags;
1991
1992         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1993                                                 !capable(CAP_SYS_ADMIN))
1994                 retval = -EBUSY;
1995
1996         if (retval) {
1997 #ifdef TTY_DEBUG_HANGUP
1998                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1999                                 retval, tty->name);
2000 #endif
2001                 tty_unlock(tty); /* need to call tty_release without BTM */
2002                 tty_release(inode, filp);
2003                 if (retval != -ERESTARTSYS)
2004                         return retval;
2005
2006                 if (signal_pending(current))
2007                         return retval;
2008
2009                 schedule();
2010                 /*
2011                  * Need to reset f_op in case a hangup happened.
2012                  */
2013                 if (filp->f_op == &hung_up_tty_fops)
2014                         filp->f_op = &tty_fops;
2015                 goto retry_open;
2016         }
2017         tty_unlock(tty);
2018
2019
2020         mutex_lock(&tty_mutex);
2021         tty_lock(tty);
2022         spin_lock_irq(&current->sighand->siglock);
2023         if (!noctty &&
2024             current->signal->leader &&
2025             !current->signal->tty &&
2026             tty->session == NULL)
2027                 __proc_set_tty(current, tty);
2028         spin_unlock_irq(&current->sighand->siglock);
2029         tty_unlock(tty);
2030         mutex_unlock(&tty_mutex);
2031         return 0;
2032 err_unlock:
2033         mutex_unlock(&tty_mutex);
2034         /* after locks to avoid deadlock */
2035         if (!IS_ERR_OR_NULL(driver))
2036                 tty_driver_kref_put(driver);
2037 err_file:
2038         tty_free_file(filp);
2039         return retval;
2040 }
2041
2042
2043
2044 /**
2045  *      tty_poll        -       check tty status
2046  *      @filp: file being polled
2047  *      @wait: poll wait structures to update
2048  *
2049  *      Call the line discipline polling method to obtain the poll
2050  *      status of the device.
2051  *
2052  *      Locking: locks called line discipline but ldisc poll method
2053  *      may be re-entered freely by other callers.
2054  */
2055
2056 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2057 {
2058         struct tty_struct *tty = file_tty(filp);
2059         struct tty_ldisc *ld;
2060         int ret = 0;
2061
2062         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2063                 return 0;
2064
2065         ld = tty_ldisc_ref_wait(tty);
2066         if (ld->ops->poll)
2067                 ret = (ld->ops->poll)(tty, filp, wait);
2068         tty_ldisc_deref(ld);
2069         return ret;
2070 }
2071
2072 static int __tty_fasync(int fd, struct file *filp, int on)
2073 {
2074         struct tty_struct *tty = file_tty(filp);
2075         unsigned long flags;
2076         int retval = 0;
2077
2078         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2079                 goto out;
2080
2081         retval = fasync_helper(fd, filp, on, &tty->fasync);
2082         if (retval <= 0)
2083                 goto out;
2084
2085         if (on) {
2086                 enum pid_type type;
2087                 struct pid *pid;
2088                 if (!waitqueue_active(&tty->read_wait))
2089                         tty->minimum_to_wake = 1;
2090                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2091                 if (tty->pgrp) {
2092                         pid = tty->pgrp;
2093                         type = PIDTYPE_PGID;
2094                 } else {
2095                         pid = task_pid(current);
2096                         type = PIDTYPE_PID;
2097                 }
2098                 get_pid(pid);
2099                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2100                 retval = __f_setown(filp, pid, type, 0);
2101                 put_pid(pid);
2102                 if (retval)
2103                         goto out;
2104         } else {
2105                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2106                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2107         }
2108         retval = 0;
2109 out:
2110         return retval;
2111 }
2112
2113 static int tty_fasync(int fd, struct file *filp, int on)
2114 {
2115         struct tty_struct *tty = file_tty(filp);
2116         int retval;
2117
2118         tty_lock(tty);
2119         retval = __tty_fasync(fd, filp, on);
2120         tty_unlock(tty);
2121
2122         return retval;
2123 }
2124
2125 /**
2126  *      tiocsti                 -       fake input character
2127  *      @tty: tty to fake input into
2128  *      @p: pointer to character
2129  *
2130  *      Fake input to a tty device. Does the necessary locking and
2131  *      input management.
2132  *
2133  *      FIXME: does not honour flow control ??
2134  *
2135  *      Locking:
2136  *              Called functions take tty_ldisc_lock
2137  *              current->signal->tty check is safe without locks
2138  *
2139  *      FIXME: may race normal receive processing
2140  */
2141
2142 static int tiocsti(struct tty_struct *tty, char __user *p)
2143 {
2144         char ch, mbz = 0;
2145         struct tty_ldisc *ld;
2146
2147         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2148                 return -EPERM;
2149         if (get_user(ch, p))
2150                 return -EFAULT;
2151         tty_audit_tiocsti(tty, ch);
2152         ld = tty_ldisc_ref_wait(tty);
2153         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2154         tty_ldisc_deref(ld);
2155         return 0;
2156 }
2157
2158 /**
2159  *      tiocgwinsz              -       implement window query ioctl
2160  *      @tty; tty
2161  *      @arg: user buffer for result
2162  *
2163  *      Copies the kernel idea of the window size into the user buffer.
2164  *
2165  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2166  *              is consistent.
2167  */
2168
2169 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2170 {
2171         int err;
2172
2173         mutex_lock(&tty->termios_mutex);
2174         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2175         mutex_unlock(&tty->termios_mutex);
2176
2177         return err ? -EFAULT: 0;
2178 }
2179
2180 /**
2181  *      tty_do_resize           -       resize event
2182  *      @tty: tty being resized
2183  *      @rows: rows (character)
2184  *      @cols: cols (character)
2185  *
2186  *      Update the termios variables and send the necessary signals to
2187  *      peform a terminal resize correctly
2188  */
2189
2190 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2191 {
2192         struct pid *pgrp;
2193         unsigned long flags;
2194
2195         /* Lock the tty */
2196         mutex_lock(&tty->termios_mutex);
2197         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2198                 goto done;
2199         /* Get the PID values and reference them so we can
2200            avoid holding the tty ctrl lock while sending signals */
2201         spin_lock_irqsave(&tty->ctrl_lock, flags);
2202         pgrp = get_pid(tty->pgrp);
2203         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2204
2205         if (pgrp)
2206                 kill_pgrp(pgrp, SIGWINCH, 1);
2207         put_pid(pgrp);
2208
2209         tty->winsize = *ws;
2210 done:
2211         mutex_unlock(&tty->termios_mutex);
2212         return 0;
2213 }
2214 EXPORT_SYMBOL(tty_do_resize);
2215
2216 /**
2217  *      tiocswinsz              -       implement window size set ioctl
2218  *      @tty; tty side of tty
2219  *      @arg: user buffer for result
2220  *
2221  *      Copies the user idea of the window size to the kernel. Traditionally
2222  *      this is just advisory information but for the Linux console it
2223  *      actually has driver level meaning and triggers a VC resize.
2224  *
2225  *      Locking:
2226  *              Driver dependent. The default do_resize method takes the
2227  *      tty termios mutex and ctrl_lock. The console takes its own lock
2228  *      then calls into the default method.
2229  */
2230
2231 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2232 {
2233         struct winsize tmp_ws;
2234         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2235                 return -EFAULT;
2236
2237         if (tty->ops->resize)
2238                 return tty->ops->resize(tty, &tmp_ws);
2239         else
2240                 return tty_do_resize(tty, &tmp_ws);
2241 }
2242
2243 /**
2244  *      tioccons        -       allow admin to move logical console
2245  *      @file: the file to become console
2246  *
2247  *      Allow the administrator to move the redirected console device
2248  *
2249  *      Locking: uses redirect_lock to guard the redirect information
2250  */
2251
2252 static int tioccons(struct file *file)
2253 {
2254         if (!capable(CAP_SYS_ADMIN))
2255                 return -EPERM;
2256         if (file->f_op->write == redirected_tty_write) {
2257                 struct file *f;
2258                 spin_lock(&redirect_lock);
2259                 f = redirect;
2260                 redirect = NULL;
2261                 spin_unlock(&redirect_lock);
2262                 if (f)
2263                         fput(f);
2264                 return 0;
2265         }
2266         spin_lock(&redirect_lock);
2267         if (redirect) {
2268                 spin_unlock(&redirect_lock);
2269                 return -EBUSY;
2270         }
2271         redirect = get_file(file);
2272         spin_unlock(&redirect_lock);
2273         return 0;
2274 }
2275
2276 /**
2277  *      fionbio         -       non blocking ioctl
2278  *      @file: file to set blocking value
2279  *      @p: user parameter
2280  *
2281  *      Historical tty interfaces had a blocking control ioctl before
2282  *      the generic functionality existed. This piece of history is preserved
2283  *      in the expected tty API of posix OS's.
2284  *
2285  *      Locking: none, the open file handle ensures it won't go away.
2286  */
2287
2288 static int fionbio(struct file *file, int __user *p)
2289 {
2290         int nonblock;
2291
2292         if (get_user(nonblock, p))
2293                 return -EFAULT;
2294
2295         spin_lock(&file->f_lock);
2296         if (nonblock)
2297                 file->f_flags |= O_NONBLOCK;
2298         else
2299                 file->f_flags &= ~O_NONBLOCK;
2300         spin_unlock(&file->f_lock);
2301         return 0;
2302 }
2303
2304 /**
2305  *      tiocsctty       -       set controlling tty
2306  *      @tty: tty structure
2307  *      @arg: user argument
2308  *
2309  *      This ioctl is used to manage job control. It permits a session
2310  *      leader to set this tty as the controlling tty for the session.
2311  *
2312  *      Locking:
2313  *              Takes tty_mutex() to protect tty instance
2314  *              Takes tasklist_lock internally to walk sessions
2315  *              Takes ->siglock() when updating signal->tty
2316  */
2317
2318 static int tiocsctty(struct tty_struct *tty, int arg)
2319 {
2320         int ret = 0;
2321         if (current->signal->leader && (task_session(current) == tty->session))
2322                 return ret;
2323
2324         mutex_lock(&tty_mutex);
2325         /*
2326          * The process must be a session leader and
2327          * not have a controlling tty already.
2328          */
2329         if (!current->signal->leader || current->signal->tty) {
2330                 ret = -EPERM;
2331                 goto unlock;
2332         }
2333
2334         if (tty->session) {
2335                 /*
2336                  * This tty is already the controlling
2337                  * tty for another session group!
2338                  */
2339                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2340                         /*
2341                          * Steal it away
2342                          */
2343                         read_lock(&tasklist_lock);
2344                         session_clear_tty(tty->session);
2345                         read_unlock(&tasklist_lock);
2346                 } else {
2347                         ret = -EPERM;
2348                         goto unlock;
2349                 }
2350         }
2351         proc_set_tty(current, tty);
2352 unlock:
2353         mutex_unlock(&tty_mutex);
2354         return ret;
2355 }
2356
2357 /**
2358  *      tty_get_pgrp    -       return a ref counted pgrp pid
2359  *      @tty: tty to read
2360  *
2361  *      Returns a refcounted instance of the pid struct for the process
2362  *      group controlling the tty.
2363  */
2364
2365 struct pid *tty_get_pgrp(struct tty_struct *tty)
2366 {
2367         unsigned long flags;
2368         struct pid *pgrp;
2369
2370         spin_lock_irqsave(&tty->ctrl_lock, flags);
2371         pgrp = get_pid(tty->pgrp);
2372         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2373
2374         return pgrp;
2375 }
2376 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2377
2378 /**
2379  *      tiocgpgrp               -       get process group
2380  *      @tty: tty passed by user
2381  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2382  *      @p: returned pid
2383  *
2384  *      Obtain the process group of the tty. If there is no process group
2385  *      return an error.
