2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
42 #include <linux/usb.h>
49 /*-------------------------------------------------------------------------*/
52 * USB Host Controller Driver framework
54 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55 * HCD-specific behaviors/bugs.
57 * This does error checks, tracks devices and urbs, and delegates to a
58 * "hc_driver" only for code (and data) that really needs to know about
59 * hardware differences. That includes root hub registers, i/o queues,
60 * and so on ... but as little else as possible.
62 * Shared code includes most of the "root hub" code (these are emulated,
63 * though each HC's hardware works differently) and PCI glue, plus request
64 * tracking overhead. The HCD code should only block on spinlocks or on
65 * hardware handshaking; blocking on software events (such as other kernel
66 * threads releasing resources, or completing actions) is all generic.
68 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70 * only by the hub driver ... and that neither should be seen or used by
71 * usb client device drivers.
73 * Contributors of ideas or unattributed patches include: David Brownell,
74 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
77 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
78 * associated cleanup. "usb_hcd" still != "usb_bus".
79 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
82 /*-------------------------------------------------------------------------*/
84 /* Keep track of which host controller drivers are loaded */
85 unsigned long usb_hcds_loaded;
86 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
88 /* host controllers we manage */
89 LIST_HEAD (usb_bus_list);
90 EXPORT_SYMBOL_GPL (usb_bus_list);
92 /* used when allocating bus numbers */
95 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
97 static struct usb_busmap busmap;
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115 static inline int is_root_hub(struct usb_device *udev)
117 return (udev->parent == NULL);
120 /*-------------------------------------------------------------------------*/
123 * Sharable chunks of root hub code.
126 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
129 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
131 /* usb 2.0 root hub device descriptor */
132 static const u8 usb2_rh_dev_descriptor [18] = {
133 0x12, /* __u8 bLength; */
134 0x01, /* __u8 bDescriptorType; Device */
135 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
138 0x00, /* __u8 bDeviceSubClass; */
139 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
140 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
143 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
146 0x03, /* __u8 iManufacturer; */
147 0x02, /* __u8 iProduct; */
148 0x01, /* __u8 iSerialNumber; */
149 0x01 /* __u8 bNumConfigurations; */
152 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
154 /* usb 1.1 root hub device descriptor */
155 static const u8 usb11_rh_dev_descriptor [18] = {
156 0x12, /* __u8 bLength; */
157 0x01, /* __u8 bDescriptorType; Device */
158 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
160 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
161 0x00, /* __u8 bDeviceSubClass; */
162 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
163 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
165 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
166 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
167 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
169 0x03, /* __u8 iManufacturer; */
170 0x02, /* __u8 iProduct; */
171 0x01, /* __u8 iSerialNumber; */
172 0x01 /* __u8 bNumConfigurations; */
176 /*-------------------------------------------------------------------------*/
178 /* Configuration descriptors for our root hubs */
180 static const u8 fs_rh_config_descriptor [] = {
182 /* one configuration */
183 0x09, /* __u8 bLength; */
184 0x02, /* __u8 bDescriptorType; Configuration */
185 0x19, 0x00, /* __le16 wTotalLength; */
186 0x01, /* __u8 bNumInterfaces; (1) */
187 0x01, /* __u8 bConfigurationValue; */
188 0x00, /* __u8 iConfiguration; */
189 0xc0, /* __u8 bmAttributes;
194 0x00, /* __u8 MaxPower; */
197 * USB 2.0, single TT organization (mandatory):
198 * one interface, protocol 0
200 * USB 2.0, multiple TT organization (optional):
201 * two interfaces, protocols 1 (like single TT)
202 * and 2 (multiple TT mode) ... config is
208 0x09, /* __u8 if_bLength; */
209 0x04, /* __u8 if_bDescriptorType; Interface */
210 0x00, /* __u8 if_bInterfaceNumber; */
211 0x00, /* __u8 if_bAlternateSetting; */
212 0x01, /* __u8 if_bNumEndpoints; */
213 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
214 0x00, /* __u8 if_bInterfaceSubClass; */
215 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
216 0x00, /* __u8 if_iInterface; */
218 /* one endpoint (status change endpoint) */
219 0x07, /* __u8 ep_bLength; */
220 0x05, /* __u8 ep_bDescriptorType; Endpoint */
221 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
222 0x03, /* __u8 ep_bmAttributes; Interrupt */
223 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
224 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
227 static const u8 hs_rh_config_descriptor [] = {
229 /* one configuration */
230 0x09, /* __u8 bLength; */
231 0x02, /* __u8 bDescriptorType; Configuration */
232 0x19, 0x00, /* __le16 wTotalLength; */
233 0x01, /* __u8 bNumInterfaces; (1) */
234 0x01, /* __u8 bConfigurationValue; */
235 0x00, /* __u8 iConfiguration; */
236 0xc0, /* __u8 bmAttributes;
241 0x00, /* __u8 MaxPower; */
244 * USB 2.0, single TT organization (mandatory):
245 * one interface, protocol 0
247 * USB 2.0, multiple TT organization (optional):
248 * two interfaces, protocols 1 (like single TT)
249 * and 2 (multiple TT mode) ... config is
255 0x09, /* __u8 if_bLength; */
256 0x04, /* __u8 if_bDescriptorType; Interface */
257 0x00, /* __u8 if_bInterfaceNumber; */
258 0x00, /* __u8 if_bAlternateSetting; */
259 0x01, /* __u8 if_bNumEndpoints; */
260 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
261 0x00, /* __u8 if_bInterfaceSubClass; */
262 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
263 0x00, /* __u8 if_iInterface; */
265 /* one endpoint (status change endpoint) */
266 0x07, /* __u8 ep_bLength; */
267 0x05, /* __u8 ep_bDescriptorType; Endpoint */
268 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
269 0x03, /* __u8 ep_bmAttributes; Interrupt */
270 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
271 * see hub.c:hub_configure() for details. */
272 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
273 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
276 /*-------------------------------------------------------------------------*/
279 * helper routine for returning string descriptors in UTF-16LE
280 * input can actually be ISO-8859-1; ASCII is its 7-bit subset
282 static unsigned ascii2utf(char *s, u8 *utf, int utfmax)
286 for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
298 * rh_string - provides manufacturer, product and serial strings for root hub
299 * @id: the string ID number (1: serial number, 2: product, 3: vendor)
300 * @hcd: the host controller for this root hub
301 * @data: return packet in UTF-16 LE
302 * @len: length of the return packet
304 * Produces either a manufacturer, product or serial number string for the
305 * virtual root hub device.
307 static unsigned rh_string(int id, struct usb_hcd *hcd, u8 *data, unsigned len)
313 buf[0] = 4; buf[1] = 3; /* 4 bytes string data */
314 buf[2] = 0x09; buf[3] = 0x04; /* MSFT-speak for "en-us" */
315 len = min_t(unsigned, len, 4);
316 memcpy (data, buf, len);
320 } else if (id == 1) {
321 strlcpy (buf, hcd->self.bus_name, sizeof buf);
323 // product description
324 } else if (id == 2) {
325 strlcpy (buf, hcd->product_desc, sizeof buf);
327 // id 3 == vendor description
328 } else if (id == 3) {
329 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
330 init_utsname()->release, hcd->driver->description);
333 switch (len) { /* All cases fall through */
335 len = 2 + ascii2utf (buf, data + 2, len - 2);
337 data [1] = 3; /* type == string */
339 data [0] = 2 * (strlen (buf) + 1);
341 ; /* Compiler wants a statement here */
347 /* Root hub control transfers execute synchronously */
348 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
350 struct usb_ctrlrequest *cmd;
351 u16 typeReq, wValue, wIndex, wLength;
352 u8 *ubuf = urb->transfer_buffer;
353 u8 tbuf [sizeof (struct usb_hub_descriptor)]
354 __attribute__((aligned(4)));
355 const u8 *bufp = tbuf;
359 u8 patch_protocol = 0;
363 spin_lock_irq(&hcd_root_hub_lock);
364 status = usb_hcd_link_urb_to_ep(hcd, urb);
365 spin_unlock_irq(&hcd_root_hub_lock);
368 urb->hcpriv = hcd; /* Indicate it's queued */
370 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
371 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
372 wValue = le16_to_cpu (cmd->wValue);
373 wIndex = le16_to_cpu (cmd->wIndex);
374 wLength = le16_to_cpu (cmd->wLength);
376 if (wLength > urb->transfer_buffer_length)
379 urb->actual_length = 0;
382 /* DEVICE REQUESTS */
384 /* The root hub's remote wakeup enable bit is implemented using
385 * driver model wakeup flags. If this system supports wakeup
386 * through USB, userspace may change the default "allow wakeup"
387 * policy through sysfs or these calls.
389 * Most root hubs support wakeup from downstream devices, for
390 * runtime power management (disabling USB clocks and reducing
391 * VBUS power usage). However, not all of them do so; silicon,
392 * board, and BIOS bugs here are not uncommon, so these can't
393 * be treated quite like external hubs.
395 * Likewise, not all root hubs will pass wakeup events upstream,
396 * to wake up the whole system. So don't assume root hub and
397 * controller capabilities are identical.
400 case DeviceRequest | USB_REQ_GET_STATUS:
401 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
402 << USB_DEVICE_REMOTE_WAKEUP)
403 | (1 << USB_DEVICE_SELF_POWERED);
407 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
408 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
409 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
413 case DeviceOutRequest | USB_REQ_SET_FEATURE:
414 if (device_can_wakeup(&hcd->self.root_hub->dev)
415 && wValue == USB_DEVICE_REMOTE_WAKEUP)
416 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
420 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
424 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
426 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
427 switch (wValue & 0xff00) {
428 case USB_DT_DEVICE << 8:
429 if (hcd->driver->flags & HCD_USB2)
430 bufp = usb2_rh_dev_descriptor;
431 else if (hcd->driver->flags & HCD_USB11)
432 bufp = usb11_rh_dev_descriptor;
439 case USB_DT_CONFIG << 8:
440 if (hcd->driver->flags & HCD_USB2) {
441 bufp = hs_rh_config_descriptor;
442 len = sizeof hs_rh_config_descriptor;
444 bufp = fs_rh_config_descriptor;
445 len = sizeof fs_rh_config_descriptor;
447 if (device_can_wakeup(&hcd->self.root_hub->dev))
450 case USB_DT_STRING << 8:
451 if ((wValue & 0xff) < 4)
452 urb->actual_length = rh_string(wValue & 0xff,
454 else /* unsupported IDs --> "protocol stall" */
461 case DeviceRequest | USB_REQ_GET_INTERFACE:
465 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
467 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
468 // wValue == urb->dev->devaddr
469 dev_dbg (hcd->self.controller, "root hub device address %d\n",
473 /* INTERFACE REQUESTS (no defined feature/status flags) */
475 /* ENDPOINT REQUESTS */
477 case EndpointRequest | USB_REQ_GET_STATUS:
478 // ENDPOINT_HALT flag
483 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
484 case EndpointOutRequest | USB_REQ_SET_FEATURE:
485 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
488 /* CLASS REQUESTS (and errors) */
491 /* non-generic request */
497 case GetHubDescriptor:
498 len = sizeof (struct usb_hub_descriptor);
501 status = hcd->driver->hub_control (hcd,
502 typeReq, wValue, wIndex,
506 /* "protocol stall" on error */
512 if (status != -EPIPE) {
513 dev_dbg (hcd->self.controller,
514 "CTRL: TypeReq=0x%x val=0x%x "
515 "idx=0x%x len=%d ==> %d\n",
516 typeReq, wValue, wIndex,
521 if (urb->transfer_buffer_length < len)
522 len = urb->transfer_buffer_length;
523 urb->actual_length = len;
524 // always USB_DIR_IN, toward host
525 memcpy (ubuf, bufp, len);
527 /* report whether RH hardware supports remote wakeup */
529 len > offsetof (struct usb_config_descriptor,
531 ((struct usb_config_descriptor *)ubuf)->bmAttributes
532 |= USB_CONFIG_ATT_WAKEUP;
534 /* report whether RH hardware has an integrated TT */
535 if (patch_protocol &&
536 len > offsetof(struct usb_device_descriptor,
538 ((struct usb_device_descriptor *) ubuf)->
542 /* any errors get returned through the urb completion */
543 spin_lock_irq(&hcd_root_hub_lock);
544 usb_hcd_unlink_urb_from_ep(hcd, urb);
546 /* This peculiar use of spinlocks echoes what real HC drivers do.
547 * Avoiding calls to local_irq_disable/enable makes the code
550 spin_unlock(&hcd_root_hub_lock);
551 usb_hcd_giveback_urb(hcd, urb, status);
552 spin_lock(&hcd_root_hub_lock);
554 spin_unlock_irq(&hcd_root_hub_lock);
558 /*-------------------------------------------------------------------------*/
561 * Root Hub interrupt transfers are polled using a timer if the
562 * driver requests it; otherwise the driver is responsible for
563 * calling usb_hcd_poll_rh_status() when an event occurs.
565 * Completions are called in_interrupt(), but they may or may not
568 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
573 char buffer[4]; /* Any root hubs with > 31 ports? */
575 if (unlikely(!hcd->rh_registered))
577 if (!hcd->uses_new_polling && !hcd->status_urb)
580 length = hcd->driver->hub_status_data(hcd, buffer);
583 /* try to complete the status urb */
584 spin_lock_irqsave(&hcd_root_hub_lock, flags);
585 urb = hcd->status_urb;
587 hcd->poll_pending = 0;
588 hcd->status_urb = NULL;
589 urb->actual_length = length;
590 memcpy(urb->transfer_buffer, buffer, length);
592 usb_hcd_unlink_urb_from_ep(hcd, urb);
593 spin_unlock(&hcd_root_hub_lock);
594 usb_hcd_giveback_urb(hcd, urb, 0);
595 spin_lock(&hcd_root_hub_lock);
598 hcd->poll_pending = 1;
600 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
603 /* The USB 2.0 spec says 256 ms. This is close enough and won't
604 * exceed that limit if HZ is 100. The math is more clunky than
605 * maybe expected, this is to make sure that all timers for USB devices
606 * fire at the same time to give the CPU a break inbetween */
607 if (hcd->uses_new_polling ? hcd->poll_rh :
608 (length == 0 && hcd->status_urb != NULL))
609 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
611 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
614 static void rh_timer_func (unsigned long _hcd)
616 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
619 /*-------------------------------------------------------------------------*/
621 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
625 unsigned len = 1 + (urb->dev->maxchild / 8);
627 spin_lock_irqsave (&hcd_root_hub_lock, flags);
628 if (hcd->status_urb || urb->transfer_buffer_length < len) {
629 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
634 retval = usb_hcd_link_urb_to_ep(hcd, urb);
638 hcd->status_urb = urb;
639 urb->hcpriv = hcd; /* indicate it's queued */
640 if (!hcd->uses_new_polling)
641 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
643 /* If a status change has already occurred, report it ASAP */
644 else if (hcd->poll_pending)
645 mod_timer(&hcd->rh_timer, jiffies);
648 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
652 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
654 if (usb_endpoint_xfer_int(&urb->ep->desc))
655 return rh_queue_status (hcd, urb);
656 if (usb_endpoint_xfer_control(&urb->ep->desc))
657 return rh_call_control (hcd, urb);
661 /*-------------------------------------------------------------------------*/
663 /* Unlinks of root-hub control URBs are legal, but they don't do anything
664 * since these URBs always execute synchronously.
666 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
671 spin_lock_irqsave(&hcd_root_hub_lock, flags);
672 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
676 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
679 } else { /* Status URB */
680 if (!hcd->uses_new_polling)
681 del_timer (&hcd->rh_timer);
682 if (urb == hcd->status_urb) {
683 hcd->status_urb = NULL;
684 usb_hcd_unlink_urb_from_ep(hcd, urb);
686 spin_unlock(&hcd_root_hub_lock);
687 usb_hcd_giveback_urb(hcd, urb, status);
688 spin_lock(&hcd_root_hub_lock);
692 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
699 * Show & store the current value of authorized_default
701 static ssize_t usb_host_authorized_default_show(struct device *dev,
702 struct device_attribute *attr,
705 struct usb_device *rh_usb_dev = to_usb_device(dev);
706 struct usb_bus *usb_bus = rh_usb_dev->bus;
707 struct usb_hcd *usb_hcd;
709 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
711 usb_hcd = bus_to_hcd(usb_bus);
712 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
715 static ssize_t usb_host_authorized_default_store(struct device *dev,
716 struct device_attribute *attr,
717 const char *buf, size_t size)
721 struct usb_device *rh_usb_dev = to_usb_device(dev);
722 struct usb_bus *usb_bus = rh_usb_dev->bus;
723 struct usb_hcd *usb_hcd;
725 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
727 usb_hcd = bus_to_hcd(usb_bus);
728 result = sscanf(buf, "%u\n", &val);
730 usb_hcd->authorized_default = val? 1 : 0;
738 static DEVICE_ATTR(authorized_default, 0644,
739 usb_host_authorized_default_show,
740 usb_host_authorized_default_store);
743 /* Group all the USB bus attributes */
744 static struct attribute *usb_bus_attrs[] = {
745 &dev_attr_authorized_default.attr,
749 static struct attribute_group usb_bus_attr_group = {
750 .name = NULL, /* we want them in the same directory */
751 .attrs = usb_bus_attrs,
756 /*-------------------------------------------------------------------------*/
758 static struct class *usb_host_class;
760 int usb_host_init(void)
764 usb_host_class = class_create(THIS_MODULE, "usb_host");
765 if (IS_ERR(usb_host_class))
766 retval = PTR_ERR(usb_host_class);
770 void usb_host_cleanup(void)
772 class_destroy(usb_host_class);
776 * usb_bus_init - shared initialization code
777 * @bus: the bus structure being initialized
779 * This code is used to initialize a usb_bus structure, memory for which is
780 * separately managed.
782 static void usb_bus_init (struct usb_bus *bus)
784 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
786 bus->devnum_next = 1;
788 bus->root_hub = NULL;
790 bus->bandwidth_allocated = 0;
791 bus->bandwidth_int_reqs = 0;
792 bus->bandwidth_isoc_reqs = 0;
794 INIT_LIST_HEAD (&bus->bus_list);
797 /*-------------------------------------------------------------------------*/
800 * usb_register_bus - registers the USB host controller with the usb core
801 * @bus: pointer to the bus to register
802 * Context: !in_interrupt()
804 * Assigns a bus number, and links the controller into usbcore data
805 * structures so that it can be seen by scanning the bus list.
807 static int usb_register_bus(struct usb_bus *bus)
812 mutex_lock(&usb_bus_list_lock);
813 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
814 if (busnum >= USB_MAXBUS) {
815 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
816 goto error_find_busnum;
818 set_bit (busnum, busmap.busmap);
819 bus->busnum = busnum;
821 bus->dev = device_create(usb_host_class, bus->controller, MKDEV(0, 0),
822 bus, "usb_host%d", busnum);
823 result = PTR_ERR(bus->dev);
824 if (IS_ERR(bus->dev))
825 goto error_create_class_dev;
827 /* Add it to the local list of buses */
828 list_add (&bus->bus_list, &usb_bus_list);
829 mutex_unlock(&usb_bus_list_lock);
831 usb_notify_add_bus(bus);
833 dev_info (bus->controller, "new USB bus registered, assigned bus "
834 "number %d\n", bus->busnum);
837 error_create_class_dev:
838 clear_bit(busnum, busmap.busmap);
840 mutex_unlock(&usb_bus_list_lock);
845 * usb_deregister_bus - deregisters the USB host controller
846 * @bus: pointer to the bus to deregister
847 * Context: !in_interrupt()
849 * Recycles the bus number, and unlinks the controller from usbcore data
850 * structures so that it won't be seen by scanning the bus list.
852 static void usb_deregister_bus (struct usb_bus *bus)
854 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
857 * NOTE: make sure that all the devices are removed by the
858 * controller code, as well as having it call this when cleaning
861 mutex_lock(&usb_bus_list_lock);
862 list_del (&bus->bus_list);
863 mutex_unlock(&usb_bus_list_lock);
865 usb_notify_remove_bus(bus);
867 clear_bit (bus->busnum, busmap.busmap);
869 device_unregister(bus->dev);
873 * register_root_hub - called by usb_add_hcd() to register a root hub
874 * @hcd: host controller for this root hub
876 * This function registers the root hub with the USB subsystem. It sets up
877 * the device properly in the device tree and then calls usb_new_device()
878 * to register the usb device. It also assigns the root hub's USB address
881 static int register_root_hub(struct usb_hcd *hcd)
883 struct device *parent_dev = hcd->self.controller;
884 struct usb_device *usb_dev = hcd->self.root_hub;
885 const int devnum = 1;
888 usb_dev->devnum = devnum;
889 usb_dev->bus->devnum_next = devnum + 1;
890 memset (&usb_dev->bus->devmap.devicemap, 0,
891 sizeof usb_dev->bus->devmap.devicemap);
892 set_bit (devnum, usb_dev->bus->devmap.devicemap);
893 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
895 mutex_lock(&usb_bus_list_lock);
897 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
898 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
899 if (retval != sizeof usb_dev->descriptor) {
900 mutex_unlock(&usb_bus_list_lock);
901 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
902 dev_name(&usb_dev->dev), retval);
903 return (retval < 0) ? retval : -EMSGSIZE;
906 retval = usb_new_device (usb_dev);
908 dev_err (parent_dev, "can't register root hub for %s, %d\n",
909 dev_name(&usb_dev->dev), retval);
911 mutex_unlock(&usb_bus_list_lock);
914 spin_lock_irq (&hcd_root_hub_lock);
915 hcd->rh_registered = 1;
916 spin_unlock_irq (&hcd_root_hub_lock);
918 /* Did the HC die before the root hub was registered? */
919 if (hcd->state == HC_STATE_HALT)
920 usb_hc_died (hcd); /* This time clean up */
927 /*-------------------------------------------------------------------------*/
930 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
931 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
932 * @is_input: true iff the transaction sends data to the host
933 * @isoc: true for isochronous transactions, false for interrupt ones
934 * @bytecount: how many bytes in the transaction.
936 * Returns approximate bus time in nanoseconds for a periodic transaction.
937 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
938 * scheduled in software, this function is only used for such scheduling.
940 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
945 case USB_SPEED_LOW: /* INTR only */
947 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
948 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
950 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
951 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
953 case USB_SPEED_FULL: /* ISOC or INTR */
955 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
956 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
958 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
959 return (9107L + BW_HOST_DELAY + tmp);
961 case USB_SPEED_HIGH: /* ISOC or INTR */
962 // FIXME adjust for input vs output
964 tmp = HS_NSECS_ISO (bytecount);
966 tmp = HS_NSECS (bytecount);
969 pr_debug ("%s: bogus device speed!\n", usbcore_name);
973 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
976 /*-------------------------------------------------------------------------*/
979 * Generic HC operations.
982 /*-------------------------------------------------------------------------*/
985 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
986 * @hcd: host controller to which @urb was submitted
987 * @urb: URB being submitted
989 * Host controller drivers should call this routine in their enqueue()
990 * method. The HCD's private spinlock must be held and interrupts must
991 * be disabled. The actions carried out here are required for URB
992 * submission, as well as for endpoint shutdown and for usb_kill_urb.
994 * Returns 0 for no error, otherwise a negative error code (in which case
995 * the enqueue() method must fail). If no error occurs but enqueue() fails
996 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
997 * the private spinlock and returning.
999 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1003 spin_lock(&hcd_urb_list_lock);
1005 /* Check that the URB isn't being killed */
1006 if (unlikely(atomic_read(&urb->reject))) {
1011 if (unlikely(!urb->ep->enabled)) {
1016 if (unlikely(!urb->dev->can_submit)) {
1022 * Check the host controller's state and add the URB to the
1025 switch (hcd->state) {
1026 case HC_STATE_RUNNING:
1027 case HC_STATE_RESUMING:
1029 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1036 spin_unlock(&hcd_urb_list_lock);
1039 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1042 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1043 * @hcd: host controller to which @urb was submitted
1044 * @urb: URB being checked for unlinkability
1045 * @status: error code to store in @urb if the unlink succeeds
1047 * Host controller drivers should call this routine in their dequeue()
1048 * method. The HCD's private spinlock must be held and interrupts must
1049 * be disabled. The actions carried out here are required for making
1050 * sure than an unlink is valid.
1052 * Returns 0 for no error, otherwise a negative error code (in which case
1053 * the dequeue() method must fail). The possible error codes are:
1055 * -EIDRM: @urb was not submitted or has already completed.
1056 * The completion function may not have been called yet.
1058 * -EBUSY: @urb has already been unlinked.
1060 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1063 struct list_head *tmp;
1065 /* insist the urb is still queued */
1066 list_for_each(tmp, &urb->ep->urb_list) {
1067 if (tmp == &urb->urb_list)
1070 if (tmp != &urb->urb_list)
1073 /* Any status except -EINPROGRESS means something already started to
1074 * unlink this URB from the hardware. So there's no more work to do.
1078 urb->unlinked = status;
1080 /* IRQ setup can easily be broken so that USB controllers
1081 * never get completion IRQs ... maybe even the ones we need to
1082 * finish unlinking the initial failed usb_set_address()
1083 * or device descriptor fetch.
1085 if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1086 !is_root_hub(urb->dev)) {
1087 dev_warn(hcd->self.controller, "Unlink after no-IRQ? "
1088 "Controller is probably using the wrong IRQ.\n");
1089 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1094 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1097 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1098 * @hcd: host controller to which @urb was submitted
1099 * @urb: URB being unlinked
1101 * Host controller drivers should call this routine before calling
1102 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1103 * interrupts must be disabled. The actions carried out here are required
1104 * for URB completion.
1106 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1108 /* clear all state linking urb to this dev (and hcd) */
1109 spin_lock(&hcd_urb_list_lock);
1110 list_del_init(&urb->urb_list);
1111 spin_unlock(&hcd_urb_list_lock);
1113 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1116 * Some usb host controllers can only perform dma using a small SRAM area.
1117 * The usb core itself is however optimized for host controllers that can dma
1118 * using regular system memory - like pci devices doing bus mastering.
1120 * To support host controllers with limited dma capabilites we provide dma
1121 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1122 * For this to work properly the host controller code must first use the
1123 * function dma_declare_coherent_memory() to point out which memory area
1124 * that should be used for dma allocations.
1126 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1127 * dma using dma_alloc_coherent() which in turn allocates from the memory
1128 * area pointed out with dma_declare_coherent_memory().
1130 * So, to summarize...
1132 * - We need "local" memory, canonical example being
1133 * a small SRAM on a discrete controller being the
1134 * only memory that the controller can read ...
1135 * (a) "normal" kernel memory is no good, and
1136 * (b) there's not enough to share
1138 * - The only *portable* hook for such stuff in the
1139 * DMA framework is dma_declare_coherent_memory()
1141 * - So we use that, even though the primary requirement
1142 * is that the memory be "local" (hence addressible
1143 * by that device), not "coherent".
1147 static int hcd_alloc_coherent(struct usb_bus *bus,
1148 gfp_t mem_flags, dma_addr_t *dma_handle,
1149 void **vaddr_handle, size_t size,
1150 enum dma_data_direction dir)
1152 unsigned char *vaddr;
1154 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1155 mem_flags, dma_handle);
1160 * Store the virtual address of the buffer at the end
1161 * of the allocated dma buffer. The size of the buffer
1162 * may be uneven so use unaligned functions instead
1163 * of just rounding up. It makes sense to optimize for
1164 * memory footprint over access speed since the amount
1165 * of memory available for dma may be limited.
1167 put_unaligned((unsigned long)*vaddr_handle,
1168 (unsigned long *)(vaddr + size));
1170 if (dir == DMA_TO_DEVICE)
1171 memcpy(vaddr, *vaddr_handle, size);
1173 *vaddr_handle = vaddr;
1177 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1178 void **vaddr_handle, size_t size,
1179 enum dma_data_direction dir)
1181 unsigned char *vaddr = *vaddr_handle;
1183 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1185 if (dir == DMA_FROM_DEVICE)
1186 memcpy(vaddr, *vaddr_handle, size);
1188 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1190 *vaddr_handle = vaddr;
1194 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1197 enum dma_data_direction dir;
1200 /* Map the URB's buffers for DMA access.
1201 * Lower level HCD code should use *_dma exclusively,
1202 * unless it uses pio or talks to another transport.
1204 if (is_root_hub(urb->dev))
1207 if (usb_endpoint_xfer_control(&urb->ep->desc)
1208 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1209 if (hcd->self.uses_dma)
1210 urb->setup_dma = dma_map_single(
1211 hcd->self.controller,
1213 sizeof(struct usb_ctrlrequest),
1215 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1216 ret = hcd_alloc_coherent(
1217 urb->dev->bus, mem_flags,
1219 (void **)&urb->setup_packet,
1220 sizeof(struct usb_ctrlrequest),
1224 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1225 if (ret == 0 && urb->transfer_buffer_length != 0
1226 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1227 if (hcd->self.uses_dma)
1228 urb->transfer_dma = dma_map_single (
1229 hcd->self.controller,
1230 urb->transfer_buffer,
1231 urb->transfer_buffer_length,
1233 else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1234 ret = hcd_alloc_coherent(
1235 urb->dev->bus, mem_flags,
1237 &urb->transfer_buffer,
1238 urb->transfer_buffer_length,
1241 if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1242 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1243 hcd_free_coherent(urb->dev->bus,
1245 (void **)&urb->setup_packet,
1246 sizeof(struct usb_ctrlrequest),
1253 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1255 enum dma_data_direction dir;
1257 if (is_root_hub(urb->dev))
1260 if (usb_endpoint_xfer_control(&urb->ep->desc)
1261 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1262 if (hcd->self.uses_dma)
1263 dma_unmap_single(hcd->self.controller, urb->setup_dma,
1264 sizeof(struct usb_ctrlrequest),
1266 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1267 hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1268 (void **)&urb->setup_packet,
1269 sizeof(struct usb_ctrlrequest),
1273 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1274 if (urb->transfer_buffer_length != 0
1275 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1276 if (hcd->self.uses_dma)
1277 dma_unmap_single(hcd->self.controller,
1279 urb->transfer_buffer_length,
1281 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1282 hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1283 &urb->transfer_buffer,
1284 urb->transfer_buffer_length,
1289 /*-------------------------------------------------------------------------*/
1291 /* may be called in any context with a valid urb->dev usecount
1292 * caller surrenders "ownership" of urb
1293 * expects usb_submit_urb() to have sanity checked and conditioned all
1296 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1299 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1301 /* increment urb's reference count as part of giving it to the HCD
1302 * (which will control it). HCD guarantees that it either returns
1303 * an error or calls giveback(), but not both.
1306 atomic_inc(&urb->use_count);
1307 atomic_inc(&urb->dev->urbnum);
1308 usbmon_urb_submit(&hcd->self, urb);
1310 /* NOTE requirements on root-hub callers (usbfs and the hub
1311 * driver, for now): URBs' urb->transfer_buffer must be
1312 * valid and usb_buffer_{sync,unmap}() not be needed, since
1313 * they could clobber root hub response data. Also, control
1314 * URBs must be submitted in process context with interrupts
1317 status = map_urb_for_dma(hcd, urb, mem_flags);
1318 if (unlikely(status)) {
1319 usbmon_urb_submit_error(&hcd->self, urb, status);
1323 if (is_root_hub(urb->dev))
1324 status = rh_urb_enqueue(hcd, urb);
1326 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1328 if (unlikely(status)) {
1329 usbmon_urb_submit_error(&hcd->self, urb, status);
1330 unmap_urb_for_dma(hcd, urb);
1333 INIT_LIST_HEAD(&urb->urb_list);
1334 atomic_dec(&urb->use_count);
1335 atomic_dec(&urb->dev->urbnum);
1336 if (atomic_read(&urb->reject))
1337 wake_up(&usb_kill_urb_queue);
1343 /*-------------------------------------------------------------------------*/
1345 /* this makes the hcd giveback() the urb more quickly, by kicking it
1346 * off hardware queues (which may take a while) and returning it as
1347 * soon as practical. we've already set up the urb's return status,
1348 * but we can't know if the callback completed already.
1350 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1354 if (is_root_hub(urb->dev))
1355 value = usb_rh_urb_dequeue(hcd, urb, status);
1358 /* The only reason an HCD might fail this call is if
1359 * it has not yet fully queued the urb to begin with.
1360 * Such failures should be harmless. */
1361 value = hcd->driver->urb_dequeue(hcd, urb, status);
1367 * called in any context
1369 * caller guarantees urb won't be recycled till both unlink()
1370 * and the urb's completion function return
1372 int usb_hcd_unlink_urb (struct urb *urb, int status)
1374 struct usb_hcd *hcd;
1375 int retval = -EIDRM;
1376 unsigned long flags;
1378 /* Prevent the device and bus from going away while
1379 * the unlink is carried out. If they are already gone
1380 * then urb->use_count must be 0, since disconnected
1381 * devices can't have any active URBs.
1383 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1384 if (atomic_read(&urb->use_count) > 0) {
1386 usb_get_dev(urb->dev);
1388 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1390 hcd = bus_to_hcd(urb->dev->bus);
1391 retval = unlink1(hcd, urb, status);
1392 usb_put_dev(urb->dev);
1396 retval = -EINPROGRESS;
1397 else if (retval != -EIDRM && retval != -EBUSY)
1398 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1403 /*-------------------------------------------------------------------------*/
1406 * usb_hcd_giveback_urb - return URB from HCD to device driver
1407 * @hcd: host controller returning the URB
1408 * @urb: urb being returned to the USB device driver.
1409 * @status: completion status code for the URB.
1410 * Context: in_interrupt()
1412 * This hands the URB from HCD to its USB device driver, using its
1413 * completion function. The HCD has freed all per-urb resources
1414 * (and is done using urb->hcpriv). It also released all HCD locks;
1415 * the device driver won't cause problems if it frees, modifies,
1416 * or resubmits this URB.
1418 * If @urb was unlinked, the value of @status will be overridden by
1419 * @urb->unlinked. Erroneous short transfers are detected in case
1420 * the HCD hasn't checked for them.
1422 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1425 if (unlikely(urb->unlinked))
1426 status = urb->unlinked;
1427 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1428 urb->actual_length < urb->transfer_buffer_length &&
1430 status = -EREMOTEIO;
1432 unmap_urb_for_dma(hcd, urb);
1433 usbmon_urb_complete(&hcd->self, urb, status);
1434 usb_unanchor_urb(urb);
1436 /* pass ownership to the completion handler */
1437 urb->status = status;
1438 urb->complete (urb);
1439 atomic_dec (&urb->use_count);
1440 if (unlikely(atomic_read(&urb->reject)))
1441 wake_up (&usb_kill_urb_queue);
1444 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1446 /*-------------------------------------------------------------------------*/
1448 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1449 * queue to drain completely. The caller must first insure that no more
1450 * URBs can be submitted for this endpoint.
1452 void usb_hcd_flush_endpoint(struct usb_device *udev,
1453 struct usb_host_endpoint *ep)
1455 struct usb_hcd *hcd;
1461 hcd = bus_to_hcd(udev->bus);
1463 /* No more submits can occur */
1464 spin_lock_irq(&hcd_urb_list_lock);
1466 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1472 is_in = usb_urb_dir_in(urb);
1473 spin_unlock(&hcd_urb_list_lock);
1476 unlink1(hcd, urb, -ESHUTDOWN);
1477 dev_dbg (hcd->self.controller,
1478 "shutdown urb %p ep%d%s%s\n",
1479 urb, usb_endpoint_num(&ep->desc),
1480 is_in ? "in" : "out",
1483 switch (usb_endpoint_type(&ep->desc)) {
1484 case USB_ENDPOINT_XFER_CONTROL:
1486 case USB_ENDPOINT_XFER_BULK:
1488 case USB_ENDPOINT_XFER_INT:
1497 /* list contents may have changed */
1498 spin_lock(&hcd_urb_list_lock);
1501 spin_unlock_irq(&hcd_urb_list_lock);
1503 /* Wait until the endpoint queue is completely empty */
1504 while (!list_empty (&ep->urb_list)) {
1505 spin_lock_irq(&hcd_urb_list_lock);
1507 /* The list may have changed while we acquired the spinlock */
1509 if (!list_empty (&ep->urb_list)) {
1510 urb = list_entry (ep->urb_list.prev, struct urb,
1514 spin_unlock_irq(&hcd_urb_list_lock);
1523 /* Disables the endpoint: synchronizes with the hcd to make sure all
1524 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1525 * have been called previously. Use for set_configuration, set_interface,
1526 * driver removal, physical disconnect.
1528 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1529 * type, maxpacket size, toggle, halt status, and scheduling.
1531 void usb_hcd_disable_endpoint(struct usb_device *udev,
1532 struct usb_host_endpoint *ep)
1534 struct usb_hcd *hcd;
1537 hcd = bus_to_hcd(udev->bus);
1538 if (hcd->driver->endpoint_disable)
1539 hcd->driver->endpoint_disable(hcd, ep);
1542 /* Protect against drivers that try to unlink URBs after the device
1543 * is gone, by waiting until all unlinks for @udev are finished.
1544 * Since we don't currently track URBs by device, simply wait until
1545 * nothing is running in the locked region of usb_hcd_unlink_urb().
1547 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1549 spin_lock_irq(&hcd_urb_unlink_lock);
1550 spin_unlock_irq(&hcd_urb_unlink_lock);
1553 /*-------------------------------------------------------------------------*/
1555 /* called in any context */
1556 int usb_hcd_get_frame_number (struct usb_device *udev)
1558 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1560 if (!HC_IS_RUNNING (hcd->state))
1562 return hcd->driver->get_frame_number (hcd);
1565 /*-------------------------------------------------------------------------*/
1569 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1571 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1573 int old_state = hcd->state;
1575 dev_dbg(&rhdev->dev, "bus %s%s\n",
1576 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1577 if (!hcd->driver->bus_suspend) {
1580 hcd->state = HC_STATE_QUIESCING;
1581 status = hcd->driver->bus_suspend(hcd);
1584 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1585 hcd->state = HC_STATE_SUSPENDED;
1587 hcd->state = old_state;
1588 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1594 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1596 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1598 int old_state = hcd->state;
1600 dev_dbg(&rhdev->dev, "usb %s%s\n",
1601 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
1602 if (!hcd->driver->bus_resume)
1604 if (hcd->state == HC_STATE_RUNNING)
1607 hcd->state = HC_STATE_RESUMING;
1608 status = hcd->driver->bus_resume(hcd);
1610 /* TRSMRCY = 10 msec */
1612 usb_set_device_state(rhdev, rhdev->actconfig
1613 ? USB_STATE_CONFIGURED
1614 : USB_STATE_ADDRESS);
1615 hcd->state = HC_STATE_RUNNING;
1617 hcd->state = old_state;
1618 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1620 if (status != -ESHUTDOWN)
1626 /* Workqueue routine for root-hub remote wakeup */
1627 static void hcd_resume_work(struct work_struct *work)
1629 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1630 struct usb_device *udev = hcd->self.root_hub;
1632 usb_lock_device(udev);
1633 usb_mark_last_busy(udev);
1634 usb_external_resume_device(udev, PMSG_REMOTE_RESUME);
1635 usb_unlock_device(udev);
1639 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1640 * @hcd: host controller for this root hub
1642 * The USB host controller calls this function when its root hub is
1643 * suspended (with the remote wakeup feature enabled) and a remote
1644 * wakeup request is received. The routine submits a workqueue request
1645 * to resume the root hub (that is, manage its downstream ports again).
1647 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1649 unsigned long flags;
1651 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1652 if (hcd->rh_registered)
1653 queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1654 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1656 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1660 /*-------------------------------------------------------------------------*/
1662 #ifdef CONFIG_USB_OTG
1665 * usb_bus_start_enum - start immediate enumeration (for OTG)
1666 * @bus: the bus (must use hcd framework)
1667 * @port_num: 1-based number of port; usually bus->otg_port
1668 * Context: in_interrupt()
1670 * Starts enumeration, with an immediate reset followed later by
1671 * khubd identifying and possibly configuring the device.
1672 * This is needed by OTG controller drivers, where it helps meet
1673 * HNP protocol timing requirements for starting a port reset.
1675 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1677 struct usb_hcd *hcd;
1678 int status = -EOPNOTSUPP;
1680 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1681 * boards with root hubs hooked up to internal devices (instead of
1682 * just the OTG port) may need more attention to resetting...
1684 hcd = container_of (bus, struct usb_hcd, self);
1685 if (port_num && hcd->driver->start_port_reset)
1686 status = hcd->driver->start_port_reset(hcd, port_num);
1688 /* run khubd shortly after (first) root port reset finishes;
1689 * it may issue others, until at least 50 msecs have passed.
1692 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1695 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1699 /*-------------------------------------------------------------------------*/
1702 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1703 * @irq: the IRQ being raised
1704 * @__hcd: pointer to the HCD whose IRQ is being signaled
1706 * If the controller isn't HALTed, calls the driver's irq handler.
1707 * Checks whether the controller is now dead.
1709 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1711 struct usb_hcd *hcd = __hcd;
1712 unsigned long flags;
1715 /* IRQF_DISABLED doesn't work correctly with shared IRQs
1716 * when the first handler doesn't use it. So let's just
1717 * assume it's never used.
1719 local_irq_save(flags);
1721 if (unlikely(hcd->state == HC_STATE_HALT ||
1722 !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1724 } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1727 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1729 if (unlikely(hcd->state == HC_STATE_HALT))
1734 local_irq_restore(flags);
1738 /*-------------------------------------------------------------------------*/
1741 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1742 * @hcd: pointer to the HCD representing the controller
1744 * This is called by bus glue to report a USB host controller that died
1745 * while operations may still have been pending. It's called automatically
1746 * by the PCI glue, so only glue for non-PCI busses should need to call it.
1748 void usb_hc_died (struct usb_hcd *hcd)
1750 unsigned long flags;
1752 dev_err (hcd->self.controller, "HC died; cleaning up\n");
1754 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1755 if (hcd->rh_registered) {
1758 /* make khubd clean up old urbs and devices */
1759 usb_set_device_state (hcd->self.root_hub,
1760 USB_STATE_NOTATTACHED);
1761 usb_kick_khubd (hcd->self.root_hub);
1763 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1765 EXPORT_SYMBOL_GPL (usb_hc_died);
1767 /*-------------------------------------------------------------------------*/
1770 * usb_create_hcd - create and initialize an HCD structure
1771 * @driver: HC driver that will use this hcd
1772 * @dev: device for this HC, stored in hcd->self.controller
1773 * @bus_name: value to store in hcd->self.bus_name
1774 * Context: !in_interrupt()
1776 * Allocate a struct usb_hcd, with extra space at the end for the
1777 * HC driver's private data. Initialize the generic members of the
1780 * If memory is unavailable, returns NULL.
1782 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1783 struct device *dev, const char *bus_name)
1785 struct usb_hcd *hcd;
1787 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1789 dev_dbg (dev, "hcd alloc failed\n");
1792 dev_set_drvdata(dev, hcd);
1793 kref_init(&hcd->kref);
1795 usb_bus_init(&hcd->self);
1796 hcd->self.controller = dev;
1797 hcd->self.bus_name = bus_name;
1798 hcd->self.uses_dma = (dev->dma_mask != NULL);
1800 init_timer(&hcd->rh_timer);
1801 hcd->rh_timer.function = rh_timer_func;
1802 hcd->rh_timer.data = (unsigned long) hcd;
1804 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1807 hcd->driver = driver;
1808 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1809 "USB Host Controller";
1812 EXPORT_SYMBOL_GPL(usb_create_hcd);
1814 static void hcd_release (struct kref *kref)
1816 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1821 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1824 kref_get (&hcd->kref);
1827 EXPORT_SYMBOL_GPL(usb_get_hcd);
1829 void usb_put_hcd (struct usb_hcd *hcd)
1832 kref_put (&hcd->kref, hcd_release);
1834 EXPORT_SYMBOL_GPL(usb_put_hcd);
1837 * usb_add_hcd - finish generic HCD structure initialization and register
1838 * @hcd: the usb_hcd structure to initialize
1839 * @irqnum: Interrupt line to allocate
1840 * @irqflags: Interrupt type flags
1842 * Finish the remaining parts of generic HCD initialization: allocate the
1843 * buffers of consistent memory, register the bus, request the IRQ line,
1844 * and call the driver's reset() and start() routines.
1846 int usb_add_hcd(struct usb_hcd *hcd,
1847 unsigned int irqnum, unsigned long irqflags)
1850 struct usb_device *rhdev;
1852 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1854 hcd->authorized_default = hcd->wireless? 0 : 1;
1855 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1857 /* HC is in reset state, but accessible. Now do the one-time init,
1858 * bottom up so that hcds can customize the root hubs before khubd
1859 * starts talking to them. (Note, bus id is assigned early too.)
1861 if ((retval = hcd_buffer_create(hcd)) != 0) {
1862 dev_dbg(hcd->self.controller, "pool alloc failed\n");
1866 if ((retval = usb_register_bus(&hcd->self)) < 0)
1867 goto err_register_bus;
1869 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1870 dev_err(hcd->self.controller, "unable to allocate root hub\n");
1872 goto err_allocate_root_hub;
1874 rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1876 hcd->self.root_hub = rhdev;
1878 /* wakeup flag init defaults to "everything works" for root hubs,
1879 * but drivers can override it in reset() if needed, along with
1880 * recording the overall controller's system wakeup capability.
1882 device_init_wakeup(&rhdev->dev, 1);
1884 /* "reset" is misnamed; its role is now one-time init. the controller
1885 * should already have been reset (and boot firmware kicked off etc).
1887 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1888 dev_err(hcd->self.controller, "can't setup\n");
1889 goto err_hcd_driver_setup;
1892 /* NOTE: root hub and controller capabilities may not be the same */
1893 if (device_can_wakeup(hcd->self.controller)
1894 && device_can_wakeup(&hcd->self.root_hub->dev))
1895 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1897 /* enable irqs just before we start the controller */
1898 if (hcd->driver->irq) {
1900 /* IRQF_DISABLED doesn't work as advertised when used together
1901 * with IRQF_SHARED. As usb_hcd_irq() will always disable
1902 * interrupts we can remove it here.
1904 if (irqflags & IRQF_SHARED)
1905 irqflags &= ~IRQF_DISABLED;
1907 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1908 hcd->driver->description, hcd->self.busnum);
1909 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1910 hcd->irq_descr, hcd)) != 0) {
1911 dev_err(hcd->self.controller,
1912 "request interrupt %d failed\n", irqnum);
1913 goto err_request_irq;
1916 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1917 (hcd->driver->flags & HCD_MEMORY) ?
1918 "io mem" : "io base",
1919 (unsigned long long)hcd->rsrc_start);
1922 if (hcd->rsrc_start)
1923 dev_info(hcd->self.controller, "%s 0x%08llx\n",
1924 (hcd->driver->flags & HCD_MEMORY) ?
1925 "io mem" : "io base",
1926 (unsigned long long)hcd->rsrc_start);
1929 if ((retval = hcd->driver->start(hcd)) < 0) {
1930 dev_err(hcd->self.controller, "startup error %d\n", retval);
1931 goto err_hcd_driver_start;
1934 /* starting here, usbcore will pay attention to this root hub */
1935 rhdev->bus_mA = min(500u, hcd->power_budget);
1936 if ((retval = register_root_hub(hcd)) != 0)
1937 goto err_register_root_hub;
1939 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1941 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1943 goto error_create_attr_group;
1945 if (hcd->uses_new_polling && hcd->poll_rh)
1946 usb_hcd_poll_rh_status(hcd);
1949 error_create_attr_group:
1950 mutex_lock(&usb_bus_list_lock);
1951 usb_disconnect(&hcd->self.root_hub);
1952 mutex_unlock(&usb_bus_list_lock);
1953 err_register_root_hub:
1954 hcd->driver->stop(hcd);
1955 err_hcd_driver_start:
1957 free_irq(irqnum, hcd);
1959 err_hcd_driver_setup:
1960 hcd->self.root_hub = NULL;
1962 err_allocate_root_hub:
1963 usb_deregister_bus(&hcd->self);
1965 hcd_buffer_destroy(hcd);
1968 EXPORT_SYMBOL_GPL(usb_add_hcd);
1971 * usb_remove_hcd - shutdown processing for generic HCDs
1972 * @hcd: the usb_hcd structure to remove
1973 * Context: !in_interrupt()
1975 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1976 * invoking the HCD's stop() method.
1978 void usb_remove_hcd(struct usb_hcd *hcd)
1980 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1982 if (HC_IS_RUNNING (hcd->state))
1983 hcd->state = HC_STATE_QUIESCING;
1985 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1986 spin_lock_irq (&hcd_root_hub_lock);
1987 hcd->rh_registered = 0;
1988 spin_unlock_irq (&hcd_root_hub_lock);
1991 cancel_work_sync(&hcd->wakeup_work);
1994 sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
1995 mutex_lock(&usb_bus_list_lock);
1996 usb_disconnect(&hcd->self.root_hub);
1997 mutex_unlock(&usb_bus_list_lock);
1999 hcd->driver->stop(hcd);
2000 hcd->state = HC_STATE_HALT;
2003 del_timer_sync(&hcd->rh_timer);
2006 free_irq(hcd->irq, hcd);
2007 usb_deregister_bus(&hcd->self);
2008 hcd_buffer_destroy(hcd);
2010 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2013 usb_hcd_platform_shutdown(struct platform_device* dev)
2015 struct usb_hcd *hcd = platform_get_drvdata(dev);
2017 if (hcd->driver->shutdown)
2018 hcd->driver->shutdown(hcd);
2020 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2022 /*-------------------------------------------------------------------------*/
2024 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2026 struct usb_mon_operations *mon_ops;
2029 * The registration is unlocked.
2030 * We do it this way because we do not want to lock in hot paths.
2032 * Notice that the code is minimally error-proof. Because usbmon needs
2033 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2036 int usb_mon_register (struct usb_mon_operations *ops)
2046 EXPORT_SYMBOL_GPL (usb_mon_register);
2048 void usb_mon_deregister (void)
2051 if (mon_ops == NULL) {
2052 printk(KERN_ERR "USB: monitor was not registered\n");
2058 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2060 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */