]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/usb/host/xhci.c
4968e9a1579e7e33765d6906228e1151ebbd8c34
[karo-tx-linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66         u32     result;
67
68         do {
69                 result = readl(ptr);
70                 if (result == ~(u32)0)          /* card removed */
71                         return -ENODEV;
72                 result &= mask;
73                 if (result == done)
74                         return 0;
75                 udelay(1);
76                 usec--;
77         } while (usec > 0);
78         return -ETIMEDOUT;
79 }
80
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86         u32 halted;
87         u32 cmd;
88         u32 mask;
89
90         mask = ~(XHCI_IRQS);
91         halted = readl(&xhci->op_regs->status) & STS_HALT;
92         if (!halted)
93                 mask &= ~CMD_RUN;
94
95         cmd = readl(&xhci->op_regs->command);
96         cmd &= mask;
97         writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110         int ret;
111         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112         xhci_quiesce(xhci);
113
114         ret = xhci_handshake(&xhci->op_regs->status,
115                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116         if (ret) {
117                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
118                 return ret;
119         }
120         xhci->xhc_state |= XHCI_STATE_HALTED;
121         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
122         return ret;
123 }
124
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130         u32 temp;
131         int ret;
132
133         temp = readl(&xhci->op_regs->command);
134         temp |= (CMD_RUN);
135         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136                         temp);
137         writel(temp, &xhci->op_regs->command);
138
139         /*
140          * Wait for the HCHalted Status bit to be 0 to indicate the host is
141          * running.
142          */
143         ret = xhci_handshake(&xhci->op_regs->status,
144                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
145         if (ret == -ETIMEDOUT)
146                 xhci_err(xhci, "Host took too long to start, "
147                                 "waited %u microseconds.\n",
148                                 XHCI_MAX_HALT_USEC);
149         if (!ret)
150                 /* clear state flags. Including dying, halted or removing */
151                 xhci->xhc_state = 0;
152
153         return ret;
154 }
155
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165         u32 command;
166         u32 state;
167         int ret, i;
168
169         state = readl(&xhci->op_regs->status);
170
171         if (state == ~(u32)0) {
172                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
173                 return -ENODEV;
174         }
175
176         if ((state & STS_HALT) == 0) {
177                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
178                 return 0;
179         }
180
181         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
182         command = readl(&xhci->op_regs->command);
183         command |= CMD_RESET;
184         writel(command, &xhci->op_regs->command);
185
186         /* Existing Intel xHCI controllers require a delay of 1 mS,
187          * after setting the CMD_RESET bit, and before accessing any
188          * HC registers. This allows the HC to complete the
189          * reset operation and be ready for HC register access.
190          * Without this delay, the subsequent HC register access,
191          * may result in a system hang very rarely.
192          */
193         if (xhci->quirks & XHCI_INTEL_HOST)
194                 udelay(1000);
195
196         ret = xhci_handshake(&xhci->op_regs->command,
197                         CMD_RESET, 0, 10 * 1000 * 1000);
198         if (ret)
199                 return ret;
200
201         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
202                          "Wait for controller to be ready for doorbell rings");
203         /*
204          * xHCI cannot write to any doorbells or operational registers other
205          * than status until the "Controller Not Ready" flag is cleared.
206          */
207         ret = xhci_handshake(&xhci->op_regs->status,
208                         STS_CNR, 0, 10 * 1000 * 1000);
209
210         for (i = 0; i < 2; i++) {
211                 xhci->bus_state[i].port_c_suspend = 0;
212                 xhci->bus_state[i].suspended_ports = 0;
213                 xhci->bus_state[i].resuming_ports = 0;
214         }
215
216         return ret;
217 }
218
219 #ifdef CONFIG_PCI
220 static int xhci_free_msi(struct xhci_hcd *xhci)
221 {
222         int i;
223
224         if (!xhci->msix_entries)
225                 return -EINVAL;
226
227         for (i = 0; i < xhci->msix_count; i++)
228                 if (xhci->msix_entries[i].vector)
229                         free_irq(xhci->msix_entries[i].vector,
230                                         xhci_to_hcd(xhci));
231         return 0;
232 }
233
234 /*
235  * Set up MSI
236  */
237 static int xhci_setup_msi(struct xhci_hcd *xhci)
238 {
239         int ret;
240         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
241
242         ret = pci_enable_msi(pdev);
243         if (ret) {
244                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
245                                 "failed to allocate MSI entry");
246                 return ret;
247         }
248
249         ret = request_irq(pdev->irq, xhci_msi_irq,
250                                 0, "xhci_hcd", xhci_to_hcd(xhci));
251         if (ret) {
252                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
253                                 "disable MSI interrupt");
254                 pci_disable_msi(pdev);
255         }
256
257         return ret;
258 }
259
260 /*
261  * Free IRQs
262  * free all IRQs request
263  */
264 static void xhci_free_irq(struct xhci_hcd *xhci)
265 {
266         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
267         int ret;
268
269         /* return if using legacy interrupt */
270         if (xhci_to_hcd(xhci)->irq > 0)
271                 return;
272
273         ret = xhci_free_msi(xhci);
274         if (!ret)
275                 return;
276         if (pdev->irq > 0)
277                 free_irq(pdev->irq, xhci_to_hcd(xhci));
278
279         return;
280 }
281
282 /*
283  * Set up MSI-X
284  */
285 static int xhci_setup_msix(struct xhci_hcd *xhci)
286 {
287         int i, ret = 0;
288         struct usb_hcd *hcd = xhci_to_hcd(xhci);
289         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
290
291         /*
292          * calculate number of msi-x vectors supported.
293          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
294          *   with max number of interrupters based on the xhci HCSPARAMS1.
295          * - num_online_cpus: maximum msi-x vectors per CPUs core.
296          *   Add additional 1 vector to ensure always available interrupt.
297          */
298         xhci->msix_count = min(num_online_cpus() + 1,
299                                 HCS_MAX_INTRS(xhci->hcs_params1));
300
301         xhci->msix_entries =
302                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
303                                 GFP_KERNEL);
304         if (!xhci->msix_entries)
305                 return -ENOMEM;
306
307         for (i = 0; i < xhci->msix_count; i++) {
308                 xhci->msix_entries[i].entry = i;
309                 xhci->msix_entries[i].vector = 0;
310         }
311
312         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
313         if (ret) {
314                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315                                 "Failed to enable MSI-X");
316                 goto free_entries;
317         }
318
319         for (i = 0; i < xhci->msix_count; i++) {
320                 ret = request_irq(xhci->msix_entries[i].vector,
321                                 xhci_msi_irq,
322                                 0, "xhci_hcd", xhci_to_hcd(xhci));
323                 if (ret)
324                         goto disable_msix;
325         }
326
327         hcd->msix_enabled = 1;
328         return ret;
329
330 disable_msix:
331         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
332         xhci_free_irq(xhci);
333         pci_disable_msix(pdev);
334 free_entries:
335         kfree(xhci->msix_entries);
336         xhci->msix_entries = NULL;
337         return ret;
338 }
339
340 /* Free any IRQs and disable MSI-X */
341 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
342 {
343         struct usb_hcd *hcd = xhci_to_hcd(xhci);
344         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
345
346         if (xhci->quirks & XHCI_PLAT)
347                 return;
348
349         xhci_free_irq(xhci);
350
351         if (xhci->msix_entries) {
352                 pci_disable_msix(pdev);
353                 kfree(xhci->msix_entries);
354                 xhci->msix_entries = NULL;
355         } else {
356                 pci_disable_msi(pdev);
357         }
358
359         hcd->msix_enabled = 0;
360         return;
361 }
362
363 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
364 {
365         int i;
366
367         if (xhci->msix_entries) {
368                 for (i = 0; i < xhci->msix_count; i++)
369                         synchronize_irq(xhci->msix_entries[i].vector);
370         }
371 }
372
373 static int xhci_try_enable_msi(struct usb_hcd *hcd)
374 {
375         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
376         struct pci_dev  *pdev;
377         int ret;
378
379         /* The xhci platform device has set up IRQs through usb_add_hcd. */
380         if (xhci->quirks & XHCI_PLAT)
381                 return 0;
382
383         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
384         /*
385          * Some Fresco Logic host controllers advertise MSI, but fail to
386          * generate interrupts.  Don't even try to enable MSI.
387          */
388         if (xhci->quirks & XHCI_BROKEN_MSI)
389                 goto legacy_irq;
390
391         /* unregister the legacy interrupt */
392         if (hcd->irq)
393                 free_irq(hcd->irq, hcd);
394         hcd->irq = 0;
395
396         ret = xhci_setup_msix(xhci);
397         if (ret)
398                 /* fall back to msi*/
399                 ret = xhci_setup_msi(xhci);
400
401         if (!ret)
402                 /* hcd->irq is 0, we have MSI */
403                 return 0;
404
405         if (!pdev->irq) {
406                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
407                 return -EINVAL;
408         }
409
410  legacy_irq:
411         if (!strlen(hcd->irq_descr))
412                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
413                          hcd->driver->description, hcd->self.busnum);
414
415         /* fall back to legacy interrupt*/
416         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
417                         hcd->irq_descr, hcd);
418         if (ret) {
419                 xhci_err(xhci, "request interrupt %d failed\n",
420                                 pdev->irq);
421                 return ret;
422         }
423         hcd->irq = pdev->irq;
424         return 0;
425 }
426
427 #else
428
429 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
430 {
431         return 0;
432 }
433
434 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
435 {
436 }
437
438 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
439 {
440 }
441
442 #endif
443
444 static void compliance_mode_recovery(unsigned long arg)
445 {
446         struct xhci_hcd *xhci;
447         struct usb_hcd *hcd;
448         u32 temp;
449         int i;
450
451         xhci = (struct xhci_hcd *)arg;
452
453         for (i = 0; i < xhci->num_usb3_ports; i++) {
454                 temp = readl(xhci->usb3_ports[i]);
455                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
456                         /*
457                          * Compliance Mode Detected. Letting USB Core
458                          * handle the Warm Reset
459                          */
460                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461                                         "Compliance mode detected->port %d",
462                                         i + 1);
463                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
464                                         "Attempting compliance mode recovery");
465                         hcd = xhci->shared_hcd;
466
467                         if (hcd->state == HC_STATE_SUSPENDED)
468                                 usb_hcd_resume_root_hub(hcd);
469
470                         usb_hcd_poll_rh_status(hcd);
471                 }
472         }
473
474         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
475                 mod_timer(&xhci->comp_mode_recovery_timer,
476                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
477 }
478
479 /*
480  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
481  * that causes ports behind that hardware to enter compliance mode sometimes.
482  * The quirk creates a timer that polls every 2 seconds the link state of
483  * each host controller's port and recovers it by issuing a Warm reset
484  * if Compliance mode is detected, otherwise the port will become "dead" (no
485  * device connections or disconnections will be detected anymore). Becasue no
486  * status event is generated when entering compliance mode (per xhci spec),
487  * this quirk is needed on systems that have the failing hardware installed.
488  */
489 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
490 {
491         xhci->port_status_u0 = 0;
492         setup_timer(&xhci->comp_mode_recovery_timer,
493                     compliance_mode_recovery, (unsigned long)xhci);
494         xhci->comp_mode_recovery_timer.expires = jiffies +
495                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
496
497         add_timer(&xhci->comp_mode_recovery_timer);
498         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
499                         "Compliance mode recovery timer initialized");
500 }
501
502 /*
503  * This function identifies the systems that have installed the SN65LVPE502CP
504  * USB3.0 re-driver and that need the Compliance Mode Quirk.
505  * Systems:
506  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
507  */
508 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
509 {
510         const char *dmi_product_name, *dmi_sys_vendor;
511
512         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
513         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
514         if (!dmi_product_name || !dmi_sys_vendor)
515                 return false;
516
517         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
518                 return false;
519
520         if (strstr(dmi_product_name, "Z420") ||
521                         strstr(dmi_product_name, "Z620") ||
522                         strstr(dmi_product_name, "Z820") ||
523                         strstr(dmi_product_name, "Z1 Workstation"))
524                 return true;
525
526         return false;
527 }
528
529 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
530 {
531         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
532 }
533
534
535 /*
536  * Initialize memory for HCD and xHC (one-time init).
537  *
538  * Program the PAGESIZE register, initialize the device context array, create
539  * device contexts (?), set up a command ring segment (or two?), create event
540  * ring (one for now).
541  */
542 int xhci_init(struct usb_hcd *hcd)
543 {
544         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
545         int retval = 0;
546
547         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
548         spin_lock_init(&xhci->lock);
549         if (xhci->hci_version == 0x95 && link_quirk) {
550                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
551                                 "QUIRK: Not clearing Link TRB chain bits.");
552                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
553         } else {
554                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
555                                 "xHCI doesn't need link TRB QUIRK");
556         }
557         retval = xhci_mem_init(xhci, GFP_KERNEL);
558         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
559
560         /* Initializing Compliance Mode Recovery Data If Needed */
561         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
562                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
563                 compliance_mode_recovery_timer_init(xhci);
564         }
565
566         return retval;
567 }
568
569 /*-------------------------------------------------------------------------*/
570
571
572 static int xhci_run_finished(struct xhci_hcd *xhci)
573 {
574         if (xhci_start(xhci)) {
575                 xhci_halt(xhci);
576                 return -ENODEV;
577         }
578         xhci->shared_hcd->state = HC_STATE_RUNNING;
579         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
580
581         if (xhci->quirks & XHCI_NEC_HOST)
582                 xhci_ring_cmd_db(xhci);
583
584         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
585                         "Finished xhci_run for USB3 roothub");
586         return 0;
587 }
588
589 /*
590  * Start the HC after it was halted.
591  *
592  * This function is called by the USB core when the HC driver is added.
593  * Its opposite is xhci_stop().
594  *
595  * xhci_init() must be called once before this function can be called.
596  * Reset the HC, enable device slot contexts, program DCBAAP, and
597  * set command ring pointer and event ring pointer.
598  *
599  * Setup MSI-X vectors and enable interrupts.
600  */
601 int xhci_run(struct usb_hcd *hcd)
602 {
603         u32 temp;
604         u64 temp_64;
605         int ret;
606         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
607
608         /* Start the xHCI host controller running only after the USB 2.0 roothub
609          * is setup.
610          */
611
612         hcd->uses_new_polling = 1;
613         if (!usb_hcd_is_primary_hcd(hcd))
614                 return xhci_run_finished(xhci);
615
616         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
617
618         ret = xhci_try_enable_msi(hcd);
619         if (ret)
620                 return ret;
621
622         xhci_dbg(xhci, "Command ring memory map follows:\n");
623         xhci_debug_ring(xhci, xhci->cmd_ring);
624         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
625         xhci_dbg_cmd_ptrs(xhci);
626
627         xhci_dbg(xhci, "ERST memory map follows:\n");
628         xhci_dbg_erst(xhci, &xhci->erst);
629         xhci_dbg(xhci, "Event ring:\n");
630         xhci_debug_ring(xhci, xhci->event_ring);
631         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
632         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
633         temp_64 &= ~ERST_PTR_MASK;
634         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
636
637         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
638                         "// Set the interrupt modulation register");
639         temp = readl(&xhci->ir_set->irq_control);
640         temp &= ~ER_IRQ_INTERVAL_MASK;
641         /*
642          * the increment interval is 8 times as much as that defined
643          * in xHCI spec on MTK's controller
644          */
645         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
646         writel(temp, &xhci->ir_set->irq_control);
647
648         /* Set the HCD state before we enable the irqs */
649         temp = readl(&xhci->op_regs->command);
650         temp |= (CMD_EIE);
651         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
652                         "// Enable interrupts, cmd = 0x%x.", temp);
653         writel(temp, &xhci->op_regs->command);
654
655         temp = readl(&xhci->ir_set->irq_pending);
656         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
657                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
658                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
659         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
660         xhci_print_ir_set(xhci, 0);
661
662         if (xhci->quirks & XHCI_NEC_HOST) {
663                 struct xhci_command *command;
664                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
665                 if (!command)
666                         return -ENOMEM;
667                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
668                                 TRB_TYPE(TRB_NEC_GET_FW));
669         }
670         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671                         "Finished xhci_run for USB2 roothub");
672         return 0;
673 }
674 EXPORT_SYMBOL_GPL(xhci_run);
675
676 /*
677  * Stop xHCI driver.
678  *
679  * This function is called by the USB core when the HC driver is removed.
680  * Its opposite is xhci_run().
681  *
682  * Disable device contexts, disable IRQs, and quiesce the HC.
683  * Reset the HC, finish any completed transactions, and cleanup memory.
684  */
685 void xhci_stop(struct usb_hcd *hcd)
686 {
687         u32 temp;
688         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
689
690         mutex_lock(&xhci->mutex);
691
692         if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
693                 spin_lock_irq(&xhci->lock);
694
695                 xhci->xhc_state |= XHCI_STATE_HALTED;
696                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
697                 xhci_halt(xhci);
698                 xhci_reset(xhci);
699                 spin_unlock_irq(&xhci->lock);
700         }
701
702         if (!usb_hcd_is_primary_hcd(hcd)) {
703                 mutex_unlock(&xhci->mutex);
704                 return;
705         }
706
707         xhci_cleanup_msix(xhci);
708
709         /* Deleting Compliance Mode Recovery Timer */
710         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
711                         (!(xhci_all_ports_seen_u0(xhci)))) {
712                 del_timer_sync(&xhci->comp_mode_recovery_timer);
713                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
714                                 "%s: compliance mode recovery timer deleted",
715                                 __func__);
716         }
717
718         if (xhci->quirks & XHCI_AMD_PLL_FIX)
719                 usb_amd_dev_put();
720
721         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
722                         "// Disabling event ring interrupts");
723         temp = readl(&xhci->op_regs->status);
724         writel(temp & ~STS_EINT, &xhci->op_regs->status);
725         temp = readl(&xhci->ir_set->irq_pending);
726         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
727         xhci_print_ir_set(xhci, 0);
728
729         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
730         xhci_mem_cleanup(xhci);
731         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
732                         "xhci_stop completed - status = %x",
733                         readl(&xhci->op_regs->status));
734         mutex_unlock(&xhci->mutex);
735 }
736
737 /*
738  * Shutdown HC (not bus-specific)
739  *
740  * This is called when the machine is rebooting or halting.  We assume that the
741  * machine will be powered off, and the HC's internal state will be reset.
742  * Don't bother to free memory.
743  *
744  * This will only ever be called with the main usb_hcd (the USB3 roothub).