2386  *
2387  *      Locking: none. Reference to current->signal->tty is safe.
2388  */
2389
2390 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2391 {
2392         struct pid *pid;
2393         int ret;
2394         /*
2395          * (tty == real_tty) is a cheap way of
2396          * testing if the tty is NOT a master pty.
2397          */
2398         if (tty == real_tty && current->signal->tty != real_tty)
2399                 return -ENOTTY;
2400         pid = tty_get_pgrp(real_tty);
2401         ret =  put_user(pid_vnr(pid), p);
2402         put_pid(pid);
2403         return ret;
2404 }
2405
2406 /**
2407  *      tiocspgrp               -       attempt to set process group
2408  *      @tty: tty passed by user
2409  *      @real_tty: tty side device matching tty passed by user
2410  *      @p: pid pointer
2411  *
2412  *      Set the process group of the tty to the session passed. Only
2413  *      permitted where the tty session is our session.
2414  *
2415  *      Locking: RCU, ctrl lock
2416  */
2417
2418 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2419 {
2420         struct pid *pgrp;
2421         pid_t pgrp_nr;
2422         int retval = tty_check_change(real_tty);
2423         unsigned long flags;
2424
2425         if (retval == -EIO)
2426                 return -ENOTTY;
2427         if (retval)
2428                 return retval;
2429         if (!current->signal->tty ||
2430             (current->signal->tty != real_tty) ||
2431             (real_tty->session != task_session(current)))
2432                 return -ENOTTY;
2433         if (get_user(pgrp_nr, p))
2434                 return -EFAULT;
2435         if (pgrp_nr < 0)
2436                 return -EINVAL;
2437         rcu_read_lock();
2438         pgrp = find_vpid(pgrp_nr);
2439         retval = -ESRCH;
2440         if (!pgrp)
2441                 goto out_unlock;
2442         retval = -EPERM;
2443         if (session_of_pgrp(pgrp) != task_session(current))
2444                 goto out_unlock;
2445         retval = 0;
2446         spin_lock_irqsave(&tty->ctrl_lock, flags);
2447         put_pid(real_tty->pgrp);
2448         real_tty->pgrp = get_pid(pgrp);
2449         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2450 out_unlock:
2451         rcu_read_unlock();
2452         return retval;
2453 }
2454
2455 /**
2456  *      tiocgsid                -       get session id
2457  *      @tty: tty passed by user
2458  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2459  *      @p: pointer to returned session id
2460  *
2461  *      Obtain the session id of the tty. If there is no session
2462  *      return an error.
2463  *
2464  *      Locking: none. Reference to current->signal->tty is safe.
2465  */
2466
2467 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2468 {
2469         /*
2470          * (tty == real_tty) is a cheap way of
2471          * testing if the tty is NOT a master pty.
2472         */
2473         if (tty == real_tty && current->signal->tty != real_tty)
2474                 return -ENOTTY;
2475         if (!real_tty->session)
2476                 return -ENOTTY;
2477         return put_user(pid_vnr(real_tty->session), p);
2478 }
2479
2480 /**
2481  *      tiocsetd        -       set line discipline
2482  *      @tty: tty device
2483  *      @p: pointer to user data
2484  *
2485  *      Set the line discipline according to user request.
2486  *
2487  *      Locking: see tty_set_ldisc, this function is just a helper
2488  */
2489
2490 static int tiocsetd(struct tty_struct *tty, int __user *p)
2491 {
2492         int ldisc;
2493         int ret;
2494
2495         if (get_user(ldisc, p))
2496                 return -EFAULT;
2497
2498         ret = tty_set_ldisc(tty, ldisc);
2499
2500         return ret;
2501 }
2502
2503 /**
2504  *      send_break      -       performed time break
2505  *      @tty: device to break on
2506  *      @duration: timeout in mS
2507  *
2508  *      Perform a timed break on hardware that lacks its own driver level
2509  *      timed break functionality.
2510  *
2511  *      Locking:
2512  *              atomic_write_lock serializes
2513  *
2514  */
2515
2516 static int send_break(struct tty_struct *tty, unsigned int duration)
2517 {
2518         int retval;
2519
2520         if (tty->ops->break_ctl == NULL)
2521                 return 0;
2522
2523         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2524                 retval = tty->ops->break_ctl(tty, duration);
2525         else {
2526                 /* Do the work ourselves */
2527                 if (tty_write_lock(tty, 0) < 0)
2528                         return -EINTR;
2529                 retval = tty->ops->break_ctl(tty, -1);
2530                 if (retval)
2531                         goto out;
2532                 if (!signal_pending(current))
2533                         msleep_interruptible(duration);
2534                 retval = tty->ops->break_ctl(tty, 0);
2535 out:
2536                 tty_write_unlock(tty);
2537                 if (signal_pending(current))
2538                         retval = -EINTR;
2539         }
2540         return retval;
2541 }
2542
2543 /**
2544  *      tty_tiocmget            -       get modem status
2545  *      @tty: tty device
2546  *      @file: user file pointer
2547  *      @p: pointer to result
2548  *
2549  *      Obtain the modem status bits from the tty driver if the feature
2550  *      is supported. Return -EINVAL if it is not available.
2551  *
2552  *      Locking: none (up to the driver)
2553  */
2554
2555 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2556 {
2557         int retval = -EINVAL;
2558
2559         if (tty->ops->tiocmget) {
2560                 retval = tty->ops->tiocmget(tty);
2561
2562                 if (retval >= 0)
2563                         retval = put_user(retval, p);
2564         }
2565         return retval;
2566 }
2567
2568 /**
2569  *      tty_tiocmset            -       set modem status
2570  *      @tty: tty device
2571  *      @cmd: command - clear bits, set bits or set all
2572  *      @p: pointer to desired bits
2573  *
2574  *      Set the modem status bits from the tty driver if the feature
2575  *      is supported. Return -EINVAL if it is not available.
