]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/usb/host/xhci-mem.c
rt2x00: rt2800pci: use module_pci_driver macro
[karo-tx-linux.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28
29 #include "xhci.h"
30 #include "xhci-trace.h"
31
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40                                         unsigned int cycle_state, gfp_t flags)
41 {
42         struct xhci_segment *seg;
43         dma_addr_t      dma;
44         int             i;
45
46         seg = kzalloc(sizeof *seg, flags);
47         if (!seg)
48                 return NULL;
49
50         seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
51         if (!seg->trbs) {
52                 kfree(seg);
53                 return NULL;
54         }
55
56         memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
57         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58         if (cycle_state == 0) {
59                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60                         seg->trbs[i].link.control |= TRB_CYCLE;
61         }
62         seg->dma = dma;
63         seg->next = NULL;
64
65         return seg;
66 }
67
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70         if (seg->trbs) {
71                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72                 seg->trbs = NULL;
73         }
74         kfree(seg);
75 }
76
77 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
78                                 struct xhci_segment *first)
79 {
80         struct xhci_segment *seg;
81
82         seg = first->next;
83         while (seg != first) {
84                 struct xhci_segment *next = seg->next;
85                 xhci_segment_free(xhci, seg);
86                 seg = next;
87         }
88         xhci_segment_free(xhci, first);
89 }
90
91 /*
92  * Make the prev segment point to the next segment.
93  *
94  * Change the last TRB in the prev segment to be a Link TRB which points to the
95  * DMA address of the next segment.  The caller needs to set any Link TRB
96  * related flags, such as End TRB, Toggle Cycle, and no snoop.
97  */
98 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
99                 struct xhci_segment *next, enum xhci_ring_type type)
100 {
101         u32 val;
102
103         if (!prev || !next)
104                 return;
105         prev->next = next;
106         if (type != TYPE_EVENT) {
107                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
108                         cpu_to_le64(next->dma);
109
110                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
111                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
112                 val &= ~TRB_TYPE_BITMASK;
113                 val |= TRB_TYPE(TRB_LINK);
114                 /* Always set the chain bit with 0.95 hardware */
115                 /* Set chain bit for isoc rings on AMD 0.96 host */
116                 if (xhci_link_trb_quirk(xhci) ||
117                                 (type == TYPE_ISOC &&
118                                  (xhci->quirks & XHCI_AMD_0x96_HOST)))
119                         val |= TRB_CHAIN;
120                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
121         }
122 }
123
124 /*
125  * Link the ring to the new segments.
126  * Set Toggle Cycle for the new ring if needed.
127  */
128 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
129                 struct xhci_segment *first, struct xhci_segment *last,
130                 unsigned int num_segs)
131 {
132         struct xhci_segment *next;
133
134         if (!ring || !first || !last)
135                 return;
136
137         next = ring->enq_seg->next;
138         xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
139         xhci_link_segments(xhci, last, next, ring->type);
140         ring->num_segs += num_segs;
141         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
142
143         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
144                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
145                         &= ~cpu_to_le32(LINK_TOGGLE);
146                 last->trbs[TRBS_PER_SEGMENT-1].link.control
147                         |= cpu_to_le32(LINK_TOGGLE);
148                 ring->last_seg = last;
149         }
150 }
151
152 /* XXX: Do we need the hcd structure in all these functions? */
153 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
154 {
155         if (!ring)
156                 return;
157
158         if (ring->first_seg)
159                 xhci_free_segments_for_ring(xhci, ring->first_seg);
160
161         kfree(ring);
162 }
163
164 static void xhci_initialize_ring_info(struct xhci_ring *ring,
165                                         unsigned int cycle_state)
166 {
167         /* The ring is empty, so the enqueue pointer == dequeue pointer */
168         ring->enqueue = ring->first_seg->trbs;
169         ring->enq_seg = ring->first_seg;
170         ring->dequeue = ring->enqueue;
171         ring->deq_seg = ring->first_seg;
172         /* The ring is initialized to 0. The producer must write 1 to the cycle
173          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
174          * compare CCS to the cycle bit to check ownership, so CCS = 1.
175          *
176          * New rings are initialized with cycle state equal to 1; if we are
177          * handling ring expansion, set the cycle state equal to the old ring.
178          */
179         ring->cycle_state = cycle_state;
180         /* Not necessary for new rings, but needed for re-initialized rings */
181         ring->enq_updates = 0;
182         ring->deq_updates = 0;
183
184         /*
185          * Each segment has a link TRB, and leave an extra TRB for SW
186          * accounting purpose
187          */
188         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
189 }
190
191 /* Allocate segments and link them for a ring */
192 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
193                 struct xhci_segment **first, struct xhci_segment **last,
194                 unsigned int num_segs, unsigned int cycle_state,
195                 enum xhci_ring_type type, gfp_t flags)
196 {
197         struct xhci_segment *prev;
198
199         prev = xhci_segment_alloc(xhci, cycle_state, flags);
200         if (!prev)
201                 return -ENOMEM;
202         num_segs--;
203
204         *first = prev;
205         while (num_segs > 0) {
206                 struct xhci_segment     *next;
207
208                 next = xhci_segment_alloc(xhci, cycle_state, flags);
209                 if (!next) {
210                         prev = *first;
211                         while (prev) {
212                                 next = prev->next;
213                                 xhci_segment_free(xhci, prev);
214                                 prev = next;
215                         }
216                         return -ENOMEM;
217                 }
218                 xhci_link_segments(xhci, prev, next, type);
219
220                 prev = next;
221                 num_segs--;
222         }
223         xhci_link_segments(xhci, prev, *first, type);
224         *last = prev;
225
226         return 0;
227 }
228
229 /**
230  * Create a new ring with zero or more segments.
231  *
232  * Link each segment together into a ring.
233  * Set the end flag and the cycle toggle bit on the last segment.
234  * See section 4.9.1 and figures 15 and 16.
235  */
236 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
237                 unsigned int num_segs, unsigned int cycle_state,
238                 enum xhci_ring_type type, gfp_t flags)
239 {
240         struct xhci_ring        *ring;
241         int ret;
242
243         ring = kzalloc(sizeof *(ring), flags);
244         if (!ring)
245                 return NULL;
246
247         ring->num_segs = num_segs;
248         INIT_LIST_HEAD(&ring->td_list);
249         ring->type = type;
250         if (num_segs == 0)
251                 return ring;
252
253         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
254                         &ring->last_seg, num_segs, cycle_state, type, flags);
255         if (ret)
256                 goto fail;
257
258         /* Only event ring does not use link TRB */
259         if (type != TYPE_EVENT) {
260                 /* See section 4.9.2.1 and 6.4.4.1 */
261                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
262                         cpu_to_le32(LINK_TOGGLE);
263         }
264         xhci_initialize_ring_info(ring, cycle_state);
265         return ring;
266
267 fail:
268         kfree(ring);
269         return NULL;
270 }
271
272 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
273                 struct xhci_virt_device *virt_dev,
274                 unsigned int ep_index)
275 {
276         int rings_cached;
277
278         rings_cached = virt_dev->num_rings_cached;
279         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
280                 virt_dev->ring_cache[rings_cached] =
281                         virt_dev->eps[ep_index].ring;
282                 virt_dev->num_rings_cached++;
283                 xhci_dbg(xhci, "Cached old ring, "
284                                 "%d ring%s cached\n",
285                                 virt_dev->num_rings_cached,
286                                 (virt_dev->num_rings_cached > 1) ? "s" : "");
287         } else {
288                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
289                 xhci_dbg(xhci, "Ring cache full (%d rings), "
290                                 "freeing ring\n",
291                                 virt_dev->num_rings_cached);
292         }
293         virt_dev->eps[ep_index].ring = NULL;
294 }
295
296 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
297  * pointers to the beginning of the ring.
298  */
299 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
300                         struct xhci_ring *ring, unsigned int cycle_state,
301                         enum xhci_ring_type type)
302 {
303         struct xhci_segment     *seg = ring->first_seg;
304         int i;
305
306         do {
307                 memset(seg->trbs, 0,
308                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
309                 if (cycle_state == 0) {
310                         for (i = 0; i < TRBS_PER_SEGMENT; i++)
311                                 seg->trbs[i].link.control |= TRB_CYCLE;
312                 }
313                 /* All endpoint rings have link TRBs */
314                 xhci_link_segments(xhci, seg, seg->next, type);
315                 seg = seg->next;
316         } while (seg != ring->first_seg);
317         ring->type = type;
318         xhci_initialize_ring_info(ring, cycle_state);
319         /* td list should be empty since all URBs have been cancelled,
320          * but just in case...
321          */
322         INIT_LIST_HEAD(&ring->td_list);
323 }
324
325 /*
326  * Expand an existing ring.
327  * Look for a cached ring or allocate a new ring which has same segment numbers
328  * and link the two rings.
329  */
330 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
331                                 unsigned int num_trbs, gfp_t flags)
332 {
333         struct xhci_segment     *first;
334         struct xhci_segment     *last;
335         unsigned int            num_segs;
336         unsigned int            num_segs_needed;
337         int                     ret;
338
339         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
340                                 (TRBS_PER_SEGMENT - 1);
341
342         /* Allocate number of segments we needed, or double the ring size */
343         num_segs = ring->num_segs > num_segs_needed ?
344                         ring->num_segs : num_segs_needed;
345
346         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
347                         num_segs, ring->cycle_state, ring->type, flags);
348         if (ret)
349                 return -ENOMEM;
350
351         xhci_link_rings(xhci, ring, first, last, num_segs);
352         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
353                         "ring expansion succeed, now has %d segments",
354                         ring->num_segs);
355
356         return 0;
357 }
358
359 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
360
361 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
362                                                     int type, gfp_t flags)
363 {
364         struct xhci_container_ctx *ctx;
365
366         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
367                 return NULL;
368
369         ctx = kzalloc(sizeof(*ctx), flags);
370         if (!ctx)
371                 return NULL;
372
373         ctx->type = type;
374         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
375         if (type == XHCI_CTX_TYPE_INPUT)
376                 ctx->size += CTX_SIZE(xhci->hcc_params);
377
378         ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
379         if (!ctx->bytes) {
380                 kfree(ctx);
381                 return NULL;
382         }
383         memset(ctx->bytes, 0, ctx->size);
384         return ctx;
385 }
386
387 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
388                              struct xhci_container_ctx *ctx)
389 {
390         if (!ctx)
391                 return;
392         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
393         kfree(ctx);
394 }
395
396 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
397                                               struct xhci_container_ctx *ctx)
398 {
399         if (ctx->type != XHCI_CTX_TYPE_INPUT)
400                 return NULL;
401
402         return (struct xhci_input_control_ctx *)ctx->bytes;
403 }
404
405 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
406                                         struct xhci_container_ctx *ctx)
407 {
408         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
409                 return (struct xhci_slot_ctx *)ctx->bytes;
410
411         return (struct xhci_slot_ctx *)
412                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
413 }
414
415 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
416                                     struct xhci_container_ctx *ctx,
417                                     unsigned int ep_index)
418 {
419         /* increment ep index by offset of start of ep ctx array */
420         ep_index++;
421         if (ctx->type == XHCI_CTX_TYPE_INPUT)
422                 ep_index++;
423
424         return (struct xhci_ep_ctx *)
425                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
426 }
427
428
429 /***************** Streams structures manipulation *************************/
430
431 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
432                 unsigned int num_stream_ctxs,
433                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
434 {
435         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
436
437         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
438                 dma_free_coherent(&pdev->dev,
439                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
440                                 stream_ctx, dma);
441         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
442                 return dma_pool_free(xhci->small_streams_pool,
443                                 stream_ctx, dma);
444         else
445                 return dma_pool_free(xhci->medium_streams_pool,
446                                 stream_ctx, dma);
447 }
448
449 /*
450  * The stream context array for each endpoint with bulk streams enabled can
451  * vary in size, based on:
452  *  - how many streams the endpoint supports,
453  *  - the maximum primary stream array size the host controller supports,
454  *  - and how many streams the device driver asks for.
455  *
456  * The stream context array must be a power of 2, and can be as small as
457  * 64 bytes or as large as 1MB.
458  */
459 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
460                 unsigned int num_stream_ctxs, dma_addr_t *dma,
461                 gfp_t mem_flags)
462 {
463         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
464
465         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
466                 return dma_alloc_coherent(&pdev->dev,
467                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
468                                 dma, mem_flags);
469         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
470                 return dma_pool_alloc(xhci->small_streams_pool,
471                                 mem_flags, dma);
472         else
473                 return dma_pool_alloc(xhci->medium_streams_pool,
474                                 mem_flags, dma);
475 }
476
477 struct xhci_ring *xhci_dma_to_transfer_ring(
478                 struct xhci_virt_ep *ep,
479                 u64 address)
480 {
481         if (ep->ep_state & EP_HAS_STREAMS)
482                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
483                                 address >> TRB_SEGMENT_SHIFT);
484         return ep->ring;
485 }
486
487 struct xhci_ring *xhci_stream_id_to_ring(
488                 struct xhci_virt_device *dev,
489                 unsigned int ep_index,
490                 unsigned int stream_id)
491 {
492         struct xhci_virt_ep *ep = &dev->eps[ep_index];
493
494         if (stream_id == 0)
495                 return ep->ring;
496         if (!ep->stream_info)
497                 return NULL;
498
499         if (stream_id > ep->stream_info->num_streams)
500                 return NULL;
501         return ep->stream_info->stream_rings[stream_id];
502 }
503
504 /*
505  * Change an endpoint's internal structure so it supports stream IDs.  The
506  * number of requested streams includes stream 0, which cannot be used by device
507  * drivers.
508  *
509  * The number of stream contexts in the stream context array may be bigger than
510  * the number of streams the driver wants to use.  This is because the number of
511  * stream context array entries must be a power of two.
512  *
513  * We need a radix tree for mapping physical addresses of TRBs to which stream
514  * ID they belong to.  We need to do this because the host controller won't tell
515  * us which stream ring the TRB came from.  We could store the stream ID in an
516  * event data TRB, but that doesn't help us for the cancellation case, since the
517  * endpoint may stop before it reaches that event data TRB.
518  *
519  * The radix tree maps the upper portion of the TRB DMA address to a ring
520  * segment that has the same upper portion of DMA addresses.  For example, say I
521  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
522  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
523  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
524  * pass the radix tree a key to get the right stream ID:
525  *
526  *      0x10c90fff >> 10 = 0x43243
527  *      0x10c912c0 >> 10 = 0x43244
528  *      0x10c91400 >> 10 = 0x43245
529  *
530  * Obviously, only those TRBs with DMA addresses that are within the segment
531  * will make the radix tree return the stream ID for that ring.
532  *
533  * Caveats for the radix tree:
534  *
535  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
536  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
537  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
538  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
539  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
540  * extended systems (where the DMA address can be bigger than 32-bits),
541  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
542  */
543 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
544                 unsigned int num_stream_ctxs,
545                 unsigned int num_streams, gfp_t mem_flags)
546 {
547         struct xhci_stream_info *stream_info;
548         u32 cur_stream;
549         struct xhci_ring *cur_ring;
550         unsigned long key;
551         u64 addr;
552         int ret;
553
554         xhci_dbg(xhci, "Allocating %u streams and %u "
555                         "stream context array entries.\n",
556                         num_streams, num_stream_ctxs);
557         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
558                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
559                 return NULL;
560         }
561         xhci->cmd_ring_reserved_trbs++;
562
563         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
564         if (!stream_info)
565                 goto cleanup_trbs;
566
567         stream_info->num_streams = num_streams;
568         stream_info->num_stream_ctxs = num_stream_ctxs;
569
570         /* Initialize the array of virtual pointers to stream rings. */
571         stream_info->stream_rings = kzalloc(
572                         sizeof(struct xhci_ring *)*num_streams,
573                         mem_flags);
574         if (!stream_info->stream_rings)
575                 goto cleanup_info;
576
577         /* Initialize the array of DMA addresses for stream rings for the HW. */
578         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
579                         num_stream_ctxs, &stream_info->ctx_array_dma,
580                         mem_flags);
581         if (!stream_info->stream_ctx_array)
582                 goto cleanup_ctx;
583         memset(stream_info->stream_ctx_array, 0,
584                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
585
586         /* Allocate everything needed to free the stream rings later */
587         stream_info->free_streams_command =
588                 xhci_alloc_command(xhci, true, true, mem_flags);
589         if (!stream_info->free_streams_command)
590                 goto cleanup_ctx;
591
592         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
593
594         /* Allocate rings for all the streams that the driver will use,
595          * and add their segment DMA addresses to the radix tree.
596          * Stream 0 is reserved.
597          */
598         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
599                 stream_info->stream_rings[cur_stream] =
600                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
601                 cur_ring = stream_info->stream_rings[cur_stream];
602                 if (!cur_ring)
603                         goto cleanup_rings;
604                 cur_ring->stream_id = cur_stream;
605                 /* Set deq ptr, cycle bit, and stream context type */
606                 addr = cur_ring->first_seg->dma |
607                         SCT_FOR_CTX(SCT_PRI_TR) |
608                         cur_ring->cycle_state;
609                 stream_info->stream_ctx_array[cur_stream].stream_ring =
610                         cpu_to_le64(addr);
611                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
612                                 cur_stream, (unsigned long long) addr);
613
614                 key = (unsigned long)
615                         (cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
616                 ret = radix_tree_insert(&stream_info->trb_address_map,
617                                 key, cur_ring);
618                 if (ret) {
619                         xhci_ring_free(xhci, cur_ring);
620                         stream_info->stream_rings[cur_stream] = NULL;
621                         goto cleanup_rings;
622                 }
623         }
624         /* Leave the other unused stream ring pointers in the stream context
625          * array initialized to zero.  This will cause the xHC to give us an
626          * error if the device asks for a stream ID we don't have setup (if it
627          * was any other way, the host controller would assume the ring is
628          * "empty" and wait forever for data to be queued to that stream ID).
629          */
630
631         return stream_info;
632
633 cleanup_rings:
634         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
635                 cur_ring = stream_info->stream_rings[cur_stream];
636                 if (cur_ring) {
637                         addr = cur_ring->first_seg->dma;
638                         radix_tree_delete(&stream_info->trb_address_map,
639                                         addr >> TRB_SEGMENT_SHIFT);
640                         xhci_ring_free(xhci, cur_ring);
641                         stream_info->stream_rings[cur_stream] = NULL;
642                 }
643         }
644         xhci_free_command(xhci, stream_info->free_streams_command);
645 cleanup_ctx:
646         kfree(stream_info->stream_rings);
647 cleanup_info:
648         kfree(stream_info);
649 cleanup_trbs:
650         xhci->cmd_ring_reserved_trbs--;
651         return NULL;
652 }
653 /*
654  * Sets the MaxPStreams field and the Linear Stream Array field.
655  * Sets the dequeue pointer to the stream context array.
656  */
657 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
658                 struct xhci_ep_ctx *ep_ctx,
659                 struct xhci_stream_info *stream_info)
660 {
661         u32 max_primary_streams;
662         /* MaxPStreams is the number of stream context array entries, not the
663          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
664          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
665          */
666         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
667         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
668                         "Setting number of stream ctx array entries to %u",
669                         1 << (max_primary_streams + 1));
670         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
671         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
672                                        | EP_HAS_LSA);
673         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
674 }
675
676 /*
677  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
678  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
679  * not at the beginning of the ring).
680  */
681 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
682                 struct xhci_ep_ctx *ep_ctx,
683                 struct xhci_virt_ep *ep)
684 {
685         dma_addr_t addr;
686         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
687         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
688         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
689 }
690
691 /* Frees all stream contexts associated with the endpoint,
692  *
693  * Caller should fix the endpoint context streams fields.
694  */
695 void xhci_free_stream_info(struct xhci_hcd *xhci,
696                 struct xhci_stream_info *stream_info)
697 {
698         int cur_stream;
699         struct xhci_ring *cur_ring;
700         dma_addr_t addr;
701
702         if (!stream_info)
703                 return;
704
705         for (cur_stream = 1; cur_stream < stream_info->num_streams;
706                         cur_stream++) {
707                 cur_ring = stream_info->stream_rings[cur_stream];
708                 if (cur_ring) {
709                         addr = cur_ring->first_seg->dma;
710                         radix_tree_delete(&stream_info->trb_address_map,
711                                         addr >> TRB_SEGMENT_SHIFT);
712                         xhci_ring_free(xhci, cur_ring);
713                         stream_info->stream_rings[cur_stream] = NULL;
714                 }
715         }
716         xhci_free_command(xhci, stream_info->free_streams_command);
717         xhci->cmd_ring_reserved_trbs--;
718         if (stream_info->stream_ctx_array)
719                 xhci_free_stream_ctx(xhci,
720                                 stream_info->num_stream_ctxs,
721                                 stream_info->stream_ctx_array,
722                                 stream_info->ctx_array_dma);
723
724         if (stream_info)
725                 kfree(stream_info->stream_rings);
726         kfree(stream_info);
727 }
728
729
730 /***************** Device context manipulation *************************/
731
732 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
733                 struct xhci_virt_ep *ep)
734 {
735         init_timer(&ep->stop_cmd_timer);
736         ep->stop_cmd_timer.data = (unsigned long) ep;
737         ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
738         ep->xhci = xhci;
739 }
740
741 static void xhci_free_tt_info(struct xhci_hcd *xhci,
742                 struct xhci_virt_device *virt_dev,
743                 int slot_id)
744 {
745         struct list_head *tt_list_head;
746         struct xhci_tt_bw_info *tt_info, *next;
747         bool slot_found = false;
748
749         /* If the device never made it past the Set Address stage,
750          * it may not have the real_port set correctly.
751          */
752         if (virt_dev->real_port == 0 ||
753                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
754                 xhci_dbg(xhci, "Bad real port.\n");
755                 return;
756         }
757
758         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
759         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
760                 /* Multi-TT hubs will have more than one entry */
761                 if (tt_info->slot_id == slot_id) {
762                         slot_found = true;
763                         list_del(&tt_info->tt_list);
764                         kfree(tt_info);
765                 } else if (slot_found) {
766                         break;
767                 }
768         }
769 }
770
771 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
772                 struct xhci_virt_device *virt_dev,
773                 struct usb_device *hdev,
774                 struct usb_tt *tt, gfp_t mem_flags)
775 {
776         struct xhci_tt_bw_info          *tt_info;
777         unsigned int                    num_ports;
778         int                             i, j;
779
780         if (!tt->multi)
781                 num_ports = 1;
782         else
783                 num_ports = hdev->maxchild;
784
785         for (i = 0; i < num_ports; i++, tt_info++) {
786                 struct xhci_interval_bw_table *bw_table;
787
788                 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
789                 if (!tt_info)
790                         goto free_tts;
791                 INIT_LIST_HEAD(&tt_info->tt_list);
792                 list_add(&tt_info->tt_list,
793                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
794                 tt_info->slot_id = virt_dev->udev->slot_id;
795                 if (tt->multi)
796                         tt_info->ttport = i+1;
797                 bw_table = &tt_info->bw_table;
798                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
799                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
800         }
801         return 0;
802
803 free_tts:
804         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
805         return -ENOMEM;
806 }
807
808
809 /* All the xhci_tds in the ring's TD list should be freed at this point.
810  * Should be called with xhci->lock held if there is any chance the TT lists
811  * will be manipulated by the configure endpoint, allocate device, or update
812  * hub functions while this function is removing the TT entries from the list.
813  */
814 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
815 {
816         struct xhci_virt_device *dev;
817         int i;
818         int old_active_eps = 0;
819
820         /* Slot ID 0 is reserved */
821         if (slot_id == 0 || !xhci->devs[slot_id])
822                 return;
823
824         dev = xhci->devs[slot_id];
825         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
826         if (!dev)
827                 return;
828
829         if (dev->tt_info)
830                 old_active_eps = dev->tt_info->active_eps;
831
832         for (i = 0; i < 31; ++i) {
833                 if (dev->eps[i].ring)
834                         xhci_ring_free(xhci, dev->eps[i].ring);
835                 if (dev->eps[i].stream_info)
836                         xhci_free_stream_info(xhci,
837                                         dev->eps[i].stream_info);
838                 /* Endpoints on the TT/root port lists should have been removed
839                  * when usb_disable_device() was called for the device.
840                  * We can't drop them anyway, because the udev might have gone
841                  * away by this point, and we can't tell what speed it was.
842                  */
843                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
844                         xhci_warn(xhci, "Slot %u endpoint %u "
845                                         "not removed from BW list!\n",
846                                         slot_id, i);
847         }
848         /* If this is a hub, free the TT(s) from the TT list */
849         xhci_free_tt_info(xhci, dev, slot_id);
850         /* If necessary, update the number of active TTs on this root port */
851         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
852
853         if (dev->ring_cache) {
854                 for (i = 0; i < dev->num_rings_cached; i++)
855                         xhci_ring_free(xhci, dev->ring_cache[i]);
856                 kfree(dev->ring_cache);
857         }
858
859         if (dev->in_ctx)
860                 xhci_free_container_ctx(xhci, dev->in_ctx);
861         if (dev->out_ctx)
862                 xhci_free_container_ctx(xhci, dev->out_ctx);
863
864         kfree(xhci->devs[slot_id]);
865         xhci->devs[slot_id] = NULL;
866 }
867
868 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
869                 struct usb_device *udev, gfp_t flags)
870 {
871         struct xhci_virt_device *dev;
872         int i;
873
874         /* Slot ID 0 is reserved */
875         if (slot_id == 0 || xhci->devs[slot_id]) {
876                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
877                 return 0;
878         }
879
880         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
881         if (!xhci->devs[slot_id])
882                 return 0;
883         dev = xhci->devs[slot_id];
884
885         /* Allocate the (output) device context that will be used in the HC. */
886         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
887         if (!dev->out_ctx)
888                 goto fail;
889
890         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
891                         (unsigned long long)dev->out_ctx->dma);
892
893         /* Allocate the (input) device context for address device command */
894         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
895         if (!dev->in_ctx)
896                 goto fail;
897
898         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
899                         (unsigned long long)dev->in_ctx->dma);
900
901         /* Initialize the cancellation list and watchdog timers for each ep */
902         for (i = 0; i < 31; i++) {
903                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
904                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
905                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
906         }
907
908         /* Allocate endpoint 0 ring */
909         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
910         if (!dev->eps[0].ring)
911                 goto fail;
912
913         /* Allocate pointers to the ring cache */
914         dev->ring_cache = kzalloc(
915                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
916                         flags);
917         if (!dev->ring_cache)
918                 goto fail;
919         dev->num_rings_cached = 0;
920
921         init_completion(&dev->cmd_completion);
922         INIT_LIST_HEAD(&dev->cmd_list);
923         dev->udev = udev;
924
925         /* Point to output device context in dcbaa. */
926         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
927         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
928                  slot_id,
929                  &xhci->dcbaa->dev_context_ptrs[slot_id],
930                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
931
932         return 1;
933 fail:
934         xhci_free_virt_device(xhci, slot_id);
935         return 0;
936 }
937
938 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
939                 struct usb_device *udev)
940 {
941         struct xhci_virt_device *virt_dev;
942         struct xhci_ep_ctx      *ep0_ctx;
943         struct xhci_ring        *ep_ring;
944
945         virt_dev = xhci->devs[udev->slot_id];
946         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
947         ep_ring = virt_dev->eps[0].ring;
948         /*
949          * FIXME we don't keep track of the dequeue pointer very well after a
950          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
951          * host to our enqueue pointer.  This should only be called after a
952          * configured device has reset, so all control transfers should have
953          * been completed or cancelled before the reset.
954          */
955         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
956                                                         ep_ring->enqueue)
957                                    | ep_ring->cycle_state);
958 }
959
960 /*
961  * The xHCI roothub may have ports of differing speeds in any order in the port
962  * status registers.  xhci->port_array provides an array of the port speed for
963  * each offset into the port status registers.
964  *
965  * The xHCI hardware wants to know the roothub port number that the USB device
966  * is attached to (or the roothub port its ancestor hub is attached to).  All we
967  * know is the index of that port under either the USB 2.0 or the USB 3.0
968  * roothub, but that doesn't give us the real index into the HW port status
969  * registers. Call xhci_find_raw_port_number() to get real index.
970  */
971 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
972                 struct usb_device *udev)
973 {
974         struct usb_device *top_dev;
975         struct usb_hcd *hcd;
976
977         if (udev->speed == USB_SPEED_SUPER)
978                 hcd = xhci->shared_hcd;
979         else
980                 hcd = xhci->main_hcd;
981
982         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
983                         top_dev = top_dev->parent)
984                 /* Found device below root hub */;
985
986         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
987 }
988
989 /* Setup an xHCI virtual device for a Set Address command */
990 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
991 {
992         struct xhci_virt_device *dev;
993         struct xhci_ep_ctx      *ep0_ctx;
994         struct xhci_slot_ctx    *slot_ctx;
995         u32                     port_num;
996         u32                     max_packets;
997         struct usb_device *top_dev;
998
999         dev = xhci->devs[udev->slot_id];
1000         /* Slot ID 0 is reserved */
1001         if (udev->slot_id == 0 || !dev) {
1002                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1003                                 udev->slot_id);
1004                 return -EINVAL;
1005         }
1006         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1007         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1008
1009         /* 3) Only the control endpoint is valid - one endpoint context */
1010         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1011         switch (udev->speed) {
1012         case USB_SPEED_SUPER:
1013                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1014                 max_packets = MAX_PACKET(512);
1015                 break;
1016         case USB_SPEED_HIGH:
1017                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1018                 max_packets = MAX_PACKET(64);
1019                 break;
1020         /* USB core guesses at a 64-byte max packet first for FS devices */
1021         case USB_SPEED_FULL:
1022                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1023                 max_packets = MAX_PACKET(64);
1024                 break;
1025         case USB_SPEED_LOW:
1026                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1027                 max_packets = MAX_PACKET(8);
1028                 break;
1029         case USB_SPEED_WIRELESS:
1030                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1031                 return -EINVAL;
1032                 break;
1033         default:
1034                 /* Speed was set earlier, this shouldn't happen. */
1035                 return -EINVAL;
1036         }
1037         /* Find the root hub port this device is under */
1038         port_num = xhci_find_real_port_number(xhci, udev);
1039         if (!port_num)
1040                 return -EINVAL;
1041         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1042         /* Set the port number in the virtual_device to the faked port number */
1043         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1044                         top_dev = top_dev->parent)
1045                 /* Found device below root hub */;
1046         dev->fake_port = top_dev->portnum;
1047         dev->real_port = port_num;
1048         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1049         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1050
1051         /* Find the right bandwidth table that this device will be a part of.
1052          * If this is a full speed device attached directly to a root port (or a
1053          * decendent of one), it counts as a primary bandwidth domain, not a
1054          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1055          * will never be created for the HS root hub.
1056          */
1057         if (!udev->tt || !udev->tt->hub->parent) {
1058                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1059         } else {
1060                 struct xhci_root_port_bw_info *rh_bw;
1061                 struct xhci_tt_bw_info *tt_bw;
1062
1063                 rh_bw = &xhci->rh_bw[port_num - 1];
1064                 /* Find the right TT. */
1065                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1066                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1067                                 continue;
1068
1069                         if (!dev->udev->tt->multi ||
1070                                         (udev->tt->multi &&
1071                                          tt_bw->ttport == dev->udev->ttport)) {
1072                                 dev->bw_table = &tt_bw->bw_table;
1073                                 dev->tt_info = tt_bw;
1074                                 break;
1075                         }
1076                 }
1077                 if (!dev->tt_info)
1078                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1079         }
1080
1081         /* Is this a LS/FS device under an external HS hub? */
1082         if (udev->tt && udev->tt->hub->parent) {
1083                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1084                                                 (udev->ttport << 8));
1085                 if (udev->tt->multi)
1086                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1087         }
1088         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1089         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1090
1091         /* Step 4 - ring already allocated */
1092         /* Step 5 */
1093         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1094
1095         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1096         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1097                                          max_packets);
1098
1099         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1100                                    dev->eps[0].ring->cycle_state);
1101
1102         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1103
1104         return 0;
1105 }
1106
1107 /*
1108  * Convert interval expressed as 2^(bInterval - 1) == interval into
1109  * straight exponent value 2^n == interval.
1110  *
1111  */
1112 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1113                 struct usb_host_endpoint *ep)
1114 {
1115         unsigned int interval;
1116
1117         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1118         if (interval != ep->desc.bInterval - 1)
1119                 dev_warn(&udev->dev,
1120                          "ep %#x - rounding interval to %d %sframes\n",
1121                          ep->desc.bEndpointAddress,
1122                          1 << interval,
1123                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1124
1125         if (udev->speed == USB_SPEED_FULL) {
1126                 /*
1127                  * Full speed isoc endpoints specify interval in frames,
1128                  * not microframes. We are using microframes everywhere,
1129                  * so adjust accordingly.
1130                  */
1131                 interval += 3;  /* 1 frame = 2^3 uframes */
1132         }
1133
1134         return interval;
1135 }
1136
1137 /*
1138  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1139  * microframes, rounded down to nearest power of 2.
1140  */
1141 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1142                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1143                 unsigned int min_exponent, unsigned int max_exponent)
1144 {
1145         unsigned int interval;
1146
1147         interval = fls(desc_interval) - 1;
1148         interval = clamp_val(interval, min_exponent, max_exponent);
1149         if ((1 << interval) != desc_interval)
1150                 dev_warn(&udev->dev,
1151                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1152                          ep->desc.bEndpointAddress,
1153                          1 << interval,
1154                          desc_interval);
1155
1156         return interval;
1157 }
1158
1159 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1160                 struct usb_host_endpoint *ep)
1161 {
1162         if (ep->desc.bInterval == 0)
1163                 return 0;
1164         return xhci_microframes_to_exponent(udev, ep,
1165                         ep->desc.bInterval, 0, 15);
1166 }
1167
1168
1169 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1170                 struct usb_host_endpoint *ep)
1171 {
1172         return xhci_microframes_to_exponent(udev, ep,
1173                         ep->desc.bInterval * 8, 3, 10);
1174 }
1175
1176 /* Return the polling or NAK interval.
1177  *
1178  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1179  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1180  *
1181  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1182  * is set to 0.
1183  */
1184 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1185                 struct usb_host_endpoint *ep)
1186 {
1187         unsigned int interval = 0;
1188
1189         switch (udev->speed) {
1190         case USB_SPEED_HIGH:
1191                 /* Max NAK rate */
1192                 if (usb_endpoint_xfer_control(&ep->desc) ||
1193                     usb_endpoint_xfer_bulk(&ep->desc)) {
1194                         interval = xhci_parse_microframe_interval(udev, ep);
1195                         break;
1196                 }
1197                 /* Fall through - SS and HS isoc/int have same decoding */
1198
1199         case USB_SPEED_SUPER:
1200                 if (usb_endpoint_xfer_int(&ep->desc) ||
1201                     usb_endpoint_xfer_isoc(&ep->desc)) {
1202                         interval = xhci_parse_exponent_interval(udev, ep);
1203                 }
1204                 break;
1205
1206         case USB_SPEED_FULL:
1207                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1208                         interval = xhci_parse_exponent_interval(udev, ep);
1209                         break;
1210                 }
1211                 /*
1212                  * Fall through for interrupt endpoint interval decoding
1213                  * since it uses the same rules as low speed interrupt
1214                  * endpoints.
1215                  */
1216
1217         case USB_SPEED_LOW:
1218                 if (usb_endpoint_xfer_int(&ep->desc) ||
1219                     usb_endpoint_xfer_isoc(&ep->desc)) {
1220
1221                         interval = xhci_parse_frame_interval(udev, ep);
1222                 }
1223                 break;
1224
1225         default:
1226                 BUG();
1227         }
1228         return EP_INTERVAL(interval);
1229 }
1230
1231 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1232  * High speed endpoint descriptors can define "the number of additional
1233  * transaction opportunities per microframe", but that goes in the Max Burst
1234  * endpoint context field.
1235  */
1236 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1237                 struct usb_host_endpoint *ep)
1238 {
1239         if (udev->speed != USB_SPEED_SUPER ||
1240                         !usb_endpoint_xfer_isoc(&ep->desc))
1241                 return 0;
1242         return ep->ss_ep_comp.bmAttributes;
1243 }
1244
1245 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1246                 struct usb_host_endpoint *ep)
1247 {
1248         int in;
1249         u32 type;
1250
1251         in = usb_endpoint_dir_in(&ep->desc);
1252         if (usb_endpoint_xfer_control(&ep->desc)) {
1253                 type = EP_TYPE(CTRL_EP);
1254         } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1255                 if (in)
1256                         type = EP_TYPE(BULK_IN_EP);
1257                 else
1258                         type = EP_TYPE(BULK_OUT_EP);
1259         } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1260                 if (in)
1261                         type = EP_TYPE(ISOC_IN_EP);
1262                 else
1263                         type = EP_TYPE(ISOC_OUT_EP);
1264         } else if (usb_endpoint_xfer_int(&ep->desc)) {
1265                 if (in)
1266                         type = EP_TYPE(INT_IN_EP);
1267                 else
1268                         type = EP_TYPE(INT_OUT_EP);
1269         } else {
1270                 type = 0;
1271         }
1272         return type;
1273 }
1274
1275 /* Return the maximum endpoint service interval time (ESIT) payload.
1276  * Basically, this is the maxpacket size, multiplied by the burst size
1277  * and mult size.
1278  */
1279 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1280                 struct usb_device *udev,
1281                 struct usb_host_endpoint *ep)
1282 {
1283         int max_burst;
1284         int max_packet;
1285
1286         /* Only applies for interrupt or isochronous endpoints */
1287         if (usb_endpoint_xfer_control(&ep->desc) ||
1288                         usb_endpoint_xfer_bulk(&ep->desc))
1289                 return 0;
1290
1291         if (udev->speed == USB_SPEED_SUPER)
1292                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1293
1294         max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1295         max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1296         /* A 0 in max burst means 1 transfer per ESIT */
1297         return max_packet * (max_burst + 1);
1298 }
1299
1300 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1301  * Drivers will have to call usb_alloc_streams() to do that.
1302  */
1303 int xhci_endpoint_init(struct xhci_hcd *xhci,
1304                 struct xhci_virt_device *virt_dev,
1305                 struct usb_device *udev,
1306                 struct usb_host_endpoint *ep,
1307                 gfp_t mem_flags)
1308 {
1309         unsigned int ep_index;
1310         struct xhci_ep_ctx *ep_ctx;
1311         struct xhci_ring *ep_ring;
1312         unsigned int max_packet;
1313         unsigned int max_burst;
1314         enum xhci_ring_type type;
1315         u32 max_esit_payload;
1316         u32 endpoint_type;
1317
1318         ep_index = xhci_get_endpoint_index(&ep->desc);
1319         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1320
1321         endpoint_type = xhci_get_endpoint_type(udev, ep);
1322         if (!endpoint_type)
1323                 return -EINVAL;
1324         ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1325
1326         type = usb_endpoint_type(&ep->desc);
1327         /* Set up the endpoint ring */
1328         virt_dev->eps[ep_index].new_ring =
1329                 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1330         if (!virt_dev->eps[ep_index].new_ring) {
1331                 /* Attempt to use the ring cache */
1332                 if (virt_dev->num_rings_cached == 0)
1333                         return -ENOMEM;
1334                 virt_dev->eps[ep_index].new_ring =
1335                         virt_dev->ring_cache[virt_dev->num_rings_cached];
1336                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1337                 virt_dev->num_rings_cached--;
1338                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1339                                         1, type);
1340         }
1341         virt_dev->eps[ep_index].skip = false;
1342         ep_ring = virt_dev->eps[ep_index].new_ring;
1343         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1344
1345         ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1346                                       | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1347
1348         /* FIXME dig Mult and streams info out of ep companion desc */
1349
1350         /* Allow 3 retries for everything but isoc;
1351          * CErr shall be set to 0 for Isoch endpoints.
1352          */
1353         if (!usb_endpoint_xfer_isoc(&ep->desc))
1354                 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1355         else
1356                 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1357
1358         /* Set the max packet size and max burst */
1359         max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1360         max_burst = 0;
1361         switch (udev->speed) {
1362         case USB_SPEED_SUPER:
1363                 /* dig out max burst from ep companion desc */
1364                 max_burst = ep->ss_ep_comp.bMaxBurst;
1365                 break;
1366         case USB_SPEED_HIGH:
1367                 /* Some devices get this wrong */
1368                 if (usb_endpoint_xfer_bulk(&ep->desc))
1369                         max_packet = 512;
1370                 /* bits 11:12 specify the number of additional transaction
1371                  * opportunities per microframe (USB 2.0, section 9.6.6)
1372                  */
1373                 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1374                                 usb_endpoint_xfer_int(&ep->desc)) {
1375                         max_burst = (usb_endpoint_maxp(&ep->desc)
1376                                      & 0x1800) >> 11;
1377                 }
1378                 break;
1379         case USB_SPEED_FULL:
1380         case USB_SPEED_LOW:
1381                 break;
1382         default:
1383                 BUG();
1384         }
1385         ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1386                         MAX_BURST(max_burst));
1387         max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1388         ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1389
1390         /*
1391          * XXX no idea how to calculate the average TRB buffer length for bulk
1392          * endpoints, as the driver gives us no clue how big each scatter gather
1393          * list entry (or buffer) is going to be.
1394          *
1395          * For isochronous and interrupt endpoints, we set it to the max
1396          * available, until we have new API in the USB core to allow drivers to
1397          * declare how much bandwidth they actually need.
1398          *
1399          * Normally, it would be calculated by taking the total of the buffer
1400          * lengths in the TD and then dividing by the number of TRBs in a TD,
1401          * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1402          * use Event Data TRBs, and we don't chain in a link TRB on short
1403          * transfers, we're basically dividing by 1.
1404          *
1405          * xHCI 1.0 specification indicates that the Average TRB Length should
1406          * be set to 8 for control endpoints.
1407          */
1408         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1409                 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1410         else
1411                 ep_ctx->tx_info |=
1412                          cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1413
1414         /* FIXME Debug endpoint context */
1415         return 0;
1416 }
1417
1418 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1419                 struct xhci_virt_device *virt_dev,
1420                 struct usb_host_endpoint *ep)
1421 {
1422         unsigned int ep_index;
1423         struct xhci_ep_ctx *ep_ctx;
1424
1425         ep_index = xhci_get_endpoint_index(&ep->desc);
1426         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1427
1428         ep_ctx->ep_info = 0;
1429         ep_ctx->ep_info2 = 0;
1430         ep_ctx->deq = 0;
1431         ep_ctx->tx_info = 0;
1432         /* Don't free the endpoint ring until the set interface or configuration
1433          * request succeeds.
1434          */
1435 }
1436
1437 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1438 {
1439         bw_info->ep_interval = 0;
1440         bw_info->mult = 0;
1441         bw_info->num_packets = 0;
1442         bw_info->max_packet_size = 0;
1443         bw_info->type = 0;
1444         bw_info->max_esit_payload = 0;
1445 }
1446
1447 void xhci_update_bw_info(struct xhci_hcd *xhci,
1448                 struct xhci_container_ctx *in_ctx,
1449                 struct xhci_input_control_ctx *ctrl_ctx,
1450                 struct xhci_virt_device *virt_dev)
1451 {
1452         struct xhci_bw_info *bw_info;
1453         struct xhci_ep_ctx *ep_ctx;
1454         unsigned int ep_type;
1455         int i;
1456
1457         for (i = 1; i < 31; ++i) {
1458                 bw_info = &virt_dev->eps[i].bw_info;
1459
1460                 /* We can't tell what endpoint type is being dropped, but
1461                  * unconditionally clearing the bandwidth info for non-periodic
1462                  * endpoints should be harmless because the info will never be
1463                  * set in the first place.
1464                  */
1465                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1466                         /* Dropped endpoint */
1467                         xhci_clear_endpoint_bw_info(bw_info);
1468                         continue;
1469                 }
1470
1471                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1472                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1473                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1474
1475                         /* Ignore non-periodic endpoints */
1476                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1477                                         ep_type != ISOC_IN_EP &&
1478                                         ep_type != INT_IN_EP)
1479                                 continue;
1480
1481                         /* Added or changed endpoint */
1482                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1483                                         le32_to_cpu(ep_ctx->ep_info));
1484                         /* Number of packets and mult are zero-based in the
1485                          * input context, but we want one-based for the
1486                          * interval table.
1487                          */
1488                         bw_info->mult = CTX_TO_EP_MULT(
1489                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1490                         bw_info->num_packets = CTX_TO_MAX_BURST(
1491                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1492                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1493                                         le32_to_cpu(ep_ctx->ep_info2));
1494                         bw_info->type = ep_type;
1495                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1496                                         le32_to_cpu(ep_ctx->tx_info));
1497                 }
1498         }
1499 }
1500
1501 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1502  * Useful when you want to change one particular aspect of the endpoint and then
1503  * issue a configure endpoint command.
1504  */
1505 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1506                 struct xhci_container_ctx *in_ctx,
1507                 struct xhci_container_ctx *out_ctx,
1508                 unsigned int ep_index)
1509 {
1510         struct xhci_ep_ctx *out_ep_ctx;
1511         struct xhci_ep_ctx *in_ep_ctx;
1512
1513         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1514         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1515
1516         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1517         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1518         in_ep_ctx->deq = out_ep_ctx->deq;
1519         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1520 }
1521
1522 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1523  * Useful when you want to change one particular aspect of the endpoint and then
1524  * issue a configure endpoint command.  Only the context entries field matters,
1525  * but we'll copy the whole thing anyway.
1526  */
1527 void xhci_slot_copy(struct xhci_hcd *xhci,
1528                 struct xhci_container_ctx *in_ctx,
1529                 struct xhci_container_ctx *out_ctx)
1530 {
1531         struct xhci_slot_ctx *in_slot_ctx;
1532         struct xhci_slot_ctx *out_slot_ctx;
1533
1534         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1535         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1536
1537         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1538         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1539         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1540         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1541 }
1542
1543 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1544 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1545 {
1546         int i;
1547         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1548         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1549
1550         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1551                         "Allocating %d scratchpad buffers", num_sp);
1552
1553         if (!num_sp)
1554                 return 0;
1555
1556         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1557         if (!xhci->scratchpad)
1558                 goto fail_sp;
1559
1560         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1561                                      num_sp * sizeof(u64),
1562                                      &xhci->scratchpad->sp_dma, flags);
1563         if (!xhci->scratchpad->sp_array)
1564                 goto fail_sp2;
1565
1566         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1567         if (!xhci->scratchpad->sp_buffers)
1568                 goto fail_sp3;
1569
1570         xhci->scratchpad->sp_dma_buffers =
1571                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1572
1573         if (!xhci->scratchpad->sp_dma_buffers)
1574                 goto fail_sp4;
1575
1576         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1577         for (i = 0; i < num_sp; i++) {
1578                 dma_addr_t dma;
1579                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1580                                 flags);
1581                 if (!buf)
1582                         goto fail_sp5;
1583
1584                 xhci->scratchpad->sp_array[i] = dma;
1585                 xhci->scratchpad->sp_buffers[i] = buf;
1586                 xhci->scratchpad->sp_dma_buffers[i] = dma;
1587         }
1588
1589         return 0;
1590
1591  fail_sp5:
1592         for (i = i - 1; i >= 0; i--) {
1593                 dma_free_coherent(dev, xhci->page_size,
1594                                     xhci->scratchpad->sp_buffers[i],
1595                                     xhci->scratchpad->sp_dma_buffers[i]);
1596         }
1597         kfree(xhci->scratchpad->sp_dma_buffers);
1598
1599  fail_sp4:
1600         kfree(xhci->scratchpad->sp_buffers);
1601
1602  fail_sp3:
1603         dma_free_coherent(dev, num_sp * sizeof(u64),
1604                             xhci->scratchpad->sp_array,
1605                             xhci->scratchpad->sp_dma);
1606
1607  fail_sp2:
1608         kfree(xhci->scratchpad);
1609         xhci->scratchpad = NULL;
1610
1611  fail_sp:
1612         return -ENOMEM;
1613 }
1614
1615 static void scratchpad_free(struct xhci_hcd *xhci)
1616 {
1617         int num_sp;
1618         int i;
1619         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1620
1621         if (!xhci->scratchpad)
1622                 return;
1623
1624         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1625
1626         for (i = 0; i < num_sp; i++) {
1627                 dma_free_coherent(&pdev->dev, xhci->page_size,
1628                                     xhci->scratchpad->sp_buffers[i],
1629                                     xhci->scratchpad->sp_dma_buffers[i]);
1630         }
1631         kfree(xhci->scratchpad->sp_dma_buffers);
1632         kfree(xhci->scratchpad->sp_buffers);
1633         dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1634                             xhci->scratchpad->sp_array,
1635                             xhci->scratchpad->sp_dma);
1636         kfree(xhci->scratchpad);
1637         xhci->scratchpad = NULL;
1638 }
1639
1640 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1641                 bool allocate_in_ctx, bool allocate_completion,
1642                 gfp_t mem_flags)
1643 {
1644         struct xhci_command *command;
1645
1646         command = kzalloc(sizeof(*command), mem_flags);
1647         if (!command)
1648                 return NULL;
1649
1650         if (allocate_in_ctx) {
1651                 command->in_ctx =
1652                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1653                                         mem_flags);
1654                 if (!command->in_ctx) {
1655                         kfree(command);
1656                         return NULL;
1657                 }
1658         }
1659
1660         if (allocate_completion) {
1661                 command->completion =
1662                         kzalloc(sizeof(struct completion), mem_flags);
1663                 if (!command->completion) {
1664                         xhci_free_container_ctx(xhci, command->in_ctx);
1665                         kfree(command);
1666                         return NULL;
1667                 }
1668                 init_completion(command->completion);
1669         }
1670
1671         command->status = 0;
1672         INIT_LIST_HEAD(&command->cmd_list);
1673         return command;
1674 }
1675
1676 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1677 {
1678         if (urb_priv) {
1679                 kfree(urb_priv->td[0]);
1680                 kfree(urb_priv);
1681         }
1682 }
1683
1684 void xhci_free_command(struct xhci_hcd *xhci,
1685                 struct xhci_command *command)
1686 {
1687         xhci_free_container_ctx(xhci,
1688                         command->in_ctx);
1689         kfree(command->completion);
1690         kfree(command);
1691 }
1692
1693 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1694 {
1695         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1696         struct dev_info *dev_info, *next;
1697         struct xhci_cd  *cur_cd, *next_cd;
1698         unsigned long   flags;
1699         int size;
1700         int i, j, num_ports;
1701
1702         /* Free the Event Ring Segment Table and the actual Event Ring */
1703         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1704         if (xhci->erst.entries)
1705                 dma_free_coherent(&pdev->dev, size,
1706                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1707         xhci->erst.entries = NULL;
1708         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1709         if (xhci->event_ring)
1710                 xhci_ring_free(xhci, xhci->event_ring);
1711         xhci->event_ring = NULL;
1712         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1713
1714         if (xhci->lpm_command)
1715                 xhci_free_command(xhci, xhci->lpm_command);
1716         xhci->cmd_ring_reserved_trbs = 0;
1717         if (xhci->cmd_ring)
1718                 xhci_ring_free(xhci, xhci->cmd_ring);
1719         xhci->cmd_ring = NULL;
1720         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1721         list_for_each_entry_safe(cur_cd, next_cd,
1722                         &xhci->cancel_cmd_list, cancel_cmd_list) {
1723                 list_del(&cur_cd->cancel_cmd_list);
1724                 kfree(cur_cd);
1725         }
1726
1727         for (i = 1; i < MAX_HC_SLOTS; ++i)
1728                 xhci_free_virt_device(xhci, i);
1729
1730         if (xhci->segment_pool)
1731                 dma_pool_destroy(xhci->segment_pool);
1732         xhci->segment_pool = NULL;
1733         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1734
1735         if (xhci->device_pool)
1736                 dma_pool_destroy(xhci->device_pool);
1737         xhci->device_pool = NULL;
1738         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1739
1740         if (xhci->small_streams_pool)
1741                 dma_pool_destroy(xhci->small_streams_pool);
1742         xhci->small_streams_pool = NULL;
1743         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1744                         "Freed small stream array pool");
1745
1746         if (xhci->medium_streams_pool)
1747                 dma_pool_destroy(xhci->medium_streams_pool);
1748         xhci->medium_streams_pool = NULL;
1749         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1750                         "Freed medium stream array pool");
1751
1752         if (xhci->dcbaa)
1753                 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1754                                 xhci->dcbaa, xhci->dcbaa->dma);
1755         xhci->dcbaa = NULL;
1756
1757         scratchpad_free(xhci);
1758
1759         spin_lock_irqsave(&xhci->lock, flags);
1760         list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1761                 list_del(&dev_info->list);
1762                 kfree(dev_info);
1763         }
1764         spin_unlock_irqrestore(&xhci->lock, flags);
1765
1766         if (!xhci->rh_bw)
1767                 goto no_bw;
1768
1769         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1770         for (i = 0; i < num_ports; i++) {
1771                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1772                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1773                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1774                         while (!list_empty(ep))
1775                                 list_del_init(ep->next);
1776                 }
1777         }
1778
1779         for (i = 0; i < num_ports; i++) {
1780                 struct xhci_tt_bw_info *tt, *n;
1781                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1782                         list_del(&tt->tt_list);
1783                         kfree(tt);
1784                 }
1785         }
1786
1787 no_bw:
1788         xhci->num_usb2_ports = 0;
1789         xhci->num_usb3_ports = 0;
1790         xhci->num_active_eps = 0;
1791         kfree(xhci->usb2_ports);
1792         kfree(xhci->usb3_ports);
1793         kfree(xhci->port_array);
1794         kfree(xhci->rh_bw);
1795         kfree(xhci->ext_caps);
1796
1797         xhci->page_size = 0;
1798         xhci->page_shift = 0;
1799         xhci->bus_state[0].bus_suspended = 0;
1800         xhci->bus_state[1].bus_suspended = 0;
1801 }
1802
1803 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1804                 struct xhci_segment *input_seg,
1805                 union xhci_trb *start_trb,
1806                 union xhci_trb *end_trb,
1807                 dma_addr_t input_dma,
1808                 struct xhci_segment *result_seg,
1809                 char *test_name, int test_number)
1810 {
1811         unsigned long long start_dma;
1812         unsigned long long end_dma;
1813         struct xhci_segment *seg;
1814
1815         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1816         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1817
1818         seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1819         if (seg != result_seg) {
1820                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1821                                 test_name, test_number);
1822                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1823                                 "input DMA 0x%llx\n",
1824                                 input_seg,
1825                                 (unsigned long long) input_dma);
1826                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1827                                 "ending TRB %p (0x%llx DMA)\n",
1828                                 start_trb, start_dma,
1829                                 end_trb, end_dma);
1830                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1831                                 result_seg, seg);
1832                 return -1;
1833         }
1834         return 0;
1835 }
1836
1837 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1838 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1839 {
1840         struct {
1841                 dma_addr_t              input_dma;
1842                 struct xhci_segment     *result_seg;
1843         } simple_test_vector [] = {
1844                 /* A zeroed DMA field should fail */
1845                 { 0, NULL },
1846                 /* One TRB before the ring start should fail */
1847                 { xhci->event_ring->first_seg->dma - 16, NULL },
1848                 /* One byte before the ring start should fail */
1849                 { xhci->event_ring->first_seg->dma - 1, NULL },
1850                 /* Starting TRB should succeed */
1851                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1852                 /* Ending TRB should succeed */
1853                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1854                         xhci->event_ring->first_seg },
1855                 /* One byte after the ring end should fail */
1856                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1857                 /* One TRB after the ring end should fail */
1858                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1859                 /* An address of all ones should fail */
1860                 { (dma_addr_t) (~0), NULL },
1861         };
1862         struct {
1863                 struct xhci_segment     *input_seg;
1864                 union xhci_trb          *start_trb;
1865                 union xhci_trb          *end_trb;
1866                 dma_addr_t              input_dma;
1867                 struct xhci_segment     *result_seg;
1868         } complex_test_vector [] = {
1869                 /* Test feeding a valid DMA address from a different ring */
1870                 {       .input_seg = xhci->event_ring->first_seg,
1871                         .start_trb = xhci->event_ring->first_seg->trbs,
1872                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1873                         .input_dma = xhci->cmd_ring->first_seg->dma,
1874                         .result_seg = NULL,
1875                 },
1876                 /* Test feeding a valid end TRB from a different ring */
1877                 {       .input_seg = xhci->event_ring->first_seg,
1878                         .start_trb = xhci->event_ring->first_seg->trbs,
1879                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1880                         .input_dma = xhci->cmd_ring->first_seg->dma,
1881                         .result_seg = NULL,
1882                 },
1883                 /* Test feeding a valid start and end TRB from a different ring */
1884                 {       .input_seg = xhci->event_ring->first_seg,
1885                         .start_trb = xhci->cmd_ring->first_seg->trbs,
1886                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1887                         .input_dma = xhci->cmd_ring->first_seg->dma,
1888                         .result_seg = NULL,
1889                 },
1890                 /* TRB in this ring, but after this TD */
1891                 {       .input_seg = xhci->event_ring->first_seg,
1892                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1893                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1894                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1895                         .result_seg = NULL,
1896                 },
1897                 /* TRB in this ring, but before this TD */
1898                 {       .input_seg = xhci->event_ring->first_seg,
1899                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
1900                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
1901                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1902                         .result_seg = NULL,
1903                 },
1904                 /* TRB in this ring, but after this wrapped TD */
1905                 {       .input_seg = xhci->event_ring->first_seg,
1906                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1907                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1908                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1909                         .result_seg = NULL,
1910                 },
1911                 /* TRB in this ring, but before this wrapped TD */
1912                 {       .input_seg = xhci->event_ring->first_seg,
1913                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1914                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1915                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1916                         .result_seg = NULL,
1917                 },
1918                 /* TRB not in this ring, and we have a wrapped TD */
1919                 {       .input_seg = xhci->event_ring->first_seg,
1920                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1921                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1922                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1923                         .result_seg = NULL,
1924                 },
1925         };
1926
1927         unsigned int num_tests;
1928         int i, ret;
1929
1930         num_tests = ARRAY_SIZE(simple_test_vector);
1931         for (i = 0; i < num_tests; i++) {
1932                 ret = xhci_test_trb_in_td(xhci,
1933                                 xhci->event_ring->first_seg,
1934                                 xhci->event_ring->first_seg->trbs,
1935                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1936                                 simple_test_vector[i].input_dma,
1937                                 simple_test_vector[i].result_seg,
1938                                 "Simple", i);
1939                 if (ret < 0)
1940                         return ret;
1941         }
1942
1943         num_tests = ARRAY_SIZE(complex_test_vector);
1944         for (i = 0; i < num_tests; i++) {
1945                 ret = xhci_test_trb_in_td(xhci,
1946                                 complex_test_vector[i].input_seg,
1947                                 complex_test_vector[i].start_trb,
1948                                 complex_test_vector[i].end_trb,
1949                                 complex_test_vector[i].input_dma,
1950                                 complex_test_vector[i].result_seg,
1951                                 "Complex", i);
1952                 if (ret < 0)
1953                         return ret;
1954         }
1955         xhci_dbg(xhci, "TRB math tests passed.\n");
1956         return 0;
1957 }
1958
1959 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1960 {
1961         u64 temp;
1962         dma_addr_t deq;
1963
1964         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1965                         xhci->event_ring->dequeue);
1966         if (deq == 0 && !in_interrupt())
1967                 xhci_warn(xhci, "WARN something wrong with SW event ring "
1968                                 "dequeue ptr.\n");
1969         /* Update HC event ring dequeue pointer */
1970         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1971         temp &= ERST_PTR_MASK;
1972         /* Don't clear the EHB bit (which is RW1C) because
1973          * there might be more events to service.
1974          */
1975         temp &= ~ERST_EHB;
1976         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1977                         "// Write event ring dequeue pointer, "
1978                         "preserving EHB bit");
1979         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1980                         &xhci->ir_set->erst_dequeue);
1981 }
1982
1983 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1984                 __le32 __iomem *addr, u8 major_revision, int max_caps)
1985 {
1986         u32 temp, port_offset, port_count;
1987         int i;
1988
1989         if (major_revision > 0x03) {
1990                 xhci_warn(xhci, "Ignoring unknown port speed, "
1991                                 "Ext Cap %p, revision = 0x%x\n",
1992                                 addr, major_revision);
1993                 /* Ignoring port protocol we can't understand. FIXME */
1994                 return;
1995         }
1996
1997         /* Port offset and count in the third dword, see section 7.2 */
1998         temp = xhci_readl(xhci, addr + 2);
1999         port_offset = XHCI_EXT_PORT_OFF(temp);
2000         port_count = XHCI_EXT_PORT_COUNT(temp);
2001         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2002                         "Ext Cap %p, port offset = %u, "
2003                         "count = %u, revision = 0x%x",
2004                         addr, port_offset, port_count, major_revision);
2005         /* Port count includes the current port offset */
2006         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2007                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2008                 return;
2009
2010         /* cache usb2 port capabilities */
2011         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2012                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2013
2014         /* Check the host's USB2 LPM capability */
2015         if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2016                         (temp & XHCI_L1C)) {
2017                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2018                                 "xHCI 0.96: support USB2 software lpm");
2019                 xhci->sw_lpm_support = 1;
2020         }
2021
2022         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2023                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2024                                 "xHCI 1.0: support USB2 software lpm");
2025                 xhci->sw_lpm_support = 1;
2026                 if (temp & XHCI_HLC) {
2027                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2028                                         "xHCI 1.0: support USB2 hardware lpm");
2029                         xhci->hw_lpm_support = 1;
2030                 }
2031         }
2032
2033         port_offset--;
2034         for (i = port_offset; i < (port_offset + port_count); i++) {
2035                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2036                 if (xhci->port_array[i] != 0) {
2037                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2038                                         " port %u\n", addr, i);
2039                         xhci_warn(xhci, "Port was marked as USB %u, "
2040                                         "duplicated as USB %u\n",
2041                                         xhci->port_array[i], major_revision);
2042                         /* Only adjust the roothub port counts if we haven't
2043                          * found a similar duplicate.
2044                          */
2045                         if (xhci->port_array[i] != major_revision &&
2046                                 xhci->port_array[i] != DUPLICATE_ENTRY) {
2047                                 if (xhci->port_array[i] == 0x03)
2048                                         xhci->num_usb3_ports--;
2049                                 else
2050                                         xhci->num_usb2_ports--;
2051                                 xhci->port_array[i] = DUPLICATE_ENTRY;
2052                         }
2053                         /* FIXME: Should we disable the port? */
2054                         continue;
2055                 }
2056                 xhci->port_array[i] = major_revision;
2057                 if (major_revision == 0x03)
2058                         xhci->num_usb3_ports++;
2059                 else
2060                         xhci->num_usb2_ports++;
2061         }
2062         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2063 }
2064
2065 /*
2066  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2067  * specify what speeds each port is supposed to be.  We can't count on the port
2068  * speed bits in the PORTSC register being correct until a device is connected,
2069  * but we need to set up the two fake roothubs with the correct number of USB
2070  * 3.0 and USB 2.0 ports at host controller initialization time.
2071  */
2072 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2073 {
2074         __le32 __iomem *addr, *tmp_addr;
2075         u32 offset, tmp_offset;
2076         unsigned int num_ports;
2077         int i, j, port_index;
2078         int cap_count = 0;
2079
2080         addr = &xhci->cap_regs->hcc_params;
2081         offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2082         if (offset == 0) {
2083                 xhci_err(xhci, "No Extended Capability registers, "
2084                                 "unable to set up roothub.\n");
2085                 return -ENODEV;
2086         }
2087
2088         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2089         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2090         if (!xhci->port_array)
2091                 return -ENOMEM;
2092
2093         xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2094         if (!xhci->rh_bw)
2095                 return -ENOMEM;
2096         for (i = 0; i < num_ports; i++) {
2097                 struct xhci_interval_bw_table *bw_table;
2098
2099                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2100                 bw_table = &xhci->rh_bw[i].bw_table;
2101                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2102                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2103         }
2104
2105         /*
2106          * For whatever reason, the first capability offset is from the
2107          * capability register base, not from the HCCPARAMS register.
2108          * See section 5.3.6 for offset calculation.
2109          */
2110         addr = &xhci->cap_regs->hc_capbase + offset;
2111
2112         tmp_addr = addr;
2113         tmp_offset = offset;
2114
2115         /* count extended protocol capability entries for later caching */
2116         do {
2117                 u32 cap_id;
2118                 cap_id = xhci_readl(xhci, tmp_addr);
2119                 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2120                         cap_count++;
2121                 tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2122                 tmp_addr += tmp_offset;
2123         } while (tmp_offset);
2124
2125         xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2126         if (!xhci->ext_caps)
2127                 return -ENOMEM;
2128
2129         while (1) {
2130                 u32 cap_id;
2131
2132                 cap_id = xhci_readl(xhci, addr);
2133                 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2134                         xhci_add_in_port(xhci, num_ports, addr,
2135                                         (u8) XHCI_EXT_PORT_MAJOR(cap_id),
2136                                         cap_count);
2137                 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2138                 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2139                                 == num_ports)
2140                         break;
2141                 /*
2142                  * Once you're into the Extended Capabilities, the offset is
2143                  * always relative to the register holding the offset.
2144                  */
2145                 addr += offset;
2146         }
2147
2148         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2149                 xhci_warn(xhci, "No ports on the roothubs?\n");
2150                 return -ENODEV;
2151         }
2152         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2153                         "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2154                         xhci->num_usb2_ports, xhci->num_usb3_ports);
2155
2156         /* Place limits on the number of roothub ports so that the hub
2157          * descriptors aren't longer than the USB core will allocate.
2158          */
2159         if (xhci->num_usb3_ports > 15) {
2160                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2161                                 "Limiting USB 3.0 roothub ports to 15.");
2162                 xhci->num_usb3_ports = 15;
2163         }
2164         if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2165                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2166                                 "Limiting USB 2.0 roothub ports to %u.",
2167                                 USB_MAXCHILDREN);
2168                 xhci->num_usb2_ports = USB_MAXCHILDREN;
2169         }
2170
2171         /*
2172          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2173          * Not sure how the USB core will handle a hub with no ports...
2174          */
2175         if (xhci->num_usb2_ports) {
2176                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2177                                 xhci->num_usb2_ports, flags);
2178                 if (!xhci->usb2_ports)
2179                         return -ENOMEM;
2180
2181                 port_index = 0;
2182                 for (i = 0; i < num_ports; i++) {
2183                         if (xhci->port_array[i] == 0x03 ||
2184                                         xhci->port_array[i] == 0 ||
2185                                         xhci->port_array[i] == DUPLICATE_ENTRY)
2186                                 continue;
2187
2188                         xhci->usb2_ports[port_index] =
2189                                 &xhci->op_regs->port_status_base +
2190                                 NUM_PORT_REGS*i;
2191                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2192                                         "USB 2.0 port at index %u, "
2193                                         "addr = %p", i,
2194                                         xhci->usb2_ports[port_index]);
2195                         port_index++;
2196                         if (port_index == xhci->num_usb2_ports)
2197                                 break;
2198                 }
2199         }
2200         if (xhci->num_usb3_ports) {
2201                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2202                                 xhci->num_usb3_ports, flags);
2203                 if (!xhci->usb3_ports)
2204                         return -ENOMEM;
2205
2206                 port_index = 0;
2207                 for (i = 0; i < num_ports; i++)
2208                         if (xhci->port_array[i] == 0x03) {
2209                                 xhci->usb3_ports[port_index] =
2210                                         &xhci->op_regs->port_status_base +
2211                                         NUM_PORT_REGS*i;
2212                                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2213                                                 "USB 3.0 port at index %u, "
2214                                                 "addr = %p", i,
2215                                                 xhci->usb3_ports[port_index]);
2216                                 port_index++;
2217                                 if (port_index == xhci->num_usb3_ports)
2218                                         break;
2219                         }
2220         }
2221         return 0;
2222 }
2223
2224 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2225 {
2226         dma_addr_t      dma;
2227         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
2228         unsigned int    val, val2;
2229         u64             val_64;
2230         struct xhci_segment     *seg;
2231         u32 page_size, temp;
2232         int i;
2233
2234         INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2235         INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2236
2237         page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2238         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2239                         "Supported page size register = 0x%x", page_size);
2240         for (i = 0; i < 16; i++) {
2241                 if ((0x1 & page_size) != 0)
2242                         break;
2243                 page_size = page_size >> 1;
2244         }
2245         if (i < 16)
2246                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2247                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2248         else
2249                 xhci_warn(xhci, "WARN: no supported page size\n");
2250         /* Use 4K pages, since that's common and the minimum the HC supports */
2251         xhci->page_shift = 12;
2252         xhci->page_size = 1 << xhci->page_shift;
2253         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2254                         "HCD page size set to %iK", xhci->page_size / 1024);
2255
2256         /*
2257          * Program the Number of Device Slots Enabled field in the CONFIG
2258          * register with the max value of slots the HC can handle.
2259          */
2260         val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2261         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2262                         "// xHC can handle at most %d device slots.", val);
2263         val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2264         val |= (val2 & ~HCS_SLOTS_MASK);
2265         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2266                         "// Setting Max device slots reg = 0x%x.", val);
2267         xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2268
2269         /*
2270          * Section 5.4.8 - doorbell array must be
2271          * "physically contiguous and 64-byte (cache line) aligned".
2272          */
2273         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2274                         GFP_KERNEL);
2275         if (!xhci->dcbaa)
2276                 goto fail;
2277         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2278         xhci->dcbaa->dma = dma;
2279         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2280                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2281                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2282         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2283
2284         /*
2285          * Initialize the ring segment pool.  The ring must be a contiguous
2286          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2287          * however, the command ring segment needs 64-byte aligned segments,
2288          * so we pick the greater alignment need.
2289          */
2290         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2291                         TRB_SEGMENT_SIZE, 64, xhci->page_size);
2292
2293         /* See Table 46 and Note on Figure 55 */
2294         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2295                         2112, 64, xhci->page_size);
2296         if (!xhci->segment_pool || !xhci->device_pool)
2297                 goto fail;
2298
2299         /* Linear stream context arrays don't have any boundary restrictions,
2300          * and only need to be 16-byte aligned.
2301          */
2302         xhci->small_streams_pool =
2303                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2304                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2305         xhci->medium_streams_pool =
2306                 dma_pool_create("xHCI 1KB stream ctx arrays",
2307                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2308         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2309          * will be allocated with dma_alloc_coherent()
2310          */
2311
2312         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2313                 goto fail;
2314
2315         /* Set up the command ring to have one segments for now. */
2316         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2317         if (!xhci->cmd_ring)
2318                 goto fail;
2319         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2320                         "Allocated command ring at %p", xhci->cmd_ring);
2321         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2322                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2323
2324         /* Set the address in the Command Ring Control register */
2325         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2326         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2327                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2328                 xhci->cmd_ring->cycle_state;
2329         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2330                         "// Setting command ring address to 0x%x", val);
2331         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2332         xhci_dbg_cmd_ptrs(xhci);
2333
2334         xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2335         if (!xhci->lpm_command)
2336                 goto fail;
2337
2338         /* Reserve one command ring TRB for disabling LPM.
2339          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2340          * disabling LPM, we only need to reserve one TRB for all devices.
2341          */
2342         xhci->cmd_ring_reserved_trbs++;
2343
2344         val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2345         val &= DBOFF_MASK;
2346         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2347                         "// Doorbell array is located at offset 0x%x"
2348                         " from cap regs base addr", val);
2349         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2350         xhci_dbg_regs(xhci);
2351         xhci_print_run_regs(xhci);
2352         /* Set ir_set to interrupt register set 0 */
2353         xhci->ir_set = &xhci->run_regs->ir_set[0];
2354
2355         /*
2356          * Event ring setup: Allocate a normal ring, but also setup
2357          * the event ring segment table (ERST).  Section 4.9.3.
2358          */
2359         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2360         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2361                                                 flags);
2362         if (!xhci->event_ring)
2363                 goto fail;
2364         if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2365                 goto fail;
2366
2367         xhci->erst.entries = dma_alloc_coherent(dev,
2368                         sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2369                         GFP_KERNEL);
2370         if (!xhci->erst.entries)
2371                 goto fail;
2372         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2373                         "// Allocated event ring segment table at 0x%llx",
2374                         (unsigned long long)dma);
2375
2376         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2377         xhci->erst.num_entries = ERST_NUM_SEGS;
2378         xhci->erst.erst_dma_addr = dma;
2379         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2380                         "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2381                         xhci->erst.num_entries,
2382                         xhci->erst.entries,
2383                         (unsigned long long)xhci->erst.erst_dma_addr);
2384
2385         /* set ring base address and size for each segment table entry */
2386         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2387                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2388                 entry->seg_addr = cpu_to_le64(seg->dma);
2389                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2390                 entry->rsvd = 0;
2391                 seg = seg->next;
2392         }
2393
2394         /* set ERST count with the number of entries in the segment table */
2395         val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2396         val &= ERST_SIZE_MASK;
2397         val |= ERST_NUM_SEGS;
2398         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2399                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2400                         val);
2401         xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2402
2403         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2404                         "// Set ERST entries to point to event ring.");
2405         /* set the segment table base address */
2406         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2407                         "// Set ERST base address for ir_set 0 = 0x%llx",
2408                         (unsigned long long)xhci->erst.erst_dma_addr);
2409         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2410         val_64 &= ERST_PTR_MASK;
2411         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2412         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2413
2414         /* Set the event ring dequeue address */
2415         xhci_set_hc_event_deq(xhci);
2416         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2417                         "Wrote ERST address to ir_set 0.");
2418         xhci_print_ir_set(xhci, 0);
2419
2420         /*
2421          * XXX: Might need to set the Interrupter Moderation Register to
2422          * something other than the default (~1ms minimum between interrupts).
2423          * See section 5.5.1.2.
2424          */
2425         init_completion(&xhci->addr_dev);
2426         for (i = 0; i < MAX_HC_SLOTS; ++i)
2427                 xhci->devs[i] = NULL;
2428         for (i = 0; i < USB_MAXCHILDREN; ++i) {
2429                 xhci->bus_state[0].resume_done[i] = 0;
2430                 xhci->bus_state[1].resume_done[i] = 0;
2431         }
2432
2433         if (scratchpad_alloc(xhci, flags))
2434                 goto fail;
2435         if (xhci_setup_port_arrays(xhci, flags))
2436                 goto fail;
2437
2438         /* Enable USB 3.0 device notifications for function remote wake, which
2439          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2440          * U3 (device suspend).
2441          */
2442         temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2443         temp &= ~DEV_NOTE_MASK;
2444         temp |= DEV_NOTE_FWAKE;
2445         xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2446
2447         return 0;
2448
2449 fail:
2450         xhci_warn(xhci, "Couldn't initialize memory\n");
2451         xhci_halt(xhci);
2452         xhci_reset(xhci);
2453         xhci_mem_cleanup(xhci);
2454         return -ENOMEM;
2455 }