745  */
746 void xhci_shutdown(struct usb_hcd *hcd)
747 {
748         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
749
750         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
751                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
752
753         spin_lock_irq(&xhci->lock);
754         xhci_halt(xhci);
755         /* Workaround for spurious wakeups at shutdown with HSW */
756         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
757                 xhci_reset(xhci);
758         spin_unlock_irq(&xhci->lock);
759
760         xhci_cleanup_msix(xhci);
761
762         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763                         "xhci_shutdown completed - status = %x",
764                         readl(&xhci->op_regs->status));
765
766         /* Yet another workaround for spurious wakeups at shutdown with HSW */
767         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
768                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
769 }
770
771 #ifdef CONFIG_PM
772 static void xhci_save_registers(struct xhci_hcd *xhci)
773 {
774         xhci->s3.command = readl(&xhci->op_regs->command);
775         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
776         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
777         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
778         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
779         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
780         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
781         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
782         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
783 }
784
785 static void xhci_restore_registers(struct xhci_hcd *xhci)
786 {
787         writel(xhci->s3.command, &xhci->op_regs->command);
788         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
789         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
790         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
791         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
792         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
793         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
794         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
795         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
796 }
797
798 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
799 {
800         u64     val_64;
801
802         /* step 2: initialize command ring buffer */
803         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
804         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
805                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
806                                       xhci->cmd_ring->dequeue) &
807                  (u64) ~CMD_RING_RSVD_BITS) |
808                 xhci->cmd_ring->cycle_state;
809         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
810                         "// Setting command ring address to 0x%llx",
811                         (long unsigned long) val_64);
812         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
813 }
814
815 /*
816  * The whole command ring must be cleared to zero when we suspend the host.
817  *
818  * The host doesn't save the command ring pointer in the suspend well, so we
819  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
820  * aligned, because of the reserved bits in the command ring dequeue pointer
821  * register.  Therefore, we can't just set the dequeue pointer back in the
822  * middle of the ring (TRBs are 16-byte aligned).
823  */
824 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
825 {
826         struct xhci_ring *ring;
827         struct xhci_segment *seg;
828
829         ring = xhci->cmd_ring;
830         seg = ring->deq_seg;
831         do {
832                 memset(seg->trbs, 0,
833                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
834                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
835                         cpu_to_le32(~TRB_CYCLE);
836                 seg = seg->next;
837         } while (seg != ring->deq_seg);
838
839         /* Reset the software enqueue and dequeue pointers */
840         ring->deq_seg = ring->first_seg;
841         ring->dequeue = ring->first_seg->trbs;
842         ring->enq_seg = ring->deq_seg;
843         ring->enqueue = ring->dequeue;
844
845         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
846         /*
847          * Ring is now zeroed, so the HW should look for change of ownership
848          * when the cycle bit is set to 1.
849          */
850         ring->cycle_state = 1;
851
852         /*
853          * Reset the hardware dequeue pointer.
854          * Yes, this will need to be re-written after resume, but we're paranoid
855          * and want to make sure the hardware doesn't access bogus memory
856          * because, say, the BIOS or an SMI started the host without changing
857          * the command ring pointers.
858          */
859         xhci_set_cmd_ring_deq(xhci);
860 }
861
862 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
863 {
864         int port_index;
865         __le32 __iomem **port_array;
866         unsigned long flags;
867         u32 t1, t2;
868
869         spin_lock_irqsave(&xhci->lock, flags);
870
871         /* disble usb3 ports Wake bits*/
872         port_index = xhci->num_usb3_ports;
873         port_array = xhci->usb3_ports;
874         while (port_index--) {
875                 t1 = readl(port_array[port_index]);
876                 t1 = xhci_port_state_to_neutral(t1);
877                 t2 = t1 & ~PORT_WAKE_BITS;
878                 if (t1 != t2)
879                         writel(t2, port_array[port_index]);
880         }
881
882         /* disble usb2 ports Wake bits*/
883         port_index = xhci->num_usb2_ports;
884         port_array = xhci->usb2_ports;
885         while (port_index--) {
886                 t1 = readl(port_array[port_index]);
887                 t1 = xhci_port_state_to_neutral(t1);
888                 t2 = t1 & ~PORT_WAKE_BITS;
889                 if (t1 != t2)
890                         writel(t2, port_array[port_index]);
891         }
892
893         spin_unlock_irqrestore(&xhci->lock, flags);
894 }
895
896 /*
897  * Stop HC (not bus-specific)
898  *
899  * This is called when the machine transition into S3/S4 mode.
900  *
901  */
902 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
903 {
904         int                     rc = 0;
905         unsigned int            delay = XHCI_MAX_HALT_USEC;
906         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
907         u32                     command;
908
909         if (!hcd->state)
910                 return 0;
911
912         if (hcd->state != HC_STATE_SUSPENDED ||
913                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
914                 return -EINVAL;
915
916         /* Clear root port wake on bits if wakeup not allowed. */
917         if (!do_wakeup)
918                 xhci_disable_port_wake_on_bits(xhci);
919
920         /* Don't poll the roothubs on bus suspend. */
921         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
922         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
923         del_timer_sync(&hcd->rh_timer);
924         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
925         del_timer_sync(&xhci->shared_hcd->rh_timer);
926
927         spin_lock_irq(&xhci->lock);
928         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
929         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
930         /* step 1: stop endpoint */
931         /* skipped assuming that port suspend has done */
932
933         /* step 2: clear Run/Stop bit */
934         command = readl(&xhci->op_regs->command);
935         command &= ~CMD_RUN;
936         writel(command, &xhci->op_regs->command);
937
938         /* Some chips from Fresco Logic need an extraordinary delay */
939         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
940
941         if (xhci_handshake(&xhci->op_regs->status,
942                       STS_HALT, STS_HALT, delay)) {
943                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
944                 spin_unlock_irq(&xhci->lock);
945                 return -ETIMEDOUT;
946         }
947         xhci_clear_command_ring(xhci);
948
949         /* step 3: save registers */
950         xhci_save_registers(xhci);
951
952         /* step 4: set CSS flag */
953         command = readl(&xhci->op_regs->command);
954         command |= CMD_CSS;
955         writel(command, &xhci->op_regs->command);
956         if (xhci_handshake(&xhci->op_regs->status,
957                                 STS_SAVE, 0, 10 * 1000)) {
958                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
959                 spin_unlock_irq(&xhci->lock);
960                 return -ETIMEDOUT;
961         }
962         spin_unlock_irq(&xhci->lock);
963
964         /*
965          * Deleting Compliance Mode Recovery Timer because the xHCI Host
966          * is about to be suspended.
967          */
968         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
969                         (!(xhci_all_ports_seen_u0(xhci)))) {
970                 del_timer_sync(&xhci->comp_mode_recovery_timer);
971                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
972                                 "%s: compliance mode recovery timer deleted",
973                                 __func__);
974         }
975
976         /* step 5: remove core well power */
977         /* synchronize irq when using MSI-X */
978         xhci_msix_sync_irqs(xhci);
979
980         return rc;
981 }
982 EXPORT_SYMBOL_GPL(xhci_suspend);
983
984 /*
985  * start xHC (not bus-specific)
986  *
987  * This is called when the machine transition from S3/S4 mode.
988  *
989  */
990 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
991 {
992         u32                     command, temp = 0, status;
993         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
994         struct usb_hcd          *secondary_hcd;
995         int                     retval = 0;
996         bool                    comp_timer_running = false;
997
998         if (!hcd->state)
999                 return 0;
1000
1001         /* Wait a bit if either of the roothubs need to settle from the
1002          * transition into bus suspend.
1003          */
1004         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1005                         time_before(jiffies,
1006                                 xhci->bus_state[1].next_statechange))
1007                 msleep(100);
1008
1009         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1010         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1011
1012         spin_lock_irq(&xhci->lock);
1013         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1014                 hibernated = true;
1015
1016         if (!hibernated) {
1017                 /* step 1: restore register */
1018                 xhci_restore_registers(xhci);
1019                 /* step 2: initialize command ring buffer */
1020                 xhci_set_cmd_ring_deq(xhci);
1021                 /* step 3: restore state and start state*/
1022                 /* step 3: set CRS flag */
1023                 command = readl(&xhci->op_regs->command);
1024                 command |= CMD_CRS;
1025                 writel(command, &xhci->op_regs->command);
1026                 if (xhci_handshake(&xhci->op_regs->status,
1027                               STS_RESTORE, 0, 10 * 1000)) {
1028                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1029                         spin_unlock_irq(&xhci->lock);
1030                         return -ETIMEDOUT;
1031                 }
1032                 temp = readl(&xhci->op_regs->status);
1033         }
1034
1035         /* If restore operation fails, re-initialize the HC during resume */
1036         if ((temp & STS_SRE) || hibernated) {
1037
1038                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1039                                 !(xhci_all_ports_seen_u0(xhci))) {
1040                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1041                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1042                                 "Compliance Mode Recovery Timer deleted!");
1043                 }
1044
1045                 /* Let the USB core know _both_ roothubs lost power. */
1046                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1047                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1048
1049                 xhci_dbg(xhci, "Stop HCD\n");
1050                 xhci_halt(xhci);
1051                 xhci_reset(xhci);
1052                 spin_unlock_irq(&xhci->lock);
1053                 xhci_cleanup_msix(xhci);
1054
1055                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1056                 temp = readl(&xhci->op_regs->status);
1057                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1058                 temp = readl(&xhci->ir_set->irq_pending);
1059                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1060                 xhci_print_ir_set(xhci, 0);
1061
1062                 xhci_dbg(xhci, "cleaning up memory\n");
1063                 xhci_mem_cleanup(xhci);
1064                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1065                             readl(&xhci->op_regs->status));
1066
1067                 /* USB core calls the PCI reinit and start functions twice:
1068                  * first with the primary HCD, and then with the secondary HCD.
1069                  * If we don't do the same, the host will never be started.
1070                  */
1071                 if (!usb_hcd_is_primary_hcd(hcd))
1072                         secondary_hcd = hcd;
1073                 else
1074                         secondary_hcd = xhci->shared_hcd;
1075
1076                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1077                 retval = xhci_init(hcd->primary_hcd);
1078                 if (retval)
1079                         return retval;
1080                 comp_timer_running = true;
1081
1082                 xhci_dbg(xhci, "Start the primary HCD\n");
1083                 retval = xhci_run(hcd->primary_hcd);
1084                 if (!retval) {
1085                         xhci_dbg(xhci, "Start the secondary HCD\n");
1086                         retval = xhci_run(secondary_hcd);
1087                 }
1088                 hcd->state = HC_STATE_SUSPENDED;
1089                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1090                 goto done;
1091         }
1092
1093         /* step 4: set Run/Stop bit */
1094         command = readl(&xhci->op_regs->command);
1095         command |= CMD_RUN;
1096         writel(command, &xhci->op_regs->command);
1097         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1098                   0, 250 * 1000);
1099
1100         /* step 5: walk topology and initialize portsc,
1101          * portpmsc and portli
1102          */
1103         /* this is done in bus_resume */
1104
1105         /* step 6: restart each of the previously
1106          * Running endpoints by ringing their doorbells
1107          */
1108
1109         spin_unlock_irq(&xhci->lock);
1110
1111  done:
1112         if (retval == 0) {
1113                 /* Resume root hubs only when have pending events. */
1114                 status = readl(&xhci->op_regs->status);
1115                 if (status & STS_EINT) {
1116                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1117                         usb_hcd_resume_root_hub(hcd);
1118                 }
1119         }
1120
1121         /*
1122          * If system is subject to the Quirk, Compliance Mode Timer needs to
1123          * be re-initialized Always after a system resume. Ports are subject
1124          * to suffer the Compliance Mode issue again. It doesn't matter if
1125          * ports have entered previously to U0 before system's suspension.
1126          */
1127         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1128                 compliance_mode_recovery_timer_init(xhci);
1129
1130         /* Re-enable port polling. */
1131         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1132         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1133         usb_hcd_poll_rh_status(xhci->shared_hcd);
1134         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1135         usb_hcd_poll_rh_status(hcd);
1136
1137         return retval;
1138 }
1139 EXPORT_SYMBOL_GPL(xhci_resume);
1140 #endif  /* CONFIG_PM */
1141
1142 /*-------------------------------------------------------------------------*/
1143
1144 /**
1145  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1146  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1147  * value to right shift 1 for the bitmask.
1148  *
1149  * Index  = (epnum * 2) + direction - 1,
1150  * where direction = 0 for OUT, 1 for IN.
1151  * For control endpoints, the IN index is used (OUT index is unused), so
1152  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1153  */
1154 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1155 {
1156         unsigned int index;
1157         if (usb_endpoint_xfer_control(desc))
1158                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1159         else
1160                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1161                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1162         return index;
1163 }
1164
1165 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1166  * address from the XHCI endpoint index.
1167  */
1168 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1169 {
1170         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1171         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1172         return direction | number;
1173 }
1174
1175 /* Find the flag for this endpoint (for use in the control context).  Use the
1176  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1177  * bit 1, etc.
1178  */
1179 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1180 {
1181         return 1 << (xhci_get_endpoint_index(desc) + 1);
1182 }
1183
1184 /* Find the flag for this endpoint (for use in the control context).  Use the
1185  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1186  * bit 1, etc.
1187  */
1188 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1189 {
1190         return 1 << (ep_index + 1);
1191 }
1192
1193 /* Compute the last valid endpoint context index.  Basically, this is the
1194  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1195  * we find the most significant bit set in the added contexts flags.
1196  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1197  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1198  */
1199 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1200 {
1201         return fls(added_ctxs) - 1;
1202 }
1203
1204 /* Returns 1 if the arguments are OK;
1205  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1206  */
1207 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1208                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1209                 const char *func) {
1210         struct xhci_hcd *xhci;
1211         struct xhci_virt_device *virt_dev;
1212
1213         if (!hcd || (check_ep && !ep) || !udev) {
1214                 pr_debug("xHCI %s called with invalid args\n", func);
1215                 return -EINVAL;
1216         }
1217         if (!udev->parent) {
1218                 pr_debug("xHCI %s called for root hub\n", func);
1219                 return 0;
1220         }
1221
1222         xhci = hcd_to_xhci(hcd);
1223         if (check_virt_dev) {
1224                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1225                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1226                                         func);
1227                         return -EINVAL;
1228                 }
1229
1230                 virt_dev = xhci->devs[udev->slot_id];
1231                 if (virt_dev->udev != udev) {
1232                         xhci_dbg(xhci, "xHCI %s called with udev and "
1233                                           "virt_dev does not match\n", func);
1234                         return -EINVAL;
1235                 }
1236         }
1237
1238         if (xhci->xhc_state & XHCI_STATE_HALTED)
1239                 return -ENODEV;
1240
1241         return 1;
1242 }
1243
1244 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1245                 struct usb_device *udev, struct xhci_command *command,
1246                 bool ctx_change, bool must_succeed);
1247
1248 /*
1249  * Full speed devices may have a max packet size greater than 8 bytes, but the
1250  * USB core doesn't know that until it reads the first 8 bytes of the
1251  * descriptor.  If the usb_device's max packet size changes after that point,
1252  * we need to issue an evaluate context command and wait on it.
1253  */
1254 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1255                 unsigned int ep_index, struct urb *urb)
1256 {
1257         struct xhci_container_ctx *out_ctx;
1258         struct xhci_input_control_ctx *ctrl_ctx;
1259         struct xhci_ep_ctx *ep_ctx;
1260         struct xhci_command *command;
1261         int max_packet_size;
1262         int hw_max_packet_size;
1263         int ret = 0;
1264
1265         out_ctx = xhci->devs[slot_id]->out_ctx;
1266         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1267         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1268         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1269         if (hw_max_packet_size != max_packet_size) {
1270                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1271                                 "Max Packet Size for ep 0 changed.");
1272                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1273                                 "Max packet size in usb_device = %d",
1274                                 max_packet_size);
1275                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1276                                 "Max packet size in xHCI HW = %d",
1277                                 hw_max_packet_size);
1278                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1279                                 "Issuing evaluate context command.");
1280
1281                 /* Set up the input context flags for the command */
1282                 /* FIXME: This won't work if a non-default control endpoint
1283                  * changes max packet sizes.
1284                  */
1285
1286                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1287                 if (!command)
1288                         return -ENOMEM;
1289
1290                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1291                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1292                 if (!ctrl_ctx) {
1293                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1294                                         __func__);
1295                         ret = -ENOMEM;
1296                         goto command_cleanup;
1297                 }
1298                 /* Set up the modified control endpoint 0 */
1299                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1300                                 xhci->devs[slot_id]->out_ctx, ep_index);
1301
1302                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1303                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1304                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1305
1306                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1307                 ctrl_ctx->drop_flags = 0;
1308
1309                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1310                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1311                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1312                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1313
1314                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1315                                 true, false);
1316
1317                 /* Clean up the input context for later use by bandwidth
1318                  * functions.
1319                  */
1320                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1321 command_cleanup:
1322                 kfree(command->completion);
1323                 kfree(command);
1324         }
1325         return ret;
1326 }
1327
1328 /*
1329  * non-error returns are a promise to giveback() the urb later
1330  * we drop ownership so next owner (or urb unlink) can get it
1331  */
1332 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1333 {
1334         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1335         struct xhci_td *buffer;
1336         unsigned long flags;
1337         int ret = 0;
1338         unsigned int slot_id, ep_index;
1339         struct urb_priv *urb_priv;
1340         int size, i;
1341
1342         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1343                                         true, true, __func__) <= 0)
1344                 return -EINVAL;
1345
1346         slot_id = urb->dev->slot_id;
1347         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1348
1349         if (!HCD_HW_ACCESSIBLE(hcd)) {
1350                 if (!in_interrupt())
1351                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1352                 ret = -ESHUTDOWN;
1353                 goto exit;
1354         }
1355
1356         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1357                 size = urb->number_of_packets;
1358         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1359             urb->transfer_buffer_length > 0 &&
1360             urb->transfer_flags & URB_ZERO_PACKET &&
1361             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1362                 size = 2;
1363         else
1364                 size = 1;
1365
1366         urb_priv = kzalloc(sizeof(struct urb_priv) +
1367                                   size * sizeof(struct xhci_td *), mem_flags);
1368         if (!urb_priv)
1369                 return -ENOMEM;
1370
1371         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1372         if (!buffer) {
1373                 kfree(urb_priv);
1374                 return -ENOMEM;
1375         }
1376
1377         for (i = 0; i < size; i++) {
1378                 urb_priv->td[i] = buffer;
1379                 buffer++;
1380         }
1381
1382         urb_priv->length = size;
1383         urb_priv->td_cnt = 0;
1384         urb->hcpriv = urb_priv;
1385
1386         trace_xhci_urb_enqueue(urb);
1387
1388         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1389                 /* Check to see if the max packet size for the default control
1390                  * endpoint changed during FS device enumeration
1391                  */
1392                 if (urb->dev->speed == USB_SPEED_FULL) {
1393                         ret = xhci_check_maxpacket(xhci, slot_id,
1394                                         ep_index, urb);
1395                         if (ret < 0) {
1396                                 xhci_urb_free_priv(urb_priv);
1397                                 urb->hcpriv = NULL;
1398                                 return ret;
1399                         }
1400                 }
1401
1402                 /* We have a spinlock and interrupts disabled, so we must pass
1403                  * atomic context to this function, which may allocate memory.
1404                  */
1405                 spin_lock_irqsave(&xhci->lock, flags);
1406                 if (xhci->xhc_state & XHCI_STATE_DYING)
1407                         goto dying;
1408                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1409                                 slot_id, ep_index);
1410                 if (ret)
1411                         goto free_priv;
1412                 spin_unlock_irqrestore(&xhci->lock, flags);
1413         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1414                 spin_lock_irqsave(&xhci->lock, flags);
1415                 if (xhci->xhc_state & XHCI_STATE_DYING)
1416                         goto dying;
1417                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1418                                 EP_GETTING_STREAMS) {
1419                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1420                                         "is transitioning to using streams.\n");
1421                         ret = -EINVAL;
1422                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1423                                 EP_GETTING_NO_STREAMS) {
1424                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1425                                         "is transitioning to "
1426                                         "not having streams.\n");
1427                         ret = -EINVAL;
1428                 } else {
1429                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1430                                         slot_id, ep_index);
1431                 }
1432                 if (ret)
1433                         goto free_priv;
1434                 spin_unlock_irqrestore(&xhci->lock, flags);
1435         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1436                 spin_lock_irqsave(&xhci->lock, flags);
1437                 if (xhci->xhc_state & XHCI_STATE_DYING)
1438                         goto dying;
1439                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1440                                 slot_id, ep_index);
1441                 if (ret)
1442                         goto free_priv;
1443                 spin_unlock_irqrestore(&xhci->lock, flags);
1444         } else {
1445                 spin_lock_irqsave(&xhci->lock, flags);
1446                 if (xhci->xhc_state & XHCI_STATE_DYING)
1447                         goto dying;
1448                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1449                                 slot_id, ep_index);
1450                 if (ret)
1451                         goto free_priv;
1452                 spin_unlock_irqrestore(&xhci->lock, flags);
1453         }
1454 exit:
1455         return ret;
1456 dying:
1457         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1458                         "non-responsive xHCI host.\n",
1459                         urb->ep->desc.bEndpointAddress, urb);
1460         ret = -ESHUTDOWN;
1461 free_priv:
1462         xhci_urb_free_priv(urb_priv);
1463         urb->hcpriv = NULL;
1464         spin_unlock_irqrestore(&xhci->lock, flags);
1465         return ret;
1466 }
1467
1468 /*
1469  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1470  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1471  * should pick up where it left off in the TD, unless a Set Transfer Ring
1472  * Dequeue Pointer is issued.
1473  *
1474  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1475  * the ring.  Since the ring is a contiguous structure, they can't be physically
1476  * removed.  Instead, there are two options:
1477  *
1478  *  1) If the HC is in the middle of processing the URB to be canceled, we
1479  *     simply move the ring's dequeue pointer past those TRBs using the Set
1480  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1481  *     when drivers timeout on the last submitted URB and attempt to cancel.
1482  *
1483  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1484  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1485  *     HC will need to invalidate the any TRBs it has cached after the stop
1486  *     endpoint command, as noted in the xHCI 0.95 errata.
1487  *
1488  *  3) The TD may have completed by the time the Stop Endpoint Command
1489  *     completes, so software needs to handle that case too.
1490  *
1491  * This function should protect against the TD enqueueing code ringing the
1492  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1493  * It also needs to account for multiple cancellations on happening at the same
1494  * time for the same endpoint.
1495  *
1496  * Note that this function can be called in any context, or so says
1497  * usb_hcd_unlink_urb()
1498  */
1499 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1500 {
1501         unsigned long flags;
1502         int ret, i;
1503         u32 temp;
1504         struct xhci_hcd *xhci;
1505         struct urb_priv *urb_priv;
1506         struct xhci_td *td;
1507         unsigned int ep_index;
1508         struct xhci_ring *ep_ring;
1509         struct xhci_virt_ep *ep;
1510         struct xhci_command *command;
1511
1512         xhci = hcd_to_xhci(hcd);
1513         spin_lock_irqsave(&xhci->lock, flags);
1514
1515         trace_xhci_urb_dequeue(urb);
1516
1517         /* Make sure the URB hasn't completed or been unlinked already */
1518         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1519         if (ret || !urb->hcpriv)
1520                 goto done;
1521         temp = readl(&xhci->op_regs->status);
1522         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1523                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1524                                 "HW died, freeing TD.");
1525                 urb_priv = urb->hcpriv;
1526                 for (i = urb_priv->td_cnt;
1527                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1528                      i++) {
1529                         td = urb_priv->td[i];
1530                         if (!list_empty(&td->td_list))
1531                                 list_del_init(&td->td_list);
1532                         if (!list_empty(&td->cancelled_td_list))
1533                                 list_del_init(&td->cancelled_td_list);
1534                 }
1535
1536                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1537                 spin_unlock_irqrestore(&xhci->lock, flags);
1538                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1539                 xhci_urb_free_priv(urb_priv);
1540                 return ret;
1541         }
1542
1543         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1544         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1545         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1546         if (!ep_ring) {
1547                 ret = -EINVAL;
1548                 goto done;
1549         }
1550
1551         urb_priv = urb->hcpriv;
1552         i = urb_priv->td_cnt;
1553         if (i < urb_priv->length)
1554                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1555                                 "Cancel URB %p, dev %s, ep 0x%x, "
1556                                 "starting at offset 0x%llx",
1557                                 urb, urb->dev->devpath,
1558                                 urb->ep->desc.bEndpointAddress,
1559                                 (unsigned long long) xhci_trb_virt_to_dma(
1560                                         urb_priv->td[i]->start_seg,
1561                                         urb_priv->td[i]->first_trb));
1562
1563         for (; i < urb_priv->length; i++) {
1564                 td = urb_priv->td[i];
1565                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1566         }
1567
1568         /* Queue a stop endpoint command, but only if this is
1569          * the first cancellation to be handled.
1570          */
1571         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1572                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1573                 if (!command) {
1574                         ret = -ENOMEM;
1575                         goto done;
1576                 }
1577                 ep->ep_state |= EP_STOP_CMD_PENDING;
1578                 ep->stop_cmd_timer.expires = jiffies +
1579                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1580                 add_timer(&ep->stop_cmd_timer);
1581                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1582                                          ep_index, 0);
1583                 xhci_ring_cmd_db(xhci);
1584         }
1585 done:
1586         spin_unlock_irqrestore(&xhci->lock, flags);
1587         return ret;
1588 }
1589
1590 /* Drop an endpoint from a new bandwidth configuration for this device.
1591  * Only one call to this function is allowed per endpoint before
1592  * check_bandwidth() or reset_bandwidth() must be called.
1593  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1594  * add the endpoint to the schedule with possibly new parameters denoted by a
1595  * different endpoint descriptor in usb_host_endpoint.
1596  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1597  * not allowed.
1598  *
1599  * The USB core will not allow URBs to be queued to an endpoint that is being
1600  * disabled, so there's no need for mutual exclusion to protect
1601  * the xhci->devs[slot_id] structure.
1602  */
1603 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1604                 struct usb_host_endpoint *ep)
1605 {
1606         struct xhci_hcd *xhci;
1607         struct xhci_container_ctx *in_ctx, *out_ctx;
1608         struct xhci_input_control_ctx *ctrl_ctx;
1609         unsigned int ep_index;
1610         struct xhci_ep_ctx *ep_ctx;
1611         u32 drop_flag;
1612         u32 new_add_flags, new_drop_flags;
1613         int ret;
1614
1615         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1616         if (ret <= 0)
1617                 return ret;
1618         xhci = hcd_to_xhci(hcd);
1619         if (xhci->xhc_state & XHCI_STATE_DYING)
1620                 return -ENODEV;
1621
1622         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1623         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1624         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1625                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1626                                 __func__, drop_flag);
1627                 return 0;
1628         }
1629
1630         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1631         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1632         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1633         if (!ctrl_ctx) {
1634                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1635                                 __func__);
1636                 return 0;
1637         }
1638
1639         ep_index = xhci_get_endpoint_index(&ep->desc);
1640         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1641         /* If the HC already knows the endpoint is disabled,
1642          * or the HCD has noted it is disabled, ignore this request
1643          */
1644         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1645             le32_to_cpu(ctrl_ctx->drop_flags) &
1646             xhci_get_endpoint_flag(&ep->desc)) {
1647                 /* Do not warn when called after a usb_device_reset */
1648                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1649                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1650                                   __func__, ep);
1651                 return 0;
1652         }
1653
1654         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1655         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1656
1657         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1658         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1659
1660         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1661
1662         if (xhci->quirks & XHCI_MTK_HOST)
1663                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1664
1665         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1666                         (unsigned int) ep->desc.bEndpointAddress,
1667                         udev->slot_id,
1668                         (unsigned int) new_drop_flags,
1669                         (unsigned int) new_add_flags);
1670         return 0;
1671 }
1672
1673 /* Add an endpoint to a new possible bandwidth configuration for this device.
1674  * Only one call to this function is allowed per endpoint before
1675  * check_bandwidth() or reset_bandwidth() must be called.
1676  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1677  * add the endpoint to the schedule with possibly new parameters denoted by a
1678  * different endpoint descriptor in usb_host_endpoint.
1679  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1680  * not allowed.
1681  *
1682  * The USB core will not allow URBs to be queued to an endpoint until the
1683  * configuration or alt setting is installed in the device, so there's no need
1684  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1685  */
1686 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1687                 struct usb_host_endpoint *ep)
1688 {
1689         struct xhci_hcd *xhci;
1690         struct xhci_container_ctx *in_ctx;
1691         unsigned int ep_index;
1692         struct xhci_input_control_ctx *ctrl_ctx;
1693         u32 added_ctxs;
1694         u32 new_add_flags, new_drop_flags;
1695         struct xhci_virt_device *virt_dev;
1696         int ret = 0;
1697
1698         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1699         if (ret <= 0) {
1700                 /* So we won't queue a reset ep command for a root hub */
1701                 ep->hcpriv = NULL;
1702                 return ret;
1703         }
1704         xhci = hcd_to_xhci(hcd);
1705         if (xhci->xhc_state & XHCI_STATE_DYING)
1706                 return -ENODEV;
1707
1708         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1709         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1710                 /* FIXME when we have to issue an evaluate endpoint command to
1711                  * deal with ep0 max packet size changing once we get the
1712                  * descriptors
1713                  */
1714                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1715                                 __func__, added_ctxs);
1716                 return 0;
1717         }
1718
1719         virt_dev = xhci->devs[udev->slot_id];
1720         in_ctx = virt_dev->in_ctx;
1721         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1722         if (!ctrl_ctx) {
1723                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1724                                 __func__);
1725                 return 0;
1726         }
1727
1728         ep_index = xhci_get_endpoint_index(&ep->desc);
1729         /* If this endpoint is already in use, and the upper layers are trying
1730          * to add it again without dropping it, reject the addition.
1731          */
1732         if (virt_dev->eps[ep_index].ring &&
1733                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1734                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1735                                 "without dropping it.\n",
1736                                 (unsigned int) ep->desc.bEndpointAddress);
1737                 return -EINVAL;
1738         }
1739
1740         /* If the HCD has already noted the endpoint is enabled,
1741          * ignore this request.
1742          */
1743         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1744                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1745                                 __func__, ep);
1746                 return 0;
1747         }
1748
1749         /*
1750          * Configuration and alternate setting changes must be done in
1751          * process context, not interrupt context (or so documenation
1752          * for usb_set_interface() and usb_set_configuration() claim).
1753          */
1754         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1755                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1756                                 __func__, ep->desc.bEndpointAddress);
1757                 return -ENOMEM;
1758         }
1759
1760         if (xhci->quirks & XHCI_MTK_HOST) {
1761                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1762                 if (ret < 0) {
1763                         xhci_free_or_cache_endpoint_ring(xhci,
1764                                 virt_dev, ep_index);
1765                         return ret;
1766                 }
1767         }
1768
1769         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1770         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1771
1772         /* If xhci_endpoint_disable() was called for this endpoint, but the
1773          * xHC hasn't been notified yet through the check_bandwidth() call,
1774          * this re-adds a new state for the endpoint from the new endpoint
1775          * descriptors.  We must drop and re-add this endpoint, so we leave the
1776          * drop flags alone.
1777          */
1778         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1779
1780         /* Store the usb_device pointer for later use */
1781         ep->hcpriv = udev;
1782
1783         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1784                         (unsigned int) ep->desc.bEndpointAddress,
1785                         udev->slot_id,
1786                         (unsigned int) new_drop_flags,
1787                         (unsigned int) new_add_flags);
1788         return 0;
1789 }
1790
1791 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1792 {
1793         struct xhci_input_control_ctx *ctrl_ctx;
1794         struct xhci_ep_ctx *ep_ctx;
1795         struct xhci_slot_ctx *slot_ctx;
1796         int i;
1797
1798         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1799         if (!ctrl_ctx) {
1800                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1801                                 __func__);
1802                 return;
1803         }
1804
1805         /* When a device's add flag and drop flag are zero, any subsequent
1806          * configure endpoint command will leave that endpoint's state
1807          * untouched.  Make sure we don't leave any old state in the input
1808          * endpoint contexts.
1809          */
1810         ctrl_ctx->drop_flags = 0;
1811         ctrl_ctx->add_flags = 0;
1812         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1813         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1814         /* Endpoint 0 is always valid */
1815         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1816         for (i = 1; i < 31; i++) {
1817                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1818                 ep_ctx->ep_info = 0;
1819                 ep_ctx->ep_info2 = 0;
1820                 ep_ctx->deq = 0;
1821                 ep_ctx->tx_info = 0;
1822         }
1823 }
1824
1825 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1826                 struct usb_device *udev, u32 *cmd_status)
1827 {
1828         int ret;
1829
1830         switch (*cmd_status) {
1831         case COMP_COMMAND_ABORTED:
1832         case COMP_STOPPED:
1833                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1834                 ret = -ETIME;
1835                 break;
1836         case COMP_RESOURCE_ERROR:
1837                 dev_warn(&udev->dev,
1838                          "Not enough host controller resources for new device state.\n");
1839                 ret = -ENOMEM;
1840                 /* FIXME: can we allocate more resources for the HC? */
1841                 break;
1842         case COMP_BANDWIDTH_ERROR:
1843         case COMP_SECONDARY_BANDWIDTH_ERROR:
1844                 dev_warn(&udev->dev,
1845                          "Not enough bandwidth for new device state.\n");
1846                 ret = -ENOSPC;
1847                 /* FIXME: can we go back to the old state? */
1848                 break;
1849         case COMP_TRB_ERROR:
1850                 /* the HCD set up something wrong */
1851                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1852                                 "add flag = 1, "
1853                                 "and endpoint is not disabled.\n");
1854                 ret = -EINVAL;
1855                 break;
1856         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1857                 dev_warn(&udev->dev,
1858                          "ERROR: Incompatible device for endpoint configure command.\n");
1859                 ret = -ENODEV;
1860                 break;
1861         case COMP_SUCCESS:
1862                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1863                                 "Successful Endpoint Configure command");
1864                 ret = 0;
1865                 break;
1866         default:
1867                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1868                                 *cmd_status);
1869                 ret = -EINVAL;
1870                 break;
1871         }
1872         return ret;
1873 }
1874
1875 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1876                 struct usb_device *udev, u32 *cmd_status)
1877 {
1878         int ret;
1879         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1880
1881         switch (*cmd_status) {
1882         case COMP_COMMAND_ABORTED:
1883         case COMP_STOPPED:
1884                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1885                 ret = -ETIME;
1886                 break;
1887         case COMP_PARAMETER_ERROR:
1888                 dev_warn(&udev->dev,
1889                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1890                 ret = -EINVAL;
1891                 break;
1892         case COMP_SLOT_NOT_ENABLED_ERROR:
1893                 dev_warn(&udev->dev,
1894                         "WARN: slot not enabled for evaluate context command.\n");
1895                 ret = -EINVAL;
1896                 break;
1897         case COMP_CONTEXT_STATE_ERROR:
1898                 dev_warn(&udev->dev,
1899                         "WARN: invalid context state for evaluate context command.\n");
1900                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1901                 ret = -EINVAL;
1902                 break;
1903         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1904                 dev_warn(&udev->dev,
1905                         "ERROR: Incompatible device for evaluate context command.\n");
1906                 ret = -ENODEV;
1907                 break;
1908         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1909                 /* Max Exit Latency too large error */
1910                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1911                 ret = -EINVAL;
1912                 break;
1913         case COMP_SUCCESS:
1914                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1915                                 "Successful evaluate context command");
1916                 ret = 0;
1917                 break;
1918         default:
1919                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1920                         *cmd_status);
1921                 ret = -EINVAL;
1922                 break;
1923         }
1924         return ret;
1925 }
1926
1927 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1928                 struct xhci_input_control_ctx *ctrl_ctx)
1929 {
1930         u32 valid_add_flags;
1931         u32 valid_drop_flags;
1932
1933         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1934          * (bit 1).  The default control endpoint is added during the Address
1935          * Device command and is never removed until the slot is disabled.
1936          */
1937         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1938         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1939
1940         /* Use hweight32 to count the number of ones in the add flags, or
1941          * number of endpoints added.  Don't count endpoints that are changed
1942          * (both added and dropped).
1943          */
1944         return hweight32(valid_add_flags) -
1945                 hweight32(valid_add_flags & valid_drop_flags);
1946 }
1947
1948 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1949                 struct xhci_input_control_ctx *ctrl_ctx)
1950 {
1951         u32 valid_add_flags;
1952         u32 valid_drop_flags;
1953
1954         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1955         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1956
1957         return hweight32(valid_drop_flags) -
1958                 hweight32(valid_add_flags & valid_drop_flags);
1959 }
1960
1961 /*
1962  * We need to reserve the new number of endpoints before the configure endpoint
1963  * command completes.  We can't subtract the dropped endpoints from the number
1964  * of active endpoints until the command completes because we can oversubscribe
1965  * the host in this case:
1966  *
1967  *  - the first configure endpoint command drops more endpoints than it adds
1968  *  - a second configure endpoint command that adds more endpoints is queued
1969  *  - the first configure endpoint command fails, so the config is unchanged
1970  *  - the second command may succeed, even though there isn't enough resources
1971  *
1972  * Must be called with xhci->lock held.
1973  */
1974 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1975                 struct xhci_input_control_ctx *ctrl_ctx)
1976 {
1977         u32 added_eps;
1978
1979         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1980         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1981                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1982                                 "Not enough ep ctxs: "
1983                                 "%u active, need to add %u, limit is %u.",
1984                                 xhci->num_active_eps, added_eps,
1985                                 xhci->limit_active_eps);
1986                 return -ENOMEM;
1987         }
1988         xhci->num_active_eps += added_eps;
1989         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1990                         "Adding %u ep ctxs, %u now active.", added_eps,
1991                         xhci->num_active_eps);
1992         return 0;
1993 }
1994
1995 /*
1996  * The configure endpoint was failed by the xHC for some other reason, so we
1997  * need to revert the resources that failed configuration would have used.
1998  *
1999  * Must be called with xhci->lock held.
2000  */
2001 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2002                 struct xhci_input_control_ctx *ctrl_ctx)
2003 {
2004         u32 num_failed_eps;
2005
2006         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2007         xhci->num_active_eps -= num_failed_eps;
2008         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2009                         "Removing %u failed ep ctxs, %u now active.",
2010                         num_failed_eps,
2011                         xhci->num_active_eps);
2012 }
2013
2014 /*
2015  * Now that the command has completed, clean up the active endpoint count by
2016  * subtracting out the endpoints that were dropped (but not changed).
2017  *
2018  * Must be called with xhci->lock held.
2019  */
2020 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2021                 struct xhci_input_control_ctx *ctrl_ctx)
2022 {
2023         u32 num_dropped_eps;
2024
2025         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2026         xhci->num_active_eps -= num_dropped_eps;
2027         if (num_dropped_eps)
2028                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2029                                 "Removing %u dropped ep ctxs, %u now active.",
2030                                 num_dropped_eps,
2031                                 xhci->num_active_eps);
2032 }
2033
2034 static unsigned int xhci_get_block_size(struct usb_device *udev)
2035 {
2036         switch (udev->speed) {
2037         case USB_SPEED_LOW:
2038         case USB_SPEED_FULL:
2039                 return FS_BLOCK;
2040         case USB_SPEED_HIGH:
2041                 return HS_BLOCK;
2042         case USB_SPEED_SUPER:
2043         case USB_SPEED_SUPER_PLUS:
2044                 return SS_BLOCK;
2045         case USB_SPEED_UNKNOWN:
2046         case USB_SPEED_WIRELESS:
2047         default:
2048                 /* Should never happen */
2049                 return 1;
2050         }
2051 }
2052
2053 static unsigned int
2054 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2055 {
2056         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2057                 return LS_OVERHEAD;
2058         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2059                 return FS_OVERHEAD;
2060         return HS_OVERHEAD;
2061 }
2062
2063 /* If we are changing a LS/FS device under a HS hub,
2064  * make sure (if we are activating a new TT) that the HS bus has enough
2065  * bandwidth for this new TT.
2066  */
2067 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2068                 struct xhci_virt_device *virt_dev,
2069                 int old_active_eps)
2070 {
2071         struct xhci_interval_bw_table *bw_table;
2072         struct xhci_tt_bw_info *tt_info;
2073
2074         /* Find the bandwidth table for the root port this TT is attached to. */
2075         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2076         tt_info = virt_dev->tt_info;
2077         /* If this TT already had active endpoints, the bandwidth for this TT
2078          * has already been added.  Removing all periodic endpoints (and thus
2079          * making the TT enactive) will only decrease the bandwidth used.
2080          */
2081         if (old_active_eps)
2082                 return 0;
2083         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2084                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2085                         return -ENOMEM;
2086                 return 0;
2087         }
2088         /* Not sure why we would have no new active endpoints...
2089          *
2090          * Maybe because of an Evaluate Context change for a hub update or a
2091          * control endpoint 0 max packet size change?
2092          * FIXME: skip the bandwidth calculation in that case.
2093          */
2094         return 0;
2095 }
2096
2097 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2098                 struct xhci_virt_device *virt_dev)
2099 {
2100         unsigned int bw_reserved;
2101
2102         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2103         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2104                 return -ENOMEM;
2105
2106         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2107         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2108                 return -ENOMEM;
2109
2110         return 0;
2111 }
2112
2113 /*
2114  * This algorithm is a very conservative estimate of the worst-case scheduling
2115  * scenario for any one interval.  The hardware dynamically schedules the
2116  * packets, so we can't tell which microframe could be the limiting factor in
2117  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2118  *
2119  * Obviously, we can't solve an NP complete problem to find the minimum worst
2120  * case scenario.  Instead, we come up with an estimate that is no less than
2121  * the worst case bandwidth used for any one microframe, but may be an
2122  * over-estimate.
2123  *
2124  * We walk the requirements for each endpoint by interval, starting with the
2125  * smallest interval, and place packets in the schedule where there is only one
2126  * possible way to schedule packets for that interval.  In order to simplify
2127  * this algorithm, we record the largest max packet size for each interval, and
2128  * assume all packets will be that size.
2129  *
2130  * For interval 0, we obviously must schedule all packets for each interval.
2131  * The bandwidth for interval 0 is just the amount of data to be transmitted
2132  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2133  * the number of packets).
2134  *
2135  * For interval 1, we have two possible microframes to schedule those packets
2136  * in.  For this algorithm, if we can schedule the same number of packets for
2137  * each possible scheduling opportunity (each microframe), we will do so.  The
2138  * remaining number of packets will be saved to be transmitted in the gaps in
2139  * the next interval's scheduling sequence.
2140  *
2141  * As we move those remaining packets to be scheduled with interval 2 packets,
2142  * we have to double the number of remaining packets to transmit.  This is
2143  * because the intervals are actually powers of 2, and we would be transmitting
2144  * the previous interval's packets twice in this interval.  We also have to be
2145  * sure that when we look at the largest max packet size for this interval, we
2146  * also look at the largest max packet size for the remaining packets and take
2147  * the greater of the two.
2148  *
2149  * The algorithm continues to evenly distribute packets in each scheduling
2150  * opportunity, and push the remaining packets out, until we get to the last
2151  * interval.  Then those packets and their associated overhead are just added
2152  * to the bandwidth used.
2153  */
2154 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2155                 struct xhci_virt_device *virt_dev,
2156                 int old_active_eps)
2157 {
2158         unsigned int bw_reserved;
2159         unsigned int max_bandwidth;
2160         unsigned int bw_used;
2161         unsigned int block_size;
2162         struct xhci_interval_bw_table *bw_table;
2163         unsigned int packet_size = 0;
2164         unsigned int overhead = 0;
2165         unsigned int packets_transmitted = 0;
2166         unsigned int packets_remaining = 0;
2167         unsigned int i;
2168
2169         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2170                 return xhci_check_ss_bw(xhci, virt_dev);
2171
2172         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2173                 max_bandwidth = HS_BW_LIMIT;
2174                 /* Convert percent of bus BW reserved to blocks reserved */
2175                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2176         } else {
2177                 max_bandwidth = FS_BW_LIMIT;
2178                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2179         }
2180
2181         bw_table = virt_dev->bw_table;
2182         /* We need to translate the max packet size and max ESIT payloads into
2183          * the units the hardware uses.
2184          */
2185         block_size = xhci_get_block_size(virt_dev->udev);
2186
2187         /* If we are manipulating a LS/FS device under a HS hub, double check
2188          * that the HS bus has enough bandwidth if we are activing a new TT.
2189          */
2190         if (virt_dev->tt_info) {
2191                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2192                                 "Recalculating BW for rootport %u",
2193                                 virt_dev->real_port);
2194                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2195                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2196                                         "newly activated TT.\n");
2197                         return -ENOMEM;
2198                 }
2199                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2200                                 "Recalculating BW for TT slot %u port %u",
2201                                 virt_dev->tt_info->slot_id,
2202                                 virt_dev->tt_info->ttport);
2203         } else {
2204                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2205                                 "Recalculating BW for rootport %u",
2206                                 virt_dev->real_port);
2207         }
2208
2209         /* Add in how much bandwidth will be used for interval zero, or the
2210          * rounded max ESIT payload + number of packets * largest overhead.
2211          */
2212         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2213                 bw_table->interval_bw[0].num_packets *
2214                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2215
2216         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2217                 unsigned int bw_added;
2218                 unsigned int largest_mps;
2219                 unsigned int interval_overhead;
2220
2221                 /*
2222                  * How many packets could we transmit in this interval?
2223                  * If packets didn't fit in the previous interval, we will need
2224                  * to transmit that many packets twice within this interval.
2225                  */
2226                 packets_remaining = 2 * packets_remaining +
2227                         bw_table->interval_bw[i].num_packets;
2228
2229                 /* Find the largest max packet size of this or the previous
2230                  * interval.
2231                  */
2232                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2233                         largest_mps = 0;
2234                 else {
2235                         struct xhci_virt_ep *virt_ep;
2236                         struct list_head *ep_entry;
2237
2238                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2239                         virt_ep = list_entry(ep_entry,
2240                                         struct xhci_virt_ep, bw_endpoint_list);
2241                         /* Convert to blocks, rounding up */
2242                         largest_mps = DIV_ROUND_UP(
2243                                         virt_ep->bw_info.max_packet_size,
2244                                         block_size);
2245                 }
2246                 if (largest_mps > packet_size)
2247                         packet_size = largest_mps;
2248
2249                 /* Use the larger overhead of this or the previous interval. */
2250                 interval_overhead = xhci_get_largest_overhead(
2251                                 &bw_table->interval_bw[i]);
2252                 if (interval_overhead > overhead)
2253                         overhead = interval_overhead;
2254
2255                 /* How many packets can we evenly distribute across
2256                  * (1 << (i + 1)) possible scheduling opportunities?
2257                  */
2258                 packets_transmitted = packets_remaining >> (i + 1);
2259
2260                 /* Add in the bandwidth used for those scheduled packets */
2261                 bw_added = packets_transmitted * (overhead + packet_size);
2262
2263                 /* How many packets do we have remaining to transmit? */
2264                 packets_remaining = packets_remaining % (1 << (i + 1));
2265
2266                 /* What largest max packet size should those packets have? */
2267                 /* If we've transmitted all packets, don't carry over the
2268                  * largest packet size.
2269                  */
2270                 if (packets_remaining == 0) {
2271                         packet_size = 0;
2272                         overhead = 0;
2273                 } else if (packets_transmitted > 0) {
2274                         /* Otherwise if we do have remaining packets, and we've
2275                          * scheduled some packets in this interval, take the
2276                          * largest max packet size from endpoints with this
2277                          * interval.
2278                          */
2279                         packet_size = largest_mps;
2280                         overhead = interval_overhead;
2281                 }
2282                 /* Otherwise carry over packet_size and overhead from the last
2283                  * time we had a remainder.
2284                  */
2285                 bw_used += bw_added;
2286                 if (bw_used > max_bandwidth) {
2287                         xhci_warn(xhci, "Not enough bandwidth. "
2288                                         "Proposed: %u, Max: %u\n",
2289                                 bw_used, max_bandwidth);
2290                         return -ENOMEM;
2291                 }
2292         }
2293         /*
2294          * Ok, we know we have some packets left over after even-handedly
2295          * scheduling interval 15.  We don't know which microframes they will
2296          * fit into, so we over-schedule and say they will be scheduled every
2297          * microframe.
2298          */
2299         if (packets_remaining > 0)
2300                 bw_used += overhead + packet_size;
2301
2302         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2303                 unsigned int port_index = virt_dev->real_port - 1;
2304
2305                 /* OK, we're manipulating a HS device attached to a
2306                  * root port bandwidth domain.  Include the number of active TTs
2307                  * in the bandwidth used.
2308                  */
2309                 bw_used += TT_HS_OVERHEAD *
2310                         xhci->rh_bw[port_index].num_active_tts;
2311         }
2312
2313         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2314                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2315                 "Available: %u " "percent",
2316                 bw_used, max_bandwidth, bw_reserved,
2317                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2318                 max_bandwidth);
2319
2320         bw_used += bw_reserved;
2321         if (bw_used > max_bandwidth) {
2322                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2323                                 bw_used, max_bandwidth);
2324                 return -ENOMEM;
2325         }
2326
2327         bw_table->bw_used = bw_used;
2328         return 0;
2329 }
2330
2331 static bool xhci_is_async_ep(unsigned int ep_type)
2332 {
2333         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2334                                         ep_type != ISOC_IN_EP &&
2335                                         ep_type != INT_IN_EP);
2336 }
2337
2338 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2339 {
2340         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2341 }
2342
2343 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2344 {
2345         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2346
2347         if (ep_bw->ep_interval == 0)
2348                 return SS_OVERHEAD_BURST +
2349                         (ep_bw->mult * ep_bw->num_packets *
2350                                         (SS_OVERHEAD + mps));
2351         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2352                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2353                                 1 << ep_bw->ep_interval);
2354
2355 }
2356
2357 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2358                 struct xhci_bw_info *ep_bw,
2359                 struct xhci_interval_bw_table *bw_table,
2360                 struct usb_device *udev,
2361                 struct xhci_virt_ep *virt_ep,
2362                 struct xhci_tt_bw_info *tt_info)
2363 {
2364         struct xhci_interval_bw *interval_bw;
2365         int normalized_interval;
2366
2367         if (xhci_is_async_ep(ep_bw->type))
2368                 return;
2369
2370         if (udev->speed >= USB_SPEED_SUPER) {
2371                 if (xhci_is_sync_in_ep(ep_bw->type))
2372                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2373                                 xhci_get_ss_bw_consumed(ep_bw);
2374                 else
2375                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2376                                 xhci_get_ss_bw_consumed(ep_bw);
2377                 return;
2378         }
2379
2380         /* SuperSpeed endpoints never get added to intervals in the table, so
2381          * this check is only valid for HS/FS/LS devices.
2382          */
2383         if (list_empty(&virt_ep->bw_endpoint_list))
2384                 return;
2385         /* For LS/FS devices, we need to translate the interval expressed in
2386          * microframes to frames.
2387          */
2388         if (udev->speed == USB_SPEED_HIGH)
2389                 normalized_interval = ep_bw->ep_interval;
2390         else
2391                 normalized_interval = ep_bw->ep_interval - 3;
2392
2393         if (normalized_interval == 0)
2394                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2395         interval_bw = &bw_table->interval_bw[normalized_interval];
2396         interval_bw->num_packets -= ep_bw->num_packets;
2397         switch (udev->speed) {
2398         case USB_SPEED_LOW:
2399                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2400                 break;
2401         case USB_SPEED_FULL:
2402                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2403                 break;
2404         case USB_SPEED_HIGH:
2405                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2406                 break;
2407         case USB_SPEED_SUPER:
2408         case USB_SPEED_SUPER_PLUS:
2409         case USB_SPEED_UNKNOWN:
2410         case USB_SPEED_WIRELESS:
2411                 /* Should never happen because only LS/FS/HS endpoints will get
2412                  * added to the endpoint list.
2413                  */
2414                 return;
2415         }
2416         if (tt_info)
2417                 tt_info->active_eps -= 1;
2418         list_del_init(&virt_ep->bw_endpoint_list);
2419 }
2420
2421 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2422                 struct xhci_bw_info *ep_bw,
2423                 struct xhci_interval_bw_table *bw_table,
2424                 struct usb_device *udev,
2425                 struct xhci_virt_ep *virt_ep,
2426                 struct xhci_tt_bw_info *tt_info)
2427 {
2428         struct xhci_interval_bw *interval_bw;
2429         struct xhci_virt_ep *smaller_ep;
2430         int normalized_interval;
2431
2432         if (xhci_is_async_ep(ep_bw->type))
2433                 return;
2434
2435         if (udev->speed == USB_SPEED_SUPER) {
2436                 if (xhci_is_sync_in_ep(ep_bw->type))
2437                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2438                                 xhci_get_ss_bw_consumed(ep_bw);
2439                 else
2440                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2441                                 xhci_get_ss_bw_consumed(ep_bw);
2442                 return;
2443         }
2444
2445         /* For LS/FS devices, we need to translate the interval expressed in
2446          * microframes to frames.
2447          */
2448         if (udev->speed == USB_SPEED_HIGH)
2449                 normalized_interval = ep_bw->ep_interval;
2450         else
2451                 normalized_interval = ep_bw->ep_interval - 3;
2452
2453         if (normalized_interval == 0)
2454                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2455         interval_bw = &bw_table->interval_bw[normalized_interval];
2456         interval_bw->num_packets += ep_bw->num_packets;
2457         switch (udev->speed) {
2458         case USB_SPEED_LOW:
2459                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2460                 break;
2461         case USB_SPEED_FULL:
2462                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2463                 break;
2464         case USB_SPEED_HIGH:
2465                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2466                 break;
2467         case USB_SPEED_SUPER:
2468         case USB_SPEED_SUPER_PLUS:
2469         case USB_SPEED_UNKNOWN:
2470         case USB_SPEED_WIRELESS:
2471                 /* Should never happen because only LS/FS/HS endpoints will get
2472                  * added to the endpoint list.
2473                  */
2474                 return;
2475         }
2476
2477         if (tt_info)
2478                 tt_info->active_eps += 1;
2479         /* Insert the endpoint into the list, largest max packet size first. */
2480         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2481                         bw_endpoint_list) {
2482                 if (ep_bw->max_packet_size >=
2483                                 smaller_ep->bw_info.max_packet_size) {
2484                         /* Add the new ep before the smaller endpoint */
2485                         list_add_tail(&virt_ep->bw_endpoint_list,
2486                                         &smaller_ep->bw_endpoint_list);
2487                         return;
2488                 }
2489         }
2490         /* Add the new endpoint at the end of the list. */
2491         list_add_tail(&virt_ep->bw_endpoint_list,
2492                         &interval_bw->endpoints);
2493 }
2494
2495 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2496                 struct xhci_virt_device *virt_dev,
2497                 int old_active_eps)
2498 {
2499         struct xhci_root_port_bw_info *rh_bw_info;
2500         if (!virt_dev->tt_info)
2501                 return;
2502
2503         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2504         if (old_active_eps == 0 &&
2505                                 virt_dev->tt_info->active_eps != 0) {
2506                 rh_bw_info->num_active_tts += 1;
2507                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2508         } else if (old_active_eps != 0 &&
2509                                 virt_dev->tt_info->active_eps == 0) {
2510                 rh_bw_info->num_active_tts -= 1;
2511                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2512         }
2513 }
2514
2515 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2516                 struct xhci_virt_device *virt_dev,
2517                 struct xhci_container_ctx *in_ctx)
2518 {
2519         struct xhci_bw_info ep_bw_info[31];
2520         int i;
2521         struct xhci_input_control_ctx *ctrl_ctx;
2522         int old_active_eps = 0;
2523
2524         if (virt_dev->tt_info)
2525                 old_active_eps = virt_dev->tt_info->active_eps;
2526
2527         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2528         if (!ctrl_ctx) {
2529                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2530                                 __func__);
2531                 return -ENOMEM;
2532         }
2533
2534         for (i = 0; i < 31; i++) {
2535                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2536                         continue;
2537
2538                 /* Make a copy of the BW info in case we need to revert this */
2539                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2540                                 sizeof(ep_bw_info[i]));
2541                 /* Drop the endpoint from the interval table if the endpoint is
2542                  * being dropped or changed.
2543                  */
2544                 if (EP_IS_DROPPED(ctrl_ctx, i))
2545                         xhci_drop_ep_from_interval_table(xhci,
2546                                         &virt_dev->eps[i].bw_info,
2547                                         virt_dev->bw_table,
2548                                         virt_dev->udev,
2549                                         &virt_dev->eps[i],
2550                                         virt_dev->tt_info);
2551         }
2552         /* Overwrite the information stored in the endpoints' bw_info */
2553         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2554         for (i = 0; i < 31; i++) {
2555                 /* Add any changed or added endpoints to the interval table */
2556                 if (EP_IS_ADDED(ctrl_ctx, i))
2557                         xhci_add_ep_to_interval_table(xhci,
2558                                         &virt_dev->eps[i].bw_info,
2559                                         virt_dev->bw_table,
2560                                         virt_dev->udev,
2561                                         &virt_dev->eps[i],
2562                                         virt_dev->tt_info);
2563         }
2564
2565         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2566                 /* Ok, this fits in the bandwidth we have.
2567                  * Update the number of active TTs.
2568                  */
2569                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2570                 return 0;
2571         }
2572
2573         /* We don't have enough bandwidth for this, revert the stored info. */
2574         for (i = 0; i < 31; i++) {
2575                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2576                         continue;
2577
2578                 /* Drop the new copies of any added or changed endpoints from
2579                  * the interval table.
2580                  */
2581                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2582                         xhci_drop_ep_from_interval_table(xhci,
2583                                         &virt_dev->eps[i].bw_info,
2584                                         virt_dev->bw_table,
2585                                         virt_dev->udev,
2586                                         &virt_dev->eps[i],
2587                                         virt_dev->tt_info);
2588                 }
2589                 /* Revert the endpoint back to its old information */
2590                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2591                                 sizeof(ep_bw_info[i]));
2592                 /* Add any changed or dropped endpoints back into the table */
2593                 if (EP_IS_DROPPED(ctrl_ctx, i))
2594                         xhci_add_ep_to_interval_table(xhci,
2595                                         &virt_dev->eps[i].bw_info,
2596                                         virt_dev->bw_table,
2597                                         virt_dev->udev,
2598                                         &virt_dev->eps[i],
2599                                         virt_dev->tt_info);
2600         }
2601         return -ENOMEM;
2602 }
2603
2604
2605 /* Issue a configure endpoint command or evaluate context command
2606  * and wait for it to finish.
2607  */
2608 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2609                 struct usb_device *udev,
2610                 struct xhci_command *command,
2611                 bool ctx_change, bool must_succeed)
2612 {
2613         int ret;
2614         unsigned long flags;
2615         struct xhci_input_control_ctx *ctrl_ctx;
2616         struct xhci_virt_device *virt_dev;
2617
2618         if (!command)
2619                 return -EINVAL;
2620
2621         spin_lock_irqsave(&xhci->lock, flags);
2622         virt_dev = xhci->devs[udev->slot_id];
2623
2624         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2625         if (!ctrl_ctx) {
2626                 spin_unlock_irqrestore(&xhci->lock, flags);
2627                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2628                                 __func__);
2629                 return -ENOMEM;
2630         }
2631
2632         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2633                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2634                 spin_unlock_irqrestore(&xhci->lock, flags);
2635                 xhci_warn(xhci, "Not enough host resources, "
2636                                 "active endpoint contexts = %u\n",
2637                                 xhci->num_active_eps);
2638                 return -ENOMEM;
2639         }
2640         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2641             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2642                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2643                         xhci_free_host_resources(xhci, ctrl_ctx);
2644                 spin_unlock_irqrestore(&xhci->lock, flags);
2645                 xhci_warn(xhci, "Not enough bandwidth\n");
2646                 return -ENOMEM;
2647         }
2648
2649         if (!ctx_change)
2650                 ret = xhci_queue_configure_endpoint(xhci, command,
2651                                 command->in_ctx->dma,
2652                                 udev->slot_id, must_succeed);
2653         else
2654                 ret = xhci_queue_evaluate_context(xhci, command,
2655                                 command->in_ctx->dma,
2656                                 udev->slot_id, must_succeed);
2657         if (ret < 0) {
2658                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2659                         xhci_free_host_resources(xhci, ctrl_ctx);
2660                 spin_unlock_irqrestore(&xhci->lock, flags);
2661                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2662                                 "FIXME allocate a new ring segment");
2663                 return -ENOMEM;
2664         }
2665         xhci_ring_cmd_db(xhci);
2666         spin_unlock_irqrestore(&xhci->lock, flags);
2667
2668         /* Wait for the configure endpoint command to complete */
2669         wait_for_completion(command->completion);
2670
2671         if (!ctx_change)
2672                 ret = xhci_configure_endpoint_result(xhci, udev,
2673                                                      &command->status);
2674         else
2675                 ret = xhci_evaluate_context_result(xhci, udev,
2676                                                    &command->status);
2677
2678         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2679                 spin_lock_irqsave(&xhci->lock, flags);
2680                 /* If the command failed, remove the reserved resources.
2681                  * Otherwise, clean up the estimate to include dropped eps.
2682                  */
2683                 if (ret)
2684                         xhci_free_host_resources(xhci, ctrl_ctx);
2685                 else
2686                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2687                 spin_unlock_irqrestore(&xhci->lock, flags);
2688         }
2689         return ret;
2690 }
2691
2692 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2693         struct xhci_virt_device *vdev, int i)
2694 {
2695         struct xhci_virt_ep *ep = &vdev->eps[i];
2696
2697         if (ep->ep_state & EP_HAS_STREAMS) {
2698                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2699                                 xhci_get_endpoint_address(i));
2700                 xhci_free_stream_info(xhci, ep->stream_info);
2701                 ep->stream_info = NULL;
2702                 ep->ep_state &= ~EP_HAS_STREAMS;
2703         }
2704 }
2705
2706 /* Called after one or more calls to xhci_add_endpoint() or
2707  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2708  * to call xhci_reset_bandwidth().
2709  *
2710  * Since we are in the middle of changing either configuration or
2711  * installing a new alt setting, the USB core won't allow URBs to be
2712  * enqueued for any endpoint on the old config or interface.  Nothing
2713  * else should be touching the xhci->devs[slot_id] structure, so we
2714  * don't need to take the xhci->lock for manipulating that.
2715  */
2716 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2717 {
2718         int i;
2719         int ret = 0;
2720         struct xhci_hcd *xhci;
2721         struct xhci_virt_device *virt_dev;
2722         struct xhci_input_control_ctx *ctrl_ctx;
2723         struct xhci_slot_ctx *slot_ctx;
2724         struct xhci_command *command;
2725
2726         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2727         if (ret <= 0)
2728                 return ret;
2729         xhci = hcd_to_xhci(hcd);
2730         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2731                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2732                 return -ENODEV;
2733
2734         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2735         virt_dev = xhci->devs[udev->slot_id];
2736
2737         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2738         if (!command)
2739                 return -ENOMEM;
2740
2741         command->in_ctx = virt_dev->in_ctx;
2742
2743         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2744         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2745         if (!ctrl_ctx) {
2746                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2747                                 __func__);
2748                 ret = -ENOMEM;
2749                 goto command_cleanup;
2750         }
2751         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2752         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2753         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2754
2755         /* Don't issue the command if there's no endpoints to update. */
2756         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2757             ctrl_ctx->drop_flags == 0) {
2758                 ret = 0;
2759                 goto command_cleanup;
2760         }
2761         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2762         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2763         for (i = 31; i >= 1; i--) {
2764                 __le32 le32 = cpu_to_le32(BIT(i));
2765
2766                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2767                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2768                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2769                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2770                         break;
2771                 }
2772         }
2773         xhci_dbg(xhci, "New Input Control Context:\n");
2774         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2775                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2776
2777         ret = xhci_configure_endpoint(xhci, udev, command,
2778                         false, false);
2779         if (ret)
2780                 /* Callee should call reset_bandwidth() */
2781                 goto command_cleanup;
2782
2783         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2784         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2785                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2786
2787         /* Free any rings that were dropped, but not changed. */
2788         for (i = 1; i < 31; i++) {
2789                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2790                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2791                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2792                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2793                 }
2794         }
2795         xhci_zero_in_ctx(xhci, virt_dev);
2796         /*
2797          * Install any rings for completely new endpoints or changed endpoints,
2798          * and free or cache any old rings from changed endpoints.
2799          */
2800         for (i = 1; i < 31; i++) {
2801                 if (!virt_dev->eps[i].new_ring)
2802                         continue;
2803                 /* Only cache or free the old ring if it exists.
2804                  * It may not if this is the first add of an endpoint.
2805                  */
2806                 if (virt_dev->eps[i].ring) {
2807                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2808                 }
2809                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2810                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2811                 virt_dev->eps[i].new_ring = NULL;
2812         }
2813 command_cleanup:
2814         kfree(command->completion);
2815         kfree(command);
2816
2817         return ret;
2818 }
2819
2820 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2821 {
2822         struct xhci_hcd *xhci;
2823         struct xhci_virt_device *virt_dev;
2824         int i, ret;
2825
2826         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2827         if (ret <= 0)
2828                 return;
2829         xhci = hcd_to_xhci(hcd);
2830
2831         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2832         virt_dev = xhci->devs[udev->slot_id];
2833         /* Free any rings allocated for added endpoints */
2834         for (i = 0; i < 31; i++) {
2835                 if (virt_dev->eps[i].new_ring) {
2836                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2837                         virt_dev->eps[i].new_ring = NULL;
2838                 }
2839         }
2840         xhci_zero_in_ctx(xhci, virt_dev);
2841 }
2842
2843 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2844                 struct xhci_container_ctx *in_ctx,
2845                 struct xhci_container_ctx *out_ctx,
2846                 struct xhci_input_control_ctx *ctrl_ctx,
2847                 u32 add_flags, u32 drop_flags)
2848 {
2849         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2850         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2851         xhci_slot_copy(xhci, in_ctx, out_ctx);
2852         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2853
2854         xhci_dbg(xhci, "Input Context:\n");
2855         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2856 }
2857
2858 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2859                 unsigned int slot_id, unsigned int ep_index,
2860                 struct xhci_dequeue_state *deq_state)
2861 {
2862         struct xhci_input_control_ctx *ctrl_ctx;
2863         struct xhci_container_ctx *in_ctx;
2864         struct xhci_ep_ctx *ep_ctx;
2865         u32 added_ctxs;
2866         dma_addr_t addr;
2867
2868         in_ctx = xhci->devs[slot_id]->in_ctx;
2869         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2870         if (!ctrl_ctx) {
2871                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2872                                 __func__);
2873                 return;
2874         }
2875
2876         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2877                         xhci->devs[slot_id]->out_ctx, ep_index);
2878         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2879         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2880                         deq_state->new_deq_ptr);
2881         if (addr == 0) {
2882                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2883                                 "reset ep command\n");
2884                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2885                                 deq_state->new_deq_seg,
2886                                 deq_state->new_deq_ptr);
2887                 return;
2888         }
2889         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2890
2891         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2892         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2893                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2894                         added_ctxs, added_ctxs);
2895 }
2896
2897 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2898                         unsigned int ep_index, struct xhci_td *td)
2899 {
2900         struct xhci_dequeue_state deq_state;
2901         struct xhci_virt_ep *ep;
2902         struct usb_device *udev = td->urb->dev;
2903
2904         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2905                         "Cleaning up stalled endpoint ring");
2906         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2907         /* We need to move the HW's dequeue pointer past this TD,
2908          * or it will attempt to resend it on the next doorbell ring.
2909          */
2910         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2911                         ep_index, ep->stopped_stream, td, &deq_state);
2912
2913         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2914                 return;
2915
2916         /* HW with the reset endpoint quirk will use the saved dequeue state to
2917          * issue a configure endpoint command later.
2918          */
2919         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2920                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2921                                 "Queueing new dequeue state");
2922                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2923                                 ep_index, ep->stopped_stream, &deq_state);
2924         } else {
2925                 /* Better hope no one uses the input context between now and the
2926                  * reset endpoint completion!
2927                  * XXX: No idea how this hardware will react when stream rings
2928                  * are enabled.
2929                  */
2930                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2931                                 "Setting up input context for "
2932                                 "configure endpoint command");
2933                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2934                                 ep_index, &deq_state);
2935         }
2936 }
2937
2938 /* Called when clearing halted device. The core should have sent the control
2939  * message to clear the device halt condition. The host side of the halt should
2940  * already be cleared with a reset endpoint command issued when the STALL tx
2941  * event was received.
2942  *
2943  * Context: in_interrupt
2944  */
2945
2946 void xhci_endpoint_reset(struct usb_hcd *hcd,
2947                 struct usb_host_endpoint *ep)
2948 {
2949         struct xhci_hcd *xhci;
2950
2951         xhci = hcd_to_xhci(hcd);
2952
2953         /*
2954          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2955          * The Reset Endpoint Command may only be issued to endpoints in the
2956          * Halted state. If software wishes reset the Data Toggle or Sequence
2957          * Number of an endpoint that isn't in the Halted state, then software
2958          * may issue a Configure Endpoint Command with the Drop and Add bits set
2959          * for the target endpoint. that is in the Stopped state.
2960          */
2961
2962         /* For now just print debug to follow the situation */
2963         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2964                  ep->desc.bEndpointAddress);
2965 }
2966
2967 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2968                 struct usb_device *udev, struct usb_host_endpoint *ep,
2969                 unsigned int slot_id)
2970 {
2971         int ret;
2972         unsigned int ep_index;
2973         unsigned int ep_state;
2974
2975         if (!ep)
2976                 return -EINVAL;
2977         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2978         if (ret <= 0)
2979                 return -EINVAL;
2980         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2981                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2982                                 " descriptor for ep 0x%x does not support streams\n",
2983                                 ep->desc.bEndpointAddress);
2984                 return -EINVAL;
2985         }
2986
2987         ep_index = xhci_get_endpoint_index(&ep->desc);
2988         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2989         if (ep_state & EP_HAS_STREAMS ||
2990                         ep_state & EP_GETTING_STREAMS) {
2991                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2992                                 "already has streams set up.\n",
2993                                 ep->desc.bEndpointAddress);
2994                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2995                                 "dynamic stream context array reallocation.\n");
2996                 return -EINVAL;
2997         }
2998         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2999                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3000                                 "endpoint 0x%x; URBs are pending.\n",
3001                                 ep->desc.bEndpointAddress);
3002                 return -EINVAL;
3003         }
3004         return 0;
3005 }
3006
3007 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3008                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3009 {
3010         unsigned int max_streams;
3011
3012         /* The stream context array size must be a power of two */
3013         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3014         /*
3015          * Find out how many primary stream array entries the host controller
3016          * supports.  Later we may use secondary stream arrays (similar to 2nd
3017          * level page entries), but that's an optional feature for xHCI host
3018          * controllers. xHCs must support at least 4 stream IDs.
3019          */
3020         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3021         if (*num_stream_ctxs > max_streams) {
3022                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3023                                 max_streams);
3024                 *num_stream_ctxs = max_streams;
3025                 *num_streams = max_streams;
3026         }
3027 }
3028
3029 /* Returns an error code if one of the endpoint already has streams.
3030  * This does not change any data structures, it only checks and gathers
3031  * information.
3032  */
3033 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3034                 struct usb_device *udev,
3035                 struct usb_host_endpoint **eps, unsigned int num_eps,
3036                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3037 {
3038         unsigned int max_streams;
3039         unsigned int endpoint_flag;
3040         int i;
3041         int ret;
3042
3043         for (i = 0; i < num_eps; i++) {
3044                 ret = xhci_check_streams_endpoint(xhci, udev,
3045                                 eps[i], udev->slot_id);
3046                 if (ret < 0)
3047                         return ret;
3048
3049                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3050                 if (max_streams < (*num_streams - 1)) {
3051                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3052                                         eps[i]->desc.bEndpointAddress,
3053                                         max_streams);
3054                         *num_streams = max_streams+1;
3055                 }
3056
3057                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3058                 if (*changed_ep_bitmask & endpoint_flag)
3059                         return -EINVAL;
3060                 *changed_ep_bitmask |= endpoint_flag;
3061         }
3062         return 0;
3063 }
3064
3065 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3066                 struct usb_device *udev,
3067                 struct usb_host_endpoint **eps, unsigned int num_eps)
3068 {
3069         u32 changed_ep_bitmask = 0;
3070         unsigned int slot_id;
3071         unsigned int ep_index;
3072         unsigned int ep_state;
3073         int i;
3074
3075         slot_id = udev->slot_id;
3076         if (!xhci->devs[slot_id])
3077                 return 0;
3078
3079         for (i = 0; i < num_eps; i++) {
3080                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3081                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3082                 /* Are streams already being freed for the endpoint? */
3083                 if (ep_state & EP_GETTING_NO_STREAMS) {
3084                         xhci_warn(xhci, "WARN Can't disable streams for "
3085                                         "endpoint 0x%x, "
3086                                         "streams are being disabled already\n",
3087                                         eps[i]->desc.bEndpointAddress);
3088                         return 0;
3089                 }
3090                 /* Are there actually any streams to free? */
3091                 if (!(ep_state & EP_HAS_STREAMS) &&
3092                                 !(ep_state & EP_GETTING_STREAMS)) {
3093                         xhci_warn(xhci, "WARN Can't disable streams for "
3094                                         "endpoint 0x%x, "
3095                                         "streams are already disabled!\n",
3096                                         eps[i]->desc.bEndpointAddress);
3097                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3098                                         "with non-streams endpoint\n");
3099                         return 0;
3100                 }
3101                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3102         }
3103         return changed_ep_bitmask;
3104 }
3105
3106 /*
3107  * The USB device drivers use this function (through the HCD interface in USB
3108  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3109  * coordinate mass storage command queueing across multiple endpoints (basically
3110  * a stream ID == a task ID).
3111  *
3112  * Setting up streams involves allocating the same size stream context array
3113  * for each endpoint and issuing a configure endpoint command for all endpoints.
3114  *
3115  * Don't allow the call to succeed if one endpoint only supports one stream
3116  * (which means it doesn't support streams at all).
3117  *
3118  * Drivers may get less stream IDs than they asked for, if the host controller
3119  * hardware or endpoints claim they can't support the number of requested
3120  * stream IDs.
3121  */
3122 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3123                 struct usb_host_endpoint **eps, unsigned int num_eps,
3124                 unsigned int num_streams, gfp_t mem_flags)
3125 {
3126         int i, ret;
3127         struct xhci_hcd *xhci;
3128         struct xhci_virt_device *vdev;
3129         struct xhci_command *config_cmd;
3130         struct xhci_input_control_ctx *ctrl_ctx;
3131         unsigned int ep_index;
3132         unsigned int num_stream_ctxs;
3133         unsigned int max_packet;
3134         unsigned long flags;
3135         u32 changed_ep_bitmask = 0;
3136
3137         if (!eps)
3138                 return -EINVAL;
3139
3140         /* Add one to the number of streams requested to account for
3141          * stream 0 that is reserved for xHCI usage.
3142          */
3143         num_streams += 1;
3144         xhci = hcd_to_xhci(hcd);
3145         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3146                         num_streams);
3147
3148         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3149         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3150                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3151                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3152                 return -ENOSYS;
3153         }
3154
3155         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3156         if (!config_cmd) {
3157                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3158                 return -ENOMEM;
3159         }
3160         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3161         if (!ctrl_ctx) {
3162                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3163                                 __func__);
3164                 xhci_free_command(xhci, config_cmd);
3165                 return -ENOMEM;
3166         }
3167
3168         /* Check to make sure all endpoints are not already configured for
3169          * streams.  While we're at it, find the maximum number of streams that
3170          * all the endpoints will support and check for duplicate endpoints.
3171          */
3172         spin_lock_irqsave(&xhci->lock, flags);
3173         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3174                         num_eps, &num_streams, &changed_ep_bitmask);
3175         if (ret < 0) {
3176                 xhci_free_command(xhci, config_cmd);
3177                 spin_unlock_irqrestore(&xhci->lock, flags);
3178                 return ret;
3179         }
3180         if (num_streams <= 1) {
3181                 xhci_warn(xhci, "WARN: endpoints can't handle "
3182                                 "more than one stream.\n");
3183                 xhci_free_command(xhci, config_cmd);
3184                 spin_unlock_irqrestore(&xhci->lock, flags);
3185                 return -EINVAL;
3186         }
3187         vdev = xhci->devs[udev->slot_id];
3188         /* Mark each endpoint as being in transition, so
3189          * xhci_urb_enqueue() will reject all URBs.
3190          */
3191         for (i = 0; i < num_eps; i++) {
3192                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3193                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3194         }
3195         spin_unlock_irqrestore(&xhci->lock, flags);
3196
3197         /* Setup internal data structures and allocate HW data structures for
3198          * streams (but don't install the HW structures in the input context
3199          * until we're sure all memory allocation succeeded).
3200          */
3201         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3202         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3203                         num_stream_ctxs, num_streams);
3204
3205         for (i = 0; i < num_eps; i++) {
3206                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3207                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3208                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3209                                 num_stream_ctxs,
3210                                 num_streams,
3211                                 max_packet, mem_flags);
3212                 if (!vdev->eps[ep_index].stream_info)
3213                         goto cleanup;
3214                 /* Set maxPstreams in endpoint context and update deq ptr to
3215                  * point to stream context array. FIXME
3216                  */
3217         }
3218
3219         /* Set up the input context for a configure endpoint command. */
3220         for (i = 0; i < num_eps; i++) {
3221                 struct xhci_ep_ctx *ep_ctx;
3222
3223                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3224                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3225
3226                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3227                                 vdev->out_ctx, ep_index);
3228                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3229                                 vdev->eps[ep_index].stream_info);
3230         }
3231         /* Tell the HW to drop its old copy of the endpoint context info
3232          * and add the updated copy from the input context.
3233          */
3234         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3235                         vdev->out_ctx, ctrl_ctx,
3236                         changed_ep_bitmask, changed_ep_bitmask);
3237
3238         /* Issue and wait for the configure endpoint command */
3239         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3240                         false, false);
3241
3242         /* xHC rejected the configure endpoint command for some reason, so we
3243          * leave the old ring intact and free our internal streams data
3244          * structure.
3245          */
3246         if (ret < 0)
3247                 goto cleanup;
3248
3249         spin_lock_irqsave(&xhci->lock, flags);
3250         for (i = 0; i < num_eps; i++) {
3251                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3252                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3253                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3254                          udev->slot_id, ep_index);
3255                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3256         }
3257         xhci_free_command(xhci, config_cmd);
3258         spin_unlock_irqrestore(&xhci->lock, flags);
3259
3260         /* Subtract 1 for stream 0, which drivers can't use */
3261         return num_streams - 1;
3262
3263 cleanup:
3264         /* If it didn't work, free the streams! */
3265         for (i = 0; i < num_eps; i++) {
3266                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3267                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3268                 vdev->eps[ep_index].stream_info = NULL;
3269                 /* FIXME Unset maxPstreams in endpoint context and
3270                  * update deq ptr to point to normal string ring.
3271                  */
3272                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3273                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3274                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3275         }
3276         xhci_free_command(xhci, config_cmd);
3277         return -ENOMEM;
3278 }
3279
3280 /* Transition the endpoint from using streams to being a "normal" endpoint
3281  * without streams.
3282  *
3283  * Modify the endpoint context state, submit a configure endpoint command,
3284  * and free all endpoint rings for streams if that completes successfully.
3285  */
3286 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3287                 struct usb_host_endpoint **eps, unsigned int num_eps,
3288                 gfp_t mem_flags)
3289 {
3290         int i, ret;
3291         struct xhci_hcd *xhci;
3292         struct xhci_virt_device *vdev;
3293         struct xhci_command *command;
3294         struct xhci_input_control_ctx *ctrl_ctx;
3295         unsigned int ep_index;
3296         unsigned long flags;
3297         u32 changed_ep_bitmask;
3298
3299         xhci = hcd_to_xhci(hcd);
3300         vdev = xhci->devs[udev->slot_id];
3301
3302         /* Set up a configure endpoint command to remove the streams rings */
3303         spin_lock_irqsave(&xhci->lock, flags);
3304         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3305                         udev, eps, num_eps);
3306         if (changed_ep_bitmask == 0) {
3307                 spin_unlock_irqrestore(&xhci->lock, flags);
3308                 return -EINVAL;
3309         }
3310
3311         /* Use the xhci_command structure from the first endpoint.  We may have
3312          * allocated too many, but the driver may call xhci_free_streams() for
3313          * each endpoint it grouped into one call to xhci_alloc_streams().
3314          */
3315         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3316         command = vdev->eps[ep_index].stream_info->free_streams_command;
3317         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3318         if (!ctrl_ctx) {
3319                 spin_unlock_irqrestore(&xhci->lock, flags);
3320                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3321                                 __func__);
3322                 return -EINVAL;
3323         }
3324
3325         for (i = 0; i < num_eps; i++) {
3326                 struct xhci_ep_ctx *ep_ctx;
3327
3328                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3329                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3330                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3331                         EP_GETTING_NO_STREAMS;
3332
3333                 xhci_endpoint_copy(xhci, command->in_ctx,
3334                                 vdev->out_ctx, ep_index);
3335                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3336                                 &vdev->eps[ep_index]);
3337         }
3338         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3339                         vdev->out_ctx, ctrl_ctx,
3340                         changed_ep_bitmask, changed_ep_bitmask);
3341         spin_unlock_irqrestore(&xhci->lock, flags);
3342
3343         /* Issue and wait for the configure endpoint command,
3344          * which must succeed.
3345          */
3346         ret = xhci_configure_endpoint(xhci, udev, command,
3347                         false, true);
3348
3349         /* xHC rejected the configure endpoint command for some reason, so we
3350          * leave the streams rings intact.
3351          */
3352         if (ret < 0)
3353                 return ret;
3354
3355         spin_lock_irqsave(&xhci->lock, flags);
3356         for (i = 0; i < num_eps; i++) {
3357                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3358                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3359                 vdev->eps[ep_index].stream_info = NULL;
3360                 /* FIXME Unset maxPstreams in endpoint context and
3361                  * update deq ptr to point to normal string ring.
3362                  */
3363                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3364                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3365         }
3366         spin_unlock_irqrestore(&xhci->lock, flags);
3367
3368         return 0;
3369 }
3370
3371 /*
3372  * Deletes endpoint resources for endpoints that were active before a Reset
3373  * Device command, or a Disable Slot command.  The Reset Device command leaves
3374  * the control endpoint intact, whereas the Disable Slot command deletes it.
3375  *
3376  * Must be called with xhci->lock held.
3377  */
3378 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3379         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3380 {
3381         int i;
3382         unsigned int num_dropped_eps = 0;
3383         unsigned int drop_flags = 0;
3384
3385         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3386                 if (virt_dev->eps[i].ring) {
3387                         drop_flags |= 1 << i;
3388                         num_dropped_eps++;
3389                 }
3390         }
3391         xhci->num_active_eps -= num_dropped_eps;
3392         if (num_dropped_eps)
3393                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3394                                 "Dropped %u ep ctxs, flags = 0x%x, "
3395                                 "%u now active.",
3396                                 num_dropped_eps, drop_flags,
3397                                 xhci->num_active_eps);
3398 }
3399
3400 /*
3401  * This submits a Reset Device Command, which will set the device state to 0,
3402  * set the device address to 0, and disable all the endpoints except the default
3403  * control endpoint.  The USB core should come back and call
3404  * xhci_address_device(), and then re-set up the configuration.  If this is
3405  * called because of a usb_reset_and_verify_device(), then the old alternate
3406  * settings will be re-installed through the normal bandwidth allocation
3407  * functions.
3408  *
3409  * Wait for the Reset Device command to finish.  Remove all structures
3410  * associated with the endpoints that were disabled.  Clear the input device
3411  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3412  *
3413  * If the virt_dev to be reset does not exist or does not match the udev,
3414  * it means the device is lost, possibly due to the xHC restore error and
3415  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3416  * re-allocate the device.
3417  */
3418 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3419 {
3420         int ret, i;
3421         unsigned long flags;
3422         struct xhci_hcd *xhci;
3423         unsigned int slot_id;
3424         struct xhci_virt_device *virt_dev;
3425         struct xhci_command *reset_device_cmd;
3426         int last_freed_endpoint;
3427         struct xhci_slot_ctx *slot_ctx;
3428         int old_active_eps = 0;
3429
3430         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3431         if (ret <= 0)
3432                 return ret;
3433         xhci = hcd_to_xhci(hcd);
3434         slot_id = udev->slot_id;
3435         virt_dev = xhci->devs[slot_id];
3436         if (!virt_dev) {
3437                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3438                                 "not exist. Re-allocate the device\n", slot_id);
3439                 ret = xhci_alloc_dev(hcd, udev);
3440                 if (ret == 1)
3441                         return 0;
3442                 else
3443                         return -EINVAL;
3444         }
3445
3446         if (virt_dev->tt_info)
3447                 old_active_eps = virt_dev->tt_info->active_eps;
3448
3449         if (virt_dev->udev != udev) {
3450                 /* If the virt_dev and the udev does not match, this virt_dev
3451                  * may belong to another udev.
3452                  * Re-allocate the device.
3453                  */
3454                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3455                                 "not match the udev. Re-allocate the device\n",
3456                                 slot_id);
3457                 ret = xhci_alloc_dev(hcd, udev);
3458                 if (ret == 1)
3459                         return 0;
3460                 else
3461                         return -EINVAL;
3462         }
3463
3464         /* If device is not setup, there is no point in resetting it */
3465         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3466         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3467                                                 SLOT_STATE_DISABLED)
3468                 return 0;
3469
3470         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3471         /* Allocate the command structure that holds the struct completion.
3472          * Assume we're in process context, since the normal device reset
3473          * process has to wait for the device anyway.  Storage devices are
3474          * reset as part of error handling, so use GFP_NOIO instead of
3475          * GFP_KERNEL.
3476          */
3477         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3478         if (!reset_device_cmd) {
3479                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3480                 return -ENOMEM;
3481         }
3482
3483         /* Attempt to submit the Reset Device command to the command ring */
3484         spin_lock_irqsave(&xhci->lock, flags);
3485
3486         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3487         if (ret) {
3488                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3489                 spin_unlock_irqrestore(&xhci->lock, flags);
3490                 goto command_cleanup;
3491         }
3492         xhci_ring_cmd_db(xhci);
3493         spin_unlock_irqrestore(&xhci->lock, flags);
3494
3495         /* Wait for the Reset Device command to finish */
3496         wait_for_completion(reset_device_cmd->completion);
3497
3498         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3499          * unless we tried to reset a slot ID that wasn't enabled,
3500          * or the device wasn't in the addressed or configured state.
3501          */
3502         ret = reset_device_cmd->status;
3503         switch (ret) {
3504         case COMP_COMMAND_ABORTED:
3505         case COMP_STOPPED:
3506                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3507                 ret = -ETIME;
3508                 goto command_cleanup;
3509         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3510         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3511                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3512                                 slot_id,
3513                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3514                 xhci_dbg(xhci, "Not freeing device rings.\n");
3515                 /* Don't treat this as an error.  May change my mind later. */
3516                 ret = 0;
3517                 goto command_cleanup;
3518         case COMP_SUCCESS:
3519                 xhci_dbg(xhci, "Successful reset device command.\n");
3520                 break;
3521         default:
3522                 if (xhci_is_vendor_info_code(xhci, ret))
3523                         break;
3524                 xhci_warn(xhci, "Unknown completion code %u for "
3525                                 "reset device command.\n", ret);
3526                 ret = -EINVAL;
3527                 goto command_cleanup;
3528         }
3529
3530         /* Free up host controller endpoint resources */
3531         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3532                 spin_lock_irqsave(&xhci->lock, flags);
3533                 /* Don't delete the default control endpoint resources */
3534                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3535                 spin_unlock_irqrestore(&xhci->lock, flags);
3536         }
3537
3538         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3539         last_freed_endpoint = 1;
3540         for (i = 1; i < 31; i++) {
3541                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3542
3543                 if (ep->ep_state & EP_HAS_STREAMS) {
3544                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3545                                         xhci_get_endpoint_address(i));
3546                         xhci_free_stream_info(xhci, ep->stream_info);
3547                         ep->stream_info = NULL;
3548                         ep->ep_state &= ~EP_HAS_STREAMS;
3549                 }
3550
3551                 if (ep->ring) {
3552                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3553                         last_freed_endpoint = i;
3554                 }
3555                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3556                         xhci_drop_ep_from_interval_table(xhci,
3557                                         &virt_dev->eps[i].bw_info,
3558                                         virt_dev->bw_table,
3559                                         udev,
3560                                         &virt_dev->eps[i],
3561                                         virt_dev->tt_info);
3562                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3563         }
3564         /* If necessary, update the number of active TTs on this root port */
3565         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3566
3567         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3568         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3569         ret = 0;
3570
3571 command_cleanup:
3572         xhci_free_command(xhci, reset_device_cmd);
3573         return ret;
3574 }
3575
3576 /*
3577  * At this point, the struct usb_device is about to go away, the device has
3578  * disconnected, and all traffic has been stopped and the endpoints have been
3579  * disabled.  Free any HC data structures associated with that device.
3580  */
3581 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3582 {
3583         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3584         struct xhci_virt_device *virt_dev;
3585         unsigned long flags;
3586         u32 state;
3587         int i, ret;
3588         struct xhci_command *command;
3589
3590         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3591         if (!command)
3592                 return;
3593
3594 #ifndef CONFIG_USB_DEFAULT_PERSIST
3595         /*
3596          * We called pm_runtime_get_noresume when the device was attached.
3597          * Decrement the counter here to allow controller to runtime suspend
3598          * if no devices remain.
3599          */
3600         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3601                 pm_runtime_put_noidle(hcd->self.controller);
3602 #endif
3603
3604         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3605         /* If the host is halted due to driver unload, we still need to free the
3606          * device.
3607          */
3608         if (ret <= 0 && ret != -ENODEV) {
3609                 kfree(command);
3610                 return;
3611         }
3612
3613         virt_dev = xhci->devs[udev->slot_id];
3614
3615         /* Stop any wayward timer functions (which may grab the lock) */
3616         for (i = 0; i < 31; i++) {
3617                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3618                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3619         }
3620
3621         spin_lock_irqsave(&xhci->lock, flags);
3622         /* Don't disable the slot if the host controller is dead. */
3623         state = readl(&xhci->op_regs->status);
3624         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3625                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3626                 xhci_free_virt_device(xhci, udev->slot_id);
3627                 spin_unlock_irqrestore(&xhci->lock, flags);
3628                 kfree(command);
3629                 return;
3630         }
3631
3632         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3633                                     udev->slot_id)) {
3634                 spin_unlock_irqrestore(&xhci->lock, flags);
3635                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3636                 return;
3637         }
3638         xhci_ring_cmd_db(xhci);
3639         spin_unlock_irqrestore(&xhci->lock, flags);
3640
3641         /*
3642          * Event command completion handler will free any data structures
3643          * associated with the slot.  XXX Can free sleep?
3644          */
3645 }
3646
3647 /*
3648  * Checks if we have enough host controller resources for the default control
3649  * endpoint.
3650  *
3651  * Must be called with xhci->lock held.
3652  */
3653 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3654 {
3655         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3656                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3657                                 "Not enough ep ctxs: "
3658                                 "%u active, need to add 1, limit is %u.",
3659                                 xhci->num_active_eps, xhci->limit_active_eps);
3660                 return -ENOMEM;
3661         }
3662         xhci->num_active_eps += 1;
3663         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3664                         "Adding 1 ep ctx, %u now active.",
3665                         xhci->num_active_eps);
3666         return 0;
3667 }
3668
3669
3670 /*
3671  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3672  * timed out, or allocating memory failed.  Returns 1 on success.
3673  */
3674 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3675 {
3676         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3677         unsigned long flags;
3678         int ret, slot_id;
3679         struct xhci_command *command;
3680
3681         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3682         if (!command)
3683                 return 0;
3684
3685         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3686         mutex_lock(&xhci->mutex);
3687         spin_lock_irqsave(&xhci->lock, flags);
3688         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3689         if (ret) {
3690                 spin_unlock_irqrestore(&xhci->lock, flags);
3691                 mutex_unlock(&xhci->mutex);
3692                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3693                 xhci_free_command(xhci, command);
3694                 return 0;
3695         }
3696         xhci_ring_cmd_db(xhci);
3697         spin_unlock_irqrestore(&xhci->lock, flags);
3698
3699         wait_for_completion(command->completion);
3700         slot_id = command->slot_id;
3701         mutex_unlock(&xhci->mutex);
3702
3703         if (!slot_id || command->status != COMP_SUCCESS) {
3704                 xhci_err(xhci, "Error while assigning device slot ID\n");
3705                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3706                                 HCS_MAX_SLOTS(
3707                                         readl(&xhci->cap_regs->hcs_params1)));
3708                 xhci_free_command(xhci, command);
3709                 return 0;
3710         }
3711
3712         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3713                 spin_lock_irqsave(&xhci->lock, flags);
3714                 ret = xhci_reserve_host_control_ep_resources(xhci);
3715                 if (ret) {
3716                         spin_unlock_irqrestore(&xhci->lock, flags);
3717                         xhci_warn(xhci, "Not enough host resources, "
3718                                         "active endpoint contexts = %u\n",
3719                                         xhci->num_active_eps);
3720                         goto disable_slot;
3721                 }
3722                 spin_unlock_irqrestore(&xhci->lock, flags);
3723         }
3724         /* Use GFP_NOIO, since this function can be called from
3725          * xhci_discover_or_reset_device(), which may be called as part of
3726          * mass storage driver error handling.
3727          */
3728         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3729                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3730                 goto disable_slot;
3731         }
3732         udev->slot_id = slot_id;
3733
3734 #ifndef CONFIG_USB_DEFAULT_PERSIST
3735         /*
3736          * If resetting upon resume, we can't put the controller into runtime
3737          * suspend if there is a device attached.
3738          */
3739         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3740                 pm_runtime_get_noresume(hcd->self.controller);
3741 #endif
3742
3743
3744         xhci_free_command(xhci, command);
3745         /* Is this a LS or FS device under a HS hub? */
3746         /* Hub or peripherial? */
3747         return 1;
3748
3749 disable_slot:
3750         /* Disable slot, if we can do it without mem alloc */
3751         spin_lock_irqsave(&xhci->lock, flags);
3752         kfree(command->completion);
3753         command->completion = NULL;
3754         command->status = 0;
3755         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3756                                      udev->slot_id))
3757                 xhci_ring_cmd_db(xhci);
3758         spin_unlock_irqrestore(&xhci->lock, flags);
3759         return 0;
3760 }
3761
3762 /*
3763  * Issue an Address Device command and optionally send a corresponding
3764  * SetAddress request to the device.
3765  */
3766 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3767                              enum xhci_setup_dev setup)
3768 {
3769         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3770         unsigned long flags;
3771         struct xhci_virt_device *virt_dev;
3772         int ret = 0;
3773         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3774         struct xhci_slot_ctx *slot_ctx;
3775         struct xhci_input_control_ctx *ctrl_ctx;
3776         u64 temp_64;
3777         struct xhci_command *command = NULL;
3778
3779         mutex_lock(&xhci->mutex);
3780
3781         if (xhci->xhc_state) {  /* dying, removing or halted */
3782                 ret = -ESHUTDOWN;
3783                 goto out;
3784         }
3785
3786         if (!udev->slot_id) {
3787                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3788                                 "Bad Slot ID %d", udev->slot_id);
3789                 ret = -EINVAL;
3790                 goto out;
3791         }
3792
3793         virt_dev = xhci->devs[udev->slot_id];
3794
3795         if (WARN_ON(!virt_dev)) {
3796                 /*
3797                  * In plug/unplug torture test with an NEC controller,
3798                  * a zero-dereference was observed once due to virt_dev = 0.
3799                  * Print useful debug rather than crash if it is observed again!
3800                  */
3801                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3802                         udev->slot_id);
3803                 ret = -EINVAL;
3804                 goto out;
3805         }
3806
3807         if (setup == SETUP_CONTEXT_ONLY) {
3808                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3809                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3810                     SLOT_STATE_DEFAULT) {
3811                         xhci_dbg(xhci, "Slot already in default state\n");
3812                         goto out;
3813                 }
3814         }
3815
3816         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3817         if (!command) {
3818                 ret = -ENOMEM;
3819                 goto out;
3820         }
3821
3822         command->in_ctx = virt_dev->in_ctx;
3823
3824         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3825         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3826         if (!ctrl_ctx) {
3827                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3828                                 __func__);
3829                 ret = -EINVAL;
3830                 goto out;
3831         }
3832         /*
3833          * If this is the first Set Address since device plug-in or
3834          * virt_device realloaction after a resume with an xHCI power loss,
3835          * then set up the slot context.
3836          */
3837         if (!slot_ctx->dev_info)
3838                 xhci_setup_addressable_virt_dev(xhci, udev);
3839         /* Otherwise, update the control endpoint ring enqueue pointer. */
3840         else
3841                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3842         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3843         ctrl_ctx->drop_flags = 0;
3844
3845         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3846         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3847         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3848                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3849
3850         spin_lock_irqsave(&xhci->lock, flags);
3851         trace_xhci_setup_device(virt_dev);
3852         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3853                                         udev->slot_id, setup);
3854         if (ret) {
3855                 spin_unlock_irqrestore(&xhci->lock, flags);
3856                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3857                                 "FIXME: allocate a command ring segment");
3858                 goto out;
3859         }
3860         xhci_ring_cmd_db(xhci);
3861         spin_unlock_irqrestore(&xhci->lock, flags);
3862
3863         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3864         wait_for_completion(command->completion);
3865
3866         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3867          * the SetAddress() "recovery interval" required by USB and aborting the
3868          * command on a timeout.
3869          */
3870         switch (command->status) {
3871         case COMP_COMMAND_ABORTED:
3872         case COMP_STOPPED:
3873                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3874                 ret = -ETIME;
3875                 break;
3876         case COMP_CONTEXT_STATE_ERROR:
3877         case COMP_SLOT_NOT_ENABLED_ERROR:
3878                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3879                          act, udev->slot_id);
3880                 ret = -EINVAL;
3881                 break;
3882         case COMP_USB_TRANSACTION_ERROR:
3883                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3884                 ret = -EPROTO;
3885                 break;
3886         case COMP_INCOMPATIBLE_DEVICE_ERROR:
3887                 dev_warn(&udev->dev,
3888                          "ERROR: Incompatible device for setup %s command\n", act);
3889                 ret = -ENODEV;
3890                 break;
3891         case COMP_SUCCESS:
3892                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3893                                "Successful setup %s command", act);
3894                 break;
3895         default:
3896                 xhci_err(xhci,
3897                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3898                          act, command->status);
3899                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3900                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3901                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3902                 ret = -EINVAL;
3903                 break;
3904         }
3905         if (ret)
3906                 goto out;
3907         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3908         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3909                         "Op regs DCBAA ptr = %#016llx", temp_64);
3910         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3911                 "Slot ID %d dcbaa entry @%p = %#016llx",
3912                 udev->slot_id,
3913                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3914                 (unsigned long long)
3915                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3916         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3917                         "Output Context DMA address = %#08llx",
3918                         (unsigned long long)virt_dev->out_ctx->dma);
3919         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3920         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3921         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3922                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3923         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3924         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3925         /*
3926          * USB core uses address 1 for the roothubs, so we add one to the
3927          * address given back to us by the HC.
3928          */
3929         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3930         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3931                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3932         /* Zero the input context control for later use */
3933         ctrl_ctx->add_flags = 0;
3934         ctrl_ctx->drop_flags = 0;
3935
3936         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3937                        "Internal device address = %d",
3938                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3939 out:
3940         mutex_unlock(&xhci->mutex);
3941         if (command) {
3942                 kfree(command->completion);
3943                 kfree(command);
3944         }
3945         return ret;
3946 }
3947
3948 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3949 {
3950         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3951 }
3952
3953 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3954 {
3955         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3956 }
3957
3958 /*
3959  * Transfer the port index into real index in the HW port status
3960  * registers. Caculate offset between the port's PORTSC register
3961  * and port status base. Divide the number of per port register
3962  * to get the real index. The raw port number bases 1.
3963  */
3964 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3965 {
3966         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3967         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3968         __le32 __iomem *addr;
3969         int raw_port;
3970
3971         if (hcd->speed < HCD_USB3)
3972                 addr = xhci->usb2_ports[port1 - 1];
3973         else
3974                 addr = xhci->usb3_ports[port1 - 1];
3975
3976         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3977         return raw_port;
3978 }
3979
3980 /*
3981  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3982  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3983  */
3984 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3985                         struct usb_device *udev, u16 max_exit_latency)
3986 {
3987         struct xhci_virt_device *virt_dev;
3988         struct xhci_command *command;
3989         struct xhci_input_control_ctx *ctrl_ctx;
3990         struct xhci_slot_ctx *slot_ctx;
3991         unsigned long flags;
3992         int ret;
3993
3994         spin_lock_irqsave(&xhci->lock, flags);
3995
3996         virt_dev = xhci->devs[udev->slot_id];
3997
3998         /*
3999          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4000          * xHC was re-initialized. Exit latency will be set later after
4001          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4002          */
4003
4004         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4005                 spin_unlock_irqrestore(&xhci->lock, flags);
4006                 return 0;
4007         }
4008
4009         /* Attempt to issue an Evaluate Context command to change the MEL. */
4010         command = xhci->lpm_command;
4011         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4012         if (!ctrl_ctx) {
4013                 spin_unlock_irqrestore(&xhci->lock, flags);
4014                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4015                                 __func__);
4016                 return -ENOMEM;
4017         }
4018
4019         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4020         spin_unlock_irqrestore(&xhci->lock, flags);
4021
4022         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4023         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4024         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4025         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4026         slot_ctx->dev_state = 0;
4027
4028         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4029                         "Set up evaluate context for LPM MEL change.");
4030         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4031         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4032
4033         /* Issue and wait for the evaluate context command. */
4034         ret = xhci_configure_endpoint(xhci, udev, command,
4035                         true, true);
4036         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4037         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4038
4039         if (!ret) {
4040                 spin_lock_irqsave(&xhci->lock, flags);
4041                 virt_dev->current_mel = max_exit_latency;
4042                 spin_unlock_irqrestore(&xhci->lock, flags);
4043         }
4044         return ret;
4045 }
4046
4047 #ifdef CONFIG_PM
4048
4049 /* BESL to HIRD Encoding array for USB2 LPM */
4050 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4051         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4052
4053 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4054 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4055                                         struct usb_device *udev)
4056 {
4057         int u2del, besl, besl_host;
4058         int besl_device = 0;
4059         u32 field;
4060
4061         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4062         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4063
4064         if (field & USB_BESL_SUPPORT) {
4065                 for (besl_host = 0; besl_host < 16; besl_host++) {
4066                         if (xhci_besl_encoding[besl_host] >= u2del)
4067                                 break;
4068                 }
4069                 /* Use baseline BESL value as default */
4070                 if (field & USB_BESL_BASELINE_VALID)
4071                         besl_device = USB_GET_BESL_BASELINE(field);
4072                 else if (field & USB_BESL_DEEP_VALID)
4073                         besl_device = USB_GET_BESL_DEEP(field);
4074         } else {
4075                 if (u2del <= 50)
4076                         besl_host = 0;
4077                 else
4078                         besl_host = (u2del - 51) / 75 + 1;
4079         }
4080
4081         besl = besl_host + besl_device;
4082         if (besl > 15)
4083                 besl = 15;
4084
4085         return besl;
4086 }
4087
4088 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4089 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4090 {
4091         u32 field;
4092         int l1;
4093         int besld = 0;
4094         int hirdm = 0;
4095
4096         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4097
4098         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4099         l1 = udev->l1_params.timeout / 256;
4100
4101         /* device has preferred BESLD */
4102         if (field & USB_BESL_DEEP_VALID) {
4103                 besld = USB_GET_BESL_DEEP(field);
4104                 hirdm = 1;
4105         }
4106
4107         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4108 }
4109
4110 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4111                         struct usb_device *udev, int enable)
4112 {
4113         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4114         __le32 __iomem  **port_array;
4115         __le32 __iomem  *pm_addr, *hlpm_addr;
4116         u32             pm_val, hlpm_val, field;
4117         unsigned int    port_num;
4118         unsigned long   flags;
4119         int             hird, exit_latency;
4120         int             ret;
4121
4122         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4123                         !udev->lpm_capable)
4124                 return -EPERM;
4125
4126         if (!udev->parent || udev->parent->parent ||
4127                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4128                 return -EPERM;
4129
4130         if (udev->usb2_hw_lpm_capable != 1)
4131                 return -EPERM;
4132
4133         spin_lock_irqsave(&xhci->lock, flags);
4134
4135         port_array = xhci->usb2_ports;
4136         port_num = udev->portnum - 1;
4137         pm_addr = port_array[port_num] + PORTPMSC;
4138         pm_val = readl(pm_addr);
4139         hlpm_addr = port_array[port_num] + PORTHLPMC;
4140         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4141
4142         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4143                         enable ? "enable" : "disable", port_num + 1);
4144
4145         if (enable) {
4146                 /* Host supports BESL timeout instead of HIRD */
4147                 if (udev->usb2_hw_lpm_besl_capable) {
4148                         /* if device doesn't have a preferred BESL value use a
4149                          * default one which works with mixed HIRD and BESL
4150                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4151                          */
4152                         if ((field & USB_BESL_SUPPORT) &&
4153                             (field & USB_BESL_BASELINE_VALID))
4154                                 hird = USB_GET_BESL_BASELINE(field);
4155                         else
4156                                 hird = udev->l1_params.besl;
4157
4158                         exit_latency = xhci_besl_encoding[hird];
4159                         spin_unlock_irqrestore(&xhci->lock, flags);
4160
4161                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4162                          * input context for link powermanagement evaluate
4163                          * context commands. It is protected by hcd->bandwidth
4164                          * mutex and is shared by all devices. We need to set
4165                          * the max ext latency in USB 2 BESL LPM as well, so
4166                          * use the same mutex and xhci_change_max_exit_latency()
4167                          */
4168                         mutex_lock(hcd->bandwidth_mutex);
4169                         ret = xhci_change_max_exit_latency(xhci, udev,
4170                                                            exit_latency);
4171                         mutex_unlock(hcd->bandwidth_mutex);
4172
4173                         if (ret < 0)
4174                                 return ret;
4175                         spin_lock_irqsave(&xhci->lock, flags);
4176
4177                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4178                         writel(hlpm_val, hlpm_addr);
4179                         /* flush write */
4180                         readl(hlpm_addr);
4181                 } else {
4182                         hird = xhci_calculate_hird_besl(xhci, udev);
4183                 }
4184
4185                 pm_val &= ~PORT_HIRD_MASK;
4186                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4187                 writel(pm_val, pm_addr);
4188                 pm_val = readl(pm_addr);
4189                 pm_val |= PORT_HLE;
4190                 writel(pm_val, pm_addr);
4191                 /* flush write */
4192                 readl(pm_addr);
4193         } else {
4194                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4195                 writel(pm_val, pm_addr);
4196                 /* flush write */
4197                 readl(pm_addr);
4198                 if (udev->usb2_hw_lpm_besl_capable) {
4199                         spin_unlock_irqrestore(&xhci->lock, flags);
4200                         mutex_lock(hcd->bandwidth_mutex);
4201                         xhci_change_max_exit_latency(xhci, udev, 0);
4202                         mutex_unlock(hcd->bandwidth_mutex);
4203                         return 0;
4204                 }
4205         }
4206
4207         spin_unlock_irqrestore(&xhci->lock, flags);
4208         return 0;
4209 }
4210
4211 /* check if a usb2 port supports a given extened capability protocol
4212  * only USB2 ports extended protocol capability values are cached.
4213  * Return 1 if capability is supported
4214  */
4215 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4216                                            unsigned capability)
4217 {
4218         u32 port_offset, port_count;
4219         int i;
4220
4221         for (i = 0; i < xhci->num_ext_caps; i++) {
4222                 if (xhci->ext_caps[i] & capability) {
4223                         /* port offsets starts at 1 */
4224                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4225                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4226                         if (port >= port_offset &&
4227                             port < port_offset + port_count)
4228                                 return 1;
4229                 }
4230         }
4231         return 0;
4232 }
4233
4234 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4235 {
4236         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4237         int             portnum = udev->portnum - 1;
4238
4239         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4240                         !udev->lpm_capable)
4241                 return 0;
4242
4243         /* we only support lpm for non-hub device connected to root hub yet */
4244         if (!udev->parent || udev->parent->parent ||
4245                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4246                 return 0;
4247
4248         if (xhci->hw_lpm_support == 1 &&
4249                         xhci_check_usb2_port_capability(
4250                                 xhci, portnum, XHCI_HLC)) {
4251                 udev->usb2_hw_lpm_capable = 1;
4252                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4253                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4254                 if (xhci_check_usb2_port_capability(xhci, portnum,
4255                                         XHCI_BLC))
4256                         udev->usb2_hw_lpm_besl_capable = 1;
4257         }
4258
4259         return 0;
4260 }
4261
4262 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4263
4264 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4265 static unsigned long long xhci_service_interval_to_ns(
4266                 struct usb_endpoint_descriptor *desc)
4267 {
4268         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4269 }
4270
4271 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4272                 enum usb3_link_state state)
4273 {
4274         unsigned long long sel;
4275         unsigned long long pel;
4276         unsigned int max_sel_pel;
4277         char *state_name;
4278
4279         switch (state) {
4280         case USB3_LPM_U1:
4281                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4282                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4283                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4284                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4285                 state_name = "U1";
4286                 break;
4287         case USB3_LPM_U2:
4288                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4289                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4290                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4291                 state_name = "U2";
4292                 break;
4293         default:
4294                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4295                                 __func__);
4296                 return USB3_LPM_DISABLED;
4297         }
4298
4299         if (sel <= max_sel_pel && pel <= max_sel_pel)
4300                 return USB3_LPM_DEVICE_INITIATED;
4301
4302         if (sel > max_sel_pel)
4303                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4304                                 "due to long SEL %llu ms\n",
4305                                 state_name, sel);
4306         else
4307                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4308                                 "due to long PEL %llu ms\n",
4309                                 state_name, pel);
4310         return USB3_LPM_DISABLED;
4311 }
4312
4313 /* The U1 timeout should be the maximum of the following values:
4314  *  - For control endpoints, U1 system exit latency (SEL) * 3
4315  *  - For bulk endpoints, U1 SEL * 5
4316  *  - For interrupt endpoints:
4317  *    - Notification EPs, U1 SEL * 3
4318  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4319  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4320  */
4321 static unsigned long long xhci_calculate_intel_u1_timeout(
4322                 struct usb_device *udev,
4323                 struct usb_endpoint_descriptor *desc)
4324 {
4325         unsigned long long timeout_ns;
4326         int ep_type;
4327         int intr_type;
4328
4329         ep_type = usb_endpoint_type(desc);
4330         switch (ep_type) {
4331         case USB_ENDPOINT_XFER_CONTROL:
4332                 timeout_ns = udev->u1_params.sel * 3;
4333                 break;
4334         case USB_ENDPOINT_XFER_BULK:
4335                 timeout_ns = udev->u1_params.sel * 5;
4336                 break;
4337         case USB_ENDPOINT_XFER_INT:
4338                 intr_type = usb_endpoint_interrupt_type(desc);
4339                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4340                         timeout_ns = udev->u1_params.sel * 3;
4341                         break;
4342                 }
4343                 /* Otherwise the calculation is the same as isoc eps */
4344         case USB_ENDPOINT_XFER_ISOC:
4345                 timeout_ns = xhci_service_interval_to_ns(desc);
4346                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4347                 if (timeout_ns < udev->u1_params.sel * 2)
4348                         timeout_ns = udev->u1_params.sel * 2;
4349                 break;
4350         default:
4351                 return 0;
4352         }
4353
4354         return timeout_ns;
4355 }
4356
4357 /* Returns the hub-encoded U1 timeout value. */
4358 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4359                 struct usb_device *udev,
4360                 struct usb_endpoint_descriptor *desc)
4361 {
4362         unsigned long long timeout_ns;
4363
4364         if (xhci->quirks & XHCI_INTEL_HOST)
4365                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4366         else
4367                 timeout_ns = udev->u1_params.sel;
4368
4369         /* The U1 timeout is encoded in 1us intervals.
4370          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4371          */
4372         if (timeout_ns == USB3_LPM_DISABLED)
4373                 timeout_ns = 1;
4374         else
4375                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4376
4377         /* If the necessary timeout value is bigger than what we can set in the
4378          * USB 3.0 hub, we have to disable hub-initiated U1.
4379          */
4380         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4381                 return timeout_ns;
4382         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4383                         "due to long timeout %llu ms\n", timeout_ns);
4384         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4385 }
4386
4387 /* The U2 timeout should be the maximum of:
4388  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4389  *  - largest bInterval of any active periodic endpoint (to avoid going
4390  *    into lower power link states between intervals).
4391  *  - the U2 Exit Latency of the device
4392  */
4393 static unsigned long long xhci_calculate_intel_u2_timeout(
4394                 struct usb_device *udev,
4395                 struct usb_endpoint_descriptor *desc)
4396 {
4397         unsigned long long timeout_ns;
4398         unsigned long long u2_del_ns;
4399
4400         timeout_ns = 10 * 1000 * 1000;
4401
4402         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4403                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4404                 timeout_ns = xhci_service_interval_to_ns(desc);
4405
4406         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4407         if (u2_del_ns > timeout_ns)
4408                 timeout_ns = u2_del_ns;
4409
4410         return timeout_ns;
4411 }
4412
4413 /* Returns the hub-encoded U2 timeout value. */
4414 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4415                 struct usb_device *udev,
4416                 struct usb_endpoint_descriptor *desc)
4417 {
4418         unsigned long long timeout_ns;
4419
4420         if (xhci->quirks & XHCI_INTEL_HOST)
4421                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4422         else
4423                 timeout_ns = udev->u2_params.sel;
4424
4425         /* The U2 timeout is encoded in 256us intervals */
4426         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4427         /* If the necessary timeout value is bigger than what we can set in the
4428          * USB 3.0 hub, we have to disable hub-initiated U2.
4429          */
4430         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4431                 return timeout_ns;
4432         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4433                         "due to long timeout %llu ms\n", timeout_ns);
4434         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4435 }
4436
4437 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4438                 struct usb_device *udev,
4439                 struct usb_endpoint_descriptor *desc,
4440                 enum usb3_link_state state,
4441                 u16 *timeout)
4442 {
4443         if (state == USB3_LPM_U1)
4444                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4445         else if (state == USB3_LPM_U2)
4446                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4447
4448         return USB3_LPM_DISABLED;
4449 }
4450
4451 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4452                 struct usb_device *udev,
4453                 struct usb_endpoint_descriptor *desc,
4454                 enum usb3_link_state state,
4455                 u16 *timeout)
4456 {
4457         u16 alt_timeout;
4458
4459         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4460                 desc, state, timeout);
4461
4462         /* If we found we can't enable hub-initiated LPM, or
4463          * the U1 or U2 exit latency was too high to allow
4464          * device-initiated LPM as well, just stop searching.
4465          */
4466         if (alt_timeout == USB3_LPM_DISABLED ||
4467                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4468                 *timeout = alt_timeout;
4469                 return -E2BIG;
4470         }
4471         if (alt_timeout > *timeout)
4472                 *timeout = alt_timeout;
4473         return 0;
4474 }
4475
4476 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4477                 struct usb_device *udev,
4478                 struct usb_host_interface *alt,
4479                 enum usb3_link_state state,
4480                 u16 *timeout)
4481 {
4482         int j;
4483
4484         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4485                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4486                                         &alt->endpoint[j].desc, state, timeout))
4487                         return -E2BIG;
4488                 continue;
4489         }
4490         return 0;
4491 }
4492
4493 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4494                 enum usb3_link_state state)
4495 {
4496         struct usb_device *parent;
4497         unsigned int num_hubs;
4498
4499         if (state == USB3_LPM_U2)
4500                 return 0;
4501
4502         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4503         for (parent = udev->parent, num_hubs = 0; parent->parent;
4504                         parent = parent->parent)
4505                 num_hubs++;
4506
4507         if (num_hubs < 2)
4508                 return 0;
4509
4510         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4511                         " below second-tier hub.\n");
4512         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4513                         "to decrease power consumption.\n");
4514         return -E2BIG;
4515 }
4516
4517 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4518                 struct usb_device *udev,
4519                 enum usb3_link_state state)
4520 {
4521         if (xhci->quirks & XHCI_INTEL_HOST)
4522                 return xhci_check_intel_tier_policy(udev, state);
4523         else
4524                 return 0;
4525 }
4526
4527 /* Returns the U1 or U2 timeout that should be enabled.
4528  * If the tier check or timeout setting functions return with a non-zero exit
4529  * code, that means the timeout value has been finalized and we shouldn't look
4530  * at any more endpoints.
4531  */
4532 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4533                         struct usb_device *udev, enum usb3_link_state state)
4534 {
4535         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4536         struct usb_host_config *config;
4537         char *state_name;
4538         int i;
4539         u16 timeout = USB3_LPM_DISABLED;
4540
4541         if (state == USB3_LPM_U1)
4542                 state_name = "U1";
4543         else if (state == USB3_LPM_U2)
4544                 state_name = "U2";
4545         else {
4546                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4547                                 state);
4548                 return timeout;
4549         }
4550
4551         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4552                 return timeout;
4553
4554         /* Gather some information about the currently installed configuration
4555          * and alternate interface settings.
4556          */
4557         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4558                         state, &timeout))
4559                 return timeout;
4560
4561         config = udev->actconfig;
4562         if (!config)
4563                 return timeout;
4564
4565         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4566                 struct usb_driver *driver;
4567                 struct usb_interface *intf = config->interface[i];
4568
4569                 if (!intf)
4570                         continue;
4571
4572                 /* Check if any currently bound drivers want hub-initiated LPM
4573                  * disabled.
4574                  */
4575                 if (intf->dev.driver) {
4576                         driver = to_usb_driver(intf->dev.driver);
4577                         if (driver && driver->disable_hub_initiated_lpm) {
4578                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4579                                                 "at request of driver %s\n",
4580                                                 state_name, driver->name);
4581                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4582                         }
4583                 }
4584
4585                 /* Not sure how this could happen... */
4586                 if (!intf->cur_altsetting)
4587                         continue;
4588
4589                 if (xhci_update_timeout_for_interface(xhci, udev,
4590                                         intf->cur_altsetting,
4591                                         state, &timeout))
4592                         return timeout;
4593         }
4594         return timeout;
4595 }
4596
4597 static int calculate_max_exit_latency(struct usb_device *udev,
4598                 enum usb3_link_state state_changed,
4599                 u16 hub_encoded_timeout)
4600 {
4601         unsigned long long u1_mel_us = 0;
4602         unsigned long long u2_mel_us = 0;
4603         unsigned long long mel_us = 0;
4604         bool disabling_u1;
4605         bool disabling_u2;
4606         bool enabling_u1;
4607         bool enabling_u2;
4608
4609         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4610                         hub_encoded_timeout == USB3_LPM_DISABLED);
4611         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4612                         hub_encoded_timeout == USB3_LPM_DISABLED);
4613
4614         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4615                         hub_encoded_timeout != USB3_LPM_DISABLED);
4616         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4617                         hub_encoded_timeout != USB3_LPM_DISABLED);
4618
4619         /* If U1 was already enabled and we're not disabling it,
4620          * or we're going to enable U1, account for the U1 max exit latency.
4621          */
4622         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4623                         enabling_u1)
4624                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4625         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4626                         enabling_u2)
4627                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4628
4629         if (u1_mel_us > u2_mel_us)
4630                 mel_us = u1_mel_us;
4631         else
4632                 mel_us = u2_mel_us;
4633         /* xHCI host controller max exit latency field is only 16 bits wide. */
4634         if (mel_us > MAX_EXIT) {
4635                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4636                                 "is too big.\n", mel_us);
4637                 return -E2BIG;
4638         }
4639         return mel_us;
4640 }
4641
4642 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4643 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4644                         struct usb_device *udev, enum usb3_link_state state)
4645 {
4646         struct xhci_hcd *xhci;
4647         u16 hub_encoded_timeout;
4648         int mel;
4649         int ret;
4650
4651         xhci = hcd_to_xhci(hcd);
4652         /* The LPM timeout values are pretty host-controller specific, so don't
4653          * enable hub-initiated timeouts unless the vendor has provided
4654          * information about their timeout algorithm.
4655          */
4656         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4657                         !xhci->devs[udev->slot_id])
4658                 return USB3_LPM_DISABLED;
4659
4660         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4661         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4662         if (mel < 0) {
4663                 /* Max Exit Latency is too big, disable LPM. */
4664                 hub_encoded_timeout = USB3_LPM_DISABLED;
4665                 mel = 0;
4666         }
4667
4668         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4669         if (ret)
4670                 return ret;
4671         return hub_encoded_timeout;
4672 }
4673
4674 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4675                         struct usb_device *udev, enum usb3_link_state state)
4676 {
4677         struct xhci_hcd *xhci;
4678         u16 mel;
4679
4680         xhci = hcd_to_xhci(hcd);
4681         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4682                         !xhci->devs[udev->slot_id])
4683                 return 0;
4684
4685         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4686         return xhci_change_max_exit_latency(xhci, udev, mel);
4687 }
4688 #else /* CONFIG_PM */
4689
4690 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4691                                 struct usb_device *udev, int enable)
4692 {
4693         return 0;
4694 }
4695
4696 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4697 {
4698         return 0;
4699 }
4700
4701 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4702                         struct usb_device *udev, enum usb3_link_state state)
4703 {
4704         return USB3_LPM_DISABLED;
4705 }
4706
4707 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4708                         struct usb_device *udev, enum usb3_link_state state)
4709 {
4710         return 0;
4711 }
4712 #endif  /* CONFIG_PM */
4713
4714 /*-------------------------------------------------------------------------*/
4715
4716 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4717  * internal data structures for the device.
4718  */
4719 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4720                         struct usb_tt *tt, gfp_t mem_flags)
4721 {
4722         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4723         struct xhci_virt_device *vdev;
4724         struct xhci_command *config_cmd;
4725         struct xhci_input_control_ctx *ctrl_ctx;
4726         struct xhci_slot_ctx *slot_ctx;
4727         unsigned long flags;
4728         unsigned think_time;
4729         int ret;
4730
4731         /* Ignore root hubs */
4732         if (!hdev->parent)
4733                 return 0;
4734
4735         vdev = xhci->devs[hdev->slot_id];
4736         if (!vdev) {
4737                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4738                 return -EINVAL;
4739         }
4740         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4741         if (!config_cmd) {
4742                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4743                 return -ENOMEM;
4744         }
4745         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4746         if (!ctrl_ctx) {
4747                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4748                                 __func__);
4749                 xhci_free_command(xhci, config_cmd);
4750                 return -ENOMEM;
4751         }
4752
4753         spin_lock_irqsave(&xhci->lock, flags);
4754         if (hdev->speed == USB_SPEED_HIGH &&
4755                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4756                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4757                 xhci_free_command(xhci, config_cmd);
4758                 spin_unlock_irqrestore(&xhci->lock, flags);
4759                 return -ENOMEM;
4760         }
4761
4762         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4763         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4764         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4765         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4766         /*
4767          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4768          * but it may be already set to 1 when setup an xHCI virtual
4769          * device, so clear it anyway.
4770          */
4771         if (tt->multi)
4772                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4773         else if (hdev->speed == USB_SPEED_FULL)
4774                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4775
4776         if (xhci->hci_version > 0x95) {
4777                 xhci_dbg(xhci, "xHCI version %x needs hub "
4778                                 "TT think time and number of ports\n",
4779                                 (unsigned int) xhci->hci_version);
4780                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4781                 /* Set TT think time - convert from ns to FS bit times.
4782                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4783                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4784                  *
4785                  * xHCI 1.0: this field shall be 0 if the device is not a
4786                  * High-spped hub.
4787                  */
4788                 think_time = tt->think_time;
4789                 if (think_time != 0)
4790                         think_time = (think_time / 666) - 1;
4791                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4792                         slot_ctx->tt_info |=
4793                                 cpu_to_le32(TT_THINK_TIME(think_time));
4794         } else {
4795                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4796                                 "TT think time or number of ports\n",
4797                                 (unsigned int) xhci->hci_version);
4798         }
4799         slot_ctx->dev_state = 0;
4800         spin_unlock_irqrestore(&xhci->lock, flags);
4801
4802         xhci_dbg(xhci, "Set up %s for hub device.\n",
4803                         (xhci->hci_version > 0x95) ?
4804                         "configure endpoint" : "evaluate context");
4805         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4806         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4807
4808         /* Issue and wait for the configure endpoint or
4809          * evaluate context command.
4810          */
4811         if (xhci->hci_version > 0x95)
4812                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4813                                 false, false);
4814         else
4815                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4816                                 true, false);
4817
4818         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4819         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4820
4821         xhci_free_command(xhci, config_cmd);
4822         return ret;
4823 }
4824
4825 int xhci_get_frame(struct usb_hcd *hcd)
4826 {
4827         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4828         /* EHCI mods by the periodic size.  Why? */
4829         return readl(&xhci->run_regs->microframe_index) >> 3;
4830 }
4831
4832 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4833 {
4834         struct xhci_hcd         *xhci;
4835         struct device           *dev = hcd->self.controller;
4836         int                     retval;
4837
4838         /* Accept arbitrarily long scatter-gather lists */
4839         hcd->self.sg_tablesize = ~0;
4840
4841         /* support to build packet from discontinuous buffers */
4842         hcd->self.no_sg_constraint = 1;
4843
4844         /* XHCI controllers don't stop the ep queue on short packets :| */
4845         hcd->self.no_stop_on_short = 1;
4846
4847         xhci = hcd_to_xhci(hcd);
4848
4849         if (usb_hcd_is_primary_hcd(hcd)) {
4850                 xhci->main_hcd = hcd;
4851                 /* Mark the first roothub as being USB 2.0.
4852                  * The xHCI driver will register the USB 3.0 roothub.
4853                  */
4854                 hcd->speed = HCD_USB2;
4855                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4856                 /*
4857                  * USB 2.0 roothub under xHCI has an integrated TT,
4858                  * (rate matching hub) as opposed to having an OHCI/UHCI
4859                  * companion controller.
4860                  */
4861                 hcd->has_tt = 1;
4862         } else {
4863                 if (xhci->sbrn == 0x31) {
4864                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4865                         hcd->speed = HCD_USB31;
4866                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4867                 }
4868                 /* xHCI private pointer was set in xhci_pci_probe for the second
4869                  * registered roothub.
4870                  */
4871                 return 0;
4872         }
4873
4874         mutex_init(&xhci->mutex);
4875         xhci->cap_regs = hcd->regs;
4876         xhci->op_regs = hcd->regs +
4877                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4878         xhci->run_regs = hcd->regs +
4879                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4880         /* Cache read-only capability registers */
4881         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4882         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4883         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4884         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4885         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4886         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4887         if (xhci->hci_version > 0x100)
4888                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4889         xhci_print_registers(xhci);
4890
4891         xhci->quirks |= quirks;
4892
4893         get_quirks(dev, xhci);
4894
4895         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4896          * success event after a short transfer. This quirk will ignore such
4897          * spurious event.
4898          */
4899         if (xhci->hci_version > 0x96)
4900                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4901
4902         /* Make sure the HC is halted. */
4903         retval = xhci_halt(xhci);
4904         if (retval)
4905                 return retval;
4906
4907         xhci_dbg(xhci, "Resetting HCD\n");
4908         /* Reset the internal HC memory state and registers. */
4909         retval = xhci_reset(xhci);
4910         if (retval)
4911                 return retval;
4912         xhci_dbg(xhci, "Reset complete\n");
4913
4914         /*
4915          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4916          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4917          * address memory pointers actually. So, this driver clears the AC64
4918          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4919          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4920          */
4921         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4922                 xhci->hcc_params &= ~BIT(0);
4923
4924         /* Set dma_mask and coherent_dma_mask to 64-bits,
4925          * if xHC supports 64-bit addressing */
4926         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4927                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4928                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4929                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4930         } else {
4931                 /*
4932                  * This is to avoid error in cases where a 32-bit USB
4933                  * controller is used on a 64-bit capable system.
4934                  */
4935                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4936                 if (retval)
4937                         return retval;
4938                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4939                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4940         }
4941
4942         xhci_dbg(xhci, "Calling HCD init\n");
4943         /* Initialize HCD and host controller data structures. */
4944         retval = xhci_init(hcd);
4945         if (retval)
4946                 return retval;
4947         xhci_dbg(xhci, "Called HCD init\n");
4948
4949         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4950                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4951
4952         return 0;
4953 }
4954 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4955
4956 static const struct hc_driver xhci_hc_driver = {
4957         .description =          "xhci-hcd",
4958         .product_desc =         "xHCI Host Controller",
4959         .hcd_priv_size =        sizeof(struct xhci_hcd),
4960
4961         /*
4962          * generic hardware linkage
4963          */
4964         .irq =                  xhci_irq,
4965         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4966
4967         /*
4968          * basic lifecycle operations
4969          */
4970         .reset =                NULL, /* set in xhci_init_driver() */
4971         .start =                xhci_run,
4972         .stop =                 xhci_stop,
4973         .shutdown =             xhci_shutdown,
4974
4975         /*
4976          * managing i/o requests and associated device resources
4977          */
4978         .urb_enqueue =          xhci_urb_enqueue,
4979         .urb_dequeue =          xhci_urb_dequeue,
4980         .alloc_dev =            xhci_alloc_dev,
4981         .free_dev =             xhci_free_dev,
4982         .alloc_streams =        xhci_alloc_streams,
4983         .free_streams =         xhci_free_streams,
4984         .add_endpoint =         xhci_add_endpoint,
4985         .drop_endpoint =        xhci_drop_endpoint,
4986         .endpoint_reset =       xhci_endpoint_reset,
4987         .check_bandwidth =      xhci_check_bandwidth,
4988         .reset_bandwidth =      xhci_reset_bandwidth,
4989         .address_device =       xhci_address_device,
4990         .enable_device =        xhci_enable_device,
4991         .update_hub_device =    xhci_update_hub_device,
4992         .reset_device =         xhci_discover_or_reset_device,
4993
4994         /*
4995          * scheduling support
4996          */
4997         .get_frame_number =     xhci_get_frame,
4998
4999         /*
5000          * root hub support
5001          */
5002         .hub_control =          xhci_hub_control,
5003         .hub_status_data =      xhci_hub_status_data,
5004         .bus_suspend =          xhci_bus_suspend,
5005         .bus_resume =           xhci_bus_resume,
5006
5007         /*
5008          * call back when device connected and addressed
5009          */
5010         .update_device =        xhci_update_device,
5011         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5012         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5013         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5014         .find_raw_port_number = xhci_find_raw_port_number,
5015 };
5016
5017 void xhci_init_driver(struct hc_driver *drv,
5018                       const struct xhci_driver_overrides *over)
5019 {
5020         BUG_ON(!over);
5021
5022         /* Copy the generic table to drv then apply the overrides */
5023         *drv = xhci_hc_driver;
5024
5025         if (over) {
5026                 drv->hcd_priv_size += over->extra_priv_size;
5027                 if (over->reset)
5028                         drv->reset = over->reset;
5029                 if (over->start)
5030                         drv->start = over->start;
5031         }
5032 }
5033 EXPORT_SYMBOL_GPL(xhci_init_driver);
5034
5035 MODULE_DESCRIPTION(DRIVER_DESC);
5036 MODULE_AUTHOR(DRIVER_AUTHOR);
5037 MODULE_LICENSE("GPL");
5038
5039 static int __init xhci_hcd_init(void)
5040 {
5041         /*
5042          * Check the compiler generated sizes of structures that must be laid
5043          * out in specific ways for hardware access.
5044          */
5045         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5046         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5047         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5048         /* xhci_device_control has eight fields, and also
5049          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5050          */
5051         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5052         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5053         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5054         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5055         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5056         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5057         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5058
5059         if (usb_disabled())
5060                 return -ENODEV;
5061
5062         return 0;
5063 }
5064
5065 /*
5066  * If an init function is provided, an exit function must also be provided
5067  * to allow module unload.
5068  */
5069 static void __exit xhci_hcd_fini(void) { }
5070
5071 module_init(xhci_hcd_init);
5072 module_exit(xhci_hcd_fini);