2576  *
2577  *      Locking: none (up to the driver)
2578  */
2579
2580 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2581              unsigned __user *p)
2582 {
2583         int retval;
2584         unsigned int set, clear, val;
2585
2586         if (tty->ops->tiocmset == NULL)
2587                 return -EINVAL;
2588
2589         retval = get_user(val, p);
2590         if (retval)
2591                 return retval;
2592         set = clear = 0;
2593         switch (cmd) {
2594         case TIOCMBIS:
2595                 set = val;
2596                 break;
2597         case TIOCMBIC:
2598                 clear = val;
2599                 break;
2600         case TIOCMSET:
2601                 set = val;
2602                 clear = ~val;
2603                 break;
2604         }
2605         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2606         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2607         return tty->ops->tiocmset(tty, set, clear);
2608 }
2609
2610 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2611 {
2612         int retval = -EINVAL;
2613         struct serial_icounter_struct icount;
2614         memset(&icount, 0, sizeof(icount));
2615         if (tty->ops->get_icount)
2616                 retval = tty->ops->get_icount(tty, &icount);
2617         if (retval != 0)
2618                 return retval;
2619         if (copy_to_user(arg, &icount, sizeof(icount)))
2620                 return -EFAULT;
2621         return 0;
2622 }
2623
2624 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2625 {
2626         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2627             tty->driver->subtype == PTY_TYPE_MASTER)
2628                 tty = tty->link;
2629         return tty;
2630 }
2631 EXPORT_SYMBOL(tty_pair_get_tty);
2632
2633 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2634 {
2635         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2636             tty->driver->subtype == PTY_TYPE_MASTER)
2637             return tty;
2638         return tty->link;
2639 }
2640 EXPORT_SYMBOL(tty_pair_get_pty);
2641
2642 /*
2643  * Split this up, as gcc can choke on it otherwise..
2644  */
2645 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2646 {
2647         struct tty_struct *tty = file_tty(file);
2648         struct tty_struct *real_tty;
2649         void __user *p = (void __user *)arg;
2650         int retval;
2651         struct tty_ldisc *ld;
2652
2653         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2654                 return -EINVAL;
2655
2656         real_tty = tty_pair_get_tty(tty);
2657
2658         /*
2659          * Factor out some common prep work
2660          */
2661         switch (cmd) {
2662         case TIOCSETD:
2663         case TIOCSBRK:
2664         case TIOCCBRK:
2665         case TCSBRK:
2666         case TCSBRKP:
2667                 retval = tty_check_change(tty);
2668                 if (retval)
2669                         return retval;
2670                 if (cmd != TIOCCBRK) {
2671                         tty_wait_until_sent(tty, 0);
2672                         if (signal_pending(current))
2673                                 return -EINTR;
2674                 }
2675                 break;
2676         }
2677
2678         /*
2679          *      Now do the stuff.
2680          */
2681         switch (cmd) {
2682         case TIOCSTI:
2683                 return tiocsti(tty, p);
2684         case TIOCGWINSZ:
2685                 return tiocgwinsz(real_tty, p);
2686         case TIOCSWINSZ:
2687                 return tiocswinsz(real_tty, p);
2688         case TIOCCONS:
2689                 return real_tty != tty ? -EINVAL : tioccons(file);
2690         case FIONBIO:
2691                 return fionbio(file, p);
2692         case TIOCEXCL:
2693                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2694                 return 0;
2695         case TIOCNXCL:
2696                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2697                 return 0;
2698         case TIOCGEXCL:
2699         {
2700                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2701                 return put_user(excl, (int __user *)p);
2702         }
2703         case TIOCNOTTY:
2704                 if (current->signal->tty != tty)
2705                         return -ENOTTY;
2706                 no_tty();
2707                 return 0;
2708         case TIOCSCTTY:
2709                 return tiocsctty(tty, arg);
2710         case TIOCGPGRP:
2711                 return tiocgpgrp(tty, real_tty, p);
2712         case TIOCSPGRP:
2713                 return tiocspgrp(tty, real_tty, p);
2714         case TIOCGSID:
2715                 return tiocgsid(tty, real_tty, p);
2716         case TIOCGETD:
2717                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2718         case TIOCSETD:
2719                 return tiocsetd(tty, p);
2720         case TIOCVHANGUP:
2721                 if (!capable(CAP_SYS_ADMIN))
2722                         return -EPERM;
2723                 tty_vhangup(tty);
2724                 return 0;
2725         case TIOCGDEV:
2726         {
2727                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2728                 return put_user(ret, (unsigned int __user *)p);
2729         }
2730         /*
2731          * Break handling
2732          */
2733         case TIOCSBRK:  /* Turn break on, unconditionally */
2734                 if (tty->ops->break_ctl)
2735                         return tty->ops->break_ctl(tty, -1);
2736                 return 0;
2737         case TIOCCBRK:  /* Turn break off, unconditionally */
2738                 if (tty->ops->break_ctl)
2739                         return tty->ops->break_ctl(tty, 0);
2740                 return 0;
2741         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2742                 /* non-zero arg means wait for all output data
2743                  * to be sent (performed above) but don't send break.
2744                  * This is used by the tcdrain() termios function.
2745                  */
2746                 if (!arg)
2747                         return send_break(tty, 250);
2748                 return 0;
2749         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2750                 return send_break(tty, arg ? arg*100 : 250);
2751
2752         case TIOCMGET:
2753                 return tty_tiocmget(tty, p);
2754         case TIOCMSET:
2755         case TIOCMBIC:
2756         case TIOCMBIS:
2757                 return tty_tiocmset(tty, cmd, p);
2758         case TIOCGICOUNT:
2759                 retval = tty_tiocgicount(tty, p);
2760                 /* For the moment allow fall through to the old method */
2761                 if (retval != -EINVAL)
2762                         return retval;
2763                 break;
2764         case TCFLSH:
2765                 switch (arg) {
2766                 case TCIFLUSH:
2767                 case TCIOFLUSH:
2768                 /* flush tty buffer and allow ldisc to process ioctl */
2769                         tty_buffer_flush(tty);
2770                         break;
2771                 }
2772                 break;
2773         }
2774         if (tty->ops->ioctl) {
2775                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2776                 if (retval != -ENOIOCTLCMD)
2777                         return retval;
2778         }
2779         ld = tty_ldisc_ref_wait(tty);
2780         retval = -EINVAL;
2781         if (ld->ops->ioctl) {
2782                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2783                 if (retval == -ENOIOCTLCMD)
2784                         retval = -ENOTTY;
2785         }
2786         tty_ldisc_deref(ld);
2787         return retval;
2788 }
2789
2790 #ifdef CONFIG_COMPAT
2791 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2792                                 unsigned long arg)
2793 {
2794         struct tty_struct *tty = file_tty(file);
2795         struct tty_ldisc *ld;
2796         int retval = -ENOIOCTLCMD;
2797
2798         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2799                 return -EINVAL;
2800
2801         if (tty->ops->compat_ioctl) {
2802                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2803                 if (retval != -ENOIOCTLCMD)
2804                         return retval;
2805         }
2806
2807         ld = tty_ldisc_ref_wait(tty);
2808         if (ld->ops->compat_ioctl)
2809                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2810         else
2811                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2812         tty_ldisc_deref(ld);
2813
2814         return retval;
2815 }
2816 #endif
2817
2818 static int this_tty(const void *t, struct file *file, unsigned fd)
2819 {
2820         if (likely(file->f_op->read != tty_read))
2821                 return 0;
2822         return file_tty(file) != t ? 0 : fd + 1;
2823 }
2824         
2825 /*
2826  * This implements the "Secure Attention Key" ---  the idea is to
2827  * prevent trojan horses by killing all processes associated with this
2828  * tty when the user hits the "Secure Attention Key".  Required for
2829  * super-paranoid applications --- see the Orange Book for more details.
2830  *
2831  * This code could be nicer; ideally it should send a HUP, wait a few
2832  * seconds, then send a INT, and then a KILL signal.  But you then
2833  * have to coordinate with the init process, since all processes associated
2834  * with the current tty must be dead before the new getty is allowed
2835  * to spawn.
2836  *
2837  * Now, if it would be correct ;-/ The current code has a nasty hole -
2838  * it doesn't catch files in flight. We may send the descriptor to ourselves
2839  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2840  *
2841  * Nasty bug: do_SAK is being called in interrupt context.  This can
2842  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2843  */
2844 void __do_SAK(struct tty_struct *tty)
2845 {
2846 #ifdef TTY_SOFT_SAK
2847         tty_hangup(tty);
2848 #else
2849         struct task_struct *g, *p;
2850         struct pid *session;
2851         int             i;
2852
2853         if (!tty)
2854                 return;
2855         session = tty->session;
2856
2857         tty_ldisc_flush(tty);
2858
2859         tty_driver_flush_buffer(tty);
2860
2861         read_lock(&tasklist_lock);
2862         /* Kill the entire session */
2863         do_each_pid_task(session, PIDTYPE_SID, p) {
2864                 printk(KERN_NOTICE "SAK: killed process %d"
2865                         " (%s): task_session(p)==tty->session\n",
2866                         task_pid_nr(p), p->comm);
2867                 send_sig(SIGKILL, p, 1);
2868         } while_each_pid_task(session, PIDTYPE_SID, p);
2869         /* Now kill any processes that happen to have the
2870          * tty open.
2871          */
2872         do_each_thread(g, p) {
2873                 if (p->signal->tty == tty) {
2874                         printk(KERN_NOTICE "SAK: killed process %d"
2875                             " (%s): task_session(p)==tty->session\n",
2876                             task_pid_nr(p), p->comm);
2877                         send_sig(SIGKILL, p, 1);
2878                         continue;
2879                 }
2880                 task_lock(p);
2881                 i = iterate_fd(p->files, 0, this_tty, tty);
2882                 if (i != 0) {
2883                         printk(KERN_NOTICE "SAK: killed process %d"
2884                             " (%s): fd#%d opened to the tty\n",
2885                                     task_pid_nr(p), p->comm, i - 1);
2886                         force_sig(SIGKILL, p);
2887                 }
2888                 task_unlock(p);
2889         } while_each_thread(g, p);
2890         read_unlock(&tasklist_lock);
2891 #endif
2892 }
2893
2894 static void do_SAK_work(struct work_struct *work)
2895 {
2896         struct tty_struct *tty =
2897                 container_of(work, struct tty_struct, SAK_work);
2898         __do_SAK(tty);
2899 }
2900
2901 /*
2902  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2903  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2904  * the values which we write to it will be identical to the values which it
2905  * already has. --akpm
2906  */
2907 void do_SAK(struct tty_struct *tty)
2908 {
2909         if (!tty)
2910                 return;
2911         schedule_work(&tty->SAK_work);
2912 }
2913
2914 EXPORT_SYMBOL(do_SAK);
2915
2916 static int dev_match_devt(struct device *dev, const void *data)
2917 {
2918         const dev_t *devt = data;
2919         return dev->devt == *devt;
2920 }
2921
2922 /* Must put_device() after it's unused! */
2923 static struct device *tty_get_device(struct tty_struct *tty)
2924 {
2925         dev_t devt = tty_devnum(tty);
2926         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2927 }
2928
2929
2930 /**
2931  *      initialize_tty_struct
2932  *      @tty: tty to initialize
2933  *
2934  *      This subroutine initializes a tty structure that has been newly
2935  *      allocated.
2936  *
2937  *      Locking: none - tty in question must not be exposed at this point
2938  */
2939
2940 void initialize_tty_struct(struct tty_struct *tty,
2941                 struct tty_driver *driver, int idx)
2942 {
2943         memset(tty, 0, sizeof(struct tty_struct));
2944         kref_init(&tty->kref);
2945         tty->magic = TTY_MAGIC;
2946         tty_ldisc_init(tty);
2947         tty->session = NULL;
2948         tty->pgrp = NULL;
2949         mutex_init(&tty->legacy_mutex);
2950         mutex_init(&tty->termios_mutex);
2951         mutex_init(&tty->ldisc_mutex);
2952         init_waitqueue_head(&tty->write_wait);
2953         init_waitqueue_head(&tty->read_wait);
2954         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2955         mutex_init(&tty->atomic_write_lock);
2956         spin_lock_init(&tty->ctrl_lock);
2957         INIT_LIST_HEAD(&tty->tty_files);
2958         INIT_WORK(&tty->SAK_work, do_SAK_work);
2959
2960         tty->driver = driver;
2961         tty->ops = driver->ops;
2962         tty->index = idx;
2963         tty_line_name(driver, idx, tty->name);
2964         tty->dev = tty_get_device(tty);
2965 }
2966
2967 /**
2968  *      deinitialize_tty_struct
2969  *      @tty: tty to deinitialize
2970  *
2971  *      This subroutine deinitializes a tty structure that has been newly
2972  *      allocated but tty_release cannot be called on that yet.
2973  *
2974  *      Locking: none - tty in question must not be exposed at this point
2975  */
2976 void deinitialize_tty_struct(struct tty_struct *tty)
2977 {
2978         tty_ldisc_deinit(tty);
2979 }
2980
2981 /**
2982  *      tty_put_char    -       write one character to a tty
2983  *      @tty: tty
2984  *      @ch: character
2985  *
2986  *      Write one byte to the tty using the provided put_char method
2987  *      if present. Returns the number of characters successfully output.
2988  *
2989  *      Note: the specific put_char operation in the driver layer may go
2990  *      away soon. Don't call it directly, use this method
2991  */
2992
2993 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2994 {
2995         if (tty->ops->put_char)
2996                 return tty->ops->put_char(tty, ch);
2997         return tty->ops->write(tty, &ch, 1);
2998 }
2999 EXPORT_SYMBOL_GPL(tty_put_char);
3000
3001 struct class *tty_class;
3002
3003 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3004                 unsigned int index, unsigned int count)
3005 {
3006         /* init here, since reused cdevs cause crashes */
3007         cdev_init(&driver->cdevs[index], &tty_fops);
3008         driver->cdevs[index].owner = driver->owner;
3009         return cdev_add(&driver->cdevs[index], dev, count);
3010 }
3011
3012 /**
3013  *      tty_register_device - register a tty device
3014  *      @driver: the tty driver that describes the tty device
3015  *      @index: the index in the tty driver for this tty device
3016  *      @device: a struct device that is associated with this tty device.
3017  *              This field is optional, if there is no known struct device
3018  *              for this tty device it can be set to NULL safely.
3019  *
3020  *      Returns a pointer to the struct device for this tty device
3021  *      (or ERR_PTR(-EFOO) on error).
3022  *
3023  *      This call is required to be made to register an individual tty device
3024  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3025  *      that bit is not set, this function should not be called by a tty
3026  *      driver.
3027  *
3028  *      Locking: ??
3029  */
3030
3031 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3032                                    struct device *device)
3033 {
3034         return tty_register_device_attr(driver, index, device, NULL, NULL);
3035 }
3036 EXPORT_SYMBOL(tty_register_device);
3037
3038 static void tty_device_create_release(struct device *dev)
3039 {
3040         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3041         kfree(dev);
3042 }
3043
3044 /**
3045  *      tty_register_device_attr - register a tty device
3046  *      @driver: the tty driver that describes the tty device
3047  *      @index: the index in the tty driver for this tty device
3048  *      @device: a struct device that is associated with this tty device.
3049  *              This field is optional, if there is no known struct device
3050  *              for this tty device it can be set to NULL safely.
3051  *      @drvdata: Driver data to be set to device.
3052  *      @attr_grp: Attribute group to be set on device.
3053  *
3054  *      Returns a pointer to the struct device for this tty device
3055  *      (or ERR_PTR(-EFOO) on error).
3056  *
3057  *      This call is required to be made to register an individual tty device
3058  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3059  *      that bit is not set, this function should not be called by a tty
3060  *      driver.
3061  *
3062  *      Locking: ??
3063  */
3064 struct device *tty_register_device_attr(struct tty_driver *driver,
3065                                    unsigned index, struct device *device,
3066                                    void *drvdata,
3067                                    const struct attribute_group **attr_grp)
3068 {
3069         char name[64];
3070         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3071         struct device *dev = NULL;
3072         int retval = -ENODEV;
3073         bool cdev = false;
3074
3075         if (index >= driver->num) {
3076                 printk(KERN_ERR "Attempt to register invalid tty line number "
3077                        " (%d).\n", index);
3078                 return ERR_PTR(-EINVAL);
3079         }
3080
3081         if (driver->type == TTY_DRIVER_TYPE_PTY)
3082                 pty_line_name(driver, index, name);
3083         else
3084                 tty_line_name(driver, index, name);
3085
3086         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3087                 retval = tty_cdev_add(driver, devt, index, 1);
3088                 if (retval)
3089                         goto error;
3090                 cdev = true;
3091         }
3092
3093         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3094         if (!dev) {
3095                 retval = -ENOMEM;
3096                 goto error;
3097         }
3098
3099         dev->devt = devt;
3100         dev->class = tty_class;
3101         dev->parent = device;
3102         dev->release = tty_device_create_release;
3103         dev_set_name(dev, "%s", name);
3104         dev->groups = attr_grp;
3105         dev_set_drvdata(dev, drvdata);
3106
3107         retval = device_register(dev);
3108         if (retval)
3109                 goto error;
3110
3111         return dev;
3112
3113 error:
3114         put_device(dev);
3115         if (cdev)
3116                 cdev_del(&driver->cdevs[index]);
3117         return ERR_PTR(retval);
3118 }
3119 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3120
3121 /**
3122  *      tty_unregister_device - unregister a tty device
3123  *      @driver: the tty driver that describes the tty device
3124  *      @index: the index in the tty driver for this tty device
3125  *
3126  *      If a tty device is registered with a call to tty_register_device() then
3127  *      this function must be called when the tty device is gone.
3128  *
3129  *      Locking: ??
3130  */
3131
3132 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3133 {
3134         device_destroy(tty_class,
3135                 MKDEV(driver->major, driver->minor_start) + index);
3136         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3137                 cdev_del(&driver->cdevs[index]);
3138 }
3139 EXPORT_SYMBOL(tty_unregister_device);
3140
3141 /**
3142  * __tty_alloc_driver -- allocate tty driver
3143  * @lines: count of lines this driver can handle at most
3144  * @owner: module which is repsonsible for this driver
3145  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3146  *
3147  * This should not be called directly, some of the provided macros should be
3148  * used instead. Use IS_ERR and friends on @retval.
3149  */
3150 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3151                 unsigned long flags)
3152 {
3153         struct tty_driver *driver;
3154         unsigned int cdevs = 1;
3155         int err;
3156
3157         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3158                 return ERR_PTR(-EINVAL);
3159
3160         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3161         if (!driver)
3162                 return ERR_PTR(-ENOMEM);
3163
3164         kref_init(&driver->kref);
3165         driver->magic = TTY_DRIVER_MAGIC;
3166         driver->num = lines;
3167         driver->owner = owner;
3168         driver->flags = flags;
3169
3170         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3171                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3172                                 GFP_KERNEL);
3173                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3174                                 GFP_KERNEL);
3175                 if (!driver->ttys || !driver->termios) {
3176                         err = -ENOMEM;
3177                         goto err_free_all;
3178                 }
3179         }
3180
3181         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3182                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3183                                 GFP_KERNEL);
3184                 if (!driver->ports) {
3185                         err = -ENOMEM;
3186                         goto err_free_all;
3187                 }
3188                 cdevs = lines;
3189         }
3190
3191         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3192         if (!driver->cdevs) {
3193                 err = -ENOMEM;
3194                 goto err_free_all;
3195         }
3196
3197         return driver;
3198 err_free_all:
3199         kfree(driver->ports);
3200         kfree(driver->ttys);
3201         kfree(driver->termios);
3202         kfree(driver);
3203         return ERR_PTR(err);
3204 }
3205 EXPORT_SYMBOL(__tty_alloc_driver);
3206
3207 static void destruct_tty_driver(struct kref *kref)
3208 {
3209         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3210         int i;
3211         struct ktermios *tp;
3212
3213         if (driver->flags & TTY_DRIVER_INSTALLED) {
3214                 /*
3215                  * Free the termios and termios_locked structures because
3216                  * we don't want to get memory leaks when modular tty
3217                  * drivers are removed from the kernel.
3218                  */
3219                 for (i = 0; i < driver->num; i++) {
3220                         tp = driver->termios[i];
3221                         if (tp) {
3222                                 driver->termios[i] = NULL;
3223                                 kfree(tp);
3224                         }
3225                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3226                                 tty_unregister_device(driver, i);
3227                 }
3228                 proc_tty_unregister_driver(driver);
3229                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3230                         cdev_del(&driver->cdevs[0]);
3231         }
3232         kfree(driver->cdevs);
3233         kfree(driver->ports);
3234         kfree(driver->termios);
3235         kfree(driver->ttys);
3236         kfree(driver);
3237 }
3238
3239 void tty_driver_kref_put(struct tty_driver *driver)
3240 {
3241         kref_put(&driver->kref, destruct_tty_driver);
3242 }
3243 EXPORT_SYMBOL(tty_driver_kref_put);
3244
3245 void tty_set_operations(struct tty_driver *driver,
3246                         const struct tty_operations *op)
3247 {
3248         driver->ops = op;
3249 };
3250 EXPORT_SYMBOL(tty_set_operations);
3251
3252 void put_tty_driver(struct tty_driver *d)
3253 {
3254         tty_driver_kref_put(d);
3255 }
3256 EXPORT_SYMBOL(put_tty_driver);
3257
3258 /*
3259  * Called by a tty driver to register itself.
3260  */
3261 int tty_register_driver(struct tty_driver *driver)
3262 {
3263         int error;
3264         int i;
3265         dev_t dev;
3266         struct device *d;
3267
3268         if (!driver->major) {
3269                 error = alloc_chrdev_region(&dev, driver->minor_start,
3270                                                 driver->num, driver->name);
3271                 if (!error) {
3272                         driver->major = MAJOR(dev);
3273                         driver->minor_start = MINOR(dev);
3274                 }
3275         } else {
3276                 dev = MKDEV(driver->major, driver->minor_start);
3277                 error = register_chrdev_region(dev, driver->num, driver->name);
3278         }
3279         if (error < 0)
3280                 goto err;
3281
3282         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3283                 error = tty_cdev_add(driver, dev, 0, driver->num);
3284                 if (error)
3285                         goto err_unreg_char;
3286         }
3287
3288         mutex_lock(&tty_mutex);
3289         list_add(&driver->tty_drivers, &tty_drivers);
3290         mutex_unlock(&tty_mutex);
3291
3292         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3293                 for (i = 0; i < driver->num; i++) {
3294                         d = tty_register_device(driver, i, NULL);
3295                         if (IS_ERR(d)) {
3296                                 error = PTR_ERR(d);
3297                                 goto err_unreg_devs;
3298                         }
3299                 }
3300         }
3301         proc_tty_register_driver(driver);
3302         driver->flags |= TTY_DRIVER_INSTALLED;
3303         return 0;
3304
3305 err_unreg_devs:
3306         for (i--; i >= 0; i--)
3307                 tty_unregister_device(driver, i);
3308
3309         mutex_lock(&tty_mutex);
3310         list_del(&driver->tty_drivers);
3311         mutex_unlock(&tty_mutex);
3312
3313 err_unreg_char:
3314         unregister_chrdev_region(dev, driver->num);
3315 err:
3316         return error;
3317 }
3318 EXPORT_SYMBOL(tty_register_driver);
3319
3320 /*
3321  * Called by a tty driver to unregister itself.
3322  */
3323 int tty_unregister_driver(struct tty_driver *driver)
3324 {
3325 #if 0
3326         /* FIXME */
3327         if (driver->refcount)
3328                 return -EBUSY;
3329 #endif
3330         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3331                                 driver->num);
3332         mutex_lock(&tty_mutex);
3333         list_del(&driver->tty_drivers);
3334         mutex_unlock(&tty_mutex);
3335         return 0;
3336 }
3337
3338 EXPORT_SYMBOL(tty_unregister_driver);
3339
3340 dev_t tty_devnum(struct tty_struct *tty)
3341 {
3342         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3343 }
3344 EXPORT_SYMBOL(tty_devnum);
3345
3346 void proc_clear_tty(struct task_struct *p)
3347 {
3348         unsigned long flags;
3349         struct tty_struct *tty;
3350         spin_lock_irqsave(&p->sighand->siglock, flags);
3351         tty = p->signal->tty;
3352         p->signal->tty = NULL;
3353         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3354         tty_kref_put(tty);
3355 }
3356
3357 /* Called under the sighand lock */
3358
3359 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3360 {
3361         if (tty) {
3362                 unsigned long flags;
3363                 /* We should not have a session or pgrp to put here but.... */
3364                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3365                 put_pid(tty->session);
3366                 put_pid(tty->pgrp);
3367                 tty->pgrp = get_pid(task_pgrp(tsk));
3368                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3369                 tty->session = get_pid(task_session(tsk));
3370                 if (tsk->signal->tty) {
3371                         printk(KERN_DEBUG "tty not NULL!!\n");
3372                         tty_kref_put(tsk->signal->tty);
3373                 }
3374         }
3375         put_pid(tsk->signal->tty_old_pgrp);
3376         tsk->signal->tty = tty_kref_get(tty);
3377         tsk->signal->tty_old_pgrp = NULL;
3378 }
3379
3380 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3381 {
3382         spin_lock_irq(&tsk->sighand->siglock);
3383         __proc_set_tty(tsk, tty);
3384         spin_unlock_irq(&tsk->sighand->siglock);
3385 }
3386
3387 struct tty_struct *get_current_tty(void)
3388 {
3389         struct tty_struct *tty;
3390         unsigned long flags;
3391
3392         spin_lock_irqsave(&current->sighand->siglock, flags);
3393         tty = tty_kref_get(current->signal->tty);
3394         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3395         return tty;
3396 }
3397 EXPORT_SYMBOL_GPL(get_current_tty);
3398
3399 void tty_default_fops(struct file_operations *fops)
3400 {
3401         *fops = tty_fops;
3402 }
3403
3404 /*
3405  * Initialize the console device. This is called *early*, so
3406  * we can't necessarily depend on lots of kernel help here.
3407  * Just do some early initializations, and do the complex setup
3408  * later.
3409  */
3410 void __init console_init(void)
3411 {
3412         initcall_t *call;
3413
3414         /* Setup the default TTY line discipline. */
3415         tty_ldisc_begin();
3416
3417         /*
3418          * set up the console device so that later boot sequences can
3419          * inform about problems etc..
3420          */
3421         call = __con_initcall_start;
3422         while (call < __con_initcall_end) {
3423                 (*call)();
3424                 call++;
3425         }
3426 }
3427
3428 static char *tty_devnode(struct device *dev, umode_t *mode)
3429 {
3430         if (!mode)
3431                 return NULL;
3432         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3433             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3434                 *mode = 0666;
3435         return NULL;
3436 }
3437
3438 static int __init tty_class_init(void)
3439 {
3440         tty_class = class_create(THIS_MODULE, "tty");
3441         if (IS_ERR(tty_class))
3442                 return PTR_ERR(tty_class);
3443         tty_class->devnode = tty_devnode;
3444         return 0;
3445 }
3446
3447 postcore_initcall(tty_class_init);
3448
3449 /* 3/2004 jmc: why do these devices exist? */
3450 static struct cdev tty_cdev, console_cdev;
3451
3452 static ssize_t show_cons_active(struct device *dev,
3453                                 struct device_attribute *attr, char *buf)
3454 {
3455         struct console *cs[16];
3456         int i = 0;
3457         struct console *c;
3458         ssize_t count = 0;
3459
3460         console_lock();
3461         for_each_console(c) {
3462                 if (!c->device)
3463                         continue;
3464                 if (!c->write)
3465                         continue;
3466                 if ((c->flags & CON_ENABLED) == 0)
3467                         continue;
3468                 cs[i++] = c;
3469                 if (i >= ARRAY_SIZE(cs))
3470                         break;
3471         }
3472         while (i--)
3473                 count += sprintf(buf + count, "%s%d%c",
3474                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3475         console_unlock();
3476
3477         return count;
3478 }
3479 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3480
3481 static struct device *consdev;
3482
3483 void console_sysfs_notify(void)
3484 {
3485         if (consdev)
3486                 sysfs_notify(&consdev->kobj, NULL, "active");
3487 }
3488
3489 /*
3490  * Ok, now we can initialize the rest of the tty devices and can count
3491  * on memory allocations, interrupts etc..
3492  */
3493 int __init tty_init(void)
3494 {
3495         cdev_init(&tty_cdev, &tty_fops);
3496         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3497             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3498                 panic("Couldn't register /dev/tty driver\n");
3499         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3500
3501         cdev_init(&console_cdev, &console_fops);
3502         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3503             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3504                 panic("Couldn't register /dev/console driver\n");
3505         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3506                               "console");
3507         if (IS_ERR(consdev))
3508                 consdev = NULL;
3509         else
3510                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3511
3512 #ifdef CONFIG_VT
3513         vty_init(&console_fops);
3514 #endif
3515         return 0;
3516 }
3517