]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/usb/core/hcd.c
Merge branch 'misc' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[karo-tx-linux.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
49
50 #include "usb.h"
51
52
53 /*-------------------------------------------------------------------------*/
54
55 /*
56  * USB Host Controller Driver framework
57  *
58  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
59  * HCD-specific behaviors/bugs.
60  *
61  * This does error checks, tracks devices and urbs, and delegates to a
62  * "hc_driver" only for code (and data) that really needs to know about
63  * hardware differences.  That includes root hub registers, i/o queues,
64  * and so on ... but as little else as possible.
65  *
66  * Shared code includes most of the "root hub" code (these are emulated,
67  * though each HC's hardware works differently) and PCI glue, plus request
68  * tracking overhead.  The HCD code should only block on spinlocks or on
69  * hardware handshaking; blocking on software events (such as other kernel
70  * threads releasing resources, or completing actions) is all generic.
71  *
72  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
73  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
74  * only by the hub driver ... and that neither should be seen or used by
75  * usb client device drivers.
76  *
77  * Contributors of ideas or unattributed patches include: David Brownell,
78  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
79  *
80  * HISTORY:
81  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
82  *              associated cleanup.  "usb_hcd" still != "usb_bus".
83  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
84  */
85
86 /*-------------------------------------------------------------------------*/
87
88 /* Keep track of which host controller drivers are loaded */
89 unsigned long usb_hcds_loaded;
90 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
91
92 /* host controllers we manage */
93 DEFINE_IDR (usb_bus_idr);
94 EXPORT_SYMBOL_GPL (usb_bus_idr);
95
96 /* used when allocating bus numbers */
97 #define USB_MAXBUS              64
98
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
102
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114
115 static inline int is_root_hub(struct usb_device *udev)
116 {
117         return (udev->parent == NULL);
118 }
119
120 /*-------------------------------------------------------------------------*/
121
122 /*
123  * Sharable chunks of root hub code.
124  */
125
126 /*-------------------------------------------------------------------------*/
127 #define KERNEL_REL      bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
128 #define KERNEL_VER      bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
129
130 /* usb 3.1 root hub device descriptor */
131 static const u8 usb31_rh_dev_descriptor[18] = {
132         0x12,       /*  __u8  bLength; */
133         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
134         0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
135
136         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
137         0x00,       /*  __u8  bDeviceSubClass; */
138         0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
139         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
140
141         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
142         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
143         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
144
145         0x03,       /*  __u8  iManufacturer; */
146         0x02,       /*  __u8  iProduct; */
147         0x01,       /*  __u8  iSerialNumber; */
148         0x01        /*  __u8  bNumConfigurations; */
149 };
150
151 /* usb 3.0 root hub device descriptor */
152 static const u8 usb3_rh_dev_descriptor[18] = {
153         0x12,       /*  __u8  bLength; */
154         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
155         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
156
157         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
158         0x00,       /*  __u8  bDeviceSubClass; */
159         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
160         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
161
162         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
163         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
164         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
165
166         0x03,       /*  __u8  iManufacturer; */
167         0x02,       /*  __u8  iProduct; */
168         0x01,       /*  __u8  iSerialNumber; */
169         0x01        /*  __u8  bNumConfigurations; */
170 };
171
172 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
173 static const u8 usb25_rh_dev_descriptor[18] = {
174         0x12,       /*  __u8  bLength; */
175         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
176         0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
177
178         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
179         0x00,       /*  __u8  bDeviceSubClass; */
180         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
181         0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
182
183         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
184         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
185         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
186
187         0x03,       /*  __u8  iManufacturer; */
188         0x02,       /*  __u8  iProduct; */
189         0x01,       /*  __u8  iSerialNumber; */
190         0x01        /*  __u8  bNumConfigurations; */
191 };
192
193 /* usb 2.0 root hub device descriptor */
194 static const u8 usb2_rh_dev_descriptor[18] = {
195         0x12,       /*  __u8  bLength; */
196         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
197         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
198
199         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
200         0x00,       /*  __u8  bDeviceSubClass; */
201         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
202         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
203
204         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
205         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
206         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
207
208         0x03,       /*  __u8  iManufacturer; */
209         0x02,       /*  __u8  iProduct; */
210         0x01,       /*  __u8  iSerialNumber; */
211         0x01        /*  __u8  bNumConfigurations; */
212 };
213
214 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
215
216 /* usb 1.1 root hub device descriptor */
217 static const u8 usb11_rh_dev_descriptor[18] = {
218         0x12,       /*  __u8  bLength; */
219         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
220         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
221
222         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
223         0x00,       /*  __u8  bDeviceSubClass; */
224         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
225         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
226
227         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
228         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
229         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
230
231         0x03,       /*  __u8  iManufacturer; */
232         0x02,       /*  __u8  iProduct; */
233         0x01,       /*  __u8  iSerialNumber; */
234         0x01        /*  __u8  bNumConfigurations; */
235 };
236
237
238 /*-------------------------------------------------------------------------*/
239
240 /* Configuration descriptors for our root hubs */
241
242 static const u8 fs_rh_config_descriptor[] = {
243
244         /* one configuration */
245         0x09,       /*  __u8  bLength; */
246         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
247         0x19, 0x00, /*  __le16 wTotalLength; */
248         0x01,       /*  __u8  bNumInterfaces; (1) */
249         0x01,       /*  __u8  bConfigurationValue; */
250         0x00,       /*  __u8  iConfiguration; */
251         0xc0,       /*  __u8  bmAttributes;
252                                  Bit 7: must be set,
253                                      6: Self-powered,
254                                      5: Remote wakeup,
255                                      4..0: resvd */
256         0x00,       /*  __u8  MaxPower; */
257
258         /* USB 1.1:
259          * USB 2.0, single TT organization (mandatory):
260          *      one interface, protocol 0
261          *
262          * USB 2.0, multiple TT organization (optional):
263          *      two interfaces, protocols 1 (like single TT)
264          *      and 2 (multiple TT mode) ... config is
265          *      sometimes settable
266          *      NOT IMPLEMENTED
267          */
268
269         /* one interface */
270         0x09,       /*  __u8  if_bLength; */
271         USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
272         0x00,       /*  __u8  if_bInterfaceNumber; */
273         0x00,       /*  __u8  if_bAlternateSetting; */
274         0x01,       /*  __u8  if_bNumEndpoints; */
275         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
276         0x00,       /*  __u8  if_bInterfaceSubClass; */
277         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
278         0x00,       /*  __u8  if_iInterface; */
279
280         /* one endpoint (status change endpoint) */
281         0x07,       /*  __u8  ep_bLength; */
282         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
283         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
284         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
285         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
286         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
287 };
288
289 static const u8 hs_rh_config_descriptor[] = {
290
291         /* one configuration */
292         0x09,       /*  __u8  bLength; */
293         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
294         0x19, 0x00, /*  __le16 wTotalLength; */
295         0x01,       /*  __u8  bNumInterfaces; (1) */
296         0x01,       /*  __u8  bConfigurationValue; */
297         0x00,       /*  __u8  iConfiguration; */
298         0xc0,       /*  __u8  bmAttributes;
299                                  Bit 7: must be set,
300                                      6: Self-powered,
301                                      5: Remote wakeup,
302                                      4..0: resvd */
303         0x00,       /*  __u8  MaxPower; */
304
305         /* USB 1.1:
306          * USB 2.0, single TT organization (mandatory):
307          *      one interface, protocol 0
308          *
309          * USB 2.0, multiple TT organization (optional):
310          *      two interfaces, protocols 1 (like single TT)
311          *      and 2 (multiple TT mode) ... config is
312          *      sometimes settable
313          *      NOT IMPLEMENTED
314          */
315
316         /* one interface */
317         0x09,       /*  __u8  if_bLength; */
318         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
319         0x00,       /*  __u8  if_bInterfaceNumber; */
320         0x00,       /*  __u8  if_bAlternateSetting; */
321         0x01,       /*  __u8  if_bNumEndpoints; */
322         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
323         0x00,       /*  __u8  if_bInterfaceSubClass; */
324         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
325         0x00,       /*  __u8  if_iInterface; */
326
327         /* one endpoint (status change endpoint) */
328         0x07,       /*  __u8  ep_bLength; */
329         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
330         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
331         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
332                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
333                      * see hub.c:hub_configure() for details. */
334         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
335         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
336 };
337
338 static const u8 ss_rh_config_descriptor[] = {
339         /* one configuration */
340         0x09,       /*  __u8  bLength; */
341         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
342         0x1f, 0x00, /*  __le16 wTotalLength; */
343         0x01,       /*  __u8  bNumInterfaces; (1) */
344         0x01,       /*  __u8  bConfigurationValue; */
345         0x00,       /*  __u8  iConfiguration; */
346         0xc0,       /*  __u8  bmAttributes;
347                                  Bit 7: must be set,
348                                      6: Self-powered,
349                                      5: Remote wakeup,
350                                      4..0: resvd */
351         0x00,       /*  __u8  MaxPower; */
352
353         /* one interface */
354         0x09,       /*  __u8  if_bLength; */
355         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
356         0x00,       /*  __u8  if_bInterfaceNumber; */
357         0x00,       /*  __u8  if_bAlternateSetting; */
358         0x01,       /*  __u8  if_bNumEndpoints; */
359         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
360         0x00,       /*  __u8  if_bInterfaceSubClass; */
361         0x00,       /*  __u8  if_bInterfaceProtocol; */
362         0x00,       /*  __u8  if_iInterface; */
363
364         /* one endpoint (status change endpoint) */
365         0x07,       /*  __u8  ep_bLength; */
366         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
367         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
368         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
369                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
370                      * see hub.c:hub_configure() for details. */
371         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
372         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
373
374         /* one SuperSpeed endpoint companion descriptor */
375         0x06,        /* __u8 ss_bLength */
376         USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
377                      /* Companion */
378         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
379         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
380         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
381 };
382
383 /* authorized_default behaviour:
384  * -1 is authorized for all devices except wireless (old behaviour)
385  * 0 is unauthorized for all devices
386  * 1 is authorized for all devices
387  */
388 static int authorized_default = -1;
389 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
390 MODULE_PARM_DESC(authorized_default,
391                 "Default USB device authorization: 0 is not authorized, 1 is "
392                 "authorized, -1 is authorized except for wireless USB (default, "
393                 "old behaviour");
394 /*-------------------------------------------------------------------------*/
395
396 /**
397  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
398  * @s: Null-terminated ASCII (actually ISO-8859-1) string
399  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
400  * @len: Length (in bytes; may be odd) of descriptor buffer.
401  *
402  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
403  * whichever is less.
404  *
405  * Note:
406  * USB String descriptors can contain at most 126 characters; input
407  * strings longer than that are truncated.
408  */
409 static unsigned
410 ascii2desc(char const *s, u8 *buf, unsigned len)
411 {
412         unsigned n, t = 2 + 2*strlen(s);
413
414         if (t > 254)
415                 t = 254;        /* Longest possible UTF string descriptor */
416         if (len > t)
417                 len = t;
418
419         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
420
421         n = len;
422         while (n--) {
423                 *buf++ = t;
424                 if (!n--)
425                         break;
426                 *buf++ = t >> 8;
427                 t = (unsigned char)*s++;
428         }
429         return len;
430 }
431
432 /**
433  * rh_string() - provides string descriptors for root hub
434  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
435  * @hcd: the host controller for this root hub
436  * @data: buffer for output packet
437  * @len: length of the provided buffer
438  *
439  * Produces either a manufacturer, product or serial number string for the
440  * virtual root hub device.
441  *
442  * Return: The number of bytes filled in: the length of the descriptor or
443  * of the provided buffer, whichever is less.
444  */
445 static unsigned
446 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
447 {
448         char buf[100];
449         char const *s;
450         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
451
452         /* language ids */
453         switch (id) {
454         case 0:
455                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
456                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
457                 if (len > 4)
458                         len = 4;
459                 memcpy(data, langids, len);
460                 return len;
461         case 1:
462                 /* Serial number */
463                 s = hcd->self.bus_name;
464                 break;
465         case 2:
466                 /* Product name */
467                 s = hcd->product_desc;
468                 break;
469         case 3:
470                 /* Manufacturer */
471                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
472                         init_utsname()->release, hcd->driver->description);
473                 s = buf;
474                 break;
475         default:
476                 /* Can't happen; caller guarantees it */
477                 return 0;
478         }
479
480         return ascii2desc(s, data, len);
481 }
482
483
484 /* Root hub control transfers execute synchronously */
485 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
486 {
487         struct usb_ctrlrequest *cmd;
488         u16             typeReq, wValue, wIndex, wLength;
489         u8              *ubuf = urb->transfer_buffer;
490         unsigned        len = 0;
491         int             status;
492         u8              patch_wakeup = 0;
493         u8              patch_protocol = 0;
494         u16             tbuf_size;
495         u8              *tbuf = NULL;
496         const u8        *bufp;
497
498         might_sleep();
499
500         spin_lock_irq(&hcd_root_hub_lock);
501         status = usb_hcd_link_urb_to_ep(hcd, urb);
502         spin_unlock_irq(&hcd_root_hub_lock);
503         if (status)
504                 return status;
505         urb->hcpriv = hcd;      /* Indicate it's queued */
506
507         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
508         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
509         wValue   = le16_to_cpu (cmd->wValue);
510         wIndex   = le16_to_cpu (cmd->wIndex);
511         wLength  = le16_to_cpu (cmd->wLength);
512
513         if (wLength > urb->transfer_buffer_length)
514                 goto error;
515
516         /*
517          * tbuf should be at least as big as the
518          * USB hub descriptor.
519          */
520         tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
521         tbuf = kzalloc(tbuf_size, GFP_KERNEL);
522         if (!tbuf)
523                 return -ENOMEM;
524
525         bufp = tbuf;
526
527
528         urb->actual_length = 0;
529         switch (typeReq) {
530
531         /* DEVICE REQUESTS */
532
533         /* The root hub's remote wakeup enable bit is implemented using
534          * driver model wakeup flags.  If this system supports wakeup
535          * through USB, userspace may change the default "allow wakeup"
536          * policy through sysfs or these calls.
537          *
538          * Most root hubs support wakeup from downstream devices, for
539          * runtime power management (disabling USB clocks and reducing
540          * VBUS power usage).  However, not all of them do so; silicon,
541          * board, and BIOS bugs here are not uncommon, so these can't
542          * be treated quite like external hubs.
543          *
544          * Likewise, not all root hubs will pass wakeup events upstream,
545          * to wake up the whole system.  So don't assume root hub and
546          * controller capabilities are identical.
547          */
548
549         case DeviceRequest | USB_REQ_GET_STATUS:
550                 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
551                                         << USB_DEVICE_REMOTE_WAKEUP)
552                                 | (1 << USB_DEVICE_SELF_POWERED);
553                 tbuf[1] = 0;
554                 len = 2;
555                 break;
556         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
557                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
558                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
559                 else
560                         goto error;
561                 break;
562         case DeviceOutRequest | USB_REQ_SET_FEATURE:
563                 if (device_can_wakeup(&hcd->self.root_hub->dev)
564                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
565                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
566                 else
567                         goto error;
568                 break;
569         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
570                 tbuf[0] = 1;
571                 len = 1;
572                         /* FALLTHROUGH */
573         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
574                 break;
575         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
576                 switch (wValue & 0xff00) {
577                 case USB_DT_DEVICE << 8:
578                         switch (hcd->speed) {
579                         case HCD_USB31:
580                                 bufp = usb31_rh_dev_descriptor;
581                                 break;
582                         case HCD_USB3:
583                                 bufp = usb3_rh_dev_descriptor;
584                                 break;
585                         case HCD_USB25:
586                                 bufp = usb25_rh_dev_descriptor;
587                                 break;
588                         case HCD_USB2:
589                                 bufp = usb2_rh_dev_descriptor;
590                                 break;
591                         case HCD_USB11:
592                                 bufp = usb11_rh_dev_descriptor;
593                                 break;
594                         default:
595                                 goto error;
596                         }
597                         len = 18;
598                         if (hcd->has_tt)
599                                 patch_protocol = 1;
600                         break;
601                 case USB_DT_CONFIG << 8:
602                         switch (hcd->speed) {
603                         case HCD_USB31:
604                         case HCD_USB3:
605                                 bufp = ss_rh_config_descriptor;
606                                 len = sizeof ss_rh_config_descriptor;
607                                 break;
608                         case HCD_USB25:
609                         case HCD_USB2:
610                                 bufp = hs_rh_config_descriptor;
611                                 len = sizeof hs_rh_config_descriptor;
612                                 break;
613                         case HCD_USB11:
614                                 bufp = fs_rh_config_descriptor;
615                                 len = sizeof fs_rh_config_descriptor;
616                                 break;
617                         default:
618                                 goto error;
619                         }
620                         if (device_can_wakeup(&hcd->self.root_hub->dev))
621                                 patch_wakeup = 1;
622                         break;
623                 case USB_DT_STRING << 8:
624                         if ((wValue & 0xff) < 4)
625                                 urb->actual_length = rh_string(wValue & 0xff,
626                                                 hcd, ubuf, wLength);
627                         else /* unsupported IDs --> "protocol stall" */
628                                 goto error;
629                         break;
630                 case USB_DT_BOS << 8:
631                         goto nongeneric;
632                 default:
633                         goto error;
634                 }
635                 break;
636         case DeviceRequest | USB_REQ_GET_INTERFACE:
637                 tbuf[0] = 0;
638                 len = 1;
639                         /* FALLTHROUGH */
640         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
641                 break;
642         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
643                 /* wValue == urb->dev->devaddr */
644                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
645                         wValue);
646                 break;
647
648         /* INTERFACE REQUESTS (no defined feature/status flags) */
649
650         /* ENDPOINT REQUESTS */
651
652         case EndpointRequest | USB_REQ_GET_STATUS:
653                 /* ENDPOINT_HALT flag */
654                 tbuf[0] = 0;
655                 tbuf[1] = 0;
656                 len = 2;
657                         /* FALLTHROUGH */
658         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
659         case EndpointOutRequest | USB_REQ_SET_FEATURE:
660                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
661                 break;
662
663         /* CLASS REQUESTS (and errors) */
664
665         default:
666 nongeneric:
667                 /* non-generic request */
668                 switch (typeReq) {
669                 case GetHubStatus:
670                         len = 4;
671                         break;
672                 case GetPortStatus:
673                         if (wValue == HUB_PORT_STATUS)
674                                 len = 4;
675                         else
676                                 /* other port status types return 8 bytes */
677                                 len = 8;
678                         break;
679                 case GetHubDescriptor:
680                         len = sizeof (struct usb_hub_descriptor);
681                         break;
682                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
683                         /* len is returned by hub_control */
684                         break;
685                 }
686                 status = hcd->driver->hub_control (hcd,
687                         typeReq, wValue, wIndex,
688                         tbuf, wLength);
689
690                 if (typeReq == GetHubDescriptor)
691                         usb_hub_adjust_deviceremovable(hcd->self.root_hub,
692                                 (struct usb_hub_descriptor *)tbuf);
693                 break;
694 error:
695                 /* "protocol stall" on error */
696                 status = -EPIPE;
697         }
698
699         if (status < 0) {
700                 len = 0;
701                 if (status != -EPIPE) {
702                         dev_dbg (hcd->self.controller,
703                                 "CTRL: TypeReq=0x%x val=0x%x "
704                                 "idx=0x%x len=%d ==> %d\n",
705                                 typeReq, wValue, wIndex,
706                                 wLength, status);
707                 }
708         } else if (status > 0) {
709                 /* hub_control may return the length of data copied. */
710                 len = status;
711                 status = 0;
712         }
713         if (len) {
714                 if (urb->transfer_buffer_length < len)
715                         len = urb->transfer_buffer_length;
716                 urb->actual_length = len;
717                 /* always USB_DIR_IN, toward host */
718                 memcpy (ubuf, bufp, len);
719
720                 /* report whether RH hardware supports remote wakeup */
721                 if (patch_wakeup &&
722                                 len > offsetof (struct usb_config_descriptor,
723                                                 bmAttributes))
724                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
725                                 |= USB_CONFIG_ATT_WAKEUP;
726
727                 /* report whether RH hardware has an integrated TT */
728                 if (patch_protocol &&
729                                 len > offsetof(struct usb_device_descriptor,
730                                                 bDeviceProtocol))
731                         ((struct usb_device_descriptor *) ubuf)->
732                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
733         }
734
735         kfree(tbuf);
736
737         /* any errors get returned through the urb completion */
738         spin_lock_irq(&hcd_root_hub_lock);
739         usb_hcd_unlink_urb_from_ep(hcd, urb);
740         usb_hcd_giveback_urb(hcd, urb, status);
741         spin_unlock_irq(&hcd_root_hub_lock);
742         return 0;
743 }
744
745 /*-------------------------------------------------------------------------*/
746
747 /*
748  * Root Hub interrupt transfers are polled using a timer if the
749  * driver requests it; otherwise the driver is responsible for
750  * calling usb_hcd_poll_rh_status() when an event occurs.
751  *
752  * Completions are called in_interrupt(), but they may or may not
753  * be in_irq().
754  */
755 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
756 {
757         struct urb      *urb;
758         int             length;
759         unsigned long   flags;
760         char            buffer[6];      /* Any root hubs with > 31 ports? */
761
762         if (unlikely(!hcd->rh_pollable))
763                 return;
764         if (!hcd->uses_new_polling && !hcd->status_urb)
765                 return;
766
767         length = hcd->driver->hub_status_data(hcd, buffer);
768         if (length > 0) {
769
770                 /* try to complete the status urb */
771                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
772                 urb = hcd->status_urb;
773                 if (urb) {
774                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
775                         hcd->status_urb = NULL;
776                         urb->actual_length = length;
777                         memcpy(urb->transfer_buffer, buffer, length);
778
779                         usb_hcd_unlink_urb_from_ep(hcd, urb);
780                         usb_hcd_giveback_urb(hcd, urb, 0);
781                 } else {
782                         length = 0;
783                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
784                 }
785                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
786         }
787
788         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
789          * exceed that limit if HZ is 100. The math is more clunky than
790          * maybe expected, this is to make sure that all timers for USB devices
791          * fire at the same time to give the CPU a break in between */
792         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
793                         (length == 0 && hcd->status_urb != NULL))
794                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
795 }
796 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
797
798 /* timer callback */
799 static void rh_timer_func (unsigned long _hcd)
800 {
801         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
802 }
803
804 /*-------------------------------------------------------------------------*/
805
806 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
807 {
808         int             retval;
809         unsigned long   flags;
810         unsigned        len = 1 + (urb->dev->maxchild / 8);
811
812         spin_lock_irqsave (&hcd_root_hub_lock, flags);
813         if (hcd->status_urb || urb->transfer_buffer_length < len) {
814                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
815                 retval = -EINVAL;
816                 goto done;
817         }
818
819         retval = usb_hcd_link_urb_to_ep(hcd, urb);
820         if (retval)
821                 goto done;
822
823         hcd->status_urb = urb;
824         urb->hcpriv = hcd;      /* indicate it's queued */
825         if (!hcd->uses_new_polling)
826                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
827
828         /* If a status change has already occurred, report it ASAP */
829         else if (HCD_POLL_PENDING(hcd))
830                 mod_timer(&hcd->rh_timer, jiffies);
831         retval = 0;
832  done:
833         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
834         return retval;
835 }
836
837 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
838 {
839         if (usb_endpoint_xfer_int(&urb->ep->desc))
840                 return rh_queue_status (hcd, urb);
841         if (usb_endpoint_xfer_control(&urb->ep->desc))
842                 return rh_call_control (hcd, urb);
843         return -EINVAL;
844 }
845
846 /*-------------------------------------------------------------------------*/
847
848 /* Unlinks of root-hub control URBs are legal, but they don't do anything
849  * since these URBs always execute synchronously.
850  */
851 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
852 {
853         unsigned long   flags;
854         int             rc;
855
856         spin_lock_irqsave(&hcd_root_hub_lock, flags);
857         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
858         if (rc)
859                 goto done;
860
861         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
862                 ;       /* Do nothing */
863
864         } else {                                /* Status URB */
865                 if (!hcd->uses_new_polling)
866                         del_timer (&hcd->rh_timer);
867                 if (urb == hcd->status_urb) {
868                         hcd->status_urb = NULL;
869                         usb_hcd_unlink_urb_from_ep(hcd, urb);
870                         usb_hcd_giveback_urb(hcd, urb, status);
871                 }
872         }
873  done:
874         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
875         return rc;
876 }
877
878
879
880 /*
881  * Show & store the current value of authorized_default
882  */
883 static ssize_t authorized_default_show(struct device *dev,
884                                        struct device_attribute *attr, char *buf)
885 {
886         struct usb_device *rh_usb_dev = to_usb_device(dev);
887         struct usb_bus *usb_bus = rh_usb_dev->bus;
888         struct usb_hcd *hcd;
889
890         hcd = bus_to_hcd(usb_bus);
891         return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
892 }
893
894 static ssize_t authorized_default_store(struct device *dev,
895                                         struct device_attribute *attr,
896                                         const char *buf, size_t size)
897 {
898         ssize_t result;
899         unsigned val;
900         struct usb_device *rh_usb_dev = to_usb_device(dev);
901         struct usb_bus *usb_bus = rh_usb_dev->bus;
902         struct usb_hcd *hcd;
903
904         hcd = bus_to_hcd(usb_bus);
905         result = sscanf(buf, "%u\n", &val);
906         if (result == 1) {
907                 if (val)
908                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
909                 else
910                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
911
912                 result = size;
913         } else {
914                 result = -EINVAL;
915         }
916         return result;
917 }
918 static DEVICE_ATTR_RW(authorized_default);
919
920 /*
921  * interface_authorized_default_show - show default authorization status
922  * for USB interfaces
923  *
924  * note: interface_authorized_default is the default value
925  *       for initializing the authorized attribute of interfaces
926  */
927 static ssize_t interface_authorized_default_show(struct device *dev,
928                 struct device_attribute *attr, char *buf)
929 {
930         struct usb_device *usb_dev = to_usb_device(dev);
931         struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
932
933         return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
934 }
935
936 /*
937  * interface_authorized_default_store - store default authorization status
938  * for USB interfaces
939  *
940  * note: interface_authorized_default is the default value
941  *       for initializing the authorized attribute of interfaces
942  */
943 static ssize_t interface_authorized_default_store(struct device *dev,
944                 struct device_attribute *attr, const char *buf, size_t count)
945 {
946         struct usb_device *usb_dev = to_usb_device(dev);
947         struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
948         int rc = count;
949         bool val;
950
951         if (strtobool(buf, &val) != 0)
952                 return -EINVAL;
953
954         if (val)
955                 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
956         else
957                 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
958
959         return rc;
960 }
961 static DEVICE_ATTR_RW(interface_authorized_default);
962
963 /* Group all the USB bus attributes */
964 static struct attribute *usb_bus_attrs[] = {
965                 &dev_attr_authorized_default.attr,
966                 &dev_attr_interface_authorized_default.attr,
967                 NULL,
968 };
969
970 static struct attribute_group usb_bus_attr_group = {
971         .name = NULL,   /* we want them in the same directory */
972         .attrs = usb_bus_attrs,
973 };
974
975
976
977 /*-------------------------------------------------------------------------*/
978
979 /**
980  * usb_bus_init - shared initialization code
981  * @bus: the bus structure being initialized
982  *
983  * This code is used to initialize a usb_bus structure, memory for which is
984  * separately managed.
985  */
986 static void usb_bus_init (struct usb_bus *bus)
987 {
988         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
989
990         bus->devnum_next = 1;
991
992         bus->root_hub = NULL;
993         bus->busnum = -1;
994         bus->bandwidth_allocated = 0;
995         bus->bandwidth_int_reqs  = 0;
996         bus->bandwidth_isoc_reqs = 0;
997         mutex_init(&bus->usb_address0_mutex);
998 }
999
1000 /*-------------------------------------------------------------------------*/
1001
1002 /**
1003  * usb_register_bus - registers the USB host controller with the usb core
1004  * @bus: pointer to the bus to register
1005  * Context: !in_interrupt()
1006  *
1007  * Assigns a bus number, and links the controller into usbcore data
1008  * structures so that it can be seen by scanning the bus list.
1009  *
1010  * Return: 0 if successful. A negative error code otherwise.
1011  */
1012 static int usb_register_bus(struct usb_bus *bus)
1013 {
1014         int result = -E2BIG;
1015         int busnum;
1016
1017         mutex_lock(&usb_bus_idr_lock);
1018         busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1019         if (busnum < 0) {
1020                 pr_err("%s: failed to get bus number\n", usbcore_name);
1021                 goto error_find_busnum;
1022         }
1023         bus->busnum = busnum;
1024         mutex_unlock(&usb_bus_idr_lock);
1025
1026         usb_notify_add_bus(bus);
1027
1028         dev_info (bus->controller, "new USB bus registered, assigned bus "
1029                   "number %d\n", bus->busnum);
1030         return 0;
1031
1032 error_find_busnum:
1033         mutex_unlock(&usb_bus_idr_lock);
1034         return result;
1035 }
1036
1037 /**
1038  * usb_deregister_bus - deregisters the USB host controller
1039  * @bus: pointer to the bus to deregister
1040  * Context: !in_interrupt()
1041  *
1042  * Recycles the bus number, and unlinks the controller from usbcore data
1043  * structures so that it won't be seen by scanning the bus list.
1044  */
1045 static void usb_deregister_bus (struct usb_bus *bus)
1046 {
1047         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1048
1049         /*
1050          * NOTE: make sure that all the devices are removed by the
1051          * controller code, as well as having it call this when cleaning
1052          * itself up
1053          */
1054         mutex_lock(&usb_bus_idr_lock);
1055         idr_remove(&usb_bus_idr, bus->busnum);
1056         mutex_unlock(&usb_bus_idr_lock);
1057
1058         usb_notify_remove_bus(bus);
1059 }
1060
1061 /**
1062  * register_root_hub - called by usb_add_hcd() to register a root hub
1063  * @hcd: host controller for this root hub
1064  *
1065  * This function registers the root hub with the USB subsystem.  It sets up
1066  * the device properly in the device tree and then calls usb_new_device()
1067  * to register the usb device.  It also assigns the root hub's USB address
1068  * (always 1).
1069  *
1070  * Return: 0 if successful. A negative error code otherwise.
1071  */
1072 static int register_root_hub(struct usb_hcd *hcd)
1073 {
1074         struct device *parent_dev = hcd->self.controller;
1075         struct usb_device *usb_dev = hcd->self.root_hub;
1076         const int devnum = 1;
1077         int retval;
1078
1079         usb_dev->devnum = devnum;
1080         usb_dev->bus->devnum_next = devnum + 1;
1081         memset (&usb_dev->bus->devmap.devicemap, 0,
1082                         sizeof usb_dev->bus->devmap.devicemap);
1083         set_bit (devnum, usb_dev->bus->devmap.devicemap);
1084         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1085
1086         mutex_lock(&usb_bus_idr_lock);
1087
1088         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1089         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1090         if (retval != sizeof usb_dev->descriptor) {
1091                 mutex_unlock(&usb_bus_idr_lock);
1092                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1093                                 dev_name(&usb_dev->dev), retval);
1094                 return (retval < 0) ? retval : -EMSGSIZE;
1095         }
1096
1097         if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1098                 retval = usb_get_bos_descriptor(usb_dev);
1099                 if (!retval) {
1100                         usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1101                 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1102                         mutex_unlock(&usb_bus_idr_lock);
1103                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1104                                         dev_name(&usb_dev->dev), retval);
1105                         return retval;
1106                 }
1107         }
1108
1109         retval = usb_new_device (usb_dev);
1110         if (retval) {
1111                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1112                                 dev_name(&usb_dev->dev), retval);
1113         } else {
1114                 spin_lock_irq (&hcd_root_hub_lock);
1115                 hcd->rh_registered = 1;
1116                 spin_unlock_irq (&hcd_root_hub_lock);
1117
1118                 /* Did the HC die before the root hub was registered? */
1119                 if (HCD_DEAD(hcd))
1120                         usb_hc_died (hcd);      /* This time clean up */
1121         }
1122         mutex_unlock(&usb_bus_idr_lock);
1123
1124         return retval;
1125 }
1126
1127 /*
1128  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1129  * @bus: the bus which the root hub belongs to
1130  * @portnum: the port which is being resumed
1131  *
1132  * HCDs should call this function when they know that a resume signal is
1133  * being sent to a root-hub port.  The root hub will be prevented from
1134  * going into autosuspend until usb_hcd_end_port_resume() is called.
1135  *
1136  * The bus's private lock must be held by the caller.
1137  */
1138 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1139 {
1140         unsigned bit = 1 << portnum;
1141
1142         if (!(bus->resuming_ports & bit)) {
1143                 bus->resuming_ports |= bit;
1144                 pm_runtime_get_noresume(&bus->root_hub->dev);
1145         }
1146 }
1147 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1148
1149 /*
1150  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1151  * @bus: the bus which the root hub belongs to
1152  * @portnum: the port which is being resumed
1153  *
1154  * HCDs should call this function when they know that a resume signal has
1155  * stopped being sent to a root-hub port.  The root hub will be allowed to
1156  * autosuspend again.
1157  *
1158  * The bus's private lock must be held by the caller.
1159  */
1160 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1161 {
1162         unsigned bit = 1 << portnum;
1163
1164         if (bus->resuming_ports & bit) {
1165                 bus->resuming_ports &= ~bit;
1166                 pm_runtime_put_noidle(&bus->root_hub->dev);
1167         }
1168 }
1169 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1170
1171 /*-------------------------------------------------------------------------*/
1172
1173 /**
1174  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1175  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1176  * @is_input: true iff the transaction sends data to the host
1177  * @isoc: true for isochronous transactions, false for interrupt ones
1178  * @bytecount: how many bytes in the transaction.
1179  *
1180  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1181  *
1182  * Note:
1183  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1184  * scheduled in software, this function is only used for such scheduling.
1185  */
1186 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1187 {
1188         unsigned long   tmp;
1189
1190         switch (speed) {
1191         case USB_SPEED_LOW:     /* INTR only */
1192                 if (is_input) {
1193                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1194                         return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1195                 } else {
1196                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1197                         return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1198                 }
1199         case USB_SPEED_FULL:    /* ISOC or INTR */
1200                 if (isoc) {
1201                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1202                         return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1203                 } else {
1204                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1205                         return 9107L + BW_HOST_DELAY + tmp;
1206                 }
1207         case USB_SPEED_HIGH:    /* ISOC or INTR */
1208                 /* FIXME adjust for input vs output */
1209                 if (isoc)
1210                         tmp = HS_NSECS_ISO (bytecount);
1211                 else
1212                         tmp = HS_NSECS (bytecount);
1213                 return tmp;
1214         default:
1215                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1216                 return -1;
1217         }
1218 }
1219 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1220
1221
1222 /*-------------------------------------------------------------------------*/
1223
1224 /*
1225  * Generic HC operations.
1226  */
1227
1228 /*-------------------------------------------------------------------------*/
1229
1230 /**
1231  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1232  * @hcd: host controller to which @urb was submitted
1233  * @urb: URB being submitted
1234  *
1235  * Host controller drivers should call this routine in their enqueue()
1236  * method.  The HCD's private spinlock must be held and interrupts must
1237  * be disabled.  The actions carried out here are required for URB
1238  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1239  *
1240  * Return: 0 for no error, otherwise a negative error code (in which case
1241  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1242  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1243  * the private spinlock and returning.
1244  */
1245 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1246 {
1247         int             rc = 0;
1248
1249         spin_lock(&hcd_urb_list_lock);
1250
1251         /* Check that the URB isn't being killed */
1252         if (unlikely(atomic_read(&urb->reject))) {
1253                 rc = -EPERM;
1254                 goto done;
1255         }
1256
1257         if (unlikely(!urb->ep->enabled)) {
1258                 rc = -ENOENT;
1259                 goto done;
1260         }
1261
1262         if (unlikely(!urb->dev->can_submit)) {
1263                 rc = -EHOSTUNREACH;
1264                 goto done;
1265         }
1266
1267         /*
1268          * Check the host controller's state and add the URB to the
1269          * endpoint's queue.
1270          */
1271         if (HCD_RH_RUNNING(hcd)) {
1272                 urb->unlinked = 0;
1273                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1274         } else {
1275                 rc = -ESHUTDOWN;
1276                 goto done;
1277         }
1278  done:
1279         spin_unlock(&hcd_urb_list_lock);
1280         return rc;
1281 }
1282 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1283
1284 /**
1285  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1286  * @hcd: host controller to which @urb was submitted
1287  * @urb: URB being checked for unlinkability
1288  * @status: error code to store in @urb if the unlink succeeds
1289  *
1290  * Host controller drivers should call this routine in their dequeue()
1291  * method.  The HCD's private spinlock must be held and interrupts must
1292  * be disabled.  The actions carried out here are required for making
1293  * sure than an unlink is valid.
1294  *
1295  * Return: 0 for no error, otherwise a negative error code (in which case
1296  * the dequeue() method must fail).  The possible error codes are:
1297  *
1298  *      -EIDRM: @urb was not submitted or has already completed.
1299  *              The completion function may not have been called yet.
1300  *
1301  *      -EBUSY: @urb has already been unlinked.
1302  */
1303 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1304                 int status)
1305 {
1306         struct list_head        *tmp;
1307
1308         /* insist the urb is still queued */
1309         list_for_each(tmp, &urb->ep->urb_list) {
1310                 if (tmp == &urb->urb_list)
1311                         break;
1312         }
1313         if (tmp != &urb->urb_list)
1314                 return -EIDRM;
1315
1316         /* Any status except -EINPROGRESS means something already started to
1317          * unlink this URB from the hardware.  So there's no more work to do.
1318          */
1319         if (urb->unlinked)
1320                 return -EBUSY;
1321         urb->unlinked = status;
1322         return 0;
1323 }
1324 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1325
1326 /**
1327  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1328  * @hcd: host controller to which @urb was submitted
1329  * @urb: URB being unlinked
1330  *
1331  * Host controller drivers should call this routine before calling
1332  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1333  * interrupts must be disabled.  The actions carried out here are required
1334  * for URB completion.
1335  */
1336 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1337 {
1338         /* clear all state linking urb to this dev (and hcd) */
1339         spin_lock(&hcd_urb_list_lock);
1340         list_del_init(&urb->urb_list);
1341         spin_unlock(&hcd_urb_list_lock);
1342 }
1343 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1344
1345 /*
1346  * Some usb host controllers can only perform dma using a small SRAM area.
1347  * The usb core itself is however optimized for host controllers that can dma
1348  * using regular system memory - like pci devices doing bus mastering.
1349  *
1350  * To support host controllers with limited dma capabilities we provide dma
1351  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1352  * For this to work properly the host controller code must first use the
1353  * function dma_declare_coherent_memory() to point out which memory area
1354  * that should be used for dma allocations.
1355  *
1356  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1357  * dma using dma_alloc_coherent() which in turn allocates from the memory
1358  * area pointed out with dma_declare_coherent_memory().
1359  *
1360  * So, to summarize...
1361  *
1362  * - We need "local" memory, canonical example being
1363  *   a small SRAM on a discrete controller being the
1364  *   only memory that the controller can read ...
1365  *   (a) "normal" kernel memory is no good, and
1366  *   (b) there's not enough to share
1367  *
1368  * - The only *portable* hook for such stuff in the
1369  *   DMA framework is dma_declare_coherent_memory()
1370  *
1371  * - So we use that, even though the primary requirement
1372  *   is that the memory be "local" (hence addressable
1373  *   by that device), not "coherent".
1374  *
1375  */
1376
1377 static int hcd_alloc_coherent(struct usb_bus *bus,
1378                               gfp_t mem_flags, dma_addr_t *dma_handle,
1379                               void **vaddr_handle, size_t size,
1380                               enum dma_data_direction dir)
1381 {
1382         unsigned char *vaddr;
1383
1384         if (*vaddr_handle == NULL) {
1385                 WARN_ON_ONCE(1);
1386                 return -EFAULT;
1387         }
1388
1389         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1390                                  mem_flags, dma_handle);
1391         if (!vaddr)
1392                 return -ENOMEM;
1393
1394         /*
1395          * Store the virtual address of the buffer at the end
1396          * of the allocated dma buffer. The size of the buffer
1397          * may be uneven so use unaligned functions instead
1398          * of just rounding up. It makes sense to optimize for
1399          * memory footprint over access speed since the amount
1400          * of memory available for dma may be limited.
1401          */
1402         put_unaligned((unsigned long)*vaddr_handle,
1403                       (unsigned long *)(vaddr + size));
1404
1405         if (dir == DMA_TO_DEVICE)
1406                 memcpy(vaddr, *vaddr_handle, size);
1407
1408         *vaddr_handle = vaddr;
1409         return 0;
1410 }
1411
1412 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1413                               void **vaddr_handle, size_t size,
1414                               enum dma_data_direction dir)
1415 {
1416         unsigned char *vaddr = *vaddr_handle;
1417
1418         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1419
1420         if (dir == DMA_FROM_DEVICE)
1421                 memcpy(vaddr, *vaddr_handle, size);
1422
1423         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1424
1425         *vaddr_handle = vaddr;
1426         *dma_handle = 0;
1427 }
1428
1429 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1430 {
1431         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1432             (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1433                 dma_unmap_single(hcd->self.controller,
1434                                 urb->setup_dma,
1435                                 sizeof(struct usb_ctrlrequest),
1436                                 DMA_TO_DEVICE);
1437         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1438                 hcd_free_coherent(urb->dev->bus,
1439                                 &urb->setup_dma,
1440                                 (void **) &urb->setup_packet,
1441                                 sizeof(struct usb_ctrlrequest),
1442                                 DMA_TO_DEVICE);
1443
1444         /* Make it safe to call this routine more than once */
1445         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1446 }
1447 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1448
1449 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1450 {
1451         if (hcd->driver->unmap_urb_for_dma)
1452                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1453         else
1454                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1455 }
1456
1457 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1458 {
1459         enum dma_data_direction dir;
1460
1461         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1462
1463         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1464         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1465             (urb->transfer_flags & URB_DMA_MAP_SG))
1466                 dma_unmap_sg(hcd->self.controller,
1467                                 urb->sg,
1468                                 urb->num_sgs,
1469                                 dir);
1470         else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1471                  (urb->transfer_flags & URB_DMA_MAP_PAGE))
1472                 dma_unmap_page(hcd->self.controller,
1473                                 urb->transfer_dma,
1474                                 urb->transfer_buffer_length,
1475                                 dir);
1476         else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1477                  (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1478                 dma_unmap_single(hcd->self.controller,
1479                                 urb->transfer_dma,
1480                                 urb->transfer_buffer_length,
1481                                 dir);
1482         else if (urb->transfer_flags & URB_MAP_LOCAL)
1483                 hcd_free_coherent(urb->dev->bus,
1484                                 &urb->transfer_dma,
1485                                 &urb->transfer_buffer,
1486                                 urb->transfer_buffer_length,
1487                                 dir);
1488
1489         /* Make it safe to call this routine more than once */
1490         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1491                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1492 }
1493 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1494
1495 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1496                            gfp_t mem_flags)
1497 {
1498         if (hcd->driver->map_urb_for_dma)
1499                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1500         else
1501                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1502 }
1503
1504 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1505                             gfp_t mem_flags)
1506 {
1507         enum dma_data_direction dir;
1508         int ret = 0;
1509
1510         /* Map the URB's buffers for DMA access.
1511          * Lower level HCD code should use *_dma exclusively,
1512          * unless it uses pio or talks to another transport,
1513          * or uses the provided scatter gather list for bulk.
1514          */
1515
1516         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1517                 if (hcd->self.uses_pio_for_control)
1518                         return ret;
1519                 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1520                         urb->setup_dma = dma_map_single(
1521                                         hcd->self.controller,
1522                                         urb->setup_packet,
1523                                         sizeof(struct usb_ctrlrequest),
1524                                         DMA_TO_DEVICE);
1525                         if (dma_mapping_error(hcd->self.controller,
1526                                                 urb->setup_dma))
1527                                 return -EAGAIN;
1528                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1529                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1530                         ret = hcd_alloc_coherent(
1531                                         urb->dev->bus, mem_flags,
1532                                         &urb->setup_dma,
1533                                         (void **)&urb->setup_packet,
1534                                         sizeof(struct usb_ctrlrequest),
1535                                         DMA_TO_DEVICE);
1536                         if (ret)
1537                                 return ret;
1538                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1539                 }
1540         }
1541
1542         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1543         if (urb->transfer_buffer_length != 0
1544             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1545                 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1546                         if (urb->num_sgs) {
1547                                 int n;
1548
1549                                 /* We don't support sg for isoc transfers ! */
1550                                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1551                                         WARN_ON(1);
1552                                         return -EINVAL;
1553                                 }
1554
1555                                 n = dma_map_sg(
1556                                                 hcd->self.controller,
1557                                                 urb->sg,
1558                                                 urb->num_sgs,
1559                                                 dir);
1560                                 if (n <= 0)
1561                                         ret = -EAGAIN;
1562                                 else
1563                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1564                                 urb->num_mapped_sgs = n;
1565                                 if (n != urb->num_sgs)
1566                                         urb->transfer_flags |=
1567                                                         URB_DMA_SG_COMBINED;
1568                         } else if (urb->sg) {
1569                                 struct scatterlist *sg = urb->sg;
1570                                 urb->transfer_dma = dma_map_page(
1571                                                 hcd->self.controller,
1572                                                 sg_page(sg),
1573                                                 sg->offset,
1574                                                 urb->transfer_buffer_length,
1575                                                 dir);
1576                                 if (dma_mapping_error(hcd->self.controller,
1577                                                 urb->transfer_dma))
1578                                         ret = -EAGAIN;
1579                                 else
1580                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1581                         } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1582                                 WARN_ONCE(1, "transfer buffer not dma capable\n");
1583                                 ret = -EAGAIN;
1584                         } else {
1585                                 urb->transfer_dma = dma_map_single(
1586                                                 hcd->self.controller,
1587                                                 urb->transfer_buffer,
1588                                                 urb->transfer_buffer_length,
1589                                                 dir);
1590                                 if (dma_mapping_error(hcd->self.controller,
1591                                                 urb->transfer_dma))
1592                                         ret = -EAGAIN;
1593                                 else
1594                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1595                         }
1596                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1597                         ret = hcd_alloc_coherent(
1598                                         urb->dev->bus, mem_flags,
1599                                         &urb->transfer_dma,
1600                                         &urb->transfer_buffer,
1601                                         urb->transfer_buffer_length,
1602                                         dir);
1603                         if (ret == 0)
1604                                 urb->transfer_flags |= URB_MAP_LOCAL;
1605                 }
1606                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1607                                 URB_SETUP_MAP_LOCAL)))
1608                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1609         }
1610         return ret;
1611 }
1612 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1613
1614 /*-------------------------------------------------------------------------*/
1615
1616 /* may be called in any context with a valid urb->dev usecount
1617  * caller surrenders "ownership" of urb
1618  * expects usb_submit_urb() to have sanity checked and conditioned all
1619  * inputs in the urb
1620  */
1621 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1622 {
1623         int                     status;
1624         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1625
1626         /* increment urb's reference count as part of giving it to the HCD
1627          * (which will control it).  HCD guarantees that it either returns
1628          * an error or calls giveback(), but not both.
1629          */
1630         usb_get_urb(urb);
1631         atomic_inc(&urb->use_count);
1632         atomic_inc(&urb->dev->urbnum);
1633         usbmon_urb_submit(&hcd->self, urb);
1634
1635         /* NOTE requirements on root-hub callers (usbfs and the hub
1636          * driver, for now):  URBs' urb->transfer_buffer must be
1637          * valid and usb_buffer_{sync,unmap}() not be needed, since
1638          * they could clobber root hub response data.  Also, control
1639          * URBs must be submitted in process context with interrupts
1640          * enabled.
1641          */
1642
1643         if (is_root_hub(urb->dev)) {
1644                 status = rh_urb_enqueue(hcd, urb);
1645         } else {
1646                 status = map_urb_for_dma(hcd, urb, mem_flags);
1647                 if (likely(status == 0)) {
1648                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1649                         if (unlikely(status))
1650                                 unmap_urb_for_dma(hcd, urb);
1651                 }
1652         }
1653
1654         if (unlikely(status)) {
1655                 usbmon_urb_submit_error(&hcd->self, urb, status);
1656                 urb->hcpriv = NULL;
1657                 INIT_LIST_HEAD(&urb->urb_list);
1658                 atomic_dec(&urb->use_count);
1659                 atomic_dec(&urb->dev->urbnum);
1660                 if (atomic_read(&urb->reject))
1661                         wake_up(&usb_kill_urb_queue);
1662                 usb_put_urb(urb);
1663         }
1664         return status;
1665 }
1666
1667 /*-------------------------------------------------------------------------*/
1668
1669 /* this makes the hcd giveback() the urb more quickly, by kicking it
1670  * off hardware queues (which may take a while) and returning it as
1671  * soon as practical.  we've already set up the urb's return status,
1672  * but we can't know if the callback completed already.
1673  */
1674 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1675 {
1676         int             value;
1677
1678         if (is_root_hub(urb->dev))
1679                 value = usb_rh_urb_dequeue(hcd, urb, status);
1680         else {
1681
1682                 /* The only reason an HCD might fail this call is if
1683                  * it has not yet fully queued the urb to begin with.
1684                  * Such failures should be harmless. */
1685                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1686         }
1687         return value;
1688 }
1689
1690 /*
1691  * called in any context
1692  *
1693  * caller guarantees urb won't be recycled till both unlink()
1694  * and the urb's completion function return
1695  */
1696 int usb_hcd_unlink_urb (struct urb *urb, int status)
1697 {
1698         struct usb_hcd          *hcd;
1699         struct usb_device       *udev = urb->dev;
1700         int                     retval = -EIDRM;
1701         unsigned long           flags;
1702
1703         /* Prevent the device and bus from going away while
1704          * the unlink is carried out.  If they are already gone
1705          * then urb->use_count must be 0, since disconnected
1706          * devices can't have any active URBs.
1707          */
1708         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1709         if (atomic_read(&urb->use_count) > 0) {
1710                 retval = 0;
1711                 usb_get_dev(udev);
1712         }
1713         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1714         if (retval == 0) {
1715                 hcd = bus_to_hcd(urb->dev->bus);
1716                 retval = unlink1(hcd, urb, status);
1717                 if (retval == 0)
1718                         retval = -EINPROGRESS;
1719                 else if (retval != -EIDRM && retval != -EBUSY)
1720                         dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1721                                         urb, retval);
1722                 usb_put_dev(udev);
1723         }
1724         return retval;
1725 }
1726
1727 /*-------------------------------------------------------------------------*/
1728
1729 static void __usb_hcd_giveback_urb(struct urb *urb)
1730 {
1731         struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1732         struct usb_anchor *anchor = urb->anchor;
1733         int status = urb->unlinked;
1734         unsigned long flags;
1735
1736         urb->hcpriv = NULL;
1737         if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1738             urb->actual_length < urb->transfer_buffer_length &&
1739             !status))
1740                 status = -EREMOTEIO;
1741
1742         unmap_urb_for_dma(hcd, urb);
1743         usbmon_urb_complete(&hcd->self, urb, status);
1744         usb_anchor_suspend_wakeups(anchor);
1745         usb_unanchor_urb(urb);
1746         if (likely(status == 0))
1747                 usb_led_activity(USB_LED_EVENT_HOST);
1748
1749         /* pass ownership to the completion handler */
1750         urb->status = status;
1751
1752         /*
1753          * We disable local IRQs here avoid possible deadlock because
1754          * drivers may call spin_lock() to hold lock which might be
1755          * acquired in one hard interrupt handler.
1756          *
1757          * The local_irq_save()/local_irq_restore() around complete()
1758          * will be removed if current USB drivers have been cleaned up
1759          * and no one may trigger the above deadlock situation when
1760          * running complete() in tasklet.
1761          */
1762         local_irq_save(flags);
1763         urb->complete(urb);
1764         local_irq_restore(flags);
1765
1766         usb_anchor_resume_wakeups(anchor);
1767         atomic_dec(&urb->use_count);
1768         if (unlikely(atomic_read(&urb->reject)))
1769                 wake_up(&usb_kill_urb_queue);
1770         usb_put_urb(urb);
1771 }
1772
1773 static void usb_giveback_urb_bh(unsigned long param)
1774 {
1775         struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1776         struct list_head local_list;
1777
1778         spin_lock_irq(&bh->lock);
1779         bh->running = true;
1780  restart:
1781         list_replace_init(&bh->head, &local_list);
1782         spin_unlock_irq(&bh->lock);
1783
1784         while (!list_empty(&local_list)) {
1785                 struct urb *urb;
1786
1787                 urb = list_entry(local_list.next, struct urb, urb_list);
1788                 list_del_init(&urb->urb_list);
1789                 bh->completing_ep = urb->ep;
1790                 __usb_hcd_giveback_urb(urb);
1791                 bh->completing_ep = NULL;
1792         }
1793
1794         /* check if there are new URBs to giveback */
1795         spin_lock_irq(&bh->lock);
1796         if (!list_empty(&bh->head))
1797                 goto restart;
1798         bh->running = false;
1799         spin_unlock_irq(&bh->lock);
1800 }
1801
1802 /**
1803  * usb_hcd_giveback_urb - return URB from HCD to device driver
1804  * @hcd: host controller returning the URB
1805  * @urb: urb being returned to the USB device driver.
1806  * @status: completion status code for the URB.
1807  * Context: in_interrupt()
1808  *
1809  * This hands the URB from HCD to its USB device driver, using its
1810  * completion function.  The HCD has freed all per-urb resources
1811  * (and is done using urb->hcpriv).  It also released all HCD locks;
1812  * the device driver won't cause problems if it frees, modifies,
1813  * or resubmits this URB.
1814  *
1815  * If @urb was unlinked, the value of @status will be overridden by
1816  * @urb->unlinked.  Erroneous short transfers are detected in case
1817  * the HCD hasn't checked for them.
1818  */
1819 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1820 {
1821         struct giveback_urb_bh *bh;
1822         bool running, high_prio_bh;
1823
1824         /* pass status to tasklet via unlinked */
1825         if (likely(!urb->unlinked))
1826                 urb->unlinked = status;
1827
1828         if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1829                 __usb_hcd_giveback_urb(urb);
1830                 return;
1831         }
1832
1833         if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1834                 bh = &hcd->high_prio_bh;
1835                 high_prio_bh = true;
1836         } else {
1837                 bh = &hcd->low_prio_bh;
1838                 high_prio_bh = false;
1839         }
1840
1841         spin_lock(&bh->lock);
1842         list_add_tail(&urb->urb_list, &bh->head);
1843         running = bh->running;
1844         spin_unlock(&bh->lock);
1845
1846         if (running)
1847                 ;
1848         else if (high_prio_bh)
1849                 tasklet_hi_schedule(&bh->bh);
1850         else
1851                 tasklet_schedule(&bh->bh);
1852 }
1853 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1854
1855 /*-------------------------------------------------------------------------*/
1856
1857 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1858  * queue to drain completely.  The caller must first insure that no more
1859  * URBs can be submitted for this endpoint.
1860  */
1861 void usb_hcd_flush_endpoint(struct usb_device *udev,
1862                 struct usb_host_endpoint *ep)
1863 {
1864         struct usb_hcd          *hcd;
1865         struct urb              *urb;
1866
1867         if (!ep)
1868                 return;
1869         might_sleep();
1870         hcd = bus_to_hcd(udev->bus);
1871
1872         /* No more submits can occur */
1873         spin_lock_irq(&hcd_urb_list_lock);
1874 rescan:
1875         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1876                 int     is_in;
1877
1878                 if (urb->unlinked)
1879                         continue;
1880                 usb_get_urb (urb);
1881                 is_in = usb_urb_dir_in(urb);
1882                 spin_unlock(&hcd_urb_list_lock);
1883
1884                 /* kick hcd */
1885                 unlink1(hcd, urb, -ESHUTDOWN);
1886                 dev_dbg (hcd->self.controller,
1887                         "shutdown urb %p ep%d%s%s\n",
1888                         urb, usb_endpoint_num(&ep->desc),
1889                         is_in ? "in" : "out",
1890                         ({      char *s;
1891
1892                                  switch (usb_endpoint_type(&ep->desc)) {
1893                                  case USB_ENDPOINT_XFER_CONTROL:
1894                                         s = ""; break;
1895                                  case USB_ENDPOINT_XFER_BULK:
1896                                         s = "-bulk"; break;
1897                                  case USB_ENDPOINT_XFER_INT:
1898                                         s = "-intr"; break;
1899                                  default:
1900                                         s = "-iso"; break;
1901                                 };
1902                                 s;
1903                         }));
1904                 usb_put_urb (urb);
1905
1906                 /* list contents may have changed */
1907                 spin_lock(&hcd_urb_list_lock);
1908                 goto rescan;
1909         }
1910         spin_unlock_irq(&hcd_urb_list_lock);
1911
1912         /* Wait until the endpoint queue is completely empty */
1913         while (!list_empty (&ep->urb_list)) {
1914                 spin_lock_irq(&hcd_urb_list_lock);
1915
1916                 /* The list may have changed while we acquired the spinlock */
1917                 urb = NULL;
1918                 if (!list_empty (&ep->urb_list)) {
1919                         urb = list_entry (ep->urb_list.prev, struct urb,
1920                                         urb_list);
1921                         usb_get_urb (urb);
1922                 }
1923                 spin_unlock_irq(&hcd_urb_list_lock);
1924
1925                 if (urb) {
1926                         usb_kill_urb (urb);
1927                         usb_put_urb (urb);
1928                 }
1929         }
1930 }
1931
1932 /**
1933  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1934  *                              the bus bandwidth
1935  * @udev: target &usb_device
1936  * @new_config: new configuration to install
1937  * @cur_alt: the current alternate interface setting
1938  * @new_alt: alternate interface setting that is being installed
1939  *
1940  * To change configurations, pass in the new configuration in new_config,
1941  * and pass NULL for cur_alt and new_alt.
1942  *
1943  * To reset a device's configuration (put the device in the ADDRESSED state),
1944  * pass in NULL for new_config, cur_alt, and new_alt.
1945  *
1946  * To change alternate interface settings, pass in NULL for new_config,
1947  * pass in the current alternate interface setting in cur_alt,
1948  * and pass in the new alternate interface setting in new_alt.
1949  *
1950  * Return: An error if the requested bandwidth change exceeds the
1951  * bus bandwidth or host controller internal resources.
1952  */
1953 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1954                 struct usb_host_config *new_config,
1955                 struct usb_host_interface *cur_alt,
1956                 struct usb_host_interface *new_alt)
1957 {
1958         int num_intfs, i, j;
1959         struct usb_host_interface *alt = NULL;
1960         int ret = 0;
1961         struct usb_hcd *hcd;
1962         struct usb_host_endpoint *ep;
1963
1964         hcd = bus_to_hcd(udev->bus);
1965         if (!hcd->driver->check_bandwidth)
1966                 return 0;
1967
1968         /* Configuration is being removed - set configuration 0 */
1969         if (!new_config && !cur_alt) {
1970                 for (i = 1; i < 16; ++i) {
1971                         ep = udev->ep_out[i];
1972                         if (ep)
1973                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1974                         ep = udev->ep_in[i];
1975                         if (ep)
1976                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1977                 }
1978                 hcd->driver->check_bandwidth(hcd, udev);
1979                 return 0;
1980         }
1981         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1982          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1983          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1984          * ok to exclude it.
1985          */
1986         if (new_config) {
1987                 num_intfs = new_config->desc.bNumInterfaces;
1988                 /* Remove endpoints (except endpoint 0, which is always on the
1989                  * schedule) from the old config from the schedule
1990                  */
1991                 for (i = 1; i < 16; ++i) {
1992                         ep = udev->ep_out[i];
1993                         if (ep) {
1994                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1995                                 if (ret < 0)
1996                                         goto reset;
1997                         }
1998                         ep = udev->ep_in[i];
1999                         if (ep) {
2000                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2001                                 if (ret < 0)
2002                                         goto reset;
2003                         }
2004                 }
2005                 for (i = 0; i < num_intfs; ++i) {
2006                         struct usb_host_interface *first_alt;
2007                         int iface_num;
2008
2009                         first_alt = &new_config->intf_cache[i]->altsetting[0];
2010                         iface_num = first_alt->desc.bInterfaceNumber;
2011                         /* Set up endpoints for alternate interface setting 0 */
2012                         alt = usb_find_alt_setting(new_config, iface_num, 0);
2013                         if (!alt)
2014                                 /* No alt setting 0? Pick the first setting. */
2015                                 alt = first_alt;
2016
2017                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2018                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2019                                 if (ret < 0)
2020                                         goto reset;
2021                         }
2022                 }
2023         }
2024         if (cur_alt && new_alt) {
2025                 struct usb_interface *iface = usb_ifnum_to_if(udev,
2026                                 cur_alt->desc.bInterfaceNumber);
2027
2028                 if (!iface)
2029                         return -EINVAL;
2030                 if (iface->resetting_device) {
2031                         /*
2032                          * The USB core just reset the device, so the xHCI host
2033                          * and the device will think alt setting 0 is installed.
2034                          * However, the USB core will pass in the alternate
2035                          * setting installed before the reset as cur_alt.  Dig
2036                          * out the alternate setting 0 structure, or the first
2037                          * alternate setting if a broken device doesn't have alt
2038                          * setting 0.
2039                          */
2040                         cur_alt = usb_altnum_to_altsetting(iface, 0);
2041                         if (!cur_alt)
2042                                 cur_alt = &iface->altsetting[0];
2043                 }
2044
2045                 /* Drop all the endpoints in the current alt setting */
2046                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2047                         ret = hcd->driver->drop_endpoint(hcd, udev,
2048                                         &cur_alt->endpoint[i]);
2049                         if (ret < 0)
2050                                 goto reset;
2051                 }
2052                 /* Add all the endpoints in the new alt setting */
2053                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2054                         ret = hcd->driver->add_endpoint(hcd, udev,
2055                                         &new_alt->endpoint[i]);
2056                         if (ret < 0)
2057                                 goto reset;
2058                 }
2059         }
2060         ret = hcd->driver->check_bandwidth(hcd, udev);
2061 reset:
2062         if (ret < 0)
2063                 hcd->driver->reset_bandwidth(hcd, udev);
2064         return ret;
2065 }
2066
2067 /* Disables the endpoint: synchronizes with the hcd to make sure all
2068  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
2069  * have been called previously.  Use for set_configuration, set_interface,
2070  * driver removal, physical disconnect.
2071  *
2072  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
2073  * type, maxpacket size, toggle, halt status, and scheduling.
2074  */
2075 void usb_hcd_disable_endpoint(struct usb_device *udev,
2076                 struct usb_host_endpoint *ep)
2077 {
2078         struct usb_hcd          *hcd;
2079
2080         might_sleep();
2081         hcd = bus_to_hcd(udev->bus);
2082         if (hcd->driver->endpoint_disable)
2083                 hcd->driver->endpoint_disable(hcd, ep);
2084 }
2085
2086 /**
2087  * usb_hcd_reset_endpoint - reset host endpoint state
2088  * @udev: USB device.
2089  * @ep:   the endpoint to reset.
2090  *
2091  * Resets any host endpoint state such as the toggle bit, sequence
2092  * number and current window.
2093  */
2094 void usb_hcd_reset_endpoint(struct usb_device *udev,
2095                             struct usb_host_endpoint *ep)
2096 {
2097         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2098
2099         if (hcd->driver->endpoint_reset)
2100                 hcd->driver->endpoint_reset(hcd, ep);
2101         else {
2102                 int epnum = usb_endpoint_num(&ep->desc);
2103                 int is_out = usb_endpoint_dir_out(&ep->desc);
2104                 int is_control = usb_endpoint_xfer_control(&ep->desc);
2105
2106                 usb_settoggle(udev, epnum, is_out, 0);
2107                 if (is_control)
2108                         usb_settoggle(udev, epnum, !is_out, 0);
2109         }
2110 }
2111
2112 /**
2113  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2114  * @interface:          alternate setting that includes all endpoints.
2115  * @eps:                array of endpoints that need streams.
2116  * @num_eps:            number of endpoints in the array.
2117  * @num_streams:        number of streams to allocate.
2118  * @mem_flags:          flags hcd should use to allocate memory.
2119  *
2120  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2121  * Drivers may queue multiple transfers to different stream IDs, which may
2122  * complete in a different order than they were queued.
2123  *
2124  * Return: On success, the number of allocated streams. On failure, a negative
2125  * error code.
2126  */
2127 int usb_alloc_streams(struct usb_interface *interface,
2128                 struct usb_host_endpoint **eps, unsigned int num_eps,
2129                 unsigned int num_streams, gfp_t mem_flags)
2130 {
2131         struct usb_hcd *hcd;
2132         struct usb_device *dev;
2133         int i, ret;
2134
2135         dev = interface_to_usbdev(interface);
2136         hcd = bus_to_hcd(dev->bus);
2137         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2138                 return -EINVAL;
2139         if (dev->speed < USB_SPEED_SUPER)
2140                 return -EINVAL;
2141         if (dev->state < USB_STATE_CONFIGURED)
2142                 return -ENODEV;
2143
2144         for (i = 0; i < num_eps; i++) {
2145                 /* Streams only apply to bulk endpoints. */
2146                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2147                         return -EINVAL;
2148                 /* Re-alloc is not allowed */
2149                 if (eps[i]->streams)
2150                         return -EINVAL;
2151         }
2152
2153         ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2154                         num_streams, mem_flags);
2155         if (ret < 0)
2156                 return ret;
2157
2158         for (i = 0; i < num_eps; i++)
2159                 eps[i]->streams = ret;
2160
2161         return ret;
2162 }
2163 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2164
2165 /**
2166  * usb_free_streams - free bulk endpoint stream IDs.
2167  * @interface:  alternate setting that includes all endpoints.
2168  * @eps:        array of endpoints to remove streams from.
2169  * @num_eps:    number of endpoints in the array.
2170  * @mem_flags:  flags hcd should use to allocate memory.
2171  *
2172  * Reverts a group of bulk endpoints back to not using stream IDs.
2173  * Can fail if we are given bad arguments, or HCD is broken.
2174  *
2175  * Return: 0 on success. On failure, a negative error code.
2176  */
2177 int usb_free_streams(struct usb_interface *interface,
2178                 struct usb_host_endpoint **eps, unsigned int num_eps,
2179                 gfp_t mem_flags)
2180 {
2181         struct usb_hcd *hcd;
2182         struct usb_device *dev;
2183         int i, ret;
2184
2185         dev = interface_to_usbdev(interface);
2186         hcd = bus_to_hcd(dev->bus);
2187         if (dev->speed < USB_SPEED_SUPER)
2188                 return -EINVAL;
2189
2190         /* Double-free is not allowed */
2191         for (i = 0; i < num_eps; i++)
2192                 if (!eps[i] || !eps[i]->streams)
2193                         return -EINVAL;
2194
2195         ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2196         if (ret < 0)
2197                 return ret;
2198
2199         for (i = 0; i < num_eps; i++)
2200                 eps[i]->streams = 0;
2201
2202         return ret;
2203 }
2204 EXPORT_SYMBOL_GPL(usb_free_streams);
2205
2206 /* Protect against drivers that try to unlink URBs after the device
2207  * is gone, by waiting until all unlinks for @udev are finished.
2208  * Since we don't currently track URBs by device, simply wait until
2209  * nothing is running in the locked region of usb_hcd_unlink_urb().
2210  */
2211 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2212 {
2213         spin_lock_irq(&hcd_urb_unlink_lock);
2214         spin_unlock_irq(&hcd_urb_unlink_lock);
2215 }
2216
2217 /*-------------------------------------------------------------------------*/
2218
2219 /* called in any context */
2220 int usb_hcd_get_frame_number (struct usb_device *udev)
2221 {
2222         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2223
2224         if (!HCD_RH_RUNNING(hcd))
2225                 return -ESHUTDOWN;
2226         return hcd->driver->get_frame_number (hcd);
2227 }
2228
2229 /*-------------------------------------------------------------------------*/
2230
2231 #ifdef  CONFIG_PM
2232
2233 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2234 {
2235         struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2236         int             status;
2237         int             old_state = hcd->state;
2238
2239         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2240                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2241                         rhdev->do_remote_wakeup);
2242         if (HCD_DEAD(hcd)) {
2243                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2244                 return 0;
2245         }
2246
2247         if (!hcd->driver->bus_suspend) {
2248                 status = -ENOENT;
2249         } else {
2250                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2251                 hcd->state = HC_STATE_QUIESCING;
2252                 status = hcd->driver->bus_suspend(hcd);
2253         }
2254         if (status == 0) {
2255                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2256                 hcd->state = HC_STATE_SUSPENDED;
2257
2258                 /* Did we race with a root-hub wakeup event? */
2259                 if (rhdev->do_remote_wakeup) {
2260                         char    buffer[6];
2261
2262                         status = hcd->driver->hub_status_data(hcd, buffer);
2263                         if (status != 0) {
2264                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2265                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2266                                 status = -EBUSY;
2267                         }
2268                 }
2269         } else {
2270                 spin_lock_irq(&hcd_root_hub_lock);
2271                 if (!HCD_DEAD(hcd)) {
2272                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2273                         hcd->state = old_state;
2274                 }
2275                 spin_unlock_irq(&hcd_root_hub_lock);
2276                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2277                                 "suspend", status);
2278         }
2279         return status;
2280 }
2281
2282 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2283 {
2284         struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2285         int             status;
2286         int             old_state = hcd->state;
2287
2288         dev_dbg(&rhdev->dev, "usb %sresume\n",
2289                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2290         if (HCD_DEAD(hcd)) {
2291                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2292                 return 0;
2293         }
2294         if (!hcd->driver->bus_resume)
2295                 return -ENOENT;
2296         if (HCD_RH_RUNNING(hcd))
2297                 return 0;
2298
2299         hcd->state = HC_STATE_RESUMING;
2300         status = hcd->driver->bus_resume(hcd);
2301         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2302         if (status == 0) {
2303                 struct usb_device *udev;
2304                 int port1;
2305
2306                 spin_lock_irq(&hcd_root_hub_lock);
2307                 if (!HCD_DEAD(hcd)) {
2308                         usb_set_device_state(rhdev, rhdev->actconfig
2309                                         ? USB_STATE_CONFIGURED
2310                                         : USB_STATE_ADDRESS);
2311                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2312                         hcd->state = HC_STATE_RUNNING;
2313                 }
2314                 spin_unlock_irq(&hcd_root_hub_lock);
2315
2316                 /*
2317                  * Check whether any of the enabled ports on the root hub are
2318                  * unsuspended.  If they are then a TRSMRCY delay is needed
2319                  * (this is what the USB-2 spec calls a "global resume").
2320                  * Otherwise we can skip the delay.
2321                  */
2322                 usb_hub_for_each_child(rhdev, port1, udev) {
2323                         if (udev->state != USB_STATE_NOTATTACHED &&
2324                                         !udev->port_is_suspended) {
2325                                 usleep_range(10000, 11000);     /* TRSMRCY */
2326                                 break;
2327                         }
2328                 }
2329         } else {
2330                 hcd->state = old_state;
2331                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2332                                 "resume", status);
2333                 if (status != -ESHUTDOWN)
2334                         usb_hc_died(hcd);
2335         }
2336         return status;
2337 }
2338
2339 /* Workqueue routine for root-hub remote wakeup */
2340 static void hcd_resume_work(struct work_struct *work)
2341 {
2342         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2343         struct usb_device *udev = hcd->self.root_hub;
2344
2345         usb_remote_wakeup(udev);
2346 }
2347
2348 /**
2349  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2350  * @hcd: host controller for this root hub
2351  *
2352  * The USB host controller calls this function when its root hub is
2353  * suspended (with the remote wakeup feature enabled) and a remote
2354  * wakeup request is received.  The routine submits a workqueue request
2355  * to resume the root hub (that is, manage its downstream ports again).
2356  */
2357 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2358 {
2359         unsigned long flags;
2360
2361         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2362         if (hcd->rh_registered) {
2363                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2364                 queue_work(pm_wq, &hcd->wakeup_work);
2365         }
2366         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2367 }
2368 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2369
2370 #endif  /* CONFIG_PM */
2371
2372 /*-------------------------------------------------------------------------*/
2373
2374 #ifdef  CONFIG_USB_OTG
2375
2376 /**
2377  * usb_bus_start_enum - start immediate enumeration (for OTG)
2378  * @bus: the bus (must use hcd framework)
2379  * @port_num: 1-based number of port; usually bus->otg_port
2380  * Context: in_interrupt()
2381  *
2382  * Starts enumeration, with an immediate reset followed later by
2383  * hub_wq identifying and possibly configuring the device.
2384  * This is needed by OTG controller drivers, where it helps meet
2385  * HNP protocol timing requirements for starting a port reset.
2386  *
2387  * Return: 0 if successful.
2388  */
2389 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2390 {
2391         struct usb_hcd          *hcd;
2392         int                     status = -EOPNOTSUPP;
2393
2394         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2395          * boards with root hubs hooked up to internal devices (instead of
2396          * just the OTG port) may need more attention to resetting...
2397          */
2398         hcd = bus_to_hcd(bus);
2399         if (port_num && hcd->driver->start_port_reset)
2400                 status = hcd->driver->start_port_reset(hcd, port_num);
2401
2402         /* allocate hub_wq shortly after (first) root port reset finishes;
2403          * it may issue others, until at least 50 msecs have passed.
2404          */
2405         if (status == 0)
2406                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2407         return status;
2408 }
2409 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2410
2411 #endif
2412
2413 /*-------------------------------------------------------------------------*/
2414
2415 /**
2416  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2417  * @irq: the IRQ being raised
2418  * @__hcd: pointer to the HCD whose IRQ is being signaled
2419  *
2420  * If the controller isn't HALTed, calls the driver's irq handler.
2421  * Checks whether the controller is now dead.
2422  *
2423  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2424  */
2425 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2426 {
2427         struct usb_hcd          *hcd = __hcd;
2428         irqreturn_t             rc;
2429
2430         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2431                 rc = IRQ_NONE;
2432         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2433                 rc = IRQ_NONE;
2434         else
2435                 rc = IRQ_HANDLED;
2436
2437         return rc;
2438 }
2439 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2440
2441 /*-------------------------------------------------------------------------*/
2442
2443 /**
2444  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2445  * @hcd: pointer to the HCD representing the controller
2446  *
2447  * This is called by bus glue to report a USB host controller that died
2448  * while operations may still have been pending.  It's called automatically
2449  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2450  *
2451  * Only call this function with the primary HCD.
2452  */
2453 void usb_hc_died (struct usb_hcd *hcd)
2454 {
2455         unsigned long flags;
2456
2457         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2458
2459         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2460         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2461         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2462         if (hcd->rh_registered) {
2463                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2464
2465                 /* make hub_wq clean up old urbs and devices */
2466                 usb_set_device_state (hcd->self.root_hub,
2467                                 USB_STATE_NOTATTACHED);
2468                 usb_kick_hub_wq(hcd->self.root_hub);
2469         }
2470         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2471                 hcd = hcd->shared_hcd;
2472                 if (hcd->rh_registered) {
2473                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2474
2475                         /* make hub_wq clean up old urbs and devices */
2476                         usb_set_device_state(hcd->self.root_hub,
2477                                         USB_STATE_NOTATTACHED);
2478                         usb_kick_hub_wq(hcd->self.root_hub);
2479                 }
2480         }
2481         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2482         /* Make sure that the other roothub is also deallocated. */
2483 }
2484 EXPORT_SYMBOL_GPL (usb_hc_died);
2485
2486 /*-------------------------------------------------------------------------*/
2487
2488 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2489 {
2490
2491         spin_lock_init(&bh->lock);
2492         INIT_LIST_HEAD(&bh->head);
2493         tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2494 }
2495
2496 /**
2497  * usb_create_shared_hcd - create and initialize an HCD structure
2498  * @driver: HC driver that will use this hcd
2499  * @dev: device for this HC, stored in hcd->self.controller
2500  * @bus_name: value to store in hcd->self.bus_name
2501  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2502  *              PCI device.  Only allocate certain resources for the primary HCD
2503  * Context: !in_interrupt()
2504  *
2505  * Allocate a struct usb_hcd, with extra space at the end for the
2506  * HC driver's private data.  Initialize the generic members of the
2507  * hcd structure.
2508  *
2509  * Return: On success, a pointer to the created and initialized HCD structure.
2510  * On failure (e.g. if memory is unavailable), %NULL.
2511  */
2512 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2513                 struct device *dev, const char *bus_name,
2514                 struct usb_hcd *primary_hcd)
2515 {
2516         struct usb_hcd *hcd;
2517
2518         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2519         if (!hcd) {
2520                 dev_dbg (dev, "hcd alloc failed\n");
2521                 return NULL;
2522         }
2523         if (primary_hcd == NULL) {
2524                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2525                                 GFP_KERNEL);
2526                 if (!hcd->bandwidth_mutex) {
2527                         kfree(hcd);
2528                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2529                         return NULL;
2530                 }
2531                 mutex_init(hcd->bandwidth_mutex);
2532                 dev_set_drvdata(dev, hcd);
2533         } else {
2534                 mutex_lock(&usb_port_peer_mutex);
2535                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2536                 hcd->primary_hcd = primary_hcd;
2537                 primary_hcd->primary_hcd = primary_hcd;
2538                 hcd->shared_hcd = primary_hcd;
2539                 primary_hcd->shared_hcd = hcd;
2540                 mutex_unlock(&usb_port_peer_mutex);
2541         }
2542
2543         kref_init(&hcd->kref);
2544
2545         usb_bus_init(&hcd->self);
2546         hcd->self.controller = dev;
2547         hcd->self.bus_name = bus_name;
2548         hcd->self.uses_dma = (dev->dma_mask != NULL);
2549
2550         init_timer(&hcd->rh_timer);
2551         hcd->rh_timer.function = rh_timer_func;
2552         hcd->rh_timer.data = (unsigned long) hcd;
2553 #ifdef CONFIG_PM
2554         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2555 #endif
2556
2557         hcd->driver = driver;
2558         hcd->speed = driver->flags & HCD_MASK;
2559         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2560                         "USB Host Controller";
2561         return hcd;
2562 }
2563 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2564
2565 /**
2566  * usb_create_hcd - create and initialize an HCD structure
2567  * @driver: HC driver that will use this hcd
2568  * @dev: device for this HC, stored in hcd->self.controller
2569  * @bus_name: value to store in hcd->self.bus_name
2570  * Context: !in_interrupt()
2571  *
2572  * Allocate a struct usb_hcd, with extra space at the end for the
2573  * HC driver's private data.  Initialize the generic members of the
2574  * hcd structure.
2575  *
2576  * Return: On success, a pointer to the created and initialized HCD
2577  * structure. On failure (e.g. if memory is unavailable), %NULL.
2578  */
2579 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2580                 struct device *dev, const char *bus_name)
2581 {
2582         return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2583 }
2584 EXPORT_SYMBOL_GPL(usb_create_hcd);
2585
2586 /*
2587  * Roothubs that share one PCI device must also share the bandwidth mutex.
2588  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2589  * deallocated.
2590  *
2591  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2592  * freed.  When hcd_release() is called for either hcd in a peer set
2593  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to
2594  * block new peering attempts
2595  */
2596 static void hcd_release(struct kref *kref)
2597 {
2598         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2599
2600         mutex_lock(&usb_port_peer_mutex);
2601         if (usb_hcd_is_primary_hcd(hcd))
2602                 kfree(hcd->bandwidth_mutex);
2603         if (hcd->shared_hcd) {
2604                 struct usb_hcd *peer = hcd->shared_hcd;
2605
2606                 peer->shared_hcd = NULL;
2607                 if (peer->primary_hcd == hcd)
2608                         peer->primary_hcd = NULL;
2609         }
2610         mutex_unlock(&usb_port_peer_mutex);
2611         kfree(hcd);
2612 }
2613
2614 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2615 {
2616         if (hcd)
2617                 kref_get (&hcd->kref);
2618         return hcd;
2619 }
2620 EXPORT_SYMBOL_GPL(usb_get_hcd);
2621
2622 void usb_put_hcd (struct usb_hcd *hcd)
2623 {
2624         if (hcd)
2625                 kref_put (&hcd->kref, hcd_release);
2626 }
2627 EXPORT_SYMBOL_GPL(usb_put_hcd);
2628
2629 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2630 {
2631         if (!hcd->primary_hcd)
2632                 return 1;
2633         return hcd == hcd->primary_hcd;
2634 }
2635 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2636
2637 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2638 {
2639         if (!hcd->driver->find_raw_port_number)
2640                 return port1;
2641
2642         return hcd->driver->find_raw_port_number(hcd, port1);
2643 }
2644
2645 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2646                 unsigned int irqnum, unsigned long irqflags)
2647 {
2648         int retval;
2649
2650         if (hcd->driver->irq) {
2651
2652                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2653                                 hcd->driver->description, hcd->self.busnum);
2654                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2655                                 hcd->irq_descr, hcd);
2656                 if (retval != 0) {
2657                         dev_err(hcd->self.controller,
2658                                         "request interrupt %d failed\n",
2659                                         irqnum);
2660                         return retval;
2661                 }
2662                 hcd->irq = irqnum;
2663                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2664                                 (hcd->driver->flags & HCD_MEMORY) ?
2665                                         "io mem" : "io base",
2666                                         (unsigned long long)hcd->rsrc_start);
2667         } else {
2668                 hcd->irq = 0;
2669                 if (hcd->rsrc_start)
2670                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2671                                         (hcd->driver->flags & HCD_MEMORY) ?
2672                                         "io mem" : "io base",
2673                                         (unsigned long long)hcd->rsrc_start);
2674         }
2675         return 0;
2676 }
2677
2678 /*
2679  * Before we free this root hub, flush in-flight peering attempts
2680  * and disable peer lookups
2681  */
2682 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2683 {
2684         struct usb_device *rhdev;
2685
2686         mutex_lock(&usb_port_peer_mutex);
2687         rhdev = hcd->self.root_hub;
2688         hcd->self.root_hub = NULL;
2689         mutex_unlock(&usb_port_peer_mutex);
2690         usb_put_dev(rhdev);
2691 }
2692
2693 /**
2694  * usb_add_hcd - finish generic HCD structure initialization and register
2695  * @hcd: the usb_hcd structure to initialize
2696  * @irqnum: Interrupt line to allocate
2697  * @irqflags: Interrupt type flags
2698  *
2699  * Finish the remaining parts of generic HCD initialization: allocate the
2700  * buffers of consistent memory, register the bus, request the IRQ line,
2701  * and call the driver's reset() and start() routines.
2702  */
2703 int usb_add_hcd(struct usb_hcd *hcd,
2704                 unsigned int irqnum, unsigned long irqflags)
2705 {
2706         int retval;
2707         struct usb_device *rhdev;
2708
2709         if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2710                 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2711
2712                 if (IS_ERR(phy)) {
2713                         retval = PTR_ERR(phy);
2714                         if (retval == -EPROBE_DEFER)
2715                                 return retval;
2716                 } else {
2717                         retval = usb_phy_init(phy);
2718                         if (retval) {
2719                                 usb_put_phy(phy);
2720                                 return retval;
2721                         }
2722                         hcd->usb_phy = phy;
2723                         hcd->remove_phy = 1;
2724                 }
2725         }
2726
2727         if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2728                 struct phy *phy = phy_get(hcd->self.controller, "usb");
2729
2730                 if (IS_ERR(phy)) {
2731                         retval = PTR_ERR(phy);
2732                         if (retval == -EPROBE_DEFER)
2733                                 goto err_phy;
2734                 } else {
2735                         retval = phy_init(phy);
2736                         if (retval) {
2737                                 phy_put(phy);
2738                                 goto err_phy;
2739                         }
2740                         retval = phy_power_on(phy);
2741                         if (retval) {
2742                                 phy_exit(phy);
2743                                 phy_put(phy);
2744                                 goto err_phy;
2745                         }
2746                         hcd->phy = phy;
2747                         hcd->remove_phy = 1;
2748                 }
2749         }
2750
2751         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2752
2753         /* Keep old behaviour if authorized_default is not in [0, 1]. */
2754         if (authorized_default < 0 || authorized_default > 1) {
2755                 if (hcd->wireless)
2756                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2757                 else
2758                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2759         } else {
2760                 if (authorized_default)
2761                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2762                 else
2763                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2764         }
2765         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2766
2767         /* per default all interfaces are authorized */
2768         set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2769
2770         /* HC is in reset state, but accessible.  Now do the one-time init,
2771          * bottom up so that hcds can customize the root hubs before hub_wq
2772          * starts talking to them.  (Note, bus id is assigned early too.)
2773          */
2774         retval = hcd_buffer_create(hcd);
2775         if (retval != 0) {
2776                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2777                 goto err_create_buf;
2778         }
2779
2780         retval = usb_register_bus(&hcd->self);
2781         if (retval < 0)
2782                 goto err_register_bus;
2783
2784         rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2785         if (rhdev == NULL) {
2786                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2787                 retval = -ENOMEM;
2788                 goto err_allocate_root_hub;
2789         }
2790         mutex_lock(&usb_port_peer_mutex);
2791         hcd->self.root_hub = rhdev;
2792         mutex_unlock(&usb_port_peer_mutex);
2793
2794         switch (hcd->speed) {
2795         case HCD_USB11:
2796                 rhdev->speed = USB_SPEED_FULL;
2797                 break;
2798         case HCD_USB2:
2799                 rhdev->speed = USB_SPEED_HIGH;
2800                 break;
2801         case HCD_USB25:
2802                 rhdev->speed = USB_SPEED_WIRELESS;
2803                 break;
2804         case HCD_USB3:
2805                 rhdev->speed = USB_SPEED_SUPER;
2806                 break;
2807         case HCD_USB31:
2808                 rhdev->speed = USB_SPEED_SUPER_PLUS;
2809                 break;
2810         default:
2811                 retval = -EINVAL;
2812                 goto err_set_rh_speed;
2813         }
2814
2815         /* wakeup flag init defaults to "everything works" for root hubs,
2816          * but drivers can override it in reset() if needed, along with
2817          * recording the overall controller's system wakeup capability.
2818          */
2819         device_set_wakeup_capable(&rhdev->dev, 1);
2820
2821         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2822          * registered.  But since the controller can die at any time,
2823          * let's initialize the flag before touching the hardware.
2824          */
2825         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2826
2827         /* "reset" is misnamed; its role is now one-time init. the controller
2828          * should already have been reset (and boot firmware kicked off etc).
2829          */
2830         if (hcd->driver->reset) {
2831                 retval = hcd->driver->reset(hcd);
2832                 if (retval < 0) {
2833                         dev_err(hcd->self.controller, "can't setup: %d\n",
2834                                         retval);
2835                         goto err_hcd_driver_setup;
2836                 }
2837         }
2838         hcd->rh_pollable = 1;
2839
2840         /* NOTE: root hub and controller capabilities may not be the same */
2841         if (device_can_wakeup(hcd->self.controller)
2842                         && device_can_wakeup(&hcd->self.root_hub->dev))
2843                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2844
2845         /* initialize tasklets */
2846         init_giveback_urb_bh(&hcd->high_prio_bh);
2847         init_giveback_urb_bh(&hcd->low_prio_bh);
2848
2849         /* enable irqs just before we start the controller,
2850          * if the BIOS provides legacy PCI irqs.
2851          */
2852         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2853                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2854                 if (retval)
2855                         goto err_request_irq;
2856         }
2857
2858         hcd->state = HC_STATE_RUNNING;
2859         retval = hcd->driver->start(hcd);
2860         if (retval < 0) {
2861                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2862                 goto err_hcd_driver_start;
2863         }
2864
2865         /* starting here, usbcore will pay attention to this root hub */
2866         retval = register_root_hub(hcd);
2867         if (retval != 0)
2868                 goto err_register_root_hub;
2869
2870         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2871         if (retval < 0) {
2872                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2873                        retval);
2874                 goto error_create_attr_group;
2875         }
2876         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2877                 usb_hcd_poll_rh_status(hcd);
2878
2879         return retval;
2880
2881 error_create_attr_group:
2882         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2883         if (HC_IS_RUNNING(hcd->state))
2884                 hcd->state = HC_STATE_QUIESCING;
2885         spin_lock_irq(&hcd_root_hub_lock);
2886         hcd->rh_registered = 0;
2887         spin_unlock_irq(&hcd_root_hub_lock);
2888
2889 #ifdef CONFIG_PM
2890         cancel_work_sync(&hcd->wakeup_work);
2891 #endif
2892         mutex_lock(&usb_bus_idr_lock);
2893         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2894         mutex_unlock(&usb_bus_idr_lock);
2895 err_register_root_hub:
2896         hcd->rh_pollable = 0;
2897         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2898         del_timer_sync(&hcd->rh_timer);
2899         hcd->driver->stop(hcd);
2900         hcd->state = HC_STATE_HALT;
2901         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2902         del_timer_sync(&hcd->rh_timer);
2903 err_hcd_driver_start:
2904         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2905                 free_irq(irqnum, hcd);
2906 err_request_irq:
2907 err_hcd_driver_setup:
2908 err_set_rh_speed:
2909         usb_put_invalidate_rhdev(hcd);
2910 err_allocate_root_hub:
2911         usb_deregister_bus(&hcd->self);
2912 err_register_bus:
2913         hcd_buffer_destroy(hcd);
2914 err_create_buf:
2915         if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2916                 phy_power_off(hcd->phy);
2917                 phy_exit(hcd->phy);
2918                 phy_put(hcd->phy);
2919                 hcd->phy = NULL;
2920         }
2921 err_phy:
2922         if (hcd->remove_phy && hcd->usb_phy) {
2923                 usb_phy_shutdown(hcd->usb_phy);
2924                 usb_put_phy(hcd->usb_phy);
2925                 hcd->usb_phy = NULL;
2926         }
2927         return retval;
2928 }
2929 EXPORT_SYMBOL_GPL(usb_add_hcd);
2930
2931 /**
2932  * usb_remove_hcd - shutdown processing for generic HCDs
2933  * @hcd: the usb_hcd structure to remove
2934  * Context: !in_interrupt()
2935  *
2936  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2937  * invoking the HCD's stop() method.
2938  */
2939 void usb_remove_hcd(struct usb_hcd *hcd)
2940 {
2941         struct usb_device *rhdev = hcd->self.root_hub;
2942
2943         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2944
2945         usb_get_dev(rhdev);
2946         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2947
2948         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2949         if (HC_IS_RUNNING (hcd->state))
2950                 hcd->state = HC_STATE_QUIESCING;
2951
2952         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2953         spin_lock_irq (&hcd_root_hub_lock);
2954         hcd->rh_registered = 0;
2955         spin_unlock_irq (&hcd_root_hub_lock);
2956
2957 #ifdef CONFIG_PM
2958         cancel_work_sync(&hcd->wakeup_work);
2959 #endif
2960
2961         mutex_lock(&usb_bus_idr_lock);
2962         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2963         mutex_unlock(&usb_bus_idr_lock);
2964
2965         /*
2966          * tasklet_kill() isn't needed here because:
2967          * - driver's disconnect() called from usb_disconnect() should
2968          *   make sure its URBs are completed during the disconnect()
2969          *   callback
2970          *
2971          * - it is too late to run complete() here since driver may have
2972          *   been removed already now
2973          */
2974
2975         /* Prevent any more root-hub status calls from the timer.
2976          * The HCD might still restart the timer (if a port status change
2977          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2978          * the hub_status_data() callback.
2979          */
2980         hcd->rh_pollable = 0;
2981         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2982         del_timer_sync(&hcd->rh_timer);
2983
2984         hcd->driver->stop(hcd);
2985         hcd->state = HC_STATE_HALT;
2986
2987         /* In case the HCD restarted the timer, stop it again. */
2988         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2989         del_timer_sync(&hcd->rh_timer);
2990
2991         if (usb_hcd_is_primary_hcd(hcd)) {
2992                 if (hcd->irq > 0)
2993                         free_irq(hcd->irq, hcd);
2994         }
2995
2996         usb_deregister_bus(&hcd->self);
2997         hcd_buffer_destroy(hcd);
2998
2999         if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3000                 phy_power_off(hcd->phy);
3001                 phy_exit(hcd->phy);
3002                 phy_put(hcd->phy);
3003                 hcd->phy = NULL;
3004         }
3005         if (hcd->remove_phy && hcd->usb_phy) {
3006                 usb_phy_shutdown(hcd->usb_phy);
3007                 usb_put_phy(hcd->usb_phy);
3008                 hcd->usb_phy = NULL;
3009         }
3010
3011         usb_put_invalidate_rhdev(hcd);
3012 }
3013 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3014
3015 void
3016 usb_hcd_platform_shutdown(struct platform_device *dev)
3017 {
3018         struct usb_hcd *hcd = platform_get_drvdata(dev);
3019
3020         if (hcd->driver->shutdown)
3021                 hcd->driver->shutdown(hcd);
3022 }
3023 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3024
3025 /*-------------------------------------------------------------------------*/
3026
3027 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
3028
3029 const struct usb_mon_operations *mon_ops;
3030
3031 /*
3032  * The registration is unlocked.
3033  * We do it this way because we do not want to lock in hot paths.
3034  *
3035  * Notice that the code is minimally error-proof. Because usbmon needs
3036  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3037  */
3038
3039 int usb_mon_register(const struct usb_mon_operations *ops)
3040 {
3041
3042         if (mon_ops)
3043                 return -EBUSY;
3044
3045         mon_ops = ops;
3046         mb();
3047         return 0;
3048 }
3049 EXPORT_SYMBOL_GPL (usb_mon_register);
3050
3051 void usb_mon_deregister (void)
3052 {
3053
3054         if (mon_ops == NULL) {
3055                 printk(KERN_ERR "USB: monitor was not registered\n");
3056                 return;
3057         }
3058         mon_ops = NULL;
3059         mb();
3060 }
3061 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3062
3063 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */