]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/usb/dwc2/gadget.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[karo-tx-linux.git] / drivers / usb / dwc2 / gadget.c
1 /**
2  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3  *              http://www.samsung.com
4  *
5  * Copyright 2008 Openmoko, Inc.
6  * Copyright 2008 Simtec Electronics
7  *      Ben Dooks <ben@simtec.co.uk>
8  *      http://armlinux.simtec.co.uk/
9  *
10  * S3C USB2.0 High-speed / OtG driver
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/mutex.h>
24 #include <linux/seq_file.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/clk.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/of_platform.h>
31 #include <linux/phy/phy.h>
32
33 #include <linux/usb/ch9.h>
34 #include <linux/usb/gadget.h>
35 #include <linux/usb/phy.h>
36 #include <linux/platform_data/s3c-hsotg.h>
37
38 #include "core.h"
39 #include "hw.h"
40
41 /* conversion functions */
42 static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
43 {
44         return container_of(req, struct s3c_hsotg_req, req);
45 }
46
47 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
48 {
49         return container_of(ep, struct s3c_hsotg_ep, ep);
50 }
51
52 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
53 {
54         return container_of(gadget, struct dwc2_hsotg, gadget);
55 }
56
57 static inline void __orr32(void __iomem *ptr, u32 val)
58 {
59         writel(readl(ptr) | val, ptr);
60 }
61
62 static inline void __bic32(void __iomem *ptr, u32 val)
63 {
64         writel(readl(ptr) & ~val, ptr);
65 }
66
67 static inline struct s3c_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
68                                                 u32 ep_index, u32 dir_in)
69 {
70         if (dir_in)
71                 return hsotg->eps_in[ep_index];
72         else
73                 return hsotg->eps_out[ep_index];
74 }
75
76 /* forward declaration of functions */
77 static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
78
79 /**
80  * using_dma - return the DMA status of the driver.
81  * @hsotg: The driver state.
82  *
83  * Return true if we're using DMA.
84  *
85  * Currently, we have the DMA support code worked into everywhere
86  * that needs it, but the AMBA DMA implementation in the hardware can
87  * only DMA from 32bit aligned addresses. This means that gadgets such
88  * as the CDC Ethernet cannot work as they often pass packets which are
89  * not 32bit aligned.
90  *
91  * Unfortunately the choice to use DMA or not is global to the controller
92  * and seems to be only settable when the controller is being put through
93  * a core reset. This means we either need to fix the gadgets to take
94  * account of DMA alignment, or add bounce buffers (yuerk).
95  *
96  * g_using_dma is set depending on dts flag.
97  */
98 static inline bool using_dma(struct dwc2_hsotg *hsotg)
99 {
100         return hsotg->g_using_dma;
101 }
102
103 /**
104  * s3c_hsotg_en_gsint - enable one or more of the general interrupt
105  * @hsotg: The device state
106  * @ints: A bitmask of the interrupts to enable
107  */
108 static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
109 {
110         u32 gsintmsk = readl(hsotg->regs + GINTMSK);
111         u32 new_gsintmsk;
112
113         new_gsintmsk = gsintmsk | ints;
114
115         if (new_gsintmsk != gsintmsk) {
116                 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
117                 writel(new_gsintmsk, hsotg->regs + GINTMSK);
118         }
119 }
120
121 /**
122  * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
123  * @hsotg: The device state
124  * @ints: A bitmask of the interrupts to enable
125  */
126 static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
127 {
128         u32 gsintmsk = readl(hsotg->regs + GINTMSK);
129         u32 new_gsintmsk;
130
131         new_gsintmsk = gsintmsk & ~ints;
132
133         if (new_gsintmsk != gsintmsk)
134                 writel(new_gsintmsk, hsotg->regs + GINTMSK);
135 }
136
137 /**
138  * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
139  * @hsotg: The device state
140  * @ep: The endpoint index
141  * @dir_in: True if direction is in.
142  * @en: The enable value, true to enable
143  *
144  * Set or clear the mask for an individual endpoint's interrupt
145  * request.
146  */
147 static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
148                                  unsigned int ep, unsigned int dir_in,
149                                  unsigned int en)
150 {
151         unsigned long flags;
152         u32 bit = 1 << ep;
153         u32 daint;
154
155         if (!dir_in)
156                 bit <<= 16;
157
158         local_irq_save(flags);
159         daint = readl(hsotg->regs + DAINTMSK);
160         if (en)
161                 daint |= bit;
162         else
163                 daint &= ~bit;
164         writel(daint, hsotg->regs + DAINTMSK);
165         local_irq_restore(flags);
166 }
167
168 /**
169  * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
170  * @hsotg: The device instance.
171  */
172 static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
173 {
174         unsigned int ep;
175         unsigned int addr;
176         int timeout;
177         u32 val;
178
179         /* Reset fifo map if not correctly cleared during previous session */
180         WARN_ON(hsotg->fifo_map);
181         hsotg->fifo_map = 0;
182
183         /* set RX/NPTX FIFO sizes */
184         writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
185         writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
186                 (hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
187                 hsotg->regs + GNPTXFSIZ);
188
189         /*
190          * arange all the rest of the TX FIFOs, as some versions of this
191          * block have overlapping default addresses. This also ensures
192          * that if the settings have been changed, then they are set to
193          * known values.
194          */
195
196         /* start at the end of the GNPTXFSIZ, rounded up */
197         addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
198
199         /*
200          * Configure fifos sizes from provided configuration and assign
201          * them to endpoints dynamically according to maxpacket size value of
202          * given endpoint.
203          */
204         for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
205                 if (!hsotg->g_tx_fifo_sz[ep])
206                         continue;
207                 val = addr;
208                 val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
209                 WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
210                           "insufficient fifo memory");
211                 addr += hsotg->g_tx_fifo_sz[ep];
212
213                 writel(val, hsotg->regs + DPTXFSIZN(ep));
214         }
215
216         /*
217          * according to p428 of the design guide, we need to ensure that
218          * all fifos are flushed before continuing
219          */
220
221         writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
222                GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
223
224         /* wait until the fifos are both flushed */
225         timeout = 100;
226         while (1) {
227                 val = readl(hsotg->regs + GRSTCTL);
228
229                 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
230                         break;
231
232                 if (--timeout == 0) {
233                         dev_err(hsotg->dev,
234                                 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
235                                 __func__, val);
236                         break;
237                 }
238
239                 udelay(1);
240         }
241
242         dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
243 }
244
245 /**
246  * @ep: USB endpoint to allocate request for.
247  * @flags: Allocation flags
248  *
249  * Allocate a new USB request structure appropriate for the specified endpoint
250  */
251 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
252                                                       gfp_t flags)
253 {
254         struct s3c_hsotg_req *req;
255
256         req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
257         if (!req)
258                 return NULL;
259
260         INIT_LIST_HEAD(&req->queue);
261
262         return &req->req;
263 }
264
265 /**
266  * is_ep_periodic - return true if the endpoint is in periodic mode.
267  * @hs_ep: The endpoint to query.
268  *
269  * Returns true if the endpoint is in periodic mode, meaning it is being
270  * used for an Interrupt or ISO transfer.
271  */
272 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
273 {
274         return hs_ep->periodic;
275 }
276
277 /**
278  * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
279  * @hsotg: The device state.
280  * @hs_ep: The endpoint for the request
281  * @hs_req: The request being processed.
282  *
283  * This is the reverse of s3c_hsotg_map_dma(), called for the completion
284  * of a request to ensure the buffer is ready for access by the caller.
285  */
286 static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
287                                 struct s3c_hsotg_ep *hs_ep,
288                                 struct s3c_hsotg_req *hs_req)
289 {
290         struct usb_request *req = &hs_req->req;
291
292         /* ignore this if we're not moving any data */
293         if (hs_req->req.length == 0)
294                 return;
295
296         usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
297 }
298
299 /**
300  * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
301  * @hsotg: The controller state.
302  * @hs_ep: The endpoint we're going to write for.
303  * @hs_req: The request to write data for.
304  *
305  * This is called when the TxFIFO has some space in it to hold a new
306  * transmission and we have something to give it. The actual setup of
307  * the data size is done elsewhere, so all we have to do is to actually
308  * write the data.
309  *
310  * The return value is zero if there is more space (or nothing was done)
311  * otherwise -ENOSPC is returned if the FIFO space was used up.
312  *
313  * This routine is only needed for PIO
314  */
315 static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
316                                 struct s3c_hsotg_ep *hs_ep,
317                                 struct s3c_hsotg_req *hs_req)
318 {
319         bool periodic = is_ep_periodic(hs_ep);
320         u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
321         int buf_pos = hs_req->req.actual;
322         int to_write = hs_ep->size_loaded;
323         void *data;
324         int can_write;
325         int pkt_round;
326         int max_transfer;
327
328         to_write -= (buf_pos - hs_ep->last_load);
329
330         /* if there's nothing to write, get out early */
331         if (to_write == 0)
332                 return 0;
333
334         if (periodic && !hsotg->dedicated_fifos) {
335                 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
336                 int size_left;
337                 int size_done;
338
339                 /*
340                  * work out how much data was loaded so we can calculate
341                  * how much data is left in the fifo.
342                  */
343
344                 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
345
346                 /*
347                  * if shared fifo, we cannot write anything until the
348                  * previous data has been completely sent.
349                  */
350                 if (hs_ep->fifo_load != 0) {
351                         s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
352                         return -ENOSPC;
353                 }
354
355                 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
356                         __func__, size_left,
357                         hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
358
359                 /* how much of the data has moved */
360                 size_done = hs_ep->size_loaded - size_left;
361
362                 /* how much data is left in the fifo */
363                 can_write = hs_ep->fifo_load - size_done;
364                 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
365                         __func__, can_write);
366
367                 can_write = hs_ep->fifo_size - can_write;
368                 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
369                         __func__, can_write);
370
371                 if (can_write <= 0) {
372                         s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
373                         return -ENOSPC;
374                 }
375         } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
376                 can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
377
378                 can_write &= 0xffff;
379                 can_write *= 4;
380         } else {
381                 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
382                         dev_dbg(hsotg->dev,
383                                 "%s: no queue slots available (0x%08x)\n",
384                                 __func__, gnptxsts);
385
386                         s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
387                         return -ENOSPC;
388                 }
389
390                 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
391                 can_write *= 4; /* fifo size is in 32bit quantities. */
392         }
393
394         max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
395
396         dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
397                  __func__, gnptxsts, can_write, to_write, max_transfer);
398
399         /*
400          * limit to 512 bytes of data, it seems at least on the non-periodic
401          * FIFO, requests of >512 cause the endpoint to get stuck with a
402          * fragment of the end of the transfer in it.
403          */
404         if (can_write > 512 && !periodic)
405                 can_write = 512;
406
407         /*
408          * limit the write to one max-packet size worth of data, but allow
409          * the transfer to return that it did not run out of fifo space
410          * doing it.
411          */
412         if (to_write > max_transfer) {
413                 to_write = max_transfer;
414
415                 /* it's needed only when we do not use dedicated fifos */
416                 if (!hsotg->dedicated_fifos)
417                         s3c_hsotg_en_gsint(hsotg,
418                                            periodic ? GINTSTS_PTXFEMP :
419                                            GINTSTS_NPTXFEMP);
420         }
421
422         /* see if we can write data */
423
424         if (to_write > can_write) {
425                 to_write = can_write;
426                 pkt_round = to_write % max_transfer;
427
428                 /*
429                  * Round the write down to an
430                  * exact number of packets.
431                  *
432                  * Note, we do not currently check to see if we can ever
433                  * write a full packet or not to the FIFO.
434                  */
435
436                 if (pkt_round)
437                         to_write -= pkt_round;
438
439                 /*
440                  * enable correct FIFO interrupt to alert us when there
441                  * is more room left.
442                  */
443
444                 /* it's needed only when we do not use dedicated fifos */
445                 if (!hsotg->dedicated_fifos)
446                         s3c_hsotg_en_gsint(hsotg,
447                                            periodic ? GINTSTS_PTXFEMP :
448                                            GINTSTS_NPTXFEMP);
449         }
450
451         dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
452                  to_write, hs_req->req.length, can_write, buf_pos);
453
454         if (to_write <= 0)
455                 return -ENOSPC;
456
457         hs_req->req.actual = buf_pos + to_write;
458         hs_ep->total_data += to_write;
459
460         if (periodic)
461                 hs_ep->fifo_load += to_write;
462
463         to_write = DIV_ROUND_UP(to_write, 4);
464         data = hs_req->req.buf + buf_pos;
465
466         iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
467
468         return (to_write >= can_write) ? -ENOSPC : 0;
469 }
470
471 /**
472  * get_ep_limit - get the maximum data legnth for this endpoint
473  * @hs_ep: The endpoint
474  *
475  * Return the maximum data that can be queued in one go on a given endpoint
476  * so that transfers that are too long can be split.
477  */
478 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
479 {
480         int index = hs_ep->index;
481         unsigned maxsize;
482         unsigned maxpkt;
483
484         if (index != 0) {
485                 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
486                 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
487         } else {
488                 maxsize = 64+64;
489                 if (hs_ep->dir_in)
490                         maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
491                 else
492                         maxpkt = 2;
493         }
494
495         /* we made the constant loading easier above by using +1 */
496         maxpkt--;
497         maxsize--;
498
499         /*
500          * constrain by packet count if maxpkts*pktsize is greater
501          * than the length register size.
502          */
503
504         if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
505                 maxsize = maxpkt * hs_ep->ep.maxpacket;
506
507         return maxsize;
508 }
509
510 /**
511  * s3c_hsotg_start_req - start a USB request from an endpoint's queue
512  * @hsotg: The controller state.
513  * @hs_ep: The endpoint to process a request for
514  * @hs_req: The request to start.
515  * @continuing: True if we are doing more for the current request.
516  *
517  * Start the given request running by setting the endpoint registers
518  * appropriately, and writing any data to the FIFOs.
519  */
520 static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
521                                 struct s3c_hsotg_ep *hs_ep,
522                                 struct s3c_hsotg_req *hs_req,
523                                 bool continuing)
524 {
525         struct usb_request *ureq = &hs_req->req;
526         int index = hs_ep->index;
527         int dir_in = hs_ep->dir_in;
528         u32 epctrl_reg;
529         u32 epsize_reg;
530         u32 epsize;
531         u32 ctrl;
532         unsigned length;
533         unsigned packets;
534         unsigned maxreq;
535
536         if (index != 0) {
537                 if (hs_ep->req && !continuing) {
538                         dev_err(hsotg->dev, "%s: active request\n", __func__);
539                         WARN_ON(1);
540                         return;
541                 } else if (hs_ep->req != hs_req && continuing) {
542                         dev_err(hsotg->dev,
543                                 "%s: continue different req\n", __func__);
544                         WARN_ON(1);
545                         return;
546                 }
547         }
548
549         epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
550         epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
551
552         dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
553                 __func__, readl(hsotg->regs + epctrl_reg), index,
554                 hs_ep->dir_in ? "in" : "out");
555
556         /* If endpoint is stalled, we will restart request later */
557         ctrl = readl(hsotg->regs + epctrl_reg);
558
559         if (ctrl & DXEPCTL_STALL) {
560                 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
561                 return;
562         }
563
564         length = ureq->length - ureq->actual;
565         dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
566                 ureq->length, ureq->actual);
567
568         maxreq = get_ep_limit(hs_ep);
569         if (length > maxreq) {
570                 int round = maxreq % hs_ep->ep.maxpacket;
571
572                 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
573                         __func__, length, maxreq, round);
574
575                 /* round down to multiple of packets */
576                 if (round)
577                         maxreq -= round;
578
579                 length = maxreq;
580         }
581
582         if (length)
583                 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
584         else
585                 packets = 1;    /* send one packet if length is zero. */
586
587         if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
588                 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
589                 return;
590         }
591
592         if (dir_in && index != 0)
593                 if (hs_ep->isochronous)
594                         epsize = DXEPTSIZ_MC(packets);
595                 else
596                         epsize = DXEPTSIZ_MC(1);
597         else
598                 epsize = 0;
599
600         /*
601          * zero length packet should be programmed on its own and should not
602          * be counted in DIEPTSIZ.PktCnt with other packets.
603          */
604         if (dir_in && ureq->zero && !continuing) {
605                 /* Test if zlp is actually required. */
606                 if ((ureq->length >= hs_ep->ep.maxpacket) &&
607                                         !(ureq->length % hs_ep->ep.maxpacket))
608                         hs_ep->send_zlp = 1;
609         }
610
611         epsize |= DXEPTSIZ_PKTCNT(packets);
612         epsize |= DXEPTSIZ_XFERSIZE(length);
613
614         dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
615                 __func__, packets, length, ureq->length, epsize, epsize_reg);
616
617         /* store the request as the current one we're doing */
618         hs_ep->req = hs_req;
619
620         /* write size / packets */
621         writel(epsize, hsotg->regs + epsize_reg);
622
623         if (using_dma(hsotg) && !continuing) {
624                 unsigned int dma_reg;
625
626                 /*
627                  * write DMA address to control register, buffer already
628                  * synced by s3c_hsotg_ep_queue().
629                  */
630
631                 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
632                 writel(ureq->dma, hsotg->regs + dma_reg);
633
634                 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
635                         __func__, &ureq->dma, dma_reg);
636         }
637
638         ctrl |= DXEPCTL_EPENA;  /* ensure ep enabled */
639         ctrl |= DXEPCTL_USBACTEP;
640
641         dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
642
643         /* For Setup request do not clear NAK */
644         if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
645                 ctrl |= DXEPCTL_CNAK;   /* clear NAK set by core */
646
647         dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
648         writel(ctrl, hsotg->regs + epctrl_reg);
649
650         /*
651          * set these, it seems that DMA support increments past the end
652          * of the packet buffer so we need to calculate the length from
653          * this information.
654          */
655         hs_ep->size_loaded = length;
656         hs_ep->last_load = ureq->actual;
657
658         if (dir_in && !using_dma(hsotg)) {
659                 /* set these anyway, we may need them for non-periodic in */
660                 hs_ep->fifo_load = 0;
661
662                 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
663         }
664
665         /*
666          * clear the INTknTXFEmpMsk when we start request, more as a aide
667          * to debugging to see what is going on.
668          */
669         if (dir_in)
670                 writel(DIEPMSK_INTKNTXFEMPMSK,
671                        hsotg->regs + DIEPINT(index));
672
673         /*
674          * Note, trying to clear the NAK here causes problems with transmit
675          * on the S3C6400 ending up with the TXFIFO becoming full.
676          */
677
678         /* check ep is enabled */
679         if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
680                 dev_dbg(hsotg->dev,
681                          "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
682                          index, readl(hsotg->regs + epctrl_reg));
683
684         dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
685                 __func__, readl(hsotg->regs + epctrl_reg));
686
687         /* enable ep interrupts */
688         s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
689 }
690
691 /**
692  * s3c_hsotg_map_dma - map the DMA memory being used for the request
693  * @hsotg: The device state.
694  * @hs_ep: The endpoint the request is on.
695  * @req: The request being processed.
696  *
697  * We've been asked to queue a request, so ensure that the memory buffer
698  * is correctly setup for DMA. If we've been passed an extant DMA address
699  * then ensure the buffer has been synced to memory. If our buffer has no
700  * DMA memory, then we map the memory and mark our request to allow us to
701  * cleanup on completion.
702  */
703 static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
704                              struct s3c_hsotg_ep *hs_ep,
705                              struct usb_request *req)
706 {
707         struct s3c_hsotg_req *hs_req = our_req(req);
708         int ret;
709
710         /* if the length is zero, ignore the DMA data */
711         if (hs_req->req.length == 0)
712                 return 0;
713
714         ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
715         if (ret)
716                 goto dma_error;
717
718         return 0;
719
720 dma_error:
721         dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
722                 __func__, req->buf, req->length);
723
724         return -EIO;
725 }
726
727 static int s3c_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
728         struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req)
729 {
730         void *req_buf = hs_req->req.buf;
731
732         /* If dma is not being used or buffer is aligned */
733         if (!using_dma(hsotg) || !((long)req_buf & 3))
734                 return 0;
735
736         WARN_ON(hs_req->saved_req_buf);
737
738         dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
739                         hs_ep->ep.name, req_buf, hs_req->req.length);
740
741         hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
742         if (!hs_req->req.buf) {
743                 hs_req->req.buf = req_buf;
744                 dev_err(hsotg->dev,
745                         "%s: unable to allocate memory for bounce buffer\n",
746                         __func__);
747                 return -ENOMEM;
748         }
749
750         /* Save actual buffer */
751         hs_req->saved_req_buf = req_buf;
752
753         if (hs_ep->dir_in)
754                 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
755         return 0;
756 }
757
758 static void s3c_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
759         struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req)
760 {
761         /* If dma is not being used or buffer was aligned */
762         if (!using_dma(hsotg) || !hs_req->saved_req_buf)
763                 return;
764
765         dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
766                 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
767
768         /* Copy data from bounce buffer on successful out transfer */
769         if (!hs_ep->dir_in && !hs_req->req.status)
770                 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
771                                                         hs_req->req.actual);
772
773         /* Free bounce buffer */
774         kfree(hs_req->req.buf);
775
776         hs_req->req.buf = hs_req->saved_req_buf;
777         hs_req->saved_req_buf = NULL;
778 }
779
780 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
781                               gfp_t gfp_flags)
782 {
783         struct s3c_hsotg_req *hs_req = our_req(req);
784         struct s3c_hsotg_ep *hs_ep = our_ep(ep);
785         struct dwc2_hsotg *hs = hs_ep->parent;
786         bool first;
787         int ret;
788
789         dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
790                 ep->name, req, req->length, req->buf, req->no_interrupt,
791                 req->zero, req->short_not_ok);
792
793         /* Prevent new request submission when controller is suspended */
794         if (hs->lx_state == DWC2_L2) {
795                 dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
796                                 __func__);
797                 return -EAGAIN;
798         }
799
800         /* initialise status of the request */
801         INIT_LIST_HEAD(&hs_req->queue);
802         req->actual = 0;
803         req->status = -EINPROGRESS;
804
805         ret = s3c_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
806         if (ret)
807                 return ret;
808
809         /* if we're using DMA, sync the buffers as necessary */
810         if (using_dma(hs)) {
811                 ret = s3c_hsotg_map_dma(hs, hs_ep, req);
812                 if (ret)
813                         return ret;
814         }
815
816         first = list_empty(&hs_ep->queue);
817         list_add_tail(&hs_req->queue, &hs_ep->queue);
818
819         if (first)
820                 s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
821
822         return 0;
823 }
824
825 static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
826                               gfp_t gfp_flags)
827 {
828         struct s3c_hsotg_ep *hs_ep = our_ep(ep);
829         struct dwc2_hsotg *hs = hs_ep->parent;
830         unsigned long flags = 0;
831         int ret = 0;
832
833         spin_lock_irqsave(&hs->lock, flags);
834         ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
835         spin_unlock_irqrestore(&hs->lock, flags);
836
837         return ret;
838 }
839
840 static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
841                                       struct usb_request *req)
842 {
843         struct s3c_hsotg_req *hs_req = our_req(req);
844
845         kfree(hs_req);
846 }
847
848 /**
849  * s3c_hsotg_complete_oursetup - setup completion callback
850  * @ep: The endpoint the request was on.
851  * @req: The request completed.
852  *
853  * Called on completion of any requests the driver itself
854  * submitted that need cleaning up.
855  */
856 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
857                                         struct usb_request *req)
858 {
859         struct s3c_hsotg_ep *hs_ep = our_ep(ep);
860         struct dwc2_hsotg *hsotg = hs_ep->parent;
861
862         dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
863
864         s3c_hsotg_ep_free_request(ep, req);
865 }
866
867 /**
868  * ep_from_windex - convert control wIndex value to endpoint
869  * @hsotg: The driver state.
870  * @windex: The control request wIndex field (in host order).
871  *
872  * Convert the given wIndex into a pointer to an driver endpoint
873  * structure, or return NULL if it is not a valid endpoint.
874  */
875 static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
876                                            u32 windex)
877 {
878         struct s3c_hsotg_ep *ep;
879         int dir = (windex & USB_DIR_IN) ? 1 : 0;
880         int idx = windex & 0x7F;
881
882         if (windex >= 0x100)
883                 return NULL;
884
885         if (idx > hsotg->num_of_eps)
886                 return NULL;
887
888         ep = index_to_ep(hsotg, idx, dir);
889
890         if (idx && ep->dir_in != dir)
891                 return NULL;
892
893         return ep;
894 }
895
896 /**
897  * s3c_hsotg_set_test_mode - Enable usb Test Modes
898  * @hsotg: The driver state.
899  * @testmode: requested usb test mode
900  * Enable usb Test Mode requested by the Host.
901  */
902 int s3c_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
903 {
904         int dctl = readl(hsotg->regs + DCTL);
905
906         dctl &= ~DCTL_TSTCTL_MASK;
907         switch (testmode) {
908         case TEST_J:
909         case TEST_K:
910         case TEST_SE0_NAK:
911         case TEST_PACKET:
912         case TEST_FORCE_EN:
913                 dctl |= testmode << DCTL_TSTCTL_SHIFT;
914                 break;
915         default:
916                 return -EINVAL;
917         }
918         writel(dctl, hsotg->regs + DCTL);
919         return 0;
920 }
921
922 /**
923  * s3c_hsotg_send_reply - send reply to control request
924  * @hsotg: The device state
925  * @ep: Endpoint 0
926  * @buff: Buffer for request
927  * @length: Length of reply.
928  *
929  * Create a request and queue it on the given endpoint. This is useful as
930  * an internal method of sending replies to certain control requests, etc.
931  */
932 static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
933                                 struct s3c_hsotg_ep *ep,
934                                 void *buff,
935                                 int length)
936 {
937         struct usb_request *req;
938         int ret;
939
940         dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
941
942         req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
943         hsotg->ep0_reply = req;
944         if (!req) {
945                 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
946                 return -ENOMEM;
947         }
948
949         req->buf = hsotg->ep0_buff;
950         req->length = length;
951         /*
952          * zero flag is for sending zlp in DATA IN stage. It has no impact on
953          * STATUS stage.
954          */
955         req->zero = 0;
956         req->complete = s3c_hsotg_complete_oursetup;
957
958         if (length)
959                 memcpy(req->buf, buff, length);
960
961         ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
962         if (ret) {
963                 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
964                 return ret;
965         }
966
967         return 0;
968 }
969
970 /**
971  * s3c_hsotg_process_req_status - process request GET_STATUS
972  * @hsotg: The device state
973  * @ctrl: USB control request
974  */
975 static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
976                                         struct usb_ctrlrequest *ctrl)
977 {
978         struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
979         struct s3c_hsotg_ep *ep;
980         __le16 reply;
981         int ret;
982
983         dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
984
985         if (!ep0->dir_in) {
986                 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
987                 return -EINVAL;
988         }
989
990         switch (ctrl->bRequestType & USB_RECIP_MASK) {
991         case USB_RECIP_DEVICE:
992                 reply = cpu_to_le16(0); /* bit 0 => self powered,
993                                          * bit 1 => remote wakeup */
994                 break;
995
996         case USB_RECIP_INTERFACE:
997                 /* currently, the data result should be zero */
998                 reply = cpu_to_le16(0);
999                 break;
1000
1001         case USB_RECIP_ENDPOINT:
1002                 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1003                 if (!ep)
1004                         return -ENOENT;
1005
1006                 reply = cpu_to_le16(ep->halted ? 1 : 0);
1007                 break;
1008
1009         default:
1010                 return 0;
1011         }
1012
1013         if (le16_to_cpu(ctrl->wLength) != 2)
1014                 return -EINVAL;
1015
1016         ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1017         if (ret) {
1018                 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1019                 return ret;
1020         }
1021
1022         return 1;
1023 }
1024
1025 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1026
1027 /**
1028  * get_ep_head - return the first request on the endpoint
1029  * @hs_ep: The controller endpoint to get
1030  *
1031  * Get the first request on the endpoint.
1032  */
1033 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1034 {
1035         if (list_empty(&hs_ep->queue))
1036                 return NULL;
1037
1038         return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1039 }
1040
1041 /**
1042  * s3c_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1043  * @hsotg: The device state
1044  * @ctrl: USB control request
1045  */
1046 static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1047                                          struct usb_ctrlrequest *ctrl)
1048 {
1049         struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1050         struct s3c_hsotg_req *hs_req;
1051         bool restart;
1052         bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1053         struct s3c_hsotg_ep *ep;
1054         int ret;
1055         bool halted;
1056         u32 recip;
1057         u32 wValue;
1058         u32 wIndex;
1059
1060         dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1061                 __func__, set ? "SET" : "CLEAR");
1062
1063         wValue = le16_to_cpu(ctrl->wValue);
1064         wIndex = le16_to_cpu(ctrl->wIndex);
1065         recip = ctrl->bRequestType & USB_RECIP_MASK;
1066
1067         switch (recip) {
1068         case USB_RECIP_DEVICE:
1069                 switch (wValue) {
1070                 case USB_DEVICE_TEST_MODE:
1071                         if ((wIndex & 0xff) != 0)
1072                                 return -EINVAL;
1073                         if (!set)
1074                                 return -EINVAL;
1075
1076                         hsotg->test_mode = wIndex >> 8;
1077                         ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1078                         if (ret) {
1079                                 dev_err(hsotg->dev,
1080                                         "%s: failed to send reply\n", __func__);
1081                                 return ret;
1082                         }
1083                         break;
1084                 default:
1085                         return -ENOENT;
1086                 }
1087                 break;
1088
1089         case USB_RECIP_ENDPOINT:
1090                 ep = ep_from_windex(hsotg, wIndex);
1091                 if (!ep) {
1092                         dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1093                                 __func__, wIndex);
1094                         return -ENOENT;
1095                 }
1096
1097                 switch (wValue) {
1098                 case USB_ENDPOINT_HALT:
1099                         halted = ep->halted;
1100
1101                         s3c_hsotg_ep_sethalt(&ep->ep, set);
1102
1103                         ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1104                         if (ret) {
1105                                 dev_err(hsotg->dev,
1106                                         "%s: failed to send reply\n", __func__);
1107                                 return ret;
1108                         }
1109
1110                         /*
1111                          * we have to complete all requests for ep if it was
1112                          * halted, and the halt was cleared by CLEAR_FEATURE
1113                          */
1114
1115                         if (!set && halted) {
1116                                 /*
1117                                  * If we have request in progress,
1118                                  * then complete it
1119                                  */
1120                                 if (ep->req) {
1121                                         hs_req = ep->req;
1122                                         ep->req = NULL;
1123                                         list_del_init(&hs_req->queue);
1124                                         if (hs_req->req.complete) {
1125                                                 spin_unlock(&hsotg->lock);
1126                                                 usb_gadget_giveback_request(
1127                                                         &ep->ep, &hs_req->req);
1128                                                 spin_lock(&hsotg->lock);
1129                                         }
1130                                 }
1131
1132                                 /* If we have pending request, then start it */
1133                                 if (!ep->req) {
1134                                         restart = !list_empty(&ep->queue);
1135                                         if (restart) {
1136                                                 hs_req = get_ep_head(ep);
1137                                                 s3c_hsotg_start_req(hsotg, ep,
1138                                                                 hs_req, false);
1139                                         }
1140                                 }
1141                         }
1142
1143                         break;
1144
1145                 default:
1146                         return -ENOENT;
1147                 }
1148                 break;
1149         default:
1150                 return -ENOENT;
1151         }
1152         return 1;
1153 }
1154
1155 static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1156
1157 /**
1158  * s3c_hsotg_stall_ep0 - stall ep0
1159  * @hsotg: The device state
1160  *
1161  * Set stall for ep0 as response for setup request.
1162  */
1163 static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1164 {
1165         struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1166         u32 reg;
1167         u32 ctrl;
1168
1169         dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1170         reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1171
1172         /*
1173          * DxEPCTL_Stall will be cleared by EP once it has
1174          * taken effect, so no need to clear later.
1175          */
1176
1177         ctrl = readl(hsotg->regs + reg);
1178         ctrl |= DXEPCTL_STALL;
1179         ctrl |= DXEPCTL_CNAK;
1180         writel(ctrl, hsotg->regs + reg);
1181
1182         dev_dbg(hsotg->dev,
1183                 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1184                 ctrl, reg, readl(hsotg->regs + reg));
1185
1186          /*
1187           * complete won't be called, so we enqueue
1188           * setup request here
1189           */
1190          s3c_hsotg_enqueue_setup(hsotg);
1191 }
1192
1193 /**
1194  * s3c_hsotg_process_control - process a control request
1195  * @hsotg: The device state
1196  * @ctrl: The control request received
1197  *
1198  * The controller has received the SETUP phase of a control request, and
1199  * needs to work out what to do next (and whether to pass it on to the
1200  * gadget driver).
1201  */
1202 static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1203                                       struct usb_ctrlrequest *ctrl)
1204 {
1205         struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1206         int ret = 0;
1207         u32 dcfg;
1208
1209         dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1210                  ctrl->bRequest, ctrl->bRequestType,
1211                  ctrl->wValue, ctrl->wLength);
1212
1213         if (ctrl->wLength == 0) {
1214                 ep0->dir_in = 1;
1215                 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1216         } else if (ctrl->bRequestType & USB_DIR_IN) {
1217                 ep0->dir_in = 1;
1218                 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1219         } else {
1220                 ep0->dir_in = 0;
1221                 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1222         }
1223
1224         if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1225                 switch (ctrl->bRequest) {
1226                 case USB_REQ_SET_ADDRESS:
1227                         hsotg->connected = 1;
1228                         dcfg = readl(hsotg->regs + DCFG);
1229                         dcfg &= ~DCFG_DEVADDR_MASK;
1230                         dcfg |= (le16_to_cpu(ctrl->wValue) <<
1231                                  DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1232                         writel(dcfg, hsotg->regs + DCFG);
1233
1234                         dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1235
1236                         ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1237                         return;
1238
1239                 case USB_REQ_GET_STATUS:
1240                         ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1241                         break;
1242
1243                 case USB_REQ_CLEAR_FEATURE:
1244                 case USB_REQ_SET_FEATURE:
1245                         ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1246                         break;
1247                 }
1248         }
1249
1250         /* as a fallback, try delivering it to the driver to deal with */
1251
1252         if (ret == 0 && hsotg->driver) {
1253                 spin_unlock(&hsotg->lock);
1254                 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1255                 spin_lock(&hsotg->lock);
1256                 if (ret < 0)
1257                         dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1258         }
1259
1260         /*
1261          * the request is either unhandlable, or is not formatted correctly
1262          * so respond with a STALL for the status stage to indicate failure.
1263          */
1264
1265         if (ret < 0)
1266                 s3c_hsotg_stall_ep0(hsotg);
1267 }
1268
1269 /**
1270  * s3c_hsotg_complete_setup - completion of a setup transfer
1271  * @ep: The endpoint the request was on.
1272  * @req: The request completed.
1273  *
1274  * Called on completion of any requests the driver itself submitted for
1275  * EP0 setup packets
1276  */
1277 static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1278                                      struct usb_request *req)
1279 {
1280         struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1281         struct dwc2_hsotg *hsotg = hs_ep->parent;
1282
1283         if (req->status < 0) {
1284                 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1285                 return;
1286         }
1287
1288         spin_lock(&hsotg->lock);
1289         if (req->actual == 0)
1290                 s3c_hsotg_enqueue_setup(hsotg);
1291         else
1292                 s3c_hsotg_process_control(hsotg, req->buf);
1293         spin_unlock(&hsotg->lock);
1294 }
1295
1296 /**
1297  * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1298  * @hsotg: The device state.
1299  *
1300  * Enqueue a request on EP0 if necessary to received any SETUP packets
1301  * received from the host.
1302  */
1303 static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1304 {
1305         struct usb_request *req = hsotg->ctrl_req;
1306         struct s3c_hsotg_req *hs_req = our_req(req);
1307         int ret;
1308
1309         dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1310
1311         req->zero = 0;
1312         req->length = 8;
1313         req->buf = hsotg->ctrl_buff;
1314         req->complete = s3c_hsotg_complete_setup;
1315
1316         if (!list_empty(&hs_req->queue)) {
1317                 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1318                 return;
1319         }
1320
1321         hsotg->eps_out[0]->dir_in = 0;
1322         hsotg->eps_out[0]->send_zlp = 0;
1323         hsotg->ep0_state = DWC2_EP0_SETUP;
1324
1325         ret = s3c_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1326         if (ret < 0) {
1327                 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1328                 /*
1329                  * Don't think there's much we can do other than watch the
1330                  * driver fail.
1331                  */
1332         }
1333 }
1334
1335 static void s3c_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1336                                         struct s3c_hsotg_ep *hs_ep)
1337 {
1338         u32 ctrl;
1339         u8 index = hs_ep->index;
1340         u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1341         u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1342
1343         if (hs_ep->dir_in)
1344                 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1345                                                                         index);
1346         else
1347                 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1348                                                                         index);
1349
1350         writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1351                         DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1352                         epsiz_reg);
1353
1354         ctrl = readl(hsotg->regs + epctl_reg);
1355         ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1356         ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1357         ctrl |= DXEPCTL_USBACTEP;
1358         writel(ctrl, hsotg->regs + epctl_reg);
1359 }
1360
1361 /**
1362  * s3c_hsotg_complete_request - complete a request given to us
1363  * @hsotg: The device state.
1364  * @hs_ep: The endpoint the request was on.
1365  * @hs_req: The request to complete.
1366  * @result: The result code (0 => Ok, otherwise errno)
1367  *
1368  * The given request has finished, so call the necessary completion
1369  * if it has one and then look to see if we can start a new request
1370  * on the endpoint.
1371  *
1372  * Note, expects the ep to already be locked as appropriate.
1373  */
1374 static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1375                                        struct s3c_hsotg_ep *hs_ep,
1376                                        struct s3c_hsotg_req *hs_req,
1377                                        int result)
1378 {
1379         bool restart;
1380
1381         if (!hs_req) {
1382                 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1383                 return;
1384         }
1385
1386         dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1387                 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1388
1389         /*
1390          * only replace the status if we've not already set an error
1391          * from a previous transaction
1392          */
1393
1394         if (hs_req->req.status == -EINPROGRESS)
1395                 hs_req->req.status = result;
1396
1397         s3c_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1398
1399         hs_ep->req = NULL;
1400         list_del_init(&hs_req->queue);
1401
1402         if (using_dma(hsotg))
1403                 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1404
1405         /*
1406          * call the complete request with the locks off, just in case the
1407          * request tries to queue more work for this endpoint.
1408          */
1409
1410         if (hs_req->req.complete) {
1411                 spin_unlock(&hsotg->lock);
1412                 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1413                 spin_lock(&hsotg->lock);
1414         }
1415
1416         /*
1417          * Look to see if there is anything else to do. Note, the completion
1418          * of the previous request may have caused a new request to be started
1419          * so be careful when doing this.
1420          */
1421
1422         if (!hs_ep->req && result >= 0) {
1423                 restart = !list_empty(&hs_ep->queue);
1424                 if (restart) {
1425                         hs_req = get_ep_head(hs_ep);
1426                         s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1427                 }
1428         }
1429 }
1430
1431 /**
1432  * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1433  * @hsotg: The device state.
1434  * @ep_idx: The endpoint index for the data
1435  * @size: The size of data in the fifo, in bytes
1436  *
1437  * The FIFO status shows there is data to read from the FIFO for a given
1438  * endpoint, so sort out whether we need to read the data into a request
1439  * that has been made for that endpoint.
1440  */
1441 static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1442 {
1443         struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1444         struct s3c_hsotg_req *hs_req = hs_ep->req;
1445         void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1446         int to_read;
1447         int max_req;
1448         int read_ptr;
1449
1450
1451         if (!hs_req) {
1452                 u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1453                 int ptr;
1454
1455                 dev_dbg(hsotg->dev,
1456                          "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1457                          __func__, size, ep_idx, epctl);
1458
1459                 /* dump the data from the FIFO, we've nothing we can do */
1460                 for (ptr = 0; ptr < size; ptr += 4)
1461                         (void)readl(fifo);
1462
1463                 return;
1464         }
1465
1466         to_read = size;
1467         read_ptr = hs_req->req.actual;
1468         max_req = hs_req->req.length - read_ptr;
1469
1470         dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1471                 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1472
1473         if (to_read > max_req) {
1474                 /*
1475                  * more data appeared than we where willing
1476                  * to deal with in this request.
1477                  */
1478
1479                 /* currently we don't deal this */
1480                 WARN_ON_ONCE(1);
1481         }
1482
1483         hs_ep->total_data += to_read;
1484         hs_req->req.actual += to_read;
1485         to_read = DIV_ROUND_UP(to_read, 4);
1486
1487         /*
1488          * note, we might over-write the buffer end by 3 bytes depending on
1489          * alignment of the data.
1490          */
1491         ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1492 }
1493
1494 /**
1495  * s3c_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1496  * @hsotg: The device instance
1497  * @dir_in: If IN zlp
1498  *
1499  * Generate a zero-length IN packet request for terminating a SETUP
1500  * transaction.
1501  *
1502  * Note, since we don't write any data to the TxFIFO, then it is
1503  * currently believed that we do not need to wait for any space in
1504  * the TxFIFO.
1505  */
1506 static void s3c_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1507 {
1508         /* eps_out[0] is used in both directions */
1509         hsotg->eps_out[0]->dir_in = dir_in;
1510         hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1511
1512         s3c_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1513 }
1514
1515 /**
1516  * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1517  * @hsotg: The device instance
1518  * @epnum: The endpoint received from
1519  *
1520  * The RXFIFO has delivered an OutDone event, which means that the data
1521  * transfer for an OUT endpoint has been completed, either by a short
1522  * packet or by the finish of a transfer.
1523  */
1524 static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1525 {
1526         u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1527         struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1528         struct s3c_hsotg_req *hs_req = hs_ep->req;
1529         struct usb_request *req = &hs_req->req;
1530         unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1531         int result = 0;
1532
1533         if (!hs_req) {
1534                 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1535                 return;
1536         }
1537
1538         if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
1539                 dev_dbg(hsotg->dev, "zlp packet received\n");
1540                 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1541                 s3c_hsotg_enqueue_setup(hsotg);
1542                 return;
1543         }
1544
1545         if (using_dma(hsotg)) {
1546                 unsigned size_done;
1547
1548                 /*
1549                  * Calculate the size of the transfer by checking how much
1550                  * is left in the endpoint size register and then working it
1551                  * out from the amount we loaded for the transfer.
1552                  *
1553                  * We need to do this as DMA pointers are always 32bit aligned
1554                  * so may overshoot/undershoot the transfer.
1555                  */
1556
1557                 size_done = hs_ep->size_loaded - size_left;
1558                 size_done += hs_ep->last_load;
1559
1560                 req->actual = size_done;
1561         }
1562
1563         /* if there is more request to do, schedule new transfer */
1564         if (req->actual < req->length && size_left == 0) {
1565                 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1566                 return;
1567         }
1568
1569         if (req->actual < req->length && req->short_not_ok) {
1570                 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1571                         __func__, req->actual, req->length);
1572
1573                 /*
1574                  * todo - what should we return here? there's no one else
1575                  * even bothering to check the status.
1576                  */
1577         }
1578
1579         if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
1580                 /* Move to STATUS IN */
1581                 s3c_hsotg_ep0_zlp(hsotg, true);
1582                 return;
1583         }
1584
1585         s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1586 }
1587
1588 /**
1589  * s3c_hsotg_read_frameno - read current frame number
1590  * @hsotg: The device instance
1591  *
1592  * Return the current frame number
1593  */
1594 static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1595 {
1596         u32 dsts;
1597
1598         dsts = readl(hsotg->regs + DSTS);
1599         dsts &= DSTS_SOFFN_MASK;
1600         dsts >>= DSTS_SOFFN_SHIFT;
1601
1602         return dsts;
1603 }
1604
1605 /**
1606  * s3c_hsotg_handle_rx - RX FIFO has data
1607  * @hsotg: The device instance
1608  *
1609  * The IRQ handler has detected that the RX FIFO has some data in it
1610  * that requires processing, so find out what is in there and do the
1611  * appropriate read.
1612  *
1613  * The RXFIFO is a true FIFO, the packets coming out are still in packet
1614  * chunks, so if you have x packets received on an endpoint you'll get x
1615  * FIFO events delivered, each with a packet's worth of data in it.
1616  *
1617  * When using DMA, we should not be processing events from the RXFIFO
1618  * as the actual data should be sent to the memory directly and we turn
1619  * on the completion interrupts to get notifications of transfer completion.
1620  */
1621 static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1622 {
1623         u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1624         u32 epnum, status, size;
1625
1626         WARN_ON(using_dma(hsotg));
1627
1628         epnum = grxstsr & GRXSTS_EPNUM_MASK;
1629         status = grxstsr & GRXSTS_PKTSTS_MASK;
1630
1631         size = grxstsr & GRXSTS_BYTECNT_MASK;
1632         size >>= GRXSTS_BYTECNT_SHIFT;
1633
1634         dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1635                         __func__, grxstsr, size, epnum);
1636
1637         switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1638         case GRXSTS_PKTSTS_GLOBALOUTNAK:
1639                 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1640                 break;
1641
1642         case GRXSTS_PKTSTS_OUTDONE:
1643                 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1644                         s3c_hsotg_read_frameno(hsotg));
1645
1646                 if (!using_dma(hsotg))
1647                         s3c_hsotg_handle_outdone(hsotg, epnum);
1648                 break;
1649
1650         case GRXSTS_PKTSTS_SETUPDONE:
1651                 dev_dbg(hsotg->dev,
1652                         "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1653                         s3c_hsotg_read_frameno(hsotg),
1654                         readl(hsotg->regs + DOEPCTL(0)));
1655                 /*
1656                  * Call s3c_hsotg_handle_outdone here if it was not called from
1657                  * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
1658                  * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
1659                  */
1660                 if (hsotg->ep0_state == DWC2_EP0_SETUP)
1661                         s3c_hsotg_handle_outdone(hsotg, epnum);
1662                 break;
1663
1664         case GRXSTS_PKTSTS_OUTRX:
1665                 s3c_hsotg_rx_data(hsotg, epnum, size);
1666                 break;
1667
1668         case GRXSTS_PKTSTS_SETUPRX:
1669                 dev_dbg(hsotg->dev,
1670                         "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1671                         s3c_hsotg_read_frameno(hsotg),
1672                         readl(hsotg->regs + DOEPCTL(0)));
1673
1674                 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
1675
1676                 s3c_hsotg_rx_data(hsotg, epnum, size);
1677                 break;
1678
1679         default:
1680                 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1681                          __func__, grxstsr);
1682
1683                 s3c_hsotg_dump(hsotg);
1684                 break;
1685         }
1686 }
1687
1688 /**
1689  * s3c_hsotg_ep0_mps - turn max packet size into register setting
1690  * @mps: The maximum packet size in bytes.
1691  */
1692 static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1693 {
1694         switch (mps) {
1695         case 64:
1696                 return D0EPCTL_MPS_64;
1697         case 32:
1698                 return D0EPCTL_MPS_32;
1699         case 16:
1700                 return D0EPCTL_MPS_16;
1701         case 8:
1702                 return D0EPCTL_MPS_8;
1703         }
1704
1705         /* bad max packet size, warn and return invalid result */
1706         WARN_ON(1);
1707         return (u32)-1;
1708 }
1709
1710 /**
1711  * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1712  * @hsotg: The driver state.
1713  * @ep: The index number of the endpoint
1714  * @mps: The maximum packet size in bytes
1715  *
1716  * Configure the maximum packet size for the given endpoint, updating
1717  * the hardware control registers to reflect this.
1718  */
1719 static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1720                         unsigned int ep, unsigned int mps, unsigned int dir_in)
1721 {
1722         struct s3c_hsotg_ep *hs_ep;
1723         void __iomem *regs = hsotg->regs;
1724         u32 mpsval;
1725         u32 mcval;
1726         u32 reg;
1727
1728         hs_ep = index_to_ep(hsotg, ep, dir_in);
1729         if (!hs_ep)
1730                 return;
1731
1732         if (ep == 0) {
1733                 /* EP0 is a special case */
1734                 mpsval = s3c_hsotg_ep0_mps(mps);
1735                 if (mpsval > 3)
1736                         goto bad_mps;
1737                 hs_ep->ep.maxpacket = mps;
1738                 hs_ep->mc = 1;
1739         } else {
1740                 mpsval = mps & DXEPCTL_MPS_MASK;
1741                 if (mpsval > 1024)
1742                         goto bad_mps;
1743                 mcval = ((mps >> 11) & 0x3) + 1;
1744                 hs_ep->mc = mcval;
1745                 if (mcval > 3)
1746                         goto bad_mps;
1747                 hs_ep->ep.maxpacket = mpsval;
1748         }
1749
1750         if (dir_in) {
1751                 reg = readl(regs + DIEPCTL(ep));
1752                 reg &= ~DXEPCTL_MPS_MASK;
1753                 reg |= mpsval;
1754                 writel(reg, regs + DIEPCTL(ep));
1755         } else {
1756                 reg = readl(regs + DOEPCTL(ep));
1757                 reg &= ~DXEPCTL_MPS_MASK;
1758                 reg |= mpsval;
1759                 writel(reg, regs + DOEPCTL(ep));
1760         }
1761
1762         return;
1763
1764 bad_mps:
1765         dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1766 }
1767
1768 /**
1769  * s3c_hsotg_txfifo_flush - flush Tx FIFO
1770  * @hsotg: The driver state
1771  * @idx: The index for the endpoint (0..15)
1772  */
1773 static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1774 {
1775         int timeout;
1776         int val;
1777
1778         writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1779                 hsotg->regs + GRSTCTL);
1780
1781         /* wait until the fifo is flushed */
1782         timeout = 100;
1783
1784         while (1) {
1785                 val = readl(hsotg->regs + GRSTCTL);
1786
1787                 if ((val & (GRSTCTL_TXFFLSH)) == 0)
1788                         break;
1789
1790                 if (--timeout == 0) {
1791                         dev_err(hsotg->dev,
1792                                 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1793                                 __func__, val);
1794                         break;
1795                 }
1796
1797                 udelay(1);
1798         }
1799 }
1800
1801 /**
1802  * s3c_hsotg_trytx - check to see if anything needs transmitting
1803  * @hsotg: The driver state
1804  * @hs_ep: The driver endpoint to check.
1805  *
1806  * Check to see if there is a request that has data to send, and if so
1807  * make an attempt to write data into the FIFO.
1808  */
1809 static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1810                            struct s3c_hsotg_ep *hs_ep)
1811 {
1812         struct s3c_hsotg_req *hs_req = hs_ep->req;
1813
1814         if (!hs_ep->dir_in || !hs_req) {
1815                 /**
1816                  * if request is not enqueued, we disable interrupts
1817                  * for endpoints, excepting ep0
1818                  */
1819                 if (hs_ep->index != 0)
1820                         s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
1821                                              hs_ep->dir_in, 0);
1822                 return 0;
1823         }
1824
1825         if (hs_req->req.actual < hs_req->req.length) {
1826                 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1827                         hs_ep->index);
1828                 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1829         }
1830
1831         return 0;
1832 }
1833
1834 /**
1835  * s3c_hsotg_complete_in - complete IN transfer
1836  * @hsotg: The device state.
1837  * @hs_ep: The endpoint that has just completed.
1838  *
1839  * An IN transfer has been completed, update the transfer's state and then
1840  * call the relevant completion routines.
1841  */
1842 static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1843                                   struct s3c_hsotg_ep *hs_ep)
1844 {
1845         struct s3c_hsotg_req *hs_req = hs_ep->req;
1846         u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1847         int size_left, size_done;
1848
1849         if (!hs_req) {
1850                 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1851                 return;
1852         }
1853
1854         /* Finish ZLP handling for IN EP0 transactions */
1855         if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
1856                 dev_dbg(hsotg->dev, "zlp packet sent\n");
1857                 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1858                 if (hsotg->test_mode) {
1859                         int ret;
1860
1861                         ret = s3c_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1862                         if (ret < 0) {
1863                                 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
1864                                                 hsotg->test_mode);
1865                                 s3c_hsotg_stall_ep0(hsotg);
1866                                 return;
1867                         }
1868                 }
1869                 s3c_hsotg_enqueue_setup(hsotg);
1870                 return;
1871         }
1872
1873         /*
1874          * Calculate the size of the transfer by checking how much is left
1875          * in the endpoint size register and then working it out from
1876          * the amount we loaded for the transfer.
1877          *
1878          * We do this even for DMA, as the transfer may have incremented
1879          * past the end of the buffer (DMA transfers are always 32bit
1880          * aligned).
1881          */
1882
1883         size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1884
1885         size_done = hs_ep->size_loaded - size_left;
1886         size_done += hs_ep->last_load;
1887
1888         if (hs_req->req.actual != size_done)
1889                 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1890                         __func__, hs_req->req.actual, size_done);
1891
1892         hs_req->req.actual = size_done;
1893         dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1894                 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1895
1896         if (!size_left && hs_req->req.actual < hs_req->req.length) {
1897                 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1898                 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1899                 return;
1900         }
1901
1902         /* Zlp for all endpoints, for ep0 only in DATA IN stage */
1903         if (hs_ep->send_zlp) {
1904                 s3c_hsotg_program_zlp(hsotg, hs_ep);
1905                 hs_ep->send_zlp = 0;
1906                 /* transfer will be completed on next complete interrupt */
1907                 return;
1908         }
1909
1910         if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
1911                 /* Move to STATUS OUT */
1912                 s3c_hsotg_ep0_zlp(hsotg, false);
1913                 return;
1914         }
1915
1916         s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1917 }
1918
1919 /**
1920  * s3c_hsotg_epint - handle an in/out endpoint interrupt
1921  * @hsotg: The driver state
1922  * @idx: The index for the endpoint (0..15)
1923  * @dir_in: Set if this is an IN endpoint
1924  *
1925  * Process and clear any interrupt pending for an individual endpoint
1926  */
1927 static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1928                             int dir_in)
1929 {
1930         struct s3c_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1931         u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1932         u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1933         u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1934         u32 ints;
1935         u32 ctrl;
1936
1937         ints = readl(hsotg->regs + epint_reg);
1938         ctrl = readl(hsotg->regs + epctl_reg);
1939
1940         /* Clear endpoint interrupts */
1941         writel(ints, hsotg->regs + epint_reg);
1942
1943         if (!hs_ep) {
1944                 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
1945                                         __func__, idx, dir_in ? "in" : "out");
1946                 return;
1947         }
1948
1949         dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1950                 __func__, idx, dir_in ? "in" : "out", ints);
1951
1952         /* Don't process XferCompl interrupt if it is a setup packet */
1953         if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
1954                 ints &= ~DXEPINT_XFERCOMPL;
1955
1956         if (ints & DXEPINT_XFERCOMPL) {
1957                 if (hs_ep->isochronous && hs_ep->interval == 1) {
1958                         if (ctrl & DXEPCTL_EOFRNUM)
1959                                 ctrl |= DXEPCTL_SETEVENFR;
1960                         else
1961                                 ctrl |= DXEPCTL_SETODDFR;
1962                         writel(ctrl, hsotg->regs + epctl_reg);
1963                 }
1964
1965                 dev_dbg(hsotg->dev,
1966                         "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1967                         __func__, readl(hsotg->regs + epctl_reg),
1968                         readl(hsotg->regs + epsiz_reg));
1969
1970                 /*
1971                  * we get OutDone from the FIFO, so we only need to look
1972                  * at completing IN requests here
1973                  */
1974                 if (dir_in) {
1975                         s3c_hsotg_complete_in(hsotg, hs_ep);
1976
1977                         if (idx == 0 && !hs_ep->req)
1978                                 s3c_hsotg_enqueue_setup(hsotg);
1979                 } else if (using_dma(hsotg)) {
1980                         /*
1981                          * We're using DMA, we need to fire an OutDone here
1982                          * as we ignore the RXFIFO.
1983                          */
1984
1985                         s3c_hsotg_handle_outdone(hsotg, idx);
1986                 }
1987         }
1988
1989         if (ints & DXEPINT_EPDISBLD) {
1990                 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1991
1992                 if (dir_in) {
1993                         int epctl = readl(hsotg->regs + epctl_reg);
1994
1995                         s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1996
1997                         if ((epctl & DXEPCTL_STALL) &&
1998                                 (epctl & DXEPCTL_EPTYPE_BULK)) {
1999                                 int dctl = readl(hsotg->regs + DCTL);
2000
2001                                 dctl |= DCTL_CGNPINNAK;
2002                                 writel(dctl, hsotg->regs + DCTL);
2003                         }
2004                 }
2005         }
2006
2007         if (ints & DXEPINT_AHBERR)
2008                 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2009
2010         if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2011                 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2012
2013                 if (using_dma(hsotg) && idx == 0) {
2014                         /*
2015                          * this is the notification we've received a
2016                          * setup packet. In non-DMA mode we'd get this
2017                          * from the RXFIFO, instead we need to process
2018                          * the setup here.
2019                          */
2020
2021                         if (dir_in)
2022                                 WARN_ON_ONCE(1);
2023                         else
2024                                 s3c_hsotg_handle_outdone(hsotg, 0);
2025                 }
2026         }
2027
2028         if (ints & DXEPINT_BACK2BACKSETUP)
2029                 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2030
2031         if (dir_in && !hs_ep->isochronous) {
2032                 /* not sure if this is important, but we'll clear it anyway */
2033                 if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2034                         dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2035                                 __func__, idx);
2036                 }
2037
2038                 /* this probably means something bad is happening */
2039                 if (ints & DIEPMSK_INTKNEPMISMSK) {
2040                         dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2041                                  __func__, idx);
2042                 }
2043
2044                 /* FIFO has space or is empty (see GAHBCFG) */
2045                 if (hsotg->dedicated_fifos &&
2046                     ints & DIEPMSK_TXFIFOEMPTY) {
2047                         dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2048                                 __func__, idx);
2049                         if (!using_dma(hsotg))
2050                                 s3c_hsotg_trytx(hsotg, hs_ep);
2051                 }
2052         }
2053 }
2054
2055 /**
2056  * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2057  * @hsotg: The device state.
2058  *
2059  * Handle updating the device settings after the enumeration phase has
2060  * been completed.
2061  */
2062 static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2063 {
2064         u32 dsts = readl(hsotg->regs + DSTS);
2065         int ep0_mps = 0, ep_mps = 8;
2066
2067         /*
2068          * This should signal the finish of the enumeration phase
2069          * of the USB handshaking, so we should now know what rate
2070          * we connected at.
2071          */
2072
2073         dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2074
2075         /*
2076          * note, since we're limited by the size of transfer on EP0, and
2077          * it seems IN transfers must be a even number of packets we do
2078          * not advertise a 64byte MPS on EP0.
2079          */
2080
2081         /* catch both EnumSpd_FS and EnumSpd_FS48 */
2082         switch (dsts & DSTS_ENUMSPD_MASK) {
2083         case DSTS_ENUMSPD_FS:
2084         case DSTS_ENUMSPD_FS48:
2085                 hsotg->gadget.speed = USB_SPEED_FULL;
2086                 ep0_mps = EP0_MPS_LIMIT;
2087                 ep_mps = 1023;
2088                 break;
2089
2090         case DSTS_ENUMSPD_HS:
2091                 hsotg->gadget.speed = USB_SPEED_HIGH;
2092                 ep0_mps = EP0_MPS_LIMIT;
2093                 ep_mps = 1024;
2094                 break;
2095
2096         case DSTS_ENUMSPD_LS:
2097                 hsotg->gadget.speed = USB_SPEED_LOW;
2098                 /*
2099                  * note, we don't actually support LS in this driver at the
2100                  * moment, and the documentation seems to imply that it isn't
2101                  * supported by the PHYs on some of the devices.
2102                  */
2103                 break;
2104         }
2105         dev_info(hsotg->dev, "new device is %s\n",
2106                  usb_speed_string(hsotg->gadget.speed));
2107
2108         /*
2109          * we should now know the maximum packet size for an
2110          * endpoint, so set the endpoints to a default value.
2111          */
2112
2113         if (ep0_mps) {
2114                 int i;
2115                 /* Initialize ep0 for both in and out directions */
2116                 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
2117                 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2118                 for (i = 1; i < hsotg->num_of_eps; i++) {
2119                         if (hsotg->eps_in[i])
2120                                 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2121                         if (hsotg->eps_out[i])
2122                                 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2123                 }
2124         }
2125
2126         /* ensure after enumeration our EP0 is active */
2127
2128         s3c_hsotg_enqueue_setup(hsotg);
2129
2130         dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2131                 readl(hsotg->regs + DIEPCTL0),
2132                 readl(hsotg->regs + DOEPCTL0));
2133 }
2134
2135 /**
2136  * kill_all_requests - remove all requests from the endpoint's queue
2137  * @hsotg: The device state.
2138  * @ep: The endpoint the requests may be on.
2139  * @result: The result code to use.
2140  *
2141  * Go through the requests on the given endpoint and mark them
2142  * completed with the given result code.
2143  */
2144 static void kill_all_requests(struct dwc2_hsotg *hsotg,
2145                               struct s3c_hsotg_ep *ep,
2146                               int result)
2147 {
2148         struct s3c_hsotg_req *req, *treq;
2149         unsigned size;
2150
2151         ep->req = NULL;
2152
2153         list_for_each_entry_safe(req, treq, &ep->queue, queue)
2154                 s3c_hsotg_complete_request(hsotg, ep, req,
2155                                            result);
2156
2157         if (!hsotg->dedicated_fifos)
2158                 return;
2159         size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2160         if (size < ep->fifo_size)
2161                 s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2162 }
2163
2164 /**
2165  * s3c_hsotg_disconnect - disconnect service
2166  * @hsotg: The device state.
2167  *
2168  * The device has been disconnected. Remove all current
2169  * transactions and signal the gadget driver that this
2170  * has happened.
2171  */
2172 void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2173 {
2174         unsigned ep;
2175
2176         if (!hsotg->connected)
2177                 return;
2178
2179         hsotg->connected = 0;
2180         hsotg->test_mode = 0;
2181
2182         for (ep = 0; ep < hsotg->num_of_eps; ep++) {
2183                 if (hsotg->eps_in[ep])
2184                         kill_all_requests(hsotg, hsotg->eps_in[ep],
2185                                                                 -ESHUTDOWN);
2186                 if (hsotg->eps_out[ep])
2187                         kill_all_requests(hsotg, hsotg->eps_out[ep],
2188                                                                 -ESHUTDOWN);
2189         }
2190
2191         call_gadget(hsotg, disconnect);
2192 }
2193
2194 /**
2195  * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2196  * @hsotg: The device state:
2197  * @periodic: True if this is a periodic FIFO interrupt
2198  */
2199 static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2200 {
2201         struct s3c_hsotg_ep *ep;
2202         int epno, ret;
2203
2204         /* look through for any more data to transmit */
2205         for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2206                 ep = index_to_ep(hsotg, epno, 1);
2207
2208                 if (!ep)
2209                         continue;
2210
2211                 if (!ep->dir_in)
2212                         continue;
2213
2214                 if ((periodic && !ep->periodic) ||
2215                     (!periodic && ep->periodic))
2216                         continue;
2217
2218                 ret = s3c_hsotg_trytx(hsotg, ep);
2219                 if (ret < 0)
2220                         break;
2221         }
2222 }
2223
2224 /* IRQ flags which will trigger a retry around the IRQ loop */
2225 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2226                         GINTSTS_PTXFEMP |  \
2227                         GINTSTS_RXFLVL)
2228
2229 /**
2230  * s3c_hsotg_corereset - issue softreset to the core
2231  * @hsotg: The device state
2232  *
2233  * Issue a soft reset to the core, and await the core finishing it.
2234  */
2235 static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2236 {
2237         int timeout;
2238         u32 grstctl;
2239
2240         dev_dbg(hsotg->dev, "resetting core\n");
2241
2242         /* issue soft reset */
2243         writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2244
2245         timeout = 10000;
2246         do {
2247                 grstctl = readl(hsotg->regs + GRSTCTL);
2248         } while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2249
2250         if (grstctl & GRSTCTL_CSFTRST) {
2251                 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2252                 return -EINVAL;
2253         }
2254
2255         timeout = 10000;
2256
2257         while (1) {
2258                 u32 grstctl = readl(hsotg->regs + GRSTCTL);
2259
2260                 if (timeout-- < 0) {
2261                         dev_info(hsotg->dev,
2262                                  "%s: reset failed, GRSTCTL=%08x\n",
2263                                  __func__, grstctl);
2264                         return -ETIMEDOUT;
2265                 }
2266
2267                 if (!(grstctl & GRSTCTL_AHBIDLE))
2268                         continue;
2269
2270                 break;          /* reset done */
2271         }
2272
2273         dev_dbg(hsotg->dev, "reset successful\n");
2274         return 0;
2275 }
2276
2277 /**
2278  * s3c_hsotg_core_init - issue softreset to the core
2279  * @hsotg: The device state
2280  *
2281  * Issue a soft reset to the core, and await the core finishing it.
2282  */
2283 void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2284                                                 bool is_usb_reset)
2285 {
2286         u32 val;
2287
2288         if (!is_usb_reset)
2289                 s3c_hsotg_corereset(hsotg);
2290
2291         /*
2292          * we must now enable ep0 ready for host detection and then
2293          * set configuration.
2294          */
2295
2296         /* set the PLL on, remove the HNP/SRP and set the PHY */
2297         val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2298         writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2299                (val << GUSBCFG_USBTRDTIM_SHIFT), hsotg->regs + GUSBCFG);
2300
2301         s3c_hsotg_init_fifo(hsotg);
2302
2303         if (!is_usb_reset)
2304                 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2305
2306         writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2307
2308         /* Clear any pending OTG interrupts */
2309         writel(0xffffffff, hsotg->regs + GOTGINT);
2310
2311         /* Clear any pending interrupts */
2312         writel(0xffffffff, hsotg->regs + GINTSTS);
2313
2314         writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2315                 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2316                 GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
2317                 GINTSTS_RESETDET | GINTSTS_ENUMDONE |
2318                 GINTSTS_OTGINT | GINTSTS_USBSUSP |
2319                 GINTSTS_WKUPINT,
2320                 hsotg->regs + GINTMSK);
2321
2322         if (using_dma(hsotg))
2323                 writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2324                        (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2325                        hsotg->regs + GAHBCFG);
2326         else
2327                 writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
2328                                                     GAHBCFG_P_TXF_EMP_LVL) : 0) |
2329                        GAHBCFG_GLBL_INTR_EN,
2330                        hsotg->regs + GAHBCFG);
2331
2332         /*
2333          * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2334          * when we have no data to transfer. Otherwise we get being flooded by
2335          * interrupts.
2336          */
2337
2338         writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2339                 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2340                 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2341                 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2342                 DIEPMSK_INTKNEPMISMSK,
2343                 hsotg->regs + DIEPMSK);
2344
2345         /*
2346          * don't need XferCompl, we get that from RXFIFO in slave mode. In
2347          * DMA mode we may need this.
2348          */
2349         writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2350                                     DIEPMSK_TIMEOUTMSK) : 0) |
2351                 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2352                 DOEPMSK_SETUPMSK,
2353                 hsotg->regs + DOEPMSK);
2354
2355         writel(0, hsotg->regs + DAINTMSK);
2356
2357         dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2358                 readl(hsotg->regs + DIEPCTL0),
2359                 readl(hsotg->regs + DOEPCTL0));
2360
2361         /* enable in and out endpoint interrupts */
2362         s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2363
2364         /*
2365          * Enable the RXFIFO when in slave mode, as this is how we collect
2366          * the data. In DMA mode, we get events from the FIFO but also
2367          * things we cannot process, so do not use it.
2368          */
2369         if (!using_dma(hsotg))
2370                 s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2371
2372         /* Enable interrupts for EP0 in and out */
2373         s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2374         s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2375
2376         if (!is_usb_reset) {
2377                 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2378                 udelay(10);  /* see openiboot */
2379                 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2380         }
2381
2382         dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2383
2384         /*
2385          * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2386          * writing to the EPCTL register..
2387          */
2388
2389         /* set to read 1 8byte packet */
2390         writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2391                DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2392
2393         writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2394                DXEPCTL_CNAK | DXEPCTL_EPENA |
2395                DXEPCTL_USBACTEP,
2396                hsotg->regs + DOEPCTL0);
2397
2398         /* enable, but don't activate EP0in */
2399         writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2400                DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2401
2402         s3c_hsotg_enqueue_setup(hsotg);
2403
2404         dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2405                 readl(hsotg->regs + DIEPCTL0),
2406                 readl(hsotg->regs + DOEPCTL0));
2407
2408         /* clear global NAKs */
2409         val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
2410         if (!is_usb_reset)
2411                 val |= DCTL_SFTDISCON;
2412         __orr32(hsotg->regs + DCTL, val);
2413
2414         /* must be at-least 3ms to allow bus to see disconnect */
2415         mdelay(3);
2416
2417         hsotg->last_rst = jiffies;
2418 }
2419
2420 static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2421 {
2422         /* set the soft-disconnect bit */
2423         __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2424 }
2425
2426 void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2427 {
2428         /* remove the soft-disconnect and let's go */
2429         __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2430 }
2431
2432 /**
2433  * s3c_hsotg_irq - handle device interrupt
2434  * @irq: The IRQ number triggered
2435  * @pw: The pw value when registered the handler.
2436  */
2437 static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2438 {
2439         struct dwc2_hsotg *hsotg = pw;
2440         int retry_count = 8;
2441         u32 gintsts;
2442         u32 gintmsk;
2443
2444         spin_lock(&hsotg->lock);
2445 irq_retry:
2446         gintsts = readl(hsotg->regs + GINTSTS);
2447         gintmsk = readl(hsotg->regs + GINTMSK);
2448
2449         dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2450                 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2451
2452         gintsts &= gintmsk;
2453
2454         if (gintsts & GINTSTS_ENUMDONE) {
2455                 writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2456
2457                 s3c_hsotg_irq_enumdone(hsotg);
2458         }
2459
2460         if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2461                 u32 daint = readl(hsotg->regs + DAINT);
2462                 u32 daintmsk = readl(hsotg->regs + DAINTMSK);
2463                 u32 daint_out, daint_in;
2464                 int ep;
2465
2466                 daint &= daintmsk;
2467                 daint_out = daint >> DAINT_OUTEP_SHIFT;
2468                 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2469
2470                 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2471
2472                 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
2473                                                 ep++, daint_out >>= 1) {
2474                         if (daint_out & 1)
2475                                 s3c_hsotg_epint(hsotg, ep, 0);
2476                 }
2477
2478                 for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
2479                                                 ep++, daint_in >>= 1) {
2480                         if (daint_in & 1)
2481                                 s3c_hsotg_epint(hsotg, ep, 1);
2482                 }
2483         }
2484
2485         if (gintsts & GINTSTS_RESETDET) {
2486                 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
2487
2488                 writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
2489
2490                 /* This event must be used only if controller is suspended */
2491                 if (hsotg->lx_state == DWC2_L2) {
2492                         dwc2_exit_hibernation(hsotg, true);
2493                         hsotg->lx_state = DWC2_L0;
2494                 }
2495         }
2496
2497         if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
2498
2499                 u32 usb_status = readl(hsotg->regs + GOTGCTL);
2500
2501                 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2502                 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2503                         readl(hsotg->regs + GNPTXSTS));
2504
2505                 writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2506
2507                 /* Report disconnection if it is not already done. */
2508                 s3c_hsotg_disconnect(hsotg);
2509
2510                 if (usb_status & GOTGCTL_BSESVLD) {
2511                         if (time_after(jiffies, hsotg->last_rst +
2512                                        msecs_to_jiffies(200))) {
2513
2514                                 kill_all_requests(hsotg, hsotg->eps_out[0],
2515                                                           -ECONNRESET);
2516
2517                                 hsotg->lx_state = DWC2_L0;
2518                                 s3c_hsotg_core_init_disconnected(hsotg, true);
2519                         }
2520                 }
2521         }
2522
2523         /* check both FIFOs */
2524
2525         if (gintsts & GINTSTS_NPTXFEMP) {
2526                 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2527
2528                 /*
2529                  * Disable the interrupt to stop it happening again
2530                  * unless one of these endpoint routines decides that
2531                  * it needs re-enabling
2532                  */
2533
2534                 s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2535                 s3c_hsotg_irq_fifoempty(hsotg, false);
2536         }
2537
2538         if (gintsts & GINTSTS_PTXFEMP) {
2539                 dev_dbg(hsotg->dev, "PTxFEmp\n");
2540
2541                 /* See note in GINTSTS_NPTxFEmp */
2542
2543                 s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2544                 s3c_hsotg_irq_fifoempty(hsotg, true);
2545         }
2546
2547         if (gintsts & GINTSTS_RXFLVL) {
2548                 /*
2549                  * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2550                  * we need to retry s3c_hsotg_handle_rx if this is still
2551                  * set.
2552                  */
2553
2554                 s3c_hsotg_handle_rx(hsotg);
2555         }
2556
2557         if (gintsts & GINTSTS_ERLYSUSP) {
2558                 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2559                 writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2560         }
2561
2562         /*
2563          * these next two seem to crop-up occasionally causing the core
2564          * to shutdown the USB transfer, so try clearing them and logging
2565          * the occurrence.
2566          */
2567
2568         if (gintsts & GINTSTS_GOUTNAKEFF) {
2569                 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2570
2571                 writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2572
2573                 s3c_hsotg_dump(hsotg);
2574         }
2575
2576         if (gintsts & GINTSTS_GINNAKEFF) {
2577                 dev_info(hsotg->dev, "GINNakEff triggered\n");
2578
2579                 writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2580
2581                 s3c_hsotg_dump(hsotg);
2582         }
2583
2584         /*
2585          * if we've had fifo events, we should try and go around the
2586          * loop again to see if there's any point in returning yet.
2587          */
2588
2589         if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2590                         goto irq_retry;
2591
2592         spin_unlock(&hsotg->lock);
2593
2594         return IRQ_HANDLED;
2595 }
2596
2597 /**
2598  * s3c_hsotg_ep_enable - enable the given endpoint
2599  * @ep: The USB endpint to configure
2600  * @desc: The USB endpoint descriptor to configure with.
2601  *
2602  * This is called from the USB gadget code's usb_ep_enable().
2603  */
2604 static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2605                                const struct usb_endpoint_descriptor *desc)
2606 {
2607         struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2608         struct dwc2_hsotg *hsotg = hs_ep->parent;
2609         unsigned long flags;
2610         unsigned int index = hs_ep->index;
2611         u32 epctrl_reg;
2612         u32 epctrl;
2613         u32 mps;
2614         unsigned int dir_in;
2615         unsigned int i, val, size;
2616         int ret = 0;
2617
2618         dev_dbg(hsotg->dev,
2619                 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2620                 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2621                 desc->wMaxPacketSize, desc->bInterval);
2622
2623         /* not to be called for EP0 */
2624         WARN_ON(index == 0);
2625
2626         dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2627         if (dir_in != hs_ep->dir_in) {
2628                 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2629                 return -EINVAL;
2630         }
2631
2632         mps = usb_endpoint_maxp(desc);
2633
2634         /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2635
2636         epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2637         epctrl = readl(hsotg->regs + epctrl_reg);
2638
2639         dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2640                 __func__, epctrl, epctrl_reg);
2641
2642         spin_lock_irqsave(&hsotg->lock, flags);
2643
2644         epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2645         epctrl |= DXEPCTL_MPS(mps);
2646
2647         /*
2648          * mark the endpoint as active, otherwise the core may ignore
2649          * transactions entirely for this endpoint
2650          */
2651         epctrl |= DXEPCTL_USBACTEP;
2652
2653         /*
2654          * set the NAK status on the endpoint, otherwise we might try and
2655          * do something with data that we've yet got a request to process
2656          * since the RXFIFO will take data for an endpoint even if the
2657          * size register hasn't been set.
2658          */
2659
2660         epctrl |= DXEPCTL_SNAK;
2661
2662         /* update the endpoint state */
2663         s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2664
2665         /* default, set to non-periodic */
2666         hs_ep->isochronous = 0;
2667         hs_ep->periodic = 0;
2668         hs_ep->halted = 0;
2669         hs_ep->interval = desc->bInterval;
2670
2671         if (hs_ep->interval > 1 && hs_ep->mc > 1)
2672                 dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2673
2674         switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2675         case USB_ENDPOINT_XFER_ISOC:
2676                 epctrl |= DXEPCTL_EPTYPE_ISO;
2677                 epctrl |= DXEPCTL_SETEVENFR;
2678                 hs_ep->isochronous = 1;
2679                 if (dir_in)
2680                         hs_ep->periodic = 1;
2681                 break;
2682
2683         case USB_ENDPOINT_XFER_BULK:
2684                 epctrl |= DXEPCTL_EPTYPE_BULK;
2685                 break;
2686
2687         case USB_ENDPOINT_XFER_INT:
2688                 if (dir_in)
2689                         hs_ep->periodic = 1;
2690
2691                 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2692                 break;
2693
2694         case USB_ENDPOINT_XFER_CONTROL:
2695                 epctrl |= DXEPCTL_EPTYPE_CONTROL;
2696                 break;
2697         }
2698
2699         /* If fifo is already allocated for this ep */
2700         if (hs_ep->fifo_index) {
2701                 size =  hs_ep->ep.maxpacket * hs_ep->mc;
2702                 /* If bigger fifo is required deallocate current one */
2703                 if (size > hs_ep->fifo_size) {
2704                         hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
2705                         hs_ep->fifo_index = 0;
2706                         hs_ep->fifo_size = 0;
2707                 }
2708         }
2709
2710         /*
2711          * if the hardware has dedicated fifos, we must give each IN EP
2712          * a unique tx-fifo even if it is non-periodic.
2713          */
2714         if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2715                 u32 fifo_index = 0;
2716                 u32 fifo_size = UINT_MAX;
2717                 size = hs_ep->ep.maxpacket*hs_ep->mc;
2718                 for (i = 1; i < hsotg->num_of_eps; ++i) {
2719                         if (hsotg->fifo_map & (1<<i))
2720                                 continue;
2721                         val = readl(hsotg->regs + DPTXFSIZN(i));
2722                         val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
2723                         if (val < size)
2724                                 continue;
2725                         /* Search for smallest acceptable fifo */
2726                         if (val < fifo_size) {
2727                                 fifo_size = val;
2728                                 fifo_index = i;
2729                         }
2730                 }
2731                 if (!fifo_index) {
2732                         dev_err(hsotg->dev,
2733                                 "%s: No suitable fifo found\n", __func__);
2734                         ret = -ENOMEM;
2735                         goto error;
2736                 }
2737                 hsotg->fifo_map |= 1 << fifo_index;
2738                 epctrl |= DXEPCTL_TXFNUM(fifo_index);
2739                 hs_ep->fifo_index = fifo_index;
2740                 hs_ep->fifo_size = fifo_size;
2741         }
2742
2743         /* for non control endpoints, set PID to D0 */
2744         if (index)
2745                 epctrl |= DXEPCTL_SETD0PID;
2746
2747         dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2748                 __func__, epctrl);
2749
2750         writel(epctrl, hsotg->regs + epctrl_reg);
2751         dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2752                 __func__, readl(hsotg->regs + epctrl_reg));
2753
2754         /* enable the endpoint interrupt */
2755         s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2756
2757 error:
2758         spin_unlock_irqrestore(&hsotg->lock, flags);
2759         return ret;
2760 }
2761
2762 /**
2763  * s3c_hsotg_ep_disable - disable given endpoint
2764  * @ep: The endpoint to disable.
2765  */
2766 static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2767 {
2768         struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2769         struct dwc2_hsotg *hsotg = hs_ep->parent;
2770         int dir_in = hs_ep->dir_in;
2771         int index = hs_ep->index;
2772         unsigned long flags;
2773         u32 epctrl_reg;
2774         u32 ctrl;
2775
2776         dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2777
2778         if (ep == &hsotg->eps_out[0]->ep) {
2779                 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2780                 return -EINVAL;
2781         }
2782
2783         epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2784
2785         spin_lock_irqsave(&hsotg->lock, flags);
2786
2787         hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
2788         hs_ep->fifo_index = 0;
2789         hs_ep->fifo_size = 0;
2790
2791         ctrl = readl(hsotg->regs + epctrl_reg);
2792         ctrl &= ~DXEPCTL_EPENA;
2793         ctrl &= ~DXEPCTL_USBACTEP;
2794         ctrl |= DXEPCTL_SNAK;
2795
2796         dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2797         writel(ctrl, hsotg->regs + epctrl_reg);
2798
2799         /* disable endpoint interrupts */
2800         s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2801
2802         /* terminate all requests with shutdown */
2803         kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
2804
2805         spin_unlock_irqrestore(&hsotg->lock, flags);
2806         return 0;
2807 }
2808
2809 /**
2810  * on_list - check request is on the given endpoint
2811  * @ep: The endpoint to check.
2812  * @test: The request to test if it is on the endpoint.
2813  */
2814 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2815 {
2816         struct s3c_hsotg_req *req, *treq;
2817
2818         list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2819                 if (req == test)
2820                         return true;
2821         }
2822
2823         return false;
2824 }
2825
2826 /**
2827  * s3c_hsotg_ep_dequeue - dequeue given endpoint
2828  * @ep: The endpoint to dequeue.
2829  * @req: The request to be removed from a queue.
2830  */
2831 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2832 {
2833         struct s3c_hsotg_req *hs_req = our_req(req);
2834         struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2835         struct dwc2_hsotg *hs = hs_ep->parent;
2836         unsigned long flags;
2837
2838         dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2839
2840         spin_lock_irqsave(&hs->lock, flags);
2841
2842         if (!on_list(hs_ep, hs_req)) {
2843                 spin_unlock_irqrestore(&hs->lock, flags);
2844                 return -EINVAL;
2845         }
2846
2847         s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2848         spin_unlock_irqrestore(&hs->lock, flags);
2849
2850         return 0;
2851 }
2852
2853 /**
2854  * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2855  * @ep: The endpoint to set halt.
2856  * @value: Set or unset the halt.
2857  */
2858 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2859 {
2860         struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2861         struct dwc2_hsotg *hs = hs_ep->parent;
2862         int index = hs_ep->index;
2863         u32 epreg;
2864         u32 epctl;
2865         u32 xfertype;
2866
2867         dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2868
2869         if (index == 0) {
2870                 if (value)
2871                         s3c_hsotg_stall_ep0(hs);
2872                 else
2873                         dev_warn(hs->dev,
2874                                  "%s: can't clear halt on ep0\n", __func__);
2875                 return 0;
2876         }
2877
2878         if (hs_ep->dir_in) {
2879                 epreg = DIEPCTL(index);
2880                 epctl = readl(hs->regs + epreg);
2881
2882                 if (value) {
2883                         epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
2884                         if (epctl & DXEPCTL_EPENA)
2885                                 epctl |= DXEPCTL_EPDIS;
2886                 } else {
2887                         epctl &= ~DXEPCTL_STALL;
2888                         xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2889                         if (xfertype == DXEPCTL_EPTYPE_BULK ||
2890                                 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2891                                         epctl |= DXEPCTL_SETD0PID;
2892                 }
2893                 writel(epctl, hs->regs + epreg);
2894         } else {
2895
2896                 epreg = DOEPCTL(index);
2897                 epctl = readl(hs->regs + epreg);
2898
2899                 if (value)
2900                         epctl |= DXEPCTL_STALL;
2901                 else {
2902                         epctl &= ~DXEPCTL_STALL;
2903                         xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2904                         if (xfertype == DXEPCTL_EPTYPE_BULK ||
2905                                 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2906                                         epctl |= DXEPCTL_SETD0PID;
2907                 }
2908                 writel(epctl, hs->regs + epreg);
2909         }
2910
2911         hs_ep->halted = value;
2912
2913         return 0;
2914 }
2915
2916 /**
2917  * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2918  * @ep: The endpoint to set halt.
2919  * @value: Set or unset the halt.
2920  */
2921 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2922 {
2923         struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2924         struct dwc2_hsotg *hs = hs_ep->parent;
2925         unsigned long flags = 0;
2926         int ret = 0;
2927
2928         spin_lock_irqsave(&hs->lock, flags);
2929         ret = s3c_hsotg_ep_sethalt(ep, value);
2930         spin_unlock_irqrestore(&hs->lock, flags);
2931
2932         return ret;
2933 }
2934
2935 static struct usb_ep_ops s3c_hsotg_ep_ops = {
2936         .enable         = s3c_hsotg_ep_enable,
2937         .disable        = s3c_hsotg_ep_disable,
2938         .alloc_request  = s3c_hsotg_ep_alloc_request,
2939         .free_request   = s3c_hsotg_ep_free_request,
2940         .queue          = s3c_hsotg_ep_queue_lock,
2941         .dequeue        = s3c_hsotg_ep_dequeue,
2942         .set_halt       = s3c_hsotg_ep_sethalt_lock,
2943         /* note, don't believe we have any call for the fifo routines */
2944 };
2945
2946 /**
2947  * s3c_hsotg_phy_enable - enable platform phy dev
2948  * @hsotg: The driver state
2949  *
2950  * A wrapper for platform code responsible for controlling
2951  * low-level USB code
2952  */
2953 static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2954 {
2955         struct platform_device *pdev = to_platform_device(hsotg->dev);
2956
2957         dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2958
2959         if (hsotg->uphy)
2960                 usb_phy_init(hsotg->uphy);
2961         else if (hsotg->plat && hsotg->plat->phy_init)
2962                 hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2963         else {
2964                 phy_init(hsotg->phy);
2965                 phy_power_on(hsotg->phy);
2966         }
2967 }
2968
2969 /**
2970  * s3c_hsotg_phy_disable - disable platform phy dev
2971  * @hsotg: The driver state
2972  *
2973  * A wrapper for platform code responsible for controlling
2974  * low-level USB code
2975  */
2976 static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2977 {
2978         struct platform_device *pdev = to_platform_device(hsotg->dev);
2979
2980         if (hsotg->uphy)
2981                 usb_phy_shutdown(hsotg->uphy);
2982         else if (hsotg->plat && hsotg->plat->phy_exit)
2983                 hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2984         else {
2985                 phy_power_off(hsotg->phy);
2986                 phy_exit(hsotg->phy);
2987         }
2988 }
2989
2990 /**
2991  * s3c_hsotg_init - initalize the usb core
2992  * @hsotg: The driver state
2993  */
2994 static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2995 {
2996         u32 trdtim;
2997         /* unmask subset of endpoint interrupts */
2998
2999         writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
3000                 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
3001                 hsotg->regs + DIEPMSK);
3002
3003         writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
3004                 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
3005                 hsotg->regs + DOEPMSK);
3006
3007         writel(0, hsotg->regs + DAINTMSK);
3008
3009         /* Be in disconnected state until gadget is registered */
3010         __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3011
3012         /* setup fifos */
3013
3014         dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3015                 readl(hsotg->regs + GRXFSIZ),
3016                 readl(hsotg->regs + GNPTXFSIZ));
3017
3018         s3c_hsotg_init_fifo(hsotg);
3019
3020         /* set the PLL on, remove the HNP/SRP and set the PHY */
3021         trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3022         writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3023                 (trdtim << GUSBCFG_USBTRDTIM_SHIFT),
3024                 hsotg->regs + GUSBCFG);
3025
3026         if (using_dma(hsotg))
3027                 __orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3028 }
3029
3030 /**
3031  * s3c_hsotg_udc_start - prepare the udc for work
3032  * @gadget: The usb gadget state
3033  * @driver: The usb gadget driver
3034  *
3035  * Perform initialization to prepare udc device and driver
3036  * to work.
3037  */
3038 static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
3039                            struct usb_gadget_driver *driver)
3040 {
3041         struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3042         unsigned long flags;
3043         int ret;
3044
3045         if (!hsotg) {
3046                 pr_err("%s: called with no device\n", __func__);
3047                 return -ENODEV;
3048         }
3049
3050         if (!driver) {
3051                 dev_err(hsotg->dev, "%s: no driver\n", __func__);
3052                 return -EINVAL;
3053         }
3054
3055         if (driver->max_speed < USB_SPEED_FULL)
3056                 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
3057
3058         if (!driver->setup) {
3059                 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
3060                 return -EINVAL;
3061         }
3062
3063         mutex_lock(&hsotg->init_mutex);
3064         WARN_ON(hsotg->driver);
3065
3066         driver->driver.bus = NULL;
3067         hsotg->driver = driver;
3068         hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3069         hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3070
3071         clk_enable(hsotg->clk);
3072
3073         ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3074                                     hsotg->supplies);
3075         if (ret) {
3076                 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3077                 goto err;
3078         }
3079
3080         s3c_hsotg_phy_enable(hsotg);
3081         if (!IS_ERR_OR_NULL(hsotg->uphy))
3082                 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3083
3084         spin_lock_irqsave(&hsotg->lock, flags);
3085         s3c_hsotg_init(hsotg);
3086         s3c_hsotg_core_init_disconnected(hsotg, false);
3087         hsotg->enabled = 0;
3088         spin_unlock_irqrestore(&hsotg->lock, flags);
3089
3090         dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3091
3092         mutex_unlock(&hsotg->init_mutex);
3093
3094         return 0;
3095
3096 err:
3097         mutex_unlock(&hsotg->init_mutex);
3098         hsotg->driver = NULL;
3099         return ret;
3100 }
3101
3102 /**
3103  * s3c_hsotg_udc_stop - stop the udc
3104  * @gadget: The usb gadget state
3105  * @driver: The usb gadget driver
3106  *
3107  * Stop udc hw block and stay tunned for future transmissions
3108  */
3109 static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
3110 {
3111         struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3112         unsigned long flags = 0;
3113         int ep;
3114
3115         if (!hsotg)
3116                 return -ENODEV;
3117
3118         mutex_lock(&hsotg->init_mutex);
3119
3120         /* all endpoints should be shutdown */
3121         for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3122                 if (hsotg->eps_in[ep])
3123                         s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3124                 if (hsotg->eps_out[ep])
3125                         s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3126         }
3127
3128         spin_lock_irqsave(&hsotg->lock, flags);
3129
3130         hsotg->driver = NULL;
3131         hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3132         hsotg->enabled = 0;
3133
3134         spin_unlock_irqrestore(&hsotg->lock, flags);
3135
3136         if (!IS_ERR_OR_NULL(hsotg->uphy))
3137                 otg_set_peripheral(hsotg->uphy->otg, NULL);
3138         s3c_hsotg_phy_disable(hsotg);
3139
3140         regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3141
3142         clk_disable(hsotg->clk);
3143
3144         mutex_unlock(&hsotg->init_mutex);
3145
3146         return 0;
3147 }
3148
3149 /**
3150  * s3c_hsotg_gadget_getframe - read the frame number
3151  * @gadget: The usb gadget state
3152  *
3153  * Read the {micro} frame number
3154  */
3155 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
3156 {
3157         return s3c_hsotg_read_frameno(to_hsotg(gadget));
3158 }
3159
3160 /**
3161  * s3c_hsotg_pullup - connect/disconnect the USB PHY
3162  * @gadget: The usb gadget state
3163  * @is_on: Current state of the USB PHY
3164  *
3165  * Connect/Disconnect the USB PHY pullup
3166  */
3167 static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3168 {
3169         struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3170         unsigned long flags = 0;
3171
3172         dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
3173
3174         mutex_lock(&hsotg->init_mutex);
3175         spin_lock_irqsave(&hsotg->lock, flags);
3176         if (is_on) {
3177                 clk_enable(hsotg->clk);
3178                 hsotg->enabled = 1;
3179                 s3c_hsotg_core_init_disconnected(hsotg, false);
3180                 s3c_hsotg_core_connect(hsotg);
3181         } else {
3182                 s3c_hsotg_core_disconnect(hsotg);
3183                 s3c_hsotg_disconnect(hsotg);
3184                 hsotg->enabled = 0;
3185                 clk_disable(hsotg->clk);
3186         }
3187
3188         hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3189         spin_unlock_irqrestore(&hsotg->lock, flags);
3190         mutex_unlock(&hsotg->init_mutex);
3191
3192         return 0;
3193 }
3194
3195 static int s3c_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3196 {
3197         struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3198         unsigned long flags;
3199
3200         dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
3201         spin_lock_irqsave(&hsotg->lock, flags);
3202
3203         if (is_active) {
3204                 /*
3205                  * If controller is hibernated, it must exit from hibernation
3206                  * before being initialized
3207                  */
3208                 if (hsotg->lx_state == DWC2_L2) {
3209                         dwc2_exit_hibernation(hsotg, false);
3210                         hsotg->lx_state = DWC2_L0;
3211                 }
3212                 /* Kill any ep0 requests as controller will be reinitialized */
3213                 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3214                 s3c_hsotg_core_init_disconnected(hsotg, false);
3215                 if (hsotg->enabled)
3216                         s3c_hsotg_core_connect(hsotg);
3217         } else {
3218                 s3c_hsotg_core_disconnect(hsotg);
3219                 s3c_hsotg_disconnect(hsotg);
3220         }
3221
3222         spin_unlock_irqrestore(&hsotg->lock, flags);
3223         return 0;
3224 }
3225
3226 /**
3227  * s3c_hsotg_vbus_draw - report bMaxPower field
3228  * @gadget: The usb gadget state
3229  * @mA: Amount of current
3230  *
3231  * Report how much power the device may consume to the phy.
3232  */
3233 static int s3c_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3234 {
3235         struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3236
3237         if (IS_ERR_OR_NULL(hsotg->uphy))
3238                 return -ENOTSUPP;
3239         return usb_phy_set_power(hsotg->uphy, mA);
3240 }
3241
3242 static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3243         .get_frame      = s3c_hsotg_gadget_getframe,
3244         .udc_start              = s3c_hsotg_udc_start,
3245         .udc_stop               = s3c_hsotg_udc_stop,
3246         .pullup                 = s3c_hsotg_pullup,
3247         .vbus_session           = s3c_hsotg_vbus_session,
3248         .vbus_draw              = s3c_hsotg_vbus_draw,
3249 };
3250
3251 /**
3252  * s3c_hsotg_initep - initialise a single endpoint
3253  * @hsotg: The device state.
3254  * @hs_ep: The endpoint to be initialised.
3255  * @epnum: The endpoint number
3256  *
3257  * Initialise the given endpoint (as part of the probe and device state
3258  * creation) to give to the gadget driver. Setup the endpoint name, any
3259  * direction information and other state that may be required.
3260  */
3261 static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3262                                        struct s3c_hsotg_ep *hs_ep,
3263                                        int epnum,
3264                                        bool dir_in)
3265 {
3266         char *dir;
3267
3268         if (epnum == 0)
3269                 dir = "";
3270         else if (dir_in)
3271                 dir = "in";
3272         else
3273                 dir = "out";
3274
3275         hs_ep->dir_in = dir_in;
3276         hs_ep->index = epnum;
3277
3278         snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3279
3280         INIT_LIST_HEAD(&hs_ep->queue);
3281         INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3282
3283         /* add to the list of endpoints known by the gadget driver */
3284         if (epnum)
3285                 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3286
3287         hs_ep->parent = hsotg;
3288         hs_ep->ep.name = hs_ep->name;
3289         usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3290         hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3291
3292         if (epnum == 0) {
3293                 hs_ep->ep.caps.type_control = true;
3294         } else {
3295                 hs_ep->ep.caps.type_iso = true;
3296                 hs_ep->ep.caps.type_bulk = true;
3297                 hs_ep->ep.caps.type_int = true;
3298         }
3299
3300         if (dir_in)
3301                 hs_ep->ep.caps.dir_in = true;
3302         else
3303                 hs_ep->ep.caps.dir_out = true;
3304
3305         /*
3306          * if we're using dma, we need to set the next-endpoint pointer
3307          * to be something valid.
3308          */
3309
3310         if (using_dma(hsotg)) {
3311                 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3312                 if (dir_in)
3313                         writel(next, hsotg->regs + DIEPCTL(epnum));
3314                 else
3315                         writel(next, hsotg->regs + DOEPCTL(epnum));
3316         }
3317 }
3318
3319 /**
3320  * s3c_hsotg_hw_cfg - read HW configuration registers
3321  * @param: The device state
3322  *
3323  * Read the USB core HW configuration registers
3324  */
3325 static int s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3326 {
3327         u32 cfg;
3328         u32 ep_type;
3329         u32 i;
3330
3331         /* check hardware configuration */
3332
3333         cfg = readl(hsotg->regs + GHWCFG2);
3334         hsotg->num_of_eps = (cfg >> GHWCFG2_NUM_DEV_EP_SHIFT) & 0xF;
3335         /* Add ep0 */
3336         hsotg->num_of_eps++;
3337
3338         hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct s3c_hsotg_ep),
3339                                                                 GFP_KERNEL);
3340         if (!hsotg->eps_in[0])
3341                 return -ENOMEM;
3342         /* Same s3c_hsotg_ep is used in both directions for ep0 */
3343         hsotg->eps_out[0] = hsotg->eps_in[0];
3344
3345         cfg = readl(hsotg->regs + GHWCFG1);
3346         for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3347                 ep_type = cfg & 3;
3348                 /* Direction in or both */
3349                 if (!(ep_type & 2)) {
3350                         hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3351                                 sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
3352                         if (!hsotg->eps_in[i])
3353                                 return -ENOMEM;
3354                 }
3355                 /* Direction out or both */
3356                 if (!(ep_type & 1)) {
3357                         hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3358                                 sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
3359                         if (!hsotg->eps_out[i])
3360                                 return -ENOMEM;
3361                 }
3362         }
3363
3364         cfg = readl(hsotg->regs + GHWCFG3);
3365         hsotg->fifo_mem = (cfg >> GHWCFG3_DFIFO_DEPTH_SHIFT);
3366
3367         cfg = readl(hsotg->regs + GHWCFG4);
3368         hsotg->dedicated_fifos = (cfg >> GHWCFG4_DED_FIFO_SHIFT) & 1;
3369
3370         dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3371                  hsotg->num_of_eps,
3372                  hsotg->dedicated_fifos ? "dedicated" : "shared",
3373                  hsotg->fifo_mem);
3374         return 0;
3375 }
3376
3377 /**
3378  * s3c_hsotg_dump - dump state of the udc
3379  * @param: The device state
3380  */
3381 static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3382 {
3383 #ifdef DEBUG
3384         struct device *dev = hsotg->dev;
3385         void __iomem *regs = hsotg->regs;
3386         u32 val;
3387         int idx;
3388
3389         dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3390                  readl(regs + DCFG), readl(regs + DCTL),
3391                  readl(regs + DIEPMSK));
3392
3393         dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3394                  readl(regs + GAHBCFG), readl(regs + GHWCFG1));
3395
3396         dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3397                  readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3398
3399         /* show periodic fifo settings */
3400
3401         for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3402                 val = readl(regs + DPTXFSIZN(idx));
3403                 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3404                          val >> FIFOSIZE_DEPTH_SHIFT,
3405                          val & FIFOSIZE_STARTADDR_MASK);
3406         }
3407
3408         for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3409                 dev_info(dev,
3410                          "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3411                          readl(regs + DIEPCTL(idx)),
3412                          readl(regs + DIEPTSIZ(idx)),
3413                          readl(regs + DIEPDMA(idx)));
3414
3415                 val = readl(regs + DOEPCTL(idx));
3416                 dev_info(dev,
3417                          "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3418                          idx, readl(regs + DOEPCTL(idx)),
3419                          readl(regs + DOEPTSIZ(idx)),
3420                          readl(regs + DOEPDMA(idx)));
3421
3422         }
3423
3424         dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3425                  readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3426 #endif
3427 }
3428
3429 #ifdef CONFIG_OF
3430 static void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3431 {
3432         struct device_node *np = hsotg->dev->of_node;
3433         u32 len = 0;
3434         u32 i = 0;
3435
3436         /* Enable dma if requested in device tree */
3437         hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3438
3439         /*
3440         * Register TX periodic fifo size per endpoint.
3441         * EP0 is excluded since it has no fifo configuration.
3442         */
3443         if (!of_find_property(np, "g-tx-fifo-size", &len))
3444                 goto rx_fifo;
3445
3446         len /= sizeof(u32);
3447
3448         /* Read tx fifo sizes other than ep0 */
3449         if (of_property_read_u32_array(np, "g-tx-fifo-size",
3450                                                 &hsotg->g_tx_fifo_sz[1], len))
3451                 goto rx_fifo;
3452
3453         /* Add ep0 */
3454         len++;
3455
3456         /* Make remaining TX fifos unavailable */
3457         if (len < MAX_EPS_CHANNELS) {
3458                 for (i = len; i < MAX_EPS_CHANNELS; i++)
3459                         hsotg->g_tx_fifo_sz[i] = 0;
3460         }
3461
3462 rx_fifo:
3463         /* Register RX fifo size */
3464         of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);
3465
3466         /* Register NPTX fifo size */
3467         of_property_read_u32(np, "g-np-tx-fifo-size",
3468                                                 &hsotg->g_np_g_tx_fifo_sz);
3469 }
3470 #else
3471 static inline void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3472 #endif
3473
3474 /**
3475  * dwc2_gadget_init - init function for gadget
3476  * @dwc2: The data structure for the DWC2 driver.
3477  * @irq: The IRQ number for the controller.
3478  */
3479 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3480 {
3481         struct device *dev = hsotg->dev;
3482         struct s3c_hsotg_plat *plat = dev->platform_data;
3483         int epnum;
3484         int ret;
3485         int i;
3486         u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3487
3488         /* Set default UTMI width */
3489         hsotg->phyif = GUSBCFG_PHYIF16;
3490
3491         s3c_hsotg_of_probe(hsotg);
3492
3493         /* Initialize to legacy fifo configuration values */
3494         hsotg->g_rx_fifo_sz = 2048;
3495         hsotg->g_np_g_tx_fifo_sz = 1024;
3496         memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
3497         /* Device tree specific probe */
3498         s3c_hsotg_of_probe(hsotg);
3499         /* Dump fifo information */
3500         dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
3501                                                 hsotg->g_np_g_tx_fifo_sz);
3502         dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
3503         for (i = 0; i < MAX_EPS_CHANNELS; i++)
3504                 dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
3505                                                 hsotg->g_tx_fifo_sz[i]);
3506         /*
3507          * If platform probe couldn't find a generic PHY or an old style
3508          * USB PHY, fall back to pdata
3509          */
3510         if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
3511                 plat = dev_get_platdata(dev);
3512                 if (!plat) {
3513                         dev_err(dev,
3514                         "no platform data or transceiver defined\n");
3515                         return -EPROBE_DEFER;
3516                 }
3517                 hsotg->plat = plat;
3518         } else if (hsotg->phy) {
3519                 /*
3520                  * If using the generic PHY framework, check if the PHY bus
3521                  * width is 8-bit and set the phyif appropriately.
3522                  */
3523                 if (phy_get_bus_width(hsotg->phy) == 8)
3524                         hsotg->phyif = GUSBCFG_PHYIF8;
3525         }
3526
3527         hsotg->clk = devm_clk_get(dev, "otg");
3528         if (IS_ERR(hsotg->clk)) {
3529                 hsotg->clk = NULL;
3530                 dev_dbg(dev, "cannot get otg clock\n");
3531         }
3532
3533         hsotg->gadget.max_speed = USB_SPEED_HIGH;
3534         hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3535         hsotg->gadget.name = dev_name(dev);
3536         if (hsotg->dr_mode == USB_DR_MODE_OTG)
3537                 hsotg->gadget.is_otg = 1;
3538
3539         /* reset the system */
3540
3541         ret = clk_prepare_enable(hsotg->clk);
3542         if (ret) {
3543                 dev_err(dev, "failed to enable otg clk\n");
3544                 goto err_clk;
3545         }
3546
3547
3548         /* regulators */
3549
3550         for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3551                 hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3552
3553         ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3554                                  hsotg->supplies);
3555         if (ret) {
3556                 dev_err(dev, "failed to request supplies: %d\n", ret);
3557                 goto err_clk;
3558         }
3559
3560         ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3561                                     hsotg->supplies);
3562
3563         if (ret) {
3564                 dev_err(dev, "failed to enable supplies: %d\n", ret);
3565                 goto err_clk;
3566         }
3567
3568         /* usb phy enable */
3569         s3c_hsotg_phy_enable(hsotg);
3570
3571         /*
3572          * Force Device mode before initialization.
3573          * This allows correctly configuring fifo for device mode.
3574          */
3575         __bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE);
3576         __orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
3577
3578         /*
3579          * According to Synopsys databook, this sleep is needed for the force
3580          * device mode to take effect.
3581          */
3582         msleep(25);
3583
3584         s3c_hsotg_corereset(hsotg);
3585         ret = s3c_hsotg_hw_cfg(hsotg);
3586         if (ret) {
3587                 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3588                 goto err_clk;
3589         }
3590
3591         s3c_hsotg_init(hsotg);
3592
3593         /* Switch back to default configuration */
3594         __bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
3595
3596         hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
3597                         DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3598         if (!hsotg->ctrl_buff) {
3599                 dev_err(dev, "failed to allocate ctrl request buff\n");
3600                 ret = -ENOMEM;
3601                 goto err_supplies;
3602         }
3603
3604         hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
3605                         DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3606         if (!hsotg->ep0_buff) {
3607                 dev_err(dev, "failed to allocate ctrl reply buff\n");
3608                 ret = -ENOMEM;
3609                 goto err_supplies;
3610         }
3611
3612         ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
3613                                 dev_name(hsotg->dev), hsotg);
3614         if (ret < 0) {
3615                 s3c_hsotg_phy_disable(hsotg);
3616                 clk_disable_unprepare(hsotg->clk);
3617                 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3618                                        hsotg->supplies);
3619                 dev_err(dev, "cannot claim IRQ for gadget\n");
3620                 goto err_supplies;
3621         }
3622
3623         /* hsotg->num_of_eps holds number of EPs other than ep0 */
3624
3625         if (hsotg->num_of_eps == 0) {
3626                 dev_err(dev, "wrong number of EPs (zero)\n");
3627                 ret = -EINVAL;
3628                 goto err_supplies;
3629         }
3630
3631         /* setup endpoint information */
3632
3633         INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3634         hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3635
3636         /* allocate EP0 request */
3637
3638         hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3639                                                      GFP_KERNEL);
3640         if (!hsotg->ctrl_req) {
3641                 dev_err(dev, "failed to allocate ctrl req\n");
3642                 ret = -ENOMEM;
3643                 goto err_supplies;
3644         }
3645
3646         /* initialise the endpoints now the core has been initialised */
3647         for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
3648                 if (hsotg->eps_in[epnum])
3649                         s3c_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3650                                                                 epnum, 1);
3651                 if (hsotg->eps_out[epnum])
3652                         s3c_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3653                                                                 epnum, 0);
3654         }
3655
3656         /* disable power and clock */
3657         s3c_hsotg_phy_disable(hsotg);
3658
3659         ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3660                                     hsotg->supplies);
3661         if (ret) {
3662                 dev_err(dev, "failed to disable supplies: %d\n", ret);
3663                 goto err_supplies;
3664         }
3665
3666         ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3667         if (ret)
3668                 goto err_supplies;
3669
3670         s3c_hsotg_dump(hsotg);
3671
3672         return 0;
3673
3674 err_supplies:
3675         s3c_hsotg_phy_disable(hsotg);
3676 err_clk:
3677         clk_disable_unprepare(hsotg->clk);
3678
3679         return ret;
3680 }
3681
3682 /**
3683  * s3c_hsotg_remove - remove function for hsotg driver
3684  * @pdev: The platform information for the driver
3685  */
3686 int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
3687 {
3688         usb_del_gadget_udc(&hsotg->gadget);
3689         clk_disable_unprepare(hsotg->clk);
3690
3691         return 0;
3692 }
3693
3694 int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
3695 {
3696         unsigned long flags;
3697         int ret = 0;
3698
3699         if (hsotg->lx_state != DWC2_L0)
3700                 return ret;
3701
3702         mutex_lock(&hsotg->init_mutex);
3703
3704         if (hsotg->driver) {
3705                 int ep;
3706
3707                 dev_info(hsotg->dev, "suspending usb gadget %s\n",
3708                          hsotg->driver->driver.name);
3709
3710                 spin_lock_irqsave(&hsotg->lock, flags);
3711                 if (hsotg->enabled)
3712                         s3c_hsotg_core_disconnect(hsotg);
3713                 s3c_hsotg_disconnect(hsotg);
3714                 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3715                 spin_unlock_irqrestore(&hsotg->lock, flags);
3716
3717                 s3c_hsotg_phy_disable(hsotg);
3718
3719                 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3720                         if (hsotg->eps_in[ep])
3721                                 s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3722                         if (hsotg->eps_out[ep])
3723                                 s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3724                 }
3725
3726                 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3727                                              hsotg->supplies);
3728                 clk_disable(hsotg->clk);
3729         }
3730
3731         mutex_unlock(&hsotg->init_mutex);
3732
3733         return ret;
3734 }
3735
3736 int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
3737 {
3738         unsigned long flags;
3739         int ret = 0;
3740
3741         if (hsotg->lx_state == DWC2_L2)
3742                 return ret;
3743
3744         mutex_lock(&hsotg->init_mutex);
3745
3746         if (hsotg->driver) {
3747                 dev_info(hsotg->dev, "resuming usb gadget %s\n",
3748                          hsotg->driver->driver.name);
3749
3750                 clk_enable(hsotg->clk);
3751                 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3752                                             hsotg->supplies);
3753
3754                 s3c_hsotg_phy_enable(hsotg);
3755
3756                 spin_lock_irqsave(&hsotg->lock, flags);
3757                 s3c_hsotg_core_init_disconnected(hsotg, false);
3758                 if (hsotg->enabled)
3759                         s3c_hsotg_core_connect(hsotg);
3760                 spin_unlock_irqrestore(&hsotg->lock, flags);
3761         }
3762         mutex_unlock(&hsotg->init_mutex);
3763
3764         return ret;
3765 }