]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/usb/core/hcd.c
ufs_truncate_blocks(): fix the case when size is in the last direct block
[karo-tx-linux.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
49 #include <linux/usb/otg.h>
50
51 #include "usb.h"
52
53
54 /*-------------------------------------------------------------------------*/
55
56 /*
57  * USB Host Controller Driver framework
58  *
59  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
60  * HCD-specific behaviors/bugs.
61  *
62  * This does error checks, tracks devices and urbs, and delegates to a
63  * "hc_driver" only for code (and data) that really needs to know about
64  * hardware differences.  That includes root hub registers, i/o queues,
65  * and so on ... but as little else as possible.
66  *
67  * Shared code includes most of the "root hub" code (these are emulated,
68  * though each HC's hardware works differently) and PCI glue, plus request
69  * tracking overhead.  The HCD code should only block on spinlocks or on
70  * hardware handshaking; blocking on software events (such as other kernel
71  * threads releasing resources, or completing actions) is all generic.
72  *
73  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
74  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
75  * only by the hub driver ... and that neither should be seen or used by
76  * usb client device drivers.
77  *
78  * Contributors of ideas or unattributed patches include: David Brownell,
79  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
80  *
81  * HISTORY:
82  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
83  *              associated cleanup.  "usb_hcd" still != "usb_bus".
84  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
85  */
86
87 /*-------------------------------------------------------------------------*/
88
89 /* Keep track of which host controller drivers are loaded */
90 unsigned long usb_hcds_loaded;
91 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
92
93 /* host controllers we manage */
94 DEFINE_IDR (usb_bus_idr);
95 EXPORT_SYMBOL_GPL (usb_bus_idr);
96
97 /* used when allocating bus numbers */
98 #define USB_MAXBUS              64
99
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
103
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118         return (udev->parent == NULL);
119 }
120
121 /*-------------------------------------------------------------------------*/
122
123 /*
124  * Sharable chunks of root hub code.
125  */
126
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL      bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER      bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131 /* usb 3.1 root hub device descriptor */
132 static const u8 usb31_rh_dev_descriptor[18] = {
133         0x12,       /*  __u8  bLength; */
134         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
135         0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
136
137         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
138         0x00,       /*  __u8  bDeviceSubClass; */
139         0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
140         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
141
142         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
143         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
144         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145
146         0x03,       /*  __u8  iManufacturer; */
147         0x02,       /*  __u8  iProduct; */
148         0x01,       /*  __u8  iSerialNumber; */
149         0x01        /*  __u8  bNumConfigurations; */
150 };
151
152 /* usb 3.0 root hub device descriptor */
153 static const u8 usb3_rh_dev_descriptor[18] = {
154         0x12,       /*  __u8  bLength; */
155         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
156         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
157
158         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
159         0x00,       /*  __u8  bDeviceSubClass; */
160         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
161         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
162
163         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
164         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
165         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
166
167         0x03,       /*  __u8  iManufacturer; */
168         0x02,       /*  __u8  iProduct; */
169         0x01,       /*  __u8  iSerialNumber; */
170         0x01        /*  __u8  bNumConfigurations; */
171 };
172
173 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
174 static const u8 usb25_rh_dev_descriptor[18] = {
175         0x12,       /*  __u8  bLength; */
176         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
177         0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
178
179         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
180         0x00,       /*  __u8  bDeviceSubClass; */
181         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
182         0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
183
184         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
185         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
186         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
187
188         0x03,       /*  __u8  iManufacturer; */
189         0x02,       /*  __u8  iProduct; */
190         0x01,       /*  __u8  iSerialNumber; */
191         0x01        /*  __u8  bNumConfigurations; */
192 };
193
194 /* usb 2.0 root hub device descriptor */
195 static const u8 usb2_rh_dev_descriptor[18] = {
196         0x12,       /*  __u8  bLength; */
197         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
198         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
199
200         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
201         0x00,       /*  __u8  bDeviceSubClass; */
202         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
203         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
204
205         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
206         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
207         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
208
209         0x03,       /*  __u8  iManufacturer; */
210         0x02,       /*  __u8  iProduct; */
211         0x01,       /*  __u8  iSerialNumber; */
212         0x01        /*  __u8  bNumConfigurations; */
213 };
214
215 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
216
217 /* usb 1.1 root hub device descriptor */
218 static const u8 usb11_rh_dev_descriptor[18] = {
219         0x12,       /*  __u8  bLength; */
220         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
221         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
222
223         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
224         0x00,       /*  __u8  bDeviceSubClass; */
225         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
226         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
227
228         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
229         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
230         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
231
232         0x03,       /*  __u8  iManufacturer; */
233         0x02,       /*  __u8  iProduct; */
234         0x01,       /*  __u8  iSerialNumber; */
235         0x01        /*  __u8  bNumConfigurations; */
236 };
237
238
239 /*-------------------------------------------------------------------------*/
240
241 /* Configuration descriptors for our root hubs */
242
243 static const u8 fs_rh_config_descriptor[] = {
244
245         /* one configuration */
246         0x09,       /*  __u8  bLength; */
247         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
248         0x19, 0x00, /*  __le16 wTotalLength; */
249         0x01,       /*  __u8  bNumInterfaces; (1) */
250         0x01,       /*  __u8  bConfigurationValue; */
251         0x00,       /*  __u8  iConfiguration; */
252         0xc0,       /*  __u8  bmAttributes;
253                                  Bit 7: must be set,
254                                      6: Self-powered,
255                                      5: Remote wakeup,
256                                      4..0: resvd */
257         0x00,       /*  __u8  MaxPower; */
258
259         /* USB 1.1:
260          * USB 2.0, single TT organization (mandatory):
261          *      one interface, protocol 0
262          *
263          * USB 2.0, multiple TT organization (optional):
264          *      two interfaces, protocols 1 (like single TT)
265          *      and 2 (multiple TT mode) ... config is
266          *      sometimes settable
267          *      NOT IMPLEMENTED
268          */
269
270         /* one interface */
271         0x09,       /*  __u8  if_bLength; */
272         USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
273         0x00,       /*  __u8  if_bInterfaceNumber; */
274         0x00,       /*  __u8  if_bAlternateSetting; */
275         0x01,       /*  __u8  if_bNumEndpoints; */
276         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
277         0x00,       /*  __u8  if_bInterfaceSubClass; */
278         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
279         0x00,       /*  __u8  if_iInterface; */
280
281         /* one endpoint (status change endpoint) */
282         0x07,       /*  __u8  ep_bLength; */
283         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
284         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
285         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
286         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
287         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
288 };
289
290 static const u8 hs_rh_config_descriptor[] = {
291
292         /* one configuration */
293         0x09,       /*  __u8  bLength; */
294         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
295         0x19, 0x00, /*  __le16 wTotalLength; */
296         0x01,       /*  __u8  bNumInterfaces; (1) */
297         0x01,       /*  __u8  bConfigurationValue; */
298         0x00,       /*  __u8  iConfiguration; */
299         0xc0,       /*  __u8  bmAttributes;
300                                  Bit 7: must be set,
301                                      6: Self-powered,
302                                      5: Remote wakeup,
303                                      4..0: resvd */
304         0x00,       /*  __u8  MaxPower; */
305
306         /* USB 1.1:
307          * USB 2.0, single TT organization (mandatory):
308          *      one interface, protocol 0
309          *
310          * USB 2.0, multiple TT organization (optional):
311          *      two interfaces, protocols 1 (like single TT)
312          *      and 2 (multiple TT mode) ... config is
313          *      sometimes settable
314          *      NOT IMPLEMENTED
315          */
316
317         /* one interface */
318         0x09,       /*  __u8  if_bLength; */
319         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
320         0x00,       /*  __u8  if_bInterfaceNumber; */
321         0x00,       /*  __u8  if_bAlternateSetting; */
322         0x01,       /*  __u8  if_bNumEndpoints; */
323         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
324         0x00,       /*  __u8  if_bInterfaceSubClass; */
325         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
326         0x00,       /*  __u8  if_iInterface; */
327
328         /* one endpoint (status change endpoint) */
329         0x07,       /*  __u8  ep_bLength; */
330         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
331         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
332         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
333                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
334                      * see hub.c:hub_configure() for details. */
335         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
336         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
337 };
338
339 static const u8 ss_rh_config_descriptor[] = {
340         /* one configuration */
341         0x09,       /*  __u8  bLength; */
342         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
343         0x1f, 0x00, /*  __le16 wTotalLength; */
344         0x01,       /*  __u8  bNumInterfaces; (1) */
345         0x01,       /*  __u8  bConfigurationValue; */
346         0x00,       /*  __u8  iConfiguration; */
347         0xc0,       /*  __u8  bmAttributes;
348                                  Bit 7: must be set,
349                                      6: Self-powered,
350                                      5: Remote wakeup,
351                                      4..0: resvd */
352         0x00,       /*  __u8  MaxPower; */
353
354         /* one interface */
355         0x09,       /*  __u8  if_bLength; */
356         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
357         0x00,       /*  __u8  if_bInterfaceNumber; */
358         0x00,       /*  __u8  if_bAlternateSetting; */
359         0x01,       /*  __u8  if_bNumEndpoints; */
360         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
361         0x00,       /*  __u8  if_bInterfaceSubClass; */
362         0x00,       /*  __u8  if_bInterfaceProtocol; */
363         0x00,       /*  __u8  if_iInterface; */
364
365         /* one endpoint (status change endpoint) */
366         0x07,       /*  __u8  ep_bLength; */
367         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
368         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
369         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
370                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
371                      * see hub.c:hub_configure() for details. */
372         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
373         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
374
375         /* one SuperSpeed endpoint companion descriptor */
376         0x06,        /* __u8 ss_bLength */
377         USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
378                      /* Companion */
379         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
380         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
381         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
382 };
383
384 /* authorized_default behaviour:
385  * -1 is authorized for all devices except wireless (old behaviour)
386  * 0 is unauthorized for all devices
387  * 1 is authorized for all devices
388  */
389 static int authorized_default = -1;
390 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
391 MODULE_PARM_DESC(authorized_default,
392                 "Default USB device authorization: 0 is not authorized, 1 is "
393                 "authorized, -1 is authorized except for wireless USB (default, "
394                 "old behaviour");
395 /*-------------------------------------------------------------------------*/
396
397 /**
398  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
399  * @s: Null-terminated ASCII (actually ISO-8859-1) string
400  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
401  * @len: Length (in bytes; may be odd) of descriptor buffer.
402  *
403  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
404  * whichever is less.
405  *
406  * Note:
407  * USB String descriptors can contain at most 126 characters; input
408  * strings longer than that are truncated.
409  */
410 static unsigned
411 ascii2desc(char const *s, u8 *buf, unsigned len)
412 {
413         unsigned n, t = 2 + 2*strlen(s);
414
415         if (t > 254)
416                 t = 254;        /* Longest possible UTF string descriptor */
417         if (len > t)
418                 len = t;
419
420         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
421
422         n = len;
423         while (n--) {
424                 *buf++ = t;
425                 if (!n--)
426                         break;
427                 *buf++ = t >> 8;
428                 t = (unsigned char)*s++;
429         }
430         return len;
431 }
432
433 /**
434  * rh_string() - provides string descriptors for root hub
435  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
436  * @hcd: the host controller for this root hub
437  * @data: buffer for output packet
438  * @len: length of the provided buffer
439  *
440  * Produces either a manufacturer, product or serial number string for the
441  * virtual root hub device.
442  *
443  * Return: The number of bytes filled in: the length of the descriptor or
444  * of the provided buffer, whichever is less.
445  */
446 static unsigned
447 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
448 {
449         char buf[100];
450         char const *s;
451         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
452
453         /* language ids */
454         switch (id) {
455         case 0:
456                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
457                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
458                 if (len > 4)
459                         len = 4;
460                 memcpy(data, langids, len);
461                 return len;
462         case 1:
463                 /* Serial number */
464                 s = hcd->self.bus_name;
465                 break;
466         case 2:
467                 /* Product name */
468                 s = hcd->product_desc;
469                 break;
470         case 3:
471                 /* Manufacturer */
472                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
473                         init_utsname()->release, hcd->driver->description);
474                 s = buf;
475                 break;
476         default:
477                 /* Can't happen; caller guarantees it */
478                 return 0;
479         }
480
481         return ascii2desc(s, data, len);
482 }
483
484
485 /* Root hub control transfers execute synchronously */
486 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
487 {
488         struct usb_ctrlrequest *cmd;
489         u16             typeReq, wValue, wIndex, wLength;
490         u8              *ubuf = urb->transfer_buffer;
491         unsigned        len = 0;
492         int             status;
493         u8              patch_wakeup = 0;
494         u8              patch_protocol = 0;
495         u16             tbuf_size;
496         u8              *tbuf = NULL;
497         const u8        *bufp;
498
499         might_sleep();
500
501         spin_lock_irq(&hcd_root_hub_lock);
502         status = usb_hcd_link_urb_to_ep(hcd, urb);
503         spin_unlock_irq(&hcd_root_hub_lock);
504         if (status)
505                 return status;
506         urb->hcpriv = hcd;      /* Indicate it's queued */
507
508         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
509         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
510         wValue   = le16_to_cpu (cmd->wValue);
511         wIndex   = le16_to_cpu (cmd->wIndex);
512         wLength  = le16_to_cpu (cmd->wLength);
513
514         if (wLength > urb->transfer_buffer_length)
515                 goto error;
516
517         /*
518          * tbuf should be at least as big as the
519          * USB hub descriptor.
520          */
521         tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
522         tbuf = kzalloc(tbuf_size, GFP_KERNEL);
523         if (!tbuf) {
524                 status = -ENOMEM;
525                 goto err_alloc;
526         }
527
528         bufp = tbuf;
529
530
531         urb->actual_length = 0;
532         switch (typeReq) {
533
534         /* DEVICE REQUESTS */
535
536         /* The root hub's remote wakeup enable bit is implemented using
537          * driver model wakeup flags.  If this system supports wakeup
538          * through USB, userspace may change the default "allow wakeup"
539          * policy through sysfs or these calls.
540          *
541          * Most root hubs support wakeup from downstream devices, for
542          * runtime power management (disabling USB clocks and reducing
543          * VBUS power usage).  However, not all of them do so; silicon,
544          * board, and BIOS bugs here are not uncommon, so these can't
545          * be treated quite like external hubs.
546          *
547          * Likewise, not all root hubs will pass wakeup events upstream,
548          * to wake up the whole system.  So don't assume root hub and
549          * controller capabilities are identical.
550          */
551
552         case DeviceRequest | USB_REQ_GET_STATUS:
553                 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
554                                         << USB_DEVICE_REMOTE_WAKEUP)
555                                 | (1 << USB_DEVICE_SELF_POWERED);
556                 tbuf[1] = 0;
557                 len = 2;
558                 break;
559         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
560                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
561                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
562                 else
563                         goto error;
564                 break;
565         case DeviceOutRequest | USB_REQ_SET_FEATURE:
566                 if (device_can_wakeup(&hcd->self.root_hub->dev)
567                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
568                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
569                 else
570                         goto error;
571                 break;
572         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
573                 tbuf[0] = 1;
574                 len = 1;
575                         /* FALLTHROUGH */
576         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
577                 break;
578         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
579                 switch (wValue & 0xff00) {
580                 case USB_DT_DEVICE << 8:
581                         switch (hcd->speed) {
582                         case HCD_USB31:
583                                 bufp = usb31_rh_dev_descriptor;
584                                 break;
585                         case HCD_USB3:
586                                 bufp = usb3_rh_dev_descriptor;
587                                 break;
588                         case HCD_USB25:
589                                 bufp = usb25_rh_dev_descriptor;
590                                 break;
591                         case HCD_USB2:
592                                 bufp = usb2_rh_dev_descriptor;
593                                 break;
594                         case HCD_USB11:
595                                 bufp = usb11_rh_dev_descriptor;
596                                 break;
597                         default:
598                                 goto error;
599                         }
600                         len = 18;
601                         if (hcd->has_tt)
602                                 patch_protocol = 1;
603                         break;
604                 case USB_DT_CONFIG << 8:
605                         switch (hcd->speed) {
606                         case HCD_USB31:
607                         case HCD_USB3:
608                                 bufp = ss_rh_config_descriptor;
609                                 len = sizeof ss_rh_config_descriptor;
610                                 break;
611                         case HCD_USB25:
612                         case HCD_USB2:
613                                 bufp = hs_rh_config_descriptor;
614                                 len = sizeof hs_rh_config_descriptor;
615                                 break;
616                         case HCD_USB11:
617                                 bufp = fs_rh_config_descriptor;
618                                 len = sizeof fs_rh_config_descriptor;
619                                 break;
620                         default:
621                                 goto error;
622                         }
623                         if (device_can_wakeup(&hcd->self.root_hub->dev))
624                                 patch_wakeup = 1;
625                         break;
626                 case USB_DT_STRING << 8:
627                         if ((wValue & 0xff) < 4)
628                                 urb->actual_length = rh_string(wValue & 0xff,
629                                                 hcd, ubuf, wLength);
630                         else /* unsupported IDs --> "protocol stall" */
631                                 goto error;
632                         break;
633                 case USB_DT_BOS << 8:
634                         goto nongeneric;
635                 default:
636                         goto error;
637                 }
638                 break;
639         case DeviceRequest | USB_REQ_GET_INTERFACE:
640                 tbuf[0] = 0;
641                 len = 1;
642                         /* FALLTHROUGH */
643         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
644                 break;
645         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
646                 /* wValue == urb->dev->devaddr */
647                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
648                         wValue);
649                 break;
650
651         /* INTERFACE REQUESTS (no defined feature/status flags) */
652
653         /* ENDPOINT REQUESTS */
654
655         case EndpointRequest | USB_REQ_GET_STATUS:
656                 /* ENDPOINT_HALT flag */
657                 tbuf[0] = 0;
658                 tbuf[1] = 0;
659                 len = 2;
660                         /* FALLTHROUGH */
661         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
662         case EndpointOutRequest | USB_REQ_SET_FEATURE:
663                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
664                 break;
665
666         /* CLASS REQUESTS (and errors) */
667
668         default:
669 nongeneric:
670                 /* non-generic request */
671                 switch (typeReq) {
672                 case GetHubStatus:
673                         len = 4;
674                         break;
675                 case GetPortStatus:
676                         if (wValue == HUB_PORT_STATUS)
677                                 len = 4;
678                         else
679                                 /* other port status types return 8 bytes */
680                                 len = 8;
681                         break;
682                 case GetHubDescriptor:
683                         len = sizeof (struct usb_hub_descriptor);
684                         break;
685                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
686                         /* len is returned by hub_control */
687                         break;
688                 }
689                 status = hcd->driver->hub_control (hcd,
690                         typeReq, wValue, wIndex,
691                         tbuf, wLength);
692
693                 if (typeReq == GetHubDescriptor)
694                         usb_hub_adjust_deviceremovable(hcd->self.root_hub,
695                                 (struct usb_hub_descriptor *)tbuf);
696                 break;
697 error:
698                 /* "protocol stall" on error */
699                 status = -EPIPE;
700         }
701
702         if (status < 0) {
703                 len = 0;
704                 if (status != -EPIPE) {
705                         dev_dbg (hcd->self.controller,
706                                 "CTRL: TypeReq=0x%x val=0x%x "
707                                 "idx=0x%x len=%d ==> %d\n",
708                                 typeReq, wValue, wIndex,
709                                 wLength, status);
710                 }
711         } else if (status > 0) {
712                 /* hub_control may return the length of data copied. */
713                 len = status;
714                 status = 0;
715         }
716         if (len) {
717                 if (urb->transfer_buffer_length < len)
718                         len = urb->transfer_buffer_length;
719                 urb->actual_length = len;
720                 /* always USB_DIR_IN, toward host */
721                 memcpy (ubuf, bufp, len);
722
723                 /* report whether RH hardware supports remote wakeup */
724                 if (patch_wakeup &&
725                                 len > offsetof (struct usb_config_descriptor,
726                                                 bmAttributes))
727                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
728                                 |= USB_CONFIG_ATT_WAKEUP;
729
730                 /* report whether RH hardware has an integrated TT */
731                 if (patch_protocol &&
732                                 len > offsetof(struct usb_device_descriptor,
733                                                 bDeviceProtocol))
734                         ((struct usb_device_descriptor *) ubuf)->
735                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
736         }
737
738         kfree(tbuf);
739  err_alloc:
740
741         /* any errors get returned through the urb completion */
742         spin_lock_irq(&hcd_root_hub_lock);
743         usb_hcd_unlink_urb_from_ep(hcd, urb);
744         usb_hcd_giveback_urb(hcd, urb, status);
745         spin_unlock_irq(&hcd_root_hub_lock);
746         return 0;
747 }
748
749 /*-------------------------------------------------------------------------*/
750
751 /*
752  * Root Hub interrupt transfers are polled using a timer if the
753  * driver requests it; otherwise the driver is responsible for
754  * calling usb_hcd_poll_rh_status() when an event occurs.
755  *
756  * Completions are called in_interrupt(), but they may or may not
757  * be in_irq().
758  */
759 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
760 {
761         struct urb      *urb;
762         int             length;
763         unsigned long   flags;
764         char            buffer[6];      /* Any root hubs with > 31 ports? */
765
766         if (unlikely(!hcd->rh_pollable))
767                 return;
768         if (!hcd->uses_new_polling && !hcd->status_urb)
769                 return;
770
771         length = hcd->driver->hub_status_data(hcd, buffer);
772         if (length > 0) {
773
774                 /* try to complete the status urb */
775                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
776                 urb = hcd->status_urb;
777                 if (urb) {
778                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
779                         hcd->status_urb = NULL;
780                         urb->actual_length = length;
781                         memcpy(urb->transfer_buffer, buffer, length);
782
783                         usb_hcd_unlink_urb_from_ep(hcd, urb);
784                         usb_hcd_giveback_urb(hcd, urb, 0);
785                 } else {
786                         length = 0;
787                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
788                 }
789                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
790         }
791
792         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
793          * exceed that limit if HZ is 100. The math is more clunky than
794          * maybe expected, this is to make sure that all timers for USB devices
795          * fire at the same time to give the CPU a break in between */
796         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
797                         (length == 0 && hcd->status_urb != NULL))
798                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
799 }
800 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
801
802 /* timer callback */
803 static void rh_timer_func (unsigned long _hcd)
804 {
805         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
806 }
807
808 /*-------------------------------------------------------------------------*/
809
810 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
811 {
812         int             retval;
813         unsigned long   flags;
814         unsigned        len = 1 + (urb->dev->maxchild / 8);
815
816         spin_lock_irqsave (&hcd_root_hub_lock, flags);
817         if (hcd->status_urb || urb->transfer_buffer_length < len) {
818                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
819                 retval = -EINVAL;
820                 goto done;
821         }
822
823         retval = usb_hcd_link_urb_to_ep(hcd, urb);
824         if (retval)
825                 goto done;
826
827         hcd->status_urb = urb;
828         urb->hcpriv = hcd;      /* indicate it's queued */
829         if (!hcd->uses_new_polling)
830                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
831
832         /* If a status change has already occurred, report it ASAP */
833         else if (HCD_POLL_PENDING(hcd))
834                 mod_timer(&hcd->rh_timer, jiffies);
835         retval = 0;
836  done:
837         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
838         return retval;
839 }
840
841 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
842 {
843         if (usb_endpoint_xfer_int(&urb->ep->desc))
844                 return rh_queue_status (hcd, urb);
845         if (usb_endpoint_xfer_control(&urb->ep->desc))
846                 return rh_call_control (hcd, urb);
847         return -EINVAL;
848 }
849
850 /*-------------------------------------------------------------------------*/
851
852 /* Unlinks of root-hub control URBs are legal, but they don't do anything
853  * since these URBs always execute synchronously.
854  */
855 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
856 {
857         unsigned long   flags;
858         int             rc;
859
860         spin_lock_irqsave(&hcd_root_hub_lock, flags);
861         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
862         if (rc)
863                 goto done;
864
865         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
866                 ;       /* Do nothing */
867
868         } else {                                /* Status URB */
869                 if (!hcd->uses_new_polling)
870                         del_timer (&hcd->rh_timer);
871                 if (urb == hcd->status_urb) {
872                         hcd->status_urb = NULL;
873                         usb_hcd_unlink_urb_from_ep(hcd, urb);
874                         usb_hcd_giveback_urb(hcd, urb, status);
875                 }
876         }
877  done:
878         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
879         return rc;
880 }
881
882
883
884 /*
885  * Show & store the current value of authorized_default
886  */
887 static ssize_t authorized_default_show(struct device *dev,
888                                        struct device_attribute *attr, char *buf)
889 {
890         struct usb_device *rh_usb_dev = to_usb_device(dev);
891         struct usb_bus *usb_bus = rh_usb_dev->bus;
892         struct usb_hcd *hcd;
893
894         hcd = bus_to_hcd(usb_bus);
895         return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
896 }
897
898 static ssize_t authorized_default_store(struct device *dev,
899                                         struct device_attribute *attr,
900                                         const char *buf, size_t size)
901 {
902         ssize_t result;
903         unsigned val;
904         struct usb_device *rh_usb_dev = to_usb_device(dev);
905         struct usb_bus *usb_bus = rh_usb_dev->bus;
906         struct usb_hcd *hcd;
907
908         hcd = bus_to_hcd(usb_bus);
909         result = sscanf(buf, "%u\n", &val);
910         if (result == 1) {
911                 if (val)
912                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
913                 else
914                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
915
916                 result = size;
917         } else {
918                 result = -EINVAL;
919         }
920         return result;
921 }
922 static DEVICE_ATTR_RW(authorized_default);
923
924 /*
925  * interface_authorized_default_show - show default authorization status
926  * for USB interfaces
927  *
928  * note: interface_authorized_default is the default value
929  *       for initializing the authorized attribute of interfaces
930  */
931 static ssize_t interface_authorized_default_show(struct device *dev,
932                 struct device_attribute *attr, char *buf)
933 {
934         struct usb_device *usb_dev = to_usb_device(dev);
935         struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
936
937         return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
938 }
939
940 /*
941  * interface_authorized_default_store - store default authorization status
942  * for USB interfaces
943  *
944  * note: interface_authorized_default is the default value
945  *       for initializing the authorized attribute of interfaces
946  */
947 static ssize_t interface_authorized_default_store(struct device *dev,
948                 struct device_attribute *attr, const char *buf, size_t count)
949 {
950         struct usb_device *usb_dev = to_usb_device(dev);
951         struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
952         int rc = count;
953         bool val;
954
955         if (strtobool(buf, &val) != 0)
956                 return -EINVAL;
957
958         if (val)
959                 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
960         else
961                 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
962
963         return rc;
964 }
965 static DEVICE_ATTR_RW(interface_authorized_default);
966
967 /* Group all the USB bus attributes */
968 static struct attribute *usb_bus_attrs[] = {
969                 &dev_attr_authorized_default.attr,
970                 &dev_attr_interface_authorized_default.attr,
971                 NULL,
972 };
973
974 static struct attribute_group usb_bus_attr_group = {
975         .name = NULL,   /* we want them in the same directory */
976         .attrs = usb_bus_attrs,
977 };
978
979
980
981 /*-------------------------------------------------------------------------*/
982
983 /**
984  * usb_bus_init - shared initialization code
985  * @bus: the bus structure being initialized
986  *
987  * This code is used to initialize a usb_bus structure, memory for which is
988  * separately managed.
989  */
990 static void usb_bus_init (struct usb_bus *bus)
991 {
992         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
993
994         bus->devnum_next = 1;
995
996         bus->root_hub = NULL;
997         bus->busnum = -1;
998         bus->bandwidth_allocated = 0;
999         bus->bandwidth_int_reqs  = 0;
1000         bus->bandwidth_isoc_reqs = 0;
1001         mutex_init(&bus->devnum_next_mutex);
1002 }
1003
1004 /*-------------------------------------------------------------------------*/
1005
1006 /**
1007  * usb_register_bus - registers the USB host controller with the usb core
1008  * @bus: pointer to the bus to register
1009  * Context: !in_interrupt()
1010  *
1011  * Assigns a bus number, and links the controller into usbcore data
1012  * structures so that it can be seen by scanning the bus list.
1013  *
1014  * Return: 0 if successful. A negative error code otherwise.
1015  */
1016 static int usb_register_bus(struct usb_bus *bus)
1017 {
1018         int result = -E2BIG;
1019         int busnum;
1020
1021         mutex_lock(&usb_bus_idr_lock);
1022         busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1023         if (busnum < 0) {
1024                 pr_err("%s: failed to get bus number\n", usbcore_name);
1025                 goto error_find_busnum;
1026         }
1027         bus->busnum = busnum;
1028         mutex_unlock(&usb_bus_idr_lock);
1029
1030         usb_notify_add_bus(bus);
1031
1032         dev_info (bus->controller, "new USB bus registered, assigned bus "
1033                   "number %d\n", bus->busnum);
1034         return 0;
1035
1036 error_find_busnum:
1037         mutex_unlock(&usb_bus_idr_lock);
1038         return result;
1039 }
1040
1041 /**
1042  * usb_deregister_bus - deregisters the USB host controller
1043  * @bus: pointer to the bus to deregister
1044  * Context: !in_interrupt()
1045  *
1046  * Recycles the bus number, and unlinks the controller from usbcore data
1047  * structures so that it won't be seen by scanning the bus list.
1048  */
1049 static void usb_deregister_bus (struct usb_bus *bus)
1050 {
1051         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1052
1053         /*
1054          * NOTE: make sure that all the devices are removed by the
1055          * controller code, as well as having it call this when cleaning
1056          * itself up
1057          */
1058         mutex_lock(&usb_bus_idr_lock);
1059         idr_remove(&usb_bus_idr, bus->busnum);
1060         mutex_unlock(&usb_bus_idr_lock);
1061
1062         usb_notify_remove_bus(bus);
1063 }
1064
1065 /**
1066  * register_root_hub - called by usb_add_hcd() to register a root hub
1067  * @hcd: host controller for this root hub
1068  *
1069  * This function registers the root hub with the USB subsystem.  It sets up
1070  * the device properly in the device tree and then calls usb_new_device()
1071  * to register the usb device.  It also assigns the root hub's USB address
1072  * (always 1).
1073  *
1074  * Return: 0 if successful. A negative error code otherwise.
1075  */
1076 static int register_root_hub(struct usb_hcd *hcd)
1077 {
1078         struct device *parent_dev = hcd->self.controller;
1079         struct device *sysdev = hcd->self.sysdev;
1080         struct usb_device *usb_dev = hcd->self.root_hub;
1081         const int devnum = 1;
1082         int retval;
1083
1084         usb_dev->devnum = devnum;
1085         usb_dev->bus->devnum_next = devnum + 1;
1086         memset (&usb_dev->bus->devmap.devicemap, 0,
1087                         sizeof usb_dev->bus->devmap.devicemap);
1088         set_bit (devnum, usb_dev->bus->devmap.devicemap);
1089         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1090
1091         mutex_lock(&usb_bus_idr_lock);
1092
1093         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1094         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1095         if (retval != sizeof usb_dev->descriptor) {
1096                 mutex_unlock(&usb_bus_idr_lock);
1097                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1098                                 dev_name(&usb_dev->dev), retval);
1099                 return (retval < 0) ? retval : -EMSGSIZE;
1100         }
1101
1102         if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1103                 retval = usb_get_bos_descriptor(usb_dev);
1104                 if (!retval) {
1105                         usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1106                 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1107                         mutex_unlock(&usb_bus_idr_lock);
1108                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1109                                         dev_name(&usb_dev->dev), retval);
1110                         return retval;
1111                 }
1112         }
1113
1114         retval = usb_new_device (usb_dev);
1115         if (retval) {
1116                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1117                                 dev_name(&usb_dev->dev), retval);
1118         } else {
1119                 spin_lock_irq (&hcd_root_hub_lock);
1120                 hcd->rh_registered = 1;
1121                 spin_unlock_irq (&hcd_root_hub_lock);
1122
1123                 /* Did the HC die before the root hub was registered? */
1124                 if (HCD_DEAD(hcd))
1125                         usb_hc_died (hcd);      /* This time clean up */
1126                 usb_dev->dev.of_node = sysdev->of_node;
1127         }
1128         mutex_unlock(&usb_bus_idr_lock);
1129
1130         return retval;
1131 }
1132
1133 /*
1134  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1135  * @bus: the bus which the root hub belongs to
1136  * @portnum: the port which is being resumed
1137  *
1138  * HCDs should call this function when they know that a resume signal is
1139  * being sent to a root-hub port.  The root hub will be prevented from
1140  * going into autosuspend until usb_hcd_end_port_resume() is called.
1141  *
1142  * The bus's private lock must be held by the caller.
1143  */
1144 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1145 {
1146         unsigned bit = 1 << portnum;
1147
1148         if (!(bus->resuming_ports & bit)) {
1149                 bus->resuming_ports |= bit;
1150                 pm_runtime_get_noresume(&bus->root_hub->dev);
1151         }
1152 }
1153 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1154
1155 /*
1156  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1157  * @bus: the bus which the root hub belongs to
1158  * @portnum: the port which is being resumed
1159  *
1160  * HCDs should call this function when they know that a resume signal has
1161  * stopped being sent to a root-hub port.  The root hub will be allowed to
1162  * autosuspend again.
1163  *
1164  * The bus's private lock must be held by the caller.
1165  */
1166 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1167 {
1168         unsigned bit = 1 << portnum;
1169
1170         if (bus->resuming_ports & bit) {
1171                 bus->resuming_ports &= ~bit;
1172                 pm_runtime_put_noidle(&bus->root_hub->dev);
1173         }
1174 }
1175 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1176
1177 /*-------------------------------------------------------------------------*/
1178
1179 /**
1180  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1181  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1182  * @is_input: true iff the transaction sends data to the host
1183  * @isoc: true for isochronous transactions, false for interrupt ones
1184  * @bytecount: how many bytes in the transaction.
1185  *
1186  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1187  *
1188  * Note:
1189  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1190  * scheduled in software, this function is only used for such scheduling.
1191  */
1192 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1193 {
1194         unsigned long   tmp;
1195
1196         switch (speed) {
1197         case USB_SPEED_LOW:     /* INTR only */
1198                 if (is_input) {
1199                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1200                         return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1201                 } else {
1202                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1203                         return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1204                 }
1205         case USB_SPEED_FULL:    /* ISOC or INTR */
1206                 if (isoc) {
1207                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1208                         return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1209                 } else {
1210                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1211                         return 9107L + BW_HOST_DELAY + tmp;
1212                 }
1213         case USB_SPEED_HIGH:    /* ISOC or INTR */
1214                 /* FIXME adjust for input vs output */
1215                 if (isoc)
1216                         tmp = HS_NSECS_ISO (bytecount);
1217                 else
1218                         tmp = HS_NSECS (bytecount);
1219                 return tmp;
1220         default:
1221                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1222                 return -1;
1223         }
1224 }
1225 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1226
1227
1228 /*-------------------------------------------------------------------------*/
1229
1230 /*
1231  * Generic HC operations.
1232  */
1233
1234 /*-------------------------------------------------------------------------*/
1235
1236 /**
1237  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1238  * @hcd: host controller to which @urb was submitted
1239  * @urb: URB being submitted
1240  *
1241  * Host controller drivers should call this routine in their enqueue()
1242  * method.  The HCD's private spinlock must be held and interrupts must
1243  * be disabled.  The actions carried out here are required for URB
1244  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1245  *
1246  * Return: 0 for no error, otherwise a negative error code (in which case
1247  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1248  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1249  * the private spinlock and returning.
1250  */
1251 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1252 {
1253         int             rc = 0;
1254
1255         spin_lock(&hcd_urb_list_lock);
1256
1257         /* Check that the URB isn't being killed */
1258         if (unlikely(atomic_read(&urb->reject))) {
1259                 rc = -EPERM;
1260                 goto done;
1261         }
1262
1263         if (unlikely(!urb->ep->enabled)) {
1264                 rc = -ENOENT;
1265                 goto done;
1266         }
1267
1268         if (unlikely(!urb->dev->can_submit)) {
1269                 rc = -EHOSTUNREACH;
1270                 goto done;
1271         }
1272
1273         /*
1274          * Check the host controller's state and add the URB to the
1275          * endpoint's queue.
1276          */
1277         if (HCD_RH_RUNNING(hcd)) {
1278                 urb->unlinked = 0;
1279                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1280         } else {
1281                 rc = -ESHUTDOWN;
1282                 goto done;
1283         }
1284  done:
1285         spin_unlock(&hcd_urb_list_lock);
1286         return rc;
1287 }
1288 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1289
1290 /**
1291  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1292  * @hcd: host controller to which @urb was submitted
1293  * @urb: URB being checked for unlinkability
1294  * @status: error code to store in @urb if the unlink succeeds
1295  *
1296  * Host controller drivers should call this routine in their dequeue()
1297  * method.  The HCD's private spinlock must be held and interrupts must
1298  * be disabled.  The actions carried out here are required for making
1299  * sure than an unlink is valid.
1300  *
1301  * Return: 0 for no error, otherwise a negative error code (in which case
1302  * the dequeue() method must fail).  The possible error codes are:
1303  *
1304  *      -EIDRM: @urb was not submitted or has already completed.
1305  *              The completion function may not have been called yet.
1306  *
1307  *      -EBUSY: @urb has already been unlinked.
1308  */
1309 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1310                 int status)
1311 {
1312         struct list_head        *tmp;
1313
1314         /* insist the urb is still queued */
1315         list_for_each(tmp, &urb->ep->urb_list) {
1316                 if (tmp == &urb->urb_list)
1317                         break;
1318         }
1319         if (tmp != &urb->urb_list)
1320                 return -EIDRM;
1321
1322         /* Any status except -EINPROGRESS means something already started to
1323          * unlink this URB from the hardware.  So there's no more work to do.
1324          */
1325         if (urb->unlinked)
1326                 return -EBUSY;
1327         urb->unlinked = status;
1328         return 0;
1329 }
1330 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1331
1332 /**
1333  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1334  * @hcd: host controller to which @urb was submitted
1335  * @urb: URB being unlinked
1336  *
1337  * Host controller drivers should call this routine before calling
1338  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1339  * interrupts must be disabled.  The actions carried out here are required
1340  * for URB completion.
1341  */
1342 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1343 {
1344         /* clear all state linking urb to this dev (and hcd) */
1345         spin_lock(&hcd_urb_list_lock);
1346         list_del_init(&urb->urb_list);
1347         spin_unlock(&hcd_urb_list_lock);
1348 }
1349 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1350
1351 /*
1352  * Some usb host controllers can only perform dma using a small SRAM area.
1353  * The usb core itself is however optimized for host controllers that can dma
1354  * using regular system memory - like pci devices doing bus mastering.
1355  *
1356  * To support host controllers with limited dma capabilities we provide dma
1357  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1358  * For this to work properly the host controller code must first use the
1359  * function dma_declare_coherent_memory() to point out which memory area
1360  * that should be used for dma allocations.
1361  *
1362  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1363  * dma using dma_alloc_coherent() which in turn allocates from the memory
1364  * area pointed out with dma_declare_coherent_memory().
1365  *
1366  * So, to summarize...
1367  *
1368  * - We need "local" memory, canonical example being
1369  *   a small SRAM on a discrete controller being the
1370  *   only memory that the controller can read ...
1371  *   (a) "normal" kernel memory is no good, and
1372  *   (b) there's not enough to share
1373  *
1374  * - The only *portable* hook for such stuff in the
1375  *   DMA framework is dma_declare_coherent_memory()
1376  *
1377  * - So we use that, even though the primary requirement
1378  *   is that the memory be "local" (hence addressable
1379  *   by that device), not "coherent".
1380  *
1381  */
1382
1383 static int hcd_alloc_coherent(struct usb_bus *bus,
1384                               gfp_t mem_flags, dma_addr_t *dma_handle,
1385                               void **vaddr_handle, size_t size,
1386                               enum dma_data_direction dir)
1387 {
1388         unsigned char *vaddr;
1389
1390         if (*vaddr_handle == NULL) {
1391                 WARN_ON_ONCE(1);
1392                 return -EFAULT;
1393         }
1394
1395         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1396                                  mem_flags, dma_handle);
1397         if (!vaddr)
1398                 return -ENOMEM;
1399
1400         /*
1401          * Store the virtual address of the buffer at the end
1402          * of the allocated dma buffer. The size of the buffer
1403          * may be uneven so use unaligned functions instead
1404          * of just rounding up. It makes sense to optimize for
1405          * memory footprint over access speed since the amount
1406          * of memory available for dma may be limited.
1407          */
1408         put_unaligned((unsigned long)*vaddr_handle,
1409                       (unsigned long *)(vaddr + size));
1410
1411         if (dir == DMA_TO_DEVICE)
1412                 memcpy(vaddr, *vaddr_handle, size);
1413
1414         *vaddr_handle = vaddr;
1415         return 0;
1416 }
1417
1418 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1419                               void **vaddr_handle, size_t size,
1420                               enum dma_data_direction dir)
1421 {
1422         unsigned char *vaddr = *vaddr_handle;
1423
1424         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1425
1426         if (dir == DMA_FROM_DEVICE)
1427                 memcpy(vaddr, *vaddr_handle, size);
1428
1429         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1430
1431         *vaddr_handle = vaddr;
1432         *dma_handle = 0;
1433 }
1434
1435 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1436 {
1437         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1438             (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1439                 dma_unmap_single(hcd->self.sysdev,
1440                                 urb->setup_dma,
1441                                 sizeof(struct usb_ctrlrequest),
1442                                 DMA_TO_DEVICE);
1443         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1444                 hcd_free_coherent(urb->dev->bus,
1445                                 &urb->setup_dma,
1446                                 (void **) &urb->setup_packet,
1447                                 sizeof(struct usb_ctrlrequest),
1448                                 DMA_TO_DEVICE);
1449
1450         /* Make it safe to call this routine more than once */
1451         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1452 }
1453 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1454
1455 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1456 {
1457         if (hcd->driver->unmap_urb_for_dma)
1458                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1459         else
1460                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1461 }
1462
1463 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1464 {
1465         enum dma_data_direction dir;
1466
1467         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1468
1469         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1470         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1471             (urb->transfer_flags & URB_DMA_MAP_SG))
1472                 dma_unmap_sg(hcd->self.sysdev,
1473                                 urb->sg,
1474                                 urb->num_sgs,
1475                                 dir);
1476         else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1477                  (urb->transfer_flags & URB_DMA_MAP_PAGE))
1478                 dma_unmap_page(hcd->self.sysdev,
1479                                 urb->transfer_dma,
1480                                 urb->transfer_buffer_length,
1481                                 dir);
1482         else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1483                  (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1484                 dma_unmap_single(hcd->self.sysdev,
1485                                 urb->transfer_dma,
1486                                 urb->transfer_buffer_length,
1487                                 dir);
1488         else if (urb->transfer_flags & URB_MAP_LOCAL)
1489                 hcd_free_coherent(urb->dev->bus,
1490                                 &urb->transfer_dma,
1491                                 &urb->transfer_buffer,
1492                                 urb->transfer_buffer_length,
1493                                 dir);
1494
1495         /* Make it safe to call this routine more than once */
1496         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1497                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1498 }
1499 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1500
1501 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1502                            gfp_t mem_flags)
1503 {
1504         if (hcd->driver->map_urb_for_dma)
1505                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1506         else
1507                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1508 }
1509
1510 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1511                             gfp_t mem_flags)
1512 {
1513         enum dma_data_direction dir;
1514         int ret = 0;
1515
1516         /* Map the URB's buffers for DMA access.
1517          * Lower level HCD code should use *_dma exclusively,
1518          * unless it uses pio or talks to another transport,
1519          * or uses the provided scatter gather list for bulk.
1520          */
1521
1522         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1523                 if (hcd->self.uses_pio_for_control)
1524                         return ret;
1525                 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1526                         urb->setup_dma = dma_map_single(
1527                                         hcd->self.sysdev,
1528                                         urb->setup_packet,
1529                                         sizeof(struct usb_ctrlrequest),
1530                                         DMA_TO_DEVICE);
1531                         if (dma_mapping_error(hcd->self.sysdev,
1532                                                 urb->setup_dma))
1533                                 return -EAGAIN;
1534                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1535                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1536                         ret = hcd_alloc_coherent(
1537                                         urb->dev->bus, mem_flags,
1538                                         &urb->setup_dma,
1539                                         (void **)&urb->setup_packet,
1540                                         sizeof(struct usb_ctrlrequest),
1541                                         DMA_TO_DEVICE);
1542                         if (ret)
1543                                 return ret;
1544                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1545                 }
1546         }
1547
1548         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1549         if (urb->transfer_buffer_length != 0
1550             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1551                 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1552                         if (urb->num_sgs) {
1553                                 int n;
1554
1555                                 /* We don't support sg for isoc transfers ! */
1556                                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1557                                         WARN_ON(1);
1558                                         return -EINVAL;
1559                                 }
1560
1561                                 n = dma_map_sg(
1562                                                 hcd->self.sysdev,
1563                                                 urb->sg,
1564                                                 urb->num_sgs,
1565                                                 dir);
1566                                 if (n <= 0)
1567                                         ret = -EAGAIN;
1568                                 else
1569                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1570                                 urb->num_mapped_sgs = n;
1571                                 if (n != urb->num_sgs)
1572                                         urb->transfer_flags |=
1573                                                         URB_DMA_SG_COMBINED;
1574                         } else if (urb->sg) {
1575                                 struct scatterlist *sg = urb->sg;
1576                                 urb->transfer_dma = dma_map_page(
1577                                                 hcd->self.sysdev,
1578                                                 sg_page(sg),
1579                                                 sg->offset,
1580                                                 urb->transfer_buffer_length,
1581                                                 dir);
1582                                 if (dma_mapping_error(hcd->self.sysdev,
1583                                                 urb->transfer_dma))
1584                                         ret = -EAGAIN;
1585                                 else
1586                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1587                         } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1588                                 WARN_ONCE(1, "transfer buffer not dma capable\n");
1589                                 ret = -EAGAIN;
1590                         } else {
1591                                 urb->transfer_dma = dma_map_single(
1592                                                 hcd->self.sysdev,
1593                                                 urb->transfer_buffer,
1594                                                 urb->transfer_buffer_length,
1595                                                 dir);
1596                                 if (dma_mapping_error(hcd->self.sysdev,
1597                                                 urb->transfer_dma))
1598                                         ret = -EAGAIN;
1599                                 else
1600                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1601                         }
1602                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1603                         ret = hcd_alloc_coherent(
1604                                         urb->dev->bus, mem_flags,
1605                                         &urb->transfer_dma,
1606                                         &urb->transfer_buffer,
1607                                         urb->transfer_buffer_length,
1608                                         dir);
1609                         if (ret == 0)
1610                                 urb->transfer_flags |= URB_MAP_LOCAL;
1611                 }
1612                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1613                                 URB_SETUP_MAP_LOCAL)))
1614                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1615         }
1616         return ret;
1617 }
1618 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1619
1620 /*-------------------------------------------------------------------------*/
1621
1622 /* may be called in any context with a valid urb->dev usecount
1623  * caller surrenders "ownership" of urb
1624  * expects usb_submit_urb() to have sanity checked and conditioned all
1625  * inputs in the urb
1626  */
1627 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1628 {
1629         int                     status;
1630         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1631
1632         /* increment urb's reference count as part of giving it to the HCD
1633          * (which will control it).  HCD guarantees that it either returns
1634          * an error or calls giveback(), but not both.
1635          */
1636         usb_get_urb(urb);
1637         atomic_inc(&urb->use_count);
1638         atomic_inc(&urb->dev->urbnum);
1639         usbmon_urb_submit(&hcd->self, urb);
1640
1641         /* NOTE requirements on root-hub callers (usbfs and the hub
1642          * driver, for now):  URBs' urb->transfer_buffer must be
1643          * valid and usb_buffer_{sync,unmap}() not be needed, since
1644          * they could clobber root hub response data.  Also, control
1645          * URBs must be submitted in process context with interrupts
1646          * enabled.
1647          */
1648
1649         if (is_root_hub(urb->dev)) {
1650                 status = rh_urb_enqueue(hcd, urb);
1651         } else {
1652                 status = map_urb_for_dma(hcd, urb, mem_flags);
1653                 if (likely(status == 0)) {
1654                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1655                         if (unlikely(status))
1656                                 unmap_urb_for_dma(hcd, urb);
1657                 }
1658         }
1659
1660         if (unlikely(status)) {
1661                 usbmon_urb_submit_error(&hcd->self, urb, status);
1662                 urb->hcpriv = NULL;
1663                 INIT_LIST_HEAD(&urb->urb_list);
1664                 atomic_dec(&urb->use_count);
1665                 atomic_dec(&urb->dev->urbnum);
1666                 if (atomic_read(&urb->reject))
1667                         wake_up(&usb_kill_urb_queue);
1668                 usb_put_urb(urb);
1669         }
1670         return status;
1671 }
1672
1673 /*-------------------------------------------------------------------------*/
1674
1675 /* this makes the hcd giveback() the urb more quickly, by kicking it
1676  * off hardware queues (which may take a while) and returning it as
1677  * soon as practical.  we've already set up the urb's return status,
1678  * but we can't know if the callback completed already.
1679  */
1680 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1681 {
1682         int             value;
1683
1684         if (is_root_hub(urb->dev))
1685                 value = usb_rh_urb_dequeue(hcd, urb, status);
1686         else {
1687
1688                 /* The only reason an HCD might fail this call is if
1689                  * it has not yet fully queued the urb to begin with.
1690                  * Such failures should be harmless. */
1691                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1692         }
1693         return value;
1694 }
1695
1696 /*
1697  * called in any context
1698  *
1699  * caller guarantees urb won't be recycled till both unlink()
1700  * and the urb's completion function return
1701  */
1702 int usb_hcd_unlink_urb (struct urb *urb, int status)
1703 {
1704         struct usb_hcd          *hcd;
1705         struct usb_device       *udev = urb->dev;
1706         int                     retval = -EIDRM;
1707         unsigned long           flags;
1708
1709         /* Prevent the device and bus from going away while
1710          * the unlink is carried out.  If they are already gone
1711          * then urb->use_count must be 0, since disconnected
1712          * devices can't have any active URBs.
1713          */
1714         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1715         if (atomic_read(&urb->use_count) > 0) {
1716                 retval = 0;
1717                 usb_get_dev(udev);
1718         }
1719         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1720         if (retval == 0) {
1721                 hcd = bus_to_hcd(urb->dev->bus);
1722                 retval = unlink1(hcd, urb, status);
1723                 if (retval == 0)
1724                         retval = -EINPROGRESS;
1725                 else if (retval != -EIDRM && retval != -EBUSY)
1726                         dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1727                                         urb, retval);
1728                 usb_put_dev(udev);
1729         }
1730         return retval;
1731 }
1732
1733 /*-------------------------------------------------------------------------*/
1734
1735 static void __usb_hcd_giveback_urb(struct urb *urb)
1736 {
1737         struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1738         struct usb_anchor *anchor = urb->anchor;
1739         int status = urb->unlinked;
1740         unsigned long flags;
1741
1742         urb->hcpriv = NULL;
1743         if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1744             urb->actual_length < urb->transfer_buffer_length &&
1745             !status))
1746                 status = -EREMOTEIO;
1747
1748         unmap_urb_for_dma(hcd, urb);
1749         usbmon_urb_complete(&hcd->self, urb, status);
1750         usb_anchor_suspend_wakeups(anchor);
1751         usb_unanchor_urb(urb);
1752         if (likely(status == 0))
1753                 usb_led_activity(USB_LED_EVENT_HOST);
1754
1755         /* pass ownership to the completion handler */
1756         urb->status = status;
1757
1758         /*
1759          * We disable local IRQs here avoid possible deadlock because
1760          * drivers may call spin_lock() to hold lock which might be
1761          * acquired in one hard interrupt handler.
1762          *
1763          * The local_irq_save()/local_irq_restore() around complete()
1764          * will be removed if current USB drivers have been cleaned up
1765          * and no one may trigger the above deadlock situation when
1766          * running complete() in tasklet.
1767          */
1768         local_irq_save(flags);
1769         urb->complete(urb);
1770         local_irq_restore(flags);
1771
1772         usb_anchor_resume_wakeups(anchor);
1773         atomic_dec(&urb->use_count);
1774         if (unlikely(atomic_read(&urb->reject)))
1775                 wake_up(&usb_kill_urb_queue);
1776         usb_put_urb(urb);
1777 }
1778
1779 static void usb_giveback_urb_bh(unsigned long param)
1780 {
1781         struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1782         struct list_head local_list;
1783
1784         spin_lock_irq(&bh->lock);
1785         bh->running = true;
1786  restart:
1787         list_replace_init(&bh->head, &local_list);
1788         spin_unlock_irq(&bh->lock);
1789
1790         while (!list_empty(&local_list)) {
1791                 struct urb *urb;
1792
1793                 urb = list_entry(local_list.next, struct urb, urb_list);
1794                 list_del_init(&urb->urb_list);
1795                 bh->completing_ep = urb->ep;
1796                 __usb_hcd_giveback_urb(urb);
1797                 bh->completing_ep = NULL;
1798         }
1799
1800         /* check if there are new URBs to giveback */
1801         spin_lock_irq(&bh->lock);
1802         if (!list_empty(&bh->head))
1803                 goto restart;
1804         bh->running = false;
1805         spin_unlock_irq(&bh->lock);
1806 }
1807
1808 /**
1809  * usb_hcd_giveback_urb - return URB from HCD to device driver
1810  * @hcd: host controller returning the URB
1811  * @urb: urb being returned to the USB device driver.
1812  * @status: completion status code for the URB.
1813  * Context: in_interrupt()
1814  *
1815  * This hands the URB from HCD to its USB device driver, using its
1816  * completion function.  The HCD has freed all per-urb resources
1817  * (and is done using urb->hcpriv).  It also released all HCD locks;
1818  * the device driver won't cause problems if it frees, modifies,
1819  * or resubmits this URB.
1820  *
1821  * If @urb was unlinked, the value of @status will be overridden by
1822  * @urb->unlinked.  Erroneous short transfers are detected in case
1823  * the HCD hasn't checked for them.
1824  */
1825 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1826 {
1827         struct giveback_urb_bh *bh;
1828         bool running, high_prio_bh;
1829
1830         /* pass status to tasklet via unlinked */
1831         if (likely(!urb->unlinked))
1832                 urb->unlinked = status;
1833
1834         if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1835                 __usb_hcd_giveback_urb(urb);
1836                 return;
1837         }
1838
1839         if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1840                 bh = &hcd->high_prio_bh;
1841                 high_prio_bh = true;
1842         } else {
1843                 bh = &hcd->low_prio_bh;
1844                 high_prio_bh = false;
1845         }
1846
1847         spin_lock(&bh->lock);
1848         list_add_tail(&urb->urb_list, &bh->head);
1849         running = bh->running;
1850         spin_unlock(&bh->lock);
1851
1852         if (running)
1853                 ;
1854         else if (high_prio_bh)
1855                 tasklet_hi_schedule(&bh->bh);
1856         else
1857                 tasklet_schedule(&bh->bh);
1858 }
1859 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1860
1861 /*-------------------------------------------------------------------------*/
1862
1863 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1864  * queue to drain completely.  The caller must first insure that no more
1865  * URBs can be submitted for this endpoint.
1866  */
1867 void usb_hcd_flush_endpoint(struct usb_device *udev,
1868                 struct usb_host_endpoint *ep)
1869 {
1870         struct usb_hcd          *hcd;
1871         struct urb              *urb;
1872
1873         if (!ep)
1874                 return;
1875         might_sleep();
1876         hcd = bus_to_hcd(udev->bus);
1877
1878         /* No more submits can occur */
1879         spin_lock_irq(&hcd_urb_list_lock);
1880 rescan:
1881         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1882                 int     is_in;
1883
1884                 if (urb->unlinked)
1885                         continue;
1886                 usb_get_urb (urb);
1887                 is_in = usb_urb_dir_in(urb);
1888                 spin_unlock(&hcd_urb_list_lock);
1889
1890                 /* kick hcd */
1891                 unlink1(hcd, urb, -ESHUTDOWN);
1892                 dev_dbg (hcd->self.controller,
1893                         "shutdown urb %p ep%d%s%s\n",
1894                         urb, usb_endpoint_num(&ep->desc),
1895                         is_in ? "in" : "out",
1896                         ({      char *s;
1897
1898                                  switch (usb_endpoint_type(&ep->desc)) {
1899                                  case USB_ENDPOINT_XFER_CONTROL:
1900                                         s = ""; break;
1901                                  case USB_ENDPOINT_XFER_BULK:
1902                                         s = "-bulk"; break;
1903                                  case USB_ENDPOINT_XFER_INT:
1904                                         s = "-intr"; break;
1905                                  default:
1906                                         s = "-iso"; break;
1907                                 };
1908                                 s;
1909                         }));
1910                 usb_put_urb (urb);
1911
1912                 /* list contents may have changed */
1913                 spin_lock(&hcd_urb_list_lock);
1914                 goto rescan;
1915         }
1916         spin_unlock_irq(&hcd_urb_list_lock);
1917
1918         /* Wait until the endpoint queue is completely empty */
1919         while (!list_empty (&ep->urb_list)) {
1920                 spin_lock_irq(&hcd_urb_list_lock);
1921
1922                 /* The list may have changed while we acquired the spinlock */
1923                 urb = NULL;
1924                 if (!list_empty (&ep->urb_list)) {
1925                         urb = list_entry (ep->urb_list.prev, struct urb,
1926                                         urb_list);
1927                         usb_get_urb (urb);
1928                 }
1929                 spin_unlock_irq(&hcd_urb_list_lock);
1930
1931                 if (urb) {
1932                         usb_kill_urb (urb);
1933                         usb_put_urb (urb);
1934                 }
1935         }
1936 }
1937
1938 /**
1939  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1940  *                              the bus bandwidth
1941  * @udev: target &usb_device
1942  * @new_config: new configuration to install
1943  * @cur_alt: the current alternate interface setting
1944  * @new_alt: alternate interface setting that is being installed
1945  *
1946  * To change configurations, pass in the new configuration in new_config,
1947  * and pass NULL for cur_alt and new_alt.
1948  *
1949  * To reset a device's configuration (put the device in the ADDRESSED state),
1950  * pass in NULL for new_config, cur_alt, and new_alt.
1951  *
1952  * To change alternate interface settings, pass in NULL for new_config,
1953  * pass in the current alternate interface setting in cur_alt,
1954  * and pass in the new alternate interface setting in new_alt.
1955  *
1956  * Return: An error if the requested bandwidth change exceeds the
1957  * bus bandwidth or host controller internal resources.
1958  */
1959 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1960                 struct usb_host_config *new_config,
1961                 struct usb_host_interface *cur_alt,
1962                 struct usb_host_interface *new_alt)
1963 {
1964         int num_intfs, i, j;
1965         struct usb_host_interface *alt = NULL;
1966         int ret = 0;
1967         struct usb_hcd *hcd;
1968         struct usb_host_endpoint *ep;
1969
1970         hcd = bus_to_hcd(udev->bus);
1971         if (!hcd->driver->check_bandwidth)
1972                 return 0;
1973
1974         /* Configuration is being removed - set configuration 0 */
1975         if (!new_config && !cur_alt) {
1976                 for (i = 1; i < 16; ++i) {
1977                         ep = udev->ep_out[i];
1978                         if (ep)
1979                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1980                         ep = udev->ep_in[i];
1981                         if (ep)
1982                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1983                 }
1984                 hcd->driver->check_bandwidth(hcd, udev);
1985                 return 0;
1986         }
1987         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1988          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1989          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1990          * ok to exclude it.
1991          */
1992         if (new_config) {
1993                 num_intfs = new_config->desc.bNumInterfaces;
1994                 /* Remove endpoints (except endpoint 0, which is always on the
1995                  * schedule) from the old config from the schedule
1996                  */
1997                 for (i = 1; i < 16; ++i) {
1998                         ep = udev->ep_out[i];
1999                         if (ep) {
2000                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2001                                 if (ret < 0)
2002                                         goto reset;
2003                         }
2004                         ep = udev->ep_in[i];
2005                         if (ep) {
2006                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2007                                 if (ret < 0)
2008                                         goto reset;
2009                         }
2010                 }
2011                 for (i = 0; i < num_intfs; ++i) {
2012                         struct usb_host_interface *first_alt;
2013                         int iface_num;
2014
2015                         first_alt = &new_config->intf_cache[i]->altsetting[0];
2016                         iface_num = first_alt->desc.bInterfaceNumber;
2017                         /* Set up endpoints for alternate interface setting 0 */
2018                         alt = usb_find_alt_setting(new_config, iface_num, 0);
2019                         if (!alt)
2020                                 /* No alt setting 0? Pick the first setting. */
2021                                 alt = first_alt;
2022
2023                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2024                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2025                                 if (ret < 0)
2026                                         goto reset;
2027                         }
2028                 }
2029         }
2030         if (cur_alt && new_alt) {
2031                 struct usb_interface *iface = usb_ifnum_to_if(udev,
2032                                 cur_alt->desc.bInterfaceNumber);
2033
2034                 if (!iface)
2035                         return -EINVAL;
2036                 if (iface->resetting_device) {
2037                         /*
2038                          * The USB core just reset the device, so the xHCI host
2039                          * and the device will think alt setting 0 is installed.
2040                          * However, the USB core will pass in the alternate
2041                          * setting installed before the reset as cur_alt.  Dig
2042                          * out the alternate setting 0 structure, or the first
2043                          * alternate setting if a broken device doesn't have alt
2044                          * setting 0.
2045                          */
2046                         cur_alt = usb_altnum_to_altsetting(iface, 0);
2047                         if (!cur_alt)
2048                                 cur_alt = &iface->altsetting[0];
2049                 }
2050
2051                 /* Drop all the endpoints in the current alt setting */
2052                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2053                         ret = hcd->driver->drop_endpoint(hcd, udev,
2054                                         &cur_alt->endpoint[i]);
2055                         if (ret < 0)
2056                                 goto reset;
2057                 }
2058                 /* Add all the endpoints in the new alt setting */
2059                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2060                         ret = hcd->driver->add_endpoint(hcd, udev,
2061                                         &new_alt->endpoint[i]);
2062                         if (ret < 0)
2063                                 goto reset;
2064                 }
2065         }
2066         ret = hcd->driver->check_bandwidth(hcd, udev);
2067 reset:
2068         if (ret < 0)
2069                 hcd->driver->reset_bandwidth(hcd, udev);
2070         return ret;
2071 }
2072
2073 /* Disables the endpoint: synchronizes with the hcd to make sure all
2074  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
2075  * have been called previously.  Use for set_configuration, set_interface,
2076  * driver removal, physical disconnect.
2077  *
2078  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
2079  * type, maxpacket size, toggle, halt status, and scheduling.
2080  */
2081 void usb_hcd_disable_endpoint(struct usb_device *udev,
2082                 struct usb_host_endpoint *ep)
2083 {
2084         struct usb_hcd          *hcd;
2085
2086         might_sleep();
2087         hcd = bus_to_hcd(udev->bus);
2088         if (hcd->driver->endpoint_disable)
2089                 hcd->driver->endpoint_disable(hcd, ep);
2090 }
2091
2092 /**
2093  * usb_hcd_reset_endpoint - reset host endpoint state
2094  * @udev: USB device.
2095  * @ep:   the endpoint to reset.
2096  *
2097  * Resets any host endpoint state such as the toggle bit, sequence
2098  * number and current window.
2099  */
2100 void usb_hcd_reset_endpoint(struct usb_device *udev,
2101                             struct usb_host_endpoint *ep)
2102 {
2103         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2104
2105         if (hcd->driver->endpoint_reset)
2106                 hcd->driver->endpoint_reset(hcd, ep);
2107         else {
2108                 int epnum = usb_endpoint_num(&ep->desc);
2109                 int is_out = usb_endpoint_dir_out(&ep->desc);
2110                 int is_control = usb_endpoint_xfer_control(&ep->desc);
2111
2112                 usb_settoggle(udev, epnum, is_out, 0);
2113                 if (is_control)
2114                         usb_settoggle(udev, epnum, !is_out, 0);
2115         }
2116 }
2117
2118 /**
2119  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2120  * @interface:          alternate setting that includes all endpoints.
2121  * @eps:                array of endpoints that need streams.
2122  * @num_eps:            number of endpoints in the array.
2123  * @num_streams:        number of streams to allocate.
2124  * @mem_flags:          flags hcd should use to allocate memory.
2125  *
2126  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2127  * Drivers may queue multiple transfers to different stream IDs, which may
2128  * complete in a different order than they were queued.
2129  *
2130  * Return: On success, the number of allocated streams. On failure, a negative
2131  * error code.
2132  */
2133 int usb_alloc_streams(struct usb_interface *interface,
2134                 struct usb_host_endpoint **eps, unsigned int num_eps,
2135                 unsigned int num_streams, gfp_t mem_flags)
2136 {
2137         struct usb_hcd *hcd;
2138         struct usb_device *dev;
2139         int i, ret;
2140
2141         dev = interface_to_usbdev(interface);
2142         hcd = bus_to_hcd(dev->bus);
2143         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2144                 return -EINVAL;
2145         if (dev->speed < USB_SPEED_SUPER)
2146                 return -EINVAL;
2147         if (dev->state < USB_STATE_CONFIGURED)
2148                 return -ENODEV;
2149
2150         for (i = 0; i < num_eps; i++) {
2151                 /* Streams only apply to bulk endpoints. */
2152                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2153                         return -EINVAL;
2154                 /* Re-alloc is not allowed */
2155                 if (eps[i]->streams)
2156                         return -EINVAL;
2157         }
2158
2159         ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2160                         num_streams, mem_flags);
2161         if (ret < 0)
2162                 return ret;
2163
2164         for (i = 0; i < num_eps; i++)
2165                 eps[i]->streams = ret;
2166
2167         return ret;
2168 }
2169 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2170
2171 /**
2172  * usb_free_streams - free bulk endpoint stream IDs.
2173  * @interface:  alternate setting that includes all endpoints.
2174  * @eps:        array of endpoints to remove streams from.
2175  * @num_eps:    number of endpoints in the array.
2176  * @mem_flags:  flags hcd should use to allocate memory.
2177  *
2178  * Reverts a group of bulk endpoints back to not using stream IDs.
2179  * Can fail if we are given bad arguments, or HCD is broken.
2180  *
2181  * Return: 0 on success. On failure, a negative error code.
2182  */
2183 int usb_free_streams(struct usb_interface *interface,
2184                 struct usb_host_endpoint **eps, unsigned int num_eps,
2185                 gfp_t mem_flags)
2186 {
2187         struct usb_hcd *hcd;
2188         struct usb_device *dev;
2189         int i, ret;
2190
2191         dev = interface_to_usbdev(interface);
2192         hcd = bus_to_hcd(dev->bus);
2193         if (dev->speed < USB_SPEED_SUPER)
2194                 return -EINVAL;
2195
2196         /* Double-free is not allowed */
2197         for (i = 0; i < num_eps; i++)
2198                 if (!eps[i] || !eps[i]->streams)
2199                         return -EINVAL;
2200
2201         ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2202         if (ret < 0)
2203                 return ret;
2204
2205         for (i = 0; i < num_eps; i++)
2206                 eps[i]->streams = 0;
2207
2208         return ret;
2209 }
2210 EXPORT_SYMBOL_GPL(usb_free_streams);
2211
2212 /* Protect against drivers that try to unlink URBs after the device
2213  * is gone, by waiting until all unlinks for @udev are finished.
2214  * Since we don't currently track URBs by device, simply wait until
2215  * nothing is running in the locked region of usb_hcd_unlink_urb().
2216  */
2217 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2218 {
2219         spin_lock_irq(&hcd_urb_unlink_lock);
2220         spin_unlock_irq(&hcd_urb_unlink_lock);
2221 }
2222
2223 /*-------------------------------------------------------------------------*/
2224
2225 /* called in any context */
2226 int usb_hcd_get_frame_number (struct usb_device *udev)
2227 {
2228         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2229
2230         if (!HCD_RH_RUNNING(hcd))
2231                 return -ESHUTDOWN;
2232         return hcd->driver->get_frame_number (hcd);
2233 }
2234
2235 /*-------------------------------------------------------------------------*/
2236
2237 #ifdef  CONFIG_PM
2238
2239 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2240 {
2241         struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2242         int             status;
2243         int             old_state = hcd->state;
2244
2245         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2246                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2247                         rhdev->do_remote_wakeup);
2248         if (HCD_DEAD(hcd)) {
2249                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2250                 return 0;
2251         }
2252
2253         if (!hcd->driver->bus_suspend) {
2254                 status = -ENOENT;
2255         } else {
2256                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2257                 hcd->state = HC_STATE_QUIESCING;
2258                 status = hcd->driver->bus_suspend(hcd);
2259         }
2260         if (status == 0) {
2261                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2262                 hcd->state = HC_STATE_SUSPENDED;
2263
2264                 /* Did we race with a root-hub wakeup event? */
2265                 if (rhdev->do_remote_wakeup) {
2266                         char    buffer[6];
2267
2268                         status = hcd->driver->hub_status_data(hcd, buffer);
2269                         if (status != 0) {
2270                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2271                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2272                                 status = -EBUSY;
2273                         }
2274                 }
2275         } else {
2276                 spin_lock_irq(&hcd_root_hub_lock);
2277                 if (!HCD_DEAD(hcd)) {
2278                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2279                         hcd->state = old_state;
2280                 }
2281                 spin_unlock_irq(&hcd_root_hub_lock);
2282                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2283                                 "suspend", status);
2284         }
2285         return status;
2286 }
2287
2288 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2289 {
2290         struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2291         int             status;
2292         int             old_state = hcd->state;
2293
2294         dev_dbg(&rhdev->dev, "usb %sresume\n",
2295                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2296         if (HCD_DEAD(hcd)) {
2297                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2298                 return 0;
2299         }
2300         if (!hcd->driver->bus_resume)
2301                 return -ENOENT;
2302         if (HCD_RH_RUNNING(hcd))
2303                 return 0;
2304
2305         hcd->state = HC_STATE_RESUMING;
2306         status = hcd->driver->bus_resume(hcd);
2307         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2308         if (status == 0) {
2309                 struct usb_device *udev;
2310                 int port1;
2311
2312                 spin_lock_irq(&hcd_root_hub_lock);
2313                 if (!HCD_DEAD(hcd)) {
2314                         usb_set_device_state(rhdev, rhdev->actconfig
2315                                         ? USB_STATE_CONFIGURED
2316                                         : USB_STATE_ADDRESS);
2317                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2318                         hcd->state = HC_STATE_RUNNING;
2319                 }
2320                 spin_unlock_irq(&hcd_root_hub_lock);
2321
2322                 /*
2323                  * Check whether any of the enabled ports on the root hub are
2324                  * unsuspended.  If they are then a TRSMRCY delay is needed
2325                  * (this is what the USB-2 spec calls a "global resume").
2326                  * Otherwise we can skip the delay.
2327                  */
2328                 usb_hub_for_each_child(rhdev, port1, udev) {
2329                         if (udev->state != USB_STATE_NOTATTACHED &&
2330                                         !udev->port_is_suspended) {
2331                                 usleep_range(10000, 11000);     /* TRSMRCY */
2332                                 break;
2333                         }
2334                 }
2335         } else {
2336                 hcd->state = old_state;
2337                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2338                                 "resume", status);
2339                 if (status != -ESHUTDOWN)
2340                         usb_hc_died(hcd);
2341         }
2342         return status;
2343 }
2344
2345 /* Workqueue routine for root-hub remote wakeup */
2346 static void hcd_resume_work(struct work_struct *work)
2347 {
2348         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2349         struct usb_device *udev = hcd->self.root_hub;
2350
2351         usb_remote_wakeup(udev);
2352 }
2353
2354 /**
2355  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2356  * @hcd: host controller for this root hub
2357  *
2358  * The USB host controller calls this function when its root hub is
2359  * suspended (with the remote wakeup feature enabled) and a remote
2360  * wakeup request is received.  The routine submits a workqueue request
2361  * to resume the root hub (that is, manage its downstream ports again).
2362  */
2363 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2364 {
2365         unsigned long flags;
2366
2367         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2368         if (hcd->rh_registered) {
2369                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2370                 queue_work(pm_wq, &hcd->wakeup_work);
2371         }
2372         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2373 }
2374 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2375
2376 #endif  /* CONFIG_PM */
2377
2378 /*-------------------------------------------------------------------------*/
2379
2380 #ifdef  CONFIG_USB_OTG
2381
2382 /**
2383  * usb_bus_start_enum - start immediate enumeration (for OTG)
2384  * @bus: the bus (must use hcd framework)
2385  * @port_num: 1-based number of port; usually bus->otg_port
2386  * Context: in_interrupt()
2387  *
2388  * Starts enumeration, with an immediate reset followed later by
2389  * hub_wq identifying and possibly configuring the device.
2390  * This is needed by OTG controller drivers, where it helps meet
2391  * HNP protocol timing requirements for starting a port reset.
2392  *
2393  * Return: 0 if successful.
2394  */
2395 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2396 {
2397         struct usb_hcd          *hcd;
2398         int                     status = -EOPNOTSUPP;
2399
2400         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2401          * boards with root hubs hooked up to internal devices (instead of
2402          * just the OTG port) may need more attention to resetting...
2403          */
2404         hcd = bus_to_hcd(bus);
2405         if (port_num && hcd->driver->start_port_reset)
2406                 status = hcd->driver->start_port_reset(hcd, port_num);
2407
2408         /* allocate hub_wq shortly after (first) root port reset finishes;
2409          * it may issue others, until at least 50 msecs have passed.
2410          */
2411         if (status == 0)
2412                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2413         return status;
2414 }
2415 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2416
2417 #endif
2418
2419 /*-------------------------------------------------------------------------*/
2420
2421 /**
2422  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2423  * @irq: the IRQ being raised
2424  * @__hcd: pointer to the HCD whose IRQ is being signaled
2425  *
2426  * If the controller isn't HALTed, calls the driver's irq handler.
2427  * Checks whether the controller is now dead.
2428  *
2429  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2430  */
2431 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2432 {
2433         struct usb_hcd          *hcd = __hcd;
2434         irqreturn_t             rc;
2435
2436         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2437                 rc = IRQ_NONE;
2438         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2439                 rc = IRQ_NONE;
2440         else
2441                 rc = IRQ_HANDLED;
2442
2443         return rc;
2444 }
2445 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2446
2447 /*-------------------------------------------------------------------------*/
2448
2449 /**
2450  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2451  * @hcd: pointer to the HCD representing the controller
2452  *
2453  * This is called by bus glue to report a USB host controller that died
2454  * while operations may still have been pending.  It's called automatically
2455  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2456  *
2457  * Only call this function with the primary HCD.
2458  */
2459 void usb_hc_died (struct usb_hcd *hcd)
2460 {
2461         unsigned long flags;
2462
2463         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2464
2465         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2466         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2467         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2468         if (hcd->rh_registered) {
2469                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2470
2471                 /* make hub_wq clean up old urbs and devices */
2472                 usb_set_device_state (hcd->self.root_hub,
2473                                 USB_STATE_NOTATTACHED);
2474                 usb_kick_hub_wq(hcd->self.root_hub);
2475         }
2476         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2477                 hcd = hcd->shared_hcd;
2478                 if (hcd->rh_registered) {
2479                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2480
2481                         /* make hub_wq clean up old urbs and devices */
2482                         usb_set_device_state(hcd->self.root_hub,
2483                                         USB_STATE_NOTATTACHED);
2484                         usb_kick_hub_wq(hcd->self.root_hub);
2485                 }
2486         }
2487         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2488         /* Make sure that the other roothub is also deallocated. */
2489 }
2490 EXPORT_SYMBOL_GPL (usb_hc_died);
2491
2492 /*-------------------------------------------------------------------------*/
2493
2494 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2495 {
2496
2497         spin_lock_init(&bh->lock);
2498         INIT_LIST_HEAD(&bh->head);
2499         tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2500 }
2501
2502 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2503                 struct device *sysdev, struct device *dev, const char *bus_name,
2504                 struct usb_hcd *primary_hcd)
2505 {
2506         struct usb_hcd *hcd;
2507
2508         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2509         if (!hcd)
2510                 return NULL;
2511         if (primary_hcd == NULL) {
2512                 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2513                                 GFP_KERNEL);
2514                 if (!hcd->address0_mutex) {
2515                         kfree(hcd);
2516                         dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2517                         return NULL;
2518                 }
2519                 mutex_init(hcd->address0_mutex);
2520                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2521                                 GFP_KERNEL);
2522                 if (!hcd->bandwidth_mutex) {
2523                         kfree(hcd);
2524                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2525                         return NULL;
2526                 }
2527                 mutex_init(hcd->bandwidth_mutex);
2528                 dev_set_drvdata(dev, hcd);
2529         } else {
2530                 mutex_lock(&usb_port_peer_mutex);
2531                 hcd->address0_mutex = primary_hcd->address0_mutex;
2532                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2533                 hcd->primary_hcd = primary_hcd;
2534                 primary_hcd->primary_hcd = primary_hcd;
2535                 hcd->shared_hcd = primary_hcd;
2536                 primary_hcd->shared_hcd = hcd;
2537                 mutex_unlock(&usb_port_peer_mutex);
2538         }
2539
2540         kref_init(&hcd->kref);
2541
2542         usb_bus_init(&hcd->self);
2543         hcd->self.controller = dev;
2544         hcd->self.sysdev = sysdev;
2545         hcd->self.bus_name = bus_name;
2546         hcd->self.uses_dma = (sysdev->dma_mask != NULL);
2547
2548         init_timer(&hcd->rh_timer);
2549         hcd->rh_timer.function = rh_timer_func;
2550         hcd->rh_timer.data = (unsigned long) hcd;
2551 #ifdef CONFIG_PM
2552         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2553 #endif
2554
2555         hcd->driver = driver;
2556         hcd->speed = driver->flags & HCD_MASK;
2557         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2558                         "USB Host Controller";
2559         return hcd;
2560 }
2561 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2562
2563 /**
2564  * usb_create_shared_hcd - create and initialize an HCD structure
2565  * @driver: HC driver that will use this hcd
2566  * @dev: device for this HC, stored in hcd->self.controller
2567  * @bus_name: value to store in hcd->self.bus_name
2568  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2569  *              PCI device.  Only allocate certain resources for the primary HCD
2570  * Context: !in_interrupt()
2571  *
2572  * Allocate a struct usb_hcd, with extra space at the end for the
2573  * HC driver's private data.  Initialize the generic members of the
2574  * hcd structure.
2575  *
2576  * Return: On success, a pointer to the created and initialized HCD structure.
2577  * On failure (e.g. if memory is unavailable), %NULL.
2578  */
2579 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2580                 struct device *dev, const char *bus_name,
2581                 struct usb_hcd *primary_hcd)
2582 {
2583         return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2584 }
2585 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2586
2587 /**
2588  * usb_create_hcd - create and initialize an HCD structure
2589  * @driver: HC driver that will use this hcd
2590  * @dev: device for this HC, stored in hcd->self.controller
2591  * @bus_name: value to store in hcd->self.bus_name
2592  * Context: !in_interrupt()
2593  *
2594  * Allocate a struct usb_hcd, with extra space at the end for the
2595  * HC driver's private data.  Initialize the generic members of the
2596  * hcd structure.
2597  *
2598  * Return: On success, a pointer to the created and initialized HCD
2599  * structure. On failure (e.g. if memory is unavailable), %NULL.
2600  */
2601 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2602                 struct device *dev, const char *bus_name)
2603 {
2604         return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2605 }
2606 EXPORT_SYMBOL_GPL(usb_create_hcd);
2607
2608 /*
2609  * Roothubs that share one PCI device must also share the bandwidth mutex.
2610  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2611  * deallocated.
2612  *
2613  * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2614  * freed.  When hcd_release() is called for either hcd in a peer set,
2615  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2616  */
2617 static void hcd_release(struct kref *kref)
2618 {
2619         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2620
2621         mutex_lock(&usb_port_peer_mutex);
2622         if (hcd->shared_hcd) {
2623                 struct usb_hcd *peer = hcd->shared_hcd;
2624
2625                 peer->shared_hcd = NULL;
2626                 peer->primary_hcd = NULL;
2627         } else {
2628                 kfree(hcd->address0_mutex);
2629                 kfree(hcd->bandwidth_mutex);
2630         }
2631         mutex_unlock(&usb_port_peer_mutex);
2632         kfree(hcd);
2633 }
2634
2635 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2636 {
2637         if (hcd)
2638                 kref_get (&hcd->kref);
2639         return hcd;
2640 }
2641 EXPORT_SYMBOL_GPL(usb_get_hcd);
2642
2643 void usb_put_hcd (struct usb_hcd *hcd)
2644 {
2645         if (hcd)
2646                 kref_put (&hcd->kref, hcd_release);
2647 }
2648 EXPORT_SYMBOL_GPL(usb_put_hcd);
2649
2650 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2651 {
2652         if (!hcd->primary_hcd)
2653                 return 1;
2654         return hcd == hcd->primary_hcd;
2655 }
2656 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2657
2658 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2659 {
2660         if (!hcd->driver->find_raw_port_number)
2661                 return port1;
2662
2663         return hcd->driver->find_raw_port_number(hcd, port1);
2664 }
2665
2666 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2667                 unsigned int irqnum, unsigned long irqflags)
2668 {
2669         int retval;
2670
2671         if (hcd->driver->irq) {
2672
2673                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2674                                 hcd->driver->description, hcd->self.busnum);
2675                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2676                                 hcd->irq_descr, hcd);
2677                 if (retval != 0) {
2678                         dev_err(hcd->self.controller,
2679                                         "request interrupt %d failed\n",
2680                                         irqnum);
2681                         return retval;
2682                 }
2683                 hcd->irq = irqnum;
2684                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2685                                 (hcd->driver->flags & HCD_MEMORY) ?
2686                                         "io mem" : "io base",
2687                                         (unsigned long long)hcd->rsrc_start);
2688         } else {
2689                 hcd->irq = 0;
2690                 if (hcd->rsrc_start)
2691                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2692                                         (hcd->driver->flags & HCD_MEMORY) ?
2693                                         "io mem" : "io base",
2694                                         (unsigned long long)hcd->rsrc_start);
2695         }
2696         return 0;
2697 }
2698
2699 /*
2700  * Before we free this root hub, flush in-flight peering attempts
2701  * and disable peer lookups
2702  */
2703 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2704 {
2705         struct usb_device *rhdev;
2706
2707         mutex_lock(&usb_port_peer_mutex);
2708         rhdev = hcd->self.root_hub;
2709         hcd->self.root_hub = NULL;
2710         mutex_unlock(&usb_port_peer_mutex);
2711         usb_put_dev(rhdev);
2712 }
2713
2714 /**
2715  * usb_add_hcd - finish generic HCD structure initialization and register
2716  * @hcd: the usb_hcd structure to initialize
2717  * @irqnum: Interrupt line to allocate
2718  * @irqflags: Interrupt type flags
2719  *
2720  * Finish the remaining parts of generic HCD initialization: allocate the
2721  * buffers of consistent memory, register the bus, request the IRQ line,
2722  * and call the driver's reset() and start() routines.
2723  */
2724 int usb_add_hcd(struct usb_hcd *hcd,
2725                 unsigned int irqnum, unsigned long irqflags)
2726 {
2727         int retval;
2728         struct usb_device *rhdev;
2729
2730         if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2731                 struct usb_phy *phy = usb_get_phy_dev(hcd->self.sysdev, 0);
2732
2733                 if (IS_ERR(phy)) {
2734                         retval = PTR_ERR(phy);
2735                         if (retval == -EPROBE_DEFER)
2736                                 return retval;
2737                 } else {
2738                         retval = usb_phy_init(phy);
2739                         if (retval) {
2740                                 usb_put_phy(phy);
2741                                 return retval;
2742                         }
2743                         hcd->usb_phy = phy;
2744                         hcd->remove_phy = 1;
2745                 }
2746         }
2747
2748         if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2749                 struct phy *phy = phy_get(hcd->self.sysdev, "usb");
2750
2751                 if (IS_ERR(phy)) {
2752                         retval = PTR_ERR(phy);
2753                         if (retval == -EPROBE_DEFER)
2754                                 goto err_phy;
2755                 } else {
2756                         retval = phy_init(phy);
2757                         if (retval) {
2758                                 phy_put(phy);
2759                                 goto err_phy;
2760                         }
2761                         retval = phy_power_on(phy);
2762                         if (retval) {
2763                                 phy_exit(phy);
2764                                 phy_put(phy);
2765                                 goto err_phy;
2766                         }
2767                         hcd->phy = phy;
2768                         hcd->remove_phy = 1;
2769                 }
2770         }
2771
2772         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2773
2774         /* Keep old behaviour if authorized_default is not in [0, 1]. */
2775         if (authorized_default < 0 || authorized_default > 1) {
2776                 if (hcd->wireless)
2777                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2778                 else
2779                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2780         } else {
2781                 if (authorized_default)
2782                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2783                 else
2784                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2785         }
2786         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2787
2788         /* per default all interfaces are authorized */
2789         set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2790
2791         /* HC is in reset state, but accessible.  Now do the one-time init,
2792          * bottom up so that hcds can customize the root hubs before hub_wq
2793          * starts talking to them.  (Note, bus id is assigned early too.)
2794          */
2795         retval = hcd_buffer_create(hcd);
2796         if (retval != 0) {
2797                 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2798                 goto err_create_buf;
2799         }
2800
2801         retval = usb_register_bus(&hcd->self);
2802         if (retval < 0)
2803                 goto err_register_bus;
2804
2805         rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2806         if (rhdev == NULL) {
2807                 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2808                 retval = -ENOMEM;
2809                 goto err_allocate_root_hub;
2810         }
2811         mutex_lock(&usb_port_peer_mutex);
2812         hcd->self.root_hub = rhdev;
2813         mutex_unlock(&usb_port_peer_mutex);
2814
2815         switch (hcd->speed) {
2816         case HCD_USB11:
2817                 rhdev->speed = USB_SPEED_FULL;
2818                 break;
2819         case HCD_USB2:
2820                 rhdev->speed = USB_SPEED_HIGH;
2821                 break;
2822         case HCD_USB25:
2823                 rhdev->speed = USB_SPEED_WIRELESS;
2824                 break;
2825         case HCD_USB3:
2826                 rhdev->speed = USB_SPEED_SUPER;
2827                 break;
2828         case HCD_USB31:
2829                 rhdev->speed = USB_SPEED_SUPER_PLUS;
2830                 break;
2831         default:
2832                 retval = -EINVAL;
2833                 goto err_set_rh_speed;
2834         }
2835
2836         /* wakeup flag init defaults to "everything works" for root hubs,
2837          * but drivers can override it in reset() if needed, along with
2838          * recording the overall controller's system wakeup capability.
2839          */
2840         device_set_wakeup_capable(&rhdev->dev, 1);
2841
2842         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2843          * registered.  But since the controller can die at any time,
2844          * let's initialize the flag before touching the hardware.
2845          */
2846         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2847
2848         /* "reset" is misnamed; its role is now one-time init. the controller
2849          * should already have been reset (and boot firmware kicked off etc).
2850          */
2851         if (hcd->driver->reset) {
2852                 retval = hcd->driver->reset(hcd);
2853                 if (retval < 0) {
2854                         dev_err(hcd->self.controller, "can't setup: %d\n",
2855                                         retval);
2856                         goto err_hcd_driver_setup;
2857                 }
2858         }
2859         hcd->rh_pollable = 1;
2860
2861         /* NOTE: root hub and controller capabilities may not be the same */
2862         if (device_can_wakeup(hcd->self.controller)
2863                         && device_can_wakeup(&hcd->self.root_hub->dev))
2864                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2865
2866         /* initialize tasklets */
2867         init_giveback_urb_bh(&hcd->high_prio_bh);
2868         init_giveback_urb_bh(&hcd->low_prio_bh);
2869
2870         /* enable irqs just before we start the controller,
2871          * if the BIOS provides legacy PCI irqs.
2872          */
2873         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2874                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2875                 if (retval)
2876                         goto err_request_irq;
2877         }
2878
2879         hcd->state = HC_STATE_RUNNING;
2880         retval = hcd->driver->start(hcd);
2881         if (retval < 0) {
2882                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2883                 goto err_hcd_driver_start;
2884         }
2885
2886         /* starting here, usbcore will pay attention to this root hub */
2887         retval = register_root_hub(hcd);
2888         if (retval != 0)
2889                 goto err_register_root_hub;
2890
2891         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2892         if (retval < 0) {
2893                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2894                        retval);
2895                 goto error_create_attr_group;
2896         }
2897         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2898                 usb_hcd_poll_rh_status(hcd);
2899
2900         return retval;
2901
2902 error_create_attr_group:
2903         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2904         if (HC_IS_RUNNING(hcd->state))
2905                 hcd->state = HC_STATE_QUIESCING;
2906         spin_lock_irq(&hcd_root_hub_lock);
2907         hcd->rh_registered = 0;
2908         spin_unlock_irq(&hcd_root_hub_lock);
2909
2910 #ifdef CONFIG_PM
2911         cancel_work_sync(&hcd->wakeup_work);
2912 #endif
2913         mutex_lock(&usb_bus_idr_lock);
2914         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2915         mutex_unlock(&usb_bus_idr_lock);
2916 err_register_root_hub:
2917         hcd->rh_pollable = 0;
2918         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2919         del_timer_sync(&hcd->rh_timer);
2920         hcd->driver->stop(hcd);
2921         hcd->state = HC_STATE_HALT;
2922         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2923         del_timer_sync(&hcd->rh_timer);
2924 err_hcd_driver_start:
2925         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2926                 free_irq(irqnum, hcd);
2927 err_request_irq:
2928 err_hcd_driver_setup:
2929 err_set_rh_speed:
2930         usb_put_invalidate_rhdev(hcd);
2931 err_allocate_root_hub:
2932         usb_deregister_bus(&hcd->self);
2933 err_register_bus:
2934         hcd_buffer_destroy(hcd);
2935 err_create_buf:
2936         if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2937                 phy_power_off(hcd->phy);
2938                 phy_exit(hcd->phy);
2939                 phy_put(hcd->phy);
2940                 hcd->phy = NULL;
2941         }
2942 err_phy:
2943         if (hcd->remove_phy && hcd->usb_phy) {
2944                 usb_phy_shutdown(hcd->usb_phy);
2945                 usb_put_phy(hcd->usb_phy);
2946                 hcd->usb_phy = NULL;
2947         }
2948         return retval;
2949 }
2950 EXPORT_SYMBOL_GPL(usb_add_hcd);
2951
2952 /**
2953  * usb_remove_hcd - shutdown processing for generic HCDs
2954  * @hcd: the usb_hcd structure to remove
2955  * Context: !in_interrupt()
2956  *
2957  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2958  * invoking the HCD's stop() method.
2959  */
2960 void usb_remove_hcd(struct usb_hcd *hcd)
2961 {
2962         struct usb_device *rhdev = hcd->self.root_hub;
2963
2964         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2965
2966         usb_get_dev(rhdev);
2967         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2968
2969         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2970         if (HC_IS_RUNNING (hcd->state))
2971                 hcd->state = HC_STATE_QUIESCING;
2972
2973         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2974         spin_lock_irq (&hcd_root_hub_lock);
2975         hcd->rh_registered = 0;
2976         spin_unlock_irq (&hcd_root_hub_lock);
2977
2978 #ifdef CONFIG_PM
2979         cancel_work_sync(&hcd->wakeup_work);
2980 #endif
2981
2982         mutex_lock(&usb_bus_idr_lock);
2983         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2984         mutex_unlock(&usb_bus_idr_lock);
2985
2986         /*
2987          * tasklet_kill() isn't needed here because:
2988          * - driver's disconnect() called from usb_disconnect() should
2989          *   make sure its URBs are completed during the disconnect()
2990          *   callback
2991          *
2992          * - it is too late to run complete() here since driver may have
2993          *   been removed already now
2994          */
2995
2996         /* Prevent any more root-hub status calls from the timer.
2997          * The HCD might still restart the timer (if a port status change
2998          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2999          * the hub_status_data() callback.
3000          */
3001         hcd->rh_pollable = 0;
3002         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3003         del_timer_sync(&hcd->rh_timer);
3004
3005         hcd->driver->stop(hcd);
3006         hcd->state = HC_STATE_HALT;
3007
3008         /* In case the HCD restarted the timer, stop it again. */
3009         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3010         del_timer_sync(&hcd->rh_timer);
3011
3012         if (usb_hcd_is_primary_hcd(hcd)) {
3013                 if (hcd->irq > 0)
3014                         free_irq(hcd->irq, hcd);
3015         }
3016
3017         usb_deregister_bus(&hcd->self);
3018         hcd_buffer_destroy(hcd);
3019
3020         if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3021                 phy_power_off(hcd->phy);
3022                 phy_exit(hcd->phy);
3023                 phy_put(hcd->phy);
3024                 hcd->phy = NULL;
3025         }
3026         if (hcd->remove_phy && hcd->usb_phy) {
3027                 usb_phy_shutdown(hcd->usb_phy);
3028                 usb_put_phy(hcd->usb_phy);
3029                 hcd->usb_phy = NULL;
3030         }
3031
3032         usb_put_invalidate_rhdev(hcd);
3033         hcd->flags = 0;
3034 }
3035 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3036
3037 void
3038 usb_hcd_platform_shutdown(struct platform_device *dev)
3039 {
3040         struct usb_hcd *hcd = platform_get_drvdata(dev);
3041
3042         if (hcd->driver->shutdown)
3043                 hcd->driver->shutdown(hcd);
3044 }
3045 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3046
3047 /*-------------------------------------------------------------------------*/
3048
3049 #if IS_ENABLED(CONFIG_USB_MON)
3050
3051 const struct usb_mon_operations *mon_ops;
3052
3053 /*
3054  * The registration is unlocked.
3055  * We do it this way because we do not want to lock in hot paths.
3056  *
3057  * Notice that the code is minimally error-proof. Because usbmon needs
3058  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3059  */
3060
3061 int usb_mon_register(const struct usb_mon_operations *ops)
3062 {
3063
3064         if (mon_ops)
3065                 return -EBUSY;
3066
3067         mon_ops = ops;
3068         mb();
3069         return 0;
3070 }
3071 EXPORT_SYMBOL_GPL (usb_mon_register);
3072
3073 void usb_mon_deregister (void)
3074 {
3075
3076         if (mon_ops == NULL) {
3077                 printk(KERN_ERR "USB: monitor was not registered\n");
3078                 return;
3079         }
3080         mon_ops = NULL;
3081         mb();
3082 }
3083 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3084
3085 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */