]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/usb/host/xhci-dbg.c
uprobes: Default UPROBES_EVENTS to Y
[karo-tx-linux.git] / drivers / usb / host / xhci-dbg.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include "xhci.h"
24
25 #define XHCI_INIT_VALUE 0x0
26
27 /* Add verbose debugging later, just print everything for now */
28
29 void xhci_dbg_regs(struct xhci_hcd *xhci)
30 {
31         u32 temp;
32
33         xhci_dbg(xhci, "// xHCI capability registers at %p:\n",
34                         xhci->cap_regs);
35         temp = readl(&xhci->cap_regs->hc_capbase);
36         xhci_dbg(xhci, "// @%p = 0x%x (CAPLENGTH AND HCIVERSION)\n",
37                         &xhci->cap_regs->hc_capbase, temp);
38         xhci_dbg(xhci, "//   CAPLENGTH: 0x%x\n",
39                         (unsigned int) HC_LENGTH(temp));
40         xhci_dbg(xhci, "//   HCIVERSION: 0x%x\n",
41                         (unsigned int) HC_VERSION(temp));
42
43         xhci_dbg(xhci, "// xHCI operational registers at %p:\n", xhci->op_regs);
44
45         temp = readl(&xhci->cap_regs->run_regs_off);
46         xhci_dbg(xhci, "// @%p = 0x%x RTSOFF\n",
47                         &xhci->cap_regs->run_regs_off,
48                         (unsigned int) temp & RTSOFF_MASK);
49         xhci_dbg(xhci, "// xHCI runtime registers at %p:\n", xhci->run_regs);
50
51         temp = readl(&xhci->cap_regs->db_off);
52         xhci_dbg(xhci, "// @%p = 0x%x DBOFF\n", &xhci->cap_regs->db_off, temp);
53         xhci_dbg(xhci, "// Doorbell array at %p:\n", xhci->dba);
54 }
55
56 static void xhci_print_cap_regs(struct xhci_hcd *xhci)
57 {
58         u32 temp;
59         u32 hci_version;
60
61         xhci_dbg(xhci, "xHCI capability registers at %p:\n", xhci->cap_regs);
62
63         temp = readl(&xhci->cap_regs->hc_capbase);
64         hci_version = HC_VERSION(temp);
65         xhci_dbg(xhci, "CAPLENGTH AND HCIVERSION 0x%x:\n",
66                         (unsigned int) temp);
67         xhci_dbg(xhci, "CAPLENGTH: 0x%x\n",
68                         (unsigned int) HC_LENGTH(temp));
69         xhci_dbg(xhci, "HCIVERSION: 0x%x\n", hci_version);
70
71         temp = readl(&xhci->cap_regs->hcs_params1);
72         xhci_dbg(xhci, "HCSPARAMS 1: 0x%x\n",
73                         (unsigned int) temp);
74         xhci_dbg(xhci, "  Max device slots: %u\n",
75                         (unsigned int) HCS_MAX_SLOTS(temp));
76         xhci_dbg(xhci, "  Max interrupters: %u\n",
77                         (unsigned int) HCS_MAX_INTRS(temp));
78         xhci_dbg(xhci, "  Max ports: %u\n",
79                         (unsigned int) HCS_MAX_PORTS(temp));
80
81         temp = readl(&xhci->cap_regs->hcs_params2);
82         xhci_dbg(xhci, "HCSPARAMS 2: 0x%x\n",
83                         (unsigned int) temp);
84         xhci_dbg(xhci, "  Isoc scheduling threshold: %u\n",
85                         (unsigned int) HCS_IST(temp));
86         xhci_dbg(xhci, "  Maximum allowed segments in event ring: %u\n",
87                         (unsigned int) HCS_ERST_MAX(temp));
88
89         temp = readl(&xhci->cap_regs->hcs_params3);
90         xhci_dbg(xhci, "HCSPARAMS 3 0x%x:\n",
91                         (unsigned int) temp);
92         xhci_dbg(xhci, "  Worst case U1 device exit latency: %u\n",
93                         (unsigned int) HCS_U1_LATENCY(temp));
94         xhci_dbg(xhci, "  Worst case U2 device exit latency: %u\n",
95                         (unsigned int) HCS_U2_LATENCY(temp));
96
97         temp = readl(&xhci->cap_regs->hcc_params);
98         xhci_dbg(xhci, "HCC PARAMS 0x%x:\n", (unsigned int) temp);
99         xhci_dbg(xhci, "  HC generates %s bit addresses\n",
100                         HCC_64BIT_ADDR(temp) ? "64" : "32");
101         xhci_dbg(xhci, "  HC %s Contiguous Frame ID Capability\n",
102                         HCC_CFC(temp) ? "has" : "hasn't");
103         xhci_dbg(xhci, "  HC %s generate Stopped - Short Package event\n",
104                         HCC_SPC(temp) ? "can" : "can't");
105         /* FIXME */
106         xhci_dbg(xhci, "  FIXME: more HCCPARAMS debugging\n");
107
108         temp = readl(&xhci->cap_regs->run_regs_off);
109         xhci_dbg(xhci, "RTSOFF 0x%x:\n", temp & RTSOFF_MASK);
110
111         /* xhci 1.1 controllers have the HCCPARAMS2 register */
112         if (hci_version > 100) {
113                 temp = readl(&xhci->cap_regs->hcc_params2);
114                 xhci_dbg(xhci, "HCC PARAMS2 0x%x:\n", (unsigned int) temp);
115                 xhci_dbg(xhci, "  HC %s Force save context capability",
116                          HCC2_FSC(temp) ? "supports" : "doesn't support");
117                 xhci_dbg(xhci, "  HC %s Large ESIT Payload Capability",
118                          HCC2_LEC(temp) ? "supports" : "doesn't support");
119                 xhci_dbg(xhci, "  HC %s Extended TBC capability",
120                          HCC2_ETC(temp) ? "supports" : "doesn't support");
121         }
122 }
123
124 static void xhci_print_command_reg(struct xhci_hcd *xhci)
125 {
126         u32 temp;
127
128         temp = readl(&xhci->op_regs->command);
129         xhci_dbg(xhci, "USBCMD 0x%x:\n", temp);
130         xhci_dbg(xhci, "  HC is %s\n",
131                         (temp & CMD_RUN) ? "running" : "being stopped");
132         xhci_dbg(xhci, "  HC has %sfinished hard reset\n",
133                         (temp & CMD_RESET) ? "not " : "");
134         xhci_dbg(xhci, "  Event Interrupts %s\n",
135                         (temp & CMD_EIE) ? "enabled " : "disabled");
136         xhci_dbg(xhci, "  Host System Error Interrupts %s\n",
137                         (temp & CMD_HSEIE) ? "enabled " : "disabled");
138         xhci_dbg(xhci, "  HC has %sfinished light reset\n",
139                         (temp & CMD_LRESET) ? "not " : "");
140 }
141
142 static void xhci_print_status(struct xhci_hcd *xhci)
143 {
144         u32 temp;
145
146         temp = readl(&xhci->op_regs->status);
147         xhci_dbg(xhci, "USBSTS 0x%x:\n", temp);
148         xhci_dbg(xhci, "  Event ring is %sempty\n",
149                         (temp & STS_EINT) ? "not " : "");
150         xhci_dbg(xhci, "  %sHost System Error\n",
151                         (temp & STS_FATAL) ? "WARNING: " : "No ");
152         xhci_dbg(xhci, "  HC is %s\n",
153                         (temp & STS_HALT) ? "halted" : "running");
154 }
155
156 static void xhci_print_op_regs(struct xhci_hcd *xhci)
157 {
158         xhci_dbg(xhci, "xHCI operational registers at %p:\n", xhci->op_regs);
159         xhci_print_command_reg(xhci);
160         xhci_print_status(xhci);
161 }
162
163 static void xhci_print_ports(struct xhci_hcd *xhci)
164 {
165         __le32 __iomem *addr;
166         int i, j;
167         int ports;
168         char *names[NUM_PORT_REGS] = {
169                 "status",
170                 "power",
171                 "link",
172                 "reserved",
173         };
174
175         ports = HCS_MAX_PORTS(xhci->hcs_params1);
176         addr = &xhci->op_regs->port_status_base;
177         for (i = 0; i < ports; i++) {
178                 for (j = 0; j < NUM_PORT_REGS; j++) {
179                         xhci_dbg(xhci, "%p port %s reg = 0x%x\n",
180                                         addr, names[j],
181                                         (unsigned int) readl(addr));
182                         addr++;
183                 }
184         }
185 }
186
187 void xhci_print_ir_set(struct xhci_hcd *xhci, int set_num)
188 {
189         struct xhci_intr_reg __iomem *ir_set = &xhci->run_regs->ir_set[set_num];
190         void __iomem *addr;
191         u32 temp;
192         u64 temp_64;
193
194         addr = &ir_set->irq_pending;
195         temp = readl(addr);
196         if (temp == XHCI_INIT_VALUE)
197                 return;
198
199         xhci_dbg(xhci, "  %p: ir_set[%i]\n", ir_set, set_num);
200
201         xhci_dbg(xhci, "  %p: ir_set.pending = 0x%x\n", addr,
202                         (unsigned int)temp);
203
204         addr = &ir_set->irq_control;
205         temp = readl(addr);
206         xhci_dbg(xhci, "  %p: ir_set.control = 0x%x\n", addr,
207                         (unsigned int)temp);
208
209         addr = &ir_set->erst_size;
210         temp = readl(addr);
211         xhci_dbg(xhci, "  %p: ir_set.erst_size = 0x%x\n", addr,
212                         (unsigned int)temp);
213
214         addr = &ir_set->rsvd;
215         temp = readl(addr);
216         if (temp != XHCI_INIT_VALUE)
217                 xhci_dbg(xhci, "  WARN: %p: ir_set.rsvd = 0x%x\n",
218                                 addr, (unsigned int)temp);
219
220         addr = &ir_set->erst_base;
221         temp_64 = xhci_read_64(xhci, addr);
222         xhci_dbg(xhci, "  %p: ir_set.erst_base = @%08llx\n",
223                         addr, temp_64);
224
225         addr = &ir_set->erst_dequeue;
226         temp_64 = xhci_read_64(xhci, addr);
227         xhci_dbg(xhci, "  %p: ir_set.erst_dequeue = @%08llx\n",
228                         addr, temp_64);
229 }
230
231 void xhci_print_run_regs(struct xhci_hcd *xhci)
232 {
233         u32 temp;
234         int i;
235
236         xhci_dbg(xhci, "xHCI runtime registers at %p:\n", xhci->run_regs);
237         temp = readl(&xhci->run_regs->microframe_index);
238         xhci_dbg(xhci, "  %p: Microframe index = 0x%x\n",
239                         &xhci->run_regs->microframe_index,
240                         (unsigned int) temp);
241         for (i = 0; i < 7; i++) {
242                 temp = readl(&xhci->run_regs->rsvd[i]);
243                 if (temp != XHCI_INIT_VALUE)
244                         xhci_dbg(xhci, "  WARN: %p: Rsvd[%i] = 0x%x\n",
245                                         &xhci->run_regs->rsvd[i],
246                                         i, (unsigned int) temp);
247         }
248 }
249
250 void xhci_print_registers(struct xhci_hcd *xhci)
251 {
252         xhci_print_cap_regs(xhci);
253         xhci_print_op_regs(xhci);
254         xhci_print_ports(xhci);
255 }
256
257 void xhci_print_trb_offsets(struct xhci_hcd *xhci, union xhci_trb *trb)
258 {
259         int i;
260         for (i = 0; i < 4; i++)
261                 xhci_dbg(xhci, "Offset 0x%x = 0x%x\n",
262                                 i*4, trb->generic.field[i]);
263 }
264
265 /**
266  * Debug a transfer request block (TRB).
267  */
268 void xhci_debug_trb(struct xhci_hcd *xhci, union xhci_trb *trb)
269 {
270         u64     address;
271         u32     type = le32_to_cpu(trb->link.control) & TRB_TYPE_BITMASK;
272
273         switch (type) {
274         case TRB_TYPE(TRB_LINK):
275                 xhci_dbg(xhci, "Link TRB:\n");
276                 xhci_print_trb_offsets(xhci, trb);
277
278                 address = le64_to_cpu(trb->link.segment_ptr);
279                 xhci_dbg(xhci, "Next ring segment DMA address = 0x%llx\n", address);
280
281                 xhci_dbg(xhci, "Interrupter target = 0x%x\n",
282                          GET_INTR_TARGET(le32_to_cpu(trb->link.intr_target)));
283                 xhci_dbg(xhci, "Cycle bit = %u\n",
284                          le32_to_cpu(trb->link.control) & TRB_CYCLE);
285                 xhci_dbg(xhci, "Toggle cycle bit = %u\n",
286                          le32_to_cpu(trb->link.control) & LINK_TOGGLE);
287                 xhci_dbg(xhci, "No Snoop bit = %u\n",
288                          le32_to_cpu(trb->link.control) & TRB_NO_SNOOP);
289                 break;
290         case TRB_TYPE(TRB_TRANSFER):
291                 address = le64_to_cpu(trb->trans_event.buffer);
292                 /*
293                  * FIXME: look at flags to figure out if it's an address or if
294                  * the data is directly in the buffer field.
295                  */
296                 xhci_dbg(xhci, "DMA address or buffer contents= %llu\n", address);
297                 break;
298         case TRB_TYPE(TRB_COMPLETION):
299                 address = le64_to_cpu(trb->event_cmd.cmd_trb);
300                 xhci_dbg(xhci, "Command TRB pointer = %llu\n", address);
301                 xhci_dbg(xhci, "Completion status = %u\n",
302                          GET_COMP_CODE(le32_to_cpu(trb->event_cmd.status)));
303                 xhci_dbg(xhci, "Flags = 0x%x\n",
304                          le32_to_cpu(trb->event_cmd.flags));
305                 break;
306         default:
307                 xhci_dbg(xhci, "Unknown TRB with TRB type ID %u\n",
308                                 (unsigned int) type>>10);
309                 xhci_print_trb_offsets(xhci, trb);
310                 break;
311         }
312 }
313
314 /**
315  * Debug a segment with an xHCI ring.
316  *
317  * @return The Link TRB of the segment, or NULL if there is no Link TRB
318  * (which is a bug, since all segments must have a Link TRB).
319  *
320  * Prints out all TRBs in the segment, even those after the Link TRB.
321  *
322  * XXX: should we print out TRBs that the HC owns?  As long as we don't
323  * write, that should be fine...  We shouldn't expect that the memory pointed to
324  * by the TRB is valid at all.  Do we care about ones the HC owns?  Probably,
325  * for HC debugging.
326  */
327 void xhci_debug_segment(struct xhci_hcd *xhci, struct xhci_segment *seg)
328 {
329         int i;
330         u64 addr = seg->dma;
331         union xhci_trb *trb = seg->trbs;
332
333         for (i = 0; i < TRBS_PER_SEGMENT; i++) {
334                 trb = &seg->trbs[i];
335                 xhci_dbg(xhci, "@%016llx %08x %08x %08x %08x\n", addr,
336                          lower_32_bits(le64_to_cpu(trb->link.segment_ptr)),
337                          upper_32_bits(le64_to_cpu(trb->link.segment_ptr)),
338                          le32_to_cpu(trb->link.intr_target),
339                          le32_to_cpu(trb->link.control));
340                 addr += sizeof(*trb);
341         }
342 }
343
344 void xhci_dbg_ring_ptrs(struct xhci_hcd *xhci, struct xhci_ring *ring)
345 {
346         xhci_dbg(xhci, "Ring deq = %p (virt), 0x%llx (dma)\n",
347                         ring->dequeue,
348                         (unsigned long long)xhci_trb_virt_to_dma(ring->deq_seg,
349                                                             ring->dequeue));
350         xhci_dbg(xhci, "Ring deq updated %u times\n",
351                         ring->deq_updates);
352         xhci_dbg(xhci, "Ring enq = %p (virt), 0x%llx (dma)\n",
353                         ring->enqueue,
354                         (unsigned long long)xhci_trb_virt_to_dma(ring->enq_seg,
355                                                             ring->enqueue));
356         xhci_dbg(xhci, "Ring enq updated %u times\n",
357                         ring->enq_updates);
358 }
359
360 /**
361  * Debugging for an xHCI ring, which is a queue broken into multiple segments.
362  *
363  * Print out each segment in the ring.  Check that the DMA address in
364  * each link segment actually matches the segment's stored DMA address.
365  * Check that the link end bit is only set at the end of the ring.
366  * Check that the dequeue and enqueue pointers point to real data in this ring
367  * (not some other ring).
368  */
369 void xhci_debug_ring(struct xhci_hcd *xhci, struct xhci_ring *ring)
370 {
371         /* FIXME: Throw an error if any segment doesn't have a Link TRB */
372         struct xhci_segment *seg;
373         struct xhci_segment *first_seg = ring->first_seg;
374         xhci_debug_segment(xhci, first_seg);
375
376         if (!ring->enq_updates && !ring->deq_updates) {
377                 xhci_dbg(xhci, "  Ring has not been updated\n");
378                 return;
379         }
380         for (seg = first_seg->next; seg != first_seg; seg = seg->next)
381                 xhci_debug_segment(xhci, seg);
382 }
383
384 void xhci_dbg_ep_rings(struct xhci_hcd *xhci,
385                 unsigned int slot_id, unsigned int ep_index,
386                 struct xhci_virt_ep *ep)
387 {
388         int i;
389         struct xhci_ring *ring;
390
391         if (ep->ep_state & EP_HAS_STREAMS) {
392                 for (i = 1; i < ep->stream_info->num_streams; i++) {
393                         ring = ep->stream_info->stream_rings[i];
394                         xhci_dbg(xhci, "Dev %d endpoint %d stream ID %d:\n",
395                                 slot_id, ep_index, i);
396                         xhci_debug_segment(xhci, ring->deq_seg);
397                 }
398         } else {
399                 ring = ep->ring;
400                 if (!ring)
401                         return;
402                 xhci_dbg(xhci, "Dev %d endpoint ring %d:\n",
403                                 slot_id, ep_index);
404                 xhci_debug_segment(xhci, ring->deq_seg);
405         }
406 }
407
408 void xhci_dbg_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
409 {
410         u64 addr = erst->erst_dma_addr;
411         int i;
412         struct xhci_erst_entry *entry;
413
414         for (i = 0; i < erst->num_entries; i++) {
415                 entry = &erst->entries[i];
416                 xhci_dbg(xhci, "@%016llx %08x %08x %08x %08x\n",
417                          addr,
418                          lower_32_bits(le64_to_cpu(entry->seg_addr)),
419                          upper_32_bits(le64_to_cpu(entry->seg_addr)),
420                          le32_to_cpu(entry->seg_size),
421                          le32_to_cpu(entry->rsvd));
422                 addr += sizeof(*entry);
423         }
424 }
425
426 void xhci_dbg_cmd_ptrs(struct xhci_hcd *xhci)
427 {
428         u64 val;
429
430         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
431         xhci_dbg(xhci, "// xHC command ring deq ptr low bits + flags = @%08x\n",
432                         lower_32_bits(val));
433         xhci_dbg(xhci, "// xHC command ring deq ptr high bits = @%08x\n",
434                         upper_32_bits(val));
435 }
436
437 /* Print the last 32 bytes for 64-byte contexts */
438 static void dbg_rsvd64(struct xhci_hcd *xhci, u64 *ctx, dma_addr_t dma)
439 {
440         int i;
441         for (i = 0; i < 4; i++) {
442                 xhci_dbg(xhci, "@%p (virt) @%08llx "
443                          "(dma) %#08llx - rsvd64[%d]\n",
444                          &ctx[4 + i], (unsigned long long)dma,
445                          ctx[4 + i], i);
446                 dma += 8;
447         }
448 }
449
450 char *xhci_get_slot_state(struct xhci_hcd *xhci,
451                 struct xhci_container_ctx *ctx)
452 {
453         struct xhci_slot_ctx *slot_ctx = xhci_get_slot_ctx(xhci, ctx);
454
455         switch (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state))) {
456         case SLOT_STATE_ENABLED:
457                 return "enabled/disabled";
458         case SLOT_STATE_DEFAULT:
459                 return "default";
460         case SLOT_STATE_ADDRESSED:
461                 return "addressed";
462         case SLOT_STATE_CONFIGURED:
463                 return "configured";
464         default:
465                 return "reserved";
466         }
467 }
468
469 static void xhci_dbg_slot_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx)
470 {
471         /* Fields are 32 bits wide, DMA addresses are in bytes */
472         int field_size = 32 / 8;
473         int i;
474
475         struct xhci_slot_ctx *slot_ctx = xhci_get_slot_ctx(xhci, ctx);
476         dma_addr_t dma = ctx->dma +
477                 ((unsigned long)slot_ctx - (unsigned long)ctx->bytes);
478         int csz = HCC_64BYTE_CONTEXT(xhci->hcc_params);
479
480         xhci_dbg(xhci, "Slot Context:\n");
481         xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - dev_info\n",
482                         &slot_ctx->dev_info,
483                         (unsigned long long)dma, slot_ctx->dev_info);
484         dma += field_size;
485         xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - dev_info2\n",
486                         &slot_ctx->dev_info2,
487                         (unsigned long long)dma, slot_ctx->dev_info2);
488         dma += field_size;
489         xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - tt_info\n",
490                         &slot_ctx->tt_info,
491                         (unsigned long long)dma, slot_ctx->tt_info);
492         dma += field_size;
493         xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - dev_state\n",
494                         &slot_ctx->dev_state,
495                         (unsigned long long)dma, slot_ctx->dev_state);
496         dma += field_size;
497         for (i = 0; i < 4; i++) {
498                 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - rsvd[%d]\n",
499                                 &slot_ctx->reserved[i], (unsigned long long)dma,
500                                 slot_ctx->reserved[i], i);
501                 dma += field_size;
502         }
503
504         if (csz)
505                 dbg_rsvd64(xhci, (u64 *)slot_ctx, dma);
506 }
507
508 static void xhci_dbg_ep_ctx(struct xhci_hcd *xhci,
509                      struct xhci_container_ctx *ctx,
510                      unsigned int last_ep)
511 {
512         int i, j;
513         int last_ep_ctx = 31;
514         /* Fields are 32 bits wide, DMA addresses are in bytes */
515         int field_size = 32 / 8;
516         int csz = HCC_64BYTE_CONTEXT(xhci->hcc_params);
517
518         if (last_ep < 31)
519                 last_ep_ctx = last_ep + 1;
520         for (i = 0; i < last_ep_ctx; i++) {
521                 unsigned int epaddr = xhci_get_endpoint_address(i);
522                 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, ctx, i);
523                 dma_addr_t dma = ctx->dma +
524                         ((unsigned long)ep_ctx - (unsigned long)ctx->bytes);
525
526                 xhci_dbg(xhci, "%s Endpoint %02d Context (ep_index %02d):\n",
527                                 usb_endpoint_out(epaddr) ? "OUT" : "IN",
528                                 epaddr & USB_ENDPOINT_NUMBER_MASK, i);
529                 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - ep_info\n",
530                                 &ep_ctx->ep_info,
531                                 (unsigned long long)dma, ep_ctx->ep_info);
532                 dma += field_size;
533                 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - ep_info2\n",
534                                 &ep_ctx->ep_info2,
535                                 (unsigned long long)dma, ep_ctx->ep_info2);
536                 dma += field_size;
537                 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08llx - deq\n",
538                                 &ep_ctx->deq,
539                                 (unsigned long long)dma, ep_ctx->deq);
540                 dma += 2*field_size;
541                 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - tx_info\n",
542                                 &ep_ctx->tx_info,
543                                 (unsigned long long)dma, ep_ctx->tx_info);
544                 dma += field_size;
545                 for (j = 0; j < 3; j++) {
546                         xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - rsvd[%d]\n",
547                                         &ep_ctx->reserved[j],
548                                         (unsigned long long)dma,
549                                         ep_ctx->reserved[j], j);
550                         dma += field_size;
551                 }
552
553                 if (csz)
554                         dbg_rsvd64(xhci, (u64 *)ep_ctx, dma);
555         }
556 }
557
558 void xhci_dbg_ctx(struct xhci_hcd *xhci,
559                   struct xhci_container_ctx *ctx,
560                   unsigned int last_ep)
561 {
562         int i;
563         /* Fields are 32 bits wide, DMA addresses are in bytes */
564         int field_size = 32 / 8;
565         dma_addr_t dma = ctx->dma;
566         int csz = HCC_64BYTE_CONTEXT(xhci->hcc_params);
567
568         if (ctx->type == XHCI_CTX_TYPE_INPUT) {
569                 struct xhci_input_control_ctx *ctrl_ctx =
570                         xhci_get_input_control_ctx(ctx);
571                 if (!ctrl_ctx) {
572                         xhci_warn(xhci, "Could not get input context, bad type.\n");
573                         return;
574                 }
575
576                 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - drop flags\n",
577                          &ctrl_ctx->drop_flags, (unsigned long long)dma,
578                          ctrl_ctx->drop_flags);
579                 dma += field_size;
580                 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - add flags\n",
581                          &ctrl_ctx->add_flags, (unsigned long long)dma,
582                          ctrl_ctx->add_flags);
583                 dma += field_size;
584                 for (i = 0; i < 6; i++) {
585                         xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - rsvd2[%d]\n",
586                                  &ctrl_ctx->rsvd2[i], (unsigned long long)dma,
587                                  ctrl_ctx->rsvd2[i], i);
588                         dma += field_size;
589                 }
590
591                 if (csz)
592                         dbg_rsvd64(xhci, (u64 *)ctrl_ctx, dma);
593         }
594
595         xhci_dbg_slot_ctx(xhci, ctx);
596         xhci_dbg_ep_ctx(xhci, ctx, last_ep);
597 }
598
599 void xhci_dbg_trace(struct xhci_hcd *xhci, void (*trace)(struct va_format *),
600                         const char *fmt, ...)
601 {
602         struct va_format vaf;
603         va_list args;
604
605         va_start(args, fmt);
606         vaf.fmt = fmt;
607         vaf.va = &args;
608         xhci_dbg(xhci, "%pV\n", &vaf);
609         trace(&vaf);
610         va_end(args);
611 }
612 EXPORT_SYMBOL_GPL(xhci_dbg_trace);